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®

Many exceptional cases will be omitted and many
technical details will be ignored.

If read literally, many statements are incorrect. State-
ments being affected will be marked in the text.
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REVIEW OF THE
POSITIVE DEFINITE
THEORY
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Hamiltonian systems

A Hamiltonian is a function
° H: (09,01) — R*** measurable;
° H(t) >0, H € Lige((00,01));

The Hamiltonian system with Hamiltoniat is the differential
equation

y(z) = 2JH(2)y(z), = € (00,01),
where
0 —1
I 0

J =
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Hamiltonian systems

Classical spectral theory deals with the case (leg at

oo-+e
/ tr H(t) dt < oo

0

~> Initial value problem.

Depending whether (Icc or Ipc at)

/ tr H(t)dt <oco OrF = o0

0

the associated differential operator behaves differently

We will always consider the case that limit point case takase
at the right endpoint.
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Hamiltonian systems: L. CC «—LPC

Hamiltonian
H(t)

solution construction
defect elements|
- Iresglve;t m;trix\| T~
A ~
Matrix chain rks = L*(Hlop)| Model space
______________ .
(W) L*(H)
lim Wi * 7 [N " L*(0) = L*(H)|
Wey! coefficient
qu(2)
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Hamiltonian systems: L. CC «—LPC

Theorem (Direct Spectral Theorem).

The selfadjoint differential operator associated withs
unitarily equivalent to the multiplication operator in theace
L*(o), whereo is the positive Borel measure in the
Herglotz-integral representation of the Weyl-coefficignt

Method of proof:Operator theory.
‘boundary triples in Hilbert spaces’
‘Krein’s theory of entire operators’
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Hamiltonian systems: L. CC «—LPC

Theorem (Inverse Spectral Theorem)

oo do(t)

Let o be a positive Borel measurewith [
Then there exists an essentially unigue Hamiltomgrsuch that
o Is the measure in the Herglotz-integral representatiohef t
Weyl-coefficientyy.

< OQ.

Method of proof:Operator theory / complex analysis.
‘de Branges theory of Hilbert spaces of entire functions’
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De Branges spaces

Definition (De Branges Hilbert spacep Hilbert spaceH
(£ {0}) is called a dB-space, if

(dB1) H is areproducing kernel Hilbert space of entire
functions.

(dB2) If '€ H,thenF#(z):= F(z) € H, and

[F# G¥] =[G, F].

(dB3) If F € Handz, € C\ R with F'(2) = 0, then
2= F(2) € H, and

Z—20

F(z)

y
Z — 20 Z — 20

[z—z_o Z— 20

G(z)| = [F,G].
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De Branges spaces

A dB-spaces iIs characterized by one single entire function.

Theorem. Let H be a dB-space. Then there exists an entire
function E with |E(Z)| < |E(z)|, z € C*, such that the
reproducing kernel ot Is equal to

E(z)E(w) — E(Z)E(w) |

K(w,z):=1 2z —m)

Conversely, ifE is any entire function withE' (2)| < |E(z)|,
z € CT, then this kernel generates a dB-space.

If H is generated by, we writeH = H(FE).

More concretely |
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De Branges spaces

An important subclass of dB-spaces is formed by those spaces
which are closed with respect to forming difference qudsien
l.e. satisfy

(DQ) If F € Handz € C, thenT2=l20) ¢ 9y

<0
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De Branges spaces

Theorem (Existence- and Ordering-Theorentlet i; be a

positive Borel measure dR with [~ %4 < oo, and consider

the setSub(u) of all dB-spaces with (DQ) which are
isometrically contained (). Then

* Sub(u) is totally ordered with respect to inclusion

* Clospz(y U{H : H € Sub(p)} = L*(n)
dim({H : H € Sub(p)} <1

* For eacht € Sub(u),

dim (H/Clos | J{£ € Sub(u CH}) <
dim (({£ € Sub(u): £ 2 7—[}/7-[) <1
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Hamiltonians «~ dB-spaces

The significance of de Branges’ theory for Hamiltonian syste
originates in the following fact.

Theorem (). Let I be a Hamiltonian, letiV;)c., »,) be the
fundamental solution, and lgtbe the measure in the
Herglotz-integral representation of its Weyl-coefficiehihen

Sub(p) = {H(Wt,n(z) — iW,15(2)) : t € (00, 01)} .
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TWO EXAMPLES FOR
INDEFINITE NOTIONS
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Nevanlinna-Pick Interpolation

The Nevanlinna-Pick interpolation problem:

Letz;,...,2, € CT andwy,...,w, € C be given. Does there
exist a functiony which

* is analytic inC™*;
 satisfiedmq(z) >0, z € CT;

e satisfies)(z;) = w;, i =1,...,n.

De Branges theory and Hamiltonian systems — p. 9



Nevanlinna-Pick Interpolation

The Nevanlinna-Pick interpolation problem:

Letz;,...,2, € CT andwy,...,w, € C be given. Does there
exist a functiony which

* is analytic inC™*;
 satisfiedmq(z) >0, z € CT;

e satisfies)(z;) = w;, i =1,...,n.

Theorem. The answer is ‘yes’ if and only if

P::(wi_w‘j)n > (.

Zi — Zj Jig=l
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Nevanlinna-Pick Interpolation
Method of proof:

Step 1: An analytic functiog in C* satisfiedm ¢(z) > 0,
z € CT, if and only if each matrix

(Q(Cgb :Z_—fcj))zla IS N7 Cla' y ‘7CN < C+7

IS positive semidefinite.

Step 2: Use extension theory and spectral theory of symenetri
and selfadjoint operators in a Hilbert space.
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Nevanlinna-Pick Interpolation

What if the matrixP is not positive semidefinite.

Can we at least find solutions of the interpolation problencivh

are ‘not too far away’ from being analytic with nonnegative
Imaginary part ?
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Nevanlinna-Pick Interpolation

Definition (generalized Nevanlinna functian)Ve sayg € N_
If
* ¢ is meromorphic irCt;

* the supremunind_ ¢ of the numbers of negative squares of
the following matrices is finite:

(q(Cg :Z_jCj))Zl, NeN, ¢,...,Cv € plg)

Functions inV., are indeed not too far away| from being
analytic with nonnegative imaginary part.

De Branges theory and Hamiltonian systems — p. 9



Nevanlinna-Pick Interpolation

Theorem(-). Letz,...,z, € CT andwy,...,w, € C be
given. Then there exists a functigre N, such that

q(z;) =w;, 1=1,...,n.
This function can be chosen such that_ ¢ equals the number

of negative squares d@f.

Method of proof:Use extension and spectral theory of symmetric
and selfadjoint operators imnaimost Pontryagin spaces| .
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The Bessel equation

The Bessel equation is the eigenvalue problem with singular
endpoint)

V2—

2

—u"(x) + Lu(z) = Mu(z), >0

X

Herev Is a parameter > % and\ Is the eigenvalue parameter.
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The Bessel equation

The Bessel equation is the eigenvalue problem with singular
endpoint)

V2—

1
4 _
—u(x) = Au(x), © >0

_u// (.CC) _|_

X

Herev Is a parameter > % and\ Is the eigenvalue parameter.

Rewriting this equation as a first-order-system, making a
substitution in the independent variable, and setting: 2v — 1,
)\ = 22, yields a Hamiltonian system with
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The Bessel equation

If o < 1 limit circle case takes place @tand we can apply the
classical theory. All ingredients can be computed exicé.g.,
the Weyl-coefficient of{, turns out to be

wherec,, IS an appropriate constant, and an appropriate branch o
the powerz“ is used.

In particular, Weyl theory gives us a Fourier transform iato
spacel?(c) with a scalar measure.
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The Bessel equation
What if o > 1.

Does there still exist a Fourier transform into a spaégr) with
a scalar measuie ?

Does the function,(z) := c,2“ have any meaning for the
spectral theory of the equation ?
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The Bessel equation
What if o > 1.

Does there still exist a Fourier transform into a spaégr) with
a scalar measuie ?

Does the function,(z) := c,2“ have any meaning for the
spectral theory of the equation ?

We will return later and answer these questions. For now:

Observation. Assume thaty is not an odd integer. Then we
haveq, € N-. In fact,

1
ind_ q, = {a;_ J
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THEORY OF INDEFINITE
DE BRANGES SPACES AND
HAMILTONIAN SYSTEMS
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General Hamiltonians

|
gy

* gy = Initial point, o,,,.;1 = endpoint.

* o1,...,0, = Singularities.

h consists
of data :

— 0 <0 <01 <...<0pt1 S0

On+1
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General Hamiltonians

H H, H,

g0 On+1

°* Hy, ..., H, =Hamiltonians; Ipc at{, ..., 0,
* H,lcc atoy; we considel,, Ipc ato,,

e growth of H; towards singularity is restricted

hconsists e —co<opg <o <...<0pp1 <00
of data :

o H,: (O-iao-z'—}—l) — R2%2

]
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General Hamiltonians

dl,j d2,j dn,j
£ £ £
€o HO eq €9 H1 €s em—lHn i,
+ . » = ---- —e >
0o On+1

* d,; = Interface conditions for regularized boundary values

* 'interface conditions’ are relative ey, ..., e, }

hconsists e —co<og<o1<...<0pp1 <00

of data :
o H@ : (O',L',O'H_l) — RZXZ
® ogp=¢pg<e; <...<€n=0np4+1, di’o, .. o,di,QAi—l e R
o
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General Hamiltonians

dy da.; dp,, j
£ £ £
€o HO eq €9 H1 €s em—lHn i,
+ L @ @ o —® >
% 4 4 4 Ot
01,b1 5 02, b2 ; On, bn,j

* 0;,b; ; = contribution concentrated in the singularity

hconsists e —co<opg<o1<...<0pp1 <00
of data :
o Hz : (Ui70i+1) — R2X2
® op=¢p < e <...<€n=0pn+1, di,Oa'-'adz’,QAi—l eR

e 0, € Ny, bi,la--- 7bi,6i—|—1 e R
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Theory of indefinite systems

general
Hamiltonian
solution | h construction
defect elements|
/res—()—lve;t m;trix\| T - -
Maximal chain rks = B(hlion)| Model space
______________ >
(W) B(h)
lim T, + 7 | N 7 _TI($) = B(b)|
Wey! coefficient
Gy (2)
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Theory of indefinite systems

Theorem (Direct Spectral Theorem)

The selfadjoint differential operator associated witis unitarily
equivalent to the multiplication operator in the spade),
whereo is the distribution| In the representation of the
Weyl-coefficientg,.

Method of proof:Operator theory.
‘boundary triples in Pontryagin spaces’
‘Entire operators in Pontryagin spaces’
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Theory of indefinite systems

Theorem (Inverse Spectral Theorem)

Let ¢ be a distribution of the class. Then there exists an
essentially uniqgue general Hamiltonignsuch that is the
distribution in the representation of the Weyl-coefficignt

Method of proof:Operator theory / complex analysis.
‘de Branges almost Pontryagin spaces’

De Branges theory and Hamiltonian systems — p. 13



De Branges aPs

Definition (De Branges aPsAn aPsA (# {0}) is called a
dB-space, if

(dB1) The elements ofd are entire functions and for each
w € C the point evaluation functional
Xw : F — F(w) is continuous.

(dB2) If I' e A, thenF#(z) := F(z) € A, and

[F# G*] =[G, F].

(dB3) If FF € Aandz, € C\ R with F(z) = 0, then
=20 () € A, and

Z—20

Z— 20 Z— 20
—F(2),
Z — 20 Z — 20

G(z)| = [F,G].
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De Branges aPs

If the dB-spaceA is nondegenerated (i.e. a Pontryagin space)
then there exists a reproducing kerhélw, z) for A. In this
case, the space Is characterized by one single entire duncti

Theorem. Let P be a nondegenerated dB-space. Then there
exists an entire functiofl of the class HB<OO| . such that the
reproducing kernel gP is equal to

E(z)E(w) — E(Z)E(w) |

K(w,z):=1 20z —m)

Conversely, IfE € HB_ ., then this kernel generates a
nondegenerated dB-space.

If P is generated by, we writeP? = P(E).
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De Branges aPs

Again, dB-spaces closed with respect to forming difference
guotients, i.e. satisfying

(DQ) If F € H andz, € C, thent2=L20) ¢ gy,

<0

play an important role.
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De Branges aPs

Theorem (Existence- and Ordering-Theorent)et ¢ € F, and
consider the sétub(¢) of all dB-spaces with (DQ) which are
‘isometrically contained inl(¢)’. Then

* Sub(.A) is totally ordered with respect to inclusion

e Closmg) U{A: A € Sub(s)} = I(¢)
dim({A: A € Sub(¢)} < 1

* For eachd € Sub(¢),

dim (H/Clos J{B € Sub(¢): B < A}) <
dim ((W{B € Sub(¢): B 2 A}/A) <1
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De Branges aPs

Let ¢ € F, denote by, € N, the function represented fay
and consider the chaBub(¢). Then we can ask for the
behaviour of the valuesd_ A andind, .A whenA varies

throughSub(¢).
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De Branges aPs

Let ¢ € F, denote by, € N, the function represented fay
and consider the chaBub(¢). Then we can ask for the
behaviour of the valuesd_ A andind, .A whenA varies
throughSub(¢).

Observation. The functionA4 — ind_ A Is nondecreasing, and

max ind_ A =ind_ q,.
AcSub(e)

The chainSub(¢) is the union of disjoint intervals wheied A
IS constant.
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De Branges aPs

Theorem. Leto € F.
* There are only finitely manyl € Sub(¢) with indy .A # 0.

e If A, C A, C Aj are three consequtive members of
Sub(¢), then

indg A > indg As >0 = indg Ay > indg Ag

* If A; C A, are consequtive membersib(¢), then
’ indo ./41 — iﬂdo AQ‘ S 1.

o |f P, ./42, Py € Sub(gb) with P, C A, C Ps and
indg P; = indg Ps = 0, then

indg A >0 = ind_ A; < ind_ As;
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Hamiltonians «~ dB-spaces

The relation of general Hamiltonians with dB-spaces is:

Theorem (). Leth be a general Hamiltonian, 1€tV ),c; be the
associated maximal chain, and éebe the distribution in the
representation of its Weyl-coefficient. Then

{A€Sub(g) : indy A=0} =
— {P(Wt,n(z) — th,12(Z)) 1 e ]} :

SEtPt L= P(Wt)n(Z) — Z'Wtjlg(Z)). The numbeind_ P, 1S
constant on the intervalg,;_,, 0;) and takes different values on
different intervals.
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Hamiltonians «~ dB-spaces

Singularities are related to degenerated membefsilofo):

Theorem (). Lett € (0;_1,0;) ands € (0;,0,.1). Then either
* There exists4d € Sub(¢) with

PtQAQPS, ind0A>O.
* There existP_, P, € Sub(¢) with

indo P_ = iIld() P+ — O, dim P+/P1 — 1 .
ind_P_ =ind_ P, ind_ P, =ind_ Ps.
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APPLICATION:
HAMILTONIAN SYSTEMS WITH
TWO SINGULAR ENDPOINTS

De Branges theory and Hamiltonian systems — p. 16



Hamiltonian systems: L PC«LPC

If a HamiltonianH is in Icc at the left and Ipc at the right
endpoint, we know that we have a Fourier transform onto aespac
L? (o) with some scalar positive Borel measureA measurer

00 do(t)

appears in this way if and only if " 775 < oo

What if H is in Ipc at both endpoints ?
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Hamiltonian systems: L PC«LPC

If a HamiltonianH is in Icc at the left and Ipc at the right
endpoint, we know that we have a Fourier transform onto aespac
L? (o) with some scalar positive Borel measureA measurer

appears in this way if and only if*°_ 2% < oo

What if H is in Ipc at both endpoints ?

Observation. In general there cannot exist a Fourier transform
of the above kind: There exist Hamiltonians for which the
associated selfadjoint differential operator has spetimith
spectral multiplicity?2.
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Hamiltonian systems: L PC«LPC

If a HamiltonianH is in Icc at the left and Ipc at the right
endpoint, we know that we have a Fourier transform onto aespac
L? (o) with some scalar positive Borel measureA measurer

appears in this way if and only if*°_ 2% < oo

What if H is in Ipc at both endpoints ?

Observation. In general there cannot exist a Fourier transform
of the above kind: There exist Hamiltonians for which the
associated selfadjoint differential operator has spetimith
spectral multiplicity?2.

We can use indefinite theory to find a class of Hamiltonians
where it still works !
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Hamiltonian systems: L PC«LPC

Definition. We say thatd € H, if (xy € (09, 01) fixed)
= fj}o H(t)gg dt < oo;
> f:oo ( two H(S)n dS) : H(t)gg dt < oo;

 Define functionsy;, : (oo, z9) — C* recursively by

ho(z) = (é) h(z) = / " JH (e () dy. k €N

Zo

Then there exist$ € span {h;, : k < N} \ {0} with

Jo0 F) H(t) f(t) dt < oo.
We denote the minimal numbé¥f such that this is possible by
A(H). We always have\(H) > 0.
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Hamiltonian systems: L PC«LPC

Definition. We sayu € M If
* 1 1S a scalar valued positive Borel measurefgn

* there exists a number € N, such that

> du(?)

We denote the minimal numbersuch that this integral is finite
by A(w).
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Hamiltonian systems: L PC«LPC

Theorem (Direct & Inverse Spectral Theorem)

If H € H, there exists a Fourier transform onto a spa¢g:)
with someu € M, A(u) > 0. Conversely, ifu € M, A(u) > 0,
there exists an essentially unique Hamiltonian such/ilreises
in this way. Thereby we hav& (i) = A(H).
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Hamiltonian systems: L PC«LPC

Theorem (Direct & Inverse Spectral Theorem)

If H € H, there exists a Fourier transform onto a spa¢g:)
with someu € M, A(u) > 0. Conversely, ifu € M, A(u) > 0,
there exists an essentially unique Hamiltonian such/ilreises
in this way. Thereby we hav& (i) = A(H).

Method of proof:

Step 1, Preparation |

Step Z; Constructing the Fourier transtorm

Step 3; The inverse constructlon‘
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Hamiltonian systems: L PC«LPC

The measure and the Fourier transform can be
constructed via regularized boundary values| .

If H is of diagonal form, the conditions fagf € H can be
rewritten to & much simpler form | .

The above results apply immediately to
Sturm-Liouville operators| without a potential term.

Sturm-Liouville operators in Schrodinger form can
theoretically also be embedded in the theory. However, it is
necessary to apply a Liouville transformation, and this is
complicated.

The Bessel equatiorrevisited | .
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APPLICATION:
SPECTRAL FUNCTIONS OF
KREIN STRINGS
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Krein strings

A string is a pair $L, m] whereL € [0, co] andm is a positive,
possibly unbounded, Borel measure supporte@ohn|. We
think of L as its length and afi measuring its mass.

To each string a boundary value problem is associated, ygamel

f(x) + Z/OOO fly)dm(y), x € R, f'(0—)=0.
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Krein strings

A string is a pair $L, m] whereL € [0, co] andm is a positive,
possibly unbounded, Borel measure supporte@ohn|. We
think of L as its length and afi measuring its mass.

To each string a boundary value problem is associated, ygamel
f'(z) + Z/ fly)dm(y), zeR,  f(0-)=0.
0

Definition. A positive Borel measure onR is called a
(canonical) spectral measure of the string Sn|, if there exists
an (appropriately normalized) Fourier transformifm) onto
LA(7).
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Krein strings

Theorem (Direct & Inverse Spectral Theoremin order that a
given positive Borel measureis a spectral measure of some
string, It IS necessary that

dr (M)
fR T+ < 0
* eithersupp 7 C |0, 00), or 7 is discrete and has exactly one
point mass ir(—oo 0).

Conversely, if[, 2t 1+\/\\ < oo andsupp 7 C [0, 00), thent is a
spectral measure of some string, and this string is uniquely
determined byr.
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Krein strings

What if supp 7 intersect§ —oo, 0) ?
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Krein strings

What if supp 7 intersect§ —oo, 0) ?

We can use indefinite theory to answer this question !
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Krein strings

What if supp 7 intersect§ —oo, 0) ?

Theorem (). Let 7 be a positive Borel measure @é&with

suppT € |0, 00). If 7is a spectral measure of some string, then
the following conditions (SM)—(SM,) hold.

(SMy)

(SMy) (SMg)
(SM2) (SMs) (SM1)
(SM3) ° ’

Conversely, ifr satisfies (SM)—(SM;), then there exists a unique
string such that is a spectral measure of this string.
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Krein strings
Method of proof:

Step 1: Letr be a discrete measure le@ 1+|/\| < oo and
| supp 7 N (—o00,0)| = 1. Then

Q(z) = z[R dr(M) € Newo -

A — 22

Consider the general Hamiltonignvhose Weyl-coefficient
equals?). Then, in order that is a spectral function of some
string, It iIs necessary and sufficient thhdtas a certain form.

Step 2: A general Hamiltonian is of the mentioned form, if and
only if its Weyl-coefficient is meromorphic i€, and the
locations and residues of its poles have correct asymptotic
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If you want to know more about these topics, please contact me
or visit my homepage

harald.woracek@tuwien.ac.at

http:/asc.tuwien.ac.at/index.php?id=woracek

This presentation, and all my publications (including pres)
can be downloaded from my homepage.
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THE END
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The matrix chain (W;)

Let H be a Hamiltonian defined ofy, o1). ThenlV,,
t € |og,01), denotes the unique solution of the initial value
problem

d
EWt(z)J = Wi(2)H (%), x € [09,01),
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The model spacel*(H)

Supressing some technicalities which arise from ‘indbiesi
Intervals’, we have

LQ(H)ZZ{fZ(O'O,O'l)%C% Jlf(t)TH(t)f(t) dt < oo}

Tnax(H):= {(f; g) € L*(H)* : f absolutely continuous
f(t) = JH(Hg(1), ae]

L(H)(f;9) = f(o0), (f;9) € Thae(H)
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The reproducing kernel space

The kernel

KWt (w, Z) =

< — W
IS positive definite, thus generates a reproducing kernekeli

spaceRk(WW;). The elements ak(1V;) are entire
2-vector-functions.

The operatotS(W;) of multiplication byz is a symmetry with
defect2. The mapl(W;) : f — f(0) is a boundary map for
S(Wy).
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The reproducing kernel space

The boundary tripIQ[P(H‘(Uo,t))a Tmin(H‘(ao,t))v F(Hl(ao,t))> IS
iIsomorphic to(K(W;), S(W,), I'(W;)). The isomorphism of
L*(H|(oy.1)) to R(W;) is given by
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V. from defect elements

Let yl(za Jf) — (y1<zv x)27 Y1 (Zv x)2)T and

ya(2,2) = (y2(2, )2, y2(2, 2)2)T be the elements of
ker(Timaz(H |(09.0) — 2), SUch thaty, (z, 00) = (1,0)" and
Yo(2,00) = (0,1)%. Then
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WV, as resolvent matrix

Consider
51 = {(xay) € Tnas(H|(oo,1)) :
Tl (H| (0o.0)) (23 y) = 0, 7L (H| (00.0)) (z;y) = 0}

U : (ZU; y) — WZ,QF(H‘(ao,t))(I§ y)a (:I?; y) S Tmax(H‘(ao,t))

ThenS; is symmetric with defect andu|s: Is continuous. The
matrix functionV, is au-resolvent matrix ofs;.

=
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The Weyl coefficientgy(z)

ForWW = (wy;); ,—, € C*** andr € C denote

W11 T + W12

W21 T + Wag

W x1:=

The assignment — W x 7 maps the upper half plane to some
(general) disk:

I
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The Weyl coefficientgy(z)

Let (W:)ie(00.0,) D€ the matrix chain associated with the
HamiltonianH. The assignments— W, x 7 mapC™ to a
nested sequence of disks containe@in The diskiV, x CT is
contained in the upper half plane and its radius is

f tr H(x :
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The Weyl coefficientqy(z)

For each: € C™ the limit

(=) i= lim Wi(2) 7

exists, and does not dependori C.
* The functiongg is analytic inC*;

* Imgy(z) >0,z€ Ct.
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The Fourier transform

Consider the Herglotz integral representation

QH(Z)—aﬂLbZJr/R( L ! )da(t)

t—z 14+t2

of the Weyl coefficienty. The map

H/ (0, 1) W, (2) H () () da

is an isomorphism of.?( H) onto L*(o) (in fact, an isomorphism
of boundary triples).

=
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Concrete definition

Theorem. Let E be entire with £(Z)| < |E(z)|, z € C*. Then
the dB-space whose reproducing kernel is given by meas of

equals the set of all entire functiohswith
# ...

» £ and“-- are of bounded type and nonpositive mean type
in C™;

o [ |F()]|2 :
Jooo | E@ | dt < oo

* The (square of the) norm iH(F) is given by the above
Integral.
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Almost Pontryagin spaces

Definition. An aPs is an inner product space of the form
A= A [+HA_[+H A
where
* A, is a Hilbert space;
* A_is afinite-dimensional negative definite space;
* A, Is a finite-dimensional neutral space.

We endowA with the product topology, thed becomes a
Banach space, and datl_ A := dim A_, indy A := dim A,.
We speak of a Pontryagin spaceA§ = {0}.

=
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The classN_

Theorem. We havey € N_ if and only if there exist

* n €N, pointsa; € C* U R and multiplicitiesa;,
g=1...,n,

* m € N, pointsb; € C* U R and multiplicitiess;,

17=1,....m,
e g analyticinC* withImg(z) >0,z € CT,

such that

q(z) = m — : - G(2).
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The classN_

Theorem. We havey € N_ if and only if there exists

 adistributionp onR U {oco} which, off some finite set of
points, coincides with a positive (possibly unbounded)
Borel measure,

* a rational function- analytic and real valued alorig),
such that

o(2) = r(z) + ([ — —

t—z 142

M1+ﬂn
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The Weyl coefficientg(z)

The limit
qp(2) ;== lim Wy(z)xT

exists as a meromorphic function locally uniformly @n, R and
does not depend one CT.

The functiong, belongsV._.., and

n

ind_qh — Z (Az_|_ [%]) +#{1 <i1<n: o Odd,CZ',l < O}

1=1

=
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The Fourier transform

Let ¢ be the distribution ofR which representg, as

1 t
t—z 14¢2

(=) = (=) + o[

}(1+t2)).

This distribution, including the poles of generates an’?'-like
Pontryagin spacl(¢) (in fact, a ‘multiplication operator’-like
Pontryagin space boundary triple).

There exists an isomorphism g#(h) ontoIl(¢) (in fact, an
Isomorphism of boundary triples).
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The model spacel3(h)

Given a general Hamiltonialnwe construct an operator model,
which is a Pontryagin space boundary triple

(B(b), T(h),I'(b))

The actual construction is quite involved and too compédab
be elaborated here.
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The model spacel3(h)

If J=|s_,s.| C(0y,0,11), there exists an isometric and
homeomorphic embedding

vy LP(Hil ;) = B(h)

If J C J’, then
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Indefinite Hermite-Biehler class

Definition. Denote byHB_ ., the set of all entire functiong,
such that? and E# have no common nonreal zerds, ! E7 is
not constant, and the reproducing kernel

E* () B(w)

has a finite number negative squares.
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Indefinite Hermite-Biehler class

Definition. Denote byHB_ ., the set of all entire functiong,
such that? and E# have no common nonreal zerds, ! E7 is
not constant, and the reproducing kernel

i B(E(w) — E*(2)E(T
Kp(w, 2) ::§E( ) E( )Z_E (2) E()

w

has a finite number negative squares.

Observation. An entire functionE satisfie§ E(z)| < |E(z)|,
z e Ct,ifand only if & € HB_.., and the above kernel is
positive semidefinite.

=
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Reproducing kernel space ofiV;

The kernel

KWt (w, Z) =

< — W
has a finite number of negative squares, thus generates a
reproducing kernel Pontryagin spag€éV;). The elements of
R(W,) are entire-vector-functions.
The operatotS(W;) of multiplication byz is a symmetry with
defect2. The mapl(W;) : f — f(0) is a boundary map for
S(Wh).
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Reproducing kernel space ofiV;

There exists an isomorphisfn of the boundary triples
<ﬁ(Wt)7 S(Wt)a F(Wt)>’ <§B2(b|(ao,t))a S(h’(ao,t))a F(hl(ao,t)»'
If J:=[s_,sy| C (05_1,0;), then the map

Ayt f(@) o / W) H () f () da

is an isomorphism of*(H;|s_ s,;) ontoR(W;, )[—]R(W,_). We
have

L2(Hi| 7)) ———= B (Bl(o0,51))
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WV, as resolvent matrix

Fort € I consider

S1 = {(z;9) € T(B(0)) :
7Tl,lr(f)‘(ao,t))(x; y) =0, WTF(bl(Uo,t))(x5 y) — O}

U : (x,y) — WZ,QF(h‘(ao,t))(x;y)7 (x,y) S T(m(ao,t))

ThensS; Is symmetric with defect andu|s: Is continuous. The
matrix functionW, i1s au-resolvent matrix ofs;.

=
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V. from defect elements
Let ¢., ¢, € ker(T'(h|(s,,1))) b€ such that

1 0
er(h’(Uo,t))(gbz; Zgb?«*) — (O) ’ er(fﬂ(ao,t))(wz; ZwZ) B (1>
Then

WTF(b’(OQ,t))(¢Z; Z¢2)T>

Wilz) = (mrmr(a@,@)wz; )T
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The maximal chain (W)

Constructing W;) from h: On each intervalo; 1, o;) the matrix
function ¥, shall be a solution of the differential equation

d
S Wil2)J = 2Wi(2) Hi(t), = € (051,04)

* Onjog,01), (W) is the unique solution withl/,, = 1.
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The maximal chain (V)

Constructing ;) from h: On each intervalo; 1, o;) the matrix
function 1V, shall be a solution of the differential equation

d
S Wil2)J = 2Wi(2)Hi(t), = € (051,04)

* Onjog,01), (W) is the unique solution withl/,, = 1.

Theorem. Each solution orio;_1, 0;) has regularized boundary
values at the singularities.

* OnceWy| ., ,.o,) is known, choose foW,|, -, ) the
unique solution whose regularized boundary values-at
fit those ofWy|«, ,..,) ato;—, the interface parameteds;,
and the jJump parametess c; ;.
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The maximal chain (V)

Constructingy from (I,):

* Sincedet W,(z) = 1, on each intervalo;_1, 0;), the
Hamiltonian functionH; can be computed immediately
from the differential equatio W, (z)J = 2W;(2) H;(t).

* The parameters, ;, 0;, ¢; ; associated with a singularity can
be computed via a set a recursive formulas from the Taylor
coefficients of entries dfl/; and the solutions of the
Hamiltonian differential equation assuming prescribed
values at the points,.
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The classF of distributions

Starting point is the indefinite analogue of the Herglotzegnal
representation:

Theorem. We havey € N_, if and only if there exists

 adistributiony onR U {oco} which, off some finite set of

points, coincides with a positive (possibly unbounded)
Borel measure,

* a rational function- analytic and real valued alorig),

such that

o) = () + o[ — 5] (14 )

t—z 1+1¢
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The classF of distributions

Strictly speaking, the clasg consists of all pairér, ¢) wherer
ando are as above.

To shorten notation, we just write € F, and intuitively
understand by a distribution orR U {oco} plus a finite sum of
Dirac distributions (and their derivatives) at nonrealsi

=
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Preparation

A Hamiltonian belongs to the cla$k, if and only if it can be
considered as a part of a general Hamiltorjamith ind_ > 0.

This general Hamiltonian can be chosen to have a certainsimp
form.

In turn, a general Hamiltonialpis of the mentioned form, if and
only if its Weyl-coefficient satisfiesid_ ¢, > 0 and

lim £l (2)

2-vi00 z2Kk—1

Gy (2)
ZQK—l

€ (—o0,0) or lim

23100

— OO,

wherex := ind_ g,
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Constructing FT

Given H € H, we build the general Hamiltonian according to
Step 1. The Fourier transform of the Pontryagin spgade) onto
I1(¢), whereg is the distribution in the integral representation of
the Weyl-coefficient,, can be restricted to obtain a Fourier
transform onto a space’ (u).

=
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Inverse construction

Givenpu € M with A(u) > 0, consider the function

00 A(p)+ kl
Q(z)::/ (tiz (t+z) 11+jt2 )du(t).

Then( € N_. and has the asymptotics mentioned in Step 1.

Hence, the general Hamiltonian whose Weyl-coefficient Equa
() has a part being a Hamiltonidih € H. This Hamiltonian does
the job.

=
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Regularized boundary values

Let H € H and fixzy € (0, 01). Then there exists a unique
sequenceéi, ).cn, Of absolutely continuous functions on
(0'0, 0'1), such that

1
oy = (O)’ (t0;11) = JHvwy, 1 >0

0, € L*(H|(opm0))s | = A(H), wy(x0) € span{(é) h1>0.

For each: € C, the spacéi, of all solutionsy(z; z) of the
Hamiltonian system is a linear space of dimensioforz = 0,
this space is trivial; it contains all constant functions.
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Regularized boundary values

Theorem. For each(.; z) € M, the following limits exist (and
do not depend on the choice of).

A
rbvi(.; 2) = h\m [ 7o (x ( (x; 2)+
T \,00
[=0

+ (0, 1) (.; 2) Zil zkmk(az)>]

k=A+1

el Wl 2) 0= M (0, Lier 2)

The map(.; z) — rbv(.; 2) := (rbviP(.; 2), tbva(.; 2)) IS

a bijection o)1, ontoC>.
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Regularized boundary values

Theorem. Let ¢ = (¢4, o) andd = (01, 0,)’ be the unique
elements oDt, such thatbv ¢(.;z) = (1,0) and
rbv 0(.; z) = (0, 1). Then the limit

o G )T + oz 2)
12) = -fvh/‘nall 01(x; 2)T + 02(x; 2)

exists locally uniformly orC \ R and does not depend anc R.
We have

d(52) — q(2)8(.;2) € L*(Hl(zp,00)) -
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Regularized boundary values

Theorem. The measur@ and the Fourier transfori@ are given
by the formulas

S9—0

1((s1,2)) = lim lim Im q(t + ig) dt
— X0 < 8§ < 8§ <O
©N)(1) = [ 0wty Hw)f)dr. teR
G f e L?(H), supsupp f < oy
©79)@) = [ g0 du(t), € (@.b)
g € L?*(p), supp g compact
|
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Diagonal Hamiltonians

The conditions (1) and (HS) | need no further simplification;
they are obvious growth conditions é¢h The condition
(A)| is more involved.
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Diagonal Hamiltonians

The conditions (I) and (HS)| need no further simplification;
they are obvious growth conditions é¢h The condition
(A)| is more involved.

Let H be a diagonal Hamiltonian. We denote hyhe operator
which assigns to a scalar functign (o, x9) — C the function

X

Af)@) = |

00

( ;f(s) H(S)H(s)ds) H(5)92(t) dt

and is defined whenever all integrals exist.
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Diagonal Hamiltonians

Theorem. Let H be a diagonal Hamiltonian which satisfies (1)
and (HS), and define

N :=sup{n € Ny: A"1 ¢ L*(Hy1)} € NgU {0} .
Then (A) holds if and only If N < oo. Moreover,
N 2N +1 f;’;(ANl)(t) H(t)1, dt € L*(Hyp)
2N +2 [ (AN1)(t) H(t)1 dt & L?(Hy)

=
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Conditions (I) and (HS)

) [ H(t)sdt < oo;
(HS) faio ( o H(S)ll dS) . H(t)QQ dt < 0.

t
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Conditions (I) and (HS)

) [ H(t)sdt < oo;
(HS) faio ( o H(S)ll dS) . H(t)QQ dt < 0.

t
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Condition (A)
(A) Define functionsi, : (o9, z9) — C* recursively by

ho() 1= ((1)) hnla) = [ THG W)y, kN,

Lo

Then there exist$ € span {hy, : £ < N} \ {0} with
S0 f@)FH(t) f(t) dt < oo.
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Condition (A)
(A) Define functionsi, : (o9, z9) — C* recursively by

ho() 1= ((1)) hnla) = [ THG W)y, kN,

Lo

Then there exist$ € span {hy, : £ < N} \ {0} with
S0 f@)FH(t) f(t) dt < oo.
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Sturm-Liouville operators

Consider an equation of the form

—(p(2)y'(x))" + q(2)y(z) = Aw(z)y(z) .

If the potential terny vanishes identically, this equation can be
rewritten immediately to the Hamiltonian system with

H(z) = (w(””) ? )
0 @

Hence, it is simple to derive corresponding spectral regalt
equations of this kind.

=
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The Bessel equation revisited

As we have already said, for the Bessel equation the
transformation to a Hamiltonian system can be carried out
explicitly; the arising Hamiltonian being

This Hamiltonian belongs tl andA(H,) = |25 |.

2

If o 1S not an odd integer, the Weyl-coefficient of the general
Hamiltonian used in the proofs is nothing but the function

0o (2) = coz2®. Fora € 2N — 1 it includes a logarithmic term.

=
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Conditions (SM;)—(SMs)

(SM,) The setupp 7 N (—o0, 0) # () contains exactly one
point.
(SM5) The measure Is discrete, and has no point mas$ at
Write

suppT = {{ U {&1,62,83,. .. }

with ¢ <0 < & < & <& < ..., and denote by and
o1, 09,03, ... the weights of the point massesmoat the pointg
andéq, &, &5, ..., respectively.

(SM3s) Tk
3 zk:gk<oo.

<_)
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Conditions (SM,), (SM;)

(SMy) The limit limy_,o, £~ exists in[0, co).

Setl'(z) =[], (1 — fik:)

(SMs) 31
§e o < 0.
25T

k)20
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Conditions (SM;g), (SMy)

— EENEE -1
Set=(x) = | X, G - & v |

k:

(SM6) 0<o S x_J(f)
(SM7) If 0 = Z(&), then

1
-9 L
Zk:g’“ D'(&)%or
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