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Introduction

Setting (until we say differently):

. µ is a positive Borel measure on R with

∀n ∈ N:

∫
R
|t|n dµ(t) <∞,

and such that the corresponding moment problem is determinate.

. C[z]n := {p | p polynomial, deg p ≤ n}.

The space 〈C[z]n, (., .)L2(µ)〉 is a reproducing kernel Hilbert space.

Definition

Let Kn(z, w) be the reproducing kernel of 〈C[z]n, (., .)L2(µ)〉. Then Kn is
called the Christoffel-Darboux kernel.
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Introduction

What happens if we send n→∞ ?

...things explode...
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Introduction

What happens if we send n→∞
and in the same time zoom into the vicinity of 0 ?

...if we are lucky a meaningful limit may exists...
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Introduction

Definition

Let τn > 0, n ∈ N. We say that a rescaling limit exists with rate τn, if the
limit

K∞(z, w) = lim
n→∞

1

Kn(0, 0)
Kn

( z
τn
,
w

τn

)
exists locally uniformly on C× C and is not constant.

Basic questions:

. For which measures µ does a rescaling limit exist ?

. If it exists: how to find τn and how to compute K∞(z, w) ?
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Introduction

Example

. dµ(t) = e−V (t) dt (V polynomial with even degree and positive leading
coefficient)

=⇒ rescaling limit exists with τn = Kn(0, 0), K∞(z, w) = sin(z−w)
z−w .

. dµ(t) = g(t)1[−1,1](t)|t|α dt (α > −1, g analytic and positive on
[−1, 1])

=⇒ rescaling limit exists with τn = Kn(0, 0)
1

1+α . K∞(z, w) is
expressed with Bessel functions.

. dµ(t) = g(t)
[
σ−1[−1,0) + σ+1[0,1](t)

]
dt (σ± ≥ 0, σ+ + σ− > 0, g

analytic and positive on [−1, 1])

=⇒ rescaling limit exists with τn = Kn(0, 0). K∞(z, w) is expressed
with confluent hypergeometric functions.
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Introduction

Theorem (Eichinger-Lukic-Simanek 2021)

Assume that the nontangential limit

∆ := lim
z →̂ 0

y

π

∫
R

dµ(t)

(t− x)2 + y2

exists, and 0 < ∆ <∞.

=⇒ rescaling limit exists with

τn = Kn(0, 0), K∞(z, w) =
sin[π∆(z − w)]

π∆(z − w)
.
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De Branges space viewpoint

Kn(z, w) Kn+1(z, w)

K∞(z, w)

rescaling limit

{0} ⊆ · · · ⊆ H
( )

⊆ H
( )

⊆ · · · ⊆ L2(µ)

H
( )

chain of de Branges spaces exhausting L2(µ)

de Branges
space
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De Branges space viewpoint

Definition

Let ω > −1 and H a de Branges space. Then H is called homogeneous of
order ω, if

∀a ∈ (0, 1]: F (z) 7→ aω+1F (az) is isometry of H into itself

Example

The Paley-Wiener space H
( sin(z−w)

z−w
)

is homogeneous of order −1
2 .
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De Branges space viewpoint

A homogeneous de Branges space induces a whole chain of spaces.

Theorem (de Branges 1962, Eichinger-Woracek 2024)

Let H be a homogeneous de Branges space of order ω > −1, and let
K(z, w) be the reproducing kernel of H. Set

K [a](z, w) := a2(ω+1)K(az, aw), a > 0.

Then

{0} ⊆ · · · ⊆ H
(
K [a](z, w)

)
⊆ · · · ⊆ H

(
K [a′](z, w)

)
⊆ · · · ⊆ L2(ν),

where ν is of the form

dν(t) =
[
σ−1(−∞,0) + σ+1(0,∞)(t)

]
· |t|2ω+1 dt

with certain σ± ≥ 0, σ+ + σ− > 0.
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De Branges space viewpoint

Example

The Paley-Wiener space H
( sin(z−w)

z−w
)

is homogeneous of order −1
2 .

The measure associated to the Paley-Wiener space is the Lebesgue
measure, and the induced chain is

{0} ⊆ · · · ⊆ H
(sin[a(z − w)]

a(z − w)

)
⊆ · · · ⊆ L2(dt).
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De Branges space viewpoint

Definition

Let µ and ν be positive Borel measures on R. We say that ν is a tangent
measure of µ at 0, if ν 6= 0 and

∃εn > 0, εn → 0 ∃cn > 0: µn → ν w∗ in Cc(R)′

where
µn
(
(α, β)

)
:= cnµ

(
(εnα, εnβ)

)
, α < β.

The set of all tangent measures of µ is denoted as Tan(µ).

. If ν ∈ Tan(µ) and c > 0, then cν ∈ Tan(µ).

. We say that µ has a unique tangent measure, if

∃ν: Tan(µ) = {cν | c > 0}.
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De Branges space viewpoint

Theorem (Mattila 2005)

Assume µ has a unique tangent measure. Then:

. Tan(µ) = {cν | c > 0} where ν is either a multiple of the Dirac
measure δ0, or of the form

dν(t) =
[
σ−1(−∞,0)(t) + σ+1(0,∞)(t)

]
· |t|2ω+1 dt

with σ± ≥ 0, σ+ + σ− > 0, and ω > −1.

. The function r 7→
[
µ
(
− 1

r ,
1
r

)]−1
is regularly varying with index

2(ω + 1).

A function f : (0,∞)→ (0,∞) is regularly varying with index ρ, if it is
measurable and

∀s > 0: lim
r→∞

f(sr)

f(r)
= sρ.
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The main theorem

The main theorem
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The main theorem

Theorem (“1
2 -variant”, Eichinger-Lukic-Woracek 2024)

The following statements are equivalent.

(i) µ has a unique tangent measure which is not a multiple of δ0.

(ii) There exists a regularly varying function f, such that the rescaling
limit exists with τn = f(Kn(0, 0)).

Assume (i) and (ii) hold. Then

. f is an asymptotic inverse of r 7→
[
µ
(
− 1

r ,
1
r

)]−1
.

. The limit kernel K∞(z, w) can be computed from the index of f and

limr→∞
µ((0, 1

r
))

µ((− 1
r
,0))

, which exists in [0,∞].

. The formula for K∞(z, w) is an expression involving confluent
hypergeometric functions.
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The main theorem

Why 1
2-variant ?

. Our input is a measure µ that has all power moments . . .

. . . . but we leave this class of measures . . .

. . . . the output measure ν, which also hosts the limit space
H(K∞(z, w)), is only power bounded.

More natural: start with a power bounded measure µ

. all involved measures belong to the same class . . .

. fits the philosophy of regular variation (behaves asymptotically like
some power) . . .

. fully fits the setting of “unique tangent measure” . . .

. fully fits the setting of homogeneous de Branges spaces.

Problem: which de Branges chain in L2(µ) to use ?
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The main theorem

. If µ has all power moments, the chain made up of spaces of
polynomials is distinguished naturally.

. If µ is Poisson finite, there is a naturally distinguished chain: the
spaces which are invariant under difference quotients.

These instances of naturally distinguished chains share a property which
goes directly to the core of de Branges’ ordering theorem:

. The elements of the elements of the chain are entire functions of
bounded type in C±.

Harald Woracek (TU Vienna) Universality limits 22 / 27



The main theorem

. If µ has all power moments, the chain made up of spaces of
polynomials is distinguished naturally.

. If µ is Poisson finite, there is a naturally distinguished chain: the
spaces which are invariant under difference quotients.

These instances of naturally distinguished chains share a property which
goes directly to the core of de Branges’ ordering theorem:

. The elements of the elements of the chain are entire functions of
bounded type in C±.

Harald Woracek (TU Vienna) Universality limits 22 / 27



The main theorem

Theorem (Langer-Woracek 2013)

Let µ be power bounded. Then there exists a unique chain of de Branges
spaces exhausting L2(µ), such that all elements of members of that chain
are functions of bounded type in C+.

Definition

Let µ be power bounded, let {H(Kt(z, w)) | t > 0} be the unique chain
with bounded type, and let f be regularly varying. We say that a rescaling
limit exists with rate f, if the limit

K∞(z, w) = lim
t→∞

1

Kt(0, 0)
Kt

( z

f(Kt(0, 0))
,

w

f(Kt(0, 0))

)
exists locally uniformly on C× C and is not constant.
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The main theorem

Theorem (“wishful variant”)

The statement of the “1
2 -variant” holds verbatim for every power bounded

measure.

We have not shown this (due to lack of appropriate machinery).

We have shown:

Theorem

The statement of the “1
2 -variant” holds verbatim for every Poisson finite

measure.
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Way to the proof

Way to the proof
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Way to the proof

Step 1

Pass to an alternative viewpoint:
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Way to the proof

Step 1

Pass to an alternative viewpoint:

_ move along the given chain C towards L2(µ)
& make a limit of weighted rescalings of the kernel functions

` produce weighted rescalings of the given chain C and measure µ
& make a limit of the resulting chains and measures
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Way to the proof

Step 2

Develop core theory:
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Way to the proof

Step 2

Develop core theory:

. Setup: axiomatize “chain” and “convergence of chains”

. Spectral measure map: “Φ: chain  measure”

. Continuity result: Φ preserves convergence

. Partial right inverse: “Ψ: power bounded measure  chain with
bounded type”

. Continuity result: Ψ preserves convergence
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Way to the proof

Step 3

Deduction of the Theorem:
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Way to the proof

Step 3

Deduction of the Theorem:

. convergence of weighted rescalings of chains ! rescaling limit of
kernel functions

. convergence of weighted rescalings of measures ! unique tangent
measure
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Way to the proof

{0} ⊆ · · · ⊆ H
(
Kt(z, w)

)
⊆ · · · ⊆ H

(
Ks(z, w)

)
⊆ · · · ⊆ L2(µ)

H
(
K∞(z, w)

)

H
(
K[a]

∞ (z, w)
)

{0}

L2(ν)

⊆
⊆
··
·

⊆
··
·⊆

⊆
··
·⊆

rescaling limit

re
la

tio
n

bet
wee

n

m
ea

su
re

s:

(t
an

ge
nt m

ea
su

re
)

chain of
homogeneous
de Branges spaces
exhausting L2(ν)

chain of de Branges spaces exhausting L2(µ)

(containing functions of bounded type)

Thank you

for your attention
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