Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

Spectral theory of a class of canonical systems with two singular endpoints

Harald Woracek

Vienna University of Technology

FWF (I 1536-N25) :: Joint Project :: RFBR (13-01-91002-ANF)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

We are going to discuss a class of canonical systems with two singular endpoints whose spectral properties can be investigated along the lines of Weyl's theory for the limit circle case.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

We are going to discuss a class of canonical systems with two singular endpoints whose spectral properties can be investigated along the lines of Weyl's theory for the limit circle case.

This presentation is based on joint work with Matthias Langer:

- M. Langer and H. Woracek. "Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints". manuscript in preparation.
- M. Langer and H. Woracek. "Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type". In: *Oper. Matrices* 7.3 (2013), pp. 477–555.

M. Langer and H. Woracek. *Distributional representations of generalized Nevanlinna functions.* submitted. preprint: ASC Report 17. 2013.

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operators
00 00	000 000	0000	000000 00 000	000 0000000

This work is around for a long time. We presented parts of it

- at the conference IWOTA 2010 (Berlin),
- in a Seminar talk at the University of Vienna (\sim 2011).

Since then it improved and expanded.....

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operators
00 00	000 000	0000	000000 00 000	000 0000000

This work is around for a long time. We presented parts of it

- at the conference IWOTA 2010 (Berlin),
- in a Seminar talk at the University of Vienna (\sim 2011).

Since then it improved and expanded.....

These slides are available from my website

 $http://asc.tuwien.ac.at/index.php?id{=}woracek$

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 Schrödinger operators

The Canonical System

We consider 2×2 -Hamiltonian systems without potential:

$$y'(t) = zJH(t)y(t), \quad t \in (a,b).$$

Here the Hamiltonian H shall be subject to

- $H(t): (a,b) \to \mathbb{R}^{2 \times 2}$,
- $H(t) \ge 0, t \in (a, b),$
- $H \in L^1_{\operatorname{loc}}(a,b)$,
- H does not vanish identically on any set of positive measure,
- $z \in \mathbb{C}$ a parameter,

•
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Canonical System

This equation is the eigenvalue equation of a differential operator. We investigate the spectral theory of its selfadjoint realisations.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Canonical System

This equation is the eigenvalue equation of a differential operator. We investigate the spectral theory of its selfadjoint realisations.

Direct Problems: Given a Hamiltonian H, find information about spectral data of selfadjoint realisations.

Inverse Problems:

- Existence Theorems: Given some spectral data, does there exist a Hamiltonian *H* which leads to this data.
- Uniqueness Theorems: Which spectral data obtained from some Hamiltonian determine this Hamiltonian uniquely.

Operator Model	Brief Review	Three Classes of Objects
00	000	0000
00	000	00

Spectral theory 000000 00 000 Schrödinger operators

Outline

Operator Model

Definition of $L^2(H)$ and $T_{\max}(H)$ Limit Circle vs. Limit Point Case

Brief Review

The Weyl construction in the Limit Circle Case Simple Spectrum in the Limit Point Case

Three Classes of Objects

Spectral theory

The Weyl construction Direct Theorems Inverse Theorems

Schrödinger operators

Operator Model	Brief Review	Three Classes of Objects	Spectral the
00		0000	000000
00	000	00	00
		0	000

Schrödinger operators 000 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE OPERATOR MODEL (for a canonical system)

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operators
00 00	000	0000	000000 00 000	000 0000000

Not all what we say in this section is *strictly* correct.

We neglect the possible existence of indivisible intervals

and the need of forming equivalence classes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Operator Model • 0 • 0 Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The model space

Definition (The model space $L^2(H)$) The model space $L^2(H)$ is the space of all $f : (a, b) \to \mathbb{C}^2$ with

$$||f||_{H}^{2} := \int_{a}^{b} f(t)^{*} H(t) f(t) \, dt < \infty.$$

If endowed with the scalar product

$$(f,g)_H = \int_a^b g(t)^* H(t) f(t) \, dt, \quad f,g \in L^2(H),$$

the space $L^2(H)$ becomes a Hilbert space.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Schrödinger operators

The model operator

Definition (The maximal operator $T_{\max}(H)$) The (graph of the) maximal operator $T_{\max}(H)$ is

$$T_{\max}(H) = \left\{ (f;g) \in L^2(H) \times L^2(H) : f \text{ is locally absolutely continuous and } f' = JHg \right\}$$

The operator $T_{\max}(H)$ is closed.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

The model operator

Definition (The maximal operator $T_{\max}(H)$) The (graph of the) maximal operator $T_{\max}(H)$ is

$$T_{\max}(H) = \left\{ (f;g) \in L^2(H) \times L^2(H) : f \text{ is locally absolutely continuous and } f' = JHg \right\}$$

The operator $T_{\max}(H)$ is closed.

Definition (The minimal operator $T_{\min}(H)$) The minimal operator $T_{\min}(H)$ is $T_{\min}(H) = T_{\max}(H)^*$. The operator $T_{\min}(H)$ is closed and symmetric. It is either selfadjoint, or completely nonselfadjoint.

Operator	Model
00	
•0	

Three Classes of Object

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\max}(H)$ depends on the growth of H towards the endpoints a and b.

r Model	Brief Revie
	000

Operato

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\max}(H)$ depends on the growth of H towards the endpoints a and b.

• *H* is in *limit circle case at* a, if $(x_0 \in (a, b))$

$$\int_{a}^{x_{0}} \operatorname{tr} H(t) \, dt < \infty \qquad \Big(\ \Leftrightarrow H \in L^{1}_{\operatorname{loc}}\big([a,b)\big) \ \Big).$$

• *H* is in *limit point case at* a, if $(x_0 \in (a, b))$

$$\int_{a}^{x_0} \operatorname{tr} H(t) \, dt = \infty.$$

Model	Brief	Review
	000	

Operator

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\max}(H)$ depends on the growth of H towards the endpoints a and b.

• *H* is in *limit circle case at* a, if $(x_0 \in (a, b))$

$$\int_{a}^{x_{0}} \operatorname{tr} H(t) \, dt < \infty \qquad \Big(\ \Leftrightarrow H \in L^{1}_{\operatorname{loc}}\big([a,b)\big) \ \Big).$$

• *H* is in *limit point case at* a, if $(x_0 \in (a, b))$

٠

$$\int_{a}^{x_0} \operatorname{tr} H(t) \, dt = \infty.$$

Similar: *limit circle case at b* and *limit point case at b*.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Limit Circle vs. Limit Point Case

The (closed and symmetric) operator $T_{\min}(H)$ has finite and equal deficiency indices.

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Limit Circle vs. Limit Point Case

The (closed and symmetric) operator $T_{\min}(H)$ has finite and equal deficiency indices.

- Case I, $lc \leftrightarrow lc$: (2,2).
- Case II, $lc \leftrightarrow lp \text{ or } lp \leftrightarrow lc:$ (1,1).
- Case III, $lp \leftrightarrow lp$: (0,0).

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

Limit Circle vs. Limit Point Case

The (closed and symmetric) operator $T_{\min}(H)$ has finite and equal deficiency indices.

- Case I, Ic \leftrightarrow Ic: (2,2).
- Case II, $lc \leftrightarrow lp \text{ or } lp \leftrightarrow lc:$ (1,1).
- Case III, $lp \leftrightarrow lp$: (0,0).

In Case III, $T_{\min}(H) = T_{\max}(H)$. Hence, $T_{\min}(H)$ is selfadjoint and is the only selfadjoint realisation.

In the Cases I and II, there are many different selfadjoint realisations.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

Limit Circle vs. Limit Point Case

The (closed and symmetric) operator $T_{\min}(H)$ has finite and equal deficiency indices.

- •
- Case III, $lp \leftrightarrow lp$: (0,0).

In Case III, $T_{\min}(H) = T_{\max}(H)$. Hence, $T_{\min}(H)$ is selfadjoint and is the only selfadjoint realisation.

In the Cases I and II, there are many different selfadjoint realisations.

Brief Review

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

The Weyl Construction in The Limit Circle Case $(|c \leftrightarrow |p)$

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

The Weyl construction

• $\forall \ \psi \in \operatorname{dom} T_{\max}(H) : \quad \psi(a) := \lim_{x \searrow a} \psi(x) \text{ exists.}$

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schr
00	000	0000	000000	000
00	000	00	00	000
		0	0.0.0	

The Weyl construction

- $\forall \psi \in \operatorname{dom} T_{\max}(H) : \psi(a) := \lim_{x \searrow a} \psi(x)$ exists.
- Denote by 𝔅_z the set of all solutions of the canonical system.
 For each z ∈ ℂ the map ψ ↦ ψ(a) is a bijection from 𝔅_z onto ℂ².

perator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operators
0	000	0000	000000	000
0	000	00	00	0000000
			0.0.0	

The Weyl construction

- $\forall \psi \in \operatorname{dom} T_{\max}(H) : \psi(a) := \lim_{x \searrow a} \psi(x)$ exists.
- Denote by 𝔅_z the set of all solutions of the canonical system.
 For each z ∈ ℂ the map ψ ↦ ψ(a) is a bijection from 𝔅_z onto ℂ².
- Let $\theta(\cdot; z) = (\theta_i(\cdot; z))_{i=1}^2, \varphi(\cdot; z) = (\varphi_i(\cdot; z))_{i=1}^2 \in \mathcal{N}_z$ with $\theta(a; z) = (1, 0)^T$, $\varphi(a; z) = (0, 1)^T$. Then

$$q_H(z) := \lim_{x \neq b} \frac{\theta_1(x; z)\tau + \theta_2(x; z)}{\varphi_1(x; z)\tau + \varphi_2(x; z)}$$

exists locally uniformly on $\mathbb{C} \setminus \mathbb{R}$ as an analytic function in z, does not depend on $\tau \in \mathbb{R} \cup \{\infty\}$, and

$$\operatorname{Im} q_H(z) \ge 0, \quad z \in \mathbb{C}^+.$$

tor	Model	Brief Review
		000
		000

Three Classes of Object

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Weyl construction

Direct Theorem: Let μ_H be the measure in the Herglotz-integral representation of q_H , so that μ_H is a positive Borel measure on \mathbb{R} with $\int_{\mathbb{R}} (1+t^2)^{-1} d\mu_H(t) < \infty$. Set

 $A_D := \{ (f;g) \in T_{\max}(H) : (1,0)f(a) = 0 \}.$

perator Model	Brief Review	Three Classes of Objects	Spect
C	000	0000	
C	000	00	00

Spectral theory

Schrödinger operators 000 0000000

▲□▼▲□▼▲□▼▲□▼ □ ● ●

The Weyl construction

Direct Theorem: Let μ_H be the measure in the Herglotz-integral representation of q_H , so that μ_H is a positive Borel measure on \mathbb{R} with $\int_{\mathbb{R}} (1+t^2)^{-1} d\mu_H(t) < \infty$. Set

$$A_D := \{ (f;g) \in T_{\max}(H) : (1,0)f(a) = 0 \}.$$

•
$$(\Theta_H f)(t) := \int_a^b \varphi(x; t)^T H(x) f(x) \, dx, \quad t \in \mathbb{R},$$

 $f \in L^2(H), \quad \sup(\operatorname{supp} f) < b,$

extends to an isomorphism of $L^2(H)$ onto $L^2(\mu_H)$ with

$$\Theta_H \circ A_D = M_{\mu_H} \circ \Theta_H.$$

• In particular, A_D has simple spectrum.

ator Model	Brief Review	Three Classes of O
	000	0000
	000	00

Spectral theory

Schrödinger operators 000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Weyl construction

Direct Theorem: Let μ_H be the measure in the Herglotz-integral representation of q_H , so that μ_H is a positive Borel measure on \mathbb{R} with $\int_{\mathbb{R}} (1+t^2)^{-1} d\mu_H(t) < \infty$. Set

 $A_D := \{ (f;g) \in T_{\max}(H) : (1,0)f(a) = 0 \}.$

•
$$(\Theta_H^{-1}g)(x) = \int_{-\infty}^{\infty} g(t)\varphi(x;t) d\mu_H(t), \quad x \in (a,b),$$

 $g \in L^2(\mu_H), \text{ supp } g \text{ compact.}$

Brief Review

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Weyl construction

Inverse Theorem:

Let q be a function of Nevanlinna class (i.e., analytic with nonnegative imaginary part in C⁺).
 Then ∃ H : lc ↔ lp, q = q_H.
 This Hamiltonian is (essentially) unique.

Brief Review

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

The Weyl construction

Inverse Theorem:

- Let q be a function of Nevanlinna class (i.e., analytic with nonnegative imaginary part in C⁺).
 Then ∃ H : lc ↔ lp, q = q_H.
 This Hamiltonian is (essentially) unique.
- Let μ be a positive Borel measure on \mathbb{R} with $\int_{\mathbb{R}} (1+t^2)^{-1} d\mu_H(t) < \infty.$ Then $\exists H : \mathsf{lc} \leftrightarrow \mathsf{lp}, \mu = \mu_H.$ This Hamiltonian is (a bit less, but still essentially) unique.

Brief Review

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

SIMPLE SPECTRUM IN THE LIMIT POINT CASE $(\mathsf{Ip} \leftrightarrow \mathsf{Ip})$

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operators
00 00	000 000	0000	000000 00 000	000

Schrödinger operators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Weyl-coefficients $q_{H_{-}}$ and $q_{H_{+}}$.

h

ヘロト ヘ週ト ヘヨト ヘヨト

• Weyl-coefficients $q_{H_{-}}$ and $q_{H_{+}}$.

•
$$Q_H(z) := \frac{1}{q_{H_+}(z) + q_{H_-}(z)} \begin{pmatrix} q_{H_+}(z)q_{H_-}(z) & -q_{H_+}(z) \\ -q_{H_+}(z) & -1 \end{pmatrix}$$

is a 2×2 -matrix valued Nevanlinna function.

• Weyl-coefficients q_{H_-} and q_{H_+} .

•
$$Q_H(z) := \frac{1}{q_{H_+}(z) + q_{H_-}(z)} \begin{pmatrix} q_{H_+}(z)q_{H_-}(z) & -q_{H_+}(z) \\ -q_{H_+}(z) & -1 \end{pmatrix}$$

is a 2×2 -matrix valued Nevanlinna function.

• Let Ω_H be the 2×2 -matrix measure in the Herglotz-integral representation of Q_H . Then there exists a unitary operator $U: L^2(H) \to L^2(\Omega_H)$ with

$$U \circ T_{\min}(H) = M_x \circ U.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Weyl-coefficients $q_{H_{-}}$ and $q_{H_{+}}$.

•
$$Q_H(z) := \frac{1}{q_{H_+}(z) + q_{H_-}(z)} \begin{pmatrix} q_{H_+}(z)q_{H_-}(z) & -q_{H_+}(z) \\ -q_{H_+}(z) & -1 \end{pmatrix}$$

is a 2×2 -matrix valued Nevanlinna function.

• Let Ω_H be the 2 \times 2-matrix measure in the Herglotz-integral representation of Q_{H} . Then there exists a unitary operator $U: L^2(H) \to L^2(\Omega_H)$ with

$$U \circ T_{\min}(H) = M_x \circ U.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

The spectral multiplicity of $T_{\min}(H)$ cannot exceed 2.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Kac's Theorem

Theorem

Let H be $lp \leftrightarrow lp$.

- The singular spectrum of $T_{\min}(H)$ is always simple.
- The absolutely continuous spectrum of $T_{\min}(H)$ is simple, if and only if the set

$$\left\{ x \in \mathbb{R} : \lim_{\epsilon \downarrow 0} \operatorname{Im} q_{H_+}(x + i\epsilon) \text{ exists in } (0, \infty) \right\}$$
$$\cap \left\{ x \in \mathbb{R} : \lim_{\epsilon \downarrow 0} \operatorname{Im} q_{H_-}(-x + i\epsilon) \text{ exists in } (0, \infty) \right\}$$

has Lebesgue measure zero.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

De Branges class

Definition

Let H be $\mathsf{Ip} \leftrightarrow \mathsf{Ip}.$ We say that H is of de Branges class, if

• for one (and hence for all) $x_0 \in (a, b)$ $\int_a^{x_0} {\binom{0}{1}}^* H(x) {\binom{0}{1}} dx < \infty, \quad \int_a^{x_0} m_{22}(x) {\binom{1}{0}}^* H(x) {\binom{1}{0}} dx < \infty$ where $m_{22}(x) := \int_a^x {\binom{0}{1}}^T H(y) {\binom{0}{1}} dy$.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

De Branges class

Definition

Let H be $\mathsf{Ip} \leftrightarrow \mathsf{Ip}.$ We say that H is of de Branges class, if

• for one (and hence for all) $x_0 \in (a, b)$ $\int_a^{x_0} {\binom{0}{1}}^* H(x) {\binom{0}{1}} dx < \infty$, $\int_a^{x_0} m_{22}(x) {\binom{1}{0}}^* H(x) {\binom{1}{0}} dx < \infty$ where $m_{22}(x) := \int_a^x {\binom{0}{1}}^T H(y) {\binom{0}{1}} dy$.

Theorem

Let H be $lp \leftrightarrow lp$. If H is of de Branges class, then the selfadjoint extensions of $T_{\min}(H_{-})$ have resolvents of Hilbert-Schmidt class. By Kac's Theorem, $T_{\min}(H)$ has simple spectrum.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

THREE CLASSES OF OBJECTS (THE MAIN PLAYERS)

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

The class \mathbb{H} of Hamiltonians

For a Hamiltonian H and $x_0 \in (a, b)$ define $X_k : (a, x_0) \to \mathbb{C}^2$ by $X_0(x) := {1 \choose 0}, \quad X_k(x) := \int_{x_0}^x JH(y) X_{k-1}(y) \, dy, \ k \in \mathbb{N}.$

Operator Mode 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

The class \mathbb{H} of Hamiltonians

For a Hamiltonian H and $x_0 \in (a, b)$ define $X_k : (a, x_0) \to \mathbb{C}^2$ by $X_0(x) := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad X_k(x) := \int_{x_0}^x JH(y) X_{k-1}(y) \, dy, \ k \in \mathbb{N}.$

Definition

We say that $H \in \mathbb{H}$ if H is $lp \leftrightarrow lp$ and

- For one (and hence for all) $x_0 \in (a, b)$ $\int_a^{x_0} {\binom{0}{1}}^* H(x) {\binom{0}{1}} dx < \infty$, $\int_a^{x_0} m_{22}(x) {\binom{1}{0}}^* H(x) {\binom{1}{0}} dx < \infty$ where $m_{22}(x) := \int_a^x {\binom{0}{1}}^T H(y) {\binom{0}{1}} dy$. I.e., H is of de Branges class.
- $\exists N \in \mathbb{N}_0: \quad L^2(H|_{(a,x_0)}) \cap \operatorname{span}\{X_k: k \le N\} \ne \{0\}$ (1)

Operator Mode 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

The class \mathbb{H} of Hamiltonians

For a Hamiltonian H and $x_0 \in (a, b)$ define $X_k : (a, x_0) \to \mathbb{C}^2$ by $X_0(x) := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad X_k(x) := \int_{x_0}^x JH(y) X_{k-1}(y) \, dy, \ k \in \mathbb{N}.$

Definition

We say that $H \in \mathbb{H}$ if H is $lp \leftrightarrow lp$ and

- For one (and hence for all) $x_0 \in (a, b)$ $\int_a^{x_0} {\binom{0}{1}}^* H(x) {\binom{0}{1}} dx < \infty$, $\int_a^{x_0} m_{22}(x) {\binom{1}{0}}^* H(x) {\binom{1}{0}} dx < \infty$ where $m_{22}(x) := \int_a^x {\binom{0}{1}}^T H(y) {\binom{0}{1}} dy$. I.e., *H* is of de Branges class.
- $\exists N \in \mathbb{N}_0: \quad L^2(H|_{(a,x_0)}) \cap \operatorname{span}\{X_k: k \le N\} \ne \{0\}$ (1)

If $H \in \mathbb{H}$, we denote by $\Delta(H)$ the smallest number N with (1).

Brief Review 000 000 Spectral theory

Schrödinger operators 000 0000000

The class $\mathbb H$ of Hamiltonians

Example

Let $\alpha \in \mathbb{R}$ and set

$$H_{\alpha}(x) := \begin{pmatrix} x^{-\alpha} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, \infty).$$

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The class $\mathbb H$ of Hamiltonians

Example

Let $\alpha \in \mathbb{R}$ and set

$$H_{\alpha}(x) := \begin{pmatrix} x^{-\alpha} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, \infty).$$

Then H_{α} is in lpc at ∞ , and $\int_{a}^{x_{0}} {\binom{0}{1}}^{*} H(x) {\binom{0}{1}} dx < \infty$.

Brief Review

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

The class \mathbb{H} of Hamiltonians

Example

Let $\alpha \in \mathbb{R}$ and set

$$H_{\alpha}(x) := \begin{pmatrix} x^{-\alpha} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, \infty).$$

Then H_{α} is in lpc at ∞ , and $\int_{a}^{x_{0}} {\binom{0}{1}}^{*} H(x) {\binom{0}{1}} dx < \infty$.

$\alpha < 1$	$lc \leftrightarrow lp$	
$1 \le \alpha < 2$	$lp \leftrightarrow lp$	class $\mathbb H$ with $\Delta(H_lpha)=n$, $lpha\inig[2\!-\!rac{1}{n},2\!-\!rac{1}{n+1}ig),n\in\mathbb N$
$\alpha \geq 2$	$Ip\leftrightarrowIp$	not de Branges class (hence not $\mathbb H)$

Brief Review 000 000 Spectral theory

Schrödinger operators 000 0000000

The class \mathbb{H} of Hamiltonians

Example

The Hamiltonian

$$H(x) := \begin{pmatrix} \frac{x^{-2}}{(\ln x)^2} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, 1),$$

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The class \mathbb{H} of Hamiltonians

Example

The Hamiltonian

$$H(x) := \begin{pmatrix} \frac{x^{-2}}{(\ln x)^2} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, 1),$$

- is $lp \leftrightarrow lp$;
- is of de Branges class;

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The class \mathbb{H} of Hamiltonians

Example

The Hamiltonian

$$H(x) := \begin{pmatrix} \frac{x^{-2}}{(\ln x)^2} & 0\\ 0 & 1 \end{pmatrix}, \qquad x \in (0, 1),$$

- is $lp \leftrightarrow lp$;
- is of de Branges class;
- is not of class Ⅲ.

Operator Mod 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The class $\mathbb H$ of Hamiltonians

Example (The Bessel Hamiltonian) For $\alpha \ge 1$ set

$$H_{\alpha}(x) := \begin{pmatrix} x^{-\alpha} & 0\\ 0 & x^{\alpha} \end{pmatrix}, \qquad x \in (0, \infty).$$

This Hamiltonian arises when rewriting the Bessel equation as a first-order system.

Operator Mod 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The class \mathbb{H} of Hamiltonians

Example (The Bessel Hamiltonian) For $\alpha \ge 1$ set

$$H_{\alpha}(x) := \begin{pmatrix} x^{-\alpha} & 0\\ 0 & x^{\alpha} \end{pmatrix}, \qquad x \in (0, \infty).$$

This Hamiltonian arises when rewriting the Bessel equation as a first-order system.

We have $H_{\alpha} \in \mathbb{H}$ with $\Delta(H_{\alpha}) = \lfloor \frac{\alpha+1}{2} \rfloor$.

Operator Mode

Three Classes of Objects

Spectral theory

Schrödinger operators

The class $\mathbb H$ of Hamiltonians

Example (The Bessel Hamiltonian) Assume α not odd integer. Then

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Operator Mode

Three Classes of Objects

Spectral theory

Schrödinger operators

The class $\mathbb H$ of Hamiltonians

Example (The Bessel Hamiltonian) Assume α not odd integer. Then

 $X_k(x) = \begin{cases} \left(\sum_{\substack{l=0\\l \text{ even}}}^k \mu_{l,k} x^l + \sum_{\substack{m=1\\m \text{ odd}}}^{k-1} \lambda_{m,k} x^{\alpha+m} \right) & \text{ if } k \text{ is even,} \\ \\ \left(\sum_{\substack{l=1\\l \text{ odd}}}^k \mu_{l,k} x^{-\alpha+l} + \sum_{\substack{m=0\\m \text{ even}}}^{k-1} \lambda_{m,k} x^m \right) & \text{ if } k \text{ is odd.} \end{cases}$

If $\alpha \in 2\mathbb{N}_0 + 1$, additional logarithmic terms occur.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

The class $\mathcal{N}_{<\infty}$ of generalised Nevanlinna functions

Definition

A function q is called a generalised Nevanlinna function, if

- q is meromorphic in $\mathbb{C} \setminus \mathbb{R}$;
- $q(\overline{z}) = \overline{q(z)}$, $z \in \rho(q)$ (where $\rho(q)$ denotes the domain of analyticity of q in $\mathbb{C} \setminus \mathbb{R}$);
- the reproducing kernel

$$K_q(w,z) := rac{q(z) - \overline{q(w)}}{z - \overline{w}} \quad z, w \in
ho(q),$$

has a finite number negative squares.

0	perator	Model
0	0	
0	0	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators 000 0000000

The class $\mathcal{N}_{<\infty}$ of generalised Nevanlinna functions

Definition

A function q is called a generalised Nevanlinna function, if

- q is meromorphic in $\mathbb{C} \setminus \mathbb{R}$;
- $q(\overline{z}) = \overline{q(z)}$, $z \in \rho(q)$ (where $\rho(q)$ denotes the domain of analyticity of q in $\mathbb{C} \setminus \mathbb{R}$);
- the reproducing kernel

$$K_q(w,z) := rac{q(z) - \overline{q(w)}}{z - \overline{w}} \quad z, w \in
ho(q),$$

has a finite number negative squares.

We denote the set of all generalised Nevanlinna functions by $\mathcal{N}_{<\infty}$. If $q \in \mathcal{N}_{<\infty}$, we denote the actual number of negative squares of the kernel K_q by $\operatorname{ind}_{-} q$.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 Schrödinger operators

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The subclass $\mathcal{N}_{<\infty}^{(\infty)}$

Definition

We denote by $\mathcal{N}_{<\infty}^{(\infty)}$ the set of all functions $q\in\mathcal{N}_{<\infty}$ such that

$$\lim_{z \stackrel{\mathfrak{K}}{\longrightarrow} i\infty} \frac{q(z)}{z^{2\kappa-1}} \in (-\infty, 0) \quad \text{or} \quad \lim_{z \stackrel{\mathfrak{K}}{\longrightarrow} i\infty} \left| \frac{q(z)}{z^{2\kappa-1}} \right| = \infty, \quad (2)$$

where $\kappa := \operatorname{ind}_{-} q$ and " $\xrightarrow{\triangleleft}$ " denotes the non-tangential limit.

Brief Review 000 000 Three Classes of Objects $\circ \circ \circ \circ$

Spectral theory 000000 00 Schrödinger operators 000 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The subclass $\mathcal{N}_{<\infty}^{(\infty)}$

Definition

We denote by $\mathcal{N}_{<\infty}^{(\infty)}$ the set of all functions $q\in\mathcal{N}_{<\infty}$ such that

$$\lim_{z \stackrel{\mathfrak{K}}{\longrightarrow} i\infty} \frac{q(z)}{z^{2\kappa-1}} \in (-\infty, 0) \quad \text{or} \quad \lim_{z \stackrel{\mathfrak{K}}{\longrightarrow} i\infty} \left| \frac{q(z)}{z^{2\kappa-1}} \right| = \infty, \quad (2)$$

where $\kappa := \operatorname{ind}_{-} q$ and " $\xrightarrow{\prec}$ " denotes the non-tangential limit.

The significance of the condition in this definition is not that (2) holds for some κ , but that it holds exactly for $\kappa = \text{ind}_{-} q$.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The class \mathbb{M} of measures

Definition

Let μ be a positive Borel measure on $\mathbb R.$ We say that μ belongs to the class $\mathbb M$ if

$$\exists N \in \mathbb{N}_0: \quad \int_{\mathbb{R}} \frac{d\mu(t)}{(1+t^2)^{N+1}} < \infty.$$
(3)

If $\mu \in \mathbb{M}$, we denote by $\Delta(\mu)$ the smallest non-negative integer N such that (3) holds.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

THE SPECTRAL THEORY (OF HAMILTONIANS OF CLASS H)

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

Regularized Boundary Values

Let $H \in \mathbb{H}$ be given, and fix $x_0 \in (a, b)$.

Operator Mod 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regularized Boundary Values

Let $H \in \mathbb{H}$ be given, and fix $x_0 \in (a, b)$.

Theorem (Existence)

For each $z \in \mathbb{C}$ and each solution $\psi = (\psi_1, \psi_2)^T \in \mathfrak{N}_z$ the boundary value

$$\operatorname{rbv}_{z,1} \psi := \lim_{x \searrow a} \psi_1(x)$$

and the regularized boundary value

$$\operatorname{rbv}_{z,2} \Psi := -\lim_{x \searrow a} \left[\sum_{l=0}^{\Delta(H)} z^l (\mathfrak{w}_l^{x_0}(x))^* J \left(\psi(x) - \lim_{t \searrow a} \psi_1(t) \sum_{k=\Delta(H)+1}^{2\Delta(H)-l} z^k \mathfrak{w}_k^{x_0}(x) \right) \right]$$

exist.

Operator Mod 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regularized Boundary Values

Theorem (The Boundary Value Map) For each $z \in \mathbb{C}$ the map

$$\operatorname{rbv}_{z}: \left\{ \begin{array}{rcl} \mathfrak{N}_{z} & \to & \mathbb{C}^{2} \\ \psi & \mapsto & (\operatorname{rbv}_{z,1}\psi, \ \operatorname{rbv}_{z,2}\psi)^{T} \end{array} \right.$$

is a bijection from \mathfrak{N}_z onto \mathbb{C}^2 .

Operator Mod 00 00

Three Classes of Objects

Spectral theory

Schrödinger operators

Regularized Boundary Values

Theorem (The Boundary Value Map) For each $z \in \mathbb{C}$ the map

$$\mathrm{rbv}_z : \left\{ \begin{array}{ll} \mathfrak{N}_z & \to & \mathbb{C}^2 \\ \psi & \mapsto & (\mathrm{rbv}_{z,1}\psi, \ \mathrm{rbv}_{z,2}\psi)^T \end{array} \right.$$

is a bijection from \mathfrak{N}_z onto \mathbb{C}^2 .

Theorem (Existence of a well-behaved Solution)

For each z ∈ C \ {0} there exists an (up to scalar multiples) unique solution ψ = (ψ₁, ψ₂) ∈ 𝔅_z \ {0} such that lim_{x \ a}ψ₂(x) exists.

•
$$\lim_{x \searrow a} \psi_2(x) \text{ exists } \iff \psi|_{(a,x_0)} \in L^2(H|_{(a,x_0)})$$
$$\iff \operatorname{rbv}_{z,1} \psi = 0$$

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regularized Boundary Values

Theorem (Controlling x_0 -dependence) Let $x_0, x'_0 \in (a, b)$, and let rbv_z and rbv'_z be the correspondingly defined regularized boundary value mappings. There exists a polynomial $p \in \mathbb{R}[z]$ with p(0) = 0 and $\deg p \leq 2\Delta(H)$, such that

 $\operatorname{rbv}_{z,2}' \psi = \operatorname{rbv}_{z,2} \psi + \operatorname{rbv}_{z,1} \psi \cdot p(z), \qquad \psi \in \mathfrak{N}_z, \ z \in \mathbb{C}.$

Brief Review

Three Classes of Objects

Spectral theory

Schrödinger operators 000 0000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Singular Weyl coefficients

Let $H \in \mathbb{H}$ be given, and fix $x_0 \in (a, b)$.

Operator Mode

Three Classes of Objects

Spectral theory

Schrödinger operators

Singular Weyl coefficients

Let $H \in \mathbb{H}$ be given, and fix $x_0 \in (a, b)$.

Theorem (Existence of limits)

For $z \in \mathbb{C}$ denote by $\theta(\cdot; z) = (\theta_1(\cdot; z), \theta_2(\cdot; z))^T$ and $\phi(\cdot; z) = (\phi_1(\cdot; z), \phi_2(\cdot; z))^T$ the unique solutions in \mathcal{N}_z with

$$\operatorname{rbv}_{z} \boldsymbol{\theta}(\cdot; z) = (1, 0)^{T}, \quad \operatorname{rbv}_{z} \boldsymbol{\varphi}(\cdot; z) = (0, 1)^{T}.$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$, the limit

$$q_H(z) := \lim_{x \neq b} \frac{\theta_1(x; z)\tau + \theta_2(x; z)}{\varphi_1(x; z)\tau + \varphi_2(x; z)}$$

exists locally uniformly on $\mathbb{C} \setminus \mathbb{R}$ as an analytic function in z and does not depend on τ .

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Singular Weyl coefficients

Definition

We call the function q_H constructed as such limit a(!) singular Weyl coefficient of H.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

Singular Weyl coefficients

Definition

We call the function q_H constructed as such limit a(!) singular Weyl coefficient of H.

Theorem (Some properties)

- Each function q_H constructed as such limit belongs to the class $\mathcal{N}_{\Delta(H)}^{(\infty)}$.
- We have

$$\theta(\cdot; z) - q_H(z)\varphi(\cdot; z) \in L^2(H|_{(x_0,b)}), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

and this property characterizes the value $q_H(z)$ for each $z \in \mathbb{C} \setminus \mathbb{R}$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Singular Weyl coefficients

Theorem (Controlling x_0 -dependence)

Let $x_0, x'_0 \in (a, b)$, and let q_H and q'_H be the correspondingly defined limits.

There exists a polynomial $p \in \mathbb{R}[z]$ with p(0) = 0 and $\deg p \leq 2\Delta(H)$, such that

$$q'_H(z) = q_H(z) + p(z).$$

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory

Schrödinger operators

Singular Weyl coefficients

Theorem (Controlling x_0 -dependence)

Let $x_0, x'_0 \in (a, b)$, and let q_H and q'_H be the correspondingly defined limits.

There exists a polynomial $p \in \mathbb{R}[z]$ with p(0) = 0 and $\deg p \leq 2\Delta(H)$, such that

$$q'_H(z) = q_H(z) + p(z).$$

Definition

Write $q_1 \sim q_2$ if $q_1 - q_2 \in \mathbb{R}[z] \land (q_1 - q_2)(0) = 0$.

We denote by $[q]_H$ the equivalence class modulo \sim which contains some (and hence any) function q_H constructed as limit, and speak of $[q]_H$ as the(!) singular Weyl coefficient of H.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Spectral Measure

Theorem

Let $H \in \mathbb{H}$ be given. There exists a unique positive Borel measure μ_H on \mathbb{R} such that for any $q_H \in [q]_H$

$$\mu_H([s_1, s_2]) = \frac{1}{\pi} \lim_{\varepsilon \searrow 0} \lim_{\delta \searrow 0} \int_{s_1 - \varepsilon}^{s_2 + \varepsilon} \operatorname{Im} q_H(t + i\delta) \, dt, -\infty < s_1 < s_2 < \infty.$$

We have $\mu_H \in \mathbb{M}$ and $\Delta(\mu_H) = \Delta(H)$.
Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Spectral Measure

Theorem

Let $H \in \mathbb{H}$ be given. There exists a unique positive Borel measure μ_H on \mathbb{R} such that for any $q_H \in [q]_H$

$$\mu_H([s_1, s_2]) = \frac{1}{\pi} \lim_{\varepsilon \searrow 0} \lim_{\delta \searrow 0} \int_{s_1 - \varepsilon}^{s_2 + \varepsilon} \operatorname{Im} q_H(t + i\delta) \, dt, -\infty < s_1 < s_2 < \infty.$$

We have $\mu_H \in \mathbb{M}$ and $\Delta(\mu_H) = \Delta(H)$.

Definition

We call μ_H the *spectral measure* of *H*.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory ○○○○○ ○● ○○○ Schrödinger operators

The Fourier Transform

Theorem

Let $H \in \mathbb{H}$ be given, and let $\varphi(\cdot; z) \in \mathfrak{N}_z$ be the unique solution with $\operatorname{rbv}_z \varphi(\cdot; z) = (0, 1)^T$.

•
$$(\Theta_H f)(t) := \int_a^b \varphi(x; t)^T H(x) f(x) \, dx, \quad t \in \mathbb{R},$$

 $f \in L^2(H), \quad \sup(\operatorname{supp} f) < b,$

extends to an isomorphism of $L^2(H)$ onto $L^2(\mu_H)$ with

$$\Theta_H \circ T_{\min}(H) = M_{\mu_H} \circ \Theta_H.$$

•
$$(\Theta_H^{-1}g)(x) = \int_{-\infty}^{\infty} g(t)\varphi(x;t) d\mu_H(t), \quad x \in (a,b),$$

 $g \in L^2(\mu_H), \text{ supp } g \text{ compact.}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory

Schrödinger operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse Theorems

Theorem (Existence)

- Let q ∈ N^(∞)_{<∞} with ind_ q > 0. Then there exists a Hamiltonian H ∈ 𝔄 with q ∈ [q]_H.
- Let $\mu \in \mathbb{M}$ with $\Delta(\mu) > 0$. Then there exists a Hamiltonian $H \in \mathbb{H}$ with $\mu_H = \mu$.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Inverse Theorems

Hamiltonians H_1 and H_2 are reparameterizations of each other, if $\exists \phi : (a_2, b_2) \rightarrow (a_1, b_1)$ bijective, monotonically increasing, ϕ, ϕ^{-1} absolutely continuous, with $H_2(t) = H_1(\phi(t)) \cdot \phi'(t)$, $t \in (a_2, b_2)$.

Operator Model	Brief Review	Three Classes of Objects	Spectral theory
00	000	0000	000000
00	000	00	00
		-	

Schrödinger operators

Inverse Theorems

Hamiltonians H_1 and H_2 are reparameterizations of each other, if $\exists \phi : (a_2, b_2) \rightarrow (a_1, b_1)$ bijective, monotonically increasing, ϕ, ϕ^{-1} absolutely continuous, with $H_2(t) = H_1(\phi(t)) \cdot \phi'(t)$, $t \in (a_2, b_2)$.

Theorem (Global Uniqueness)

Let $H_1, H_2 \in \mathbb{H}$ be given.

• If there exist singular Weyl coefficients q_{H_1} and q_{H_2} such that $q_{H_1} - q_{H_2} \in \mathbb{R}[z]$, then $(\alpha := (q_{H_1} - q_{H_2})(0))$

$$H_1 \sim \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} H_2 \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}.$$
 (4)

- If $[q]_{H_1} = [q]_{H_2}$, then $H_1 \sim H_2$.
- If $\mu_{H_1} = \mu_{H_2}$, then there exists $\alpha \in \mathbb{R}$ such that (4) holds.

Operator Model	Brief Review	Three Classes of Objects	Spectral theory	Schrödinger operat
00		0000	000000	000
00	000	00	00	0000000
		0	000	

Inverse Theorems

Theorem (Local Uniqueness)

Let $H_1, H_2 \in \mathbb{H}$ be given (both defined on (a, b)). Set

$$s_i(\tau) := \sup \left\{ x \in (a,b) : \int_a^x \sqrt{\det H_i(y)} \, dy < \tau \right\}, \quad \tau > 0.$$

Then, for each $\tau > 0$, the following are equivalent.

- $H_1|_{(a,s_1(\tau))} \sim H_2|_{(a,s_2(\tau))}$.
- $\exists q_{H_1}, q_{H_2}, \beta \in (0, \pi) \quad \forall \varepsilon > 0:$

$$q_{H_1}(re^{i\beta}) - q_{H_2}(re^{i\beta}) = \mathcal{O}\left(e^{(-2\tau + \varepsilon)r\sin\beta}\right), \ r \to \infty.$$

• $\exists q_{H_1}, q_{H_2}, k \ge 0 \quad \forall \ \delta \in (0, \pi/2) : \quad (in | \arg z - \pi/2 | \le \delta)$

$$q_{H_1}(z) - q_{H_2}(z) = O((\operatorname{Im} z)^k e^{-2\tau \operatorname{Im} z}), \ |z| \to \infty.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Application to Schrödinger Operators

(AND THE PERTURBED BESSEL OPERATOR)

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

C. Fulton and H. Langer. "Sturm-Liouville operators with singularities and generalized Nevanlinna functions". In: *Complex Anal. Oper. Theory* 4.2 (2010), pp. 179–243.

A. Kostenko and G. Teschl. "On the singular Weyl-Titchmarsh function of perturbed spherical Schrödinger operators". In: *J. Differential Equations* 250.9 (2011), pp. 3701–3739.

F. Gesztesy and M. Zinchenko. "On spectral theory for Schrödinger operators with strongly singular potentials". In: *Math. Nachr.* 279.9-10 (2006), pp. 1041–1082.

P. Kurasov and A. Luger. "An operator theoretic interpretation of the generalized Titchmarsh-Weyl coefficient for a singular Sturm-Liouville problem". In: *Math. Phys. Anal. Geom.* 14.2 (2011), pp. 115–151.

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

5

A. Kostenko, A. Sakhnovich, and G. Teschl. "Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials". In: *Int. Math. Res. Not. IMRN* 8 (2012), pp. 1699–1747.

S. Albeverio, R. Hryniv, and Ya. Mykytyuk. "Inverse spectral problems for Bessel operators". In: *J. Differential Equations* 241.1 (2007), pp. 130–159.

A. Dijksma and Y. Shondin. "Singular point-like perturbations of the Bessel operator in a Pontryagin space". In: *J. Differential Equations* 164.1 (2000), pp. 49–91.

E.B. Davies. "Singular Schrödinger operators in one dimension". In: *Mathematika* 59.1 (2013), pp. 141–159.

Operator Mode

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A class of potentials

Consider a 1-dimensional Schrödinger equation

$$-u''(x) + V(x)u(x) = \lambda u(x), \quad x \in (a, b).$$

We say $V \in \mathbb{K}$, if 1.-4. hold:

1. V real-valued and
$$V \in L^1_{loc}(a, b)$$
;

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 Schrödinger operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A class of potentials

Consider a 1-dimensional Schrödinger equation

$$-u''(x) + V(x)u(x) = \lambda u(x), \quad x \in (a, b).$$

We say $V \in \mathbb{K}$, if 1.-4. hold:

- 1. V real-valued and $V \in L^1_{loc}(a, b)$;
- 2. V can be represented as $V = \frac{\phi''}{\phi}$ with a function ϕ satisfying

$$\begin{split} \phi(x) &> 0, \quad x \in (a, b), \\ \exists \ x_0 \in (a, b) : \quad \phi|_{(a, x_0)} \in L^2(a, x_0), \phi^{-1}|_{(a, x_0)} \not\in L^2(a, x_0) \end{split}$$

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

A class of potentials

Consider a 1-dimensional Schrödinger equation

$$-u''(x) + V(x)u(x) = \lambda u(x), \quad x \in (a, b).$$

We say $V \in \mathbb{K}$, if 1.-4. hold:

- 1. V real-valued and $V \in L^1_{loc}(a, b)$;
- 2. V can be represented as $V = \frac{\phi''}{\phi}$ with a function ϕ satisfying

$$\begin{split} \phi(x) &> 0, \quad x \in (a, b), \\ \exists \ x_0 \in (a, b) : \quad \phi|_{(a, x_0)} \in L^2(a, x_0), \phi^{-1}|_{(a, x_0)} \not\in L^2(a, x_0) \end{split}$$

3. For one (and hence for all) $x_0 \in (a,b)$

$$\int_{a}^{x_{0}} \phi(x)^{2} \int_{x}^{x_{0}} \frac{1}{\phi(t)^{2}} dt \, dx < \infty.$$

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

A class of potentials

Consider a 1-dimensional Schrödinger equation

$$-u''(x) + V(x)u(x) = \lambda u(x), \quad x \in (a, b).$$

We say $V \in \mathbb{K}$, if 1.-4. hold:

Define function $ilde{w}_k^{x_0}:(a,b)\to\mathbb{R}$ recursively by

$$\tilde{w}_0^{x_0}(x) := \frac{1}{\phi(x)}, \quad \tilde{w}_k^{x_0}(x) := \begin{cases} \phi(x) \int\limits_x^{x_0} \frac{1}{\phi(t)} \tilde{w}_{k-1}^{x_0}(t) \, dt \,, & k \text{ odd} \\ \\ \frac{1}{\phi(x)} \int\limits_a^x \phi(t) \tilde{w}_{k-1}^{x_0}(t) \, dt \,, & k \text{ even} \end{cases}$$

4. $\exists N \in \mathbb{N}_0 : \quad \tilde{w}_N^{x_0}|_{(a,x_0)} \in L^2(a,x_0).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Operator	Mode
00	
00	

Three Classes of Objects

Spectral theory

Schrödinger operators

A class of potentials

Consider a 1-dimensional Schrödinger equation

$$-u''(x) + V(x)u(x) = \lambda u(x), \quad x \in (a, b).$$

We say $V \in \mathbb{K}$, if 1.-4. hold:

Define function $\tilde{w}_k^{x_0}: (a,b) \to \mathbb{R}$ recursively by

$$\tilde{w}_{0}^{x_{0}}(x) := \frac{1}{\phi(x)}, \quad \tilde{w}_{k}^{x_{0}}(x) := \begin{cases} \phi(x) \int_{x}^{x_{0}} \frac{1}{\phi(t)} \tilde{w}_{k-1}^{x_{0}}(t) \, dt \, , & k \text{ odd} \\ \\ \frac{1}{\phi(x)} \int_{a}^{x} \phi(t) \tilde{w}_{k-1}^{x_{0}}(t) \, dt \, , & k \text{ even} \end{cases}$$

4. $\exists N \in \mathbb{N}_0$: $\tilde{w}_N^{x_0}|_{(a,x_0)} \in L^2(a,x_0)$. Denote be the minimal such number N by $\Delta(V)$.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A class of potentials

Example (The perturbed Bessel potential) Consider a potential $V \in L^1_{loc}(0,b)$ of the form

$$V(x) = \frac{l(l+1)}{x^2} + V_0(x)$$

where

• either
$$l > -1/2$$
, $xV_0(x) \in L^1(0, x_0)$,
or $l = -1/2$, $(\ln x)xV_0(x) \in L^1(0, x_0)$;

- lpc at *b*;
- the minimal operator is bounded from below (w.l.o.g. positive).

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A class of potentials

Example (The perturbed Bessel potential) Consider a potential $V \in L^1_{loc}(0,b)$ of the form

$$V(x) = \frac{l(l+1)}{x^2} + V_0(x)$$

where

• either
$$l > -1/2$$
, $xV_0(x) \in L^1(0, x_0)$,
or $l = -1/2$, $(\ln x)xV_0(x) \in L^1(0, x_0)$;

- lpc at b;
- the minimal operator is bounded from below (w.l.o.g. positive).

Then $V \in \mathbb{K}$ with $\Delta(V) = \lfloor l + \frac{3}{2} \rfloor$.

Operator	Model
00	
00	

Three Classes of Objects

Spectral theory

Schrödinger operators

A class of potentials

Example (Power asymptotics) Assume $V = \frac{\phi''}{\phi}$ where $\phi > 0$ and

 $\exists \ \alpha \ge 1: \quad \phi(x) \asymp x^{\alpha}.$

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A class of potentials

Example (Power asymptotics) Assume $V = \frac{\phi''}{\phi}$ where $\phi > 0$ and $\exists \alpha \ge 1: \quad \phi(x) \asymp x^{\alpha}$. Then $V \in \mathbb{K}$ with $\Delta(V) = \lfloor \frac{\alpha+1}{2} \rfloor$.

Brief Review 000 000 Three Classes of Objects

Spectral theory

Schrödinger operators

A class of potentials

Example (Power asymptotics) Assume $V = \frac{\phi''}{\phi}$ where $\phi > 0$ and $\exists \alpha \ge 1: \quad \phi(x) \asymp x^{\alpha}.$ Then $V \in \mathbb{K}$ with $\Delta(V) = \lfloor \frac{\alpha+1}{2} \rfloor.$

Each perturbed Bessel potential is of this kind, but there are also others. For example oscillatory potentials V with ϕ like

$$\phi(x) := x^{\alpha} \left(2 + \sin\frac{1}{x}\right), \quad x > 0.$$

Operator Mode

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

- Let $V \in \mathbb{K}$ and keep $x_0 \in (a, b)$ fixed.
- Theorem (Regularized Boundary Values) For each $\lambda \in \mathbb{C}$ and each solution u at λ
 - the boundary value exists:

$$\operatorname{rbv}_{\lambda,1}^{S} u := \lim_{x \searrow a} \left(\phi(x) u'(x) - \phi'(x) u(x) \right)$$

Operator Model

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

- Let $V \in \mathbb{K}$ and keep $x_0 \in (a, b)$ fixed.
- Theorem (Regularized Boundary Values)

For each $\lambda \in \mathbb{C}$ and each solution u at λ

• the regularized boundary value exists:

Operator Mode

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

Let
$$V \in \mathbb{K}$$
 and keep $x_0 \in (a, b)$ fixed.

Theorem (Regularized Boundary Values) For each $\lambda \in \mathbb{C}$ and each solution u at λ

For each $\lambda \in \mathbb{C}$ and each solution u at λ

• the regularized boundary value exists:

$$\begin{split} \operatorname{rbv}_{\lambda,2}^{S} u &:= \lim_{x \searrow a} \left[\sum_{k=0}^{\lfloor \frac{\Delta(V)-1}{2} \rfloor} \lambda^{k} \big(\tilde{w}_{2k+1}^{x_{0}}(x) u'(x) - (\tilde{w}_{2k+1}^{x_{0}})'(x) u(x) \big) + \right. \\ &+ \left\{ \begin{array}{l} \lambda^{\frac{\Delta(V)}{2}} \tilde{w}_{\Delta(V)}^{x_{0}}(x) u(x) & \text{if } \Delta(V) \text{ is even} \\ 0 & \text{if } \Delta(V) \text{ is odd} \end{array} \right\} + \\ &+ \big(\operatorname{rbv}_{\lambda,1}^{S} u \big) \bigg(\sum_{k=\lfloor \frac{\Delta(V)+1}{2} \rfloor}^{\Delta(V)-1} \sum_{l=0}^{2k-\Delta(V)} (-1)^{l} \lambda^{k} \tilde{w}_{l}^{x_{0}}(x) \tilde{w}_{2k-l+1}^{x_{0}}(x) \Big) \bigg] \end{split}$$

Operator Mode

Three Classes of Objects

Spectral theory

Schrödinger operators

Direct and Inverse Spectral Theorems

Theorem (Singular Titchmarsh-Weyl Coefficient) Let $\theta(\cdot; \lambda)$ and $\varphi(\cdot; \lambda)$ be the solutions with

$$\operatorname{rbv}_{\lambda}^{S} \theta(\cdot; \lambda) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \operatorname{rbv}_{\lambda}^{S} \varphi(\cdot; \lambda) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Then

- $m_V(\lambda) := \lim_{x \neq b} \frac{\theta(x; \lambda)}{\varphi(x; \lambda)}, \quad \lambda \in \mathbb{C} \setminus [0, \infty),$ exists locally uniformly;
- $m_V \in \mathcal{N}_{\kappa}^{(\infty)}$ with $\kappa := \lfloor \frac{\Delta(V)}{2} \rfloor$;
- $\theta(\cdot;\lambda) m_V(\lambda)\phi(\cdot;\lambda) \in L^2(x_0,b).$

We call m_V a singular Titchmarsh-Weyl coefficient of V.

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

Theorem (Spectral Measure)

There exists a unique positive Borel measure μ_V with

$$\mu_V([s_1, s_2]) = \frac{1}{\pi} \lim_{\varepsilon \searrow 0} \lim_{\delta \searrow 0} \int_{s_1 - \varepsilon}^{s_2 + \varepsilon} \operatorname{Im} m_V(t + i\delta) \, dt, -\infty < s_1 < s_2 < \infty.$$

This measure satisfies

$$\mu_V((-\infty,0)) = 0, \quad \int_{[0,\infty)} \frac{d\mu_V(t)}{(1+t)^{n+1}} < \infty$$

with $n := \Delta(V)$ and no smaller $n \in \mathbb{N}_0$.

Operator Mode

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Direct and Inverse Spectral Theorems

Theorem (Fourier Transform)

Let $V \in \mathbb{K}$ be given, and let $\varphi(\cdot; \lambda)$ be the unique solution with $\operatorname{rbv}_{\lambda}^{S} \varphi(\cdot; z) = (0, 1)^{T}$. Let A_{V} be the Friedrichs extension of the minimal operator.

•
$$(\Theta_V f)(t) := \int_a^b \varphi(x; t)^T f(x) \, dx, \quad t \in \mathbb{R},$$

 $f \in L^2(a, b), \quad \sup(\operatorname{supp} f) < b,$

extends to an isomorphism of $L^2(a,b)$ onto $L^2(\mu_V)$ with

$$\Theta_V \circ A_V = M_{\mu_V} \circ \Theta_V.$$

•
$$(\Theta_V^{-1}g)(x) = \int_0^\infty g(t)\varphi(x;t) d\mu_V(t), \quad x \in (a,b),$$

 $g \in L^2(\mu_V), \text{ supp } g \subseteq (0,\infty) \text{ compact.}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Brief Review 000 000 Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

As for canonical systems x_0 -dependence can be controlled.

Definition

For $V \in \mathbb{K}$ we denote by $[m]_V$ the equivalence class of a singular Titchmarsh-Weyl coefficient modulo " $m_1 - m_2 \in \mathbb{R}[z]$ ".

Operator Model

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Direct and Inverse Spectral Theorems

As for canonical systems x_0 -dependence can be controlled.

Definition

For $V \in \mathbb{K}$ we denote by $[m]_V$ the equivalence class of a singular Titchmarsh-Weyl coefficient modulo " $m_1 - m_2 \in \mathbb{R}[z]$ ".

The function ϕ in the representation of V is not unique; we can multiply ϕ with any positive constant c. Then m_V and μ_V are multiplied with c^{-2} .

Operator Model

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Direct and Inverse Spectral Theorems

As for canonical systems x_0 -dependence can be controlled.

Definition

For $V \in \mathbb{K}$ we denote by $[m]_V$ the equivalence class of a singular Titchmarsh-Weyl coefficient modulo " $m_1 - m_2 \in \mathbb{R}[z]$ ".

The function ϕ in the representation of V is not unique; we can multiply ϕ with any positive constant c. Then m_V and μ_V are multiplied with c^{-2} .

Theorem (Global Uniqueness)

Let $V_1, V_2 \in \mathbb{K}$ be given (defined on $(0, b_i)$, i = 1, 2). The following are equivalent:

•
$$b_1 = b_2$$
 and $V_1(x) = V_2(x)$, $x \in (0, b_i)$ a.e.

•
$$\exists c > 0 : [m]_{V_1} = c[m]_{V_2}.$$

•
$$\exists c > 0 : \quad \mu_{V_1} = c \mu_{V_2}.$$

Operator Model

Three Classes of Objects

Spectral theory 000000 00 000 Schrödinger operators

Direct and Inverse Spectral Theorems

Theorem (Local Uniqueness)

Let $V_1, V_2 \in \mathbb{H}$ be given (defined on $(0, b_i)$, i = 1, 2). Then, for each $\tau > 0$, the following are equivalent.

•
$$V_1(x) = V_2(x)$$
, $x \in (0, \tau)$ a.e.

•
$$\exists m_{V_1}, m_{V_2}, \beta \in (0, 2\pi), c > 0 \quad \forall \varepsilon > 0:$$

$$m_{V_1}(re^{i\beta}) - cm_{V_2}(re^{i\beta}) = O\left(e^{(-2\tau + \varepsilon)\sqrt{r}\sin\frac{\beta}{2}}\right), \ r \to \infty.$$

• $\exists m_{V_1}, m_{V_2}, k \ge 0, c > 0 \quad \forall \ \delta \in (0, \pi) : \ \left(in | \arg \lambda - \pi | \le \delta \right)$

$$m_{V_1}(\lambda) - cm_{V_2}(\lambda) = \mathcal{O}(|\lambda|^k e^{-2\tau \operatorname{Im}\sqrt{\lambda}}), \ |\lambda| \to \infty,$$

where $\sqrt{\lambda}$ is the branch with $\operatorname{Im} \sqrt{\lambda} > 0$.

Ор ос	erator Model	Brief Review 000 000	Three Classes of Objects 0000 00	Spectral theory 000000 00 000	Schrödinger operators
			*		

THE END

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ