Growth functions

Stability theorems

Some applications

Stability of the derivative of a canonical product

Harald Woracek

Vienna University of Technology

FWF (I 1536-N25) :: Joint Project :: RFBR (13-01-91002-ANF)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

А	perturbation	problem
0	00	
0	00	

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

This presentation is based on:

M. Langer and H. Woracek. "Stability of the derivative of a canonical product". In: *Complex Anal. Oper. Theory* (to appear), 44 pp. DOI: 10.1007/s11785-013-0315-5.

M. Langer and H. Woracek. "Stability of *N*-extremal measures". 7pp. (submitted). Preprint in: ASC Report 05 (2013), Vienna University of Technology.

H. Woracek. "Existence of zerofree functions *N*-associated to a de Branges Pontryagin space". In: *Monatsh. Math.* 162.4 (2011), pp. 453–506.

	A perturbation problem 000 000	Growth functions 0000 00	Stability theorems 00 000 0
--	--------------------------------------	--------------------------------	--------------------------------------

Some applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

These slides are available from my website

http://asc.tuwien.ac.at/index.php?id=woracek

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

A perturbation problem

Growth functions, separation, local irregularity

Growth functions Separation and local irregularity

Stability theorems

The general situation Regularly distributed sequences

Some applications

N-extremal measures Canonical systems The Krein class of entire functions

A perturbation	n problem
000	

Stability theorems

Some applications

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A PERTURBATION PROBLEM

A pertu	irbation	problem
000		
000		

Stability theorems 00 000 Some applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Given
$$\alpha = (\alpha_n)_{n \in \mathbb{N}}$$
, $\beta = (\beta_n)_{n \in \mathbb{N}}$ with
• $\alpha_n, \beta_n \in \mathbb{R} \setminus \{0\}$;

A perturbation problem	Growth functions	Stability theorems	Some application
000	0000	00	
000	00	000	0000000
		0	000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given
$$\alpha = (\alpha_n)_{n \in \mathbb{N}}, \, \beta = (\beta_n)_{n \in \mathbb{N}}$$
 with

- $\alpha_n, \beta_n \in \mathbb{R} \setminus \{0\};$
- α_n pairwise different, β_n pairwise different;

A perturbation problem	Growth functions	Stability theorems	Some applications
00	0000 00	00 000 0	0000000 00000000 000

Given
$$\alpha = (\alpha_n)_{n \in \mathbb{N}}, \, \beta = (\beta_n)_{n \in \mathbb{N}}$$
 with

- $\alpha_n, \beta_n \in \mathbb{R} \setminus \{0\};$
- α_n pairwise different, β_n pairwise different;
- the canonical products converge:

$$P_{\alpha}(z) := \lim_{r \to \infty} \prod_{|\alpha_n| \leqslant r} \left(1 - \frac{z}{\alpha_n} \right), \quad P_{\beta}(z) := \lim_{r \to \infty} \prod_{|\beta_n| \leqslant r} \left(1 - \frac{z}{\beta_n} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A perturbation problem	Growth functions	Stability theorems	Some applications
00	0000 00	00 000 0	0000000 00000000 000

Given
$$\alpha = (\alpha_n)_{n \in \mathbb{N}}, \, \beta = (\beta_n)_{n \in \mathbb{N}}$$
 with

- $\alpha_n, \beta_n \in \mathbb{R} \setminus \{0\};$
- α_n pairwise different, β_n pairwise different;
- the canonical products converge:

$$P_{\alpha}(z) := \lim_{r \to \infty} \prod_{|\alpha_n| \leqslant r} \left(1 - \frac{z}{\alpha_n} \right), \quad P_{\beta}(z) := \lim_{r \to \infty} \prod_{|\beta_n| \leqslant r} \left(1 - \frac{z}{\beta_n} \right).$$

THE QUESTION

How large may the perturbation $\gamma_n := \beta_n - \alpha_n$ be, such that still

 $\exists c, C > 0: \quad c |P'_{\alpha}(\alpha_n)| \leqslant |P'_{\beta}(\beta_n)| \leqslant C |P'_{\alpha}(\alpha_n)|, \quad n \in \mathbb{N}.$

A perturbation	problem
000	
000	

• At places in the vicinity of which the sequence α is well separated and grows regularly, the sequence $\alpha' = (P'_{\alpha}(\alpha_n))_{n \in \mathbb{N}}$ behaves regularly and can be controlled.

A	perturbation	problem
0	•0	
0	00	

Stability theorems

Some applications

- At places in the vicinity of which the sequence α is well separated and grows regularly, the sequence α' = (P'_α(α_n))_{n∈N} behaves regularly and can be controlled.
- Points of α being close to each other give rise to peaks in α' , and lumps of points being close to each other produce peaks which even may spread out over neighbouring points.

Growth functions 0000 00 Stability theorems

Some applications

- At places in the vicinity of which the sequence α is well separated and grows regularly, the sequence α' = (P'_α(α_n))_{n∈N} behaves regularly and can be controlled.
- Points of α being close to each other give rise to peaks in α' , and lumps of points being close to each other produce peaks which even may spread out over neighbouring points.

THE INTUITION

The perturbation γ must be smaller than the separation of α and must not allow that lumps of points appear/vanish in the vicinity of any point of α . Its maximal size

- depends on the asymptotic growth of α ,
- is limited relative to the separation of α,
- is limited relative to the local irregularity of α .

Growth functions

Stability theorems

Some applications

Our aim is

... to make this intuition quantitatively precise.

A perturbation	problem
000	
000	

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Two toy examples

Example

Consider $\alpha_n := \left(n + \frac{1}{2}\right)^2$ and $\beta_n := \left(n + \frac{3}{2}\right)^2$, $n = 0, 1, 2, \dots$

A perturbation	problem
000	
000	

Growth	functions
0000	
00	

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Two toy examples

Example

Consider $\alpha_n := \left(n + \frac{1}{2}\right)^2$ and $\beta_n := \left(n + \frac{3}{2}\right)^2$, n = 0, 1, 2, ...Then

•
$$P_{\alpha}(z) = \cos \sqrt{z}, \quad P_{\beta}(z) = (1 - 2z)^{-1} \cos \sqrt{z}.$$

• $P'_{\alpha}(\alpha_n) = \frac{(-1)^{n+1}\pi}{2n+3}, \quad P'_{\beta}(\beta_n) = \frac{(-1)^{n+2}\pi}{(2n+3)(2n+2)}.$

Growth functions 0000 00 Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Two toy examples

Example

Consider $\alpha_n := \left(n + \frac{1}{2}\right)^2$ and $\beta_n := \left(n + \frac{3}{2}\right)^2$, n = 0, 1, 2, ...Then

•
$$P_{\alpha}(z) = \cos \sqrt{z}, \quad P_{\beta}(z) = (1 - 2z)^{-1} \cos \sqrt{z}.$$

• $P'_{\alpha}(\alpha_n) = \frac{(-1)^{n+1}\pi}{2n+3}, \quad P'_{\beta}(\beta_n) = \frac{(-1)^{n+2}\pi}{(2n+3)(2n+2)}.$

• $\gamma_n = \alpha_{n+1} - \alpha_n \asymp n \implies P'_{\alpha}(\alpha_n) \nvDash P'_{\beta}(\beta_n).$

A perturbation	problem
000	
000	

Growth	functions
0000	

Stability theorems

Some applications

Two toy examples

Example

Consider $\alpha_n := \left(n + \frac{1}{2}\right)^2$ and $\beta_n := \left(n + \frac{3}{2}\right)^2$, n = 0, 1, 2, ...Then

•
$$P_{\alpha}(z) = \cos \sqrt{z}, \quad P_{\beta}(z) = (1 - 2z)^{-1} \cos \sqrt{z}.$$

• $P'_{\alpha}(\alpha_n) = \frac{(-1)^{n+1}\pi}{2n+3}, \quad P'_{\beta}(\beta_n) = \frac{(-1)^{n+2}\pi}{(2n+3)(2n+2)}.$

• $\gamma_n = \alpha_{n+1} - \alpha_n \asymp n \implies P'_{\alpha}(\alpha_n) \nvDash P'_{\beta}(\beta_n).$

Notation

 $(\sigma_n)_{n \in \mathbb{N}} \asymp (\tau_n)_{n \in \mathbb{N}} : \Leftrightarrow \exists c, C > 0 : c |\sigma_n| \leq |\tau_n| \leq C |\sigma_n|$

A perturbation	problem
000	
000	

Growth	functions
0000	

Stability theorems

Some applications

Two toy examples

Example

Consider $\alpha_n := \left(n + \frac{1}{2}\right)^2$ and $\beta_n := \left(n + \frac{3}{2}\right)^2$, n = 0, 1, 2, ...Then

•
$$P_{\alpha}(z) = \cos\sqrt{z}, \quad P_{\beta}(z) = (1 - 2z)^{-1} \cos\sqrt{z}.$$

• $P'_{\alpha}(\alpha_n) = \frac{(-1)^{n+1}\pi}{2n+3}, \quad P'_{\beta}(\beta_n) = \frac{(-1)^{n+2}\pi}{(2n+3)(2n+2)}.$

• $\gamma_n = \alpha_{n+1} - \alpha_n \simeq n \implies P'_{\alpha}(\alpha_n) \neq P'_{\beta}(\beta_n).$

OUR THEOREMS WILL SHOW
•
$$\gamma_n = O\left(\frac{n}{\log n \cdot (\log \log n)^2}\right) \implies P'_{\alpha}(\alpha_n) \asymp P'_{\beta}(\alpha_n + \gamma_n).$$

A perturbation	problem
000	
000	

Stability theorems

Some applications

1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two toy examples

Example

Consider

$$\alpha_{2k-1} := k, \alpha_{2k} := -k, \ k = 1, 2, 3, \dots, \qquad \alpha_0 := \frac{1}{10}.$$

Growth functions

Stability theorems

Some applications

1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two toy examples

Example

Consider

$$\alpha_{2k-1} := k, \alpha_{2k} := -k, \ k = 1, 2, 3, \dots, \qquad \alpha_0 := \frac{1}{10}.$$

• $P_{\alpha}(z) = \frac{1 - 10z}{\pi z} \sin(\pi z)$. Hence, $|P'_{\alpha}(\alpha_n)| \approx 1$.

Growth functions

Stability theorems

Some applications

1

Two toy examples

Example

Consider

$$\alpha_{2k-1} := k, \alpha_{2k} := -k, \ k = 1, 2, 3, \dots, \qquad \alpha_0 := \frac{1}{10}.$$

•
$$P_{\alpha}(z) = \frac{1-10z}{\pi z} \sin(\pi z)$$
. Hence, $|P'_{\alpha}(\alpha_n)| \approx 1$.

Let $|\gamma_n| = O(n^{-\varepsilon})$ for some $\varepsilon > 0$ (with $\gamma_n \neq -\alpha_n$), and set $\beta_n := \alpha_n + \gamma_n$.

A perturbation	problem
000	
000	

Stability theorems

Some applications

1

Two toy examples

Example

Consider

$$\alpha_{2k-1} := k, \alpha_{2k} := -k, \ k = 1, 2, 3, \dots, \qquad \alpha_0 := \frac{1}{10}$$

•
$$P_{\alpha}(z) = \frac{1-10z}{\pi z} \sin(\pi z)$$
. Hence, $|P'_{\alpha}(\alpha_n)| \approx 1$.

Let $|\gamma_n| = O(n^{-\varepsilon})$ for some $\varepsilon > 0$ (with $\gamma_n \neq -\alpha_n$), and set $\beta_n := \alpha_n + \gamma_n$.

• $P_{\beta}(z)$ is a sine type function. Hence, $|P'_{\beta}(\beta_n)| \approx 1$.

A perturbation	problem
000	
000	

Stability theorems

Some applications

Two toy examples

Example

Consider

$$\alpha_{2k-1} := k, \alpha_{2k} := -k, \ k = 1, 2, 3, \dots, \qquad \alpha_0 := \frac{1}{10}$$

•
$$P_{\alpha}(z) = \frac{1-10z}{\pi z} \sin(\pi z)$$
. Hence, $|P'_{\alpha}(\alpha_n)| \approx 1$.

Let $|\gamma_n| = O(n^{-\varepsilon})$ for some $\varepsilon > 0$ (with $\gamma_n \neq -\alpha_n$), and set $\beta_n := \alpha_n + \gamma_n$.

• $P_{\beta}(z)$ is a sine type function. Hence, $|P'_{\beta}(\beta_n)| \simeq 1$.

OUR THEOREMS WILL SHOW

•
$$\gamma_n = O\left(\frac{1}{\log n \cdot (\log \log n)^2}\right) \Rightarrow P'_{\alpha}(\alpha_n) \asymp P'_{\beta}(\alpha_n + \gamma_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

1

Growth functions

Stability theorems

Some applications

Well-separated sequences

For sequences α and γ denote

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- $\gamma_n^{[+]}$ the correspondingly arranged subsequence of γ : $\gamma_n^{[+]} = \gamma_{k(n)} \Leftrightarrow \alpha_n^+ = \alpha_{k(n)}.$
- $\alpha^{-}, \gamma^{[-]}$... analogous for the negative elements of α .

Growth functions

Stability theorems

Some applications

Well-separated sequences

For sequences α and γ denote

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- $\gamma_n^{[+]}$ the correspondingly arranged subsequence of γ : $\gamma_n^{[+]} = \gamma_{k(n)} \Leftrightarrow \alpha_n^+ = \alpha_{k(n)}.$

 $\alpha^{-}, \gamma^{[-]}$... analogous for the negative elements of α .

Theorem (communicated by A.Baranov) Assume $\exists \rho \ge 0, c > 0$: $|\alpha_{n+1}^{\pm} - \alpha_n^{\pm}| \ge cn^{\rho}$, and

Growth functions

Stability theorems

Some applications

Well-separated sequences

For sequences α and γ denote

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- $\gamma_n^{[+]}$ the correspondingly arranged subsequence of γ : $\gamma_n^{[+]} = \gamma_{k(n)} \Leftrightarrow \alpha_n^+ = \alpha_{k(n)}.$

 $\alpha^-,\gamma^{[-]}$. . . analogous for the negative elements of $\alpha.$

Theorem (communicated by A.Baranov) Accume $\exists a > 0$ a > 0 $b = |a^{\pm}| > a^{+}| > a^{-}$

Assume $\exists \rho \ge 0, c > 0$: $|\alpha_{n+1}^{\pm} - \alpha_n^{\pm}| \ge cn^{\rho}$, and

•
$$\sum_{n} \frac{|\gamma_n^{[\pm]}|}{|\alpha_n^{\pm}|} < \infty$$
,
• $\exists C > 0: |\gamma_n^{[\pm]}| \leq C \frac{n^{\rho}}{\log n}$

Growth functions

Stability theorems

Some applications

Well-separated sequences

For sequences α and γ denote

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- $\gamma_n^{[+]}$ the correspondingly arranged subsequence of γ : $\gamma_n^{[+]} = \gamma_{k(n)} \Leftrightarrow \alpha_n^+ = \alpha_{k(n)}.$

 $\alpha^-,\gamma^{[-]}$. . . analogous for the negative elements of $\alpha.$

Theorem (communicated by A.Baranov) Assume $\exists \rho \ge 0, c > 0$: $|\alpha_{n+1}^{\pm} - \alpha_n^{\pm}| \ge cn^{\rho}$, and • $\sum_{n} \frac{|\gamma_{n\pm1}^{\pm}|}{2} < \infty$.

•
$$\exists C > 0: |\gamma_n^{[\pm]}| \leq C \frac{n^{\rho}}{\log n}$$

Then $P'_{\alpha}(\alpha_n) \simeq P'_{\beta}(\alpha_n + \gamma_n).$

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

GROWTH FUNCTIONS, SEPARATION AND LOCAL IRREGULARITY

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Growth functions

Definition

 $\lambda: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a growth function if

(gf1) λ is (for large r) differentiable, and $\lim_{r \to \infty} \lambda(r) = \infty$.

Growth functions

Stability theorems

Some applications

Growth functions

Definition $\lambda : \mathbb{R}^+ \to \mathbb{R}^+$ is a growth function if (gf1) λ is (for large r) differentiable, and $\lim_{r \to \infty} \lambda(r) = \infty$. (gf2) $\rho_{\lambda} := \lim_{r \to \infty} \frac{\log \lambda(r)}{\log r} \in [0, \infty)$

Growth functions

Stability theorems

Some applications

Growth functions

Definition $\lambda : \mathbb{R}^+ \to \mathbb{R}^+ \text{ is a growth function if}$ (gf1) λ is (for large r) differentiable, and $\lim_{r \to \infty} \lambda(r) = \infty$. (gf2) $\rho_{\lambda} := \lim_{r \to \infty} \frac{\log \lambda(r)}{\log r} \in [0, \infty)$ (gf3) $\lim_{r \to \infty} \left(r \frac{\lambda'(r)}{\lambda(r)} / \frac{\log \lambda(r)}{\log r} \right) = 1.$

Growth functions

Stability theorems

Some applications

Growth functions

Definition $\lambda: \mathbb{R}^+ \to \mathbb{R}^+$ is a growth function if (gf1) λ is (for large r) differentiable, and $\lim_{r \to \infty} \lambda(r) = \infty$. (gf2) $\rho_{\lambda} := \lim_{r \to \infty} \frac{\log \lambda(r)}{\log r} \in [0, \infty)$ (gf3) $\lim_{r \to \infty} \left(r \frac{\lambda'(r)}{\lambda(r)} / \frac{\log \lambda(r)}{\log r} \right) = 1.$ Example $\lambda(r) = r^{a} \cdot (\log_{(m_{1})} r)^{b_{1}} \cdot \ldots \cdot (\log_{(m_{n})} r)^{b_{n}}$, with • $a \ge 0, m_i \in \mathbb{N}, m_1 < \ldots < m_n$

- $b_1, \ldots, b_n \in \mathbb{R}$, with $b_1 > 0$ if a = 0,
- $\log_{(1)}r := \log r$, $\log_{(k+1)}r := \log(\log_{(k)}r)$, $k \in \mathbb{N}$. We have $\rho_{\lambda} = a$.

Some applications

Properties of growth functions

- For large r the function λ is strictly increasing and bounded away from 0.
- $\lim_{r\to\infty} \frac{\lambda(Cr)}{\lambda(r)} = C^{\rho_{\lambda}}$ uniformly in C on compact subsets of $(0,\infty)$.
- Let $\sigma > 0$. Then (for large r)

$$\frac{\lambda(r)}{r^{\sigma}} \text{ is } \begin{cases} \text{ increasing }, & \sigma < \rho_{\lambda} \\ \text{ decreasing }, & \sigma > \rho_{\lambda} \end{cases}$$

Growth functions

Stability theorems

Some applications

Upper and lower densities

Definition

Let λ be a growth function and $(\xi_n)_{n\in\mathbb{N}}$, $\xi\in\mathbb{R}$, a sequence without finite accumulation point. Set

$$n_{\xi}(r) := \#\{n \in \mathbb{N} : |\xi_n| \leq r\}$$

- Upper λ -density: $\Delta_{\lambda}(\xi) := \limsup_{r \to \infty} \frac{n_{\xi}(r)}{\lambda(r)}$
- Lower λ -density: $\delta_{\lambda}(\xi) := \liminf_{r \to \infty} \frac{n_{\xi}(r)}{\lambda(r)}$

Growth functions

Stability theorems

Some applications

Upper and lower densities

Definition

Let λ be a growth function and $(\xi_n)_{n\in\mathbb{N}}$, $\xi\in\mathbb{R}$, a sequence without finite accumulation point. Set

$$n_{\xi}(r) := \#\{n \in \mathbb{N} : |\xi_n| \leqslant r\}$$

• Upper
$$\lambda$$
-density: $\Delta_{\lambda}(\xi) := \limsup_{r \to \infty} \frac{n_{\xi}(r)}{\lambda(r)}$

• Lower
$$\lambda$$
-density: $\delta_{\lambda}(\xi) := \liminf_{r \to \infty} \frac{n_{\xi}(r)}{\lambda(r)}$

Lemma

Let λ be a growth function and $(\xi_n)_{n\in\mathbb{N}}$, $0 < \xi_1 \leq \xi_2 \leq \xi_3 \leq \ldots$, a sequence without finite accumulation point. Then

$$\delta_{\lambda}(\xi) = \liminf_{n \to \infty} \frac{n}{\lambda(\xi_n^+)}, \qquad \Delta_{\lambda}(\xi) = \limsup_{n \to \infty} \frac{n}{\lambda(\xi_n^+)}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Upper and lower densities

Example

Let λ be a growth function, and set $\xi_n := \lambda^{-1}(n)$. Then

$$\delta_{\lambda}(\xi) = \Delta_{\lambda}(\xi) = 1.$$

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Upper and lower densities

Example

Let λ be a growth function, and set $\xi_n := \lambda^{-1}(n)$. Then

$$\delta_{\lambda}(\xi) = \Delta_{\lambda}(\xi) = 1.$$

Remark

For each sequence ξ without finite accumulation point, there exists a growth function λ with 0 < Δ_λ(ξ) < ∞.

Growth functions

Stability theorems

Some applications

Upper and lower densities

Example

Let λ be a growth function, and set $\xi_n := \lambda^{-1}(n)$. Then

$$\delta_{\lambda}(\xi) = \Delta_{\lambda}(\xi) = 1.$$

Remark

- For each sequence ξ without finite accumulation point, there exists a growth function λ with 0 < Δ_λ(ξ) < ∞.
- It is not always possible to choose λ such that

 $\Delta_{\lambda}(\xi) < \infty \text{ and } \delta_{\lambda}(\xi) > 0.$

This is due to possible existence of large clusters of points in ξ .

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Separation and local irregularity

Definition Let $\xi = (\xi_n)_{n \in \mathbb{N}}, \xi \in \mathbb{R} \setminus \{0\}$, and let $\rho > 1$.

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Separation and local irregularity

Definition

Let $\xi = (\xi_n)_{n \in \mathbb{N}}$, $\xi \in \mathbb{R} \setminus \{0\}$, and let $\rho > 1$.

Define

•
$$s_{\xi}(n) := \inf \{ |\xi_k - \xi_n| : k \in \mathbb{N}, \, \xi_k \neq \xi_n \}$$

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Separation and local irregularity

Definition

Let $\xi = (\xi_n)_{n \in \mathbb{N}}$, $\xi \in \mathbb{R} \setminus \{0\}$, and let $\rho > 1$.

Define

• $s_{\xi}(n) := \inf \{ |\xi_k - \xi_n| : k \in \mathbb{N}, \, \xi_k \neq \xi_n \}$

•
$$r_{\xi}(\rho, n) := \#\left\{k \in \mathbb{N} : \frac{\xi_k}{\xi_n} \in \left(\frac{1}{\rho}, \rho\right)\right\}$$

Growth functions

Stability theorems

Some applications

Separation and local irregularity

Definition

Let $\xi = (\xi_n)_{n \in \mathbb{N}}$, $\xi \in \mathbb{R} \setminus \{0\}$, and let $\rho > 1$.

Define

•
$$s_{\xi}(n) := \inf \left\{ |\xi_k - \xi_n| : k \in \mathbb{N}, \, \xi_k \neq \xi_n \right\}$$

•
$$r_{\xi}(\rho, n) := \#\left\{k \in \mathbb{N} : \frac{\xi_k}{\xi_n} \in \left(\frac{1}{\rho}, \rho\right)\right\}$$

Example

Consider $\xi_n := n^{\sigma}$ with $\sigma \ge 1$. Then

$$s_{\xi}(n) \asymp n^{\sigma-1}, \qquad r_{\xi}(\rho, n) = \left\lfloor \left(\rho^{\frac{1}{\sigma}} - \rho^{-\frac{1}{\sigma}}\right)n \right\rfloor, \ \rho > 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

A perturbation	problem
000	
000	

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The role of r_{ξ}

Lemma

Let λ be a growth function, $\rho > 1$, and $(\xi_n)_{n \in \mathbb{N}}$, $0 < \xi_1 \leq \xi_2 \leq \xi_3 \leq \ldots$, a sequence without finite accumulation point.

А	perturbation	problem
0		
00	00	

Growth	functions
0000	
00	

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The role of r_{ξ}

Lemma

Let λ be a growth function, $\rho > 1$, and $(\xi_n)_{n \in \mathbb{N}}$, $0 < \xi_1 \leq \xi_2 \leq \xi_3 \leq \ldots$, a sequence without finite accumulation point.

• Assume $\Delta_{\lambda}(\xi) < \infty, \ \delta_{\lambda}(\xi) > 0.$ Then

$$r_{\xi}(\rho, n) = \mathcal{O}(n), \qquad \sum_{\substack{k \in \mathbb{N} \\ \frac{\xi_k}{\xi_n} \in (\frac{1}{\rho}, \rho)}} \frac{1}{k} = \mathcal{O}(1), \quad n \to \infty.$$

А	perturbation	problem
0		
00	00	

Growth	functions
0000	
0.	

Stability theorems

Some applications

The role of r_{ξ}

Lemma

Let λ be a growth function, $\rho > 1$, and $(\xi_n)_{n \in \mathbb{N}}$, $0 < \xi_1 \leq \xi_2 \leq \xi_3 \leq \ldots$, a sequence without finite accumulation point.

• Assume $\Delta_{\lambda}(\xi) < \infty, \ \delta_{\lambda}(\xi) > 0.$ Then

$$r_{\xi}(\rho, n) = \mathcal{O}(n), \qquad \sum_{\substack{k \in \mathbb{N} \\ \frac{\xi_k}{\xi_n} \in (\frac{1}{\rho}, \rho)}} \frac{1}{k} = \mathcal{O}(1), \quad n \to \infty.$$

• Assume $\xi_n = \lambda^{-1}(n)$. Then

$$r_{\xi}(\rho, n) \approx n \text{ (if } \rho_{\lambda} > 0), \quad \sum_{\substack{k \in \mathbb{N}: k \neq n \\ \frac{\xi_{k}}{\xi_{n}} \in (\frac{1}{\rho}, \rho)}} \frac{1}{|\xi_{k} - \xi_{n}|} = O\left(\frac{n \log n}{\xi_{n}}\right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

A perturbation	problem
000	
000	

Stability theorems

Some applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE STABILITY THEOREMS

Stability theorems

Some applications

Sequences under consideration

Remember: For a sequence α denote by

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- α^- ... analogous for the negative elements of α .

Stability theorems

Some applications

Sequences under consideration

Remember: For a sequence α denote by

- α^+ the (finite or infinite) subsequence consisting of all positive elements of α arranged according to increasing modulus.
- α^- ... analogous for the negative elements of α .

Definition

Let ${\mathbb S}$ the set of all sequences $\alpha=(\alpha_n)_{n=1}^\infty$ with

(S1) $\alpha_n \in \mathbb{R} \setminus \{0\}$, pairwise distinct, without finite accumulation point.

(S2)
$$\lim_{n \to \infty} \frac{n}{\alpha_n^+} = \lim_{n \to \infty} \frac{n}{|\alpha_n^-|} \in [0,\infty)$$

(S3)
$$\lim_{r \to \infty} \sum_{|\alpha_n| \leqslant r} \frac{1}{\alpha_n} \in \mathbb{R}$$

Growth functions

Stability theorems

Some applications

The general situation

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty$$

Growth functions

Stability theorems

Some applications

The general situation

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right)$. (B) $\left(\frac{\gamma_n}{s_\alpha(n)}\right)_{n \in \mathbb{N}} \in \ell^1$. (C) $\exists \rho > 1: |\gamma_n| = O\left(\frac{s_\alpha(n)}{r_\alpha(\rho,n)}\right)$.

Growth functions

Stability theorems

Some applications

The general situation

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right)$. (B) $\left(\frac{\gamma_n}{s_{\alpha}(n)}\right)_{n \in \mathbb{N}} \in \ell^1$. (C) $\exists \rho > 1: |\gamma_n| = O\left(\frac{s_{\alpha}(n)}{r_{\alpha}(\rho,n)}\right)$.

Then $|P'_{\alpha}(\alpha_n)| \simeq |P'_{\beta}(\beta_n)|$.

Growth functions 0000 00 Stability theorems

Some applications

Mild regularity

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$

Growth functions 0000 00 Stability theorems

Some applications

Mild regularity

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Growth functions

Stability theorems

Some applications

Mild regularity

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Growth functions

Stability theorems

Some applications

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Mild regularity

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

(B)
$$\left(\frac{\gamma_n}{s_\alpha(n)}\right)_{n\in\mathbb{N}}\in\ell^1.$$

(C)
$$\exists \rho > 1 : |\gamma_n| = O\left(\frac{s_\alpha(n)}{r_\alpha(\rho,n)}\right).$$

Growth functions

Stability theorems

Some applications

Mild regularity

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

$$(\mathsf{B1}) \quad \frac{|\gamma_n^{[+]}|}{s_{\alpha^+}(n)} = \mathcal{O}\left(\frac{1}{n}\right), \qquad \frac{|\gamma_n^{[-]}|}{s_{\alpha^-}(n)} = \mathcal{O}\left(\frac{1}{n}\right).$$

(C)
$$\exists \rho > 1 : |\gamma_n| = O\left(\frac{s_\alpha(n)}{r_\alpha(\rho, n)}\right).$$

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへの

Growth functions

Stability theorems

Some applications

Mild regularity

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

$$(\mathsf{B1}) \quad \frac{|\gamma_n^{[+]}|}{s_{\alpha^+}(n)} = \mathcal{O}\left(\frac{1}{n}\right), \qquad \frac{|\gamma_n^{[-]}|}{s_{\alpha^-}(n)} = \mathcal{O}\left(\frac{1}{n}\right).$$

Growth functions

Stability theorems

Some applications

Mild regularity

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

$$(\mathsf{B1}) \quad \frac{|\gamma_n^{[+]}|}{s_{\alpha^+}(n)} = \mathcal{O}\left(\frac{1}{n}\right), \qquad \frac{|\gamma_n^{[-]}|}{s_{\alpha^-}(n)} = \mathcal{O}\left(\frac{1}{n}\right).$$

Then $|P'_{\alpha}(\alpha_n)| \simeq |P'_{\beta}(\beta_n)|$.

Growth functions

Stability theorems

Some applications

Strong regularity. I

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$

Growth functions 0000 00 Stability theorems

Some applications

Strong regularity. I

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \Delta_{\lambda^+}(\alpha^+) < \infty, \ \delta_{\lambda^+}(\alpha^+) > 0$ α^- infinite $\Rightarrow \exists \lambda^- : \Delta_{\lambda^-}(\alpha^-) < \infty, \ \delta_{\lambda^-}(\alpha^-) > 0$

Growth functions 0000 00 Stability theorems

Some applications

Strong regularity. I

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Growth functions

Stability theorems

Some applications

Strong regularity. I

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

•
$$\alpha^+$$
 infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$
 α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Growth functions

Stability theorems

Some applications

Strong regularity. I

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

•
$$\alpha^+$$
 infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$
 α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right)$. (B1) $\frac{|\gamma_n^{[+]}|}{s_{\alpha^+}(n)} = O\left(\frac{1}{n}\right), \qquad \frac{|\gamma_n^{[-]}|}{s_{\alpha^-}(n)} = O\left(\frac{1}{n}\right).$

Growth functions

Stability theorems

Some applications

Strong regularity. I

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

•
$$\alpha^+$$
 infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$
 α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right)$. (B2) $\frac{|\gamma_n^{[+]}|}{s_{\alpha^+}(n)} = O\left(\frac{\alpha_n^+}{ns_{\alpha^+}(n)\frac{1}{\log n}}\right), \quad \frac{|\gamma_n^{[-]}|}{s_{\alpha^-}(n)} = O\left(\frac{\alpha_n^+}{ns_{\alpha^+}(n)\frac{1}{\log n}}\right)$.

Growth functions

Stability theorems

Some applications

Strong regularity. I

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)}<\infty.$$

•
$$\alpha^+$$
 infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$
 α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Let $\beta \in \mathbb{S}$, set $\gamma := \beta - \alpha$, and assume (A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right)$. (B2) $\frac{|\gamma_n^{[+1]}|}{s_{\alpha^+}(n)} = O\left(\frac{\alpha_n^+}{ns_{\alpha^+}(n)}\frac{1}{\log n}\right), \quad \frac{|\gamma_n^{[-1]}|}{s_{\alpha^-}(n)} = O\left(\frac{\alpha_n^+}{ns_{\alpha^+}(n)}\frac{1}{\log n}\right).$

Then $|P'_{\alpha}(\alpha_n)| \simeq |P'_{\beta}(\beta_n)|$.

Growth functions 0000 00 Stability theorems

Some applications

Strong regularity. II

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n\in\mathbb{N}}\frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$
- $\frac{\lambda^+(r)}{\Lambda(r)}$ non-increasing (same for λ^-)
- either $\rho_{\lambda^+} > 0$ or $rac{\log \lambda^+(r)}{\log r}$ non-increasing (same for λ^-)

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

•
$$\frac{\lambda^+(r)}{\Lambda(r)}$$
 non-increasing (same for λ^-)

• either $\rho_{\lambda^+} > 0$ or $\frac{\log \lambda^+(r)}{\log r}$ non-increasing (same for λ^-)

Let
$$\beta \in \mathbb{S}$$
, set $\gamma := \beta - \alpha$, and assume
(A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

•
$$\frac{\lambda^+(r)}{\Lambda(r)}$$
 non-increasing (same for λ^-)

• either
$$ho_{\lambda^+}>0$$
 or $rac{\log\lambda^+(r)}{\log r}$ non-increasing (same for λ^-)

Let
$$\beta \in \mathbb{S}$$
, set $\gamma := \beta - \alpha$, and assume
(A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

•
$$\frac{\lambda^+(r)}{\Lambda(r)}$$
 non-increasing (same for λ^-)

• either $\rho_{\lambda^+} > 0$ or $\frac{\log \lambda^+(r)}{\log r}$ non-increasing (same for λ^-)

Let
$$\beta \in \mathbb{S}$$
, set $\gamma := \beta - \alpha$, and assume
(A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Growth functions

Stability theorems

Some applications

Strong regularity. II

Theorem

Let $\alpha \in \mathbb{S}$ and let Λ be a growth function, such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$
- α^+ infinite $\Rightarrow \exists \lambda^+ : \alpha^+(n) = (\lambda^+)^{-1}(n)$ α^- infinite $\Rightarrow \exists \lambda^- : \alpha^-(n) = -(\lambda^-)^{-1}(n)$

Let
$$\beta \in \mathbb{S}$$
, set $\gamma := \beta - \alpha$, and assume
(A) $|\gamma_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$

Then $|P'_{\alpha}(\alpha_n)| \simeq |P'_{\beta}(\beta_n)|$.

Growth functions 0000 00 Stability theorems

Some applications

Returning to the example

Example

Growth functions 0000 00 Stability theorems

Some applications

Returning to the example

Example

•
$$\alpha_n = (\lambda^+)^{-1}(n)$$
 for $\lambda^+(r) := r^{\frac{1}{\sigma}}$.

Growth functions

Stability theorems

Some applications

Returning to the example

Example

- $\alpha_n = (\lambda^+)^{-1}(n)$ for $\lambda^+(r) := r^{\frac{1}{\sigma}}$.
- We may use, e.g., $\Lambda(r) := r^{\frac{1}{\sigma}} \log r (\log \log r)^2$:

Growth functions

Stability theorems

Some applications

Returning to the example

Example

- $\alpha_n = (\lambda^+)^{-1}(n)$ for $\lambda^+(r) := r^{\frac{1}{\sigma}}$.
- We may use, e.g., $\Lambda(r) := r^{\frac{1}{\sigma}} \log r (\log \log r)^2$:

$$\begin{split} \frac{\Lambda(r)}{r} &= r^{\frac{1}{\sigma}-1} \log r (\log \log r)^2 \text{ non-increasing (for large } r) \\ \sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} &= \sum_{n \in \mathbb{N}} \frac{1}{n \cdot \sigma \log n \cdot (\log \sigma + \log \log n)^2} < \infty \\ \frac{\lambda^+(r)}{\Lambda(r)} &= \frac{1}{\log r (\log \log r)^2} \text{ non-increasing} \\ \rho_{\lambda^+} &= \frac{1}{\sigma} > 0 \end{split}$$

Growth functions

Some applications

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Returning to the example

Example

Consider $\alpha_n := n^{\sigma}$, $n \in \mathbb{N}$, with $\sigma > 1$.

General Theorem:

$$\sum_{n\in\mathbb{N}}\frac{|\gamma_n|}{n^{\sigma-1}}<\infty.$$

Growth functions

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Returning to the example

Example

Consider $\alpha_n := n^{\sigma}$, $n \in \mathbb{N}$, with $\sigma > 1$.

General Theorem:

$$\sum_{n \in \mathbb{N}} \frac{|\gamma_n|}{n^{\sigma-1}} < \infty.$$

Mild regularity:

$$|\gamma_n| = \mathcal{O}(n^{\sigma-2}).$$

Growth functions

Stability theorems

Some applications

Returning to the example

Example

Consider $\alpha_n := n^{\sigma}$, $n \in \mathbb{N}$, with $\sigma > 1$.

General Theorem:

$$\sum_{n \in \mathbb{N}} \frac{|\gamma_n|}{n^{\sigma-1}} < \infty.$$

Mild regularity: $|\gamma_n| = O(n^{\sigma-2}).$

Strong regularity (I or II): $|\gamma_n| = O\Big(\frac{n^{\sigma-1}}{\log n \cdot (\log \log n)^2}\Big).$

Stability theorems

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Returning to the example

.

Example

Consider $\alpha_n := n^{\sigma}$, $n \in \mathbb{N}$, with $\sigma > 1$.

General Theorem:

$$\sum_{n \in \mathbb{N}} \frac{|\gamma_n|}{n^{\sigma-1}} < \infty.$$

 $|\gamma_n| = \mathcal{O}(n^{\sigma-2}).$ Mild regularity:

Strong regularity (1 or II):
$$|\gamma_n| = O\left(\frac{n^{\sigma-1}}{\log n \cdot (\log \log n)^2}\right).$$

 $|\gamma_n| \simeq n^{\sigma-1}$ is not allowed! Remember:

Growth functions

Stability theorems

Some applications

0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some applications

Growth functions

Stability theorems

Some applications

(In-)determinate measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments, and set

$$s_n := \int_{\mathbb{R}} t^n \, d\mu(t), \quad n = 0, 1, 2, \dots$$

- μ is determinate, if there is no other measure ν with $\int_{\mathbb{R}} t^n d\nu(t) = s_n, \ n = 0, 1, 2, \dots$
- μ is *indeterminate* otherwise.

Growth functions

Stability theorems

Some applications

(In-)determinate measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments, and set

$$s_n := \int_{\mathbb{R}} t^n \, d\mu(t), \quad n = 0, 1, 2, \dots$$

- μ is determinate, if there is no other measure ν with $\int_{\mathbb{R}} t^n d\nu(t) = s_n, \ n = 0, 1, 2, \dots$
- μ is *indeterminate* otherwise.

Convention: We always assume that $\operatorname{supp} \mu$ is not finite.

Growth functions

Stability theorems

Some applications

(In-)determinate measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments, and set

$$s_n := \int_{\mathbb{R}} t^n \, d\mu(t), \quad n = 0, 1, 2, \dots$$

- μ is determinate, if there is no other measure ν with $\int_{\mathbb{R}} t^n d\nu(t) = s_n, \ n = 0, 1, 2, \dots$
- μ is *indeterminate* otherwise.

Convention: We always assume that $\operatorname{supp}\mu$ is not finite.

Proposition

Assume μ is indeterminate. Then μ is discrete.

Growth functions

Stability theorems

Some applications

Nevanlinna parameterisation

Theorem Assume μ is indeterminate.

Growth functions 0000 00 Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nevanlinna parameterisation

Theorem

Assume μ is indeterminate.

Then there exist four entire functions A, B, C, D, such that

$$\int_{\mathbb{R}} \frac{d\nu(t)}{t-z} = \frac{A(z)\tau(z) + B(z)}{C(z)\tau(z) + D(z)}$$

establishes a bijection between

$$\{\nu: \int_{\mathbb{R}} t^n d\nu(t) = s_n, n = 0, 1, 2, \dots\}$$

and

$$\mathcal{N}_0 := \big\{ \tau : \text{analytic in } \mathbb{C}^+, \operatorname{Im} \tau(z) \ge 0 \big\}.$$

Growth functions 0000 00 Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nevanlinna parameterisation

Theorem

Assume μ is indeterminate.

Then there exist four entire functions A, B, C, D, such that

$$\int_{\mathbb{R}} \frac{d\nu(t)}{t-z} = \frac{A(z)\tau(z) + B(z)}{C(z)\tau(z) + D(z)}$$

establishes a bijection between

$$\{\nu: \int_{\mathbb{R}} t^n d\nu(t) = s_n, n = 0, 1, 2, \dots\}$$

and

$$\mathcal{N}_0 := \{ \tau : \text{analytic in } \mathbb{C}^+, \operatorname{Im} \tau(z) \ge 0 \}.$$

Note: μ itself appears in the first of these sets, and hence corresponds to some parameter τ_0 .

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

N-extremal measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments.

 μ is *N*-extremal, if the space $\mathbb{C}[z]$ of polynomials is dense in $L^2(\mu)$.

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

N-extremal measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments.

 μ is *N*-extremal, if the space $\mathbb{C}[z]$ of polynomials is dense in $L^2(\mu)$.

Theorem

 μ is N-extremal if and only if

Growth functions

Stability theorems

Some applications

N-extremal measures

Definition

Let μ be a positive Borel measure on $\mathbb R$ which has all power moments.

 μ is *N*-extremal, if the space $\mathbb{C}[z]$ of polynomials is dense in $L^2(\mu)$.

Theorem

 μ is N-extremal if and only if either

μ is determinate,

or

 μ is indeterminate and corresponds to a constant parameter in the Nevanlinna parameterisation.

Growth functions

Stability theorems

Some applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The Hamburger class

Definition

The Hamburger class ${\mathcal H}$ is the set of all entire function F with

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Hamburger class

Definition

The Hamburger class ${\mathcal H}$ is the set of all entire function F with

- F is a transcendental entire function,
- F has minimal exponential type,
- F has only real and simple zeros, say $(y_n)_{n=1}^{\infty}$, and

$$\lim_{n \to \infty} \frac{|y_n|^l}{|F'(y_n)|} = 0, \qquad l = 0, 1, 2, \dots$$

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Hamburger class

Definition

The Hamburger class ${\mathcal H}$ is the set of all entire function F with

- F is a transcendental entire function,
- F has minimal exponential type,
- F has only real and simple zeros, say $(y_n)_{n=1}^{\infty}$, and

$$\lim_{n \to \infty} \frac{|y_n|^l}{|F'(y_n)|} = 0, \qquad l = 0, 1, 2, \dots.$$

Remark

If
$$F \in \mathcal{H}$$
 and $F(0) = 1$, then $F(z) = \lim_{r \to \infty} \prod_{|y_n| \leqslant r} \left(1 - \frac{z}{y_n}\right)$.

Growth functions

Stability theorems

Some applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Indeterminate and N-extremal measures

Theorem (A.Borichev, M.Sodin) Consider $\mu = \sum_{n=1}^{\infty} \mu_n \delta_{x_n}$. Then μ is indeterminate and *N*-extremal if and only if Growth functions

Stability theorems

Some applications

Indeterminate and N-extremal measures

Theorem (A.Borichev, M.Sodin)

Consider $\mu = \sum_{n=1}^{\infty} \mu_n \delta_{x_n}$. Then μ is indeterminate and N-extremal if and only if

•
$$F(z) := \lim_{r \to \infty} \prod_{|x_n| \leq r} \left(1 - \frac{z}{x_n} \right) \in \mathcal{H};$$

•
$$\sum_{n=1}^{\infty} |x_n|^l \mu_n < \infty$$
 for all $l = 0, 1, \ldots$;

•
$$\sum_{n=1}^{\infty} \frac{1}{\mu_n |F'(x_n)|^2 (1+x_n^2)} < \infty;$$

• for every function $G \in \mathcal{H}$ with $\frac{F}{G}$ entire,

$$\sum_{k=1}^{\infty} \frac{1}{\mu_{n(k)} |G'(x_{n(k)})|^2} = \infty,$$

where $(x_{n(k)})_{k=1}^{\infty}$ is the sequence of zeros of G.

Growth functions

Stability theorems

Some applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applying the stability theorem

Theorem

Let $\mu = \sum_{n=1}^{\infty} \mu_n \delta_{\alpha_n}$ be indeterminate and N-extremal. Let $(\beta_n)_{n=1}^{\infty}$, $\beta_n \in \mathbb{R}$ pairwise distinct, and let $\nu_n > 0$.

А	perturbation	problem
0		
00	00	

Growth functions

Stability theorems

Some applications

Applying the stability theorem

Theorem

Let $\mu = \sum_{n=1}^{\infty} \mu_n \delta_{\alpha_n}$ be indeterminate and N-extremal. Let $(\beta_n)_{n=1}^{\infty}$, $\beta_n \in \mathbb{R}$ pairwise distinct, and let $\nu_n > 0$.

Choose a growth function Λ , such that

- $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.
- $\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$

•
$$|\beta_n - \alpha_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$$

•
$$\left(\frac{\beta_n - \alpha_n}{s_\alpha(n)}\right)_{n \in \mathbb{N}} \in \ell^1.$$

•
$$\exists \rho > 1 : |\beta_n - \alpha_n| = O\left(\frac{s_\alpha(n)}{r_\alpha(\rho,n)}\right).$$

А	perturbation	problem
0		
00	00	

Growth functions

Stability theorems

Some applications

Applying the stability theorem

Theorem

Let $\mu = \sum_{n=1}^{\infty} \mu_n \delta_{\alpha_n}$ be indeterminate and N-extremal. Let $(\beta_n)_{n=1}^{\infty}$, $\beta_n \in \mathbb{R}$ pairwise distinct, and let $\nu_n > 0$.

Choose a growth function Λ , such that

• $\frac{\Lambda(r)}{r}$ is (for large r) non-increasing or non-decreasing.

•
$$\sum_{n \in \mathbb{N}} \frac{1}{\Lambda(|\alpha_n|)} < \infty.$$

• $|\beta_n - \alpha_n| = O\left(\frac{|\alpha_n|}{\Lambda(|\alpha_n|)}\right).$
• $\left(\frac{\beta_n - \alpha_n}{s_\alpha(n)}\right)_{n \in \mathbb{N}} \in \ell^1.$
• $\exists \rho > 1: |\beta_n - \alpha_n| = O\left(\frac{s_\alpha(n)}{r_\alpha(\rho, n)}\right).$

Then $\nu := \sum_{n \in \mathbb{N}} \nu_n \delta_{\beta_n}$ is indeterminate and N-extremal.

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Using regularity ?

The versions of our stability theorem for regularly distributed sequences *do not* apply *immediately* to this problem.

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Using regularity ?

The versions of our stability theorem for regularly distributed sequences *do not* apply *immediately* to this problem.

The reason is that a subsequence of a regularly behaving sequence is not necessarily itself regularly behaving.

Growth functions 0000 00 Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Canonical systems

Let $H:[0,L)\to \mathbb{R}^{2\times 2}$ be such that

- $H \in L^1_{loc}([0,L))$,
- $H(t) \ge 0$, $t \in [0, L)$,
- H does not vanish identically on any set of positive measure.

Growth functions 0000 00 Stability theorems

Some applications

Canonical systems

Let $H:[0,L) \rightarrow \mathbb{R}^{2 \times 2}$ be such that

- $H \in L^1_{loc}([0, L)),$
- $H(t) \ge 0$, $t \in [0, L)$,
- H does not vanish identically on any set of positive measure.

The canonical system with Hamiltonian H is the equation

$$y'(t) = zJH(t)y(t), \quad t \in [0, L).$$

Here z is a complex parameter and $J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Growth functions 0000 00 Stability theorems

Some applications

Canonical systems

Let $H:[0,L) \rightarrow \mathbb{R}^{2 \times 2}$ be such that

- $H \in L^1_{loc}([0,L))$,
- $H(t) \ge 0$, $t \in [0, L)$,
- $\bullet~H$ does not vanish identically on any set of positive measure.

The canonical system with Hamiltonian H is the equation

$$y'(t) = zJH(t)y(t), \quad t \in [0, L).$$

Here z is a complex parameter and $J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Assume that Weyl's limit point case takes place at L, i.e.,

$$\int_0^L \operatorname{tr} H(t) \, dt = \infty.$$

Growth functions 0000 00 Stability theorems

Some applications

The Weyl coefficient

Let $W(x,z) = (w_{ij}(x,z))_{i,j=1,2}$ be the solution of the initial value problem

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [0,L), \qquad W(0,z) = I,$$

Growth functions 0000 00 Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Weyl coefficient

Let $W(\boldsymbol{x},\boldsymbol{z})=(w_{ij}(\boldsymbol{x},\boldsymbol{z}))_{i,j=1,2}$ be the solution of the initial value problem

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [0,L), \qquad W(0,z) = I,$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$, the limit

$$\lim_{t \neq L} \frac{w_{11}(t,z)\tau + w_{12}(t,z)}{w_{21}(t,z)\tau + w_{22}(t,z)} =: q_H(z)$$

exists locally uniformly on $\mathbb{C}\backslash\mathbb{R}$ and does not depend on $\tau.$

Growth functions 0000 00 Stability theorems

Some applications

The Weyl coefficient

Let $W(\boldsymbol{x},\boldsymbol{z})=(w_{ij}(\boldsymbol{x},\boldsymbol{z}))_{i,j=1,2}$ be the solution of the initial value problem

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [0,L), \qquad W(0,z) = I,$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$, the limit

$$\lim_{t \neq L} \frac{w_{11}(t,z)\tau + w_{12}(t,z)}{w_{21}(t,z)\tau + w_{22}(t,z)} =: q_H(z)$$

exists locally uniformly on $\mathbb{C}\setminus\mathbb{R}$ and does not depend on τ . q_H is the *Titchmarsh–Weyl coefficient* (or *Weyl m-function*) of H.

Growth functions 0000 00 Stability theorems

Some applications

The Weyl coefficient

Let $W(\boldsymbol{x},\boldsymbol{z})=(w_{ij}(\boldsymbol{x},\boldsymbol{z}))_{i,j=1,2}$ be the solution of the initial value problem

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [0,L), \qquad W(0,z) = I,$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$, the limit

$$\lim_{t \neq L} \frac{w_{11}(t,z)\tau + w_{12}(t,z)}{w_{21}(t,z)\tau + w_{22}(t,z)} =: q_H(z)$$

exists locally uniformly on $\mathbb{C}\setminus\mathbb{R}$ and does not depend on τ . q_H is the *Titchmarsh–Weyl coefficient* (or *Weyl m-function*) of *H*. It is characterised by

$$y(t) = \begin{pmatrix} w_{11}(t,z) \\ w_{12}(t,z) \end{pmatrix} - q_H(z) \begin{pmatrix} w_{21}(t,z) \\ w_{22}(t,z) \end{pmatrix} \in L^2(H)$$

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Spectral theorems

Theorem (Direct Theorem)

The Titchmarsh–Weyl coefficient of H belongs to the Nevanlinna class \mathcal{N}_0 , i.e.,

- q_H is analytic on $\mathbb{C} \setminus \mathbb{R}$;
- $q_H(\overline{z}) = \overline{q_H(z)}, \ z \in \mathbb{C} \setminus \mathbb{R};$
- $\operatorname{Im} q_H(z) \ge 0$ for $\operatorname{Im} z > 0$.

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Spectral theorems

Theorem (Direct Theorem)

The Titchmarsh–Weyl coefficient of H belongs to the Nevanlinna class \mathcal{N}_0 , i.e.,

- q_H is analytic on $\mathbb{C} \setminus \mathbb{R}$;
- $q_H(\overline{z}) = \overline{q_H(z)}, \ z \in \mathbb{C} \setminus \mathbb{R};$
- $\operatorname{Im} q_H(z) \ge 0$ for $\operatorname{Im} z > 0$.

Theorem (Inverse Theorem)

Let $q \in \mathcal{N}_0$. Then there exists H, such that $q = q_H$.

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Spectral theorems

Definition

Two Hamiltonians H_1, H_2 are *reparameterisations* of each other, if there exists $\varphi: (0, L_2) \to (0, L_1)$ with

- φ is absolutely continuous, increasing, and bijective;
- φ^{-1} is absolutely continuous;
- $H_2(t) = H_1(\varphi(t)) \cdot \varphi'(t)$, $t \in (0, L_2)$ a.e.

Growth functions

Stability theorems

Some applications

Spectral theorems

Definition

Two Hamiltonians H_1, H_2 are *reparameterisations* of each other, if there exists $\varphi: (0, L_2) \to (0, L_1)$ with

- φ is absolutely continuous, increasing, and bijective;
- φ^{-1} is absolutely continuous;
- $H_2(t) = H_1(\varphi(t)) \cdot \varphi'(t)$, $t \in (0, L_2)$ a.e.

Theorem (Uniqueness Theorem)

Let H_1, H_2 be given. If $q_{H_1} = q_{H_2}$, then H_1 and H_2 are reparameterisations of each other.

Growth functions

Stability theorems

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Indivisible intervals

Definition

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

Growth functions

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Indivisible intervals

Definition

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

•
$$h(t) = \operatorname{tr} H(t), t \in (x_1, x_2)$$
 a.e.

Growth functions

Stability theorems

Some applications

Indivisible intervals

Definition

Let H be a Hamiltonian on [0, L), and let $(x_1, x_2) \subseteq (0, L)$ be nonempty. Then (x_1, x_2) is *indivisible* (for H), if

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

•
$$h(t) = \operatorname{tr} H(t), t \in (x_1, x_2)$$
 a.e.

• (x_1, x_2) is indivisible, if and only if det H(t) = 0 for $t \in (x_1, x_2)$ and ker H(t) is constant on (x_1, x_2) .

Growth functions

Stability theorems

Some applications

Indivisible intervals

Definition

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

•
$$h(t) = \operatorname{tr} H(t), t \in (x_1, x_2)$$
 a.e.

- (x_1, x_2) is indivisible, if and only if det H(t) = 0 for $t \in (x_1, x_2)$ and ker H(t) is constant on (x_1, x_2) .
- The angle ϕ is unique $\mod \pi$ and is the *type* of (x_1, x_2) .

Growth functions

Stability theorems

Some applications

Indivisible intervals

Definition

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

•
$$h(t) = \operatorname{tr} H(t), t \in (x_1, x_2)$$
 a.e.

- (x_1, x_2) is indivisible, if and only if det H(t) = 0 for $t \in (x_1, x_2)$ and ker H(t) is constant on (x_1, x_2) .
- The angle ϕ is unique $\mod \pi$ and is the *type* of (x_1, x_2) .
- The *length* of (x_1, x_2) is $\int_{x_1}^{x_2} \operatorname{tr} H(t) dt$.

Growth functions 0000 00 Stability theorems

Some applications

Indivisible intervals

Definition

$$H(t) = h(t) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} \cdot \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}^T, \quad t \in (x_1, x_2) \text{ a.e.}$$

•
$$h(t) = \operatorname{tr} H(t), t \in (x_1, x_2)$$
 a.e.

- (x_1, x_2) is indivisible, if and only if det H(t) = 0 for $t \in (x_1, x_2)$ and ker H(t) is constant on (x_1, x_2) .
- The angle ϕ is unique $\mod \pi$ and is the *type* of (x_1, x_2) .
- The *length* of (x_1, x_2) is $\int_{x_1}^{x_2} \operatorname{tr} H(t) dt$.
- Each indivisible interval is contained in a maximal indivisible interval.

Stability theorems

Some applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hamiltonians ending with indivisible intervals

Definition

Let H be a Hamiltonian on [0,L). We say that H ends with at least N indivisible intervals, if

$$\exists \ 0 \leqslant x_0 < x_1 < \dots < x_N = L:$$

each interval (x_{i-1}, x_i) is maximal indivisible.

Stability theorems

Some applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hamiltonians ending with indivisible intervals

Definition

Let H be a Hamiltonian on [0,L). We say that H ends with at least N indivisible intervals, if

$$\exists \ 0 \leqslant x_0 < x_1 < \cdots < x_N = L:$$
 each interval (x_{i-1}, x_i) is maximal indivisible.

Remark

The role of the indivisible interval ending at L is different than the role of the others. Namely, its length is infinite whereas the length of the others is finite.

Stability theorems

Some applications

Hamiltonians ending with indivisible intervals

Definition

Let H be a Hamiltonian on [0,L). We say that H ends with at least N indivisible intervals, if

$$\exists \ 0 \leqslant x_0 < x_1 < \dots < x_N = L:$$

each interval (x_{i-1}, x_i) is maximal indivisible.

Remark

The role of the indivisible interval ending at L is different than the role of the others. Namely, its length is infinite whereas the length of the others is finite.

Note: H ends with (at least) 1 indivisible interval, means – in essence – that H is in limit circle case at L.

Stability theorems

Some applications

Hamiltonians ending with indivisible intervals

Theorem Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

Then H ends with at least N indivisible intervals, if and only if

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

Then H ends with at least N indivisible intervals, if and only if

• q_H is meromorphic in $\mathbb C$

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

Then H ends with at least N indivisible intervals, if and only if

- q_H is meromorphic in $\mathbb C$
- let α_n be the poles of q_H , then $\lim_{r \to \infty} \sum_{|\alpha_n| \leq r} \frac{1}{\alpha_n} \in \mathbb{R}$

Stability theorems

Some applications

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

Then H ends with at least N indivisible intervals, if and only if

- q_H is meromorphic in $\mathbb C$
- let α_n be the poles of q_H , then $\lim_{r \to \infty} \sum_{|\alpha_n| \leq r} \frac{1}{\alpha_n} \in \mathbb{R}$

•
$$\lim_{n \to \infty} \frac{n}{\alpha_n^+} = \lim_{n \to \infty} \frac{n}{|\alpha_n^-|} \in [0, \infty)$$

Stability theorems

Some applications

Hamiltonians ending with indivisible intervals

Theorem

Let H be a Hamiltonian, and let $N \in \mathbb{N}$.

Then H ends with at least N indivisible intervals, if and only if

- q_H is meromorphic in $\mathbb C$
- let α_n be the poles of q_H , then $\lim_{r \to \infty} \sum_{|\alpha_n| \leq r} \frac{1}{\alpha_n} \in \mathbb{R}$

•
$$\lim_{n \to \infty} \frac{n}{\alpha_n^+} = \lim_{n \to \infty} \frac{n}{|\alpha_n^-|} \in [0, \infty)$$

• let σ_n be the negative residuum of q_H at α_n , then

$$\sum_{n \in \mathbb{N}} \frac{\alpha_n^{2N-4}}{P'_{\alpha}(\alpha_n)\sigma_n} < \infty.$$

Growth functions

Stability theorems

Some applications

Applying stability theorems

Theorem

Let H be a Hamiltonian which ends with at least N indivisible intervals, let α_n be the poles of q_H and σ_n its negative residues. Let $\beta_n \in \mathbb{S}$ be such that the hypothesis of any of our stability theorems are fullfilled, and let $\tau_n \simeq \sigma_n$.

Then the Hamiltonian \hat{H} whose Titchmarsh-Weyl coefficient has poles β_n with negative residues τ_n ends with at least N indivisible intervals.

Growth functions

Stability theorems

Some applications

0000000 00000000 000

The Krein class

Definition

The Krein class \mathbbm{K} is the set of all entire functions F with

Growth functions

Stability theorems

Some applications

0000000 00000000 000

The Krein class

Definition

The Krein class \mathbbm{K} is the set of all entire functions F with

• The zeroes α_n of F are simple.

•
$$\sum_{n \in \mathbb{N}} \left| \operatorname{Im} \frac{1}{\alpha_n} \right| < \infty.$$

• $\exists l \in \mathbb{N} : \sum_{n \in \mathbb{N}} \frac{1}{|I| |I| |I| |I|} < \infty.$

$$\lim_{n \in \mathbb{N}} |\alpha_n|^l |F'(\alpha_n)| < \infty.$$

• $\exists p \text{ polynomial, s.t. for } z \in \mathbb{C} \setminus \{ \alpha_n : n \in \mathbb{N} \}$

$$\frac{1}{F(z)} = p(z) + \sum_{n \in \mathbb{N}} \frac{1}{F'(\alpha_n)} \left(\frac{1}{z - \alpha_n} + \frac{1}{\alpha_n} + \dots + \frac{z^{l-2}}{\alpha_n^{l-1}} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Growth functions

Stability theorems

Some applications

0.00

The Krein class: real zeroes

Definition

Let $l \in \mathbb{N}$. Denote by \mathbb{K}_l the set of all entire functions F with

Growth functions

Stability theorems

Some applications

The Krein class: real zeroes

Definition

Let $l \in \mathbb{N}$. Denote by \mathbb{K}_l the set of all entire functions F with

• $F(\mathbb{R}) \subseteq \mathbb{R}$, F(0) = 1, all zeroes of F are real.

•
$$\exists l \in \mathbb{N} : \sum_{n \in \mathbb{N}} \frac{1}{|\alpha_n|^l |F'(\alpha_n)|} < \infty$$

• $\exists p \text{ polynomial with } \deg p \leq l-2$, s.t. for $z \in \mathbb{C} \setminus \{\alpha_n : n \in \mathbb{N}\}$

.

$$\frac{1}{F(z)} = p(z) + \sum_{n \in \mathbb{N}} \frac{1}{F'(\alpha_n)} \left(\frac{1}{z - \alpha_n} + \frac{1}{\alpha_n} + \dots + \frac{z^{l-2}}{\alpha_n^{l-1}} \right)$$

Growth functions

Stability theorems

Some applications

The Krein class: real zeroes

Definition

Let $l \in \mathbb{N}$. Denote by \mathbb{K}_l the set of all entire functions F with

• $F(\mathbb{R}) \subseteq \mathbb{R}$, F(0) = 1, all zeroes of F are real.

•
$$\exists l \in \mathbb{N} : \sum_{n \in \mathbb{N}} \frac{1}{|\alpha_n|^l |F'(\alpha_n)|} < \infty$$

• $\exists p \text{ polynomial with } \deg p \leq l-2$, s.t. for $z \in \mathbb{C} \setminus \{\alpha_n : n \in \mathbb{N}\}$

$$\frac{1}{F(z)} = p(z) + \sum_{n \in \mathbb{N}} \frac{1}{F'(\alpha_n)} \left(\frac{1}{z - \alpha_n} + \frac{1}{\alpha_n} + \dots + \frac{z^{l-2}}{\alpha_n^{l-1}} \right)$$

Remark

We have $\mathbb{K}_l \subseteq \mathbb{K}_{l+1} \subseteq \mathbb{K}$, $l \in \mathbb{N}$. Moreover, $\bigcup_{l \in \mathbb{N}} \mathbb{K}_l$ is the set of all real $F \in \mathbb{K}$ with only real zeros.

Growth functions

Stability theorems

Some applications

00000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Applying stability theorems

Theorem

Let $\alpha, \beta \in \mathbb{S}$ and $l \in \mathbb{N}$. Assume that the hypothesis of any of our stability theorems are fullfilled. Then

$$P_{\alpha} \in \mathbb{K}_l \quad \Leftrightarrow \quad P_{\beta} \in \mathbb{K}_l$$