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These slides are available from my website

http://asc.tuwien.ac.at/index.php?id=woracek
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A PERTURBATION PROBLEM
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Given o = (an)nen, B = (Bn)nen with
° an, Bn € R\{0};
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° an, Bn € R\{0};

e o, pairwise different, 5, pairwise different;
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Given o = (an)neN, B = (ﬁn)neN with
° an, Bn € R\{0};
e o, pairwise different, 5, pairwise different;

e the canonical products converge:

Py(z) := Tli_)nolo H (1—()%), Ps(z) := Tli_)IgO H (1—;—”).

lan|<r |Bn|<r
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Given o = (an)neN, B = (,Bn)neN with
° an, Bn € R\{0};
e o, pairwise different, 5, pairwise different;

e the canonical products converge:

Pae) = Jim T (1=0). Po)e=Jim [T (1-7).
|an|$r " |Bn|<r "
THE QUESTION

How large may the perturbation ~, := 3, — o, be, such that still

3¢,C>0: c|P,(an)] < |P5(Bn)| < C|Py(an)|, neN.
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e At places in the vicinity of which the sequence « is well
separated and grows regularly, the sequence
o' = (P! (an))nen behaves regularly and can be controlled.
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e At places in the vicinity of which the sequence « is well
separated and grows regularly, the sequence
o' = (P! (an))nen behaves regularly and can be controlled.

e Points of o being close to each other give rise to peaks in o,
and lumps of points being close to each other produce peaks
which even may spread out over neighbouring points.
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e At places in the vicinity of which the sequence « is well
separated and grows regularly, the sequence
o' = (P! (an))nen behaves regularly and can be controlled.

e Points of o being close to each other give rise to peaks in o,
and lumps of points being close to each other produce peaks
which even may spread out over neighbouring points.

THE INTUITION

The perturbation v must be smaller than the separation of o and
must not allow that lumps of points appear/vanish in the vicinity
of any point of «.. Its maximal size

e depends on the asymptotic growth of «,
e js limited relative to the separation of «,

e is limited relative to the local irregularity of c.
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Our aim is

to make this intuition quantitatively precise.
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Two toy examples
Example

Consider ay, := (n + %)2 and (3, := (n + %)2 n=0,1,2,...
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Two toy examples
Example
Consider oy, := (n + %)2 and 3, := (n + %)2 n=0,1,2,...
Then
o Py(z) =cosv/z, Ps(z)=(1-22)""cos/z.

—1)ntig —_1)nt2p
o P (an) = %7 Pé(ﬁn) = (2r(z+3))(2n+2)'
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Two toy examples
Example

Consider oy, := (n + %)2 and 3, := (n + %)2 n=0,1,2,...
Then
o Py(z) =cosv/z, Ps(z)=(1-22)""cos/z.
. (_1)n+lﬂ_ _ (_1)n+2ﬂ.
e Pilan) = 55— P3(Bn) = mmymnryy-

CONCLUSION
® YV =0Qpt] —Op =N E= Polé(an)ipé(ﬁn).
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Two toy examples
Example
Consider oy, := (n + %)2 and 3, := (n + %)2 n=0,1,2,...
Then
o Py(z) =cosv/z, Ps(z)=(1-22)""cos/z.
o Pilom) = 555", PY(Ba) = oo

CONCLUSION
® YV =0Qpt] —Op =N E= Polé(an)ipé(ﬁn).

Notation
(Gn)neN = (Tn)neN = d¢,C>0: C|Un| < |7-n| < C|Un|
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Two toy examples
Example

Consider oy, := (n + %)2 and 3, := (n + %)2 n=0,1,2,...
Then

o Py(z) =cosv/z, Ps(z)=(1-22)""cos/z.

—1)ntig —_1)nt2p
o P (an) = %7 Pé(ﬁn) = (2r(z+3))(2n+2)'

CONCLUSION
® YV =0Qpt] —Op =N E= Polé(an)ipé(ﬁn).

OUR THEOREMS WILL SHOW

n
- o( ) P (o) = P .
o logn - (loglogn)? = Falon) plon + )
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Some applications

Two toy examples
Example
Consider
op_1:=k,aor :=—k, k=1,2,3,..., Qg = 1—10
_1-10z

e P.(2) — sin(mz). Hence, |P. ()| = 1.
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Two toy examples

Example
Consider
1
o1 =k, :=—k, k=1,2,3,..., Qg 1= 10
1-10
e P,(z) = S sin(mz). Hence, |P. ()| = 1.

v

Let |v,| = O(n=¢) for some & > 0 (with v, # —ay), and set
Bn = an + Yn-
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Two toy examples

Example
Consider
1
o1 =k, :=—k, k=1,2,3,..., Qg 1= 10
1-10
e P,(z) = z sin(mz). Hence, |P. ()| = 1.

v

Let |v,| = O(n=¢) for some & > 0 (with v, # —ay), and set
Bn = oy + Vn.

e Pg(z) is a sine type function. Hence, |Pé(6n)| =1.
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Two toy examples

Example
Consider
1
op_1:=k,aor :=—k, k=1,2,3,..., Qg = 10
1-10
e P,(z) = z sin(mz). Hence, |P. ()| = 1.

v

Let |v,| = O(n=¢) for some & > 0 (with v, # —ay), and set
B = Qn + Tn.

e Pg(z) is a sine type function. Hence, |Pé(6n)| =1.

OUR THEOREMS WILL SHOW

1
- O< ) P(ay) = P, .
* o logn - (loglogn)2 ~ a(en) (0 =+ n)
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Well-separated sequences

For sequences a and ~y denote

e ot the (finite or infinite) subsequence consisting of all positive
elements of a arranged according to increasing modulus.

o ~[*] the correspondingly arranged subsequence of :

’77[1+] = Vk(n) < O‘r—iz_ = Ok(n)-

a~,~v71 ... analogous for the negative elements of a.
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Well-separated sequences

For sequences a and ~y denote

e ot the (finite or infinite) subsequence consisting of all positive

elements of a arranged according to increasing modulus.
o ~[*] the correspondingly arranged subsequence of :
+
7T[L I Yk(n) < O‘r—iz_ = Ok(n)-

a~,~v71 ... analogous for the negative elements of a.

Theorem (communicated by A.Baranov)

. + +
Assume dp > 0,¢ > 0: |oy,; — @

| = en”, and
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Well-separated sequences

For sequences a and ~y denote

e ot the (finite or infinite) subsequence consisting of all positive
elements of a arranged according to increasing modulus.
o ~[*] the correspondingly arranged subsequence of :
+
7T[L - Yk(n) < O‘r—iz_ = Ok(n)-
a~,~v71 ... analogous for the negative elements of a.
Theorem (communicated by A.Baranov)

o +
Assume 3p = O,C >0: |a,, —of| =cn, and

« > \’Yn
oE|C>0: |’Yn ’\Cnp

logn
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Well-separated sequences

For sequences a and ~y denote

e ot the (finite or infinite) subsequence consisting of all positive
elements of a arranged according to increasing modulus.
o ~[*] the correspondingly arranged subsequence of :
+
’77[1 - Yk(n) < O‘r—iz_ = Ok(n)-
a~,~v71 ... analogous for the negative elements of a.
Theorem (communicated by A.Baranov)

Assume 3p > 0,¢ > 0: |al,; —ai| > en”, and
« > \’Yn
oE|C>0:|’yn’\Cnp

logn

Then Py () = Pg(an + 7).
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GROWTH FUNCTIONS,
SEPARATION
AND LOCAL IRREGULARITY

OOOOOOO
OOOOOOOO



A perturbation problem

Growth functions
000

Stability theorems
9000

Some applications

[e]e) 0000000
000 [e]e) 000 00000000
(e} 000
Growth functions
Definition

X :RT — R* is a growth function if

(gf1) Ais (for large r) differentiable, and lim A(r) = co.

r—00
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Growth functions
Definition
A: Rt — R* is a growth function if

(gf1) Ais (for large r) differentiable, and lim A(r) = co.

r—00

(8f2) px = lim £ € [0, 0)
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Growth functions
Definition
A: Rt — R* is a growth function if
(gf1) Ais (for large r) differentiable, and lim A(r) = co.

r—00

(8f2) px = lim £ € [0, 0)

(63) lim (7307 /o20)) ~ 1
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Growth functions

Definition
A: Rt — R* is a growth function if

(gf1) Ais (for large r) differentiable, and lim A(r) = co.

r—00
(8f2) px = lim £ € [0, 0)
T) log \(r —
(sf3) hm ( igr ) =
Example
A(r) =" (10g(m,) T )b1 <o (log(m,) r)b", with

e a=0 meN m <...<my,

e by,...,b, € R, with by >0ifa=0,

e logyr:=logr, logg ) r:=Ilog (log(k) r), ke N.
We have p) = a.
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Properties of growth functions

e For large r the function A is strictly increasing and bounded
away from 0.

o lim A7) _ cex uniformly in C' on compact subsets of
r—00 A(r)

(0, 00).
e Let 0 > 0. Then (for large r)

A(r) . increasing , o < py
r? decreasing, o > py
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Upper and lower densities
Definition
Let A be a growth function and (&, )nen, € € R, a sequence without
finite accumulation point. Set

ne(r) == #{n e N: 6] <7}

o Upper A-density: Ax(§) := limsup,_, ., 7;\&((73)

o Lower A-density: 6)(§) := liminf, Ti\g(sf))
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Upper and lower densities

Definition
Let A be a growth function and (&, )nen, € € R, a sequence without
finite accumulation point. Set

ne(r) = #{neN: [&| <7}

o Upper A-density: Ax(§) := limsup,_, ., T;f((s)

o Lower \-density: 05(§) := liminf, Vi\g(sf))

Lemma
Let \ be a growth function and (&, )nen, 0 < &1 <& <&3<..., a
sequence without finite accumulation point. Then

0x(€) = lim inf —— A(gn) Ax(§) = hnmjgp N §n)
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Upper and lower densities

Example

Let \ be a growth function, and set &, := A~!(n). Then

aA(€) = Ax() = L.
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Upper and lower densities

Example

Let \ be a growth function, and set &, := A~!(n). Then

aA(€) = Ax() = L.

Remark

e For each sequence & without finite accumulation point, there
exists a growth function A with 0 < A (&) < .
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Upper and lower densities

Example
Let A\ be a growth function, and set &, := A~'(n). Then

aA(€) = Ax() = L.

Remark

e For each sequence & without finite accumulation point, there
exists a growth function A with 0 < A (&) < .

e It is not always possible to choose A such that
A)\(g) < o0 and 5>\(§) > 0.

This is due to possible existence of large clusters of points in &.
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Separation and local irregularity

Definition
Let & = (&)nen, € € R\{0}, and let p > 1.
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Separation and local irregularity
Definition
Let & = (&)nen, € € R\{0}, and let p > 1.
Define

o se(n) :=inf{|& — &l keN, & # &}
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Separation and local irregularity
Definition
Let &€ = (&n)nen, € € R\{0}, and let p > 1.
Define

o se(n):=inf{|¢ — &l keN, & # &}

e 7¢(p,n) = #{keN: Ze (;,p)}
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Separation and local irregularity

Definition
Let & = (&)nen, € € R\{0}, and let p > 1.
Define

o se(n):=inf {|& — &l s keN, & # &}
e 7¢(p,n) = #{keN: gke (;,p)}
Example

Consider &, :=n? with 0 > 1. Then

o—1

se(n) =n?"", re(p,n) = [(p% - pfi)nJ, p>1.

Some applications
0000000
00000000

[e]e]e}
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The role of r¢

Lemma

Let \ be a growth function, p > 1, and (&,)nen,

0 <& <& <& <..., asequence without finite accumulation
point.
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The role of r¢

Lemma

Let \ be a growth function, p > 1, and (&,)nen,

0 <& <& <& <..., asequence without finite accumulation
point.

o Assume Ayx(§) < o0, 6,(§) > 0. Then

re(p,n) = O(n), Z —=0(1), n— oo
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The role of r¢

Lemma
Let \ be a growth function, p > 1, and (&,)nen,
0 <& <& <& <..., asequence without finite accumulation
point.
o Assume Ayx(§) < o0, 6,(§) > 0. Then
1
relom) =0(m), Y 2 =0(1), n—on.
keN
the(d.p)

o Assume &, = A~Y(n). Then

. 1 nlogn
keN: kn ISk 7 61 n
tte(d,p)
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Sequences under consideration

Remember: For a sequence « denote by

e a7 the (finite or infinite) subsequence consisting of all positive elements
of a arranged according to increasing modulus.

® « ... analogous for the negative elements of a.
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Sequences under consideration

Remember: For a sequence « denote by

e a7 the (finite or infinite) subsequence consisting of all positive elements
of a arranged according to increasing modulus.

® « ... analogous for the negative elements of a.
Definition
Let S the set of all sequences o = (), with
(S1)  ay € R\{0}, pairwise distinct, without finite
accumulation point.

(52) lim — = lim —— € [0,00)

n—00 Otj{ n—00 ’an |
1
(S3) lim —e€eR
T—00 an
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The general situation
Theorem
Let o € S and let A be a growth function, such that
o A g (for large r) non-increasing or non-decreasin
o g g g.

1
® DN Aan) < ©
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The general situation

Theorem
Let o € S and let A be a growth function, such that

o Alr)

> N m < 0.
Let B €S, setv:= [ — «, and assume
(A) bl = O(x(2y).
®) () .t

(C) 3p>1:WJ:OQ3%J.

~— is (for large ) non-increasing or non-decreasing.

Some applications
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Stability theorems

The general situation
Theorem

Let o € S and let A be a growth function, such that
A(r
o Alr)

o > N 7/\(';”') < .
Let B €S, setv:= [ — «, and assume
(A) Il = O(if2ky)
8 () e

(C) 3p>1: m,:o(&;@)).

Then | P, (cun)| = | P4(50).

~— is (for large ) non-increasing or non-decreasing.

Some applications
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Mild regularity
Theorem

Let o € S and let A be a growth function, such that
oM'(fr/r ) non-increasing or non-decreasin
.~ is (for large r) non-increasing or non-decreasing.

1
° ZnEN 7A(|an|) < 00.
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Mild regularity
Theorem

Let o € S and let A be a growth function, such that

o AW g (for large r) non-increasing or non-decreasing.
( :

1
° ZnEN 7A(|an|) < 00.

e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0
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Mild regularity
Theorem
Let o € S and let A be a growth function, such that
A(r
o Alr)

1
° ZneN 7A(|an|) < 00.

e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0
Let B €S, set v:=f — «, and assume
() hl = O(lly).

) . . .
—— is (for large ) non-increasing or non-decreasing.

Some applications
0000000
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Mild regularity
Theorem
Let o € S and let A be a growth function, such that
. @ is (for large ) non-increasing or non-decreasing.
° ZnEN m < Q0.

e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0
Let B €S, set v:=f — «, and assume

(A) Il = O(5fely).

lan])

®  (85) e

(©) 3p>1: Iml=0(:=4).

ra(pyn)




A perturbation problem
000
000

Growth functions

0000
(e]e]

Stability theorems
00

®00

o

Mild regularity
Theorem
Let o € S and let A be a growth function, such that
. @ is (for large ) non-increasing or non-decreasing.
° ZnEN m < Q0.

e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0
Let B €S, set v:=f — «, and assume
() hl = O(lly).

B1) Ll —0(1), ]| —0(1).

So+(m)

(C) 3Fp>1: |y|= O( sa(n) )

P (po1)

Some applications
0000000
00000000

[e]e]e}
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Mild regularity

Theorem
Let o € S and let A be a growth function, such that

A(r) - . . .

o =~ is (for large r) non-increasing or non-decreasing.
1

° ZneN Aan]) < Q0.

e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0

Let B €S, set v:=f — «, and assume
(A) bl = O3y )
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Mild regularity

Theorem
Let o € S and let A be a growth function, such that
o A g (for large r) non-increasing or non-decreasing.
T
o ZneN m < 0.
e af infinite = IAT: Ay+(a™) < oo, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, dy-(a”) >0
Let B €S, set v:=f — «, and assume

(A) Il = O(5i72L5).

(B1) o), &

Then |P.(ay,)| = |Pé(5n)|
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Strong regularity. |
Theorem

Let o € S and let A be a growth function, such that
oM'(fr/r ) non-increasing or non-decreasin
.~ is (for large r) non-increasing or non-decreasing.

1
° ZnEN 7A(|an|) < 00.
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Strong regularity. |
Theorem
Let €S and let A be a growth function, such that

o A0

1
° ZnEN AanD) < Q0.

e o infinite = INT: Ay (a) <o, dy+(a™) >0
a” infinite = IAT: Ay—(a7) <, d)-(a”) >0
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Let o € S and let A be a growth function, such that
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1
° ZnEN 7A(|an|) < 00.
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Strong regularity. |
Theorem
Let o € S and let A be a growth function, such that
o A g (for large r) non-increasing or non-decreasing.
T

o > N m < .
e ot infinite = IAT: at(n) = (A1) "H(n)
a” infinite = IN": a"(n) = —-(A")"(n)
Let B €S, set v:= 3 — «, and assume
(A) il = 052l ).




A perturbation problem Growth functions Stability theorems

Some applications
000 0000 [e]e] 0000000
000 e]e] (o] le} 00000000
o] [e]e]e}

Strong regularity. |
Theorem
Let o € S and let A be a growth function, such that
o A g (for large r) non-increasing or non-decreasing.
T

o > N m < .
e atinfinite = IAT: af(n) = (A1) (n)
a” infinite = IN": a"(n) = —-(A")"(n)
Let B €S, set v:= 3 — «, and assume
(A) il = 052l ).

(B1) J=l-o(), L=lk-o0@)

"o
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Strong regularity. |

Theorem
Let o € S and let A be a growth function, such that

o @ is (for large r) non-increasing or non-decreasing.
o > N m < 0.
e ot infinite = IAT: at(n) = (A1) "H(n)
a” infinite = IN": a"(n) = —-(A")"(n)
Let S €S, set y:=
(A) bl = (

— o, and assume

)

A af | af
(B2) s:+(n) - O(ns +(n) loén) s’y,(n) - (ns +(n) loén)
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Strong regularity. |

Theorem
Let o € S and let A be a growth function, such that

. @ is (for large ) non-increasing or non-decreasing.
° ZneN m < .
e o infinite = IAT: af(n) = (A1) (n)
a” infinite = IA": a"(n) = —(A\7)"Y(n)
Let B €S, set v:= 3 — «, and assume
(A) il = 0(5ls).
[—]|

(B2) ) —O( at 1 ), %)

o
s,+(n) ns,+(n) logn 5,—(n) = (nsaJr (n) loén)'

Then [P (om)| = |P5(Bn)].
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Strong regularity. Il
Theorem

Let o € S and let A be a growth function, such that
oM'(fr/r ) non-increasing or non-decreasin
.~ is (for large r) non-increasing or non-decreasing.

1
° ZnEN 7A(|an|) < 00.
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Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that
o A

1
° ZnEN 7A(|an|) < 00.

e aT infinite = IAT: aT(n) = (A")"1(n)
a” infinite = IA": a"(n) = (A7) "L(n)

) . . .
—— is (for large ) non-increasing or non-decreasing.

Some applications
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Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that

o AW g (for large r) non-increasing or non-decreasing.
( :

1
° ZneN 7A(|an|) < 00.

atinfinite = INT: aT(n) = (A7) "L(n)
a” infinite = IA": a"(n) = (A7) "L(n)

. A;(SS) non-increasing (same for A7)

log At (r)
logr

either py+ > 0 or non-increasing (same for A7)
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Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that

AW g (for large r) non-increasing or non-decreasing.
- :

® ZneN m < .
ot infinite = IAt: at(n) = (A\F)"(n)
a” infinite = IA": a"(n) = (A7) "L(n)

. A;((;;) non-increasing (same for A7)

log At (r)
logr

either py+ > 0 or non-increasing (same for A7)

Let B €S, set v:= 3 — «, and assume
(A) Il = O(5i72L5)




A perturbation problem Growth functions Stability theorems Some applications
000 0000 [e]e] 0000000
000 e]e] ooe 00000000

o] [e]e]e}

Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that

o AW g (for large r) non-increasing or non-decreasing.
( :

® ZnGN m < .
o atinfinite = IAt: at(n) = (\F)"(n)
a” infinite = IA": a"(n) = (A7) "L(n)

o A;((:j) non-increasing (same for A7)

log At (r)

e either py+ > 0 or Togr

non-increasing (same for A7)

Let B €S, set v:= 3 — «, and assume

(A) bl = O(lly).

(82) \”nlzﬂ\

5.+ (n)

— ()( (—\74; 1 ) o

~ (5 )
ns,+(n)logn/’ s _(n) “\ns_+(n)logn/"
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Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that

AW g (for large r) non-increasing or non-decreasing.
- :

® ZneN m < .
ot infinite = IAt: at(n) = (A\F)"(n)
a” infinite = IA": a"(n) = (A7) "L(n)

. A;((;;) non-increasing (same for A7)

log At (r)
logr

either py+ > 0 or non-increasing (same for A7)

Let B €S, set v:= 3 — «, and assume
(A) Il = O(5i72L5)
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Strong regularity. Il

Theorem
Let o € S and let A be a growth function, such that

AW g (for large r) non-increasing or non-decreasing.
- :

1
° ZneN 7A(|an|) < 00.

e atinfinite = INT: aT(n) = (A")"1(n)
a” infinite = IA": a"(n) = (A7) "L(n)

. A;((;;) non-increasing (same for A7)

log At (r)
logr

e either py+ > 0 or non-increasing (same for A7)

Let B €S, set v:= 3 — «, and assume
(A) Il = O(5i72L5)

Then [Py (an)| = [P5(Bn)l-
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Example
Consider o, :=n%, ne N, with ¢ > 1.
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Returning to the example

Example
Consider o, :=n%, ne N, with ¢ > 1.

e a, = (AT)7(n) for \T(r) := e

e We may use, e.g., A(r) := re log (log log r)2:

A

ﬁ = log r(log log 7“)2 non-increasing (for large )
ZA\aI Zn-alo n-(lolo+lo lo n)2<oo
neN n neN & & 6708

AT(r) _ 1

non-increasing

A(r)  logr(loglogr)?

1
pa+ =—>0
g
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Returning to the example

Example

Consider o, :=n%, ne N, with ¢ > 1.

General Theorem: Z [l < .

o—1
neN

Mild regularity: 7| = O(n"fz).
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Example
Consider o, :=n%, ne N, with ¢ > 1.

General Theorem: Z ‘Zﬁ’l < 0.
neN
Mild regularity: |Yn| = O(n"fz).

o—1

. n
Strong regularity (I or 11): |v,| = O(logn‘ (loglog n)2>
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Returning to the example

Example
Consider o, :=n%, ne N, with ¢ > 1.

General Theorem: Z ‘Zﬁ’l < 0.
neN
Mild regularity: |Yn| = O(n"fz).

o—1

. n
Strong regularity (I or 11): |v,| = O(logn‘ (loglog n)2>

1

Remember: |7n| = n?" is not allowed!



o 000

SOME APPLICATIONS

«O>» «F>» «E>» «E>» =] Q>



A perturbation problem Growth functions Stability theorems

Some applications
000 0000 (e} ®000000
[e]e]e} (e]e] 000 00000000
[e] [e]e]e}
(In-)determinate measures
Definition

Let i be a positive Borel measure on R which has all power
moments, and set

Sn :=J t"du(t), n=0,1,2,...
R

e 1 is determinate, if there is no other measure v with
Spt™dv(t) = sn, n=0,1,2,...
e (i is indeterminate otherwise.
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(In-)determinate measures
Definition

Let i be a positive Borel measure on R which has all power
moments, and set

Sn :=J t"du(t), n=0,1,2,...
R

e 1 is determinate, if there is no other measure v with
Spt™dv(t) = sn, n=0,1,2,...
e (i is indeterminate otherwise.

Convention: We always assume that supp y is not finite.
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(In-)determinate measures

Definition
Let i be a positive Borel measure on R which has all power
moments, and set

Sn :=J t"du(t), n=0,1,2,...
R

e 1 is determinate, if there is no other measure v with
Spt™dv(t) = sn, n=0,1,2,...
e (i is indeterminate otherwise.
Convention: We always assume that supp y is not finite.
Proposition

Assume v is indeterminate. Then p is discrete.
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Nevanlinna parameterisation
Theorem

Assume i is indeterminate.
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Nevanlinna parameterisation

Theorem
Assume i is indeterminate.

Then there exist four entire functions A, B, C, D, such that

J dv(t) _ A(2)7(2) + B(z)

rt—2 C(2)7(2) + D(2)

establishes a bijection between
{v: J " du(t) = sp,n=0,1,2,...}

and No := {7 : analytic in C*,Im 7(z) > 0}.
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Nevanlinna parameterisation

Theorem
Assume i is indeterminate.

Then there exist four entire functions A, B, C, D, such that

J dv(t) _ A(2)7(2) + B(z)

rt—z C(2)1(2) + D(2)

establishes a bijection between
{v: J " du(t) = sp,n=0,1,2,...}
and No := {7 : analytic in C*,Im 7(z) > 0}.

Note: p itself appears in the first of these sets, and hence
corresponds to some parameter 7.
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N-extremal measures

Definition
Let 1 be a positive Borel measure on R which has all power
moments.

w is N-extremal, if the space C[z] of polynomials is dense in L?(p).
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N-extremal measures

Definition
Let 1 be a positive Borel measure on R which has all power
moments.

w is N-extremal, if the space C[z] of polynomials is dense in L?(p).

Theorem
u is N-extremal if and only if
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N-extremal measures

Definition
Let 1 be a positive Borel measure on R which has all power
moments.

w is N-extremal, if the space C[z] of polynomials is dense in L?(p).

Theorem
w is N-extremal if and only if

either
e (i is determinate,
or

e 1 is indeterminate and corresponds to a constant parameter in
the Nevanlinna parameterisation.
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The Hamburger class

Definition
The Hamburger class H is the set of all entire function F' with



A perturbation problem Growth functions Stability theorems Some applications

000 0000 (e} 000@000
[e]e]e} (e]e] 000 00000000
[e] [e]e]e}

The Hamburger class

Definition
The Hamburger class H is the set of all entire function F' with
e F'is a transcendental entire function,

e F' has minimal exponential type,

o0]

o1, and

e F' has only real and simple zeros, say (yn)

lim ’f’izo, 1=0,1,2,....
n—x |F (yn)|
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A perturbation problem
000 0000

The Hamburger class

Definition
The Hamburger class H is the set of all entire function F' with

e F'is a transcendental entire function,

e F' has minimal exponential type,
e [ has only real and simple zeros, say (yn)n_,, and

lim onl —0, 1=0,1,2,....
n—x |F (yn)|
Remark ;
If F e H and F(0) = 1, then F(z) = lim (1 - 7)_
r—00 yn

[yn|<r
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Indeterminate and N-extremal measures

Theorem (A.Borichev, M.Sodin)

Consider j1 = Y "_, jin0y,. Then u is indeterminate and
N-extremal if and only if

Some applications
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Indeterminate and N-extremal measures

Theorem (A.Borichev, M.Sodin)

Consider j1 = Y "_, jin0y,. Then u is indeterminate and
N-extremal if and only if

o F(z):=limro [, 1< (1 - ) €H,

o > |znltun <00 foralll =0,1,.

“ ey

[e'e] 1 .
* Lnet PGP < %
e for every function G € H with g entire,

0

> =

k=1 Hn(k) |G/ (xn(k) ) ‘ 2

where (1)), is the sequence of zeros of G.
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Applying the stability theorem
Theorem

Let j1 = >" | jinba, be indeterminate and N-extremal. Let
(Bn)_1, Bn € R pairwise distinct, and let v, > 0.
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Applying the stability theorem

Theorem

Let j1 = >" | jinba, be indeterminate and N-extremal. Let
(Bn)_1, Bn € R pairwise distinct, and let v, > 0.
Choose a growth function A, such that

Alr) . . . .
= is (for large ) non-increasing or non-decreasing.

o Y N m < .
5 = an| = O( izl )
¢ <Bsna7(g)n)neN €l

dp>1: |Bn—an|=0( sa(n) )

Ta(pvn)
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Applying the stability theorem

Theorem

Let j1 = >" | jinba, be indeterminate and N-extremal. Let
(Bn)_1, Bn € R pairwise distinct, and let v, > 0.
Choose a growth function A, such that

Alr) - . . .
= is (for large ) non-increasing or non-decreasing.

o Y N m < .
5 = an| = O( izl )
¢ <Bsna7(g)n)neN €l

e dp>1: \ﬁn—an|=0(m).

’I"a(pﬂ’l)

Then v := Z Vndg, Is indeterminate and N-extremal.
neN
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Using regularity ?

The versions of our stability theorem for regularly distributed
sequences do not apply immediately to this problem.



Some applications
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Using regularity 7

The versions of our stability theorem for regularly distributed
sequences do not apply immediately to this problem.

The reason is that a subsequence of a regularly behaving sequence
is not necessarily itself regularly behaving.
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Canonical systems
Let H : [0,L) — R?*2 be such that
e He L, ([0,L)),
e Ht)>0,te[0,L),

Some applications
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e H does not vanish identically on any set of positive measure.
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Canonical systems

Let H : [0,L) — R?*2 be such that
* He L,([0,L)),
e H(t)=0,te[0,L),
e H does not vanish identically on any set of positive measure.

The canonical system with Hamiltonian H is the equation
y'(t) = zJH(t)y(t), te[0,L).

. 0 -1
Here z is a complex parameter and J := (1 0 )
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Canonical systems
Let H : [0,L) — R?*2 be such that
e He L, ([0,L)),
e H(t)=0,te[0,L),
e H does not vanish identically on any set of positive measure.

The canonical system with Hamiltonian H is the equation
y'(t) = zJH(t)y(t), te[0,L).

. 0 -1
Here z is a complex parameter and J := (1 0 )

Assume that Weyl’s limit point case takes place at L, i.e.,

L
f tr H(t) dt = 0.
0
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The Weyl coefficient

Let W (x,2) = (wij(x, 2))i j—1,2 be the solution of the initial value
problem

%W(t, 2)J = 2W(t,z)H(t), te][0,L), W(0,z2) =1,
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The Weyl coefficient
Let W (x,2) = (wij(x, 2))i j—1,2 be the solution of the initial value
problem

%W(t, 2)J = 2W(t,z)H(t), te][0,L), W(0,z2) =1,

Then, for each 7 € R U {0}, the limit

lim wll(t, Z)T + wlz(t, Z)
t/ L w21 (t, Z)T + ’LUQQ(t, Z)

= qH(z)

exists locally uniformly on C\R and does not depend on 7.
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The Weyl coefficient
Let W (x,2) = (wij(x, 2))i j—1,2 be the solution of the initial value
problem
d
@W(t, 2)J = 2W(t,z)H(t), te][0,L), wW(0,z) =1,
Then, for each 7 € R U {0}, the limit

lim wll(t, Z)T + wlg(t, Z)

=: z
t/ L w21 (t, Z)T + wQQ(t, Z) QH( )

exists locally uniformly on C\R and does not depend on 7.
qm is the Titchmarsh—Weyl coefficient (or Weyl m-~function) of H.
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The Weyl coefficient
Let W (x,2) = (wij(x, 2))i j—1,2 be the solution of the initial value
problem
d
@W(t, 2)J = 2W(t,z)H(t), te][0,L), wW(0,z) =1,
Then, for each 7 € R U {0}, the limit

lim wll(t, Z)T + wlg(t, Z)

=: z
t/ L w21 (t, Z)T + wQQ(t, Z) QH( )

exists locally uniformly on C\R and does not depend on 7.
qm is the Titchmarsh—Weyl coefficient (or Weyl m-~function) of H.

It is characterised by

(1) = (w““’z)> ~an(2) (wﬂ(t’ ’”) - 12(H)

wia(t, 2) waa(t, 2)
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Spectral theorems

Theorem (Direct Theorem)

The Titchmarsh—Weyl coefficient of H belongs to the Nevanlinna
class Ny, i.e.,

e qp is analytic on C\R;

° q(Z) = qu(z), z€ C\R;
e Imgp(z) =0 forImz > 0.
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Spectral theorems

Theorem (Direct Theorem)

The Titchmarsh—Weyl coefficient of H belongs to the Nevanlinna
class Ny, i.e.,
e qp is analytic on C\R;

° q(Z) = qu(z), z€ C\R;
e Imgp(z) =0 forImz > 0.

Theorem (Inverse Theorem)
Let g € Ny. Then there exists H, such that ¢ = qy.
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Spectral theorems

Definition
Two Hamiltonians Hy, Hy are reparameterisations of each other, if
there exists ¢ : (0, L2) — (0, L) with
e ( is absolutely continuous, increasing, and bijective;
° 90_1
o Hy(t) = Hi(p(t)) - ¢'(t), t € (0, Ly) a.e.

is absolutely continuous;
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Spectral theorems

Definition
Two Hamiltonians Hy, Hy are reparameterisations of each other, if
there exists ¢ : (0, L2) — (0, L) with
e ( is absolutely continuous, increasing, and bijective;
° 90_1
o Hy(t) = Hi(p(t)) - ¢'(), t € (0,L2) ae.

is absolutely continuous;

Theorem (Uniqueness Theorem)

Let Hy, Hy be given. If qg, = qmu,, then Hy and Hy are
reparameterisations of each other.
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Indivisible intervals

Definition
Let H be a Hamiltonian on [0, L), and let (x1,22) < (0, L) be
nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(¢) (siw).(siw) . te (z1,10) ae.
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Let H be a Hamiltonian on [0, L), and let (x1,22) < (0, L) be

nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(¢) (siw).(siw) . te (z1,10) ae.

° h(t) = tI‘H(t), te (271,1’2) a.e.
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Indivisible intervals
Definition

Let H be a Hamiltonian on [0, L), and let (x1,22) < (0, L) be
nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(t) (sinqS) . (sin ¢> , te(xy,x2) ae.

o h(t) =trH(t), t e (x1,z2) a.e.

e (x1,x2) is indivisible, if and only if det H(t) = 0 for
t € (x1,x2) and ker H (t) is constant on (1, z2).
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Indivisible intervals

Definition
Let H be a Hamiltonian on [0, L), and let (x1,22) < (0, L) be
nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(t) (sinqS) . <sin ¢> , te(xy,x2) ae.

o h(t) =trH(t), t e (x1,z2) a.e.
e (x1,x2) is indivisible, if and only if det H(t) = 0 for
t € (x1,x2) and ker H (t) is constant on (1, z2).

e The angle ¢ is unique mod 7 and is the type of (x1,x2).
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Indivisible intervals

Definition
Let H be a Hamiltonian on [0, L), and let (x1,22) < (0, L) be
nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(t) (sinqS) . <sin ¢> , te(xy,x2) ae.

h(t) =trH(t), t € (z1,x2) a.e.
(x1,x2) is indivisible, if and only if det H(t) = 0 for
t € (x1,x2) and ker H (t) is constant on (1, z2).

The angle ¢ is unique mod 7 and is the type of (1, x2).
The length of (z1,x2) is Sif tr H(t) dt.
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Indivisible intervals

Definition
Let H be a Hamiltonian on [0, L), and let (z1,22) < (0, L) be
nonempty. Then (z1,xz2) is indivisible (for H), if

cos ¢ cos ¢ T
H(t) = h(t) (sin¢> . <sin ¢> , te(xy,x2) ae.

h(t) =trH(t), t € (z1,x2) a.e.

(x1,x2) is indivisible, if and only if det H(t) = 0 for
t € (x1,x2) and ker H (t) is constant on (1, z2).

The angle ¢ is unique mod 7 and is the type of (1, x2).
The length of (z1,x2) is Sif tr H(t) dt.

Each indivisible interval is contained in a maximal indivisible
interval.
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Hamiltonians ending with indivisible intervals

Definition
Let H be a Hamiltonian on [0, L). We say that H ends with at
least N indivisible intervals, if

10< o<1 <---<axy=0L":

each interval (x;_1, ;) is maximal indivisible.
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Hamiltonians ending with indivisible intervals

Definition
Let H be a Hamiltonian on [0, L). We say that H ends with at
least N indivisible intervals, if

10 y<r1<---<zxzy=0L:

each interval (z;_1,x;) is maximal indivisible.

Remark

The role of the indivisible interval ending at L is different than the
role of the others. Namely, its length is infinite whereas the length
of the others is finite.
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Hamiltonians ending with indivisible intervals

Definition
Let H be a Hamiltonian on [0, L). We say that H ends with at
least N indivisible intervals, if

10 y<r1<---<zxzy=0L:

each interval (z;_1,x;) is maximal indivisible.

Remark

The role of the indivisible interval ending at L is different than the
role of the others. Namely, its length is infinite whereas the length
of the others is finite.

Note: H ends with (at least) 1 indivisible interval, means — in
essence — that H is in limit circle case at L.
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Hamiltonians ending with indivisible intervals

Theorem
Let H be a Hamiltonian, and let N € N.
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Hamiltonians ending with indivisible intervals

Theorem
Let H be a Hamiltonian, and let N € N.

Then H ends with at least N indivisible intervals, if and only if
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Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let N € N.

Then H ends with at least N indivisible intervals, if and only if
e gy is meromorphic in C
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Hamiltonians ending with indivisible intervals

Theorem
Let H be a Hamiltonian, and let N € N.

Then H ends with at least N indivisible intervals, if and only if
e gy is meromorphic in C

1
e let o, be the poles of gy, then lim Z —eR

7—00

«
lanl<r "
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Hamiltonians ending with indivisible intervals

Theorem
Let H be a Hamiltonian, and let N € N.

Then H ends with at least N indivisible intervals, if and only if
e gy is meromorphic in C

1
e let o, be the poles of gy, then lim Z —eR

r—00 o ]<r o,
. n . n
*dm TF T < 0)
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Hamiltonians ending with indivisible intervals

Theorem
Let H be a Hamiltonian, and let N € N.

Then H ends with at least N indivisible intervals, if and only if
e gy is meromorphic in C

1
e let o, be the poles of gy, then lim Z —eR
r7—00

«
lanl<r "

. n . n
e lim —x = lim — € [O, OO)
n—00 Q)

e let o, be the negative residuum of qy at «,,, then

gt
P! (an)op, '

neN
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Applying stability theorems

Theorem
Let H be a Hamiltonian which ends with at least N indivisible
intervals, let o, be the poles of qi and o, its negative residues.

Let B, € S be such that the hypothesis of any of our stability
theorems are fullfilled, and let 1, = o,.
Then the Hamiltonian H whose Titchmarsh-Weyl coefficient has

poles 3, with negative residues T, ends with at least N indivisible
intervals.
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The Krein class

Definition
The Krein class K is the set of all entire functions F' with
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The Krein class

Definition
The Krein class K is the set of all entire functions I’ with

e The zeroes a,, of F are simple.

1
o Z Ima—n < 0.
neN
e JleN: < 0.
%\an\ IF’ n)l

e Jp polynomial, s.t. for z € C\{c, : n € N}

=p(2) + )] ! LS S i
R )

neN
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The Krein class: real zeroes

Definition
Let [ € N. Denote by K; the set of all entire functions F' with
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The Krein class: real zeroes

Definition
Let [ € N. Denote by K; the set of all entire functions F' with
e F(R) SR, F(0) = 1 all zeroes of F' are real.
e J/leN: < 0.
2, e[| F" (cvn)] IF’ n)l

neN

e Jp polynomial with degp <1 — 2, s.t. for z € C\{a,, : n e N}

1 1 1 1 22
F(z):p(z)+ZF’(an)< ++...+>

-1
Z— (6%
neN n n (079
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The Krein class: real zeroes

Definition
Let [ € N. Denote by K; the set of all entire functions F' with
e F(R) <R, F(0) =1, all zeroes of F' are real.

e Jle N: E\OénHF’ ’<oo.

neN

e Jp polynomial with degp <1 — 2, s.t. for z € C\{a,, : n e N}

=p(2) + )] ! LS S i
Fe) P Q) \Fman e T Gl

neN

Remark
We have K; < K;11 € K, [ € N. Moreover, | J;onK; is the set of
all real F' € K with only real zeros.
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Some applications
Applying stability theorems
Theorem

Let o, B €S and | € N. Assume that the hypothesis of any of our
stability theorems are fullfilled. Then

PaeKl < PﬁEK[
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