Universality limits for power bounded measures

Harald Woracek

TU Vienna

joint work with B.Eichinger and M.Lukic

・ 同 ト ・ ヨ ト ・ ヨ ト

INTRODUCTION

э

Setting (until we say differently):

 $\,\triangleright\,\,\mu$ is a positive Borel measure on $\mathbb R$ with

$$\forall n\in\mathbb{N}:\ \int_{\mathbb{R}}|t|^n\,\mathrm{d}\mu(t)<\infty,$$

and such that the corresponding moment problem is determinate. $\triangleright \mathbb{C}[z]_n := \{p \mid p \text{ polynomial}, \deg p \leq n\}.$

The space $\langle \mathbb{C}[z]_n, (.,.)_{L^2(\mu)} \rangle$ is a reproducing kernel Hilbert space.

Definition

Let $K_n(z, w)$ be the reproducing kernel of $\langle \mathbb{C}[z]_n, (., .)_{L^2(\mu)} \rangle$. Then K_n is called the *Christoffel-Darboux kernel*.

イロト 不得下 イヨト イヨト 二日

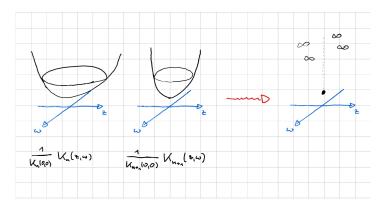
What happens if we send $n \to \infty$?

2

イロト イヨト イヨト イヨト

What happens if we send $n \to \infty$?

...things explode...



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

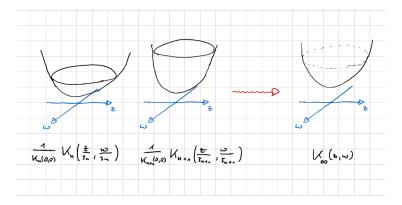
What happens if we send $n \to \infty$ and in the same time zoom into the vicinity of 0 ?

э

イロト イボト イヨト イヨト

What happens if we send $n \to \infty$ and in the same time zoom into the vicinity of 0 ?

...if we are lucky a meaningful limit may exists...



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Let $\tau_n > 0$, $n \in \mathbb{N}$. We say that a *rescaling limit exists* with rate τ_n , if the limit

$$K_{\infty}(z,w) = \lim_{n \to \infty} \frac{1}{K_n(0,0)} K_n\left(\frac{z}{\tau_n}, \frac{w}{\tau_n}\right)$$

exists locally uniformly on $\mathbb{C}\times\mathbb{C}$ and is not constant.

Basic questions:

- \triangleright For which measures μ does a rescaling limit exist ?
- \triangleright If it exists: how to find τ_n and how to compute $K_\infty(z,w)$?

(1日) (1日) (1日)

Example

▷ $d\mu(t) = e^{-V(t)} dt$ (V polynomial with even degree and positive leading coefficient)

 \implies rescaling limit exists with $\tau_n = K_n(0,0)$, $K_\infty(z,w) = \frac{\sin(z-\overline{w})}{z-\overline{w}}$.

 $\triangleright \ \mathrm{d}\mu(t) = g(t)\mathbb{1}_{[-1,1]}(t)|t|^{\alpha} \,\mathrm{d}t \text{ (}\alpha > -1\text{, }g \text{ analytic and positive on } [-1,1]\text{)}$

 \implies rescaling limit exists with $\tau_n = K_n(0,0)^{\frac{1}{1+\alpha}}$. $K_{\infty}(z,w)$ is expressed with Bessel functions.

 $\triangleright \ \mathrm{d}\mu(t) = g(t) \big[\sigma_{-} \mathbb{1}_{[-1,0)} + \sigma_{+} \mathbb{1}_{[0,1]}(t) \big] \, \mathrm{d}t \ (\sigma_{\pm} \ge 0, \ \sigma_{+} + \sigma_{-} > 0, \ g \text{ analytic and positive on } [-1,1])$

 \implies rescaling limit exists with $\tau_n = K_n(0,0)$. $K_\infty(z,w)$ is expressed with confluent hypergeometric functions.

イロト 不得 トイヨト イヨト 二日

Theorem (Eichinger-Lukic-Simanek 2021)

Assume that the nontangential limit

$$\Delta := \lim_{z \stackrel{\circ}{\to} 0} \frac{y}{\pi} \int_{\mathbb{R}} \frac{\mathrm{d}\mu(t)}{(t-x)^2 + y^2}$$

exists, and $0 < \Delta < \infty$. \implies rescaling limit exists with

$$\tau_n = K_n(0,0), \quad K_\infty(z,w) = \frac{\sin[\pi\Delta(z-\overline{w})]}{\pi\Delta(z-\overline{w})}.$$

< 回 > < 回 > < 回 >

DE BRANGES SPACE VIEWPOINT

э

イロト イポト イヨト イヨト



3

イロン イ理 とく ヨン イ ヨン

Definition

Let $\omega>-1$ and ${\cal H}$ a de Branges space. Then ${\cal H}$ is called *homogeneous of order* $\omega,$ if

 $\forall a \in (0,1]: F(z) \mapsto a^{\omega+1}F(az)$ is isometry of $\mathcal H$ into itself

(日)

Definition

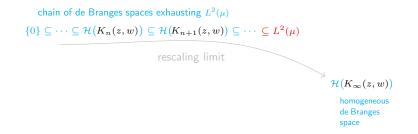
Let $\omega>-1$ and ${\cal H}$ a de Branges space. Then ${\cal H}$ is called *homogeneous of order* $\omega,$ if

 $\forall a \in (0,1]: F(z) \mapsto a^{\omega+1}F(az)$ is isometry of \mathcal{H} into itself

Example

The Paley-Wiener space $\mathcal{H}\left(\frac{\sin(z-\overline{w})}{z-\overline{w}}\right)$ is homogeneous of order $-\frac{1}{2}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



3

(日)

A homogeneous de Branges space induces a whole chain of spaces.

Theorem (de Branges 1962, Eichinger-Woracek 2024)

Let \mathcal{H} be a homogeneous de Branges space of order $\omega > -1$, and let K(z,w) be the reproducing kernel of \mathcal{H} . Set

$$K^{[a]}(z,w) := a^{2(\omega+1)}K(az,aw), \quad a > 0.$$

Then

$$\{0\} \subseteq \dots \subseteq \mathcal{H}\big(K^{[a]}(z,w)\big) \subseteq \dots \subseteq \mathcal{H}\big(K^{[a']}(z,w)\big) \subseteq \dots \subseteq L^2(\nu)$$

where ν is of the form

$$d\nu(t) = \left[\sigma_{-}\mathbb{1}_{(-\infty,0)} + \sigma_{+}\mathbb{1}_{(0,\infty)}(t)\right] \cdot |t|^{2\omega+1} dt$$

with certain $\sigma_{\pm} \geq 0$, $\sigma_{+} + \sigma_{-} > 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

The Paley-Wiener space
$$\mathcal{H}\left(\frac{\sin(z-\overline{w})}{z-\overline{w}}\right)$$
 is homogeneous of order $-\frac{1}{2}$.

3

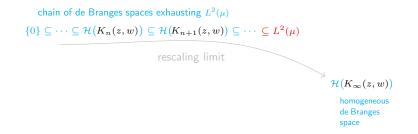
イロト イヨト イヨト イヨト

Example

The Paley-Wiener space $\mathcal{H}\big(\frac{\sin(z-\overline{w})}{z-\overline{w}}\big)$ is homogeneous of order $-\frac{1}{2}$. The measure associated to the Paley-Wiener space is the Lebesgue measure, and the induced chain is

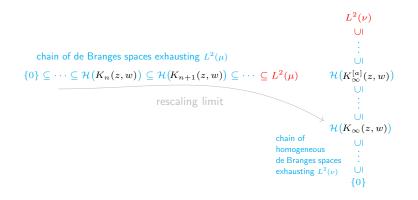
$$\{0\} \subseteq \cdots \subseteq \mathcal{H}\left(\frac{\sin[a(z-\overline{w})]}{a(z-\overline{w})}\right) \subseteq \cdots \subseteq L^2(\mathrm{d}t).$$

< 日 > < 同 > < 三 > < 三 > <

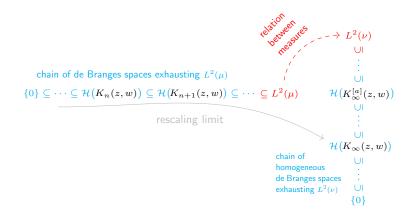


3

(日)



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Definition

Let μ and ν be positive Borel measures on \mathbb{R} . We say that ν is a *tangent* measure of μ at 0, if $\nu \neq 0$ and

$$\exists \epsilon_n > 0, \epsilon_n \to 0 \ \exists c_n > 0: \ \mu_n \to \nu \quad w^* \text{ in } C_c(\mathbb{R})^n$$

where

$$\mu_n\big((\alpha,\beta)\big) := c_n \mu\big((\epsilon_n \alpha,\epsilon_n\beta)\big), \quad \alpha < \beta.$$

The set of all tangent measures of μ is denoted as $Tan(\mu)$.

 \triangleright If $\nu \in \operatorname{Tan}(\mu)$ and c > 0, then $c\nu \in \operatorname{Tan}(\mu)$.

 $\triangleright\,$ We say that $\mu\,$ has a unique tangent measure, if

$$\exists \nu: \operatorname{Tan}(\mu) = \{ c\nu \mid c > 0 \}.$$

A B b A B b

Theorem (Mattila 2005)

Assume μ has a unique tangent measure. Then:

▷ $Tan(\mu) = \{c\nu \mid c > 0\}$ where ν is either a multiple of the Dirac measure δ_0 , or of the form

$$d\nu(t) = \left[\sigma_{-1} \mathbb{1}_{(-\infty,0)}(t) + \sigma_{+1} \mathbb{1}_{(0,\infty)}(t)\right] \cdot |t|^{2\omega+1} dt$$

with $\sigma_{\pm} \geq 0$, $\sigma_{+} + \sigma_{-} > 0$, and $\omega > -1$.

 $\vdash \text{ The function } r \mapsto \left[\mu\left(-\frac{1}{r},\frac{1}{r}\right)\right]^{-1} \text{ is regularly varying with index } 2(\omega+1).$

A function $f: (0,\infty) \to (0,\infty)$ is *regularly varying* with index ρ , if it is measurable and

$$\forall s > 0: \lim_{r \to \infty} \frac{f(sr)}{f(r)} = s^{\rho}.$$

イロト 不得 トイヨト イヨト 二日

THE MAIN THEOREM

3

イロン イ理 とく ヨン イ ヨン

Theorem ("¹/₂-variant", Eichinger-Lukic-Woracek 2024)

The following statements are equivalent.

- (i) μ has a unique tangent measure which is not a multiple of δ_0 .
- (ii) There exists a regularly varying function f, such that the rescaling limit exists with $\tau_n = f(K_n(0,0))$.

Assume (i) and (ii) hold. Then

- $\triangleright f$ is an asymptotic inverse of $r \mapsto \left[\mu\left(-\frac{1}{r},\frac{1}{r}\right)\right]^{-1}$.
- $\triangleright \text{ The limit kernel } K_{\infty}(z,w) \text{ can be computed from the index of } f \text{ and } \lim_{r\to\infty} \frac{\mu((0,\frac{1}{r}))}{\mu((-\frac{1}{r},0))}, \text{ which exists in } [0,\infty].$
- \triangleright The formula for $K_{\infty}(z,w)$ is an expression involving confluent hypergeometric functions.

イロト 不得 トイラト イラト 一日

3

イロト イヨト イヨト イヨト

 $\triangleright\,$ Our input is a measure μ that has all power moments \ldots

- \triangleright but we leave this class of measures
- \triangleright ... the output measure ν , which also hosts the limit space $\mathcal{H}(K_{\infty}(z,w))$, is only power bounded.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $\triangleright\,$ Our input is a measure μ that has all power moments \ldots

- \triangleright ... but we leave this class of measures ...
- \triangleright ... the output measure ν , which also hosts the limit space $\mathcal{H}(K_{\infty}(z,w))$, is only power bounded.

More natural: start with a power bounded measure μ

- \triangleright all involved measures belong to the same class ...
- ▷ fits the philosophy of regular variation (behaves asymptotically like some power) . . .
- $\triangleright\,$ fully fits the setting of "unique tangent measure" $\ldots\,$
- ▷ fully fits the setting of homogeneous de Branges spaces.

イロト 不得 トイラト イラト 一日

 \triangleright Our input is a measure μ that has all power moments ...

- \triangleright but we leave this class of measures
- \triangleright ... the output measure ν , which also hosts the limit space $\mathcal{H}(K_{\infty}(z,w))$, is only power bounded.

More natural: start with a power bounded measure μ

- \triangleright all involved measures belong to the same class ...
- ▷ fits the philosophy of regular variation (behaves asymptotically like some power) . . .
- ▷ fully fits the setting of "unique tangent measure" ...
- \triangleright fully fits the setting of homogeneous de Branges spaces.

Problem: which de Branges chain in $L^2(\mu)$ to use ?

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- \triangleright If μ has all power moments, the chain made up of spaces of polynomials is distinguished naturally.
- \triangleright If μ is Poisson finite, there is a naturally distinguished chain: the spaces which are invariant under difference quotients.

イロト 不得下 イヨト イヨト

- \triangleright If μ has all power moments, the chain made up of spaces of polynomials is distinguished naturally.
- \triangleright If μ is Poisson finite, there is a naturally distinguished chain: the spaces which are invariant under difference quotients.

These instances of naturally distinguished chains share a property which goes directly to the core of de Branges' ordering theorem:

 $\triangleright\,$ The elements of the elements of the chain are entire functions of bounded type in $\mathbb{C}^{\pm}.$

- 4 同 ト 4 三 ト - 4 三 ト - -

Theorem (Langer-Woracek 2013)

Let μ be power bounded. Then there exists a unique chain of de Branges spaces exhausting $L^2(\mu)$, such that all elements of members of that chain are functions of bounded type in \mathbb{C}^+ .

• • = • • = •

Theorem (Langer-Woracek 2013)

Let μ be power bounded. Then there exists a unique chain of de Branges spaces exhausting $L^2(\mu)$, such that all elements of members of that chain are functions of bounded type in \mathbb{C}^+ .

Definition

Let μ be power bounded, let $\{\mathcal{H}(K_t(z, w)) \mid t > 0\}$ be the unique chain with bounded type, and let f be regularly varying. We say that a *rescaling limit exists* with rate f, if the limit

$$K_{\infty}(z,w) = \lim_{t \to \infty} \frac{1}{K_t(0,0)} K_t\left(\frac{z}{f(K_t(0,0))}, \frac{w}{f(K_t(0,0))}\right)$$

exists locally uniformly on $\mathbb{C}\times\mathbb{C}$ and is not constant.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem ("wishful variant")

The statement of the " $\frac{1}{2}$ -variant" holds verbatim for every power bounded measure.

We have not shown this (due to lack of appropriate machinery).

We have shown:

Theorem

The statement of the " $\frac{1}{2}$ -variant" holds verbatim for every Poisson finite measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WAY TO THE PROOF

3

イロン イ理 とく ヨン イ ヨン

Pass to an alternative viewpoint:

2

イロン イ理 とく ヨン イ ヨン

Pass to an alternative viewpoint:

- * move along the given chain $\mathscr C$ towards $L^2(\mu)$ & make a limit of weighted rescalings of the kernel functions
- $\,\,$ produce weighted rescalings of the given chain $\,$ and measure μ & make a limit of the resulting chains and measures

• • = • • = •

Develop core theory:

2

イロト イヨト イヨト イヨト

Develop core theory:

- ▷ Setup: axiomatize "chain" and "convergence of chains"
- \triangleright Spectral measure map: " Φ : chain \rightsquigarrow measure"
- \triangleright Continuity result: Φ preserves convergence
- \triangleright Partial right inverse: " Ψ : power bounded measure \leadsto chain with bounded type"
- \triangleright Continuity result: Ψ preserves convergence

A B > A B >

Deduction of the Theorem:

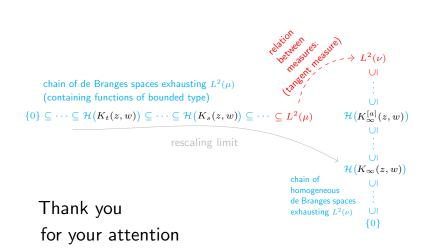
3

イロン イ理 とく ヨン イ ヨン

Deduction of the Theorem:

- ▷ convergence of weighted rescalings of chains ↔ rescaling limit of kernel functions
- convergence of weighted rescalings of measures ++++ unique tangent measure

э



э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >