Universality limits for power bounded measures

Harald Woracek

TU Vienna

joint work with B.Eichinger and M.Lukic

Introduction

Setting (until we say differently):

ho μ is a positive Borel measure on $\mathbb R$ with

$$\forall n \in \mathbb{N}: \ \int_{\mathbb{R}} |t|^n \, \mathrm{d}\mu(t) < \infty,$$

and such that the corresponding moment problem is determinate.

 $\rhd \ \mathbb{C}[z]_n := \{ p \mid p \text{ polynomial}, \deg p \le n \}.$

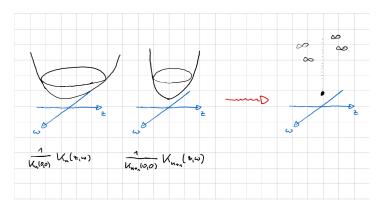
The space $\langle \mathbb{C}[z]_n, (.,.)_{L^2(\mu)} \rangle$ is a reproducing kernel Hilbert space.

Definition

Let $K_n(z,w)$ be the reproducing kernel of $\langle \mathbb{C}[z]_n, (.,.)_{L^2(\mu)} \rangle$. Then K_n is called the *Christoffel-Darboux kernel*.

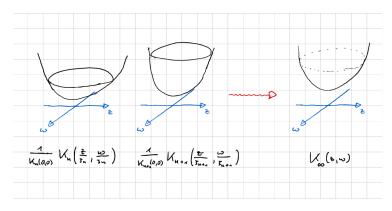
What happens if we send $n \to \infty$?

...things explode...



What happens if we send $n \to \infty$ and in the same time zoom into the vicinity of 0 ?

...if we are lucky a meaningful limit may exists...



Definition

Let $\tau_n > 0$, $n \in \mathbb{N}$. We say that a *rescaling limit exists* with rate τ_n , if the limit

$$K_{\infty}(z, w) = \lim_{n \to \infty} \frac{1}{K_n(0, 0)} K_n\left(\frac{z}{\tau_n}, \frac{w}{\tau_n}\right)$$

exists locally uniformly on $\mathbb{C} \times \mathbb{C}$ and is not constant.

Basic questions:

- \triangleright For which measures μ does a rescaling limit exist ?
- \triangleright If it exists: how to find τ_n and how to compute $K_{\infty}(z,w)$?

Example

- $ho d\mu(t) = e^{-V(t)} dt$ (V polynomial with even degree and positive leading coefficient)
 - \Longrightarrow rescaling limit exists with $\tau_n=K_n(0,0)$, $K_\infty(z,w)=rac{\sin(z-\overline{w})}{z-\overline{w}}$.
- ho $d\mu(t)=g(t)\mathbb{1}_{[-1,1]}(t)|t|^{\alpha}\,dt$ ($\alpha>-1$, g analytic and positive on [-1,1])
 - \implies rescaling limit exists with $\tau_n=K_n(0,0)^{\frac{1}{1+\alpha}}.$ $K_\infty(z,w)$ is expressed with Bessel functions.
- - \implies rescaling limit exists with $\tau_n = K_n(0,0)$. $K_{\infty}(z,w)$ is expressed with confluent hypergeometric functions.

Theorem (Eichinger-Lukic-Simanek 2021)

Assume that the nontangential limit

$$\Delta := \lim_{z \hat{\to} 0} \frac{y}{\pi} \int_{\mathbb{R}} \frac{\mathrm{d}\mu(t)}{(t-x)^2 + y^2}$$

exists, and $0 < \Delta < \infty$.

⇒ rescaling limit exists with

$$\tau_n = K_n(0,0), \quad K_{\infty}(z,w) = \frac{\sin[\pi\Delta(z-\overline{w})]}{\pi\Delta(z-\overline{w})}.$$

DE BRANGES SPACE VIEWPOINT

chain of de Branges spaces exhausting
$$L^2(\mu)$$

$$\{0\}\subseteq\cdots\subseteq\mathcal{H}(K_n(z,w))\subseteq\mathcal{H}(K_{n+1}(z,w))\subseteq\cdots\subseteq L^2(\mu)$$
 rescaling limit
$$\mathcal{H}(K_\infty(z,w))$$
 de Branges

space

Definition

Let $\omega>-1$ and $\mathcal H$ a de Branges space. Then $\mathcal H$ is called *homogeneous of order* ω , if

 $\forall a \in (0,1]: F(z) \mapsto a^{\omega+1}F(az)$ is isometry of \mathcal{H} into itself

Example

The Paley-Wiener space $\mathcal{H}(\frac{\sin(z-\overline{w})}{z-\overline{w}})$ is homogeneous of order $-\frac{1}{2}$.

chain of de Branges spaces exhausting
$$L^2(\mu)$$

$$\{0\} \subseteq \cdots \subseteq \mathcal{H}(K_n(z,w)) \subseteq \mathcal{H}(K_{n+1}(z,w)) \subseteq \cdots \subseteq L^2(\mu)$$

rescaling limit

 $\mathcal{H}(K_{\infty}(z,w))$

homogeneous de Branges space A homogeneous de Branges space induces a whole chain of spaces.

Theorem (de Branges 1962, Eichinger-Woracek 2024)

Let $\mathcal H$ be a homogeneous de Branges space of order $\omega>-1$, and let K(z,w) be the reproducing kernel of $\mathcal H$. Set

$$K^{[a]}(z,w) := a^{2(\omega+1)}K(az,aw), \quad a > 0.$$

Then

$$\{0\} \subseteq \cdots \subseteq \mathcal{H}(K^{[a]}(z,w)) \subseteq \cdots \subseteq \mathcal{H}(K^{[a']}(z,w)) \subseteq \cdots \subseteq L^2(\nu),$$

where ν is of the form

$$d\nu(t) = \left[\sigma_{-}\mathbb{1}_{(-\infty,0)} + \sigma_{+}\mathbb{1}_{(0,\infty)}(t)\right] \cdot |t|^{2\omega+1} dt$$

with certain $\sigma_+ > 0$, $\sigma_+ + \sigma_- > 0$.

Example

The Paley-Wiener space $\mathcal{H}(\frac{\sin(z-\overline{w})}{z-\overline{w}})$ is homogeneous of order $-\frac{1}{2}$.

The measure associated to the Paley-Wiener space is the Lebesgue measure, and the induced chain is

$$\{0\} \subseteq \cdots \subseteq \mathcal{H}\left(\frac{\sin[a(z-\overline{w})]}{a(z-\overline{w})}\right) \subseteq \cdots \subseteq L^2(\mathrm{d}t).$$

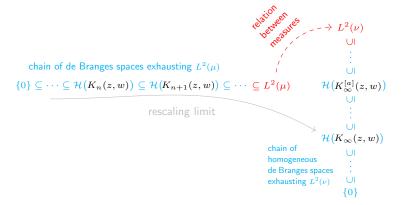
chain of de Branges spaces exhausting
$$L^2(\mu)$$

$$\{0\} \subseteq \cdots \subseteq \mathcal{H}(K_n(z,w)) \subseteq \mathcal{H}(K_{n+1}(z,w)) \subseteq \cdots \subseteq L^2(\mu)$$

rescaling limit

 $\mathcal{H}(K_{\infty}(z,w))$

homogeneous de Branges space



Definition

Let μ and ν be positive Borel measures on $\mathbb R.$ We say that ν is a *tangent measure* of μ at 0, if $\nu \neq 0$ and

$$\exists \epsilon_n > 0, \epsilon_n \to 0 \ \exists c_n > 0: \ \mu_n \to \nu \quad w^* \ \text{in} \ C_c(\mathbb{R})'$$

where

$$\mu_n((\alpha,\beta)) := c_n \mu((\epsilon_n \alpha, \epsilon_n \beta)), \quad \alpha < \beta.$$

The set of all tangent measures of μ is denoted as $Tan(\mu)$.

- \triangleright If $\nu \in \operatorname{Tan}(\mu)$ and c > 0, then $c\nu \in \operatorname{Tan}(\mu)$.
- \triangleright We say that μ has a unique tangent measure, if

$$\exists \nu$$
: $\operatorname{Tan}(\mu) = \{c\nu \mid c > 0\}$.

Theorem (Mattila 2005)

Assume μ has a unique tangent measure. Then:

ho $\operatorname{Tan}(\mu) = \{c\nu \mid c > 0\}$ where ν is either a multiple of the Dirac measure δ_0 , or of the form

$$\mathrm{d}\nu(t) = \left[\sigma_{-}\mathbb{1}_{(-\infty,0)}(t) + \sigma_{+}\mathbb{1}_{(0,\infty)}(t)\right] \cdot |t|^{2\omega+1} \,\mathrm{d}t$$

with $\sigma_{\pm} \geq 0$, $\sigma_{+} + \sigma_{-} > 0$, and $\omega > -1$.

ho The function $r\mapsto \left[\mu\left(-\frac{1}{r},\frac{1}{r}\right)\right]^{-1}$ is regularly varying with index $2(\omega+1)$.

A function $f:(0,\infty)\to(0,\infty)$ is *regularly varying* with index ρ , if it is measurable and

$$\forall s > 0$$
: $\lim_{r \to \infty} \frac{f(sr)}{f(r)} = s^{\rho}$.

THE MAIN THEOREM

Theorem (" $\frac{1}{2}$ -variant", Eichinger-Lukic-Woracek 2024)

The following statements are equivalent.

- (i) μ has a unique tangent measure which is not a multiple of δ_0 .
- (ii) There exists a regularly varying function f, such that the rescaling limit exists with $\tau_n = f(K_n(0,0))$.

Assume (i) and (ii) hold. Then

- $ho \ f$ is an asymptotic inverse of $r \mapsto \left[\mu\left(-\frac{1}{r},\frac{1}{r}\right)\right]^{-1}$.
- ightharpoonup The limit kernel $K_{\infty}(z,w)$ can be computed from the index of f and $\lim_{r \to \infty} rac{\mu((0,rac{1}{r},0))}{\mu((-rac{1}{r},0))}$, which exists in $[0,\infty]$.
- ightharpoonup The formula for $K_{\infty}(z,w)$ is an expression involving confluent hypergeometric functions.

Why $\frac{1}{2}$ -variant ?

- hd Our input is a measure μ that has all power moments . . .
- ▷ ... but we leave this class of measures ...
- $hd \ldots$ the output measure u, which also hosts the limit space $\mathcal{H}(K_\infty(z,w))$, is only power bounded.

More natural: start with a power bounded measure $\boldsymbol{\mu}$

- $\,\,
 d$ all involved measures belong to the same class \dots
- fits the philosophy of regular variation (behaves asymptotically like some power) . . .
- ▷ fully fits the setting of homogeneous de Branges spaces.

Problem: which de Branges chain in $L^2(\mu)$ to use ?

- \triangleright If μ has all power moments, the chain made up of spaces of polynomials is distinguished naturally.
- \triangleright If μ is Poisson finite, there is a naturally distinguished chain: the spaces which are invariant under difference quotients.

These instances of naturally distinguished chains share a property which goes directly to the core of de Branges' ordering theorem:

 \triangleright The elements of the elements of the chain are entire functions of bounded type in \mathbb{C}^{\pm} .

Theorem (Langer-Woracek 2013)

Let μ be power bounded. Then there exists a unique chain of de Branges spaces exhausting $L^2(\mu)$, such that all elements of members of that chain are functions of bounded type in \mathbb{C}^+ .

Definition

Let μ be power bounded, let $\{\mathcal{H}(K_t(z,w)) \mid t>0\}$ be the unique chain with bounded type, and let ℓ be regularly varying. We say that a *rescaling limit exists* with rate ℓ , if the limit

$$K_{\infty}(z, w) = \lim_{t \to \infty} \frac{1}{K_t(0, 0)} K_t\left(\frac{z}{f(K_t(0, 0))}, \frac{w}{f(K_t(0, 0))}\right)$$

exists locally uniformly on $\mathbb{C} \times \mathbb{C}$ and is not constant.

Theorem ("wishful variant")

The statement of the " $\frac{1}{2}$ -variant" holds verbatim for every power bounded measure.

We have not shown this (due to lack of appropriate machinery).

We have shown:

Theorem

The statement of the " $\frac{1}{2}$ -variant" holds verbatim for every Poisson finite measure.

WAY TO THE PROOF

Step 1

Pass to an alternative viewpoint:

- \clubsuit move along the given chain $\mathscr C$ towards $L^2(\mu)$ & make a limit of weighted rescalings of the kernel functions
- $\mbox{\ensuremath{\Re}}$ produce weighted rescalings of the given chain $\mbox{\ensuremath{\&}}$ and measure μ & make a limit of the resulting chains and measures

Step 2

```
chain of de Branges spaces exhausting L^2(\mu)
     (containing functions of bounded type)
                                                                                                \mathcal{H}(K^{[a]}_{\infty}(z,w))
\{0\} \subseteq \cdots \subseteq \mathcal{H}(K_t(z,w)) \subseteq \cdots \subseteq \mathcal{H}(K_s(z,w)) \subseteq \cdots \subseteq L^2(\mu)
                                                                                                 \mathcal{H}(K_{\infty}(z,w))
                                                                                 chain of
                                                                                 homogeneous
                                                                                 de Branges spaces
   Thank you
                                                                                 exhausting L^2(\nu)
    for your attention
```