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Chapter 1

Miscellaneous

This chapter is of preliminary character. We present several notions and results which build upon
the foundations of point-set topology known from the basic courses on analysis. These topics
serve as a bridge to the more advanced circles of ideas and theorems investigated in the later
chapters of this specialised course.

§1.

§2.

§3.

§4. 13
§5. 16
§6. 19
§7. 23
§3. 27
§9. 32

1.1 Embeddings

Speaking informally, we shall say that a topological space (X, T) is embedded into another
one (Y, V), if we can consider it set-theoretically and topologically as a subspace of (Y, V).

Definition 1.1.1. Let (X, 7) and (Y, V) be topological spaces, and ¢: X — Y a map. We
call ¢ an embedding of (X, T) into (Y, V), if its corestriction i: X — +(X) is a homeomorphism
of (X, T) onto (¢(X),V|,(x))-

Lemma 1.1.2. Let (X, T) and (Y,V) be topological spaces and v: X — Y. Then ¢ is an
embedding of (X, T) into (Y, V), if and only if v is injective and T is the initial topology of
V induced by the one-element family {¢}.
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Proof. In either case, if ¢ is an embedding or if the stated condition holds, the map ¢ is
injective, and hence 7 is a bijection of X onto ¢(X).

Let 7 be the initial topology on X induced by the one-element family {¢}. We have the
two diagrams

13

(X, T) —= (0. Vo) —== (V) (X)) = (6 T) ——= (1Y)

i~

The first shows that 7 is continuous, and the second that i~! is continuous. Thus 7 is a
homeomorphism of (X, 7T) onto (:(X), V|,(x)). We see that i is a homeomorphism of (X, T)
onto (¢(X), V],(x)), if and only if T = T. Q

One possibility to construct embeddings is based on the following notions.
Definition 1.1.3.

(i) Let X and Y;, i € I, be sets and f;: X — Y;. Then we call the family {f;|i € I} point
separating, if

Ve,ye X,x #yJiel. fi(x)# fi(y)

(ii) Let (X,T) and (Y;, V), i € I, be topological spaces, and f;: X — Y;, i € I. Then we
call the family {f; |7 € I} separating, if all maps f; are continuous, it is point separating,
and

Vee X,A< X closed,z ¢ AJiel. fi(x)¢ fi(A) (1.1)

We start with a corollary of Lemma 1.1.2.

Corollary 1.1.4. Let X be a set, (Y;,V;), i € I, topological spaces, and fi: X —> Y;, i €1,
maps. Assume that the family {f;|i € I} is point separating, and denote by T the initial
topology on X induced by the family {f;|i € I}. Then the product map

z = (fil®@))ier
is an embedding of (X, T) into (I L Yir I Lics Vi)
Proof. Since {f;|i € I} is point separating, the product map is injective. We have the
diagram

fi
Xi

X W [Licr Xi

and, by transitivity of building initial topologies, hence T is the initial topology induced by
the one-element family {[[,.; fi}. Now apply Lemma 1.1.2. ]
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In the next proposition we give two different hypothesis under which a product map is an
embedding of a given space (X, T) into a product.

Proposition 1.1.5. Let (X, T) and (Y;,V;), i € I, be topological spaces, f;: X - Y;, 1€ 1,
be continuous maps, and assume that the family {f; |i € I} is point separating.

(i) Assume that (1.1) holds, i.e., that {f; |i € I} is a separating family. Then T is the initial
topology induced by {f;|i € I}, and hence the product map | [,; fi is an embedding of

<X7 T) into <Hie[ Yi, Hie[ Vi)'

(ii) Assume that (X, T) is compact and all spaces (Y;,V;), i € I, are Hausdorff. Then the
product map [ [,.; fi is an embedding of (X, T) into ([ [,c; Y, [ L;c; Vi)-

el
Proof. For the proof of (i), consider a topological space (Y, V), a map ¢g: ¥ — X, and the
diagram

fiog

T e
5

Y,V) ———— (X, T) ”

If g is continuous, then clearly f; o g is continous for every i € I. Assume conversely that
fi o g is continuous for all i € I. Let A = X be closed and y ¢ g~ *(A). Then g(y) ¢ A, and
we find i € I with f;(g(y)) ¢ f;(A). This means that y ¢ g~ (f; '(f;(A))). This set is closed
and contains g~1(A). Thus Y\g~!(A) is a neighbourhood of y. We conclude that Y\g—*(A)
is open.

We come to the proof of (ii). The product map [ [,.; fi is continuous and injective, and
the product space ([ [,c; Yi, [ [;c; Vi) is Hausdorff. Since (Ts) is inherited by subspaces, the
corestriction [[,.; fi: X — (Hie] fi) (X) is a continuous bijection from a compact space
onto a Hausdorff space. Hence, it is a homeomorphism. a

1.2 The one-point extension

Recall the set-theoretic construction of a disjoint union of two sets: given two sets A and B,
we set

Au B:={(a,0)]ae A} u{(b,1)|be B} < (Au B) x {0,1}.
Then we have the injective maps
A —- AuB B —- AuB
e { a — (a0 7 { b (b1)
Apparently, A 1 B is the union of t4(A) and ¢p(B), and these two subsets of A L B are

disjoint. Often, one drops explicit notion of t4 and tp and considers A and B as subsets of
Au B.

Definition 1.2.1. Let (X,7T) be a topological space. Let o0 be a symbol, and set a(X) :=
X u {o0}. Denote by ¢, the set-theoretic inclusion map to: X — X wu {0} (drop explicit
notation of the injection t(yy: {00} — a(X)), and define 7, € P(a(X)) as
To :={U < a(X) |0 ¢ U,;" (U) open in X}
U{U C a(X) |00 e U, X\¢;' (U) closed and compact in X }.
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Then we call (a(X),7T,) the one-point extension of (X, T).

In order to formulate the basic properties of this construction, we recall the following ter-
minology: A topological space (X, T) is called locally compact, if every point of X has a
compact neighbourhood. A map ¢: X — Y between two topological spaces (X,7T) and
(Y, V) is called open, if it maps open sets to open sets, i.e., if $(O) € V for all O € T. Tt
is called an embedding, if its corestriction 7: X — ¢(X) is a homeomorphism of (X, 7T) onto

(LX), V]ux))-

Theorem 1.2.2. Let (X, T) be a topological space.
(i) The one-point extension (a(X),Ta) of (X, T) is a compact topological space.
(ii) ¢ is an embedding and maps open subsets of X to open subsets of a(X).

(iil) ((X),Ta) is (T2), if and only if (X, T) is (T2) and locally compact.

Proof. In order to carry out frequently occurring case distinctions, we denote the two parts
in the definition of 7, as

Ta = {U ca(X)|w¢ U, (U) open in X},
Ta2 :={U S a(X) |00 e U, X\t;'(U) closed and compact in X }.
Note that also for U € Ty, 2 the set ¢ '(U) is open in X.

® We show that T,, is a topology: First, o ¢ ¢ and () = &, which is open, and hence
& € Taa. Second, o0 € a(X) and ¢ ((X)\a(X)) = &, which is closed and compact, and
hence a(X) € Ta 2.

Let I be a nonempty index set, and U;, ¢ € I, be a family of elements of 7,. Set

J:={iel|U;eTaz}. If J =&, then we have o ¢ | J,.; U; and
L;1<U Ui> =Jutw)eT.
i€l i€l
If J is nonempty, then oo € | J,.; U;, and we have
Xzt (Uve) = U0 = N (gt w).

iel el el

Each of the sets occurring in the intersection is closed in X, hence the intersection is closed.
For at least one i € I, in fact for all i € J, the set X\t (U;) is compact in X, and it follows
that the intersection is also compact.

Assume now that I is finite. If J = I, then o € (,; U;, and
X\ (M) = Vet = [ (@)
el el i€l

All sets occurring in the union are closed and compact, and since [ is finite, also their union
is closed and compact. If J # I, we have o ¢ (..; U;, and

0t < ﬂ Ui> = ﬂ N Uy).

el el

iel

Again, since [ is finite, this set is open.
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@ We show that (a(X),Ta) is compact: Let W < T, be an open cover of a(X). Choose
U e W with oo € U. The family {t;*(W)|W € W} is an open cover of X, and in partic-
ular covers X\t 1(U). Since X\¢;(U) is compact, we may extract a finite subcover, say,
X W)yt (W), Let 2z € a(X)\U. Then z # oo, and we find x € X\t (U) with

[e%

z = to(x). Since X\ (U) € o' (W) U ... Uit (W,) we conclude that

a(X)=Uu CJWi’

i=1
and have found a finite subcover.

® We show that to is an open embedding: Clearly, v, is injective. We have o ¢ ¢,(X) and
17 (ta(X)) = X € T. Thus, 14(X) € Ta1. Now let O € X. Then, using that ¢, (X) is open,

L(0) € Talinix) & al0)eTy < 1(0)eTan < 17" (1a(0)eT = OeT

We see that ¢, maps open subsets of X to open subsets of a(X). Further, since we know
that ¢, is injective, it follows that the corestriction of ¢, to a map of X onto (,(X) is a
homeomorphism.

@ We show (iii): Assume that «(X) is (Tz). The Hausdorff separation axiom is inherited
by subspaces and homeomorphic images, hence X is (Ty). Let € X. Choose disjoint sets
U, Uy € To with 1o (7) € U, and o € Uy. Then X\t (Uy) is a compact subset of X, and

re N (Uy) i (a(X)\Us) = X\t  (Us).

[0 [}

Since 1 (U,) is open, X\t;!(Uy) is a neighbourhood of .

Assume conversely, that X is (Ty) and locally compact. Again using that (Ts) is inherited
by homeomorphic images, we obtain that each two different points of ¢, (X) can be separated
by disjoint subsets of ¢, (X) which are open in the subspace topology 74|,., (x). However, since
to(X) is open in a(X), these separating sets are also open in a(X). Now let z € 1, (X) be
given. Choose a compact neighbourhood K of ;! (x). Since X is Hausdorff, K is also closed.
Hence, the set a(X)\to(K), which obviously contains the point o, belongs to T, 2. Choose
an open neighbourhood O € K of 17! (x). Then 1,(O) € T,1 and contains the point . Since
O ¢ K, we have

((X)N\ta(K)) N ea(0) = &

a
Given a function f: X — Y, and a point yg € Y, we can lift f to the disjoint union a(X) by

Yo if z=00

F2)m {f(Lal(z)) if 2 € ta(X) 12)

Note that this definition ensures that f oLy = f:

a(X)

~

Lo

’

)
XﬁY
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In the context of topological spaces, the question arises whether the extension f is continuous.

Proposition 1.2.3. Let (X, T) and (Y,V) be topological spaces and f: X — Y. Moreover,
let yo € Y, and consider the function f: a(X) — 'Y defined by (1.2). Then f is continuous,
if and only if [ is continuous and

VYV e U(yo) 3K < X closed compact. f(X\K) < V. (1.3)
Proof.

@ We show the forward implication: Assume that f is continuous. Since f = f o tq, the
function f is continuous. Let V € U(yo) be given. Choose an open neighbourhood U in
a(X) of the point oo, such that f(U) < V, and set K := X\t;'(U). Then K is closed and
compact in X, and we have

FX\K) = [ (V) = f(ald (U)) € FU) € V-

@ We show the backward implication: Assume that f is continuous and satisfies (1.3). Let
O c Y beopen. If yo ¢ O, then oo ¢ f710) and (;1(f~1(0)) = f~(O) which is open in X.
Thus f~1(0) is open in a(X). Consider the case that yo € O. Then O is a neighbourhood
of yo and, according to (1.3), we find a closed and compact set K <€ X with f(X\K) < O,
ie., X\K < f~1(0). We have co € f~1(0O) and

X\ia' (f7H0)) = X\f71(0) € X\(X\K) = K.

The set X\¢;'(f~1(0)) is closed since f is continuous, and in turn compact since it is
contained in the compact set K. Again, we see that f~1(0) is open in a(X).

a

In the context of Proposition 1.2.3 one also uses the following terminology: if (X, 7) and
(Y, V) are topological spaces, f: X — Y, and yo € Y, one says that f has the limit yo at
infinity, if the condition (1.3) holds.

Functions between two topological spaces lift canonically to functions between their one-
point extensions.

Definition 1.2.4. Let (X, T) and (Y,V) be topological spaces and f: X — Y. Then we
define a function a(f): a(X) — «(Y) as (here to,x and i,y are the respective inclusion
maps)

(La’y ofo L;IX)(J}) if x € 14 x(X),

0 if z = oo.

a(f)(x) =

This definition ensures that we have the diagram

X —Y

f
Lu,xl lba,y
[}
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Moreover, observe that passing to the lifting is compactible with composition and identity in
the sense that

a(fog)=a(f)oalg),  a(idx)=idyx)- (1.4)
The question whether «(f) is continuous, is answered by an application of Proposition 1.2.3.

Corollary 1.2.5. Let (X, T) and (Y, V) be topological spaces, and f: X — Y. Then «o(f) is
continuous, if and only if f is continuous and

YA CY closed compact. f~'(A) compact (1.5)

Proof. The map «(f) is nothing but the lifting in the sense of (1.2) of the map tq, 0 f: X —
a(Y) using the point co. Thus, Proposition 1.2.3 provides us with a characterisation when
a(f) is continuous.

Continuity of f occurs in both conditions, the one obtained from Proposition 1.2.3, and
the one stated in the present assertion. Hence it is enough to show that for a continuous
function f the conditions (1.3) and (1.5) are equivalent.

® We show that (1.5) implies (1.3): Let V € U(x0). Choose U € T, with co e U € V. Then
the set A := Y\t ;1(U) is closed and compact. Its inverse image K := f~1(A) under f is
closed by continuity of f and compact by (1.5). However, K = X\ f~1(:;1(U)), and hence

(tayy o ) (X\K) cU = V.

@ We show that (1.3) implies (1.5): Let A €Y be closed and compact. Then a(Y)\ta,v (4)
is an open neighbourhood of the point o € a(Y’). Choose K € X closed and compact, such
that

(ta,y 0 FYXNK) S Y )\ta,y (A).

Since tq,y is injective, applying L;}Y to this inclusion yields f(X\K) € Y\A4, ie., X\K <
fTM\A) € X\f1(A). The set f~1(A) is closed since f is continuous, and in turn it is
compact since it is contained in the compact set K.

a

1.3 Separation axioms

In a topological space there are two natural ways to separate points or subsets: by open sets
or by continuous functions. We shall define a (not exhaustive) list of properties, which are
called separation axioms. Viewed on its own, this looks like just a long list of vocabulary.
However, we will see that each of these properties occurs naturally in different contexts. It
should also be said that in the literature sometimes terminology is not uniform.

We start with properties of separation by open sets.

Definition 1.3.1. A topological space (X, T) is said to satisfy the separation axiom
> (T()), lf

Ve,ye X,z #y 30,,0,€T. (erz/\yeOy)/\(ygévaxgéOy)
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I>(T1),lf
Ve,ye X,z #y 310,04 € T. (erxAyeOy)/\(y¢O$/\x¢Oy)

> (Tz) (or is a Hausdorff space), if
Vo,ye X,z #y 30,,0,€T. (€0, Aye Oy) A (0Op 0Oy = &)
> (T3), if
Vo e X,B< X closed,z ¢ BI0,,05€T. (x€0, A BCO0p) A (0r 1 Op = &)
> (Ty), if
VA, B C X closed, An B = &3 304,05 T. (ACOsAB < Op) A (0400 = )

The space (X, T) is called
> regular, if it satisfies (T;) and (Ts),

> normal, if it satisfies (T1) and (Ty).

Let us show that the axioms (Ty), (T2), and (Ts) are related with closed sets and neighbour-
hoods.

Lemma 1.3.2. Let (X, T) be a topological space. Then (X, T) satisfies
> (T1), if and only if for every point x € X the singleton set {x} is closed.
> (Ta), if and only if (WU € U(x) |U closed} = {z} for all points x € X.

> (T3), if and only if for every point x € X the set {U € U(x)|U closed} forms a base of
the neighbourhood filter U (x).

Proof.

® Assume that (X,7) is (T1), and let € X. For each y € X\{z} we find O, € T with
y € Oy, z ¢ Oy. We see that X\{z} = UyeX\{z} Oy, and hence is open. Conversely, assume
singletons are closed, and let z,y € X, x # y, be given. Then we can use O, := X\{z} and

Oy = X\{y}.

@ Assume that (X, T) is (Tz), and let z € X. For each y € X\{z} we find disjoint open sets
O,,0, with x € O, and y € O,. Then O, is a closed neighbourhood of = and is contained in
X\Oy. In particular, it does not contain the point y. Conversely, assume that each singleton
is the intersection of all closed neighbourhoods, and let z,y € X, x # y, be given. Choose
U € U(z) closed with y ¢ U, and O € U(z) open with O < U. Then we can use O, := O
and O, := X\U.

® Assume that (X,7T) is (Tz), let x € X and U € U(z). Choose O € T with x € O < U.
The set B := X\O is closed and z ¢ B. Choose disjoint open sets O,,Op with x € O, and
B < Op. Then O, is a closed neighbourhood of z, and O, < X\Op < X\B = O € U.
Conversely, assume that closed neighbourhoods form a neighbourhood base, let z € X and
B < X closed with ¢ B. Then X\B is a neighbourhood of z, and we can choose a
closed neighbourhood U of z with U < X\B. Choose O, open with z € O, < U, and set
OB = X\U
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a

We have already seen that in Hausdorff spaces limits of nets are unique. The next assertion
gives a characterisation in a similar direction.

Lemma 1.3.3. Let (X, T) be a topological space. Then the following statements are equiva-
lent.

(i) (X, T) satisfies (Ta).

(ii) For every topological space (Y,V), dense subset D of Y, and continuous functions
fi9:Y — X, it holds that

flo=glp = f=g

(ili) The diagonal Ax := {(z,x) |z € X} is closed in the product topology of X x X.

Proof. We are going to show that “(i)=(ii)=>(iii)=(i)”.

Assume that (i) holds, and let Y, D, f be as in (ii). Let y € Y be given, and let Oy, O, <
X be open sets with f(y) € Oy and g(y) € Oy. Then f~'(Oy) and g=*(O,) are open
neighbourhoods of y, and hence we find a point z € f~1(Of) n f~1(Oy) N D. Since f(z) =
g(x), it follows that Oy N Oy # . Since X is (Ty), it follows that f(y) = g(y).

Assume that (ii) holds, and let (z,w) € Ax. Consider the space Y := Ax u {(z,w)}
endowed with the subspace topology of the product topology. Then Ax is dense in Y. Let
m,m2: X x X — X be the canonical projections onto the first and second, respectively
component. Then 71|a, = T2|a, and the present assumption (ii) implies that 71|y = ma|y.
It follows that z = w.

Assume that (iii) holds, and let x,y € X, x # y. Then (x,y) ¢ Ax, and hence we find
open sets O,,0, € X with (z,y) € O, x Oy and (O, x Oy) " Ax = . The latter just
means that O, N O, = . a

Next, some properties of separation by continuous function.
Definition 1.3.4. A topological space (X, T) is said to satisfy the separation axiom
Ve,ye X,z #y If: X — [0,1] continuous. f(z) =14 f(y) =0
Veze X,B < X closed,z ¢ B3f: X — [0,1] continuous. f(z) =1 A f(B) < {0}
> (T4%), if
VA, B < X closed, An B = 3f: X — [0,1] continuous. f(A) < {1} A f(B) < {0}

The space (X, T) is called

= completely regular, if it is (Ty) and (T3%).
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While the axiom (T,1) is seldomly used, and (T,1) is redundant, the axiom (Ts1) is most
important.

Remark 1.3.5. The axioms defined above are related among each other as

(Ts) (Ta)
A ﬂ: R
(To) (Ty) (T2) i (Ts1) (Tay) i
ﬂ\ \\\:\ AN h
il N N ////
! regular \‘\\\ normal
=(T1) A~ (T3) ,‘,‘ =(T1) A (Ts)
completely
regular

=(T1)/\(T3%)

The only significant result is the downwards implication that (T;) implies (T4%): this is
Urysohn’s Lemma.

The dashed implications are trivial. The two implications going left from (Ts) are clear
from the definitions. The two implications going diagonally left and up, and the fact that
normal implies regular, follow since (T;) means that singleton sets are closed. For passing
from normal to completely regular, use in addition that (T4) implies (T,1). The four upwards

implications follow by using f~!([0, 3)) and f~*((1,1]) as separating open sets.

Next, let us show that most separation axioms are inherited by (sufficiently rich) initial
constructions. Recall that, for sets X and Y;, i € I, afamily {f; | i € I} of functions f;: X — Y;
is called point separating, if

Vo,ye X,x =y Jiel. fi(z) # fi(y)

Proposition 1.3.6. Let X be a set, (Y;,V;), i € I, topological spaces, fi: X — Y;, i €I,
maps, and let T be the initial topology on X induced by the functions f;, i€ I.

(i) The separation azioms (T3) and (Tg1) are inherited by T. More precisely: if all spaces
(Yi, Vi), i € I, satisfy (Ts), then also (X,T) satisfies (T3) (and the same with 3% in
place of 3).

(ii) Assume that {f;|i € I} is point separating. Then the separation axioms (Tp), (T1),
(T2), and (Ty1), are inherited by T.

It should be said immediately that (T4) is not inherited (not even to as simple initial con-
structions as subspaces), see Example 1.3.8 below.

Proof of Proposition 1.3.6.
@ We show that (T3) is inherited: Let x € X. A neighbourhood base of 2 w.r.t. the initial
topology is given by

{ﬁ Ui) In € Nyin,.o i € 1LU;, € U(fiy (@) }.
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Since the closed neighbourhoods form a neighbourhood base in each of the spaces (Y;, V),
we also obtain a base of U (z) by

{ ﬂ f;l(Uil) |neNiy,... in € I,U; € U(fi,(x)) closed}.
=1

The elements of this set are all closed in (X, T).

@ We show that (Tg1) is inherited: Let € X, A< X closed with = ¢ A. The set O := X\A
is an open neighbourhood of z, and hence we find a finite subset J < I and sets O; € V;,
i € J, such that

ze()fi'(0:) coO.
ieJ

For each i € J choose a continuous function g;: ¥; — [0,1] such that g;(fi(z)) = 1 and
9:(Yi\O;) = {0}. Set

g:=[1lgiof).

icJ
Since J is finite, g is a well-defined continuous function of X into [0,1]. Clearly, g(x)

= 1.
Consider a point y € X\O. There must exist i € J with y ¢ fi_l(Oi). Then g;(fi(y)) = 0,
and hence g(y) = 0.

® We show that (Tp), (T1), and (T2), is inherited: Let x,y € X, x # y. Since the family
{fi |4 € I} is point separating, we find i € I with f;j(x) # fi(y). Now choose Oy, (4, Oy, (y) € Vi
according to the respective separation axiom (Tp), (T1), or (Tz). Then O, := fi_l(Ofi(w))
and Oy := f; '(Oy,(,)) have the required properties.

@ We show that (TQ%) is inherited: Let z,y € X, x # y, and choose ¢ € I such that
fi(z) # fi(y). Then we find a continuous function g: Y; — [0,1] with ¢g(f;(z)) = 1 and
g(fi(y)) = 0. The function g o f; has the required properties.

a

The following, easy to prove but important, characterisation of completely regular spaces is
known as the Tychonoff embedding theorem.

Theorem 1.3.7. A topological space (X, T) is completely regular, if and only if there exists
a set I and an embedding v: X — [0,1]! (where the cube [0,1]! is endowed with the product
topology).
Proof. Assume that (X, T) is completely regular, and consider the family C(X, [0, 1]) of all
continuous functions of X into [0,1]. We show that this family is separating. Let =z € X,
A € X closed with = ¢ A, then there exists f € C(X,[0,1]) with f(z) =1 and f(4) = {0}.
Clearly, f(x) ¢ f(A). Since (X, T) is (T1), singleton sets are closed, and thus C(X, [0, 1])
is also point separating. By Proposition 1.1.5 (i), the product map erc(x’[o’l]) f is an
embedding of X into | [ cc(x [0,17)[0, 1]-

Conversely, it is enough to remember Lemma 1.1.2 and the previous proposition. a

We can now give an example that the property to be normal is not inherited by subspaces.
In fact, every example of a completely regular but not normal space will establish this: by
Tychonoff’s embedding theorem and Tychonoff’s product theorem, every completely regular
space is homeomorphic to a subspace of a compact Hausdorff, and hence normal, space.
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Example 1.3.8. Consider the nonnegative integers N with the discrete topology, let I be an
uncountable set, and consider the product X := N/ endowed with the product topology. By
Proposition 1.3.6, X is completely regular. Our aim is to show that X is not normal.

@ We define disjoint closed subsets of X : For each m € N set
Ap = {(@i)icr € X |VYneN\{m}. [{ieI|z; =n}| <1}.

The negation of the formula defining A,, reads as
IneN\{m} J,jel,i#j. x;=z; =n,

and hence we can write

X\n= | U @) amtny).

neN\{m} i,jel
1#]

This shows that A,, is closed. Next, note that
A, C {(xi)ie[ | 2; = m for all but at most countably many i € I}. (1.6)

Since I is uncountable, the sets on the right side of (1.6) are pairwise disjoint, and hence also
the sets A,,, m € N, are pairwise disjoint.

@ We make an inductive construction: Let m € N and O € X open with O 2 A4,,. We are
going to construct an increasing sequence (n;);en of numbers n; € N, and a sequence (j)ken

of pairwise different indices jj € I, such that (n_y := —1)
vieN. (] ml(k) o (] ml(mphco
0<k<n;_1 ni_1<k<n

Let [ € N, and assume that n;_; and jix, 0 < k < n;_1, have already been constructed. The
point (z;);e; defined by

m  otherwise

{k ifi=ju0<k<n_,
xT; ‘=

belongs to A,,, and hence to O. Choose indices i1,...,ixy € I and open sets Uy, ..., Uy € N,
such that

N
(wi)ier € ﬂ 7 H(Up) € O
h=1

Without loss of generality, we can assume that the indices i,...,iy are pairwise different
(otherwise combine sets with the same index).

We arrange those indices i, which do not already appear in {j; |0 < k < my_1} in a
Sequence Jn, ,+1,---,Jn,- 1 such indices do not exist, set n; := n;_; + 1 and pick some
n € I\N{jx |0 < k <ny_1}. Then

N = &) n () = dmhe()m,

o<k<ni_1 ni—1<k<n h=1
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® We show that for different m,m’ the sets A, and A,y cannot be separated: Let O,, and
O be open sets with A, € O,, and A,y € O,r. Let (n7)ieny and (j)ken be the sequences
constructed in the previous step for the set O,,, and set

Yi = ,

k  ifi=jg,keN
m’ otherwise

Then the element (y;);e; belongs to A,,/, and hence to O,,,. Choose a finite set J < I with

(idier € [ )7 ({yi}) < Opur.

ieJ
Since J is finite, we find [ € N with
J{ju|keN}y =Jn {0 <k <nyl.
Now set

k ifi =4k, 0<k<n

zit=am ifi=jgp,n <k<ng

m’ otherwise

Then, clearly,

(zdiere [ ='Wk o [] mt(m}) € O,

0<k<ny nl<k:<nl+1

Since J N {ji |y < k < nyyp1} = &, we have z; = y; for all i € J, and hence

(Z’i)iEI € ﬂ ﬂjl({yl}) < O7n’~

e

1.4 The Tietze extension theorem

Tietze’s theorem is the following characterisation of (T4)-spaces.

Theorem 1.4.1. A topological space (X, T) satisfies (Ty), if and only if the following property
holds:

VA < X closed, f: A — [—1,1] continuous IF: X — [—1, 1] continuous. F|4 = f. (1.7)
Thereby continuity of f is understood w.r.t. the subspace topology T |a.

In the proof of the forward implication (which is probably the more significant part of the
theorem) we use Urysohn’s Lemma in an equivalent form.

Lemma 1.4.2. Let (X,T) be a (Ty)-space, A € X closed, and f: A — [—1,1] continuous.
Then there exists g: X — [—%, 3] with | f(z) — g(x)| < 2 for all z € A.
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Proof. Consider the sets

C:=f[-1,-3]), D:=f"(31]).

These sets are closed in A. Since A is closed in X, they are also closed in X. Clearly,
CnD = ¢, and Urysohn’s Lemma (after composing with the affine map ¢ — %t— %) provides
us with a continuous function g: X — [—3, 4] such that g(C) = {—1} and g(D) = {3}.
Distinguishing the cases that x € C, z € D, or z € A\(C u D), shows that g satisfies the
required estimate. a

Proof of Theorem 1.4.1.

@ We show the backwards implication: Assume that (1.7) holds, and let A, B € X be disjoint.
The set C':= Au B is closed in X. We have A = C n (X\B), and hence A is open in C. In
the same way, B is open in C. Hence, the function f: C'— [—1,1] defined as

1 ifxeA,
Jw) = {—1 if 2 € B,

is continuous. Let F': X — [—1,1] be a continuous extension of f. Then O4 := F~1((0,1])
and Op := F~1([-1,0)) are open, disjoint, and contain A and B, respectively.

@ Proof of the forward implication (inductive construction): Assume that (X, 7T) is (T4), and
that A and f are given. We use induction on n to define a sequence (g, )nen of continuous
functions g, : X — [—1,1], with

2 n+1 2 n+1
VeeX. |gn(z)|<1— (g) and Yz e A. |gn(z) — f(2)] < (§>
Applying Lemma 1.4.2 with the function f yields gg. Assume g, has already been

constructed. Applying Lemma 1.4.2 with the function (%)”“( f — gn) gives a function

hns1: X — [—3, 3] with

for z € A.

W Do

‘(;)nﬂ(f(x) — gn(2)) — hn+1(l’)‘ <

Set gni1 = gn + (%)nﬂhnH, then |gnt1(z) — f(2)] < (%)HJr2 for all z € A and

st < () et = (- ()Y ()41 ()7

® Proof of the forward implication (conclusion): The series

% (5)

n=0

is absolutely and uniformly convergent, hence represents a continuous function on X, and is
bounded by % Set

o0
2\ n+1
g:=49go+ ngo <§) hn+1;
then g maps X continuously into [—1, 1], and for each x € A it holds that

g(x) = lim gn(x) = f(z).

n—oo
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a

We can deduce a variant for functions mapping into open intervals (we give a formulation
for the interval R).

Corollary 1.4.3. Let (X, T) be (Ty4), let A< X closed, and f: A — R continuous. Then
there exists a continuous function F: X — R with F|s = f.

Proof. Let ¢: R — (—1,1) be an increasing bijection, and consider the function g := ¢ o f.
Tietze’s theorem provides us with a continuous function G: X — [—1,1] with G|4 = g.
Set B := G~({1,—1}), then B is closed and A n B = ¢J. Urysohn’s Lemma gives us a
continuous function H: X — [0,1] with H(A) = 1 and H(B) = 0. The function G - H
maps X continuously into [—1, 1], and satisfies (GH)(x) = g(x) for all x € A. If z € X\B,
then |[(GH)(z)] < 1 by the definition of B, and if x € B then (GH)(x) = 0. Hence,
(GH)(X) < (—1,1). The function F := ¢~' o (GH): X — R is a continuous extension of

I Qa
Let us now present two quick application of Tietze’s theorem.

Corollary 1.4.4. If a metric space X has the property that every continuous real-valued
function on X is bounded, then it is compact.

Proof. We use contraposition. Assume X is not compact. Then there exists a sequence
(n)nen in X which has no convergent subsequence. Without loss of generality we can
assume that the points x, are pairwise different. For every point x € X there exists r > 0
such that (U, (x)\{z}) n {x, |n € N} = &, since otherwise, we could inductively construct a
convergent subsequence. In particular, the set A := {z,, |n € N} is closed, and the subspace
topology T |4 is the discrete topology on A.

Let f: A — R be the function defined as f(x,) := n. Tietze’s theorem provides us with
a continuous extension F': X — R. This function is clearly unbounded. a

Corollary 1.4.5. There exists a continuous and surjective function of [0,1] onto [0,1]* (a
function with this property is also called a Peano curve).

Proof. We consider the two functions

{0, 13" — [0,1]
. { (e = Sy e
{0, — 0,1
(an)uen = (Do heraze Tio ghraz)
Here {0, 1}" is endowed with the product topology of the discrete topology on {0, 1}.

We use an estimate of the tails of the defining sum to show that g is injective. Let (an)nen
and (b, )nen be different sequences, and set N := min{n € N|a, # b,}. Then

L2 L2 2 & 2 1
’271“"_271% > ox1 lav — by — Z Fr R ey o
n=0 3t n=0 3+ 3N T/ n=N+1 3+ T 30

The similar estimates of tails (or the bounded convergence theorem) show that g and h are
continuous. Moreover, h is surjective, since every real number has dyadic representation.
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The corestriction of g to a map g: {0, 1} — ¢({0,1}") is a continuous bijection. Its
domain is compact by Tychonoff’s theorem, and its codomain is Hausdorff. We conclude
that § is a homeomorphism, and that g({0,1}") is compact and hence closed in [0, 1].

Tietze’s theorem gives a continuous function F: [0,1] — [0,1]? which extends h o g~*.
This extension is, in particular, surjective. a

1.5 Paracompactness
In order to introduce the notion of paracompact topological spaces, we need some terminology.
Definition 1.5.1.

(i) Let X be a set and F,G < P(X). Then F is called a refinement of G, if

VFe FiGeG. FC(.

(ii) Let (X,T) be a topological space, and F € P(X). Then F is called locally finite, if
every point x € X has a neighbourhood which intersects at most finitely many members
of F.

Definition 1.5.2. A topological space (X, T) is called paracompact, if every open cover of
X has a locally finite refinement which is again an open cover of X.

Remark 1.5.3. The definition of compactness, that every open cover of the space has a finite
subcover, can be formulated equivalently as: a topological space (X, T) is compact, if and
only if every open cover of X has a finite refinement which is again an open cover of X. This
makes it obvious that paracompactness generalises compactness, and that paracompactness
can be thought of as a localised version of compactness.

Paracompact Hausdorff spaces automatically have a stronger separation property.

Proposition 1.5.4. Let (X,T) be a paracompact Hausdorff space. Then (X,T) is (Ta).

The essence of the proof is the following lemma.

Lemma 1.5.5. Let (X, T) be paracompact, and let A, B < X be closed and disjoint. If
Vee AIU,,V,eT. (erm/\BQVx) ANUs 0V, =)

then
304,0p€T. (ASOarB<Op) A (OAmOB:@)

Proof. The family G := {U, |z € A} u {X\A} is an open cover of X. Choose a locally finite
open cover F of X which is a refinement of G, and set

Oa=|J{FeFIFnaA+ g}

Clearly, the set O4 is open and contains A.
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For y € B choose an open neighbourhood W), of y which intersects at most finitely many
elements of F, and consider the finite set

]:yzz{Fe]:\FmAqéQ/\FmWy;éQ}.

An element of F, is not contained in X\ A. Hence, we can choose, for each y € B and F' € F,
an element x(y, I') € A such that F' < Uy, p). Set

Op = U (Wy N ﬂ VI(%F)).

yeB FeF,

Since F,, is finite, Op is open. We have y € W, for all y € B, and all sets V;; contain B, hence
B c Op.
It remains to show that O4 and Op are disjoint. To this end, we show that

VFeF,FnA#JYyeB. FnW,n ﬂ Vewa) = &
GeFy

Let Fe F, FnA# J,and y e B. If Fn W, = (J, the above intersection is clearly
empty. Otherwise, if F' n W, # J, we have F' € F, and hence F' < U, r). However,
Us(y,r) N Va(y,r) = &, and again the intersection is empty. a

Proof of Proposition 1.5.4. Let A, B < X be closed and disjoint. Since (X, T) is (Tz), the
hypothesis of Lemma 1.5.5 is satisfied with the two sets A and {y} for each fixed y € B. The
conclusion of the lemma now ensures that its hypothesis is satisfied with the two sets B and

A 0

An essential feature of paracompactness is that it ensures existence of partitions of unity.
This, in turn, allows to prove global theorems from local ones.

In the following we denote the support of a complex-valued function f defined on some
topological space as supp f, i.e.,

supp f := f~H(C\{0}).

Definition 1.5.6. Let (X, 7) be a topological space. A partition of unity is a family & <
C(X,[0,1]) of functions with

(i) the family {supp f| f € £} € P(X) is locally finite,
(i) Vee X. > flx)=1
fe€

Let F € P(X) be an open cover of X, and £ be a partition of unity. Then £ is called
subordinate to F, if {supp f | f € £} is a refinement of F.

Note here that by (i) every point « € X has a neighbourhood U such that only finitely many
functions from € do not vanish identically on U. Hence, the sum in (ii) is a well-defined and
continuous function of X into [0, o).

Theorem 1.5.7. Let (X,T) be a topological space which satisfies (Ty), and let G < P(X)
be a locally finite open cover of X. Then there exists a partition of unity subordinate to G.
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In the proof we use existence of a strong form of refinements: Let G < P(X). A family
F ={Oy |U € G} is called a shrinking of G, if Oy < U for all U € G. Moreover, we call a
family F € P(X) point finite, if every point 2 € X belongs to most finitely many members
of F.

Lemma 1.5.8. Let (X,T) be a topological space which satisfies (Ts), and let G < P(X) be
a point finite open cover of X. Then G has a shrinking which is again an open cover.

Proof. Let an open cover G of X be given, and choose a well-ordering < of the set G. Using
induction on U, we construct open sets Oy, U € G, with

YU € 6. X\(WLJUOWUVLJUV) COycOycU (1.8)

Let U € G be given, and assume that open sets Oy have already been constructed for all
W < U, such that the predicate in (1.8) is true for all those indices.
We show that

X\( U owo | v) cU. (1.9)

wW<U V>U

Let x belong to the set on the left side, and set
G, ={VegGlzeV}.

This set is nonempty since G is a covering, finite since G is point-finite, and contained in
{Veg|V <U}. If maxG, < U, then the inductive hypothesis yields & € Opax g, which is a
contradiction. Hence, max§G, = U, ie., z € U.

The set on the left side of (1.9) is closed, and (Ty4) implies that there exists Oy open with
the property required by (1.8).

By construction, the family {Oy |U € G} is a refinement of G. It remains to show that
{Oy |U € G} is a covering of X. Let z € X, and set U := max§G,. If x € Oy for some
W < U, we are done. Otherwise, (1.8) shows that z € Oy. Q

Proof of Theorem 1.5.7. Let G be a locally finite open cover of X. Choose a shrinking F =
{Ouy |U € G} of G. By (Ty), we find Wy open with Oy € Wy € Wy € U, and Urysohn’s
Lemma provides us with a continuous function fiy: X — [0, 1] satisfying

Ju(X\Wy) = {0}, fu(Ou) = {1}.

Then for every U € G it holds that supp fy € Wy € U. We see that {supp fr |U € G} is
locally finite. Hence, the sum ZUeg fu is a well-defined and continuous function of X into
[0,00). Since every point x € X belongs to at least one of the sets Oy, we have } ;s fu(r) =
1 for all x € X. Set

gu = <‘;gf\/)_1 - fu,

Then {gy | U € G} is a partition of unity subordinate to G. a

As a corollary we obtain that paracompactness indeed corresponds to existence of many
partitions of unity.
Recall that a topological space (X, T) is said to satisfy the separation aziom (Ty), if

Ve,ye X,z #Y 30,,0,€T. (:ceOw/\yeOy)/\(y¢Ow/\x¢Oy)
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Moreover, recall that in a (Ty)-space singleton sets are closed: Given x € X, choose for each
y € X, y # x, an open neighbourhood O, according to above formula. Then X\{z} =

UyeX\{:c} Oy
Corollary 1.5.9. Let (X,T) be a topological space which satisfies (T1). Then (X, T) is

paracompact and Hausdorff, if and only if for every open cover G of X there exists a partition
of unity subordinate to F.

Proof. To show the forward implication, let an open cover G be given. Choose a locally
finite open cover F which is a refinement of G. By Proposition 1.5.4, (X, T) is (T4), and by
Theorem 1.5.7 we find a partition of unity which is subordinate to F and hence to G.

We come to the backward implication. Let G be an open cover of X. Choose a partition of
unity € subordinate to G. Then {f~1((0,1])| f € £} is a locally finite open cover of X which
is a refinement of G. It remains to show that (T;) upgrades to (T2). Let z,y € X, x # y, be
given. Choose a partition of unity £ subordinate to the open cover {X\{z}, X\{y}}. Choose
f €& with f(x) > 0. Then supp f cannot be contained in X\{z}, and hence f(y) = 0.

ori= (). 0= (0 142)

These two sets are open, disjoint, and x € O, and y € O,,. a

1.6 Paths and homotopy

Functions are often defined by case distinction, and it is important to know that such func-
tions are continuous. We refer to the following simple and familiar result as the gluing
lemma.

Lemma 1.6.1. Let (X, T) and (Y, V) be topological spaces. Let {M;|i € I} be a cover of X,
let fi: M; =Y, i€el, be continuous functions, and assume that

Vi,jel. film,nm; = filanamg
Let f: X =Y be the unique function with
Viel. flu, = fi
Assume that either (i) or (ii) holds:
(i) All sets M; are open.
(ii) I is finite and all sets M; are closed.

Then f is continuous.

Proof. For N €'Y we have
7 = o).

el

Assume that assumption (i) holds. Let N €Y be open. Then f; '(N) is open in M;. Since
M; is open in X, also f;'(N) is open in X. Thus f~(N) is open in X.

Assume that assumption (i) holds. Let N € Y be closed. Then f; '(N) is closed in M;.
Since M; is closed in X, also f;'(N) is closed in X. Since I is finite, f~'(N) is closed in

X. a
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Definition 1.6.2. Let (X, 7) be a topological space. A path in (X, T) is a continuous map
f:[a,b] > X where a,be R, a <b. The point f(a) is called the initial point of the path f,
and f(b) is its terminal point.

Paths whose terminal and initial points fit together can be concatenated, and one can move
through a path in reversed direction.

Definition 1.6.3. Let (X, T) be a topological space.

(i) Let f: [a,b] —» X and g: [b,c] — X be paths in X with f(b) = g(b). Then we define
the multiplication of f and g as the function f - g: [a,c] — X with

(f Dlapy =F ~ (f- Dl = 9-

(ii) Let f: [a,b] — X be a path. Then we define the reversed path as the function
f71:[-b,—a] — X defined by

f7Ht) == f(—t) for t € [-b,—a].

By the gluing lemma the multiplication of two paths is again a path. For further reference
we state a couple of obvious properties.

Lemma 1.6.4.

(i) Multiplication of paths is associative whenever all products are defined: if f: [a,b] — X,
g: [b,c] = X, h: [e,d] = X are paths with f(b) = g(b) and g(c) = h(c), then

(f-9)-h=f-(g-h).

(ii) Let (Y,V) be a topological space, and ®: X — Y continuous. If f,g are paths in X
whose multiplication is defined, then ®o f and ®og are paths in'Y whose multiplication
is defined, and

Do(f-g)=(Pof) (Poyg)
For every path f in X we have

Bof = (@of).

(iii) Let f: [a,b] — X and g: [b,c] — X be paths with f(b) = g(b), let ¢: [a',V'] — [a,Dd]
and ¥: [V, ] — [b,c] be paths with ¢p(b') = (V') (and therefore equal to b). Then

(f-9)o(@-¢)=(fod) (g09).

Proof. Associativity holds since for both sides the restriction to [a,b] is f, the restriction
to [b,c] is g, and the restriction to [¢,d] is h. Items (ii) and (iii) are seen by unfolding the
definitions and making case distinctions. a

Moving through a path at a different speed does not change the image set. We make this
precise by introducing a relation on paths.
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Definition 1.6.5. Let (X, 7) be a topological space, and let f: [a,b] — X and g: [¢,d] > X
be paths in X. We say that f and g are reparameterisations of each other, if there exists an
increasing bijection ¢: [a,b] — [¢,d] with f = go ¢.

If f and g are reparameterisations of each other we write f ~,. g.

Note that for each path f: [a,b] — X and each interval [c, d] there exists a reparameterisation
g of f which is defined on the interval [¢,d]. For example, use f o ¢ where ¢ is the affine
map with ¢(c) = a and ¢(d) = b. Hence, when considering paths, one can often restrict
considerations to paths defined on some fixed interval, e.g. on [0,1]. Moreover, note that a
monotone bijection between intervals is automatically continuous.

The relation of reparameterisation is well-behaved and compatible with algebraic opera-
tions.

Proposition 1.6.6. Let (X, T) be a topological space.
(i) Reparameterisation is an equivalence relation.

(ii) Let f1,91 and fa, g2 be two pairs of paths whose multiplication is defined. If f1 ~, fo
and g1 ~y g2, then also f1- g1~y f2- ga.

(iii) Let f,g be paths. If f ~, g, then also f~' ~,. g~ 1.

(iv) Let (Y, V) be a topological space and ®: X — Y continuous. Further, let f,g be paths
mX. If f~,.g, then®of~,.Pog.

Proof. Ttem (i) follows from
Joiduuy =1, f=god = g=fod™", f=godng=hot = [=ho(og).

To prove item (ii), denote the domains of f; and g; as [a;,b;] and [b;, ¢;], respectively, and
let ¢: [a1,b1] — [az2,b2] and ¥: [b1, c1] — [be, c2] be increasing bijections with f; = fo 0 ¢
and g1 = go 0. Then the product ¢ - is an increasing bijection of [ay, ¢1] onto [ag, ¢2], and

(fi-g1) = (fao@) (g20%¢) = (f2-g2)0(¢-).

For the proof of (iii), let f: [a,b] — X and g: [¢,d] — X be paths, ¢: [a,b] — [¢,d] an
increasing bijection, and assume that f = g o ¢. Then ¥(t) := —¢@(—t) is an increasing
bijection of [—b, —a] onto [—d, —c], and

FH) = f(=t) = (god)(—t) = g (=o(~1)) = (g7 o ¥)(1).
Finally, item (iv) follows since f = g o ¢ implies ®o f = (P o g) o ¢. Qa
A relation between paths which is of a different kind is homotopy. Two paths are homotopic,

if they can be continuously deformed into each other. At the present stage we introduce a
variant of this notion which also fixes the inital and terminal points.

Definition 1.6.7. Let (X, T) be a topological space, and let f,g: [a,b] — X be paths in X
with f(a) = g(a) and f(b) = g(b). We say that f and g are FEP-homotopic (here “FEP”
stands for “fixed end point”), if there exists a continuous function H: [a,b] x [0,1] — X with

Vt € [a,b]. H(t,0) = f(t) ~ H(t,1) = g(t) (1.10)
Vse [0,1]. H(a,s)= f(a) A H(b,s) = f(b) (1.11)
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If f and g are FEP-homotopic we write f ~ g, and every function H as above is called a
FEP-homotopy from f to g. The functions hs: t — H(t,s) with s € [0,1] are called the
intermediate paths of the homotopy.

The relation (1.10) says that H is a deformation of f into g, and (1.11) says that all inter-
mediate paths of H have the same initial point and the same terminal point.

Proposition 1.6.8. Let (X, T) be a topological space.
(i) FEP-homotopy is an equivalence relation.
(ii) Let f1, fa: [a,b] > X and fa,g2: [b,c] — X be paths with fi1(b) = ¢g1(b) and f2(b) =
92(b). If fi ~ f2 and g1 ~ ga, then also f1- g1 ~ fa- ga.
(iii) Let f,g: [a,b] — X be paths. If f ~ g, then also f~* ~ g~1.

(iv) Let (Y, V) be a topological space and ®: X — Y continuous. Further, let f,g: [a,b] = X
be paths. If f ~ g, then ®o f ~ Pog.

(v) Let f,g: [a,b] = X be paths. If f ~, g, then also f ~ g.
Proof.

@ We show that ~ is reflexive, symmetric, and transitive: For f ~ f use H(t,s) := f(t). If
H is a FEP-homotopy with H(t,0) = f(¢t) and H(t,1) = g(t), then K(t,s) := H(t,1 — s) is
a FEP-homotopy with K (¢,0) = g(¢) and K(¢,1) = f(¢). Assume we have FEP-homotopies
H and K with H(t,0) = f(t), H(t,1) = g(t), K(¢,0) = g(¢), K(¢,1) = h(t). By the gluing
lemma
H(t,2s) if t € [a,b], s € [0, %]
L(t,s) :=
K(t,2s—1) ifte[a,b],s€ [%,1]

is continuous. Clearly, it is a FEP-homotopy from f to h.

@ We show compatibility with multiplying and reversing paths: Let H be a FEP-homotopy
from f; to fo and K a FEP-homotopy from ¢; to gs. By the gluing lemma

H(t,s) ifte[a,b],se[0,1]
L(t,s) :=
K(t,s) ifte[b,c],se[0,1]

is continuous. Clearly, it is a FEP-homotopy from fi-g1 to fo-g2. Let H be a FEP-homotopy
from f to g. Then K(t,s) := H(—t,s) is a FEP-homotopy from f~! to g=!.

® We prove item (iv): Let H: [a,b] x [0,1] — X be a FEP-homotopy from f to g. Then
o H: [a,b] x [0,1] > Y is a FEP-homotopy from ® o f to ® o g.

@ We show that ~ is “larger” than ~,: Let ¢: [a,b] — [a,b] be an increasing bijection with
f=go¢. Then

H(t,s) :=g((1 - s)¢(t) + st) for t € [a,b],s € [0,1],

is a FEP-homotopy from f to g.
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1.7 Connectedness
Definition 1.7.1. Let (X, T) be a topological space.
(i) A separation of (X, T) is a pair (U, V) of subsets of X with
UVeT\UZ) A UAV =g A UuV =X.
The space (X, T) is called connected, if there exists no separation of (X, 7).

(ii) The space (X, T) is called pathwise connected, if for each two points z,y € X there
exists a path in X with initial point z and terminal point y.

To make a connection between connectedness and pathwise connectedness, we need a basic
example.

Ezample 1.7.2. Let a,b € R with @ < b. Then the interval [a, b] is connected (where [a,b] is
endowed with the subspace topology of the euclidean topology).

To see this, consider U,V < [a, b] be open and disjoint with U U V' = [a, b]. One of these
sets contains the point a, for definiteness assume that a € U. Set

¢ = sup{t € [a,b] |[a,t) € U}.
Note that ¢ > a since U is open, and

la,c) = U [a,t) € U.

tela,c)

Since U is also closed, it follows that ¢ € U. Assume that we had ¢ < b. Then V # ¢ and
c =inf V. Since V is closed, it follows that ¢ € V, a contradiction. Thus ¢ = b. We see that
U = [a,b] and V = ¢, and hence that (U, V) is not a separation.

Lemma 1.7.3. If (X, T) is pathwise connected, then (X,T) is connected.

Proof. Assume towards a contradiction that (U, V) is a separation of X. Choose z € U
and y € V, and a path f: [a,b] — X with initial point = and terminal point y. Then
(f~YU), f~Y(V)) is a separation of [a,b], and this contradicts Example 1.7.2. Q

Ezample 1.7.4. Let (Z,T) be a topological vector space, and X a convex subset of Z. Then
(X, T|x) is pathwise connected.

To see this, let 2,y € X. Then the whole line segment {(1 —t)z + ty |t € [0, 1]} belongs
to X. Since algebraic operations are continuous, the function

. { [0,1] - X

t — (1-tz+ty

is continuous, i.e., a path. Its initial point is x and its terminal point is y.

Definition 1.7.5. Let (X, T) be a topological space, and let ¥ be a subset of X.

(i) We say that Y is a connected subset of X, if (Y, T|y) is connected.
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(ii) We say that Y is a pathwise connected subset of X, if (Y, T|y) is pathwise connected.

Connectedness of subsets is related with another notion of separation.

Definition 1.7.6. Let (X,7T) be a topological space. Two subsets A, B < X are called
separated in X, if

AnB=AnB=¢.

Lemma 1.7.7. Let (X, T) be a topological space and Y < X.

(i) Let A,B < X be two nonempty disjoint sets with Au B =Y. Then (A,B) is a
separation of (Y, T|y), if and only if A and B are separated in X.

(ii) Y is a connected subset of (X, TY), if and only if it cannot be written as a union of two
nonempty sets which are separated in X.

Proof. We proof (i). First, note that (A, B) is a separation of (Y, T|y) if and only if A, B €
T|y. Assume that B is open in (Y, T|y), and choose Op € T with B =Y n Op. Then
A < X\Op, and hence also A € X\Op. In particular, A n B = ¢#. Conversely, assume that
AnB=¢. Then B =Y n (X\A), and hence belongs to T|y. The same arguments show
that A € Ty if and only if A n B = & holds.

Item (ii) is an immediate consequence of (i). Q

Connectedness and pathwise connectedness are inherited by several constructions.
Theorem 1.7.8.

(i) Let (X, T) be a topological space, Y a connected subset of X, and Z < X with Y <
Z Y. Then Z is a connected subset of X.

(ii) Let (X, T) and (Y,V) be topological spaces, and f: X — Y a surjective and continuous
map. If (X,T) is connected, then (Y, V) is connected.

(iii) Let (X, T) be a topological space, and let A;, i € I, be a family of subsets of X with

J4i =X, 4 # 2.
el el

If all A; are connected subsets of X, then (X, T) is connected.

(iv) Let (X;,T:), i € I, be a family of topological spaces, and consider the product X :=
[,e; Xi endowed with the product topology T of the topologies T;. Then (X, T) is
connected, if and only if all {(X;,T;), i € I, are connected.

The statements in (ii)—(iv) also hold when “connected” is everywhere replaced by “pathwise
connected”.

Proof.
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> Item (i): We use contraposition. Assume that A and B are nonempty sets which are
separated in X and satisfy A U B = Z. Then Y n (X\A) 2 B # &, and hence also
Y n (X\A) # &. In the same way, we obtain Y n (X\B) # . Since Y n A =Y n (X\B)
and Y n B =Y n (X\A), we found a separation of (Y, 7T |y):

Y=YnZ=(YnAvu(lYnB).

> Item (ii); case “connected”: Assume (U, V) is a separation of Y. Then (f~1(U), f~1(V))
is a separation of X.

> Item (ii); case “pathwise connected”: Let y1,y2 € Y. Choose x1,x2 € X with f(z1) = 11
and f(z2) = y2, and choose a path ¢ in X with initial point 1 and terminal point 9. Then
fo¢isapath in Y with initial point y; and terminal point ys.

> [tem (iii); case “connected”: We use contraposition. Assume that (U,V) is a separation
of (X,T). Then U and V are separated in X. One of U and V must intersect [),.; 4;
since this intersection is nonempty. For definiteness assume that U n (1),c; A; # &. Since
the sets A;, i € I, cover all of X, we find i € I with A; nV # . Then we can write
Ai=(AinU)u (A; nV), and the sets A; " U and A; NV are nonempty and separated in
X.

> Item (iii); case “pathwise connected”: Let x1,x2 € X be given, and choose i1,is € I with
x1 € A;; and 22 € A;,. Choose a point z € ﬂie[ A;, and paths ¢1,¢2 in A4;, and A,,,
respectively, with initial point z and terminal points x; and x5, respectively. Then ¢1_1 - o
is a path in X with initial point ; and terminal point x,.

> Jtem (iv); case “connected”: The forward implication follows from the already proved
item (ii), since projections are continuous and surjective. The reverse implication requires
an argument. Before we start, note that if some X; is empty then also X is empty, and there
is nothing to prove. Hence we may assume throughout that all X; are nonempty.

Consider first the case of the product of two connected spaces, say X,Y. Fix y € Y, and
consider the cross-shaped sets

Ay =7 ({z}) u Ty ({y)) for z € X.

The subspace 75" ({x}) of X xY is homeomorphic to Y via 7y, and 73" ({y}) is homeomorphic
to X via mx. Hence, both of these subspaces are connected. Their intersection contains the
point (z,y), and we conclude that A, is connected. Clearly, we have X xY = J, . A, and
MNyex Az 2 1 ({y}) # &, and conclude that X x Y is connected.

Using induction, it follows immediately that the product of finitely many connected spaces
is again connected.

We turn to the general case. Assume that all spaces (X;, 7;) are connected. Fix elements
z; € X;, and set

Ay = ﬂ wjfl({zj}) for J < [ finite.
jel\J

The product map [ | jes
“finite case”, all sets A; are connected. Set

A= U Ay,

JcI
J finite

7; is a homeomorphism of A; onto [ | jes Xj. By the already establish
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Clearly, (z;)ier € [);e; Ai, and we obtain that A is connected.

We are going to show that A is dense in X, and this will conclude the proof by the already
established item (i). Consider a nonempty open set O in X, and choose a set U of the form

U=(m,"(04),
=1

where O;, is open in X;, and nonempty, such that U < O. Then U n A; # & where
J = {’Lh,’tn}

> Item (iv); case “pathwise connected”: Again the forward implication holds since projections
are continuous and surjective. Conversely, let (z;):er, (yi)ier € X. Choose paths ¢;: [0,1] —
X; with ¢;(0) = x; and ¢;(1) = y;. Then the product map

(1) = (61(1)) se;
is a path in X and satisfies ¢(0) = (2;)ier and ¢(1) = (y;)ier-

The following statement is a simple corollary but exhibits an important concept.
Corollary 1.7.9. Let (X, T) be a topological space. The relations defined as

r~.y <= 3A connected subset of X. x,y€ A

r>pcy = 3A pathwise connected subset of X. x,y e A
are equivalence relations. We have ~p,. S ~. and
T ~pe Yy < 3f path in X with initial point x and terminal point y (1.12)

Proof. Singleton sets are obviously connected and pathwise connected. Hence the relations
~. and =, are reflexive. Symmetry is built in the definition. Transitivity follows from
Theorem 1.7.8 (iii). Moreover, the inclusion ~,. < ~. follows from Lemma 1.7.3.

The forward implication in (1.12) is clear, and for the backward implication we use The-
orem 1.7.8 (ii) which implies that every path is connected. a

The equivalence classes of ~, are called the connected components of (X, T}, and the equiv-
alence classes of ~,,. the path-components of (X, T). Since ~,. C ~, each connected compo-
nent is a disjoint union of certain path-components.

Proposition 1.7.10. Let (X, T) be a topological space. Each connected component of (X, T)
is a connected subset of X, and every connected subset of X is entirely contained in one
connected component. In particular, (X, T) is connected, if and only if it has only one
connected component.

The same holds when “connected” and “connected component” is everywhere replaced by
“pathwise connected” and “path-component”; respectively.

Proof. Let A < X be connected. If x,y € A, then x ~, y, and hence x and y belong to the
same connected component of X. We see that A lies entirely in one connected component.

Let C be a connected component of X. Fix z € C. Then for every x € C' we have © ~, z
and thus find a connected set A with =,z € A. It follows that

C= U {A] A connected, z € A},

and Theorem 1.7.8 (iii) implies that C' is connected.
The very same arguments apply with a pathwise connected set and a path-component. [
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Definition 1.7.11. A topological space (X, T) is called

(i) locally connected, if for every point x € X the set of all connected neighbourhoods of
forms a neighbourhood base of x.

(ii) locally pathwise connected, if for every point x € X the set of all pathwise connected
neighbourhoods of x forms a neighbourhood base of x.

Proposition 1.7.12. A topological space (X, T) is locally connected, if and only if for every
open subset U of X all connected components of (U, T|y) are open.

The same holds when “locally connected” and “connected component” is replaced by “lo-
cally pathwise connected” and “path-component”, respectively.

Proof. Assume first that (X,7T) is locally connected. Let U < X be open, let C' be a
connected component of (U, T|y), and = € C. Since U is a neighbourhood of z, we find a
connected neighbourhood V of z with V' € U. Since T |y equals (T|v)|v, V is a connected
subset of (U, T|y). Since V n C # &, it follows that V < C. Thus C is a neighbourhood of
x.

For the converse implication, let x € X and U < X open with x € U. Let C be the
connected component of (U, T|y) with z € C. Since C' is open in (U, T|y) and U is open in
X, it follows that C' is open in X and hence a neighbourhood of z. Moreover, we know that
C is connected.

The same argument applies word by word to the case of path-components. a

Corollary 1.7.13. If (X,T) is locally pathwise connected, then ~,=~,.. In particular, a
connected and locally pathwise connected space is pathwise connected.

Proof. By Proposition 1.7.12 all path-components are open. Let C be a connected component
of X. Then C is the disjoint union of certain path-components, say C' = | J,.; P;. If I has
more than one element, we obtain a separation of C. Namely, choose j € I, then

C’:Pju<UPi).

1€l
1#]

This contradicts the fact that C is connected. We conclude that |I| = 1, i.e., C is a path-
component. [l |

1.8 The free product of groups
We discuss an algebraic construction: the free product of a family of groups.

Theorem 1.8.1. Let Gy, i € I, be a family of groups. There exists a tuple (G, (7Vi)icr) where
G is a group and v;: G; — G are homomorphisms, with the following property:

> For every tuple (H,(¢;)icr) where H is a group and ¢;: G; — H are homomorphisms,
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there exists a unique homomorphism ®: G — H with ¢; = ®o~y,; for allie I.

; &
LN (1.13)

G ----- to s H

]

The group G with these properties is unique up to isomorphism, and we will denote it as
WierGi-

Uniqueness follows immediately from (1.13).

Proof of Theorem 1.8.1; uniqueness. Assume we have (G, (7v;)ier) and (G’,(7})ier) which
both have the stated property. Then there exist ®, ®’ with

: o G ----- LAYl G ----- LERNYE
: ¥j i
From this, we obtain
Yi 'Y;
GrL ~ G’L ,y/
L o ___4310:{3_\3 o Ly o ___439?1_\3 o
Gj /“/] idg Gj /’Yj idgr
' g :
and uniqueness implies ®' o ® = idg and ® o &’ = idg'. a

The existence part of Theorem 1.8.1 relies on the construction of the monoid of words. Recall
that a word w over a (nonempty) alphabet A is a finite tuple ajas - - - a, of elements of A.
The elements a; in this tuple are called the letters of the word w. The number n of letters
of w is called the length of the word. We denote the set of all words over the alphabet A as
A*. Formally, thus,

A* = U A",
neN

A particular role is played by the empty word: this is the unique element of A°,and we
denote it as . The set A* becomes a monoid, when endowed with the binary operation of
concatenation: given w = ay - - - a, and v := by - - - b,,, set

W-ViI=aj--apby - by
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Formally, concatenation is first defined as map
An X Am N An+m
. ((ala"'uan)3(bla'“ubm)) e (ala"'vanvbh"'vbm)

and then glued together to a map -: A* x A* — A*. Clearly, this operation is associative
and the empty word is a unit element.

Proof of Theorem 1.8.1; existence. Denote by A the disjoint union of the sets G;, i € I.
Formally, thus,

A= @i x {i}).

iel

Moreover, denote the multiplication in G; as -;: G; x G; — G, and let e; be the unit element

of G1
® We define an equivalence relation on A*: First, unit elements can be skipped. Set

aip - anp ~1 blbm =

a ifl<k

m=n—1a3dke{l,....n}iel ap=¢ A b = i
aj ifl=k

Second, two neighbouring elements which belong to the same group can be multiplied out.
Set

al...an ~2:=b1...bm =

a ifl <k
m=n—1nA3ke{l,....n—1},iel. ag,ap+1€G; A by =X ap-;ars1 ifl=k
a1 if 1>k

Now let © € A* x A* be the smallest equivalence relation containing ~; U ~s.
@ O is compatible with concatenation: Inspecting the definitions, it is clear that
Yw, wo,v € A*. wy ~1 wy = wi v ~1 wy - v,
Ywy, we,v € A*. wy ~g wy = wi -V ~g Wy -V,

and the same for concatenation with v from the right.

We thus obtain a monoid A*/© by representantwise definition
w/e - v/e = (w-v)/e for w,ve A*.
The unit element of this monoid is ¢/g.

® A*/0© is a group: We have to prove existence of inverses. Let w = ay - - - a,, be given. Then
(inverse elements a;l are computed in the respective group to which the letter a; belongs)

-1 -1y _ -1 -1 —1y,—1 -1
(a’l PRI an) . (an PRI a‘l ) == al .. anan DY a’l z\,2 a’l PRI an*l(anan )anfl P al
-1 -1 -1
~1 a/ll"a’ﬂflanfl.'.al ~o L.~V alal ~1 €

and the same for the product in reversed order.
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@ Definition of v;: For i € I denote by §;: G; — A* the map assigning to an element the
corresponding one-letter word. Le., §;(a) := a, where the “a” on the left side is an element
of G; and “a” on the right side is the one-letter word. Further, let 7: A* — A*/O be the
canonical projection. Then we define

Yi i= T 0 0;.
For each i € I and elements a,b € GG;, we have a -; b ~5 ab, and hence

vi(a i b) = w(ab) = m(a-b) = 7(a) - 7(b) = vi(a) - 7i(b),
i.e., v; is a homomorphism.

® We prove ezistence of ®: Denote by e the unit element of the group H. First we work on
the level of words, and construct ®¢: A* — H. Let w = ay -+ a, with n > 1 be given, and
let iy, € I be the indices with ax € G;,. Then we set

Po(w) := @iy (a1) - ...~ di, (an),

where multiplications takes place in the group H. Moreover, ®y(¢) := e. Since multiplication
in H is associative, ®q is a homomorphism of monoids. It is built in the definition of ®q that
the diagram

comimutes.

If w ~1 v, and k is as in the definition of ~1, then ¢;, (a;,) = e, and hence ®p(w) = Pg(v).
If w ~2 v, and k is as in the definition of ~3, then iy = iry1 and ¢y, (ax) - G, (Ak41) =
@iy, (agar+1). Hence, also in this case ®g(w) = Pg(v). Thus @y factors to a homomorphism
®: A* /o — H, and we have

. @i
G; 5,
T [
G, /51 @0
@5

® We prove uniqueness of ®: Assume we have some homomorphism ®: G — H which
makes (1.13) commute. Every word w = aj---a, is the concatenation of its letters, i.e.,
W=4aj-... ay. Using (1.13), we obtain

' (w/e) =¥ (a1/e) ... ¥ (an/e) = ¢1(ar) - ...  dn(ay) = P(w/e).
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u
Lemma 1.8.2. Let G;, i € I, be a family of groups.
(i) The free product v<;erG; is generated by | J,c; 7i(Gi).
(i1) All maps ~; are injective. Let us deduce this from the universal property (1.13).
(iii) Denote by e the unit element of ¥¢;e1G;. Then
Vi,jel,i+#j. 7i(Gi) nv(Gj) = {e} (1.14)

Proof. Ttem (i) is clear from the construction of G as a factor of the monoid of words, since
each word is the product of its letters.

We come to the proof of (ii). Fix ¢ € I and for all j # i let 1: G; — G; be the constant
homomorphism mapping everything to the unit element. Then we find ® with

idGi

G %/\
\) o
Wier Gy === » G;
1
To see (iii), we use that the groups G, can be embedded into their direct product. Let
¢j: Gj — [ L,c; Gi be the map (e; is the unit element of G;)

G

¢j(a) := (b;)ier with b; := {a ifi=j

e; otherwise

Then ¢; is injective and a homomorphism. Let ®: ;1 Gy — [ ]
with ® o y; = ¢; for all j € I. Since

Vi,jel,i#j. ¢i(Gi)n¢i(Gy) = {(€i)ier},
injectivity of the maps ¢; implies (1.14). a

,e; Gi be the homomorphism

The choice of the name “free product” is justified by the following fact. Recall here that a
group G is called free with basis B, if B ¢ G and for every group H and map ¢: B — H
there exists a unique homomorphism ®: G — H with ®|p = ¢. The elements of B are also
called the generators of G. For example, the free group with one generator is just Z (with
basis {1}).

Lemma 1.8.3. Let G;, i € I, be a family of groups, and assume that G; is free with basis
B,. Then Y<;c1G; is free with basts | J,.; B;. Note here that this is a disjoint union.

In particular, we can write every free group (with some basis B) as the free product of | B]
copies of Z.

Proof. Set B :=J,.;7i(B;i). Let H be a group and ¢: B — H.

We show that ¢ has an extension to a homomorphism. Consider the maps ¢o(v;|p,): B; —
H, let ¢;: G; — H be the homomorphism with ¢;|p, = ¢ o (vi|B,), and let ®: ¥;c;f — H be
the homomorphism with ® ov; = ¢;. Then ®|p = ¢.

We show uniqueness. Assume that ®': %,y — H is any homomorphism with &'|g = ¢.
The map @' o~;: G; — H is a homomorphism, and satisfies (®' o~;)|p, = ¢ o (vi|p,). Hence,
we must have ® o y; = ¢;, and in turn &' = P. Q
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1.9 Colimits of groups

Having available the free product of a family of groups G;, we can make a more general
construction where relations between the groups G; are permitted. To explain this in a
structured way, some vocabulary is needed. We deal with diagrams of groups of a very
particular form (and not with the general situation where arbitrary diagrams are permitted).

Definition 1.9.1. A diagram of groups is a triple (I, Gs,ts;) where
> [ is a nonempty set,
> G are groups where J runs through all subsets of T with 1 < |J| < 2,
> tj: Gy — Gyjy are homomorphisms where J < I with [J| <2 and j e J.
ey Gy
Gligy .
vagyg P Gy

Definition 1.9.2. A cone over a diagram (I, G, ¢z ;) is a tuple (G, ;) where
> G is a group,

&> 7;: Gy — G are homomorphisms where ¢ € I,
> Vi, j €1 7iotg . =75 © gy

ey G o
Gligy G
Jy /v'

Uighs ? Gy

Definition 1.9.3. A colimit of a diagram (I,G;,¢;;) is a cone (G, ;) with the following
property:

> For every cone (H, ¢;) over the diagram (I, Gy, ;), there exists a unique homomorphism
®: G — H with ¢, = Po~; forallieI.

@i
Lig}i Gy :
5 Gy {\
e &
TP TR
RPN Vi
ti,g}.d G{J} \—/
b;

Let us give an example of a colimit.
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Example 1.9.4. Let G be a group and N;, i € I, be normal subgroups of G. Denote by N the
smallest normal subgroup of G' which contains | J,.; N;. Moreover, let

pi: G — G/n,, pi: G/n, — G/n, p:G—G/N

be the canonical projections. We claim that (G/n,p;) is a colimit of the diagram

D

G :
pj ks G/N].

Pi G/N1

To establish this claim, consider an arbitrary cone (H, ¢;) over this diagram. Then the map
¢;op;: G — H does not depend on i € I. Hence, its kernel contains all N; and thus it factors
through G/, i.e., we find a homomorphism ®: G/n — H with ¢; op; = ® o p.

bi
vy G/
G i e * s H
pJ’. B G/N,- Dj
P

Since p; is surjective, the relation ¢; op; = ® op = & o p; o p; implies that ¢; = P o p;.
Assume we have another homomorphism ®': G/N — H with ¢; = ®' o p;. Then

Cb/op:@/oﬁiopi:d)iopi:q)oﬁiopi:@op’

and surjectivity of p implies that ®' = ®.

The following basic result says that colimits always exist and are essentially unique. This
result is neither specific for groups nor for the particular form of the diagrams considered; it
holds in a much more general context (which we do not touch upon).
Theorem 1.9.5.

(i) Let (I,Gy,u5;) be a diagram of groups. Then there exists a colimit of (I, Gy, v;;).

(i) Let (I,G, ;) and (I,G%, 05 ;) be two diagrams with the same index set I, let (G,7i)
be a colimit of the first and {G',~}) a colimit of the second.

Assume that we have isomorphisms puy: Gy — G'; for all J < I, 1 < |J| <2, with
VJQI,|J| Z2V]€J LtLjO‘LLJ = {53 O Ly
Then there exists an isomorphism u: G — G' with

Viel. povi =70y
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ey Gy i
Gligy Ui
e
Hii,5}
145
Cogy s
L’{i,j},} ’ G/{j}

Existence of colimits is a consequence of our knowledge about free products. To motivate
this, let us explain that a free product is actually an example of a colimit.

Ezxample 1.9.6. Let G, i € I, be groups, and consider the diagram
ey Gi
R (L.15)
ey G,
where the dotted maps are the unique homomorphisms from the trivial group into G;. Then
every group G with arbitrary homomorphisms ¢;: G; — G forms a cone over this diagram.

In particular, (¥;crG;,i) is a cone over (1.15). The universal property of the free product
ensures that it is actually a colimit.

Proof of Theorem 1.9.5, existence. Let a diagram (I,Gy,ts;) be given. In contrast to the
above example, the free product will not form a cone over this diagram. We pass to a factor
in order to enforce the required commutation relations. Set

Ly := {(%‘ o) @) (v oy (@) i jel i # jac G{i,j}}7

and let N be the smallest normal subgroup of ,;c;G; which contains Ly. Moreover, denote
by p: G — G/n the canonical projection. The definition of Ly is made such that

(pomi)o Lig}i = (po 'Yj) O Lfi,5},90

and thus ((i\qejGi)/N,p o;) is a cone over (I,G, vy ;).
Let (H, ¢;) be some cone over (I,G, ¢z ;). By the universal property of the free product
we find ®: ¥;c;G; — H with ¢; = & or;.
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We have
P o0ty = Pi 0 iy = P50 gt = POV O Lt

and hence Lg € ker ®. Thus ® factors, and we find ®’: (ﬁielG’i)/N — H with ® = &’ o p.
Using this, it follows that

D' opoy; =Doy = ¢,

and we see that ®' is a required fill-in. To show uniqueness, assume we have ®” which also
satisfies ®” o po~; = ¢;. Since the union | J,.; 7i(G;) generates the free product, it follows
that ®” op = @' o p. Now surjectivity of p implies that ®” = @,

We conclude that

{(Fie1Gi) [y o)
is a colimit of the diagram (I, G s, vy,;). Q
Uniqueness of colimits is a simple argument using the defining universal property of a colimit.

Proof of Theorem 1.9.5, uniqueness.

® We have
Vi © Biy © Ligyi = Vi © Ui g © Bigy =V © Uiy © Migy = Vi © B} © Uighas

hence (G, v; o pug;y) is a cone over the diagram (I, G 7, ¢,;). Thus there exists a fill-in y: G —
G’ with v; o pugsy = p o ;.

Changing the roles of primed and unprimed groups and maps provides us with a fill-in
v: G' — G satisfying ~; o u{_é =vonl.

@ Trivially, (G,~;) is a cone over (I,G, ¢z ). The corresponding fill-in G — G obviously is
idg. We have

VOO = V0N 0 iy =% 0 kg © figsy = Vis

and uniqueness of the fill-in implies that v o u = idg.

Changing the roles of primed and unprimed groups and maps yields pov =idg.
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Chapter 2

Compactifications

Compact spaces, in particular compact Hausdorff spaces, are a very well-behaved class of topo-
logical spaces. While products of compact spaces are again compact by Tychonoff's Theorem,
subspaces of compact spaces are in general not anymore compact. If a topological space is
(homeomorphic to) a subspace of a compact space, or even a compact Hausdorff space, this
outer structure can be useful for many purposes.

§1. 37
§2. 41
§3. 44
§4. 49
§5 53

2.1 The notion of compactification

Speaking informally, a compactification of a topological space X is a compact space which
contains X as a subspace and is not superficially large. Naturally, we thereby think up to
homeomorphisms.

Definition 2.1.1. Let (X, T) be a topological space.

(i) A compactification of (X, T) is a triple (Y, V), ) where (Y, V) is a compact topological
space and ¢ is an embedding of (X, T) onto a dense subspace of (Y, V).

(ii) A (Ty)-compactification of (X, T) is a compactification (Y, V) of (X, T) with (Y, V)
being Hausdorff.

Remark 2.1.2. The requirement that ¢(X) is dense can always be achieved. Assume (X, 7T)
is a topological space, (Y, V) is a compact topological space, and ¢: X — Y is an embedding.
Then we set Y’ := Y, endow Y’ with the subspace topology of Y, and let //: X — Y’ be the
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corestriction of . Then Y’ is compact, /' is an embedding, and the image of X under // is
dense in Y.

Thus, if we have some embedding of (X, T) into a compact space (Y, V), we automatically
obtain a compactification. Clearly, if (Y, V) is (Tz), then this will be a (Tz)-compactification.

On the collection of all compactifications of a fixed topological space, we have a natural
notion of morphisms. Namely, again speaking informally, continuous maps which leave X
pointwise fixed.

Definition 2.1.3. Let (X,7T) be a topological space, and let (Y, V,ty) and (Z,W,tz) be
compactifications of (X, T). A morphism

<Y,V7 LY) L} <Z7 Wa LZ>

isamap ¢: Y — Z which is V-to-W-continuous and satisfies ¢ oty = 15:

Y

Y ——M8M8M— 7

Observe that the composition of morphisms is again a morphism, and that for every com-
pactification (Y, V) the identity map idy is a morphism from (Y, V,:) to itself. Thus we
naturally have the notion of isomorphism: a morphism ¢: Y — Z is an isomorphism, if there
exists a morphism in the reverse direction ¥: Z — Y, such that ¢o = idz and Yo ¢ = idy.

Spelled out concretely, an isomorphism between two compactifications (Y, V,ty) and
(Z, W, z) of atopological space (X, T), is a V-to-W-homeomorphism ¢: Y — Z with ¢ory =
Lz.

The central question which poses itself is:

What can one say about the “structure” of the collection of all compactifications
(or (Ty)-compactifications) of a given topological space (X, T) ?

Some more concrete instances of this vague question could be: does there exist a compacti-
fication, is it unique, is there a largest or smallest one, etc. Of course, in all these questions
we think up to isomorphism.

We can easily answer the question for existence of a compactification affirmatively. This
is a corollary of Theorem 1.2.2.

Corollary 2.1.4. Every topological space has a compactification.

Proof. Let (X, T) be given, and consider its one-point extension (a(X), 7,). This is a com-
pact space, and the inclusion map ¢,, is an embedding. Thus, (X, 7) has the compactification

(La(X)v’]; L(X(X)vl‘a>' 4

In this context it is worth to observe that
to(X) not dense < 14(X) closed < {oo} open in a(X) < (X,T) is compact

The first two equivalences follow since a(X )\t (X) = {00}, and the last equivalence follows
from the definition of 7.
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Definition 2.1.5. Let (X,7) be a non-compact topological space. Then (a(X), Tq,tq) is
called the one-point compactification or Alexandroff compactification of (X, T).

Remark 2.1.6. If (X, T) and (Y, V) are homeomorphic non-compact topological spaces, then
their one-point compactifications are isomorphic.

This holds since a homeomorphism ¢: X — Y certainly satisfies (1.5) and thus lifts to a
homeomorphism a(¢): a(X) — a(Y). That a(¢) satisfies a(¢)otx = ty holds by definition.

Let us now explain in two different situations that there is no hope for uniqueness. There
even is the counterintuitive curiosity that a compact space has many non-isomorphic com-
pactifications. Note here that a compact space (X, T) obviously can be considered as its own
compactification: (X, T,idx).

Ezample 2.1.7. Let X be a nonempty set, and consider the indiscrete topology T := {&, X'}
on X. Then (X,T) is compact. Let Y be a set whose cardinality is larger or equal than
the cardinality of X, and choose an injective map ¢: X — Y. We endow Y also with the
indiscrete topology V := {J,Y'}. The subspace topology V|,(x) is the indiscrete topology on
1(X), and hence ¢ is a homeomorphism of X onto ¢(X). Since ¢(X) # ¢, it is dense in Y. It
follows that (Y, V), ) is a compactification of (X, T).

The base sets of isomorphic compactifications must in particular have the same cardinality.
We see that for each cardinality > | X | there exists at least one compactification, and all these
compactifications are non-isomorphic.

A short argument shows that this curiosity cannot occur under presence of the Hausdorff
separation axiom.

Lemma 2.1.8. If (X, T) is compact and Hausdorff, then (X, T ,idx) is, up to isomorphism,
the only (Ty)-compactification of (X, T).

Proof. Assume we have a (Tz)-compactification (Y,V,ty) of a compact Hausdorff space
(X,T). Then ¢(X) is compact in (Y,V), and hence closed. However, it is also dense, and
therefore ¢(X) = Y. As a bijective and continuous map between two compact Hausdorff
spaces, ¢ is a homeomorphism. The validity of ¢ oidx = ¢ is trivial. a

The major interest of course is to investigate compactifications of spaces which are not
already compact themselves. And in the non-compact setting, uniqueness fails even for very
well-behaved spaces.

Example 2.1.9. Consider the real numbers R endowed with the euclidean topology £. We
present two different compactifications of (R, &).

® Denote by S! the unit circle in the plane, and let S! be endowed with the subspace topology
V1 of the euclidean topology on R? = C. Moreover, let ¢1: R — S! be defined by the formula

11(t) = exp (2iarctant) for t € R,
where arctan denotes the branch with values in (=7, 7).
Then ¢ is a bijection of R onto S'\{—1}, is continuous, and maps open intervals to open

arcs. Hence, (1 it is a homeomorphism of R onto S'\{—1}. Clearly, S is a compact Hausdorff
space, and S'\{—1} is dense in S'. Hence, (S!, V1, 1) is a (Tz)-compactification of (R, &).
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@ The second example is quite similar to the first. Denote by C, the open right half-plane,
consider the half-circle S* n C,., and let V, be the subspace topology on St A C, of the
euclidean topology in the plane. Moreover, let t5: R — S' n C,. be defined by the formula

L2(t) := exp (iarctant) for t € R.

For the same reasons as above, 2 is a homeomorphism of R onto St A C,., and it follows that
(St " C,, Va,12) is a (Tz)-compactification of R.

Since [S"\¢1(R)| = 1 and [(S'nC,)\t2(R)| = 2, the compactifications in @ and @ cannot be
isomorphic. And, as one may expect, S A C, is larger than S' in the sense that there exists a
surjective morphism ¢ from (S* N C,., Vs, 12) onto (S, V1, 11): namely, define ¢: S'nC, — S!
as

 Juoew'(z) if zew(R),
9(2) := {—1 if 2 e {i,—i).

If (25)nen is a sequence in Y which converges to ¢ or —i, then ¢(z,) converges to —1, hence

¢ is continuous. The property that ¢ oty = ¢1 is built in the definition.

The construction in these examples is ad-hoc and depends on an auxiliary structure. A
simple, yet extremely important, way to construct compactifications intrinsically is by using
separating families of maps.

Lemma 2.1.10. Let (X, T) be a topological space, and let f;: X —Y;, i € I, be a separating
family of maps into compact spaces (Y;, Vi), i€ 1. SetY = (] [,c; [i)(X), where the closure
is understood w.r.t. the product topology | [,c; Vi, let V be the subspace topology on Y of
[Lic; Vi, and let o2 X —Y be the corestriction of [ [,o; fi. Then (Y,V,1) is a compactification
of (X,T).

Proof. By Proposition 1.1.5 (i), ¢ is an embedding, and by the definition of Y, ¢(X) is dense
in Y. Tychonoff’s Theorem ensures that (Y, V) is compact. Q

Let us revisit Example 2.1.9 and show that both compactifications constructed there could
also be obtained by means of Lemma 2.1.10.

Ezample 2.1.11.

@ Let h: R — [0,1] be the piecewise linear and continuous function defined as
h(z) := max{l — |z|,0} for z € R,

and for n € N and g € Q let h,, 4 be the rescaled and shifted function
hnq(z) := h(n(z — q)) for z € R.

These functions satisfy

hinq(2) 1 . 1
6[5,1] 1f|x—q|<%,

and hence {h, ,|n € N, ¢ € Q} is a separating family.
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We extend the functions h,, 4 to S! by setting

Fingl2) o= {(hn,qoqlxz) if 2 € S'\(~1},
' 0 if 2 =—1.
This definition ensures that ﬁnyq 011 = hngq. The function ﬁnyq is continuous, since its
restrictions to S!\{—1} and S'\¢1(supp h, 4) are both continuous, and these two sets are
open and cover S'. Moreover, the family {iznq|n € N,q € Q} is point separating. By
Proposition 1.1.5 (ii), the product map b= H%N,qe(@ ﬁn,q is an embedding. We also see that

#(S') is a compact, and hence closed, subset of [ Lnen.geol0: 1]

Let (Y, V, 1) be the compactficiation of R obtained from the separating family {h,, ,|n €
N, ¢ € Q} by means of Lemma 2.1.10, i.e., ¢ is the product map ¢ = HneN’qu hpq and Y is
the closure of +(R). It follows that

—T1[0,1] = ——110,1]

Y = u(R) = ¢(u(R)) =d(uR) =o(u®)) =4S

Putting together, qNS is a homeomorphism of S' onto Y, and qNSO t1 = t. This means that it is
an isomorphism from (S, V1, 1) to (Y, V, ).

@ We proceed in exactly the same way, only adding one function which distinguishes “left
from right”: set

h(z) := max {0, min{x, 1}} for = € R.

The family {h} U {hy 4

The functions h,, , and h can be extended to continuous functions of S' N C, into [0, 1]
by means of

n €N, q € Q} is separating.

howyVN(z) ifzeStnC,
. (hot;7)(2) ] _ T (hngotz)(2) if zeS'nC,,
h(z) =<1 if z =1, hi,q(2) := ’ . o
. ) 0 if z € {i, —i},
0 if z = —i,

so that houy = h and iLn’q o1y = ¢. The product map ¢ := h x [ Lhen.geq ftn.q is an embedding
of R into [0,1] x [ [,en 4eql0,1], and we obtain in the same way as above that it yields
an isomorphism from (S' n C,., Vs, 1) to the compactification ()A/,]A/,Z) obtained from the
separating family {h} U {h, 4|7 €N, g€ Q}.

From the presently elaborated point of view, it is also clear that (Y, f/, £) can be mapped onto
(Y, V, 1) with a surjective morphism. The first of these two compactifications is constructed
from a larger family of continuous functions, and we can just use the projection of [0,1] x

[ 1(n.q)enxl0: 1] onto the factor [ ], enxol0:1]-

2.2 Two examples

We have already seen one very special compactification of a topological space (X, T), namely
its Alexandroff compactification (a(X), Ta,ta). If (X, T) is completely regular, we obtain
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from Tychonoff’s embedding theorem (Theorem 1.3.7) another very special compactification.
Namely, if

vi= | fx—> ] [01]

feC(X,[0,1]) feC(X,[0,1])

is the embedding constructed in Tychonoff’s theorem, we set 8(X) := ¢(X), let T3 be the
subspace topology of the product topology, and tg the corestriction of .. Recall here Re-
mark 2.1.2, and that the product is compact by Tychonoff’s product theorem. This com-
pactification is called the Stone-Cech compactification of (X, T).

In this section we give two quick applications, one of them using the Stone-Cech com-
pactification and the other using the Alexandroff compactification.

The first is a description of the dual space of £*°. Recall that

(= {(an)n€N| sup |an| < OO}? H(an)nGNHOO ‘= sup |a’”| for (an)"EN € éoo’
neN neN

is a complete normed space, and that its dual space (¢*°)" is the space of all continuous linear
functions of £* into C.

Here we will use, without giving its proof, the Riesz-Markov-Kakutani representation
theorem.

Theorem 2.2.1 (Riesz-Markov representation theorem). Let (X, T) be a compact Hausdorff
space. Denote by (C(X),| - |ls) the Banach space of all complex-valued continuous functions
on X endowed with the supremum norm, i.e.,

C(X):={f: X > C|f continuous}, [flloo := sup |f(z)] for f e C(X),
reX

and by (M(X),]| - ) the Banach space of all reqular Borel measures on X endowed with the
total variation norm, i.e.,

M(X) := {p| p regular Borel measure on X}, ] = |ul(X) for pe M(X).

Then the formula
pe (7= | £au) forwe (). e o)

establishes an isometric isomorphism of (M(X),| - |) onto the dual space (C(X),]|| - |o0)’-

Our aim is to prove the following fact.

Theorem 2.2.2. The dual space ({*°)' is isometrically isomorphic to the space M(B(N)) of
all reqular Borel measures on the Stone-Cech compactification S(N) where N is endowed with
the discrete topology.

In the proof we use a general property of the Stone-Cech compactification, which we shall now
explain. Denote by Cp(X) the set of all complex-valued continuous and bounded functions
on X. Clearly, Cp(X) is a subalgebra of C(X). When endowed with the supremum norm

[l = sup |f ()] for f e Cy(X),

it becomes a complete normed space.
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Proposition 2.2.3. Let (X, T) be a completely reqular space. Then the map

5 { CB(X)) — Cp(X)
& [ = [fou

is an isometric and bijective algebra homomorphism.

Proof. The fact that L?; is an algebra homomorphism is clear since the algebra operations
are defined as pointwise sum and product. Moreover, clearly, |t5(f)]o < | f]ox for all f e
C(B(X)). For the reverse inequality, note that tg(X) is dense in S(X) and that the map
x — |f(x)] is continuous.

It remains to show that L;‘; is surjective. To achieve this, we set, for v > 0,

{(C —- C
L.,:
£ — 38+3

Then L., is invertible, in fact L3 (£) = 2v(¢ — 3).
Given a real-valued function f € Cy(X), define a map ¢¢: [];ec(x 0,17)[0,1] — C as
i if £(X) < [0,1]

Ori=9 4 .
Ligi, omrypof  if J(X) & [0,1]

Clearly, ¢ is continuous. For all f € Cy(X) and z € X, it holds that

{ 7y (es(2)) if f(X) < [0,1] }

Lz, (Lyg),. 0 H)(@) if f(X) € [0,1] = f(2)

¢5(es(x)) =

and this means that L[”;(gﬁf\ﬁ(x)) = f. Given f € Cy(X) arbitrary, decompose f into real-
and imaginary parts. a

The asserted description of (¢°) is a corollary.
Proof of Theorem 2.2.2. We have {* = Cy(N). Q

The second application is an extension of the Stone-Weierstrafi Theorem to locally com-
pact Hausdorff spaces instead of compact Hausdorff spaces. To illustrate the scope of this
extension, note that R is locally compact but not compact.

For a non-compact topological space (X, T), we denote by Cy(X) the set of all real-valued
continuous functions on X which have the limit 0 at infinity, i.e.,

Ve > 0 3K < X closed compact Vo € X\K. |f(x)] <e

Clearly, Cy(X) is a subalgebra of Cy,(X), and is closed w.r.t. || - || . We also see that Cy(X)
is a complete normed space when endowed with the supremum norm.

Theorem 2.2.4. Let (X,T) be a non-compact locally compact Hausdorff space, and let
Ac Co(X). If A is a subalgebra which separates points and vanishes at no point of X, then
A is dense in Co(X).
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Proof. Consider the one-point compactification (a(X),7T,,t) of (X,7T), and set B :=
(t*)71(A). Then B is a subalgebra of C'(a(X)), and all functions g € B satisfy g(c0) = 0.
The linear span C := span(B u {1}) is again a subalgebra of C(a(X)), which clearly does not
vanish at any point of a(X).

Let us show that C separates points of «(X). Let z,y € «a(X) with  # y be given.
If 2,y € «(X), then we find f € A with f(.71(2)) # f(t:71(y)). Let g € C(a(X)) be the
extension of f, i.e., t*(g) = f. Then g€ B < C, and

g(@) = f(e (@) # f() () = g9(y).

Assume now that z € ¢(X) and y = 0. Since A does not vanish at any point of X, we find
f e Awith f(t7%(z)) # 0. Let again g € C(a(X)) be the extension of f. Then g € B < C
and g(x) # 0 while g(o0) = 0.

We conclude from the version of the Stone-Weierstrafl Theorem for compact and Hausdorff
spaces that C is dense in C(«(X)). Let f € Co(X) be given. Its extension g € C(a(X)) can be
approximated by a sequence (g, )nen of functions g, € C. Since g(o0) = 0, also the sequence
(gn — gn(00) - 1)pen converges to g. These functions belong to C and vanish at the point oo,
hence they belong to B. The map t*|{fec(a(x)) | f(o0)=0} 1S isometric w.r.t. the supremum
norm on C'(a(X)) and Cy(X), respectively. Hence, it follows that

lim (* (gn - gn(OO) ’ 1) =f

n—o0

wrt. | - . 0

Remark 2.2.5. The corresponding variant of the Stone-Weierstral Theorem for the algebra
Co(X,C), where X is a locally compact Hausdorff space, follows similar as in the compact
case: Given A, consider the algebra

Bi={f e A| f(X) C R},

Then B is dense in Cy(X,R).

2.3 Structure of (T,)-compactifications

In essence we have already established for which spaces (Ty)-compactifications exist, namely
by means of Lemma 2.1.10 (or Theorem 1.3.7) and Proposition 1.3.6.

Proposition 2.3.1. A topological space (X, T) has a (Tz)-compactification, if and only if it
is completely regular.

Proof. If (X,T) is completely regular, we can separate points from closed sets and from
points (since points are closed) with continuous functions into [0,1]. This shows that the
family

C(X,[0,1]) := {f: X - [0,1]| f continuous}

is separating. Now Lemma 2.1.10 provides a (Tz)-compactification of (X, T).

Conversely, since compact Hausdorff spaces are completely regular, and this property
is inherited by subspaces and homeomorphic images, existence of a (Tz)-compactification
implies that (X, 7T} is completely regular. Q
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In this section we further investigate the totality of (Ts)-compactifications of a given topolog-
ical space. In view of the above it is not surprising that separating families of functions play a
crucial role. Also keep in mind the procedures carried out in Example 2.1.11 and Section 2.2;
these may serve as a model for much of what will be done in this and the following section.

Definition 2.3.2. Let (X, T) be a topological space. We denote by
(i) KX, T)), the class of all (Ty)-compactifications of (X, T);
(ii) F({X,T)), the set of all separating families contained in C(X, [0, 1]).

We already know when separating families exist.

Remark 2.3.3. We have F((X,T)) # &, if and only if (X, T) is completely regular.
To see this, remember the Tychonoff embedding theorem: in its proof we have shown that

(X, T) completely regular = C(X, [0, 1]) separating =
37 3: X — [0,1]" embedding = (X, 7) completely regular

On F({X,T)) we have the partial order given by set-theoretic inclusion. On K((X, 7)) we
define a relation as

(Y, V,)E(Z,W, k) = {¢: Z — Y | ¢ morphism from (Z, W, k) to (Y, V,)} # &

This relation is reflexive and transitive, since we always have the identity map as a mor-
phism, and morphisms can be composed. To better understand =, we observe the following
properties of morphisms between (Ts)-compactifications.

Lemma 2.3.4. Let (X, T) be a topological space, and let (Y, V1) and (Z, W, k) be two (Ta)-
compactfications of (X, T). Then

Hgﬁ: Y — Z| ¢ morphism from (Y,V,) to <Z,W,K)>}| < 1.

Assume that (Y, V, 1) LA (Z, W, k) is a morphism. Then
(i) ¢ is surjective;
(ii) If ¢ is injective, then ¢ is an isomorphism;

(iii) @ maps ¢(X) onto k(X) and Y\e(X) onto Z\r(X).

Proof. The action of a morphism is uniquely determined on the set +(X), and since (Z, W)
is Hausdorff, thus also on +(X). This set, however, equals all of Y.

Let ¢ be given. The image ¢(Y) is a compact subset of Z, and since Z is Hausdorff
thus also closed. It contains x(X), and therefore equals all of Z. Since (Y,V) is compact
and (Z, W) is Hausdorff, ¢ being bijective implies that ¢ is a homeomorphism, and hence an
isomorphism between the compactifications.

We come to the proof of (iii). First, ¢ or = k implies that ¢(¢(X)) = x(X). We show that
¢ 1(k(X)) € «(X). Since ¢ is surjective, the second equality will follow from this. Let y € Y
and x € X with ¢(y) = k(). Choose a net (z;)ier in X with lim;er ¢(x;) = y. By continuity
of ¢, then lim;er ¢(e(x;)) = ¢(y) = k(z). Since pot = k, and & is a homeomorphism onto its
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image, this implies that lim;e; x; = . Using continuity of ¢, and that Y is Hausdorff (hence
limits are unique), we conclude that

y = lim(z;) = o(x).
el

Q

Corollary 2.3.5. Let (X, T) be a topological space. Using the representantwise definition, the
relation E induces a partial order on isomorphy classes of (Tz)-compactifications of (X, T).

Proof. First, we show that by the definition via representants indeed a relation on isomorphy
classes is well-defined. Assume that (Y7, V1, 1), (Yo, Va, t2), and (Z1, W, k1), (Z2, Wa, ka) are
two pairs of isomorphic (Tz)-compactifications of (X, T), and let 0: Y7 — Ys and 7: Z; — Z5
be the corresponding isomorphisms. If ¢: Z; — Y7 is a morphism, then cogo771: Zy — Y5
is also a morphism.

Reflexivity and transitivity are clearly inherited. We have to show antisymmetry. Assume
that (Y, V,:) and (Z, W, k) are two (Ts)-compactfications of (X, T), and ¢: Z — Y and
1:Y — Z are morphisms. Then ¢ o1: Y — Y also is a morphism, and by uniqueness of
morphisms thus equal to idy. Therefore, v is injective, and hence an isomorphism. a

By virtue of Lemma 2.1.10, one can assign to each separating family F < C(X,[0,1]) a
(T2)-compactification of (X, T).

Definition 2.3.6. Let (X, 7) be a topological space. For a separating family F <
C(X,[0,1]), we denote by #(F) the (Ty)-compactification of (X, T) given by the set
Xp = (erF f) (X) endowed with the subspace topology 7 of the product topology
on [0,1]¥, and the embedding t5 := [Ljer f-

Usually we think of a product [];.x[0,1] as “tuples of numbers” (z)ser with z; € [0,1].
Sometimes it is practical to adopt the set-theoretic viewpoint and consider the product
[1;cr[0,1] as the set [0, 1]¥ of all functions from F to [0, 1].

Remark 2.3.7. Let (X, T) be a topological space, and F' < C(X,[0,1]) a separating family.
Then

> (p is the corestriction of the point evaluation map

X — [0,1]F

r - (f»—»f(x) forfeF)

ey

Taking the viewpoint of products as tuples, ¢, is the unique map with (7, is the canoncial
projection onto the f-th component)

> 7T is the restriction of the topology of pointwise convergence,
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Also an assignment in the direction reverse to % can be defined. This relies on a general
construction.

Definition 2.3.8. Let (Z, W) be a fixed topological space. We have an assignment which
maps

> a topological space (X,7T) to the set C(X,Z) of all T-to-W-continuous functions of X
into Z,

> a continuous map f: X — Y from a topological space (X, T) to another one (Y, V) to the
map

- { c\,z) — C(X,Z2)
' ¢ — dof

This assignment clearly is compatible with composition and identity in the sense that
(gof)* = ffog*, (idx)* =ideix,z)-

Definition 2.3.9. Let (X, T) be a topological space. For a (Tz)-compactification (Y, V, ),
we denote

FUY,V,0) = (O, [0, 1))

Lemma 2.3.10. Let (X, T) be a topological space and (Y, V, 1) a (Ta)-compactification. Then
LY, V, 1)) is a separating family.

Proof. Since (X, T) is Hausdorff, it is enough to show that £((Y, V), )) separates points from
closed sets in the required strong way. Let £ € X and A € X closed with x ¢ A. Then
t(z) ¢ t(A) since ¢ is injective, and ¢(A) is closed in the subspace topology of ¢(X) since ¢
is an embedding. Choose B € Y closed with B n +(X) = ¢(A), then «(x) ¢ B. A compact
Hausdorff space is normal and hence completely regular. Thus we can choose f: Y — [0,1]
continuous with f(¢(x)) =1 and f(B) < {0}. This implies

(fou)(z) =1, (fou)(4) < {0},
and we found a continuous function on X with the required separation property. a

Observe the following fact.

Remark 2.3.11. Let (Y,V,.) be a (Ty)-compactification of (X,7). Then the map
W C(Y,[0,1]) — C(X,[0,1]) is injective. The corestriction of ¢* to a map from C(Y, [0, 1])
to £({Y,V,)) is thus bijective.

To show this, let g1, g2 € C(Y, [0, 1]) with g1 ot = ga0¢ be given. This equality means that
g1l.(x) = 92].(x), and since ¢(X) is dense in Y and [0, 1] is Hausdorff, we find that g; = go,
cf. Lemma 1.3.3.

We can now say quite a lot about the structure of (Ty)-compactifications.
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Theorem 2.3.12. Let (X, T) be a topological space.

(i) The assignments k: F((X,T)) - K(X,T)) and £: K(X,T)) - F(X,T)) are mono-
tone.

(ii) VF < C(X,[0,1]) separating. (fok)(F) 2 F.
(iii) (Y, V, ) (Ta)-compactification of (X, T) . (R o £)(Y,V,1)) = (Y, V,1).
Proof.

@ We prove monotonicity of k: Let F,G < C(X,[0,1]) be two separating families, and
assume that F' € G. Let p: [0,1]¢ — [0,1]¥ be the restriction map, i.e., p(g) := g|r. Then
p is continuous w.r.t. pointwise convergence, and

N

[0, 11" +——[0,1]¢

By continuity, p(tq(X)) S tr(X). Hence the restriction of p to a map from X¢ to Xp is a
morphism, i.e., #(F) E #(G).

@ We prove monotonicity of £: Assume that (Y, V, ) = (Z, W, k), and let ¢ be the morphism
¢: Z —Y. Then

C(X,[0,1])

X
/ \NJ hence y (&
%
Y p Z

(v, [0,1]) C(2,10,1])

¢*
This shows that
£UY,V,0) = *(C(Y,]0,1])) = £*(6*(C(Y,[0,1]))) € k*(C(Z,[0,1])) = £({(Z, W, K)).

® We show that (f o ®)(F) 2 F: For every f € F we have

L c
X = Xp erF [0’ 1]
\ ”f%
[0,1]
The projection 7, and hence also its restriction, is continuous. We see that
f=1b(mslxe) € £(R(F)).

@ We show that there exists an injective morphism from (Y, Vi) to (ko £)({Y,V,.)) (and
recall Lemma 2.53./(i1)): Set F := £({Y,V,)). Since ¢* is injective, we can consider its

inverse (1*)7': F — C(Y,[0,1]). Set ¢ = [[]ep(+*) " f], explicitly this is

'{Y - erF[Ovl]
B T ([0 I ()
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Then ¢ is continuous. Since (Y,V) is compact Hausdorff, the family C(Y,[0,1]) is point
separating. Thus, ¢ is injective. By the definition of +*, we have [(+*)~!f] ot = f, and this
shows that we have the diagram

Y
Y s TLyepl0,1]

By continuity, ¢(Y) = ¢(.(X)) S tp(X) = Xp. Hence, the restriction of ¢ to a map from Y’
to X is an injective morphism.

a

Let us remark that Theorem 2.3.12 (iii) implies that the totality of isomorphy classes of (Ts)-
compactifications of a fixed topological space (X, T) forms a set. Moreover, we have the
immediate

Corollary 2.3.13. Let (X, T) be a topological space. Two (Ty)-compactfications (Y, V, 1)
and (Z, W, k) of (X, T) are isomorphic, if and only if 1*(C(Y,[0,1])) = *(C(Z,]0,1])).

2.4 The Stone-Cech compactification

By Theorem 2.3.12, the set of isomorphy classes of (Tz)-compactifications of a completely
regular space (X, T) contains a largest element. Namely, the class containing #(C(X, [0, 1])):
for every (Ty)-compactification (Y, V, ), we have

(V. V,0) = &(F(Y,V,0))) £ R(C(X,[0,1])).

Definition 2.4.1. Let (X,7) be a completely regular topological space. The (T2)-
compactification #(C(X, [0,1])) is called the Stone-Cech compactification, and we will denote
it as (5(X), T, ).

The construction “B(-)” exists not only on the level of spaces, but also on the level of maps.

Theorem 2.4.2. Let (X, T) and (Y, V) be completely regular topological spaces, and f: X —
Y be a continuous map. Then there exists a unique continuous map B(f): f(X) — B(Y),
such that

Passing from [ to B(f) is compatible with composition and identity in the sense that

Blgo f)=B(g)eB(f), Blidx) =idgx)- (2.2)
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Proof. For ¢ € C(Y,[0,1]) we have f*(¢) € C(X,[0,1]) = ¢ +(C(8(X),[0,1])), and hence
can apply (L?;X)*l. Consider the product map

vi— [ @07 (@) 8~ ] o1l

¢eC(Y,[0,1]) ¢eC(Y,[0,1])

This map is continuous. We have

mgoWouigx = (LZ7X)71(f*(¢)) o x =f*(¢)=dof=mgoyof

Since the family of projections 7y, ¢ € C(Y, [0, 1]), is point separating, we have the diagram

BX) ¥ I [0,1]
1\ #€C(Y,[0,1])
L, X

Tbﬁ‘y

_
X 7 Y

Continuity of ¥ implies that

T(B(X)) = T(p,x(X)) € U(epx (X)) = sy (f(X)) € BY).

The corestriction S(f) of ¥ to a map of (X) into B(Y), thus makes the required diagram
(2.1) commute.

Since tg,x(X) is dense in B(X) and B(Y) is Hausdorfl, there exists at most one map
making (2.1) commute. From this (2.2) follows immediately:

Blgof)

idg(x) o

R B(X) _____ BY) ____ sz
BX) 5 BX) ) Fy v) &) 7

s XT Alidx) TLB « LB,XT wﬁ Y }ﬁ z
X — X X /L\) Y — Z
\_/
gof

By the definition of the Stone-Cgeh compactification 3(X), every continuous map f: X —
[0,1] has a continuous extension f: S(X) — [0, 1] (in the sense that fouz = f). Moreover, by
Corollary 2.3.13, this property characterises 8(X) up to isomorphism. Using Theorem 2.4.2
we can deduce that in fact a stronger extension property holds true.

Corollary 2.4.3. Let (X,T) be a completely regular space, and let (Y,V) be a compact
Hausdorff space. Then

LZ,X: O(ﬂ(X)a Y) - C(X7 Y)
1s bijective.

Proof. Injectivity follows since tg x(X) is dense in S(X) and Y is Hausdorff. To show
surjectivity, let f € C(X,Y). Then we have the diagram
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B(f
Bx) 255 5(v)
LB,XT ; LBy
\
X ﬁ Y
hence f = L?;,X (LEIY o B(f)) a

The remainder 3(X)\t5(X) in the Stone-Cech compactification is often large with a compli-
cated topological structure. For example, we have the following result.

Proposition 2.4.4. Let (X,T) be a completely reqular non-compact topological space. Then
no point in B(X)\tg(X) possesses a countable neighbourhood base.

Proof. Let z € B(X)\tg(X), and assume towards a contradiction that U(z) has an at most
countable basis. Since ¢5(X) is dense in 5(X), the singleton set {z} cannot be open. Thus
U(z) cannot have a finite basis.

@ We construct a basis of U(z) with additional properties: Start from some countable basis
(Un)nen of U(z) with U, open and Uy = B(X). The closed neighbourhoods of z form a basis
of U(z). Hence, we find a subsequence (U, )ren With ng = 0 and

VkeN. U,,.,

Nk4+1

c U,

The intersection of all sets U, equals {z}, and every set U,,, must have nonempty intersection
with ¢5(X). Hence, we find a further subsequence (U, )ien With kg = 0 and

Vil e N. }Lﬁ(X) ( nkl\U"kHl)’ =2

@ We construct a function f: X — [0,1]: Let (U,)nen be a neighbourhood base of U(z)
with the properties from the previous step. For each n € N choose two points x,,y, € X,
T, # Yn, With tg(zy), t8(yn) € Up\Un+1. Choose open sets O,, € X with

r, €0, <O, Sy HUNTns1) \{yn ),

and choose continuous functions f,: X — [0,1] with f,,(z,) = 1 and f,(X\O,,) = {0}. Now
define f: X — [0,1] by

fa) = fa(z) HneNzey (U\Up+1) 23)

0 otherwise

By this formula a function f is indeed well-defined, since the sets LEI (Un\UnH)7 n e N, are
pairwise disjoint.

® We show that f is continuous: To achieve this, we show that every point z € X has an
open neighbourhood such that f restricted to this neighbourhood is continuous. Let x € X
be given. If there exists n € N such that = belongs to the set 15" (U,\Uny1), then we are
done since this set is open and the restriction of f to it coincides with f,,.

Assume that z belongs to none of those sets. Then, in particular, z € (), .y(X\O,). Since
(Nyen Un = {2} and 15(x) # z, there exists m € N with ¢5(z) ¢ U,,. We see that

ze (X\; (Uns1)) 0[] (X\On) (2.4)
n=0
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This set is open. Consider one of its elements, say y. If in the definition (2.3) of f(y) the
second case takes place, f(y) = 0. If the first case takes place with some n € N, then we must
have n < m, and f(y) = f.(y) = 0 since y ¢ O,. Thus f vanishes identically on the open
neighbourhood (2.4) of x.

@ We derive a contradiction: Since (Up)nen is a neighbourhood base of z, we have

lim vp(zn) = lim 1s(yn) = 2,

and hence also

lim [(e5) 7 (D] (s () = lim [(5) 7 ()] (es(yn)) = [5) 7 (NH](2)-

n—o0 n—0o0

[(Lg)_l(f)](Lﬁ(yn)) = f(yn) =0 for all n e N.
a

The next result says that the local structure of 5(X) at a point in ¢5(X) is not more com-
plicated than it is in X.

Proposition 2.4.5. Let (X, T) be a completely regular non-compact topological space. Define
O: P(X) > P(B(X)) as

O(U) := B(X)\tg(X\U) for U e P(X).
Then for each point x € X, the set ®(UX (x)) is a neighbourhood base of 15(x) in B(X).

Proof. The set ®(U) is always open. Let z € X be given.

We show that ®(UX (x)) € UP) (15(z)). Let U € UX (z), then we find f e C(X,[0,1])
with f(z) = 1 and f(X\U) < {0}. By the universal property of the Stone-Cech com-
pactification there exists f € C(8(X),[0,1]) with foig = f. We have f(i5(x)) = 1 and
Fftp(X\U)) = 0, and hence 15(z) ¢ 15(X\U). Tt follows that 5(x) € ®(U), and hence that
O(U) € U (15(2)).

Let W € UPX) (15(x)). Choose f e C(B(X),[0,1]) with f(i(z)) =1 and f(B(x)\W) <
{0}, and set

U= (Foun) ™ ((5.1))

Then U is open and z € U, hence U € U~ (x). We show that ®(U) = W. Assume that
z € B(X)\W. Then f(2) = 0, and hence f~1([0,1)) € UPX)(2). Let V e UPX)(2). Since
13(X) is dense in 5(X),

w(X) "V A FH(o, %)) # .

In other words, there exists y € X such that 15(y) € V and (fous)(y) < 1. Clearly, y € X\U,

and we see that V n 1g(X\U) # J. Since V was arbitrary, it follows that z € 13(X\U), i.e.,
z¢ (). a

Recall that a topological space (X, T) is called first countable, if for every point € X the
neighbourhood filter U (x) has an at most countable basis.
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Corollary 2.4.6. Two first countable and completely regular spaces (X, T) and (Y,V) are
homeomorphic, if and only if their Stone-Cech compactifications are homeomorphic.

Proof. The forward implication holds due to (2.2). Assume that ¢: 5(X) — B(Y) is a
homeomorphism. Then for every point z € S(X) it holds that

UPX)(2) has an at most countable basis <

UPX) (p(2)) has an at most countable basis

By the countability assumption on X and Proposition 2.4.5, points in ¢5(X) have a countable
neighbourhood base, while by Proposition 2.4.4 points in the remainder 5(X)\¢s(X) have no
countable neighbourhood base. The same holds for Y, and we conclude that ¢(15 x (X)) =
18,y (Y). It follows that the map Lgly opougx: X —Y is a homeomorphism. a

This corollary shows a typical trade off: on the one hand it is harder to handle the Stone-
Cech compactification of a space than the space itself, on the other hand checking that a
map between compact Hausdorff spaces is a homeomorphism is much easier than doing the
same for a map between non-compact spaces.

2.5 The algebra C'(X)

We start with a general basic notion.

Definition 2.5.1. Let X be a set, and a: P(X) — P(X). Then « is called a closure
operator, if

(i) VAe (X). A< a(A) (extensive)
(ii) YAe P(X). a(a(A)) = a(A) (idempotent)
(iii) VA,Be ?(X). (A< B = «(A) < a(B)) (monotone)

A closure operator « is called a topological closure operator, if furthermore
(iv) VA,Be (X). a(Au B) = a(4) u a(B)
(v) a(@) =g

Note that (iv) is stronger than (iii), in fact, monotonicity is equivalent to
VA,Be P(X). a(Au B) 2 «a(A4) ua(B)

Moreover, by induction (iv) implies
VneNVA,,..., A, € P(X). a( U Ai) = | a4
i=1 i=1

It is clear that for a topological space (X, 7T) the operator a defined by a(4) := A is a
topological closure operator. Moreover, the closed sets in (X, T) are exactly the fixed points
of a.

In the next proposition we show that also a converse holds.
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Proposition 2.5.2. Let X be a set and a: P(X) — P(X) a topological closure operator.
Then there exists a unique topology T on X, such that a(A) = A for all A € P(X). This
topology is given as

T ={0eP(X)|a(X\0) = X\O}. (2.5)
Proof.

® We show that the right side of (2.5) is a topology: Define T by (2.5). Since « is extensive
we have o(X) = X, hence ¢J € T. By the property (v) of a topological closure operator, we
have X € T.

Let ne N and Oq,...,0, € T, and set A; := X\O; for i = 1,...,n. Using property (iv)
of a, we find

n

oz(X\ﬁOi) - oz(UAi) = Ja4) = CJA-

= i=1 i=1 i=1 i=1

Il
b
_—
D)
S

and hence (_, 0, € T.

Let O;, i € I, be a family of elements of 7, and set A4; := X\O; for i € I. Using that « is
extensive and monotone, we find

x\Joi s a(X\UOZ) - a(ﬂAi) <4 = QAZ- - x\[Jo..

el iel iel el el

@ We show that a(A) is the closure w.r.t. T: Since « is idempotent, X\a(A) € T for all
A € X. Moreover, by the definition of T, every T-closed set is a fixed point of «. Since « is
extensive and monotone, we find

Aca(Ad)=a(Ad)ca(d)=A
for all A € X.

@ Uniqueness: A topology is uniquely determined by its closed sets. Closed sets are exactly
the fixed points of the closure operator A — A, and hence there can exist at most one
topology with a(A) = A for all A e P(X).

a

Ezample 2.5.3. Let (R, +,-,1) be a commutative ring with unit element. Recall that a subset
I of R is called an ideal of Rif I +1 < I and R-1 < I. It is called a proper ideal, if I # R,
equivalently, if 1 ¢ R. It is called a mazimal ideal, if it is a maximal element in the set of
all proper ideals. Zorn’s lemma implies that every proper ideal is contained in a maximal
ideal, in particular there exist maximal ideals. We denote the set of all maximal ideals of R
by J(R).

Define a: P(M(R)) — P(M(R)) as

a(M) = {J e M(R)|J 2 ﬂM} for M € P(M(R)).

Here we understand the intersection of the empty set as the whole base set R.
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> Let us show that a is a topological closure operator: If J € M, then clearly J = (| M. Thus
«a is extensive. Let J € a(a(M)). Since every element of a(M) contains [ | M, we obtain

J2(Ne) 2( M,

and hence J € a(M). Thus « is idempotent. If M; & Ms, then (| M; 2 (| M2, and we see
that « is monotone. Further, since (| & = R, we have a(Q) = &.

It remains to show that a(My U Mz) € a(M;) U a(Ms) for all My, My € P(M(R)). Let
J € P(M(R)) with J ¢ a(M;y) ua(Ms) be given. Choose x1 € ([ M1)\J and z2 € ([ M2)\J.
Since every maximal ideal is also a prime ideal, it follows that x1x5 ¢ J. However, clearly,
T1x2 € li N mMg = m(Ml U Mg) Thus J ¢ a(M1 U Mg)

> By means of Proposition 2.5.2 there exists a unique topology on Jl(R) whose closure
operator coincides with . We denote this topology as 7. Note that the topological space
(M(R), Tu) depends only on the isomorphy class of the ring R.

> We show that (M(R), Tu) is compact and (T1): For each I € M(R) we have
a{I}) ={JeMm(R)|J =21} ={I},

hence {I} is closed. This shows (Ty).

The proof of compactness depends on an algebraic fact. Namely, given A € R, the set

{Zriai|neN,aieA,rieR}

i=1

is the smallest ideal containing A. As a consequence, for any given family I;, [ € L, of proper
ideals, the smallest ideal containing | J,.; I; is proper, if and only if for every finite subset
L' < L the smallest ideal containing | J,.;, I; is proper.

Now compactness is easy to check. Let M;, I € L, be a family of closed subsets with
(Nier, M1 = &. Then we have

g:ﬂMl:ﬂa(Ml)={Je/n(R)u;g(ﬂMz)},

leL leL

i.e., the smallest ideal containing the union | J,.,, ( N Ml) is R. Thus we find a finite subset L’
of L such that the smallest ideal containing the union [ J, ;. (ﬂ Ml) is R, which just means

that (e (M) = &.

To each topological space X we can naturally associated the ring C(X,R), and to each
continuous function f between topological spaces the function f*, cf. Definition 2.3.8. When
passing from the topological structure X to the algebraic structure C'(X,RR) some loss may
happen. The next result shows that for compact Hausdorff spaces this is not the case.

Theorem 2.5.4. Let (X,T) be a compact Hausdorff space. Then (X,T) is homeomorphic
to (M(C(X,R)), Ta)-

Proof.
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@ We construct a map ®: X — M(C(X,R)): Let x € X, and denote by ¢, the point
evaluation functional

'{C(X,IR) S R
o o= S

Since C'(X,R) contains all constant functions we have ¢, (C(X,R)) = R, since the algebraic
operations on C(X,R) are defined pointwise the map ¢, is a ring homomorphism, and since
R is a field we know that ker ¢, is a maximal ideal in C(X,R). Thus we may define

.. { X — JM(C(X,R))

r +— ker¢,

@ We show that ® is bijective: Injectivity is easy to see. Let x1, x5 € X with x1 # x5. Since
X is compact (Tz), we find f e C(X,[0,1]) with f(z1) = 0 and f(x2) = 1. This means that
f e ®(xy), but f ¢ P(x2), and we conclude that ®(z1) # P(x2).

To prove surjectivity, let J € M(C(X,R)) be given. We show that the family
C:={f'({0}) | feJ} € P(X)

has the finite intersection property. To this end, consider finitely many elements f1,..., f, €
J. The function g := fZ + ... + f2 again belongs to J, in particular, is not invertible in
C(X,R). Since a function is invertible in C'(X,R) if and only if it is zero-free, we find a
point z € X with g(z) = 0. This implies that f;(z) = 0 for all i = 1,...,n, and we see that
N, £ 1({0}) # &. Since X is compact, it follows that Njes F71({0}) # &. Choose = in
this intersection. Then J < ker ¢,., and since J is a maximal ideal, it follows that J = ker ¢,.

® We show that ® is open: Let O € X be open and = € O. Since X is compact (Tz), we
find f e C(X,R) with f(z) =1 and f(X\O) < {0}. This says that

o) () @),

yeX\O
i.e., that ®(z) ¢ a(P(X\O)). We obtain
O(z) € M(C(X,R))\a(®(X\O)) < M(C(X,R))\®(X\O) = ®(0).

For the last equality we used that ® is bijective. Since x € O was arbitrary, it follows that
®(0) is open.

@ We show that ® is continuous: Let A € X. Then
vfe COXR). (f(A) < (0} = [(A) < (0})

In other words, (\,c4 ®(y) = (,cz ®(y). This implies that o(®(A4)) = a(®(A)), and we
obtain

B(A) € a(@(A)) = a(B(A)).
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Note that Step @ in the above proof could be substituted by using that M(C(X,R)) is
compact.

Corollary 2.5.5. Let (X, T) and (Y,V) be compact Hausdorff spaces. Then (X, T) and
(Y, V) are homeomorphic, if and only C(X,R) and C(Y,R) are isomorphic (as rings).

Proof. The forward implication is trivial: if ¢: X — Y is a homeomorphism, then
¢*: C(Y,R) —» C(X,R) is an isomorphism. For the converse, assume that C(X,R) and
C(Y,R) are isomorphic. Then (M (C(X,R)), Tu) and (M(C(Y,R)), Tu) are homeomorphic.
By Theorem 2.5.4, this implies that (X, 7) and (Y,V) are homeomorphic. a

This result can be lifted to a class of non-compact spaces by passing to Stone-Cech compact-
ifications. For a topological space (X, T) we denote by C(X,R) be the set of all real-valued
continuous and bounded functions on X. Clearly, Cp(X,R) is a commutative ring with unit
element. It also carries the structure of an R-algebra and becomes a Banach space when
endowed with the supremum norm (but this will not be used here).

Corollary 2.5.6. Let (X, T) and (Y,V) be completely reqular and first countable spaces.
Then (X, T) and (Y, V) are homeomorphic, if and only Cp(X,R) and Cy(Y,R) are isomorphic
(as rings).

Proof. By Corollary 2.4.6 and Corollary 2.5.5, (X, T) and (Y,V) are homeomorphic, if and
only if C(B(X),R) and C(B(Y),R) are isomorphic. Using Corollary 2.4.3, we see that
C(B(X),R) and Cp(X,R) are isomorphic via ¢} y (and the same for V). Q

Observe that, e.g., every metric space is completely regular and first countable.



58

CHAPTER 2. COMPACTIFICATIONS




Chapter 3

Metrisability

Let X be a set. Given a metric d on X, a topology 74 can be constructed by using open d-balls
as a basis. Not every topology 7 on X arises in this way. In fact, if there exists a metric d such
that 7 = Ty, then T must have very strong properties; for example it must be first-countable and
parakompakt, in particular, normal. The question arises to characterise those topologies on X,
for which there does exist a metric d such that 7 = T;. We present some results answering this
question. Thereby we work in the setting of pseudo-metrics, which is a slight (but no essential)
generalisation.

§1. 59
§2. 65
§3. 67
§4. 70

3.1 Pseudometric spaces

Definition 3.1.1. Let X be a set. A pseudo-metric on X is a map d: X x X — R which
satisfies

(i) Vo,y,z€ X. d(z,y) < d(z,z) + d(y, z) (the triangle inequality)
(ii) Ve e X. d(z,z) =0
A metric on X is a map d: X x X — R, which satisfies (i), (ii), and
(iii) Ve,ye X. d(z,y) =0 = z =y

A pseudo-metric space (or metric space) is a pair (X, d), where X is a set and d is a pseudo-
metric (or metric, respectively).

99
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Given a pseudo-metric on a set X, we denote, for nonempty subsets A, B € X,
d(B, A) := inf{d(z,y) |z € B,y € A}.

If B is a singleton set, say B = {x}, we also write
d(z, A) == d({z}, A) = inf{d(z,y) |y € A}.

Definition 3.1.2. Let (X,dx) and (Y, dy) be pseudo-metric spaces and f: X — Y. Then
the function f is called dx -to-dy —continuous, if

Vee X Ve>03>0VyeX. dx(y,z) <d = dy(f(y), f(z)) <e (3.1)
It is called dx -to-dy —uniformly continuous, if
Ve>030>0Vee X Vye X. dx(y,z) <3 = dy(f(y), f(z)) <e

It is called dx-to-dy —contractive, if

vx,y e X. dY(f(x)vf(y)) < dx(l',y)

If no confusion can occur, we will often drop explicit notation of dx and dy.

Clearly, every uniformly continuous function is also continuous. Further, the composition of
continuous (or uniformly continuous) functions is again continuous (or uniformly continuous,
respectively), and the identity function idx: X — X is uniformly continuous.

The axioms defining a (pseudo-) metric immediately imply some more properties. More-
over, let d|.| be the euclidean metric d.|(s,t) := |s —t| on R.

Lemma 3.1.3. Let X be a nonempty set, and d a pseudo-metric on X. Then

(i) Ve,ye X. d(z,y) =0

(i) Yo,y e X. d(z,y) = d(y, ) (symmetry)
(iil) Vx,y,z € X. |d(z, z) — d(y, 2)| < d(x,y) (the reverse triangle inequality)
(iv) Let A< X be nonempty. Then the map d(-, A): x — d(x, A) is d-to-d|. ~contractive.

Proof.
@ We prove the relations (i)—(iii): Let x,y € X, then

2d(z,y) = d(z,y) + d(z,y) = d(z,z) =0,
and

d(z,y) < d(z,2) +d(y, =) = d(y,z) < d(y,y) + d(z,y) = d(z,y).
If, moreover, z € X, then
) < d(
) < d(

d(x
d(y

'r’y) d(Z,y) :d(x,y) +d(y,z),
y,x) + d(z,x) = d(z,y) + d(z, 2).

)

+
+

VAN

, 2
, 2
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@ We show that d(-, A) is contractive: Let A € X, A # 4, and let ¢ > 0. If z,y € X with
d(x,y) <e, then |d(x, z) — d(y, 2)| < d(z,y) < e for all z € A. Hence,

|inf{d(z, 2) |z € A} — inf{d(y,z) |z € A} <e.

Every pseudo-metric on a set X induces a topology on X.
Definition 3.1.4. Let X be a nonempty set, and d a pseudo-metric on X.
(i) For each x € X and r > 0, the open ball with center x and radius r is the set
Ud(z) := {ye X|d(y,z) <r}.
The closed ball with center x and radius r is the set
Bj(x) = {ye X|d(y,x) <r},
We shall drop explicit notation of d if no confusion can occur.
(ii) The topology induced by d is the set
Ta:={0C X |VzeO Ir>0|Ul(z) < O}.
The choice of terminology in this definition is justified by the facts elaborated in Proposi-

tion 3.1.5 below. There we also see the significance of the axiom (iii) in the definition of a
metric: it implies a certain richness of 7.

Recall that a topological space (X, T) is said to satisfy the separation aziom (Tp), if
Ve, ye X,z #y 30,,0, € T. (erz /\yeOy) A (y¢0$ vx(;éOy)
Proposition 3.1.5. Let X be a nonempty set, and d a pseudo-metric on X.
(i) Tq is a topology on X.

(ii) Ewvery open ball U.(x) with x € X and r > 0 is open w.r.t. Tg, and every closed ball
B, (z) with x € X and r = 0 is closed w.r.t. Ty.

(iii) For every subset A < X we have

A={zeX|d(z,A) =0}

(iv) Let (X,d) be another pseudo-metric space, and f: X — X. Then f is d-to-d-
continuous, if and only if f is Tg-to-Tj-continuous.

(v) The space (X, Tq) is (Ty).
(vi) It holds that

d is a metric < (X, Tq) is (Ta) < (X, Ta) is (To) (3.2)

Proof.
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@ We show that Ty is a topology: The facts that & € Ty, X € Ty, and that T, is invariant
under unions, are clear from the definition. Let Oy, 05 € T4, and x € O1 N O3. Then we can
choose 71,72 > 0, such that U, (x) € Oy and U,,(z) € Os. For r := min{ry,ra}, it thus
holds that U, (z) = Uy, () n Uy, (x) € O1 N Oa.

@ We show that open balls belong to Ty: Let x € X, r > 0,and y € U,.(x). Set r1 :=r—d(y, x),
and consider z € Uy, (y). Then

d(z,2) < d(z,y) +d(z,y) <ri+d(z,y) =,
and we see that U, (y) € U,.(x).

® We show that closed balls are closed w.r.t. Tg: Let x € X, r > 0, and y € X\B,(x). Set
r1 :=d(y,z) — r, and counsider z € U,, (y). Then

d(Z,.’E) = d(.’E,y) - d(zay) > d((E,y) — T =T,
and we see that Uy, (y) € X\B,(x).

@ We show the stated characterisation of the closure: We have

dz,A)=0 « Vr>03ye A dz,y)<r < Vr>0. U (2)nA#=J
< VOeT,2€60. OnA+#J < zeA

® We show that notions of continuity coincide: Assume that f is d-to-d—continuous, and
let O € T; and z € f~'(O) be given. Choose € > 0, such that Ug(f(a:)) c O, and choose
§ > 0 as in the definition (3.1) of metric continuity. Then f(U(z)) < Ug(f(a:)) c 0, ie,
Ud(z) < f71(O). We see that f~1(O) is open.

Conversely, assume that f is 7g-to-7;-continuous, and let € X and € > 0 be given. We
have Ug(f(x)) € T;, and by topological continuity thus f_l(Uj(f(x))) € Tq. The point z
belongs to this set, and hence we may choose d > 0 such that Ug(z) < ffl(Ug(f(z))). This
says in other words that f(Ug(x)) < Ug( f(x)), and this is the property in the definition of
d-to-d—continuity.

® We show that Tq is (T4): Let A, B € X be closed and disjoint. If A = &F, set O4 == &
and Op := X, then O 4, Op are open, disjoint, and separate A and B. The case that B = J
is treated analogously.

Assume now that A, B # ¢, and set
Os:={reX|dxz,A) <d(z,B)}, Op:={reX|dx,B)<d(z,A)}.

Obviously, O4 and Op are disjoint. Since both functions d(-, A) and d(-, B) are continuous,
O, and Op are open. Let 2 € A. Since X\B is open and z € X\B, we find r > 0 with
U.(z) € X\B. In other words, d(z, B) = r. On the other hand, clearly, d(z, A) = 0, and we
see that z € O4. Since x € A was arbitrary, we have A € O4. It follows in the same way
that B < Ogp.

@ We show the equivalences (3.2): Assume that d is a metric, and let z,y € X, = # y. Set
7= %d(w, y), then r > 0. For every z € U,(x), it holds that

A(z,0) > dly,2) — d(z,2) > dly,2) — 5d(wy) =
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and we see that U,(z) nU,(y) = &. Since U,(x) and U,(y) are open neighbourhoods of
and y, respectively, we see that (X, 7g) is (Ta).

The implication “=" in the second equivalence is trivial. Assume now that (X, 7Ty) is
(To), and let z,y € X, x # y. Choose O € T; which contains one of the points z,y, but
not the other. For definiteness, assume that € O and y ¢ O. Choose r > 0, such that
U.(x) € O, then y ¢ U,.(z), and hence

d(z,y) =r>0.

a

We now name the central notion discussed in this chapter.

Definition 3.1.6. Let (X, T) be a topological space. The space (X,T) is called pseudo-
metrisable, if there exists a pseudo-metric d on X, such that 7 = 7. It is called metrisable
if there exists a metric d on X, such that 7 = 7y.

Pseudo-metrisability is inherited by several topological constructions. For completeness, we
provide the proof.

Lemma 3.1.7.

(i) Let (X, T) be a topological space, (Y,d) be a pseudo-metric (or metric) space, and
¢: X =Y be a T-to-Tg—embedding. Then

dx (x,y) := d(¢(x), ¢(y)) forx,ye X,
is a pseudo-metric (or metric, respectively) on X and T, = T.
(ii) Let (X, d) be a pseudo-metric (or metric) space. Then

d(z,y)
d’(z,y) = ——" _ forz,ye X, 3.3
@) = s for .y (33)

is a pseudo-metric (or metric, respectively) on X and Tgo = Ty.
(ili) Let (X;,d;), i € N, be pseudo-metric (or metric) spaces. Let X =[],y Xi, let mi: X —

X, be the canonical projections, and T the product topology of the topologies Tq,. Then

1
d(‘r,y) = SuNp ;dzb(ﬂz(x)a’”z(y)) fOT‘ xayEXv
1€
is a pseudo-metric (or metric, respectively) on X and Tg =T .
The same statement holds for a finite family of (pseudo-) metric spaces.

Proof.

@ Proof of (i): That dx satisfies the axioms of a pseudo-metric is clear. If d is a metric,
injectivity of ¢ implies that also dx is a metric. Since ¢ is a T-to-Tg—embedding, the set

{671 (U W) |r > 0,y € $(X)} € P(X)
is a basis for the topology 7. We have, by the definition of dx,
¢~ (U (9() = U (x),
and since {U%* (z)|r > 0,z € X} is a basis for Ty, it follows that 7 = Tg, .
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@ Proof of (ii): To start with, note that the function

0,00) — |0,1
5:{[ ) [t>

t = 15

is an increasing bijection. Next, we show that

Vr,y = 0. Bz +y) < B(z) + B(y) (3.4)

To establish this, multiply with the denominators to obtain the equivalent inequality
@+y)A+2)(1+y) < (@l+y) +y1+2)1+z+y)

the left side equals (x +y)? + ( +y)(1 + zy), and the right side equal (z +y)? + (z +y)(1 +
2xy) + 2xy, hence this inequality holds true.

From (3.4) the triangular inequality for d” follows immediately. The other axioms of a
(pseudo-) metric are clearly satisfied by d’. Equality of topologies follows since

Ud(x) = Ug(br)(x) for r >0,z € X.

® That d is a pseudo-metric is clear. If all d; are metrics, then d also is a metric, since the
projections m;, ¢ € I, are jointly injective. We have to show equality of topologies. On the
one hand, given n e N, r1,...,r, > 0, and (z;);eny € X, we have

n

xz ze] ﬂ ~1 Ud xz with r = %Q(VI{HH rz)

i=1,...,n

On the other hand, given r > 0 and (z;);en € X, choose n € N with m < r, then

ﬂ Wfl(Ugil(r)(xi» < UH(2i)ier)-

i=1

a

The following corollary provides a practical way to conclude that a space (X, T) is (pseudo-)
metrisable.

Corollary 3.1.8. Let (X,T) be a topological space. If there exists an at most countable
separating family of maps into pseudo-metrisable (metrisable) spaces, then (X, T) is pseudo-
metrisable (metrisable, respectively).

Proof. Assume that (Y,,,V,), n € N, are pseudo-metrisable, and that f,: X — Y,, n € N,
are such that {f, | n € N} is separating. By Proposition 1.1.5 (i), the product map

Iglifn: X — IAI‘Y%

neN neN

is an embedding of (X, 7T) into ([ [,,cn Yn: [ [,eny Vn)- Using Lemma 3.1.7 (i) and (iii), we
obtain that 7 is induced by some pseudo-metric.
If all spaces (Y, V,,) are metrisable, Lemma 3.1.7 gives a metric. a
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Examples of (pseudo-) metric spaces are obtained from (semi-) normed linear spaces. Recall:
if X is a linear space (over the scalar field R or C), and p: X — [0,0) is a function, then p
is called a seminorm on X, if

(i) Ve,ye X. p(z +y) < p(z) + ply) (the triangle inequality)
(ii) Yz e X,a e R or C. p(az) = |a|p(z) (homogenity)
It is called a norm, if additionally
(iii) Yz e X. p(x) =0 = =0
A seminorm p gives rise to a pseudo-metric dp,, namely via
dp(z,y) :==p(z —y) foraz,yeX.

Thereby, d,, is a metric if and only if p is a norm. All topological notions of a (semi-) normed
spaced are understood w.r.t. this (pseudo-) metric.

Lemma 3.1.7 shows that every topological space (X, 7T) which is homeomorphic to a
subspace of a (semi-) normed space is (pseudo-) metrisable. It is an interesting fact that a
certain converse holds.

Lemma 3.1.9. For every metric space (X,d) there exists a normed space (Z,| - |) and a
contractive embedding v: X — Z. If d(X x X) is a bounded subset of [0,0), the embedding
can be chosen to be isometric.

Proof. If d is not bounded, consider the metric d® from (3.3) Then the identity map idx is a
d-to-d"—contractive Tg-to-T;»—homeomorphism. In order to prove the present assertion, it is
thus enough to consider the case that d is bounded, and construct an isometric embedding
into a normed space. Thus assume throughout the following that d is bounded.

Let %B(X,R) be the linear space of all bounded real-valued functions on X, and endow
PB(X,R) with the supremum norm

[flloo := su);; |f(z)] for fe B(X,R).
TE
Consider the function ¢: X — B(X,R) defined by
[t(2)](y) :==d(y,z) for z,y € X.
Then it holds, for each two elements x1,zs € X, that

le(z1) = t(@2) [0 = sup ‘d(yvxl) - d(y,xz)] = d(71,2).
yeX

The second equality follows from the reverse triangle inequality (to show “<”) and by setting
y = x1 (to show “=”). Being isometric, ¢ is injective and (its corestriction) has an isometric
inverse. In particular, ¢ is an embedding. a

3.2 A theorem of Stone

A (pseudo-) metric space has a richer geometry than an arbitrary topological space. For
example, every topology 7Ty has, by definition, a basis consisting of open balls, and balls have
specific geometric properties.

First recall the, purely set-theoretic, notion of a refinement.'.

IThis definition and item (iii) of the following definition repeats in Definition 1.5.1.
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Definition 3.2.1. Let X be a set and F,G < P(X). Then F is called a refinement of G, if
VEe FIGeg. Fcd(.

Now we single out some properties, which turns out to be decisive.
Definition 3.2.2. Let (X, T) be a topological space, and F € P(X). Then F is called

(i) discrete, if every point x € X has a neighbourhood which intersects at most one member
of F;

(ii) o-discrete (or countably discrete), if it is a union of at most countably many discrete
families.

(iii) locally finite, if every point 2 € X has a neighbourhood which intersects at most finitely
many members of F.

(iv) o-locally finite (or countably locally finite), if it is a union of at most countably many
locally finite families.

Observe that every discrete family is locally finite, and, correspondingly, that every o-discrete
family is o-locally finite. Moreover, every family having only one element is discrete, and
hence every at most countable family is o-discrete.

Theorem 3.2.3 (M.H.Stone). Let X be a set and d a pseudo-metric on X. Then every open
cover of X has a o-discrete and locally finite refinement, which is again an open cover of X.

Proof. Let G be an open cover of X.

® We construct a candidate F < P(X) for the required refinement: Choose a well-ordering
< on the set G. We define families F,, € P(X) for each n € N by using induction.

Let n € N, and assume that families F,,, have already been defined for all m < n. First
set, for each U € G,

F(U,n):= {ZEX|U%(Z) cU, U=min{VeG|zeV}, z¢ U (Ufm)}
m<n
Note here that, since G is a cover of X, the set {V € G|z € V'} is nonempty. Now define
Fp o= { U U%n(z)|U€g}.
zeF(U,n)
Our candidate for a refinement of G with the required properties is F := |, cp Fn-
@ We show that F is an open cover and a refinement of G: Denote
Ouni= |J U,(z) forUegneN.
zeF(U,n)

Then, clearly, Oy, is open and Oy, < U. Thus F is an open refinement of G.

Let z € X. Set U := min{V € G|z € V}, and choose n € N sufficiently large so that
Us (z) € U. Then either z € | J,,_,, (UUFm) or z € F(U,n). In both cases, = € | J F.

3T
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® We show that d(Oun,Own) = 5 for U # W: Let ne Nand U W € G, U # W, and
let z € Oy, and y € Ow,. Choose z € F(U,n) and w € F(W,n) such that x € U 1 (z) and
yelU R (w). Since < is a well-ordering, we have either U < W or W < U. For definiteness,
assume that the first case takes place: U < W. Since W = min{V € G|z € V} we have
w ¢ U, and since U3, (z) € U, therefore d(w, z) > 5. Applying twice the reverse triangle
inequality, we find

d(z,y) = d(z,w) — d(y,w) = [d(w, 2) — d(z,2)] — d(y,w) > 2%

As a consequence of the now established fact that d(Ovy n, Ow.n) = 2% for all U # W, we see

that each family F,, is discrete. Namely, every open ball with diameter 5 can intersect at

277/
most one set Oy, U € G.

@ We show “m =1 AU 11(30) < Oyn = d(x, U U]—'l) > 21"”: Let I = m + n,
2m= I=m+n

y € JFi, and choose W € G and w € F(W,1) such that y € U (w). Since n <1 we have
2

w ¢ | JFn, and hence also w ¢ Oyp,,,. By the present assumption, thus d(w,z) > 2%1 It
follows that

1 1 1 1 1
d(x,y) = d(z,w) — d(y, w) > on I o Zom 1 gm ~ gm

As a consequence of the now established implication, we see that F is locally finite. Namely,
given z € X, choose n € N such that =z € | JF,, U € G such that x € Oy, and m > 1
such that U_1__(z) € Oy,n. Then the open ball U L (x) intersects non of the elements of

om— am+n

JFi, and at most one element of each of F; for [ < m + n.
I=m+n ’

a

3.3 The metrisability theorem of Bing-Nagata-Smirnov
Recall that a topological space (X, T) is said to satisfy the separation aziom (Ts), if
Vre X, A< X closed,z ¢ A310,,04€T. ((EE O, nAC OA) A (OI N0y = @)
Note that this condition is equivalent to
Vze X,AC X closed,r¢ AI0eT. re0cOc X\A4

Remark 3.3.1. Every pseudo-metrisable space (X, d) satisfies (T3). Namely, given z € X and
A < X closed with = ¢ A, we know from Proposition 3.1.5 (iii) that d(z, A) > 0. The sets

d(z, A
Oui=Usem (@), 0,:={yeX|d(y 4) < "2},

are disjoint open neighbourhoods of z and A.

Theorem 3.3.2. Let (X, T) be a topological space which is (T3). Then the following state-
ments are equivalent.

(i) (X, T) is pseudo-metrisable.
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(ii) The topology T has a o-discrete basis.
(iii) The topology T has a o-locally finite basis.

The equivalence “(i)<(ii)” is a metrisability theorem of Bing, and the equivalence “(i)<>(iii)”
is the metrisability theorem of Nagata-Smirnov.

As a corollary we obtain a metrisability theorem of Urysohn. Recall here that a topological
space (X, T) is called second countable, if it has an at most countable basis.

Corollary 3.3.3. Let (X, T) be a topological space. If (X, T) is second-countable, (Ts) and
(To), then it is metrisable.

Proof. The topology T has a countable, and hence o-discrete, basis. a

We come to the proof of Theorem 3.3.2. The implication “(i)=>(ii)” follows from Stone’s
theorem.

Proof of Theorem 3.3.2 “(i)=>(ii)”. Choose a pseudo-metric d such that 7 = 73. For n € N
let G,, be the open cover

Gn = {Uy-n(x)|x € X}.

By Theorem 3.2.3, we find a o-discrete open cover JF,, which is a refinement of G,. Set
B :=J,,en Fn, then B is again a o-discrete open cover.

We show that B is a basis for 7. Let O € T3 and 2 € O. Choose n € N with Uy-»(z) € O,
and choose F' € F,,41 with « € F. Since F, 11 is a refinement of G, 11, we find y € X such
that F < Uy—(ns1) (y). In particular, d(z,y) < 2-(™*D and hence

T e F - U27(n+1) (y) o U2—n (fL‘) o= O
Q

The implication “(ii)=>(iii)” is of course trivial. For the proof of “(iii)=>(i)”, we present two
lemmata. The first contains a statement which in some sense expresses the essence of local
finiteness.

Lemma 3.3.4. Let (X, T) be a topological space, and F < P(X). If F is locally finite, then
Ur=UF
FeF FeF

Proof. The set on the left side is closed and contains all sets F' from the family F, hence it
also contains all sets F', I’ € F. This shows that “2” holds. To show the reverse inclusion,
let © € | Jper F. Choose U € U(x) which intersects only finitely many elements of F, say,
Fy, ..., F,. For every neighbourhood V € U(x) with V € U, we have

VanJFZ-:Vm | F#o,
i=1

7 FeF
and hence
n n
ze U F, = U e | | F
i=1 i=1 FeF
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Second, we show that under the assumption of (iii), the separation property (Ts) implies
(Ta).

Lemma 3.3.5. Let (X, T) be a topological space. If (X, T) is (T3) and has a o-locally finite
basis, then it is (Ty).

Proof. Choose B,, € T, n € N, such that each B, is locally finite and that B := | J
a basis of 7.

Let A, B < X be closed and disjoint. Since (X, 7) is (T3) and B is a basis, we can choose
for each a € A a set M, € B with

B, is

neN

ae M, < M, < X\B.

Analogously, choose for each b € B a set N, € B with b e N, € N, € X\A. Consider the
families

Fni={My|lac A, M, € B,}, G,:={Ny|be B,Ny€B,}.

As subfamilies of B,,, both are locally finite. Set
F, = U F, G,:= U G,
FeF, GegGn,

then

Set

Pn::Fn\U?iv Qn:Gn\Uj
1=1

i=1

Since a finite union of closed sets is again closed, P, and @, are open. Moreover, clearly,
anQm:®7 n,m€N.
Set

Oai=|JPu Op:=]Qn
neN meN

Then O4 and Op are open and disjoint. If @ € A, then we find n € N with M, € F,,, and
hence a € P,,. Thus A € O4. In the same way, it follows that B € Op. a

The need to have a countable index set in the representation of the basis as union of locally
finite families arises in the proof of Lemma 3.3.5 at the point where we conclude that P,, and
Q. are open: an uncountable well-ordered set has infinite beginning sections.

Proof of Theorem 3.3.2 “(iii)=>(1) 7. Choose a basis B of T which can be written as a union
B :=J,,cn Bn of locally finite families B, = 7, n € N. Moreover, note that by the previous
lemma (X, 7) is (T4) and thus Urysohn’s Lemma is available.

@ Given (n,m) € N x N, we construct a pseudo-metric dy, , on X: For U € B,, set

U* = J{veB,|VcU}
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Since B,, is locally finite, we have U* < U. If U* # @ and U # X, we apply Urysohn’s
Lemma, and find a continuous function fy: X — [0,1] such that fy(X\U) = {0} and
fuU#*)={1}. T U* = & take fy :=0, and if U = X take fy := 1. Now set

dnm(z,y) 1= Z |fu(z) — fu(y)| for z,y e X. (3.5)
UeB,,

Since B,, is locally finite, every point x € X has a neighbourhood V,, which intersects only
finitely many members of B,,. Given x,y € X, let Uy,...,Upn be all those elements of B,,
which intersect V, or V,. It follows that

N
V(2,y) € Ve x Ve dum(,y) = 3. 1f, (@) = fu, ).
j=1

Hence, (3.5) defines a continuous function dy, ., : X x X — R. The axioms of a pseudo-metric
are obviously fulfilled.

@ We construct a separating family on (X, T): Consider the topological spaces (X, 7, ..),
and the maps fy, m: (X, T) — (X, T, ,.) which all act as the identity function: f, ,,(z) :=
for all x € X.

Since d,, ,, is continuous, every open d,, ,,,-ball belongs to 7. Since the open balls form
a basis of 7Tg, ., it follows that 73, ., < 7. In other words, the map fy n, is T-to-Tq, .~
continuous. Obviously, each map f, ,, is injective, in particular, the family {f, ., | (n,m) €
N x N} is point separating.

Let x € X, and A € X closed with 2 ¢ A. Choose U € B with z € U < X\ A, then choose
OeT withze O < Oc U, and then V € B with z € V € O. Now choose n,m € N with
UehB,, and V e B,. Then x € U*, and hence

dn,m(va) = inf dn,’m(xay) = inf | fU(x) - fU(y) ‘ = 1.
yeA YEA — — — —
=1 =0

Hence, z does not belong to the closure of A w.r.t. 7y, ., i.e., fum(x) does not belong to
the closure of f, ., (A) in the space (X, Ty m)-

We can now apply Corollary 3.1.8 to conclude that (X, 7T) is pseudo-metrisable. a

3.4 Metrisability: local to global

The following result is a metrisability theorem of Smirnov.

Theorem 3.4.1. Let (X, T) be a paracompact Hausdorff space, and assume that every point
x € X has a neighbourhood U € U(x) such that (U, T|u) is metrisable. Then (X,T) is
metrisable.

This theorem can be proven with the usual ways of arguing (juggling with sets and coverings)
using the Nagata-Smirnov metrisation theorem. We give a different proof, which does not
depend on the Nagata-Smirnov theorem, but uses paracompactness in the form of existence
of partitions of unity.

Proof. Choose an open cover F of X such that for every element U € F the space (U, T|v)
is metrisable, and choose a partition of unity (1;);c; subordinate to this cover.
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@ We construct a family of functions into normed spaces: For each i € I we choose U; € F
with suppv; < U;. According to Lemma 3.1.9, we find for each i € I an embedding ¢; of
(U;, Tu,) into a normed space (Z;, | - ||;). Set

! r o= (Yi(@)e(r),Yi(T))

Here the product ¢;(x)¢;(x) actually means the function

foriel.

Yi(x)i(x) if x e U,
€T —

0 if otherwise.

We endow the space Z; x R with the sum norm of || - |; and the euclidean norm, denote the
corresponding metric by d; and the corresponding topology by V;.

@ We prove that {f;|i € I} is separating: Since supp¥; € U;, the functions f; are T-to-V;—
continuous. Next, let z,y € X and assume that f;(z) = f;(y) for all i € I. Choose i € I with
¥;(x) > 0, then it follows that z,y € U; and ;(z) = ¢;(y). Since ¢; is injective, thus z = y.

Let z € X and A € X closed, and assume that f;(x) € f;(A) for alli € I. Choose i € I with
Y;(x) > 0, i.e., x € U;. Choose a net (a;)ier, of elements a; € A such that limey, fi(a;) = fi(x).
Then we have, in particular, limey, ¥;(a;) = ¥;(x) > 0. By passing to a subnet if necessary,
we may assume without loss of generality that ¢;(a;) > 0 for all [ € L. Tt follows that a; € U;
for all [ € L, and that limyey, ¢;(a;) = ¢;(x). Since ¢; is a homeomorphism onto its image, it
follows that limjez, a; = z in (U;, T|y,), and hence in (X, 7). This shows that x € A.

® Embedding into the product: We denote
7Z = H(Z’ xR), V:= HVi.
el el
Then, according to Proposition 1.1.5 (i), the product map f := [[,.; fi is an embedding of
(X,T) into (Z,V).

@ The direct sum: Let Y := @,_;(Z; x R) be the direct sum of the linear spaces Z; x R,
i.e., the subset of their product consisting of all elements with only finitely many nonzero
coordinates. This space can be endowed with the sum norm | - |5 of the norms | - |;, i.e.,

I(zi)ierlls == Z |zill:  for (zi)ier € P(Zi x R).
iel iel
We denote the corresponding metric as dy, and the corresponding topology as Vs.

The projections m;]y: Y — (Z; x R are contractive, in particular, continuous. Thus
V]ly € Vs. In general, this inclusion will be a proper one, but on small subspaces the
topologies coincide. Namely, let J < I be finite, and consider the subspace

Y= () mtoh v

iel\J

The restriction of Vs to Yy is induced by the restriction of the sum norm. Let (y;)ier € Y7
and r > 0. Then

N5 (U () 0 Yo < U= (ideer) 0 Yo,

jeJ

and we conclude that Vsly, < V|y,.
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® Embedding into the direct sum: The family {supp;|i € I} is locally finite. Hence, given
x € X, we can choose an open neighbourhood O, of x, which intersects only finitely many of
supp ¥;, i € I. Set J :={i€ I|O, nsupp; # J}, then

f(Oz) cyY;.

In particular, f(X) <€ Y. Since f is T-to-V—continuous and Vxly, € Vly,, it follows that
flo, is Tlo,-to-Vs—continuous. Since x € X was arbitrary, we conclude that f is T-to-Vs—
continuous.

Since f~1: f(X) — X is V|(x)-to-T-continuous, and Vs 2 V|y, we also have that f~!
is Vx| ¢(x)-to-T—continuous.

Having an embedding of (X, 7) into the metrisable space (Y, Vs), Lemma 3.1.7 (i) yields that
(X, T) is metrisable. Q



Chapter 4

Covering spaces

A covering of a topological space X can be seen as a larger space which can be projected onto
X and in which certain loops in X are unfolded. Covering spaces arose in complex analysis in
the study of Riemann surfaces. They play an important role in the structure theory of topological
spaces due to their relation to the fundamental group of a space.

§1.
§2.
§3.
§.

73
78
83
84

4.1 Coverings

Loosely speaking, a covering space of some topological space X is a topological space X
together with a map projecting X onto X, such that for sufficiently small neighbourhoods U
in X the subspace p~!(U) € X looks like a stack of pancakes hovering above U.

In our definition we include a connectedness assumption. This is done for practical pur-

poses, since many results hold only under such assumptions.

Definition 4.1.1. Let (X,7) be a topological space. A covering of (X,T) is a triple
(X, T,p), where

(i) (X,T) is a pathwise connected topological space,

(ii) p: X — X is continuous,

(iii) each point x € X has an open neighbourhood U,, such that the inverse image p~1(U,)

is the union of some nonempty family of pairwise disjoint nonempty open sets Sy ;,
i € I, with the property that for all i € I the map p|s, , is a homeomorphism of S, ;
onto U,.

73
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It ()N(,’i', p) is a covering of (X, T), the map p is called the covering projection and the set
p~1({x}) is called the fiber of x. Moreover, a set U, with the properties stated in (iii) is
called an evenly covered neighbourhood of x and the corresponding sets S, ;, ¢ € I;, from (iii)
are called the sheets over U,.

We start with a simple general observation.

Remark 4.1.2. Let (X, T) be a topological space, and (X, T, p) be a covering of (X, T). Then
p is surjective, and (X, T) is pathwise connected.

To see that p is surjective, note that for every evenly covered neighbourhood U there
exists at least one corresponding sheet S and p|g is a homeomorphism of S onto U. Hence,
Uc p(f( ). The family of all evenly covered neighbourhoods forms an open cover of X, and
we see that X < p(X).

As a continuous image of a pathwise connected space, (X, 7T) is also pathwise connected.

Lemma 4.1.3. Let (X,T) be a topological space, and (X,T,p) be a covering of (X,T).
Then p is open.

Proof. Let O < X be open, and let & € p(O). Choose an evenly covered neighbourhood U
of z. Then O np~1(U) # &, and we can choose a sheet S over U with O n S # ¢J. The set
O n S is open in S, and hence p(O N S) is open in U. Since U is open, p(O N S) is also open
in X. Clearly, z € p(O n S) < p(O). a

Remark 4.1.4. Assume we have a covering (X, T, p) of some topological space (X, T). Let ~
be the kernel of p, let 7: X — )~(/~ be the canonical projection, and let X/N be endowed with
the factor topology (i.e., the final topology from the family {n}). Moreover, let p: X /. — X
be the map with

Then p is a homeomorphism.

This is seen by a general argument which only needs that p is surjective, continuous, and
open. Since p is surjective, p is bijective. Since X /~ carries the final topology, p is continuous.
Let O € X/ be open. This means that 7—'(0) € X is open. Since 7 is surjective, we obtain
that

p(0) = p(m(r7(0))) = p(~1(0))

and the set on the right side is open since p is open.

The following observation is often practical when one intends to prove that a given triple is
a covering.

Lemma 4.1.5. The aziom (iil) in the definition of a covering can be replaced by the following
two requirements:

(iii’) p: X — X is open,
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(iii”) each point x € X has an open neighbourhood U,, such that the inverse image p~*(Uy,)
is the union of some nonempty family of pairwise disjoint nonempty open sets Sy ;,
i € I, with the property that for all i € I the map pls, , is a bijection of Sy ; onto U,.

To be precise: a triple (X, T,p) is a covering of (S, T), if and only if it satisfies Defini-
tion 4.1.1(i),(ii), and (iii’), (iii”).

Proof. Definition 4.1.1 (iii) implies (iii’) by Lemma 4.1.3, and (iii”) is obvious. Conversely,
we have to check that p|s, , is a homeomorphism: being a restriction of a continuous map
Pl s,.; is continuous, and being a restriction of an open map to an open set it is open. a

Every pathwise connected space (X, T) has the trivial covering (X, T,idx). Let us give some
examples of non-trivial coverings.

We start with two examples dealing with spheres: denote by S™ the n-sphere (here ||.|| is
the euclidean norm)

"= {z e R" ||z =1}

Unless specified differently, we always endow S™ with the subspace topology 7, inherited
from the euclidean topology of R™*1.

It is often convenient to identify R? with the complex number field, and regard S' as the
unit circle in C

St ={zeC|z| =1}.

Remark 4.1.6. Let us show that the sphere S™ is pathwise connected.

First, the circle S? is the image of the interval [0, 27] under the continuous map ®(6) :=
e’ and hence pathwise connected.

Let n > 2. We use spherical coordinates. This is the map ®: [0,27]"~! x [0,7] — S"
defined as

sin @1 - sin¢s - - - sin ¢,
COs (1 - sin ¢ - - - sin @,
2 CoS ¢2 - sin ¢g3 - - - sin ¢,
[OF : —
20 COS (1 * SIN @y,
COoS ¢,

It is a continuous surjection of [0,27]"~! x [0, 7] onto S™.

Proposition 4.1.7. Let k > 2, and let p™*): S — S be the map p¥)(2) := z*. Then
(S*,T1,p™) is a covering of (S*, T1).

Proof. We know that S! is pathwise connected. Moreover, clearly, the map p(*) is continuous.

® We show that p™*) is open: The intersection of an open disk in C with the unit circle is
an open arc. Hence, the set of all open arcs I, g := {e" |a <t <} with o, Be R, a < 3, is
a basis for the subspaces topology 77.

We have p¥)(I,, 5) = Ira,ks, and hence p*) induces a bijection of the set of all arcs onto
itself. In particular, this implies that p*) maps open sets to open sets.
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@ We construct evenly covered neighbourhoods: Let xo € S* and write zo = €’ with some
0 € R. Let U be the open arc Ip_, g+. Then U is an open neighbourhood of 2. The inverse
image [p®)]~1(U) is the union of the k disjoint open arcs

20-1 0 21+1
S; = (%4— lk W,E—I— l;r 77) where [ =0,...,k— 1.

For each [ € {0,...,k — 1} the map p¥)|s, is a bijection of S; onto U.

a

The case “k = 2” of Proposition 4.1.7 admits an immediate generalisation to higher dimen-
sional spheres. To make the connection, remember Remark 4.1.4.

Proposition 4.1.8. Letn > 2. Let ~< S™ x S™ be the equivalence relation
x~y;<:,>(gg:y V4 x:—y)

and let p,: S™ — S™/. be the canonical projection. Let S™/. be endowed with the final
topology V induced by {p,}.
Then (S™, T, pn) is a covering of (S™/.,V).

Proof. We know that S™ is pathwise connected. Moreover, since the topology on S™/. is
defined as the final topology, the map p,, is continuous.

® We show that p, is open: Let O < S™ be open. Then p,!(p,(0)) = O u (—0) is also
open, and indeed p,(O) is open in S™/..

@ We construct evenly covered neighbourhoods: Let xg € S™ and consider the point /. €
$7/. Then p, ' ({zo/~}) = {0, —o}. Set

1 1
O4 :=={z eS|z — | < 5},O, ={zeS"||z+zo| < 5}

Then O, and O_ are disjoint, open in S™, and satisfy O_ = —O,. Set U := p,,(O4). Then
U is an open neighbourhood of xg/. in S"/.. We have p;;1(U) = O, U O_. The restrictions
Pnlo, and pplo_ are injective, and thus map O, and O_, respectively, bijectively onto U.

a

As a third example, we prove a general result which yields coverings. Recall that a topological
group is a triple (G, -, T), such that (G,-) is a group, (G, T) is a topological space, and the
algebraic operations

2 GxG-G, ThGE@-G
are continuous.

Theorem 4.1.9. Let (G, -, T) be a pathwise connected topological group, and let H € G be a
normal subgroup of (G,-) which is a discrete subspace of (X, T). Denote by p the canonical
projection p: G — G/H, and consider G/H with the quotient topology V (i.e., the final
topology induced by {p}). Then (G, T,p) is a covering of (G/H,V).

Proof.
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® We show that p is open: Let O € G be open. Then

7 @0)=JH 2= Jyz=Jv-0

zeO zeO yeH yeH

Left-translations T, : x — y -  are homeomorphisms, and we see that p~!(p(O)) is open in
G. This means that p(O) is open in G/H.

@ We construct an evenly covered neighbourhood of the unit element 1 of G: Since H is
discrete, we can choose an open set W < G with W n H = {1}. By continuity of the
algebraic operations, we find an open neighbourhood V of 1 with V - V~! € W. Now set

Then U; is an open neighbourhood of 1/ € G/H. We have

pH(Uh) = U y-V.

yeH

The sets y-V are open. Let us show that they are pairwise disjoint: assume we have y, z € H
and v,w € V with yv = zw, then

vt =y lzeVV T n H = {1},

and hence y = z.

Since H = ker p, we have for each y € H that p(y-V) = p(V) = U;. Since y-V and U; are
open in G and G/H, respectively, and p: G — G/H is an open map, also ply.v:y-V — U;
is an open map. Clearly, it is also continuous. Let us show that p|,.v is injective: assume we
have v, w € V with p(yv) = p(yw). Then also p(v) = p(w), and we find

vwte HnVV ™ = {1},
i.e., v = w. Alltogether, pl|,.v is a homeomorphism of y - V" onto U;.

® FEvenly covered neighbourhoods of other points are found by translating: The factor group
G/H is again a topological group, and hence translations in both, G and G/H, are homeo-
morphisms. The projection p is a homomorphism, in other words, for all x € G

po Tz = Tp(w) op.

Given z € G, set Uy, := Tp(y)(Ur). Then U, is an evenly covered neighbourhood of z/p
(with sheets zy -V, y € H).

a

Ezample 4.1.10. The additive group (R, +) becomes a topological group when endowed with
the euclidean topology £. It has the discrete subgroup Z, and the factor space R/Z is
homeomorphic to the unit circle S in R? endowed with the subspace topology 7 of the
euclidean topology of R%. A homeomorphism is given by map x/z — €27,

The above theorem implies that (R, &, p), where p(x) := 2™ is a covering of (S1,T).

We show a structure result about covering spaces.
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Proposition 4.1.11. Let (X, T,p) be a covering of (X, T). Then all fibers p~*({x}), z € X,
have the same cardinality.

The cardinality of fibers of a covering is called its degree. If the degree of a covering is
finite, say n, then one also speaks of an n-fold covering. Note that for every evenly covered
neighbourhood U the cardinality of the set of sheets lying over U is equal to the degree of
the covering.

For example, Proposition 4.1.7 gives a k-fold covering, and the degree of the covering
given in Theorem 4.1.9 is equal to the cardinality of the normal subgroup H.

Proof of Proposition 4.1.11. Let x € X. Choose an evenly covered neighbourhood U of =,
and let .S;, i € I, be the sheet over U. Consider a point y € U. Then in every sheet S; we find
a unique point §; € S; with p(7;) = y. Hence, a function ¢: I — p~1({y}) is well-defined by
@(i) := g;. This function is injective since different sheets are disjoint, and surjective since
the fiber of y is contained in the union of all sheets.

Since a fiber cannot be larger than X, we have

X=|J A{eeXlp' {2}l =r}

K cardinality
K<| X

By what we showed above, every set in this union is open. Since X is connected, thus only
one of these sets can be nonempty. Q

4.2 Lifting of continuous functions

The notion of a lifting of a map plays a central role.

Definition 4.2.1. Let (X,7) be a topological space and (X,7T,p) a covering of (X, T).
Further, let (Y, V) be a _topological space and f: Y — X a continuous map.
A continuous map f Y — X is called a lifting of f, if it satisfies p o f f-

(X, 7)

~ //7
e lﬁ
.
.
.
.

(Y,V) —= (X, T)

Let us show a uniqueness property. Despite being easy to prove, uniqueness of lifting is an
important property and often used.

Theorem 4.2.2. Let (X,T,p) be a covering of (X, T), let zo € X and iy be an element
of the fiber of xy. Moreover, let (Y,V) be a topological space, yo € Y, and f: Y — X be
continuous with f(yo) = xo. If (Y,V) is connected, then there exists at most one lifting f of
[ with f(yo) = Zo.

Proof. Assume that fi, f: Y — X are continuous functions with
pofi=pofo=1f filyo) = fa(yo) = Fo.
Consider the sets

A={yeY[fily) = fa(y)}, B:=Y\A
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® We show that A is open: Let a € A and choose an evenly covered neighbourhood U of
f(a). Let S be the sheet over U with f1(a) = f2(a) € S. Then

W= fit(9)n 2 1(9)

is an open neighbourhood of a in Y. If y € W, then f1~(y), fo(y) € S and p(f1(y)) = fly) =
p(f2(y)). Since pl|g is injective, it follows that fi(y) = fa(y), i-e., y € A.

©® We show that B is open: Let b € B and choose an evenly covered neighbourhood U of
f(b). If f1(b) and fo(b) belong to the same sheet S over U, injectivity of p|g together with
po fi = po fo implies that fi(b) = fo(b). Thus fi(b) and fo(b) lie in different sheets over U,
say S1 and S3. Set

W= f'(S1) N fy 1(S2).

Then W is an open neighbourhood of b in Y. We have f; (W) € S; and fQ(W) C S,, and
S1 N Sy = ¢ implies that W < B.

Since Y is connected and A # ¢, we must have B = (7. a

Note that the above proof simplifies if X is Hausdorff: in this case, A is closed simply by
continuity of f; and fa.

The question whether a lifting exists is a deep issue which lies at the heart of the theory
of covering spaces. In this place, we only consider a particular situation where existence of
liftings can be shown.

The following elementary lemma will be used repeatedly.

Lemma 4.2.3. Let (Y,d) be a compact metric space, and let {O; |i € I} be an open cover of
Y. Then there exists € > 0, such that every ball U.(y) with y € Y is contained in some set
O;.

A number e with the property stated in the lemma is called a Lebesgue number of the cover
{Oi | 1€ I}

Proof of Lemma 4.2.3. For each x € Y we find i(z) € I with z € O;, and then e(z) > 0

with Use(q)(7) S Oj(zy- The balls {U.(,)(x) |z € Y} form an open cover of Y, and since Y is
compact we find x1,...,x, € Y with

n
Y = U Ug(zi)(mi).
i=1

Set € := min{e(x1),...,€(x,)}. Given y €Y, choose [ € {1,...,n} with y € Uc,)(21). Then,
for each z € U(y),

d(z,z;) < d(z,y) + d(y, ;) < €+ €(x;) < 2€(xy).
This shows that Ue(y) S Usea,)(@1) S Oj(a,)- a

We give a general result on existence of a diagonal fill-in. It can be seen as proving existence
of a lifting with prescribed initial values.
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Theorem 4.2.4. Let (X, T, p) be a covering of (X, T), let (Y, V) be a topological space, let
a,be R with a < b, and denote

.{Y — Y x [a,b]
|y » wa)

Further, let f: Y — X and F: Y x [a,b] = X be continuous maps with F'or=po f Then
there exists a continuous map F:Y x [a,b] > X with Fov= f andpoF =F.

X

{ |

Y

Ll
;
;

YX[a,b]T}X

3

-
-
-

\\ 0
3

If (Y, V) is connected, then F is unique.

If Y = ¥, there is nothing to prove. Hence, assume throughout that Y # ¢J. The uniqueness
statement follows immediately from Theorem 4.2.2 since F is a lifting of F' with prescribed
values at Y x {a}. The existence result is the major part of the theorem.

The proof of Theorem 4.2.4 is slightly technical. Before we dive into the details, let us
illustrate the nature of the theorem by deducing that paths always can be lifted.

Corollary 4.2.5. Let (X,T,p) be a covering of (X, T), let f: [a,b] — X be a path in X,
set wg = f(a), and let Ty be an element of the fiber of xo. Then there exists a unique lifting
fila,b] > X of f with f(a) = Zo.

Proof. Let Y be a one-element set, say Y := {+}, endowed with the discrete topology. Let
¢:Y — X be the map ¢(*) := To, and F: Y x [a,b] — X be the map F(x,t) := f(t).
Theorem 4.2.4 provides us with a diagonal fill-in

(s} —2 X

L\L /Ii//)' J{P
{3} x [a,b] —— X
Set f(t) := F(x,t). Then
p(f(t)) = p(F(x,1)) = F(x,t) = f(t) for t € [a,b],
fla) = F(x,a) = (F ou)(x) = ¢(x) = &o.
Uniqueness is clear by Theorem 4.2.2. a

The main step towards the proof of Theorem 4.2.4 is to establish a local version.

Lemma 4.2.6. Let data be given as in the theorem. For each point y € Y there exists an
open neighbourhood W,, of y and a continuous function F,: W, x [a,b] — X, such that
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Proof. Let y € Y be fixed. For each s € [a,b] choose an evenly covered neighbourhood Ug
of the point F(y, s) € X. By continuity of F', choose open neighbourhoods V; € Y of y and
V! < [a,b] of s with

F(Vy x V]) € Us.

The family {V!|s € [a,b]} is an open cover of [a, b]. Let € > 0 be a Lebesgue number for this
cover. Choose n € N with Z’_Ta < ¢, and consider the partition of [a, b] given by the points

b—a

tyhi=a+k- for k=0,...,n.

For each k € {1,...,n}, choose sy € [a,b] with [tx_1,tx] S V{ , and set

Wy = ﬂ Vi -
k=1

Then W, is an open neighbourhood of y. This construction of W, ensures that

Vke{l,...,n}. F(Wy x [te—1,ti]) € Us, (4.1)
Our aim is to inductively construct continuous functions Fy,k : Wy x[a, t] — )NQ k=0,...,n,
with
Flw, =
Wy ~ ’//$ X

L\wyl e Jp (4.2)

W, xla,ty]| ——— X
v [7 ] Flwy x[a,ty]

> Base case: Set
N W, x {a} — X
- { yxda) - X
(z,a) — f(2)

Clearly, Fy’o is continuous and satisfies Fy,o o1 = f. By the assumption of the theorem, we
have

(po Fyo)(z,a) = p(f(2)) = (Fou)(z) = F(z,a) for z € W,.

> Induction step: Let k € {1,...,n} be given, and assume that Fy’k,l has already been
constructed. We want to continue F), ;_1 to a function defined on Wy, x [a, tx].

Denote

w, —

X
z Fy,k—l(Z,tk—l)
We have

(P o Ge)(Wy) = (po Fyu—1)(Wy x {ti1}) = F(Wy x {tso1}) € U,
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and hence W, = ;' (p™!(Us, )). Denote by Sy ;, i € I, the sheets over Us,. Then W, can be
written as the disjoint union of open sets

Wy = Jdr " (Sk.)-

el

For each 7 € I set
Gy = (plsi.) O Fli1 (s yxftnosote]* T (St) X [th-1,te] > X

This function is well-defined by (4.1), and clearly it is continuous and maps into S ;. Let
Gy.p: Wy x [tp—1,tx] = X be the unique function with

Viel. Gyl =Gyk,i-

Gt (Ski) X [ttt
By the gluing lemma, C;'y,k is continuous.
From the definition of Gy 4 ; we see that
Viel. po Gy,k,i = F‘g;zl(sk,i)x[tk—latk] (43)
in particular,
Vie IVze g, (Ski). p(Gyri(z,ti1)) = F(z,ti1) = p(Fyr-1(2,tr-1))
Since Fy k—1(%,tk—1) = Gr(z) € Sk for all z € §,;1(Sk}i)7 injectivity of plg, , implies

Viel. Gy k|~*1(sk Ox{te_1} Gy,k,i|§;1(sk,i)x{tk,l} = Fy,k—1|g;1(sk,i)x{tk,1}

Let F, 1: W, x [a,tx] — X be the unique function with

F1 yX[te—1,te] = Gy»k'

yx[0tx 1] = Fy k-1, Fy,

By the gluing lemma, Fy, & 1s continuous. By the inductive hypothesis it satisfies F%k oL = f ,
and by the inductive hypothesis and (4.3) it satisfies p o F & = Flw, x[a,t]-

The function Fy = ~y’n satisfies the properties required in the assertion of the lemma. [J
Passing to the global result is not anymore difficult.
Proof of Theorem 4.2.4. The family {W, |y € Y} is an open cover of Y. We claim that
Yy, y2 €Y. Fylaw,, aw,,)xlas] = Fual(w,, aW,y ) x[ast] (4.4)
Once this claim is established, we may define F as the unique function with
VyeY. Flw,xpan = Fy

and F will be continuous by the gluing lemma and make the required diagram commute since
all functions Fy, do so.
To establish (4.4), let y1,y2 € Y and z € Wy, n W, be given. We have

FZH(Zaa):(FZhO u)(z ( ) =( yzoL)(z)zﬁy2<Z’a>7
(po Fy,)(2t) = F(z, ):(po ) (2,1) for t € [a,b].
This shows that both paths t +— F, (2,t) and t — F,,(2,t) are liftings of t — F(z,t) with

initial point f(z) By uniqueness of liftings, they must coincide, i.e., Fyl (z,t) = Fm (z,t) for
all t € [a, b]. a
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4.3 The monodromy theorem

Another consequence of Theorem 4.2.4 is a topological version of the monodromy theorem.

Theorem 4.3.1. Let (X, T,p) be a covering of (X, T), let xg, 1 € X, and let f, g: [a,b] —» X
be two FEP-homotopic paths in X which both have initial point xog and terminal point 1.
Let &q be in the fiber of zo, and let f and § be the liftings of f and g, respectively, with inital
point To. Then f and g have the same terminal point and are FEP-homotopic.

Proof. Let H: [a,b] x [0,1] be a FEP-homotopy from f to g, i.e., H is continuous with
(Hl{ap)x(oy = f A Hljapyxiiy = 9) A (Hlgayxjo.] = 2o A Hlpyx[o1] = 1)

To fit notation, we switch variables: set F'(s,t) := H(t,s). Moreover, let f:[0,1] — X be
the constant function f(s) := Zg. Theorem 4.2.4 provides us with a diagonal fill-in

[0,1] x [a,b] ——

We switch back the roles of variables: set

H(t,s) := F(s,t).

Then we have

H(a,s) = F(s,a) = (Fou)(s) = f(s) = & for s € [0,1],
po H(t,0) =po F(0,t) = F(0,t) = H(t,0) = f(¢) for t € [a, b],
poH(t,1) =poF(1,t) = F(1,t) = H(t,1) = g(t) for t € [a, b].

By uniqueness of lifting, it follows that f(t) = H(t,0) and §(t) = H(t,1) for all t € [a, b].
Let k be the constant path k(s) := f(b), s € [0,1]. We have

(pok)(s) = p(f(b)) = p(H(b,0)) = H(b,0) = 1 = H(b,s) for 5 € [0,1],
ie, kisa lifting of the path h: s +— H (b, s) with initial point f(b) Since po F = F, also the
path s — H(b, s) is a lifting of h. It also has initial point H(b,0) = f(b), and uniqueness of
lifting implies

k(s) = H(b, s) for s € [0,1].
In particular, f(b) = H(b,1) = §(b). Clearly, now H is a FEP-homotopy from f to g. Q

Let us give a corollary to illustrate the power of the monodromy theorem. The importance
of this discussion is not in the proven statement, but in the concepts occurring in its proof.
We will meet the arguments made here again later in a more general and systematic context.

Corollary 4.3.2. Let Q(z) = Y,p_q arz™ be a polynomial with complex coefficients. If n > 1
and a,, # 0, then there exists a point z € C with Q(z) = 0.
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Proof. For r > 0 consider the functions
[0,27] x [0,1] — C

. n_l .
(t,s) — aprte™ +s > aprkettt
k=0

. { [0,27] x [0,1] — C |
(t,s) — Q(s-re?)

Then H and K are continuous, and

Vte [0,2n]. H(t,0) = a,r"e™ A H(t,1) = Q(re')
Vs e [0,1]. H(0,s) = H(2m,s)

Vte [0,27]. K(t,0) =ag A K(t,1) = Q(re)
Vs e [0,1]. K(0,s) = K(2m,s)

Now choose r such that

r>max{ Tan] n| Z \ak\}

Then the function H maps into C\{0}, and we can rescale and rotate H in such a way that
the resulting map H maps into S' and keeps endpoints fixed:

Hit,s) := ’?' for (t,s) € [0,27] x [0, 1].

=
—~
Q@F

»
=

=
—
~—

Clearly, H is continuous.
Assume now that @ has no zeroes. Then the function K maps into C\{0}, and we can
make the same construction:

K(t,s) |K(0,s)]

K(t.9) = ol 09

for (¢,s) € [0,27] x [0,1].

Plugging together H and K, we obtain a FEP-homotopy between the paths f(t) := ™! and
g(t) :=1 for t € [0, 27].
Consider the covering of S? given by the space R with covering projection p(t) := e

The liftings of f and g with initial point 0 are obviously given as

2mit

f@) = %t, g(t) :==0 for t € [0, 27].

By the monodromy theorem the liftings must have the same endpoint, i.e., n = 0. ]

4.4 The lifting criterion

We already saw that coverings are closely connected with fundamental groups. Existence of
lifting of paths and homotopies (the monodromy theorem) plays a crucial role when working
with 7. The following theorem is the lifting criterion.
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Theorem 4.4.1. Let (X,T) be a topological space and (X, T,p) be a covering of (X, T).
Further, let (Y, V) be a pathwise connected topological space and ¢: Y — X a continuous
map. Fiz a base point yo € Y, set xg := ¢(yo), and fix To € p~1({z0}).

There exists a lifting ¢: Y — X of ¢ with ¢(yo) = Zo if and only if

m1(9) (71 (Y, 90)) < m1(p) (m1(X, Z0))- (4.5)

Necessity of the stated condition (4.5) is clear: if we have a lifting

)
¢

el

Y

then we can apply m; to obtain

~ )
o

, T
m1(p)
, L

’/Tl(X
X, x0)

T (Y, y0) o 1 (

and this diagram immediately implies (4.5).

Proof of sufficiency of (4.5). Assume that (4.5) holds. The idea to construct a lifting is
obtained by reverse engineering: If we already had a lifting, say ¢: Y — X, then for every
path f in Y the lifting f: [0,1] — X of the path ¢ o f: [0,1] — X is given as ¢ o f. In

particular, we must have ¢(f(1)) = f(1). Since Y is pathwise connected, every point of Y’
can be realised as f(1) with suitable f.

@ Definition of a map ¢: For each y € Y\{yo} choose a path fy:[0,1] — Y with initial
point yo and terminal point y. Such paths exist, remember Corollary 1.7.13. Moreover, we
set fy, = Ly,. Let fy: [0,1] — X be the lifting of the path ¢ o fy:[0,1] - X with initial
point Zg, and define

$y) = f,(1).
The fact that po ¢ = ¢ is built in the definition. We have

p(6(y) = p(fy (1) = £,(1) = y.

Moreover, since the lifting of the constant path 1,, with initial point Z¢ is 1z,, we have

d(yo) = 1z,(1) = Zo.

@ We show independence of the choice of f: Let y € Y be fixed, and let f and g be two
paths in Y which both have initial point yy and terminal y. Denote by f and g the liftings
of po f and ¢ o g, respectively, with initial point 3. Now consider the loop

h:= f u g(_ € g(Yz y0)7
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and let f:L be the lifting of h with initial point Zo. We split h into the parts lifting f and g,
and set hy(t) := h(§) and hy(t) := h(1 — 5). Then hy is the lifting of f with initial point Zo,
ie., iLf = f. The path ng is the lifting of ¢ with initial point iz(l)

The inclusion (4.5) guarantees existence of a loop d € £(X, &), such that
¢poh~po d.

We view d as lifting of the path p o d with initial point Zg, and recall that & is the lifting
of ¢ o h with the same initial point. By the monodromy theorem the terminal points of the
paths d and h coincide, i.e.,

h(1) = d(1) = &o.

Returning to the splitting of h in the parts iLf and Bg, we now see that iLg is the lifting of ¢
with initial point Zo, i.e., hy = g. It follows that

F) = hp) = (3) = hy(1) = 501).

® We show that ¢ is continuous: Again fix y € Y. Choose an evenly covered neighbourhood
U € X of the point ¢(y). Then ¢~ (U) is a neighbourhood of y, and hence we find a pathwise
connected neighbourhood V€ Y of y with ¢(V) € U.

We use the freedom in the choice of the paths for the definition of &, which was established
in the previous step, to show that ¢(V') is pathwise connected. Given z € V, choose a path
fy,~ in Y with initial point y and terminal point z. Denote by f, . the lifing of ¢ o f, . with
initial point fy(l) Then f, = f, . is a path connecting yo with z, and fy ] fyz is its lifting
with initial point Zo. Hence, ¢(z) = fy’z(l)7 and see that fy,z is a path connecting ¢(y) with
P(2).

Our choice of V, and the fact that p o ¢ = ¢ guarantees that p(¢(V)) < U, and hence
that

o) cp ) = s

el

where S; are the sheets over U. Since the sheets are open and pairwise disjoint, it follows
that ¢(V') lies entirely in one single sheet, say ¢(V') < S; with a particular j € I. Knowing
this, we can write

QNS(Z) = ((p|5j)71 ) d))(z) for z €V,

and obtain that 45|V is continuous. Since V is a neighbourhood of y, it follows that q~5 is
continuous at the point y.

a



Chapter 5

The fundamental group

Seeking a classification of topological spaces (up to homeomorphism), one associates algebraic
objects with a topological space which are homeomorphism invariants. We define and study the
fundamental group of a topological space. This is the probably simplest construction of the kind,
yet already yields a powerful invariant.

§1. 87
§2. 91
§3. 93
§4. 96
§5. 99
§6. 101
§7. 106
§3. 110
§9. 116

5.1 Construction of the fundamental group

A path in a topological space is called a loop, if its initial and terminal points are equal. The
common initial and terminal point is called the base point of the loop. We use the notation
L (X, o) for the set of all loops defined on the unit interval and based at xo:

L(X,x0) :={f:[0,1] » X | f continuous, f(0) = f(1) = zo}.
The fundamental group is the set of all loops with fixed base point and up to FEP-homotopy.
Definition 5.1.1. Let (X, T) be a topological space and zy € X. Then we define

m (X, zg) 1= L(X, 170)/%.
The set 71(X, xo) is called the fundamental group of (X, T) with base point zg.

87
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Given a continuous map between two topological spaces, say ¢: X — Y, we naturally have
a map between loops with corresponding base points, namely

bo.: { L(X,z0) — Z(Y,¢(z0))
fo—= ¢of
By Proposition 1.6.8 (iv), we have
fr~g = dof~goy
and hence the map ¢ o. can be pushed to the factors modulo FEP-homotopy.

Definition 5.1.2. If (X, T) and (Y, V) are topological spaces, o € X, yp € Y,and ¢: X -» Y
is a continuous map with ¢(z¢) = yo, then we define 71 (¢) as the unique map with (p denotes
the canonical projection)

£(X, ) S ] Z(Y,90)

Written explicitly, this is
[11(D)|(f/x) = (60 f)/~ for f/~ € m (X, 0).

Obviously, we have the usual computation rules (whenever the composition is defined and
respects base points)

mi(porp) = mi(p) om(p), mi(idx) = idr, (x,z0) -

We have defined concatenation f-g and reversion f~! of paths as partial operations depending
on the domains and endpoints of the involved paths. Our goal is to push these operations to
m1(X, x0). Achieving this requires some technical effort.

We use the notation P (X, zg,x1) for the set of paths in X defined on the unit interval
and having initial point g and terminal point x;:

P(X,z0,21) == {f:[0,1] — X | f continuous, f(0) = zo, f(1) = 21}.

Note that g(X, 2170) = @(X, Io,xo).
First, we take care of different domains of paths by introducing suitable reparameterisa-
tions. Set

a(t):=t—1, B(t):=2t
Then we denote
P(X,z0,21) X P(X,x1,29) — P(X,z0,22)
{ (f,9) = [f-(goa)]op
. { P(X,x0,21) — P(X,21,10)
S f - floa
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Explicitly, this is

EitD if t e [0, 1]
(o) = {g(Zt—l) ifte[l,1]
f=@)=f(1-¢) for t € [0,1]

Note that, obviously, (f<) = f.
Second, we check compatibility with FEP-homotopy. By Proposition 1.6.8 (ii) and (v),
we have

Vfi, f2 € P(X,20,21), 01,92 € P(X,x1,22). (firforgi~gs = fingi = famgs)
and by Proposition 1.6.8 (iii) and (v),

Vf,ge P(X,zo,21). (frg = f~~g")
We see that the maps = and .~ induce operations on equivalence classes of loops.

Definition 5.1.3. Let (X,7) be a topological space and xzo € X. We define operations on
m1(X, x0) as the unique maps with (p denotes the canonical projection)

L(X,30) x L(X,m0) —— L(X, 20) L(X, 20) — L(X, m0)
7T1(X,l‘0) X 7T1(X,I0) i d 7T1(X,I0) 7T1(X, 1'0) 7i7—717> 7T1(X,£170)

Written explicitly, this is

(f/z) : (g/z) = (f 'g)/z for f/wag/m € 71—1()(;:50);
(f/~)"" = (f7)/~ for f/~ € m(X, z0).

Moreover, we denote by 1 € 71 (X, o) the equivalence class of the constant loop 1, : t — xo.

Theorem 5.1.4. Let (X, T) be a topological space and xo € X. Then m1(X,xg) is, with the
operations defined above, a group.

Let (X, T) and (Y, V) be topological spaces and xg € X, yo € Y. For every continuous map
¢: X — Y with ¢(x¢) = yo, the map w1(¢): m (X, z0) = 71(Y, y0) is a group homomorphism.

We prove validity of computation rules for paths rather than loops.

Lemma 5.1.5.
(i) Vfe P(X,x0,21),9 € P(X,x1,22),h € P(X,x0,23). (fug)mh~, fu(guh)
(i) Vfe P(X,xo,21). fuly =y f~f

(ili) Vf e P(X,z0,21). fufrly A fuf ~1y,

Proof.
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® We show associativity: Use Lemma 1.6.4 (i) and (iii), and Proposition 1.6.6 (ii), to compute
(goa)

)
(fug) wh=[(f(goa))oB]wh=([(f (g00))oB] - (hoa))op
[(fOﬁoﬂ) (goacBoB)] - (hoaoB) = (fofoB) - [(goacBop) - (hoaopB)]
~ ) - [(goBoaop) - (hoaoBoacf)| = (f - [(goBoa) - (hoaofoa)])of
( [( -(hoa))ofoa)])of = fu ((g- (hoa))oB) = fu(gmh).

@ We show that 1 acts as unit element: Unfolding the definition gives

f2t) iftelo,3]
x1 if t e [$,1]

o

f']lazl =(f-(]lmooa))oﬁ=

B PO if t € [0, 1]
]1% n f = (]1;50 (f Oé)) B = {f(Qt _ 1) ifte [%,21]
The maps
_ (st ifte 0, ] s e [0,1]
Hy(t,s) := {m ifte [ﬁjl],s €[0,1]
e if t €[0,5],s€[0,1]
Hy(t,s) = {f((t— $)ts) ifte [%,i],s [0, 1]

are well-defined and continuous (by the gluing lemma), and we see that
f%f']lau andf%]lonf.
® We show that .~ acts as inverse element: Unfolding the definition gives

B - f(2t) ifte[&%]
(fuf )(t)_{f(QZt) if t e [5,1]

The map

1
Hits) i f(2st) ifte [01, 51,5€[0,1]
f(s(2—=2t)) ifte[3,1],5€[0,1]
is well-defined and continuous, and we see that f = f~ ~ 1,,.

Applying the already proven with f instead of f, yields that f~w f ~ 1,,.

a

Proof of Theorem 5.1.4. The fact that m1(X,x0) is a group follows immediately from the
lemma. For associativity remember Proposition 1.6.8 (v).

It remains to check that m(¢) is a homomorphism. To this end, let f,g € L(X,x¢) be
given. Lemma 1.6.4 (ii) yields

¢po(fug)=do(f (goa))of=((¢of) (pogoa))of=(pof)u(dog),

and we obtain

m1(8)(f/~9/x) = [po(fng)]/x =[(@0f)m(d0g)]/x = (¢ f)/~(d0g)/~.
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As a corollary we obtain that m (X, z¢) is a homeomorphism invariant.

Corollary 5.1.6. Let (X, T) and (Y,V) be topological space, and o € X, yo € Y. If
¢: X — Y is a homeomorphism with ¢(xg) = yo, then w1(¢p): (X, z9) — m (Y, y0) is an
isomorphism.

Proof. We have ¢~ 0 ¢ =idyx and ¢ o ¢~ ! = idy, and hence

m(¢7 ") omi (@) = mi(idx) = idr, (x,20), (@) oM (¢7") = m1(idy) = idr, (v,po)»
and hence 1 (¢) is an isomorphism with inverse 71 (¢~1). Q

It is often a difficult task to compute the fundamental group of a given space, even for spaces
as simple as a circle. However, one class of spaces whose fundamental group is trivial can
easily be given.

Ezample 5.1.7. Let (Z, T) be a topological vector space, X a convex subset of Z, and zp € X.
Then 7(X, z¢) = {1}.
To see this, let f e £(X,xzp). The function

H(t,s) := (1 —9)f(t) + sxo for t,s € [0,1]

is continuous and maps into X by convexity. Clearly, it is a FEP-homotopy from f to the
constant path 1,,.

Remark 5.1.8. While the fundamental group is a powerful homeomorphism invariant of a
topological space, it is far to weak to classify topological spaces up to homeomorphism.

We just saw that every convex subset of a topological vector space has trivial fundamental
group. Thus, for example, 71 ([—1,1],0) = 71({0},0). However, the interval and the singleton
space cannot be homeomorphic.

5.2 The fundamental group of the circle

In this section we compute the fundamental group of the unit circle in the plane (for practical
reasons, we identify R? with the complex numbers C)

Sti={zeC||z| = 1}.

Geometric intuition suggests that up to deformations a loop in S* should correspond to the
number of times it winds around the origin. The proof that this intuition is indeed correct
relies on the machinery of covering spaces.

Theorem 5.2.1. 71(S',1) = Z
Proof. The map

. { [0,1] — S

t - e2‘n’int

is a loop in S! with base point 1. We define our candidate for the required isomorphism as

o { Z — m(Sh)
no— fu/s
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We are going to analyse this map making use of the covering exhibited in Example 4.1.10.
Recall that it is given by the space R and the covering projection p(t) := e,
The lifting of the path f,, with initial point 0 is the path

f.{[o,l] - R

" t — nt

® We show that ® is injective: Let n,m € Z, and assume that f, ~ f;,. By the monodromy
theorem, we have n = f,,(1) = fi,(1) = m.

@ We show that ® is surjective: Let g € £(S',1) be given, and let §: [0,1] — R be the
lifting of g with initial point 0. Then

e’ = (pog)(1) = g(1) =1,
and hence g(1) € Z. Set n := §(1). The paths g and f, have the same initial and terminal
points. The map H(t,s) := (1 — 5)g(t) + sfn(t) is a FEP-homotopy from g to f,, and thus
therefore g ~ f,. It follows that

g=pog~po fin) = faq)

® We show that ® is a group homomorphism: Let n,m € Z be given. The lifting of f,, with
initial point m is given as fi"™(t) := m + nt. The lifting of f,, = f, with initial point 0 is
thus equal to g := fm . fT(Lm). This is a path with initial point 0 and terminal point m + n,
and thus § ~ fi4n. Applying the covering projection, it follows that f,,, = fr, & fiin-

a

To demonstrate a typical way how the fundamental group can be applied, we deduce
Brouwer’s fixed point theorem in dimension 2.
Let B™ be the n-ball (here |.| denotes the euclidean norm)

B" :={z e R"||z]| < 1}.

Corollary 5.2.2. Every continuous map ¢: B> — B? has a fized point.

We start from the usual lemma (for completeness we provide its proof).

Lemma 5.2.3. Assume that ¢: B> — B? is continuous and has no fized point. Then there
exists a continuous map r: B2 — S with r|g1 = idg.

Proof. Let € B? and consider the equation

[(1 = Nz + Xp(2)||* = 1 where X € R. (5.1)
The left side is a quadratic polynomial in A, in fact,

P(A) == [(1 = Nz + Ao () [* = N[é(z) — z|* + A( = 2[2|* + 2Re(w, (2))) + [z[*.

We have P(0) = |#]|* < 1 and lim)|_,, P(X) = +00. Thus the equation (5.1) has one solution
A, € (—0,0] and one A} € [0,00). These two solutions coincide if and only if |z| = 1 (in
which case 0 is the only solution of (5.1)). By the quadratic formula, we have

R L P eV TR
N = g1t | Rl -2 Rel. o) —y/ (2ol ~2Re(r. 6(2)))° ~4]6(x) [Pl
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and we see that A\, depends continuously on z.
The map defined by

r(z) = (1= A\p)z + A\ p(x) for z € B
is thus continuous, and maps B? into St with r(z) = z if |z| = 1. Q

Proof of Corollary 5.2.2. Assume ¢: B?> — B? is continuous and has no fixed point. Choose a
continuous function r: B? — S! with r|g1 = idg: as in the lemma, and denote by ¢: S1 — B2
be the set-theoretic inclusion map. We have

B2 ™1 (B?)
LT \ and hence m (L)T N
§l— 35 (1) ————— m(S")

We see that m(r) is surjective, which contradicts the fact that m;(B?) = {1} by convexity
and 71(S'!) = Z by Theorem 5.2.1. ]

Remark 5.2.4. To prove Brouwer’s fixed point theorem in arbitrary dimension would require
machinery suitable to deal with higher dimensions: m; captures 1-dimensional loops.

Still, the method presented above may be thought of as one of the “intrinsically right”
approaches. Another common method, working with the simplex instead of the ball and using
Sperner’s lemma, also exhibits an important method and is a “right” approach. However, it
goes towards homology theory and thus rather belongs to algebraic topology.

The result certainly has nothing to do with differentiability. The proof given in many
analysis books, using differentiable approximations and the Jacobian, completely misses the
point.

5.3 Some properties of

The group 71 (X, o) in general depends on the base point zg, but this dependency is easily
understood.

Lemma 5.3.1. Let (X, T) be a topological space and let h: [0,1] — X be a path. Then
m1 (X, h(0)) = m1 (X, h(1)).
Proof. We have the map

LK) — 2(Xh(1))
on: f o e eren

Let f,g € (X, x0). If f ~ g, then also ¢p(f) ~ ¢n(g). We define ®;, as the unique map
with (p is the canoncial projection)

L(X,h(0)) —2 L (X, h(1))
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We have

(hh.f.h).(h‘_.g.h)%h<_.f.(h.hh).g.hmhh.(f-g).h,

ha(h" mwfuh)sh™ ~f h  w(hefauh")nhxf
The first relation implies that @, (f/~ - 9/~) = Pn(f/~) - Pr(g/~), and the second that
(I)he o (I)h = idTn(X,ﬂCo) and (I)h o Cbhe = idfrl(X,acl)' D

In view of Lemma 5.3.1 it is justified to drop the base point and speak of the fundamental
group 1 (X) whenever (X, T) is pathwise connected.

It is intuitively expected, and also easily proven, that one may restrict attention to path-
wise connected spaces when dealing with fundamental groups.

Lemma 5.3.2. Let (X, T) be a topological space, o € X, and let C' be the path-component
of X with xg € C. Then

7T1(X,.’E0) = 7T1(C,.’£0).
Proof. Let t: C' — X be the inclusion map. Then we have the homomorphism
7T1(L)I 7'('1(0, xo) g 7T1(X,1'0).

The image of a loop is a connected subset of X, and hence every loop in X with base point
in C' must lie entirely in C'. Thus 7 (¢) is surjective. The image of a FEP-homotopy in X is a
connected subset of X, and hence every FEP-homotopy in X between loops in X with base
point in C must map entirely into C'. Thus each two loops with a base point in C' which are
FEP-homotopic in X are also FEP-homotopic in C, and it follows that 71 (¢) is injective. [

Let us introduce a name for spaces with trivial fundamental group. The geometric intuition
is that these are spaces which have no holes: every loop can be continuously deformed into
a single point.

Definition 5.3.3. A topological space (X, T) is called simply connected, if it is pathwise
connected and 71 (X) = {1}.

An equivalent formulation of this definition which is often practical reads as follows.

Lemma 5.3.4. Let (X, T) be a pathwise connected topological space. Then 7 (X) = {1},
if and only if each two paths having the same initial point and the same terminal point are
FEP-homotopic.

Proof. To prove the forward implication, let 29,21 € X and f,g € P(X,x9,21). Then fug
is a loop in X with base point x(, and hence we find a FEP-homotopy H from f = g to the
constant path at zy. Explicitly, we have

1 1
H(t,0) = f(2¢t) for t € [0, 5], H(t,0) =g(2(1 —1t)) for t € [57 1],
H(t,1) = H(0,s) = H(1,s) =z for t,s € [0,1].
We define a map K: [0,1] x [0,1] — X as

H(t,2s) if (t,s) € [0,1] x [0, 3]
_JH(3,4(1—1)s) if (t,s) € [5,1] x [0, 3]
K(t,s) = H(1—1t,2(1-3s)) if (¢,s) € [0, %] X [%7 1]
H(3,4(1—t)(1—s)) if (t,s) € [5,1] x [5,1]
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Inspecting this definition and remembering the above stated properties of H shows that K
is well-defined, hence continuous by the gluing lemma, and satisfies

H(,0)=fw1l,, H(,1)=g¢gsl,, H(0,.)=u1z, H(1,.)=u1.

Since fw1l,, ~ f and g=1,, ~ g, it follows that f ~ g.
For the backward implication it is enough to note that f has the same initial and terminal
point as 1. a

The argument in Example 5.1.7 which led to the fact that convex sets are simply connected
deserves a more systematic treatment.

Definition 5.3.5. Let (X, T) be a topological space.

(i) A subset Y of X is called a retract of X, if there exists a continuous map r: X —» Y
(here Y is endowed with the subspace topology T|y) with r|y = idy. Each map r with
this property is called a retraction.

(ii) A subset Y of X is called a deformation retract, if there exists a continuous map
H: X x[0,1] - X with

VeeX. Hz,0) =2, HXx{1})cY, VyeY,se[0,1]. H(y,s) =y. (5.2)

One should think of the map H in (ii) as a deformation of the identity (which is x — H(x,0))
to a retraction (namely, z — H(z,1)). In particular, if Y is a deformation retract of X, it is
also a retract of X.

Proposition 5.3.6. Let (X, T) be a topological space, Y < X, yo € Y, and denote by
t:Y — X the inclusion map.

(1) If Y is a retract of X and r: X — Y s a retraction, then w1(¢): 71 (Y, yo) — m1 (X, yo)
is injective with left-inverse m(r).

(ii) If Y is a deformation retract of X, then w1 (¢): m1(Y,y0) — m1 (X, yo) is bijective with
inverse w1 (r) (where r is a retraction given by a deformation H ).

Proof. Assume that r: X — Y is a retraction. Then r o ¢ = idy, and r(yo) = yo, t(yo0) = Yo-
Hence, 71 (r) o m1(¢) = idz, (v,y0)-

Assume now that Y is a deformation retract of X, choose a map H as in Defini-
tion 5.3.5(ii), and let 7: X — Y be the retraction r(x) := H(z,1). Let f € L(X, o).
Then the map

is a FEP-homotopy from f to tor o f. Thus 71 (¢) o m1(r) = idx, (x,y0)- Qa
Ezxample 5.3.7. Let 0 <7 <1 < R < o0, and consider the annulus

T, r:={zeC|r <|z| <R}
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The unit circle S! is a subset of T, r. The function

H(z,s): -

R S T, r,s € [0,1
T2 =) or z€ T, g,s€0,1]

maps T, r x [0,1] continuously into T, r and satisfies all properties (5.2). Hence, S! is a
deformation retract of T, g, and we conclude that 71 (T, r) = Z.

Definition 5.3.8. A topological space (X, T) is called contractible, if there exists a point
xo € X such that {z(} is a deformation retract of X.

Writing out the condition for X being contractible gives:

Jzge X 3H: X x [0,1] — X continuous.
H(.,0)=idx AnH(,1) =29 A H(zo,.) =z0 (5.3)

Corollary 5.3.9. If (X,T) is contractible, then X is pathwise connected and 71 (X) = {1}.

Proof. Any point ¢ € X can be connected with xy with the path s — H(z,s), and by
Proposition 5.3.6 (i) we have m1(X) = m ({zo}) = {1}. Q

Ezxample 5.3.10. Consider a slit annulus
T, r\(—2,0] = {pe’ e C|r < p < R,0 € (—m,m)}.

The function

H(pe®, s) := G —ps)(p Y e?1=%) for pe (r,R),0 € (—m,m),s € [0,1]

maps (T, g\(—0,0]) x [0,1] continuously into T, r\(—c0,0] and satisfies the properties
(5.3) with the point z¢ := 1. Hence, T, g\(—0,0] is contractible, and we conclude that
m1(Tr,r\(=0,0]) = {1}.

5.4 Products and unions

The fundamental group of a product of spaces can be determined from the fundamental
groups of the single spaces in a straightforward way.

Proposition 5.4.1. Let (X;,T;), i € I, be a family of nonempty topological spaces, and
consider the product X :=[[,.; X; endowed with the product topology. Moreover, let z; € X;
for each i€ I, and set z := (2;)ier. Then

m(X,2) = [ [m(X, 2).
el

Proof. Denote by p;: X — X; the canonical projections. Then we have the homomorphisms
m1(pi): m (X, z) > m1 (X, 2;), and can consider their product map

¢:=[[m): m(X,2) = [ [m(Xi,2).

iel el
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We are going to show that ¢ is bijective by constructing an inverse.

For loops f; € ¥£(X;, %), we can consider the product map f := [[,.; fi € L(X,2).
Assume that ¢g; € £(X;, z;) are FEP-homotopic to f;, and let H;: [0,1] x [0,1] — X; be a
FEP-homotopy from f; to g;. Then the product map

H:=]]H:[0,1] x[0,1] - X

iel

is a FEP-homotopy from f to g := [[,c; gi- Thus a map ¢: [[,.; m1(X;,2) — m(X, 2) is
well-defined by setting

¢((z zeI = (Hfz) (5-4)

We have
(60 0) ((fi/~)ier) = [(flﬁ) ]=(IIWKpﬂ>KIIL)AJ
(7T1 P [(U ) ])je[ B ((pj ngi)/m)jel = (fj/~)jer;
and

oo s/x) = [ ([Tm®)(1/0)] = ¢[(@io H/0) o] = ([Twio D)/ = /.

el el

a

As an example, let us compute the fundamental group of a torus.

Example 5.4.2. The torus T is the product T := S* x 8. It can be embedded homeomor-
phically into R?: fix 0 <7 < R < o0, and set

o (R + rcosa)cos 3
P(e, ) := | (R+rcosa)sinp
rsin o

This gives the well-known image of a doughnut.
From the above proposition, we obtain that 71(T) = Z x Z.

Also the fundamental group of a union of spaces can be determined from the fundamental
groups of the single spaces (under some additional hypothesis). This is a much deeper
construction, and we will return to it later. In this place, let us only observe that the group
of a union cannot be too large.

Proposition 5.4.3. Let (X,T) be a topological space and let {U; |i € I} be an open cover of
X. Assume that

) (Ui # @
el

(ii) Vi,jeI. U; nU; pathwise connected

Moreover, denote for each i € I by v;: U; — X the set-theoretic inclusion map. Then X is
pathwise connected and the group m (X) is generated by | J,c; m1(¢i)(m1(Us)).
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Proof. The condition (ii) implies in particular that each set U; is pathwise connected. Re-
membering Theorem 1.7.8 (iii), we obtain that X is pathwise connected.

Throughout the following fix a point x¢ € [),.; Ui, and use this point as base point for
computing fundamental groups.

Let f € £(X,z0). The family {f~1(U;)|i € I} is an open cover of [0,1]. Choose a
Lebesgue number € > 0 for this cover. Next, choose n € N with % < ¢, and consider the
partition

el

1
ty:=k-—fork=0,...,n
n

Finally, choose iy € I for k € {1,...,n}, such that [tx_1,tx] < f~1(U;,).

Since U;, , n U;, is pathwise connected and contains the point xg, we find a path g in
Ui,_, N U;, with initial point 2 and terminal point f(¢;). Let a be the affine map of [0, 1]
onto [tk,l,tk], and consider the paths fi: [0,1] — X defined as

(flo,e1 0 01) mgi itk =1
Ter=q g% (flpegoon)mgy ifk=2,...,n—-1
gn—1® (flt_s ] © On) if k=n

We can represent f modulo FEP-homotopy as the product

fimowf=((flogocr)mgr) m (g1 o (flpmyoaz)mgs ) s
. (9n—2 " (f| tn_2,tn_1] © Qp—1)® 9n-1) (gn—l " (f|[tn,1,tn] © an))
~ (flo,jo1) = (91 - 91) (fliti ey 02) = (951 - 92) =
= (flitn_aitn 11 ©n-1) ® (g0t ® gn1) @ (Flitn_s,0] © )
~ (flo,e1 0 01) ® (flpey 2] © 2)
. (f\[tn,z,tn,l] O_1) ™ (f‘[tn,,l,tn] oap) ~ f

Clearly, fx is a loop with base point z(, and hence we have in m (X, x¢)

The loop f lies entirely in U, , i.e., can be considered as an element of (U;,,, x). Strictly
speaking, the codomain restriction of fx to a map fi: [0,1] — U;, belongs to Z£(Uj,, xo).
Clearly, fr = [m1(tk)](fr), and we see that f/. lies in the Subgroup generated by

U (ue) (m1 (Ui 20)).-

a

As an example let us compute the fundamental group of a sphere with dimension at least 2.

Example 5.4.4. Let n = 2. The n-sphere S™ is simply connected.
Write the sphere as union of the two subsets obtained by removing the north pole and
south pole, respectively. Using spherical coordinates (see, e.g., Remark 4.1.6) we can write

Uy := S™{(0,...,0,1)} = ®([0,27]" " x (0,7])
Uy := S™\{(0,...,0,-1)} = ([0, 27]" " x [0, 7)).
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Then
Uy nU; = S™\{(0,...,0,1),(0,...,0,-1)} = ®([0,27]" " x (0, )).

We see that Uy, Us; and Uy n Uy are pathwise connected.

By means of the stereographic projection (taking as projection center the north- or south
pole), Uy and U, are homeomorphic to R™. Thus 71 (Uy) = 71(Usz) = {1}. Proposition 5.4.3
applies and yields that m1(S™) = {1}.

5.5 The fundamental group of the projective space

The n-dimensional projective space P, over the field of real numbers can be identified bijec-
tively with a factor of the n-sphere. Namely, let ~ < S™ x S™ be the equivalence relation

r~ye(z=y v ar=—y)

Then P, =~ S™/.. Tacitly making this identification, we can topologise P,, with the final
topology inherited from S™ via the canonical projection p,: S™ — S™/.. In this way, P,
becomes a compact space which is pathwise connected. It is also Hausdorff, since the relation
~ is closed in the product topology.

Theorem 5.5.1.
Z ifn=1

Z/og ifn=2

lle

1 (]Pn)

The proof of this theorem exhibits an important general idea. Namely, that the fundamental
group is related to the fibers of a covering.

Proof. To establish the assertion for “n = 17, we show that S!/. is homeomorphic to S*.
Thereby, we again think of S! as a subset of C. Let ¢: S — S* be the map (z) := 22
Clearly, v is continuous and surjective. We have

z~w s P(z) = P(w)
Thus there is a bijection ¢: S1/. — S with

P

"] /

S/

Since Sp/~ is endowed with the final topology, ¢ is continuous. Since S? /~ is compact and
S is Hausdorff, ¢ is a homeomorphism.

To treat the case “n > 2” we are going to analyse the fundamental group 71 (S™/.) using
the covering from Proposition 4.1.8. Recall that this covering is given by the space S™ and
covering projection p,,.

To start with, let us fix notation. Set z¢ := (1,0,...,0)/. € S™/., which will be used as
base point, and set Zo := (1,0,...,0). For a loop f € £(5"/., o) denote by f the lifting of
f with initial point Zg.
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Now we use that the covering p,,: S™ — S™/. is 2-fold. For every loop f € 2£(S"/~,x0)
the terminal point of a lifting f belongs to the two-element set {Zo, —To}. Now we use that
S™ is simply connected. If f,g € L(S™/-,xo) with f(1) = g(1), then f ~ g and hence f ~ g.
We conclude that mq(S™/.) has at most two elements.

Let 1,, be the constant path at xg. Its lifting ]leo clearly is the constant path at . If
f is aloop with f ~ 1,,, then by the monodromy theorem f(l) = Zo. In order to show that
m1(S™/.) # {1}, it is thus sufficient to find one loop f with f(1) # Zo.

Consider the path f: [0,1] — S™ given as

f(t) := (cos(wt),sin(xt),0,...,0) for t € [0,1]. (5.5)
Then f(0) = Zo and f(1) = —Z,. Pushing f to S"/. gives a loop with base point z
@) = (pno f)t) = (cos(wt), sin(nt),0,...,0)/ for t € [0,1].

By definition f is the lifting of f.
To conclude the proof, note that up to isomorphism there is only one group with two
elements, namely Z/27Z. Q

We demonstrate another typical way to apply knowledge about the fundamental group, and
deduce the Borsuk-Ulam theorem (again, proving the result also in higher dimensions would
require more machinery).

Corollary 5.5.2. Let n > 2. Then there exists no continuous map ¢: S™ — S with

¢(—x) = —¢(x) for all x € S™.

Proof. Let ¢: S — S! be continuous and assume towards a contradiction that ¢(—xz) =
—¢(x) for all € S™. This implies

Vo,ye S". z~y = ¢(z) ~ ¢(y)
Hence, there exists a map 1: S/ — S/ with

gn— L 5

| |

") S/

Since S™/. carries the final topology, ¢ is continuous. We thus have the homomorphism
m(): m(S"/~) = L/og — m(S) =2

Since Z contains no elements of order 2, we must have [m1(¢)](f/~) = 1 for all f/~ €
™1 (SW/N) B
Consider the path f from (5.5). Then

(60 F)(0) = (d0), (o f)(1) = d(—io) = —d(do).

Pushing ¢ o f to a path in S1/. gives aloop g :=pio(po f) By the monodromy theorem,
g # 1. Pushing f to a path in S™/._, gives a loop f := p, o f. We have

[T (D)I(f/~) = [0 (pno )/~ = [pro) o fl/~ =g/~ # 1,

and have reached a contradiction. a
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5.6 The Seifert—van Kampen theorem

We saw in Proposition 5.4.3 that (under some hypothesis) the fundamental group of a union
(Ui Ui is generated by the union of the fundamental groups of the single spaces U;. The
Seifert-van Kampen theorem determines the redundancies in this generating system. In fact,
it says that only the minimal relations between the elements of 71 (U;) hold when considered
as elements of 71 (X): Let f be a loop in some intersection U; n U;. Then we can consider f
as a path in U; and then as a path in X, or consider f as a path in U; and then as a path
in X. Of course, proceeding either way will result in the same element of m (X).

Theorem 5.6.1. Let (X, T) be a topological space and let {U; |i € I} be an open cover of X.
Assume that

i) (U= @

el
(ii) Vi,j,kel. Uy nU; n Uy pathwise connected

Moreover, let v;: Uy — X and v;5: Uy nU; — U; be the set-theoretic inclusion maps. We fix
a base point xo in (\;c; Us, and denote equivalence classes of loops in the respective spaces as
[f1i € m(Us), [flij € m (Ui 0 Uj), or [f]x € m(X).

Let N be the smallest normal subgroup of the free product ¥<,erm1(U;) containing (v; is
the embedding of 1 (U;) into v,erm(U;))

{(%‘ omi(eiy))([f1i) - (vi o milei))([f1j0) " | i€ Li # j, f € L(Ui 0 Uj»fUO)} (5.6)
Then

7T1(X) = *Wl(Uz)/N

el

We come to the proof of this result. Throughout the following, let data be given as in the
formulation of the theorem.

Let ®: ¥ ;crmi(U;) — m1(X) be the homomorphism given by the universal property of
the free product for (m1(X), (71(¢:))ier)-

Proposition 5.4.3 implies that @ is surjective. Theorem 5.6.1 will be proven, if we show that
the kernel of ¢ is N.

The inclusion “N < ker ®” is clear: we have ¢; o 1j; = t; 0 155, since both are just the
inclusion of U; n Uj in X, and [f];; = [f];i since both are classes w.r.t. FEP-homotopy in
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U; nU;. Thus

D ((v; 0 m(eig))([f1i5)) = (@ 05 0 mi(uiy) ) ([£1i5) = (m1(e5) 0 ma(ui)) ([£1i)
(77 Lg O bij )( flij) = ( 1(tio Lji))([f]ji)
= (mi( ) ([f150) = (® o vi o m(e50)) ([f154)
q)((%OWl(ng))([ 1 ))

To prove the reverse inclusion, we work with the concrete form of the free product given in
the proof of Theorem 1.8.1

O71—1 Jt

7T1(Li)

/_\
m(U;) —2s A% — 20 1 (X)

A*/e R (A*/e)/N

Set I' := ker(n’ o 7). Since 7 is surjective, we have (I" and ker ®( are relations)
ker® € N < kerdycT.

We are going to show that the inclusion on the right holds. Written out explicitly, this
means that for all loops f; € £(Ux,,20), 1 =1,...,n, and g; € £(Ux;,70), j = 1,...,m, the
implication

fim o wfyxxgim...ung, = [fl]/\1 [f2]>\2 e [fn]M r [91]51 [g2]f€2 T [gm]ﬁm (58)

holds.
We start with a particular case.

Lemma 5.6.2. Leta,be R, a <b, and sg,s$1 €ER, sg <s1, anda =ty <t; <...<ty =0b.
Let H: [a,b] x [s0,81] = X be a continuous function with

Vs € [so,81]. H(a,s) = H(b,s) = xg
and assume that we have a(1),...,a(N) € I with

Vke{l,...,N}. H([te1,tx] % [s0,51]) S Uiy
Further, assume that for each (k,1) € {1,...,N — 1} x {0,1} we have a path by ; in Uygy N
Ua(k+1) with initial point xo and terminal point H (ty,s;). For (k,1) € {0, N} x {0, 1} let by
be the constant path at xo. Denote by c,; the loop

Crii=bg_1;m H(',sl)|[tk,1,tk] wbp, € Sf(Ua(k),:vO) for (k, 1) e{1,...,N} x {0, 1}.
Then

[e10lame2.0la@)  [enolav) T leri]aqylezi]ace) - - [en1]av
Proof. For ke {1,...,N — 1} set

dk = bk’() L} H(tk, ) L] bl:lv
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and let dp and dn be the constant path at xo. Note that dj lies entirely in Uy ) N Ug(r41)-
Moreover, note that cg; lies in Uy y)-

The rectangle [tr—1,tk] X [S0,51] is convex, and hence each two paths in this rectan-
gle which have the same initial points and the same terminal points are FEP-homotopic.
Applying the continuous function H, shows that the paths djy—;1 = cx1 and cpo = dj are
FEP-homotopic in Uy ):

di—1wery = (b0 H(tk—1,.) wbi_11) @ (be—1,0m H (., 51) [ty 1.00] " Vi)
Rak) be—1,0 8 H(tp—1,.) w (b1 wbe—1,1) w H(.,51)| [ty 201 ® biin
Rak) bk—1,0 % (H(tr—1,.) w H(.,51)|[t,_1 t4]) ® bia
Rak) bk—1,0 % (H (., 50) (s 651 * H(tk, ) #biy ~ak) ko ® di
We obtain
[01,1]a(1) [02,1]a(2) T [CN,l]a(N) O [dO]a(l)[cl,l]a(l)[02,1]04(2) T [CN,I]a(N)
O [do = cia]amlezi]ae) - levilavy = ler0mdi]aylezi]a) - leni]amv

O [c10]amldi]amylezi]a@) - [enalav) T [er0]a@)ldi]a@)cai]ae) - [ena]am

O [c10]lamldi mc21]ae) - [eni]avy = [er0laq)lc20 ® d2]a2) - [en1]amv)

O [c10layle2,0la) - - [envolan[dn]av) © [e10laq)lc20]ac2) - [en,0lav)

a

Now let loops f; € £(Ux,,20),i=1,...,n, and g; € £(Ug,,70), j = 1,...,m, be given, and
assume that

fim. o omforxgim... =gy,
Let H: [a,b] x [0,1] = X be a FEP-homotopy from fi=...= f, togi=... = g,,.

® We construct a tiling of [a,b] x [0,1]: The family {H~*(U;) |i € I} is an open cover of the
rectangle [a,b] x [0,1]. Let € > 0 be a Lebesgue number for this cover. Now choose partitions

a=ty<ti1<...<ty=band0=sg<s1<...<sy=1
such that

(1) maX{(tk7tk_1)2+(85781_1)2“€= 1,...,N,l = 1,...,M} < é

(ii) The switching points between the paths f; and g; in their respective products appear
among the tg.

We denote indices corresponding to switching points as
a=¢g<Pp1 <...<¢pp,=banda=1vy <Y <...<Yy =Db,

so that the part of fi=...n f, coming from f; is H(.,0)
coming from g; is H(., 1)|[tw‘,1’tw:]'

Iity, ,.ts.1» and the part of g1 ... wg,,

Now we have the tiling given by the rectangles

Ry = [tr—1,t] X [s1-1, 8] where ke {1,...,N},le{1,...,M}.
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The nodes of the lattice formed by the boundaries of these rectangles are denoted as
vk, i= (tg, ) where ke {0,...,N},1€{0,...,M}.
Note that H(vk,;) = x¢ whenever

E=0vk=DNv (k) e{do....00% x {0}V (k1)€ {to,...,1hm} x {M}. (5.9)

@ We define paths by, connecting nodes with the base point: Since we chose the tiling suffi-
ciently fine, we can choose for each (k,1) € {0,..., N} x {0,..., M} an index a(k,[) € I such
that

(i) V(k,0)e{l,..., N} x {1,...,M}. Rpy € H ' (Usr))

(i) V(k,0) e {l,....,N =1} x {1,...,M}. k=lmod 2 = a(k,l) = a(k + 1,1)
= Interior nodes: Let (k,1) € {1,...,N —1} x {1,..., M — 1}. Depending whether k and !
have equal or unequal parity, we have a(k,l) = a(k + 1,1) or a(k,l +1) = a(k + 1,1 + 1).
Hence the set

Vid = Ua(r,) N Ua(rr1,1) O Ua(rei+1) 0 Ua(rr1,i41)

is the intersection of at most three different sets U;. Thus, we can choose a path by ; in Vj
with initial point z¢ and terminal point H(vk ;). Note here that the tiles containing the node

vy, are exactly Ry k1), Rak+1,0) Baki+1), Ba(k+1,141)-
> Boundary nodes (part 1): For all (k,l) as in (5.9), we let by ; be the constant path at zg.

> Boundary nodes (part 2): Let k = {1,..., N — 1} and assume that ¢;_1 <t < ¢;. Then
H(tk, O) € U)\i. Set

Vi,o = Ua(k,1) N Ua(k+1,1) N Un,,

and let by o be a path in Vj ¢ with initial point xy and terminal point H(vgo). The tiles
containing the node vy o are exactly Rq(k,0), Ra(k+1,0)-

= Boundary nodes (part 3): Let k = {1,..., N — 1} and assume that ¢;_; < k < ¢;. Then
H(ty, M) e Ug,. Set

Viem = Uqie,pry 0 Ua(rer1,m) 0 Uk,

and let by s be a path in Vi, ps with initial point zo and terminal point H (vk,a). The tiles
containing the node vy s are exactly Rk, ar)s Ra(k+1,0m)-

® Applying the lemma: For (k,1) e {1,...,N} x {0,..., M} let ¢, be the loop

Ck,l = bkflyl L] H(, sl)|[tk,1,tk] L] b;l

Our choice of the paths b, ; guarantees that the assumptions of the lemma are fulfilled on
every level from s;_;1 to s;. Applying the lemma M times, we obtain that

[cr0laa,yle2.0]a1) - - [envolav,) T [enar]aq,an ez ]aenn) -+ - len m]av,an
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@ Splitting fim...w f,, and gy = ... n g, Our choice of paths by o and by ps guarantees that

fi RN Chi_1+1,0%™...8Cy, 0 and g; Q:Kj C¢j71+17M =, .. C¢j7M

It follows that

[filxi = [coimiv10m--meo0]n © [coi+10]n  [co 0],
L [eg;1+1,0]a(sir+1,1) [€o:.0]a(e:1):

[9ilx; = ey, vvrm o mey; mle; © [ey, i v1,0m]e, - [Cyy ]k,
I ey, 1.M]aqw,—r+1.00) - [Co; M]aqw, -

Putting together, thus

[fl])\l te [fn])\n r [Cl,o]a(1,1)[02,0]a(2,1) T [CN,O]a(N,l)
L [er,m]aqanleemla@ary - lenmlavany T Lg1]er - [9mls.,
This concludes the proof of (5.8).

The proof of the theorem is complete.
Let us explicitly state a corollary which deals with two particular situations and is often
of good use.

Corollary 5.6.3. Let (X, T) be a topological space and let {U;|i € I} be an open cover of
X such that the assumptions of the Seifert—van Kampen theorem are fulfilled. Also let other
notation be as in Theorem 5.6.1.

(i) Assume that 7 (U; nU;) = {1} for alli,je I, i # j. Then
7T1(X) = *ﬂ'l(Ul)
i€l

(ii) Assume that there exists an index ig € I such that m(U;) = {1} for all j € I\{iv}, and
denote by M < m1(U;,) the smallest normal subgroup containing

U 7Tl(Ljio)(Wl(Uj N Uio)) (5'10)
jel\{io}

Further, let v;y: U, — X be the inclusion map. Then m(t;): m(Uyy) — m(X) s
surjective with kernel M. In particular,

7T1(X) = 7T1(U7;0)/M.

Proof. Under the assumption of the present item (i) the set (5.6) equals {1}, and hence the
normal subgroup N in the Seifert—van Kampen theorem equals {1}.

Assume we are in the situation of item (ii). Then we have ~;(U;) = {1} for all j # i.
The map ~;, is thus an isomorphism of w1 (U;,) onto ¥;crm1(U;), cf. Lemma 1.8.2. We see
that 7(t;,) is surjective with kernel ’yi;l(N). The set (5.6) equals

{(%‘o o m1(t5i0)) ([fljia) 15 € T, f € (U 0 Uiovxo)}
U {(%‘o o1 (tio)) ([fljio) MG € I, f € 2(Uj 0 Ui07$0)}7
and its inverse image under ~;, thus equals (5.10). It follows that

7T1(X) = iﬁg]ﬂl(Ui)/N = 771<Ui0)/M~
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In our formulation of the Seifert—van Kampen, we have determined the group m(X) con-
cretely: take the free product and factor out the normal subgroup generated by (5.6). Let
us mention the following more structural viewpoint.

Corollary 5.6.4. Assume we are in the situation of the Seifert—van Kampen theorem. Then
(m(X), (1)) is a colimit of the diagram

7\'1(/«]7,)» oy Trl(U’L)
(Ui n Uj) : o1
o) m(Uj)

Proof. When we proved existence of colimits in Theorem 1.9.5, we constructed a colimit
as a factor of the free product. It suffices to match notation: for the diagram (5.11), the
normal subgroup in the Seifert—van Kampen theorem is the same as the normal subgroup
in Theorem 1.9.5. In Theorem 1.9.5 the cone maps of the colimit are obtained as projection
after ;, which in the present situation is equal to 7 (¢;) by the diagram (5.7). a

5.7 The bouquet of circles

Our aim in this and the following section is to prove that every group can be realised as
the fundamental group of some topological space. The proof of this fact contains many
interesting ideas.

Making a first step, we realise free groups. This relies on Corollary 5.6.3 (i), and a
construction known in a more general setting as wedge sum. Intuitively, a wedge sum takes a
family of topological spaces and glues them together at one point of each of them. We shall
not elaborate further on the general construction.

Ezample 5.7.1. Let I be a nonempty set, let [ [,.; S* be the disjoint union of |I| many circles
St and let B;: S' — [[,c;S' be the inclusion maps. Further, let ~ be the equivalence
relation which identifies the point 1 of each of these circles. Formally, thus,

St (St x {i})
[1s" = LJes* = tih. /3{

i€l
iel il z = (2,4)
(z,1) ~ (w,j) = (z,0) = (w,j) vz=w=1

Set X := (][,c;S')/~, denote by p: [[,.; S* — X the canonical projection and set p; :=
po Bi. We endow X with the final topology 7 induced by the family {p;: S* — X |i e I}

Sl

51

The space (X, T) is called the bouquet of |I| circles.
A bouquet of circles is pathwise connected, since it is the union of the pathwise connected
subsets p;(S!) which have the point zg := p;(1) in common.
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The topology on a disjoint union is easily understood. Assume we have a family (X;,7;)
of topological spaces and endow their disjoint union with the final topology induced by the
inclusion maps f3;: X; — [ [,c; Xi- A map ¢ from [ [,_; X; to some other topological space is
continuous, if and only if all restrictions ¢|s,(x,) are continuous. All subsets 3;(X;) are open
and closed in [ [,.; X;, and 3; is a homeomorphism onto its image. Given sets B; < X; for
each ¢ € I, we have

Uﬂi(Bi) open in HXi < Viel. B;openin X;

el el

and the same with “open” replaced by “closed”.

The topology of a quotient looks somewhat more complicated. Passing to a quotient
topology behaves nicely when the projection is open (for example when factorising a topo-
logical group), but this is an exceptional situation.

Let us study the topology of a bouquet of circles in some more detail. We use notation
as in Example 5.7.1. Moreover, given a point z € S! and € > 0, we denote by A.(2) the arc

Ac(z) i={z-™ e S'||t| < €}
Lemma 5.7.2. Let I be a nonempty set, and (X, T) the bouquet of |I| circles.

(i) For subsets B; < S', i € I, it holds that

p(U(Bi X {z})) open in X < (Vi € I. B; open in Sl) A (5.12)

i€l

[(We[. 1¢Bi) v (Viel. B; U {1} e%(l))]

(ii) Let z e SN\{1} and j € I. Every set of the form

p;(Ae(2)), (5.13)

with € > 0 such that 1 ¢ A.(z), is open in X. The family of all these sets is a
neighbourhood base of the point p;(z).

(iii) Ewvery set of the form

iel

with €; > 0 is open in X. The family of all these sets is a neighbourhood base of the
point xg.

(iv) The space X is Hausdorff.

(v) The following restrictions of p and p; are homeomorphisms between the written sets:

pr J (SN x (1)) = X\fwo), py: 8" = py(S") forje L.

el

Each set p;(S*\{1}) is open in X.
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Proof. Let B; € S', i e I. The equivalence (5.12) follows since for every j € I

_ -\ B ifViel. 1¢ B;
le(p<i€UI(Bi XM))) - {Bju{l} ifdiel 1eB;

Let z € S1\{1}, € > 0 such that 1 ¢ A.(2), and j € I. Applying (5.12) with

B [Ade) ii=]
%) if1+#j

shows that p;(A.(z)) is open. Since the open arcs form a basis of the topology of S!, the
family of all such sets is a neighbourhood base of p;(z).

Let ¢; > 0, ¢ € I. Applying (5.12) with B; := A, (1), i € I, shows that | J,.; pi(Ac, (1)) is
open, and since open arcs are a basis in S*, the family of those sets is a neighbourhood base
of xg.

Given two different points, we find open neighbourhoods of the form (5.13) or (5.14) of
the respective points which are disjoint by choosing € or ¢; sufficiently small.

We come to the proof of (v). First observe that p indeed maps | J,.; 8;(S*\{1}) bijectively
onto X\{zo}, and that both sets are open in [ [,.; S* or X, respectively. The family of arcs

{BiAG) ie L ze s\ 1} 1¢ A:) |

forms a base of the topology of | J,.; 8:(S*\{1}). We have p(3;(Ac(2))) = p;j(Ac(2)), and this
set is open in X. Thus the restriction of p is an open map. It is continuous by the definition
of the topology of X.

Consider now the map p;. It is continuous by definition. It is injective, and hence induces
a bijection onto its image. Each arc A.(z) with z € S'\{1} and 1 ¢ A.(z) is mapped to a set
which is open in X. The image of an arc A.(1) can be written as

pi(Ac(1)) = pi(8") o | Jpi(Ac(1)).
iel
and hence is open in the subspace topology of p;(S). a

Theorem 5.7.3. Let I be a nonempty set, and (X, T) the bouquet of |I| circles. Then m1(X)
is the free group with |I| generators.

The idea is that each copy of S* contributes one generator to 71(X), and that these loops
cannot interfere since each two of them intersect only in one single point. So, ideally, we
would like to apply the Seifert—van Kampen theorem with the cover {p;(S')|i € I}. Then
Corollary 5.6.3 (i) would imply that 71 (X) is isomorphic to the free product of |I| copies of
Z, which is the free group with |I| generators. However, the sets in the mentioned cover are
not open, and therefore we have to slightly tweak this approach.

Proof of Theorem 5.7.35.

@® We define an open cover: Consider a bunch of small arcs centered at the base point 1:
e.g. take § := % and set

W= Jpi(45(1)).

el
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Then W is an open neighbourhood of zy. Now set
U i=pi(SHYUW foriel,
and note that U; = p;(S1\{1}) U W.
By Lemma 5.7.2, the set U; is an open subset of X. Moreover, clearly, {U;|i € I} is a

cover of X.

@ We check the assumptions of the Seifert—van Kampen theorem: The point xy belongs to
all sets U;, and hence (,.; U; # .

The circle S and every arc in S! is pathwise connected. Hence also p;(A;s(1)) and p;(St)
are pathwise connected, and since zy belongs to each of these sets it follows that W and all
Ui, i € I, are pathwise connected. The intersection of at least two different sets U; is equal
to W.

® We show that W is contractible, and hence 7w (W) = {1}: Let H be the unique function
with

(eit75)'—>€it5

A5(1) x [0,1] A51)
B(i?]?l L@’qz
(UAs(1) x i)  [0,1] === U(As(1) x {i})
iel
Since
(Ueas) x fih) = 10,11 = (JAs(1) x {3 x [0,11),
i€l i€l
and each set in the union on the right is open, the gluing lemma implies that H is continuous.
Let ¢,¢' € [0,1) and 4,7’ € I. If (€™ ) ~ (€2 i), then either (t = ¢ A i = i) or

t =t = 0. In both cases, H((e2™ i),s) = H((e*™ i’),s) for all s € [0,1]. Hence, a
function H: W x [0,1] —» W is well-defined by

(UAs) x {ih)) x [0,1] —— U(As(1) x {i})

el el

pxid| g

W x [0,1] —-mmeee e . W

Explicitly, thus,
H((e*™,i)/~,s) := (e*™"% i)/ for i e I,|t| <é.

Let us check that H is continuous. First, remember that the projection p is a homeomorphism
between the open sets | J,.; 8i(As(1)\{1}) and W\{zo}. Thus H is continuous at every point
of (W\{x0}) x [0,1]. Second, for every neighbourhood V' of z of the form (5.14), we have
H(V x [0,1]) € V. Hence, H is also continuous at every point of {z¢} x [0,1].

The definition of H ensures that
Vze As(l),ieI. H(pi(2),1) =pi(z) A H(pi(2),0) =z
Vs e [0,1]. H(zg,s) = xo

and we see that W is contractible.
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@ We show that p;j(S') is a deformation retract of U;, and hence m (U;) =~ Z: Fix j € I.
The argument is almost the same as in the previous step, only that we deform only those
arcs p;(As(1)) with ¢ # 5.

Define a function H: (p;(S') v U;) x [0,1] — U;

(Eit78)'—>€its

As(1) x [0,1] As(1)
<iiizf<iad}> St < [0,1] (mz St Bi
(505" 0 U il 45(1))) x[0,1] » 85810 U il4s(1))
iel\{j} iel\{5}
pxidl lp
Uj X [0, 1] ************************** Fz 2 > Uj

Explicitly, thus,

. (627rit’ Z)/~ ifi=jte [Oa 1)
H(( 0= T T
(e™0)/~ ifie I\{j},[t| <6

For the same reasons as in the previous step, H is well-defined and continuous. Moreover,
the definition of H ensures that

Vze As(l),ie . H(pi(2),1) = pi(z) A~ H(pi(2),0) epj(Sl)
Vze St se[0,1]. H(pi(2),s) = p;(2)

and we see that indeed p;(S?) is a deformation retract of U;.

Since p;(S') =~ S by Lemma 5.7.2 (v), we obtain from Proposition 5.3.6 (ii) that m (U;) =
Z.

U

5.8 Spaces with prescribed fundamental group

We show how to Kkill selected loops by attaching disks to a space. One can image that one
builds bridges over which specified loops can be deformed to a point. Again, the crucial role
is played by the Seifert—van Kampen theorem (this time in the form of Corollary 5.6.3 (ii)),
which ensures that not more than the specified loops become deformable to a point. The
construction of the space is very much related to a general construction known as CW-
complezes. Intuitively, a CW-complex is a family of cells of different dimensions which are
glued together. Again, we do not elaborate further on the general situation.

We proceed similar as before, present a construction of a space as an example, and then
establish its properties.
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Ezample 5.8.1. Let I be a nonempty set, (X, T) be the bouquet of || circles, and F a family
of loops in X with base point xy. Moreover, let B2 be the closed unit disk in C. Consider
the disjoint union

xu([]B%) =X xfeh o [ JB = {1},

feF feF
and denote by

Bo: X > Xu|[B> By B> Xu|[]|BforfeF,
feF feF

the inclusion maps. Further, define a relation ~ on X 1] [ » B? as (A denotes the diagonal)

~i= AU{(Br(em), A1 (1) [t e [0,.1], f € F}
G{Br ), Bre®™) |t e [0,1], f e F}
O { (B(e™), By(e7%)) |0 < 5,t € [0,1], £, g € F with f(2) = g(s)}
This is an equivalence relation. Reflexivity and symmetry is built in the definition, and

transitivity is seen by distinguishing cases.
Now set

X = (XLIJL_lBQ)/N.

Further, let p: X 11 ]_[fe}- B2 — X be the canonical projection, and set
f)ozzj)oéo, ﬁf::[)oléfforfe]:.
We endow X with the final topology induced by the family {po} U {prlfeF}.

st B2

. P

5
[Is* -, $ X °>Xu(]_[B?)<
: R <.

ﬂ/' ‘_\v, el ) fe]-' e N
IR p
st po B2
M Py

X

The space X is pathwise connected, since it is the union of the pathwise connected subsets
(Po 0 pi)(S'), i€ I, and py(B?), f € F, which have the point 2 := po(x¢) in common.
Given z € S and € € (0, 1), we set

Se(z) :=={we B*|1—e< |w| A |argw — arg z| < 27e, }.

Note that Sc(z) n St = A(2).
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Lemma 5.8.2.

(i) The following maps, considered as maps between the written sets, are homeomorphisms:

Po: X = po(X),  pp: BAS" — pr(BA\S).

(ii) Let x € X and O < X open with p.(x) € O. Then there exist ¢; . € (0,1), such that the
set

Wi=p.(p;1(0) v | 57(5.(2) (5.15)
feF
zep; 1 (0)nS*

is open in X and contained in O.

Proof. By the definition of the relation ~ the maps p, and ps|p=\s1 are injective, and by the

definition of the topology on X they are continuous. We have to show that they are open
as maps onto their image carrying the subspace topology. First, let O < X be open. Set
W = p,(0) u Ufe}-]ﬁf(Bz\Sl), then clearly po(0) = po(X) n W. We have

b (W) =0, p; (W) ={e""|f(t) e O} u (BA\S"),
and see that W is open in X. Second, let f € F and O < B%\S! be open. Then
P51 (pr(0) = &, b7 (97(0)) =0, p;'(s(0)) = & for g # f,

and thus p(0) is open in X.
We come to the proof of (ii). Since ]3]71(0) is an open subset of B? we can choose for
each z € ;6]71(0) n S' a number ey € (0,1) with Sc, _(2) = ]3]71(0). Set

Wy = U Ses.(2).
zep; 1 (0)n St
Then W; is an open subset of B2, and
Wy < p;1(0), Wi S'=p1(0)n S

Now consider the set (5.15), i.e.,

W = o (551(0)) v | Dg(Wy).
geF

The inclusion W < O clearly holds, so we have to show that W is open. Again, this means
that we have to check inverse images. We claim that

b (W) =ps1(0),  VfeF. pyt(W) =W (5.16)
The first equality follows since (in the first line we use that p, is injective)

b (Bo(651(0))) =55 (0)

b5 (Bg(Wy)) = 55" (Be(Wy 0 §1)) = 55 (g (B3 (0) 0 81)) < $7(0)
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To see the second equality in (5.16), compute
b7 (9o (5:1(0))) € 571 (0) N S* = Wy 0 S* < Wy,
by (b (W) = 5" (s (Wy 2 S1) w by (B (W\ST)
=07 (b (57 1(0) 0 8%)) v (WA\SY) € (57 (0) 0 8) U (W\ST) = Wy,
ﬁ;l(ﬁg(Wg)) c ﬁ;l(O) NS'=W;nS'cW; for g # f.
Thus ;[)JIl(W) < Wy. The reverse inequality is clear. Q

Remark 5.8.3. Tt follows already from Proposition 5.4.3 and the description of loops in S*
that every loop in X is FEP-homotopic to a product of some loops

0,1 — X :
Yin: iy Where jel,neZ. (5.17)
t o= pi(e™)

When working with m; (X), it is thus enough to consider products of loops ;..
A technical advantage of loops of this form is that the image of such a loop is a union of
whole circles p;(S'), and that the inverse image of every point of X is finite.

Theorem 5.8.4. Let I be a nonempty set, (X, T) the bouquet of |I| circles, and let F be a
set of loops in X based at xog such that each f € F is a product of some loops of the form
(5.17). Moreover, denote by N(F) the smallest normal subgroup of w1 (X) containing F/~.
Let X be the space constructed from F as in Example 5.8.1. Then

m(X) = m(X) /N(F)-

Corollary 5.8.5. Let G be a group. Then there exists a topological space (X,T) with
T (X) ~ @.

Proof. Every group is isomorphic to a factor of a free group. Hence, Corollary 5.8.5 is an
immediate consequence of Theorems 5.7.3 and 5.8.4. a

To prove Theorem 5.8.4, we would ideally like to apply the Seifert—van Kampen theorem
with the cover

{Po(X)} v {pr(B?) | f € F} (5.18)

of X. The stated assertion would then follow at once from Corollary 5.6.3 (ii). However,
again there is the problem that the sets in (5.18) are not open. The way to circumvent this
problem is somewhat different as in the proof of Theorem 5.7.3.

Proof of Theorem 5.8.4.
@ We define a family of sets: For f € F set
Oy := pr(B*\S"),
Oy = pr(B*\(5" v {0}),
po(X) u (| 0) = £\{5,(0) | g € F}.

geF
Upi=pe(X) 000 (| Op) = K\{2y(0) g € F{F}}.
geF\{f}

5~
i
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It is seen by checking inverse images that these sets are open in X:

Oy Oy U, Uy
Pt %} 1%} X X
e B*\S! B2\(S' U {0}) B*\{0} B?
bt | D & B2\{0} BA\{0}
(g# f)

Moreover, these sets are all pathwise connected. For Oy and o) ¢ this is obvious. For U, and
Uy note that

U =po(X) u (| 2o(B2\(0D)
geF
Ur =po(X) ups(B o (| pe(B2\(0})
geF\{f}

and that the point g belongs to each set in the union.

@ We apply Seifert—van Kampen to describe m; (X ) as colimit: The intersection of at least two
different sets Uy is equal to U,. Hence, the open cover {Uy | f € F} satisfies all assumptions
of the Seifert-van Kampen theorem. Denote by ¢f: Uy — X and tof: Us — Uy the inclusion
maps. Then (m;(X), 71 (¢f)) is colimit of the diagram

mieor) ™1 (Uy)

nw (519)

® We apply Seifert-van Kampen to analyse the maps mi(tof): We have
Uf:UOUOf andUomOf:ODf.

Hence, {U,, Oy} is an open cover of Uy and satisfies the assumptions of the Seifert—van Kam-
pen theorem. Since Oy is a continuous image of a convex set, we have m1(Oy) = {1}.
Corollary 5.6.3 (ii) yields that mi(tof): m1(Us) — m1(Uy) is surjective and that keriof
is the smallest normal subgroup of m1(Us) containing 7 (¢s.)(m1(Oy)). Here we denote by
Lot T (Of) — 71 (Us) the inclusion map.
The circle 1 - S = {z € C||z| = 1}, which is homeomorphic to S', is a deformation
retract of B?\(S! U {0}). Therefore, 7T1(Oof) ~ 7, and the equivalence class of the loop

1

hy(t) == py (§€2Wit)

is a generator of 7T1(Oof). The normal subgroup of m(Us) generated by ﬂl(ifo)(m(Oof)) is
thus equal to the normal subgroup generated by the singleton set {(ifo o hf)/~}.
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@ We show that po(X) is a deformation retract of Us: Define a map H: Us x [0, 1] — po(X)
as

H(po(x),s) 1= po(x) for z € X,s€[0,1]

(5.20)
H(p(z),s) := ﬁf(m) for z € B2\{0},s € [0,1]
Since p is a homeomorphism of B?\S! onto its image, and this image is an open subset of X,
the function H is continuous at every point of | J;.» Of. Let € X and O € X be an open
set with po(z) € O. According to Lemma 5.8.2, we find an open set W of the form (5.15)
which is contained in O. Clearly, it contains the point p,(z). For every point z € ;6]71(0) NSt
we have

H (pg(Se, . (2)\S") x [0,1]) € ps(Se; . (2))

It follows that H(W x [0,1]) € W. We conclude that H is continuous also at every point of
Po(X) x [0,1].

® We produce an isomorphic diagram: Let H be as in (5.20), and let r: U, — po(X) be the
retraction r := H(.,1). Moreover, let to: po(X) — Us, be the inclusion map.

Po Lo
X 7 p(X) U
A—1 I
Po
Then we have the isomorphisms
71 (Po) w1 (o)
mX) T me(X)) 7 m(Us)

By ") my(r)

The isomorphism 71 (p; 1) o m1(r) maps (ifo o hf)/~ to the equivalence class of the loop
(B oroigoohs)(t) =5 (br(e*™) = bo ' (Bo(f (1)) = £ (1),

Hence, we get an isomorphism with (py is the canonical projection)

1 (Us) =2 ()
771(1351)07T1(T)J
m(X) —L m(X) /g

Since the isomorphism on the left is independent of f, the diagram (5.19) is isomorphic (in
the sense of Theorem 1.9.5 (ii)) to

o, T (X)/n(y)
m(x) 5 (5.21)

o
P m(X)/ n)

By uniqueness of colimits in Theorem 1.9.5 and the computation of the colimit in Exam-

ple 1.9.4, the group 71 (X) is isomorphic to 71 (X)/n(5)- Q
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5.9 Free homotopy and homotopy equivalence

We define a general variant of homotopy.

Definition 5.9.1. Let (X,7) and (Y,V) be topological spaces, and let ¢,79: X — Y be
continuous functions.

(i) We say that ¢ and 1) are homotopic (more specifically, freely homotopic) if there exists
a continuous function H: X x [0,1] — Y with

Vee X. H(z,0) = ¢(x) A H(x,1) = ¢(x)

Every function H with this property is called a homotopy (more specifically, a free
homotopy) from ¢ to 1.

(ii) Let A € X. We say that ¢ and ¢ are homotopic relative to A, if there exists a continuous
function H: X x [0,1] —» Y with
Vee X. H(z,0) = ¢(x) A H(x,1) = ¢(x)
Vae AVs,s' €]0,1]. H(a,s) = H(a,s)

If ¢ and 1) are homotopic relative to A we write ¢ ~ 4 1, and every function H as above
is called a relative homotopy from ¢ to .

Note that free homotopy is nothing but homotopy relative to ¢, and FEP-homotopy of paths
defined on some interval [a, b] is homotopy relative to {a, b}.

Proposition 5.9.2. Let (X, T) and (Y, V) be topological spaces and ¢,1p: X — Y continuous
functions. Assume that ¢ and b are freely homotopic, and let H be a free homotopy from ¢
to . Further, let xg € X, denote by h: [0,1] — Y the path h(s) := H(xg, s), and let ®j, be
the isomorphism

_ { m(Y, (@) — m(Y.é(zo))
Dy

with inverse ®p—1, cf. Lemma 5.3.1.
Then m1(¢) = ®p o m1(1))

1 (X7 .’L'())

m1(¥) 71 (o)

Dy
—_ T
m1 (X, ¥(20)) —_— m1 (X, ¢(x0))

Q)1

Proof. Let f e £(X,x0) be given. We have to produce a FEP-homotopy in Y from ¢ o f to
hw(po fymh<. For t,s € [0,1] define

h(3t) ift <3
K(t,s) = H(f((t — - %)*1),3) itfE<t<l—3
h(3(1 — 1)) it1—5 <t
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Inspecting these formulae shows first of all that K is well-defined, hence by the gluing lemma
continuous, and that

K(0,8) = K(1,5) = h(0) = ¢(x0), K(t,0) = H(f(t),0) = (¢ o f)(t).

Moreover, we see that

h(3t) ift <3
K(t,1) = @of)((t—5)1-5)7") ifg<t<3
h(3(1 —t)) if1—3<t
which is a reparameterisation of h = (1) o f) m <. Q

Corollary 5.9.3. Let (X, T) and (Y,V) be topological spaces and ¢,1p: X — Y continuous
functions which are freely homotopic. Let xo € X and assume that ¢(xg) = ¥(xo) (denote
this point as yo ).

(i) There exists an inner automorphism ® of the group m (Y, yo) such that 71 (¢) = ® o
T (¥).

(ii) If m1 (Y, y0) is commutative or ¢ and v are homotopic relative to {xo}, then m (¢) =

w1 ().

Proof. Since ¢(zg) = ¥(xp), the path h(s) := H(wp,s) is a loop in Y with base point yo.
Thus we can write

Cp(f) = (hmfuhT)/x =h/x-f/x-(h7/x) = h/x- [/~ (h/~)7" for f € Z(Y,y0).

If m1(Y, yo) is commutative, the identity map is the only inner automorphism. If ¢ ~ ., ¥,
we can choose H such that h is the constant path at xg. a

Definition 5.9.4. Let (X, 7) and (Y, V) be topological spaces. A continuous map ¢: X — Y
is called a homotopy equivalence, if

J: Y — X continuous. o ¢ ~g idx AP0 ~y idy

The spaces (X, T) and (Y,V) are said to have the same homotopy type, if there exists a
homotopy equivalence between them.

The relation to have the same homotopy type clearly is an equivalence relation. If X and
Y are homeomorphic, or if Y is a deformation retract of X, then X and Y have the same
homotopy type. In the first case we have ¢~ 1o ¢ = idx,¢po ¢! = idy for a homeomorphism
¢: X — Y, and in the second case we have 1 or ~g idx,r o+ = idy when ¢: Y — X is the
inclusion and r = H(.,1) with H as in (5.2).

It is a consequence of Proposition 5.9.2 that homotopy equivalent spaces have the same
fundamental group.

Corollary 5.9.5. Let (X, T) and (Y,V) be topological spaces, o € X, and ¢: X - Y a
homotopy equivalence. Then w1 (¢): w1 (X, zo) — m (Y, ¢(xg)) is an isomorphism.

Proof. Let ¢: Y — X be such that ¢ o ¢ ~y idx and ¢ o ¢ ~g idy. Moreover, denote

Yo = (o).
Proposition 5.9.2 provides us with the respective isomorphisms in the diagrams
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(X, 20) —%— 71 (X, 20) (Y, y0) ——— m1 (Y, y0)
m1(9) m(pos) = 1 () m1(gov) =

- l . l
71(Y,%0) ) T (X, ¥ (yo)) (X, ¥ (yo)) o 71 (X, 0(¢(v0)))

The left diagram shows that the map 71 (¢): m (X, z0) — 71 (Y, ¢(x0)) is injective. The right
one shows that m(¢): m1 (X, ¥(yo)) — m1(Y, d(¥(yo))) is surjective.

Let h be the path in X with initial point zy and terminal point (¢ o ¢)(zg) = ¥(yo)
obtained from some free homotopy H from idx to ¢ o¢ (as h(s) := H(zo,s)). Then the path
¢ o h has initial point yg and terminal point ¢(1(yp)). By their definition, the isomorphisms
from Lemma 5.3.1 satisfy

L
2
(X, P (Wo)) — 3 7™
and we see that also w1 (¢): m (X, zo) — 71 (Y, ¢(x0)) is surjective. Q

We can now prove an interesting structural property of topological groups. The formulation
in the below Theorem 5.9.7 is general.

Definition 5.9.6. Let (X, 7) be a topological space and 2y € X. Then (X, T, xg) is called a
H-space (the letter H stands to recognise the influence of H.Hopf) , if there exists a continuous
function m: X x X — X with

m(zg, xo) = o, m(zo,.) o) idx, m(.,T0) Xz idx -

We think of m as a deformation of a multiplication. For example every topological group
is a H-space with the group multiplication for m and the unit element for xy. Then it even
holds that m(zg,.) = m(.,20) = idx and multiplication is associative. When passing to a
deformation, of course algebraic properties will get lost. But in view of corollary 5.9.5 one
might expect that topological properties are retained.

Theorem 5.9.7. Let (X, T,xq) be a H-space. Then 71 (X, x0) is commutative.

Proof. Denote by k: X — X the constant map k(x) := x9, and by 1,, the constant loop
based at xg. Then we can write

m(xg,.) = mo (k x idx), m(.,x9) = mo (idx xk).
Corollary 5.9.3 (ii) implies that

mi(mo (kxidx)) =ids (X2,  m(mo (k xidx)) = idg, (x,z) -
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Let ¢: m (X, 20) x m1(X,20) = m (X x X, (x9,20)) be the isomorphism (5.4). We obtain
that for each f e £ (X, o)

flx =mi(mo (k xidx))(f/~) = (m(m) om(k x idx))(f/~)
=mi(m)(([k x idx] o f)/~) = m(m)(([ko f] x [idx of] ) /~)
—_—— =

=1, =f

=m(m) (Y (oo /~, f/~)) = (m1(m) 0 ¥)) (Lay/~, f/~)
and analogously
f/z = (Wl(m) Ow)(f/mv‘ﬂxg/%)

In the direct product of m1(X,z0) x m(X,79) each two elements (1,,/~,f/~) and
(9/~,14z,/~) commute. It follows that

(9/~) - (f/~) = (m1(m) 0 ¥) (g/x, Dap/~) - (m1(m) 0 Y) (L /x, /)
= (m1(m) 0 ¥) ((9/~ Luo /) - (Luo /s F/))
= (m1(m) o) ((1 IO/N F12) (/0 L /)
= (m1(m) 0 ) (Lay/x f/) - (m1(m) 0 %) (9/x Ly /=) = (f/) - (9/~)
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