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�

Many exceptional cases will be omitted and many

technical details will be ignored.

If read literally, many statements are incorrect. State-

ments being affected will be marked in the text.
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REVIEW OF THE

POSITIVE DEFINITE

THEORY
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Hamiltonian systems
A Hamiltonian is a function

• H : (σ0, σ1)→ R2×2 measurable;

• H(t) ≥ 0,H ∈ L1
loc((σ0, σ1));

The Hamiltonian system with HamiltonianH is the differential

equation

y′(x) = zJH(x)y(x), x ∈ (σ0, σ1) ,

where

J :=





0 −1

1 0



 .
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Hamiltonian systems
Classical spectral theory deals with the case (lcc atσ0)

∫ σ0+ǫ

σ0

trH(t) dt <∞

 initial value problem.

Depending whether (lcc or lpc atσ1)
∫ σ1

σ0

trH(t) dt <∞ or =∞

the associated differential operator behaves differently.

We will always consider the case that limit point case takes place

at the right endpoint.
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Hamiltonian systems:LCC↔LPC

Hamiltonian

H(t)66

solution

��

construction

��

Matrix chain

(Wt)

rks ∼= L2(H|[0,t))
//_______________

limWt ⋆ τ %%LLLLLLLLLL

Model space

L2(H)

defect elements

resolvent matrix
vv R

U
WZ\_bd

g
j

l

Weyl coefficient
qH(z)

L2(σ) ∼= L2(H)

99ssssssssss
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Hamiltonian systems:LCC↔LPC

Theorem (Direct Spectral Theorem�).

The selfadjoint differential operator associated withH is

unitarily equivalent to the multiplication operator in thespace

L2(σ), whereσ is the positive Borel measure in the

Herglotz-integral representation of the Weyl-coefficientqH .

Method of proof:Operator theory.

‘boundary triples in Hilbert spaces’

‘Krein’s theory of entire operators’
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Hamiltonian systems:LCC↔LPC

Theorem (Inverse Spectral Theorem).

Let σ be a positive Borel measure inR with
∫∞

−∞
dσ(t)
1+t2

<∞.

Then there exists an essentially unique HamiltonianH, such that

σ is the measure in the Herglotz-integral representation of the

Weyl-coefficientqH .

Method of proof:Operator theory / complex analysis.

‘de Branges theory of Hilbert spaces of entire functions’

De Branges theory and Hamiltonian systems – p. 5



De Branges spaces
Definition (De Branges Hilbert space). A Hilbert spaceH

(6= {0}) is called a dB-space, if

(dB1) H is a reproducing kernel Hilbert space of entire

functions.

(dB2) If F ∈ H, thenF#(z) := F (z) ∈ H, and

[F#, G#] = [G,F ] .

(dB3) If F ∈ H andz0 ∈ C \ R with F (z0) = 0, then
z−z0
z−z0

F (z) ∈ H, and

[z − z0
z − z0

F (z),
z − z0
z − z0

G(z)
]

= [F,G] .
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De Branges spaces
A dB-spaces is characterized by one single entire function.

Theorem. LetH be a dB-space. Then there exists an entire

functionE with |E(z)| < |E(z)|, z ∈ C+, such that the

reproducing kernel ofH is equal to

K(w, z) := i
E(z)E(w)− E(z)E(w)

2(z − w)
.

Conversely, ifE is any entire function with|E(z)| < |E(z)|,

z ∈ C+, then this kernel generates a dB-space.

If H is generated byE, we writeH = H(E).

More concretely
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De Branges spaces
An important subclass of dB-spaces is formed by those spaces

which are closed with respect to forming difference quotients,

i.e. satisfy

(DQ) If F ∈ H andz0 ∈ C, thenF (z)−F (z0)
z−z0

∈ H.
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De Branges spaces

Theorem (Existence- and Ordering-Theorem). Let µ be a

positive Borel measure onR with
∫∞

−∞
dµ(t)
1+t2

<∞, and consider

the setSub(µ) of all dB-spaces with (DQ) which are

isometrically contained inL2(µ). Then

• Sub(µ) is totally ordered with respect to inclusion

• ClosL2(µ)

⋃

{H : H ∈ Sub(µ)} = L2(µ)

dim
⋂

{H : H ∈ Sub(µ)} ≤ 1

• For eachH ∈ Sub(µ),

dim
(

H/Clos
⋃

{L ∈ Sub(µ) : L ( H}
)

≤ 1

dim
(⋂

{L ∈ Sub(µ) : L ) H}/H
)

≤ 1

De Branges theory and Hamiltonian systems – p. 6



Hamiltonians! dB-spaces
The significance of de Branges’ theory for Hamiltonian systems

originates in the following fact.

Theorem (�). LetH be a Hamiltonian, let(Wt)t∈[σ0,σ1) be the

fundamental solution, and letµ be the measure in the

Herglotz-integral representation of its Weyl-coefficient. Then

Sub(µ) =
{

H
(

Wt,11(z)− iWt,12(z)
)

: t ∈ (σ0, σ1)
}

.
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TWO EXAMPLES FOR

INDEFINITE NOTIONS
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Nevanlinna-Pick Interpolation
The Nevanlinna-Pick interpolation problem:

Let z1, . . . , zn ∈ C+ andw1, . . . , wn ∈ C be given. Does there

exist a functionq which

• is analytic inC+;

• satisfiesIm q(z) ≥ 0, z ∈ C+;

• satisfiesq(zi) = wi, i = 1, . . . , n.
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Nevanlinna-Pick Interpolation
The Nevanlinna-Pick interpolation problem:

Let z1, . . . , zn ∈ C+ andw1, . . . , wn ∈ C be given. Does there

exist a functionq which

• is analytic inC+;

• satisfiesIm q(z) ≥ 0, z ∈ C+;

• satisfiesq(zi) = wi, i = 1, . . . , n.

Theorem. The answer is ‘yes’ if and only if

P :=
(wi − wj

zi − zj

)n

i,j=1
≥ 0 .
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Nevanlinna-Pick Interpolation
Method of proof:

Step 1: An analytic functionq in C+ satisfiesIm q(z) ≥ 0,

z ∈ C+, if and only if each matrix

(q(ζi)− q(ζj)

ζi − ζj

)N

i,j=1
, N ∈ N, ζ1, . . . , ζN ∈ C+ ,

is positive semidefinite.

Step 2: Use extension theory and spectral theory of symmetric

and selfadjoint operators in a Hilbert space.
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Nevanlinna-Pick Interpolation
What if the matrixP is not positive semidefinite.

Can we at least find solutions of the interpolation problem which

are ‘not too far away’ from being analytic with nonnegative

imaginary part ?
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Nevanlinna-Pick Interpolation
Definition (generalized Nevanlinna function). We sayq ∈ N<∞

if

• q is meromorphic inC+;

• the supremumind− q of the numbers of negative squares of

the following matrices is finite:

(q(ζi)− q(ζj)

ζi − ζj

)N

i,j=1
, N ∈ N, ζ1, . . . , ζN ∈ ρ(q)

Functions inN<∞ are indeed not too far away from being

analytic with nonnegative imaginary part.
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Nevanlinna-Pick Interpolation

Theorem (�). Let z1, . . . , zn ∈ C+ andw1, . . . , wn ∈ C be

given. Then there exists a functionq ∈ N<∞ such that

q(zi) = wi, i = 1, . . . , n .

This function can be chosen such thatind− q equals the number

of negative squares ofP.

Method of proof:Use extension and spectral theory of symmetric

and selfadjoint operators inalmost Pontryagin spaces .
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The Bessel equation
The Bessel equation is the eigenvalue problem with singular

endpoint0

−u′′(x) +
ν2 − 1

4

x2
u(x) = λu(x), x > 0

Hereν is a parameterν > 1
2

andλ is the eigenvalue parameter.
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The Bessel equation
The Bessel equation is the eigenvalue problem with singular

endpoint0

−u′′(x) +
ν2 − 1

4

x2
u(x) = λu(x), x > 0

Hereν is a parameterν > 1
2

andλ is the eigenvalue parameter.

Rewriting this equation as a first-order-system, making a

substitution in the independent variable, and settingα := 2ν − 1,

λ = z2, yields a Hamiltonian system with

Hα(x) =





x−α 0

0 xα




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The Bessel equation
If α < 1 limit circle case takes place at0, and we can apply the

classical theory. All ingredients can be computed explicitly; e.g.,

the Weyl-coefficient ofHα turns out to be

qα(z) := cαz
α ,

wherecα is an appropriate constant, and an appropriate branch of

the powerzα is used.

In particular, Weyl theory gives us a Fourier transform intoa

spaceL2(σ) with a scalar measureσ.
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The Bessel equation
What if α ≥ 1.

Does there still exist a Fourier transform into a spaceL2(σ) with

a scalar measureσ ?

Does the functionqα(z) := cαz
α have any meaning for the

spectral theory of the equation ?
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The Bessel equation
What if α ≥ 1.

Does there still exist a Fourier transform into a spaceL2(σ) with

a scalar measureσ ?

Does the functionqα(z) := cαz
α have any meaning for the

spectral theory of the equation ?

We will return later and answer these questions. For now:

Observation. Assume thatα is not an odd integer. Then we

haveqα ∈ N<∞. In fact,

ind− qα =
⌊α + 1

2

⌋

.
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THEORY OF INDEFINITE

DE BRANGES SPACES AND

HAMILTONIAN SYSTEMS
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General Hamiltonians

σ0 σ2 σn σn+1

× ×| )×
σ1

• σ0 = initial point,σn+1 = endpoint.

• σ1, . . . , σn = singularities.

h consists
of data :

• −∞ < σ0 < σ1 < . . . < σn+1 ≤ ∞

•

•

•
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General Hamiltonians

σ0 σ2 σn σn+1

× ×| )×
σ1

H0 H1 Hn

• H0, . . . , Hn = Hamiltonians; lpc atσ1, . . . , σn

• H0 lcc atσ0; we considerHn lpc atσn+1

• growth ofHi towards singularity is restricted

h consists
of data :

• −∞ < σ0 < σ1 < . . . < σn+1 ≤ ∞

• Hi : (σi, σi+1)→ R2×2

•

•
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General Hamiltonians

σ0 σ2 σn σn+1

× ×| )×
σ1

H0 H1 Hn
•• •• • • •

e0 e1 e2 e3 em−1 em

d1,j d2,j dn,j

• di,j = interface conditions for regularized boundary values

• ’interface conditions’ are relative to{e0, . . . , em}

h consists
of data :

• −∞ < σ0 < σ1 < . . . < σn+1 ≤ ∞

• Hi : (σi, σi+1)→ R2×2

• σ0=e0 < e1 < . . . < em=σn+1, di,0, . . . , di,2∆i−1 ∈ R

•
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General Hamiltonians

σ0 σ2 σn σn+1

× ×| )×
σ1

H0 H1 Hn
•• •• • • •

e0 e1 e2 e3 em−1 em

d1,j d2,j dn,j

ö1, b1,j ö2, b2,j ön, bn,j

• öi, bi,j = contribution concentrated in the singularity

h consists
of data :

• −∞ < σ0 < σ1 < . . . < σn+1 ≤ ∞

• Hi : (σi, σi+1)→ R2×2

• σ0=e0 < e1 < . . . < em=σn+1, di,0, . . . , di,2∆i−1 ∈ R

• öi ∈ N0, bi,1, . . . , bi,öi+1 ∈ R
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Theory of indefinite systems
general

Hamiltonian
h

construction

��

Maximal chain

(Wt)

rks ∼= P(h|[0,t))
//_______________

limWt ⋆ τ &&LLLLLLLLLL

��

solution
77

Model space

P(h)

defect elements

resolvent matrixuu R
U

WZ\_bd
g

i

Weyl coefficient
qh(z)

Π(φ) ∼= P(h)

99ssssssssss
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Theory of indefinite systems

Theorem (Direct Spectral Theorem).

The selfadjoint differential operator associated withh is unitarily

equivalent to the multiplication operator in the spaceΠ(φ),

whereφ is the distribution in the representation of the

Weyl-coefficientqh.

Method of proof:Operator theory.

‘boundary triples in Pontryagin spaces’

‘Entire operators in Pontryagin spaces’
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Theory of indefinite systems

Theorem (Inverse Spectral Theorem).

Let φ be a distribution of the classF . Then there exists an

essentially unique general Hamiltonianh, such thatφ is the

distribution in the representation of the Weyl-coefficientqh.

Method of proof:Operator theory / complex analysis.

‘de Branges almost Pontryagin spaces’
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De Branges aPs
Definition (De Branges aPs). An aPsA (6= {0}) is called a

dB-space, if

(dB1) The elements ofA are entire functions and for each

w ∈ C the point evaluation functional

χw : F 7→ F (w) is continuous.

(dB2) If F ∈ A, thenF#(z) := F (z) ∈ A, and

[F#, G#] = [G,F ] .

(dB3) If F ∈ A andz0 ∈ C \ R with F (z0) = 0, then
z−z0
z−z0

F (z) ∈ A, and

[z − z0
z − z0

F (z),
z − z0
z − z0

G(z)
]

= [F,G] .
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De Branges aPs
If the dB-spaceA is nondegenerated (i.e. a Pontryagin space)

then there exists a reproducing kernelK(w, z) for A. In this

case, the space is characterized by one single entire function.

Theorem. LetP be a nondegenerated dB-space. Then there

exists an entire functionE of the class HB<∞ , such that the

reproducing kernel ofP is equal to

K(w, z) := i
E(z)E(w)− E(z)E(w)

2(z − w)
.

Conversely, ifE ∈ HB<∞, then this kernel generates a

nondegenerated dB-space.

If P is generated byE, we writeP = P(E).
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De Branges aPs
Again, dB-spaces closed with respect to forming difference

quotients, i.e. satisfying

(DQ) If F ∈ H andz0 ∈ C, thenF (z)−F (z0)
z−z0

∈ H;

play an important role.
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De Branges aPs

Theorem (Existence- and Ordering-Theorem). Let φ ∈ F , and

consider the setSub(φ) of all dB-spaces with (DQ) which are

‘isometrically contained inΠ(φ)’. Then

• Sub(A) is totally ordered with respect to inclusion

• ClosΠ(φ)

⋃

{A : A ∈ Sub(φ)} = Π(φ)

dim
⋂

{A : A ∈ Sub(φ)} ≤ 1

• For eachA ∈ Sub(φ),

dim
(

H/Clos
⋃

{B ∈ Sub(φ) : B ( A}
)

≤ 1

dim
(⋂

{B ∈ Sub(φ) : B ) A}/A
)

≤ 1

De Branges theory and Hamiltonian systems – p. 14



De Branges aPs
Let φ ∈ F , denote byqφ ∈ N<∞ the function represented byφ,

and consider the chainSub(φ). Then we can ask for the

behaviour of the valuesind−A andind0A whenA varies

throughSub(φ).
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De Branges aPs
Let φ ∈ F , denote byqφ ∈ N<∞ the function represented byφ,

and consider the chainSub(φ). Then we can ask for the

behaviour of the valuesind−A andind0A whenA varies

throughSub(φ).

Observation. The functionA 7→ ind−A is nondecreasing, and

max
A∈Sub(φ)

ind−A = ind− qφ .

The chainSub(φ) is the union of disjoint intervals whereind−A

is constant.
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De Branges aPs

Theorem. Let φ ∈ F .

• There are only finitely manyA ∈ Sub(φ) with ind0A 6= 0.

• If A1 ( A2 ( A3 are three consequtive members of

Sub(φ), then

ind0A1 ≥ ind0A2 > 0 ⇒ ind0A2 > ind0A3

• If A1 ( A2 are consequtive members ofSub(φ), then

| ind0A1 − ind0A2| ≤ 1.

• If P1,A2,P3 ∈ Sub(φ) with P1 ( A2 ( P3 and

ind0 P1 = ind0 P3 = 0, then

ind0A2 > 0 ⇒ ind−A1 < ind−A3
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Hamiltonians! dB-spaces
The relation of general Hamiltonians with dB-spaces is:

Theorem (�). Let h be a general Hamiltonian, let(Wt)t∈I be the

associated maximal chain, and letφ be the distribution in the

representation of its Weyl-coefficient. Then

{

A ∈ Sub(φ) : ind0A = 0
}

=

=
{

P
(

Wt,11(z)− iWt,12(z)
)

: t ∈ I
}

.

SetPt := P(Wt,11(z)− iWt,12(z)). The numberind− Pt is

constant on the intervals(σi−1, σi) and takes different values on

different intervals.
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Hamiltonians! dB-spaces
Singularities are related to degenerated members ofSub(φ):

Theorem (�). Let t ∈ (σi−1, σi) ands ∈ (σi, σi+1). Then either

• There existsA ∈ Sub(φ) with

Pt ⊆ A ⊆ Ps, ind0A > 0 .

• There existP−,P+ ∈ Sub(φ) with

ind0 P− = ind0 P+ = 0, dimP+/P1 = 1 ,

ind− P− = ind− Pt, ind− P+ = ind− Ps .
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APPLICATION:
HAMILTONIAN SYSTEMS WITH

TWO SINGULAR ENDPOINTS
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Hamiltonian systems:LPC↔LPC
If a HamiltonianH is in lcc at the left and lpc at the right

endpoint, we know that we have a Fourier transform onto a space

L2(σ) with some scalar positive Borel measureσ. A measureσ

appears in this way if and only if
∫∞

−∞
dσ(t)
1+t2

<∞.

What ifH is in lpc at both endpoints ?
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Hamiltonian systems:LPC↔LPC
If a HamiltonianH is in lcc at the left and lpc at the right

endpoint, we know that we have a Fourier transform onto a space

L2(σ) with some scalar positive Borel measureσ. A measureσ

appears in this way if and only if
∫∞

−∞
dσ(t)
1+t2

<∞.

What ifH is in lpc at both endpoints ?

Observation. In general there cannot exist a Fourier transform

of the above kind: There exist Hamiltonians for which the

associated selfadjoint differential operator has spectrum with

spectral multiplicity2.
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Hamiltonian systems:LPC↔LPC
If a HamiltonianH is in lcc at the left and lpc at the right

endpoint, we know that we have a Fourier transform onto a space

L2(σ) with some scalar positive Borel measureσ. A measureσ

appears in this way if and only if
∫∞

−∞
dσ(t)
1+t2

<∞.

What ifH is in lpc at both endpoints ?

Observation. In general there cannot exist a Fourier transform

of the above kind: There exist Hamiltonians for which the

associated selfadjoint differential operator has spectrum with

spectral multiplicity2.

We can use indefinite theory to find a class of Hamiltonians

where it still works !
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Hamiltonian systems:LPC↔LPC
Definition. We say thatH ∈ H, if (x0 ∈ (σ0, σ1) fixed)

•
∫ x0

σ0
H(t)22 dt <∞;

•
∫ x0

σ0

( ∫ x0

t
H(s)11 ds

)

·H(t)22 dt <∞;

• Define functionshk : (σ0, x0)→ C2 recursively by

h0(x) :=

(

1

0

)

, hk(x) :=

∫ x

x0

JH(y)hk−1(y) dy, k ∈ N .

Then there existsf ∈ span
{

hk : k ≤ N
}

\ {0} with
∫ x0

σ0
f(t)∗H(t)f(t) dt <∞.

We denote the minimal numberN such that this is possible by

∆(H). We always have∆(H) > 0.
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Hamiltonian systems:LPC↔LPC
Definition. We sayµ ∈M if

• µ is a scalar valued positive Borel measure onR;

• there exists a numbern ∈ N0, such that
∫ ∞

−∞

dµ(t)

(1 + t2)n+1
<∞ .

We denote the minimal numbern such that this integral is finite

by∆(µ).
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Hamiltonian systems:LPC↔LPC

Theorem (Direct & Inverse Spectral Theorem).
If H ∈ H, there exists a Fourier transform onto a spaceL2(µ)

with someµ ∈M, ∆(µ) > 0. Conversely, ifµ ∈M, ∆(µ) > 0,

there exists an essentially unique Hamiltonian such thatµ arises

in this way. Thereby we have∆(µ) = ∆(H).

De Branges theory and Hamiltonian systems – p. 18



Hamiltonian systems:LPC↔LPC

Theorem (Direct & Inverse Spectral Theorem).
If H ∈ H, there exists a Fourier transform onto a spaceL2(µ)

with someµ ∈M, ∆(µ) > 0. Conversely, ifµ ∈M, ∆(µ) > 0,

there exists an essentially unique Hamiltonian such thatµ arises

in this way. Thereby we have∆(µ) = ∆(H).

Method of proof:

Step 1; Preparation

Step 2; Constructing the Fourier transform

Step 3; The inverse construction
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Hamiltonian systems:LPC↔LPC
• The measureµ and the Fourier transform can be

constructed via regularized boundary values .

• If H is of diagonal form, the conditions forH ∈ H can be

rewritten to a much simpler form .

• The above results apply immediately to

Sturm-Liouville operators without a potential term.

• Sturm-Liouville operators in Schrödinger form can

theoretically also be embedded in the theory. However, it is

necessary to apply a Liouville transformation, and this is

complicated.

• The Bessel equationrevisited .
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APPLICATION:
SPECTRAL FUNCTIONS OF

KREIN STRINGS
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Krein strings
A string is a pair S[L,m] whereL ∈ [0,∞] andm is a positive,

possibly unbounded, Borel measure supported on[0, L]. We

think ofL as its length and ofm measuring its mass.

To each string a boundary value problem is associated, namely

f ′(x) + z

∫ ∞

0

f(y) dm(y), x ∈ R, f ′(0−) = 0 .
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Krein strings
A string is a pair S[L,m] whereL ∈ [0,∞] andm is a positive,

possibly unbounded, Borel measure supported on[0, L]. We

think ofL as its length and ofm measuring its mass.

To each string a boundary value problem is associated, namely

f ′(x) + z

∫ ∞

0

f(y) dm(y), x ∈ R, f ′(0−) = 0 .

Definition. A positive Borel measureτ onR is called a

(canonical) spectral measure of the string S[L,m], if there exists

an (appropriately normalized) Fourier transform ofL2(m) onto

L2(τ).
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Krein strings

Theorem (Direct & Inverse Spectral Theorem). In order that a

given positive Borel measureτ is a spectral measure of some

string, it is necessary that

•
∫

R

dτ(λ)
1+|λ|

<∞;

• eithersupp τ ⊆ [0,∞), or τ is discrete and has exactly one

point mass in(−∞, 0).

Conversely, if
∫

R

dτ(λ)
1+|λ|

<∞ andsupp τ ⊆ [0,∞), thenτ is a

spectral measure of some string, and this string is uniquely

determined byτ .
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Krein strings
What if supp τ intersects(−∞, 0) ?
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Krein strings
What if supp τ intersects(−∞, 0) ?

We can use indefinite theory to answer this question !
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Krein strings
What if supp τ intersects(−∞, 0) ?

Theorem (�). Let τ be a positive Borel measure onR with

supp τ 6⊆ [0,∞). If τ is a spectral measure of some string, then

the following conditions (SM1)–(SM7) hold.

(SM1)

(SM2)

(SM3)

(SM4)

(SM5)

(SM6)

(SM7)

Conversely, ifτ satisfies (SM1)–(SM7), then there exists a unique

string such thatτ is a spectral measure of this string.
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Krein strings
Method of proof:

Step 1: Letτ be a discrete measure with
∫

R

dτ(λ)
1+|λ|

<∞ and

| supp τ ∩ (−∞, 0)| = 1. Then

Q(z) := z

∫

R

dτ(λ)

λ− z2
∈ N<∞ .

Consider the general Hamiltonianh whose Weyl-coefficient

equalsQ. Then, in order thatτ is a spectral function of some

string, it is necessary and sufficient thath has a certain form.

Step 2: A general Hamiltonian is of the mentioned form, if and

only if its Weyl-coefficient is meromorphic inC, and the

locations and residues of its poles have correct asymptotics.
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If you want to know more about these topics, please contact me

or visit my homepage

harald.woracek@tuwien.ac.at

http://asc.tuwien.ac.at/index.php?id=woracek

This presentation, and all my publications (including preprints)

can be downloaded from my homepage.

De Branges theory and Hamiltonian systems – p. 25



THE END

De Branges theory and Hamiltonian systems – p. 26



The matrix chain (Wt)
LetH be a Hamiltonian defined on(σ0, σ1). ThenWt,

t ∈ [σ0, σ1), denotes the unique solution of the initial value

problem

d

dt
Wt(z)J = zWt(z)H(t), x ∈ [σ0, σ1) ,

W0(z) = I .

←֓
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The model spaceL2(H)
Supressing some technicalities which arise from ‘indivisible

intervals’, we have

L2(H) :=
{

f : (σ0, σ1)→C2 :

∫ σ1

σ0

f(t)TH(t)f(t) dt <∞
}

Tmax(H) :=
{

(f ; g) ∈ L2(H)2 : f absolutely continuous,

f(t) = JH(t)g(t), a.e.
}

Γ(H)(f ; g) := f(σ0), (f ; g) ∈ Tmax(H)

←֓
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The reproducing kernel space
The kernel

KWt
(w, z) :=

Wt(z)JWt(w)
∗ − J

z − w

is positive definite, thus generates a reproducing kernel Hilbert

spaceK(Wt). The elements ofK(Wt) are entire

2-vector-functions.

The operatorS(Wt) of multiplication byz is a symmetry with

defect2. The mapΓ(Wt) : f 7→ f(0) is a boundary map for

S(Wt).
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The reproducing kernel space
The boundary triple〈L2(H|(σ0,t)), Tmin(H|(σ0,t)),Γ(H|(σ0,t))〉 is

isomorphic to〈K(Wt),S(Wt),Γ(Wt)〉. The isomorphism of

L2(H|(σ0,t)) toK(Wt) is given by

f(x) 7→

∫ t

σ0

Wx(z)H(x)f(x) dx .

←֓
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Wt from defect elements
Let y1(z, x) = (y1(z, x)2, y1(z, x)2)

T and

y2(z, x) = (y2(z, x)2, y2(z, x)2)
T be the elements of

ker(Tmax(H|(σ0,t) − z), such thaty1(z, σ0) = (1, 0)T and

y2(z, σ0) = (0, 1)T . Then

Wt(z) =





y1(z, t)1 y1(z, t)2

y2(z, t)1 y2(z, t)2





←֓
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Wt as resolvent matrix
Consider

S1 :=
{

(x; y) ∈ Tmax(H|(σ0,t)) :

πl,1Γ(H|(σ0,t))(x; y) = 0, πrΓ(H|(σ0,t))(x; y) = 0
}

u : (x; y) 7→ πl,2Γ(H|(σ0,t))(x; y), (x; y) ∈ Tmax(H|(σ0,t))

ThenS1 is symmetric with defect1 andu|S∗

1
is continuous. The

matrix functionWt is au-resolvent matrix ofS1.

←֓
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The Weyl coefficientqH(z)
ForW = (wij)

2
i,j=1 ∈ C2×2 andτ ∈ C denote

W ⋆ τ :=
w11τ + w12

w21τ + w22

The assignmentτ 7→ W ⋆ τ maps the upper half plane to some

(general) disk:

C+
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The Weyl coefficientqH(z)
Let (Wt)t∈[σ0,σ1) be the matrix chain associated with the

HamiltonianH. The assignmentsτ 7→ Wt ⋆ τ mapC+ to a

nested sequence of disks contained inC+. The diskWt ⋆ C
+ is

contained in the upper half plane and its radius is

[
∫ t

σ0
trH(x) dx]−1.

C+
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The Weyl coefficientqH(z)
For eachz ∈ C+ the limit

qH(z) := lim
tրσ1

Wt(z) ⋆ τ

exists, and does not depend onτ ∈ C+.

• The functionqH is analytic inC+;

• Im qH(z) ≥ 0, z ∈ C+.
←֓
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The Fourier transform
Consider the Herglotz integral representation

qH(z) = a+ bz +

∫

R

( 1

t− z
−

t

1 + t2

)

dσ(t)

of the Weyl coefficientqH . The map

f(x) 7→

∫ σ1

σ0

(0, 1)Wx(z)H(x)f(x) dx

is an isomorphism ofL2(H) ontoL2(σ) (in fact, an isomorphism

of boundary triples).

←֓
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Concrete definition

Theorem. LetE be entire with|E(z)| < |E(z)|, z ∈ C+. Then

the dB-space whose reproducing kernel is given by means ofE

equals the set of all entire functionsF with

• F
E

andF#

E
are of bounded type and nonpositive mean type

in C+;

•
∫∞

−∞

∣

∣

F (t)
E(t)

∣

∣

2
dt <∞;

• The (square of the) norm inH(E) is given by the above

integral.

←֓
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Almost Pontryagin spaces

Definition. An aPs is an inner product space of the form

A = A+[+̇]A−[+̇]A0

where

• A+ is a Hilbert space;

• A− is a finite-dimensional negative definite space;

• A0 is a finite-dimensional neutral space.

We endowA with the product topology, thenA becomes a

Banach space, and setind−A := dimA−, ind0A := dimA0.

We speak of a Pontryagin space, ifA0 = {0}.

←֓
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The classN<∞

Theorem. We haveq ∈ N<∞ if and only if there exist

• n ∈ N, pointsaj ∈ C+ ∪ R and multiplicitiesαj,

j = 1, . . . , n,

• m ∈ N, pointsbj ∈ C+ ∪ R and multiplicitiesβj,

j = 1, . . . ,m,

• q̃ analytic inC+ with Im q̃(z) ≥ 0, z ∈ C+,

such that

q(z) =

∏n

j=1[(z − aj)(z − aj)]
αj

∏m

j=1[(z − bj)(z − bj)]
βj

q̃(z) .

De Branges theory and Hamiltonian systems – p. 36



The classN<∞

Theorem. We haveq ∈ N<∞ if and only if there exists

• a distributionφ onR ∪ {∞} which, off some finite set of

points, coincides with a positive (possibly unbounded)

Borel measure,

• a rational functionr analytic and real valued alongR,

such that

q(z) = r(z) + φ
(

[ 1

t− z
−

t

1 + t2
]

(1 + t2)
)

←֓
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The Weyl coefficientqh(z)
The limit

qh(z) := lim
tրσn+1

Wt(z) ⋆ τ

exists as a meromorphic function locally uniformly onC \ R and

does not depend onτ ∈ C+.

The functionqh belongsN<∞, and

ind− qh :=
n

∑

i=1

(

∆i + [
öi
2
]
)

+#
{

1 ≤ i ≤ n : öi odd, ci,1 < 0
}

.

←֓
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The Fourier transform
Let φ be the distribution onR which representsqh as

q(z) = r(z) + φ
(

[ 1

t− z
−

t

1 + t2
]

(1 + t2)
)

.

This distribution, including the poles ofr, generates an ‘L2’-like

Pontryagin spaceΠ(φ) (in fact, a ‘multiplication operator’-like

Pontryagin space boundary triple).

There exists an isomorphism ofP(h) ontoΠ(φ) (in fact, an

isomorphism of boundary triples).

←֓
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The model spaceP(h)
Given a general Hamiltonianh we construct an operator model,

which is a Pontryagin space boundary triple

〈P(h), T (h),Γ(h)〉

The actual construction is quite involved and too complicated to

be elaborated here.
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The model spaceP(h)
If J = [s−, s+] ⊆ (σi, σi+1), there exists an isometric and

homeomorphic embedding

ιJ : L2(Hi|J)→ P(h)

If J ⊆ J ′, then

L2(Hi|J)

⊆

��

ιJ // P(h)

L2(Hi|J ′)

ιJ′

99tttttttttt

←֓
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Indefinite Hermite-Biehler class

Definition. Denote byHB<∞ the set of all entire functionsE,

such thatE andE# have no common nonreal zeros,E−1E# is

not constant, and the reproducing kernel

KE(w, z) :=
i

2

E(z)E(w)− E#(z)E(w)

z − w

has a finite number negative squares.
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Indefinite Hermite-Biehler class

Definition. Denote byHB<∞ the set of all entire functionsE,

such thatE andE# have no common nonreal zeros,E−1E# is

not constant, and the reproducing kernel

KE(w, z) :=
i

2

E(z)E(w)− E#(z)E(w)

z − w

has a finite number negative squares.

Observation. An entire functionE satisfies|E(z)| < |E(z)|,

z ∈ C+, if and only ifE ∈ HB<∞ and the above kernel is

positive semidefinite.

←֓
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Reproducing kernel space ofWt

The kernel

KWt
(w, z) :=

Wt(z)JWt(w)
∗ − J

z − w

has a finite number of negative squares, thus generates a

reproducing kernel Pontryagin spaceK(Wt). The elements of

K(Wt) are entire2-vector-functions.

The operatorS(Wt) of multiplication byz is a symmetry with

defect2. The mapΓ(Wt) : f 7→ f(0) is a boundary map for

S(Wt).
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Reproducing kernel space ofWt

There exists an isomorphismΦt of the boundary triples

〈K(Wt),S(Wt),Γ(Wt)〉, 〈P2(h|(σ0,t)), S(h|(σ0,t)),Γ(h|(σ0,t))〉.

If J := [s−, s+] ⊆ (σi−1, σi), then the map

λJ : f(x) 7→

∫ s+

s−

Wx(z)H(x)f(x) dx

is an isomorphism ofL2(Hi|[s−,s+]) ontoK(Ws+)[−]K(Ws−). We

have
L2(Hi|J)

ιJ //

λJ

��

P(h|(σ0,s+))

K(Ws+)[−]K(Ws−)

Φs+

66lllllllllllll

←֓
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Wt as resolvent matrix
For t ∈ I consider

S1 :=
{

(x; y) ∈ T (h|(σ0,t)) :

πl,1Γ(h|(σ0,t))(x; y) = 0, πrΓ(h|(σ0,t))(x; y) = 0
}

u : (x; y) 7→ πl,2Γ(h|(σ0,t))(x; y), (x; y) ∈ T (h|(σ0,t))

ThenS1 is symmetric with defect1 andu|S∗

1
is continuous. The

matrix functionWt is au-resolvent matrix ofS1.

←֓

De Branges theory and Hamiltonian systems – p. 42



Wt from defect elements
Let φz, ψz ∈ ker(T (h|(σ0,t))) be such that

πlΓ(h|(σ0,t))(φz; zφz)=

(

1

0

)

, πlΓ(h|(σ0,t))(ψz; zψz)=

(

0

1

)

Then

Wt(z) =

(

πrΓ(h|(σ0,t))(φz; zφz)
T

πrΓ(h|(σ0,t))(ψz; zψz)T

)

←֓
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The maximal chain (Wt)
Constructing(Wt) from h: On each interval(σi−1, σi) the matrix

functionWt shall be a solution of the differential equation

d

dt
Wt(z)J = zWt(z)Hi(t), x ∈ (σi−1, σi)

• On [σ0, σ1), (Wt) is the unique solution withWσ0
= I.
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The maximal chain (Wt)
Constructing(Wt) from h: On each interval(σi−1, σi) the matrix

functionWt shall be a solution of the differential equation

d

dt
Wt(z)J = zWt(z)Hi(t), x ∈ (σi−1, σi)

• On [σ0, σ1), (Wt) is the unique solution withWσ0
= I.

Theorem. Each solution on(σi−1, σi) has regularized boundary

values at the singularities.

• OnceWt|(σi−1,σi) is known, choose forWt|(σi,σi+1) the

unique solution whose regularized boundary values atσi+

fit those ofWt|(σi−1,σi) atσi−, the interface parametersdi,j,

and the jump parameters̈oi, ci,j.

De Branges theory and Hamiltonian systems – p. 44



The maximal chain (Wt)
Constructingh from (Wt):

• SincedetWt(z) = 1, on each interval(σi−1, σi), the

Hamiltonian functionHi can be computed immediately

from the differential equationd
dt
Wt(z)J = zWt(z)Hi(t).

• The parametersdi,j, öi, ci,j associated with a singularity can

be computed via a set a recursive formulas from the Taylor

coefficients of entries ofWt and the solutions of the

Hamiltonian differential equation assuming prescribed

values at the pointsei.

←֓
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The classF of distributions
Starting point is the indefinite analogue of the Herglotz-integral

representation:

Theorem. We haveq ∈ N<∞ if and only if there exists

• a distributionφ onR ∪ {∞} which, off some finite set of

points, coincides with a positive (possibly unbounded)

Borel measure,

• a rational functionr analytic and real valued alongR,

such that

q(z) = r(z) + φ
(

[ 1

t− z
−

t

1 + t2
]

(1 + t2)
)
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The classF of distributions
Strictly speaking, the classF consists of all pairs(r, φ) wherer

andφ are as above.

To shorten notation, we just writeφ ∈ F , and intuitively

understand byφ a distribution onR ∪ {∞} plus a finite sum of

Dirac distributions (and their derivatives) at nonreal points.

←֓
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Preparation
A Hamiltonian belongs to the classH, if and only if it can be

considered as a part of a general Hamiltonianh with ind− h > 0.

This general Hamiltonian can be chosen to have a certain simple

form.

In turn, a general Hamiltonianh is of the mentioned form, if and

only if its Weyl-coefficient satisfiesind− qh > 0 and

lim
z→̂i∞

qh(z)

z2κ−1
∈ (−∞, 0) or lim

z→̂i∞

∣

∣

∣

qh(z)

z2κ−1

∣

∣

∣ =∞ ,

whereκ := ind− qh

←֓
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Constructing FT
GivenH ∈ H, we build the general Hamiltonian according to

Step 1. The Fourier transform of the Pontryagin spaceP(h) onto

Π(φ), whereφ is the distribution in the integral representation of

the Weyl-coefficientqh, can be restricted to obtain a Fourier

transform onto a spaceL2(µ).

←֓
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Inverse construction
Givenµ ∈M with ∆(µ) > 0, consider the function

Q(z) :=

∫ ∞

−∞

( 1

t− z
− (t+ z)

∆(µ)+1
∑

k=1

(1 + z2)k−1

(1 + t2)k

)

dµ(t) .

ThenQ ∈ N<∞ and has the asymptotics mentioned in Step 1.

Hence, the general Hamiltonian whose Weyl-coefficient equals

Q has a part being a HamiltonianH ∈ H. This Hamiltonian does

the job.

←֓
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Regularized boundary values
LetH ∈ H and fixx0 ∈ (σ0, σ1). Then there exists a unique

sequence(wk)k∈N0
of absolutely continuous functions on

(σ0, σ1), such that

w0 =

(

1

0

)

, (wl+1)
′ = JHwl, l ≥ 0

wl ∈ L
2
(

H|(σ0,x0)

)

, l ≥ ∆(H), wl(x0) ∈ span
{

(

1

0

)

}

, l ≥ 0 .

For eachz ∈ C, the spaceNz of all solutionsψ(x; z) of the

Hamiltonian system is a linear space of dimension2. Forz = 0,

this space is trivial; it contains all constant functions.
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Regularized boundary values
Theorem. For eachψ(.; z) ∈ Nz the following limits exist (and

do not depend on the choice ofx0).

rbv1ψ(.; z) := lim
xցσ0

[ ∆
∑

l=0

zlwl(x)
∗J

(

ψ(x; z)+

+ (0, 1)ψ(.; z)
2∆−l
∑

k=∆+1

zkwk(x)

)]

rbv2ψ(.; z) := lim
xցσ0

(0, 1)ψ(x; z)

The mapψ(.; z) 7→ rbvψ(.; z) := (rbv1ψ(.; z), rbv2ψ(.; z)) is

a bijection ofNz ontoC2.
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Regularized boundary values
Theorem. Letφ = (φ1,φ2)

T andθ = (θ1, θ2)
T be the unique

elements ofNz such thatrbvφ(.; z) = (1, 0) and

rbv θ(.; z) = (0, 1). Then the limit

q(z) = lim
xրσ1

φ1(x; z)τ + φ2(x; z)

θ1(x; z)τ + θ2(x; z)

exists locally uniformly onC \ R and does not depend onτ ∈ R.

We have

φ(.; z)− q(z)θ(.; z) ∈ L2
(

H|(x0,σ1)

)

.
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Regularized boundary values
Theorem. The measureµ and the Fourier transformΘ are given

by the formulas

µ
(

(s1, s2)
)

= lim
δց0

lim
εց0

∫ s2−δ

s1+δ

Im q(t+ iε) dt ,

−∞ < s1 < s2 <∞

(Θf)(t) =

∫ σ1

σ0

θ(x; t)∗H(x)f(x) dx, t ∈ R,

f ∈ L2(H), sup supp f < σ1

(Θ−1g)(x) =

∫ ∞

−∞

g(t)θ(x; t) dµ(t), x ∈ (a, b),

g ∈ L2(µ), supp g compact

←֓
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Diagonal Hamiltonians
The conditions (I) and (HS) need no further simplification;

they are obvious growth conditions onH. The condition

(∆) is more involved.
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Diagonal Hamiltonians
The conditions (I) and (HS) need no further simplification;

they are obvious growth conditions onH. The condition

(∆) is more involved.

LetH be a diagonal Hamiltonian. We denote byΛ the operator

which assigns to a scalar functionf : (σ0, x0)→ C the function

(Λf)(x) :=

∫ x

σ0

(

∫ t

x0

f(s)H(s)11(s)ds
)

H(s)22(t) dt

and is defined whenever all integrals exist.
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Diagonal Hamiltonians
Theorem. LetH be a diagonal Hamiltonian which satisfies (I)

and (HS), and define

N := sup
{

n ∈ N0 : Λ
n1 6∈ L2(H11)

}

∈ N0 ∪ {∞} .

Then (∆) holds if and only ifN <∞. Moreover,

∆(H) =







2N + 1 ,
∫ x

x0
(ΛN1)(t)H(t)11 dt ∈ L

2(H22)

2N + 2 ,
∫ x

x0
(ΛN1)(t)H(t)11 dt 6∈ L

2(H22)

←֓
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Conditions (I) and (HS)

(I)
∫ x0

σ0
H(t)22 dt <∞;

(HS)
∫ x0

σ0

( ∫ x0

t
H(s)11 ds

)

·H(t)22 dt <∞.

←֓
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Conditions (I) and (HS)

(I)
∫ x0

σ0
H(t)22 dt <∞;

(HS)
∫ x0

σ0

( ∫ x0

t
H(s)11 ds

)

·H(t)22 dt <∞.

←֓
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Condition (∆)

(∆) Define functionshk : (σ0, x0)→ C2 recursively by

h0(x) :=

(

1

0

)

, hk(x) :=

∫ x

x0

JH(y)hk−1(y) dy, k ∈ N .

Then there existsf ∈ span
{

hk : k ≤ N
}

\ {0} with
∫ x0

σ0
f(t)∗H(t)f(t) dt <∞.

←֓
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Condition (∆)

(∆) Define functionshk : (σ0, x0)→ C2 recursively by

h0(x) :=

(

1

0

)

, hk(x) :=

∫ x

x0

JH(y)hk−1(y) dy, k ∈ N .

Then there existsf ∈ span
{

hk : k ≤ N
}

\ {0} with
∫ x0

σ0
f(t)∗H(t)f(t) dt <∞.

←֓
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Sturm-Liouville operators
Consider an equation of the form

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) .

If the potential termq vanishes identically, this equation can be

rewritten immediately to the Hamiltonian system with

H(x) :=





w(x) 0

0 1
p(x)





Hence, it is simple to derive corresponding spectral results for

equations of this kind.

←֓
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The Bessel equation revisited
As we have already said, for the Bessel equation the

transformation to a Hamiltonian system can be carried out

explicitly; the arising Hamiltonian being

Hα(x) =





x−α 0

0 xα





This Hamiltonian belongs toH and∆(Hα) =
⌊

α+1
2

⌋

.

If α is not an odd integer, the Weyl-coefficient of the general

Hamiltonian used in the proofs is nothing but the function

qα(z) := cαz
α. Forα ∈ 2N− 1 it includes a logarithmic term.

←֓
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Conditions (SM1)–(SM3)

(SM1) The setsupp τ ∩ (−∞, 0) 6= ∅ contains exactly one

point.

(SM2) The measureτ is discrete, and has no point mass at0.

Write

supp τ = {ξ} ∪ {ξ1, ξ2, ξ3, . . . }

with ξ < 0 < ξ1 < ξ2 < ξ3 < . . . , and denote byσ and

σ1, σ2, σ3, . . . the weights of the point masses ofτ at the pointsξ

andξ1, ξ2, ξ3, . . . , respectively.

(SM3)
∑

k

σk
ξk

<∞ .

←֓
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Conditions (SM4), (SM5)

(SM4) The limit limk→∞
k2

ξk
exists in[0,∞).

SetΓ(z) :=
∏

k

(

1− z
ξk

)

.

(SM5) ∑

k

ξ−3
k

1

Γ′(ξk)2σk
<∞ .

←֓
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Conditions (SM6), (SM7)

SetΞ(x) :=
[

∑

k
(−x)Γ(x)2

(1− x
ξk

)2
· ξ−3

k
1

Γ′(ξk)2σk

]−1

.

(SM6) 0 < σ ≤ Ξ(ξ).

(SM7) If σ = Ξ(ξ), then

∑

k

ξ−2
k

1

Γ′(ξk)2σk
=∞ .

←֓
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