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Chapter 1

Geometry of inner product
spaces

1.1 Inner product spaces

We start with recalling some vocabulary from linear algebra. Throughout our
exposition, with exception of the below example dealing with Minkowski space-
time, linear spaces will be over the scalar field C of complex numbers.

1.1.1 Definition. Let £ be a linear space. An inner product on L is a map
[,.]:LxL—C
such that
(IP1) [z+y,z]=[z, 2]+ [y,2], =,y,z€L.
(IP2) [az,y] =«afz,y], z,ye€ L, aeC.

(IP3) [z,y] = [y,z], x,y€L.

If [.,.] is an inner product on L, we will speak of (£, [.,.]) as an inner product
spacel. /

Note that we do not require any definiteness properties, like e.g. [z, z] > 0,
x € L.

1.1.2 Definition. Let (£, [.,.]) be an inner product space.

(1) An element z € L is called

positive & [z,z] >0  nonnegative 1< [z,z] >0
negative < [x,x] <0  nonpositive :& [r,z] <0
neutral & [z,x] =0

(#3) A linear subspace M of L is called

1Often we will drop explicit notation of the inner product, and speak of an ‘inner product
space £, implicitly understanding that on £ an inner product [.,.] is given.

3



4 CHAPTER 1. GEOMETRY OF INNER PRODUCT SPACES

positive definite < [z,x] > 0,2 € M\ {0} 2
negative definite < [z,z] < 0,z € M\{0}
neutral & [x,2] = 0,2 € M
positive semidefinite 1< [z,x] >0,z € M 3
negative semidefinite < [z, 2] < 0,2 € M

The set of all linear subspaces of £ will be denoted by Sub L. The set
of all positive definite subspaces by Subs £, and the notations Subsg £,
Sub«o £, Sub<g £, Sub—g £, have their obvious meaning.

(797) A linear subspace M of L is called

definite <& M € Subsg LV M € Subo L
semidefinite = M € Sub>o LV M € Sub<o L
indefinite = M & Sub>o L A M & Sub<o L
(4v) An inner product [.,.] on £, or the inner product space (£, [.,.]), is called

positive definite, negative definite, etc., if the subspace £ of (L, [.,.]) has
the corresponding property.

/
Also, we do not require nondegeneracy.
1.1.3 Definition. Let (£, [.,.]) be an inner product space.

(i) An element x of L is called isotropic, if [z,y] = 0 for all y € £. The set
of all isotropic elements of L is called the isotropic part of L, and will be
denoted by (£, [.,.])° *.

(#4) An inner product [.,.] on £, or the inner product space (L, [.,.]), is called
degenerated, if £° # {0}. If £I°) = {0}, it is called nondegenerated.

/

L R 2 A Y

‘examples: minkowski space-time, dirichlet space‘

1.1.4 Ezample. In order to visualize geometric notions it is more practical to
use a linear space over the field R. Consider for example the linear space R?

endowed with the inner product [.,.] defined as
x x
() ()] = =, (1), (1) 22,
T2 Y2 T2 Y2
Then (R?,[.,.]) is an indefinite inner product space.

2Sometimes instead of ‘positive definite subspace’ or ‘negative definite subspace’ one also
uses the shorter terms positive subspace or negative subspace, respectively.

3Sometimes positive semidefinite subspaces are also called nonnegative, and negative
semidefinite ones nonpositive.

40ften we use the shorthand notation £° or, a little more specific, £[°].
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. T2
negative
positive positive
X1 ") T
* _neutral
. negative
neutral
positive/negative/neutral positve/negative/neutral

elements subspaces

/

oo

It is a basic fact that in semidefinite inner product spaces the Schwarz in-
equality holds.

1.1.5 Lemma. Let (L,[.,.]) be a semidefinite inner product space. Then

1
2

[z, 9] < |[z.2]|% - [y, 9]|%, z,y€L.

Proof. Consider the case that L is positive semidefinite, the case that L is
negative semidefinite is settled with the same argument.

Set A :=[z,z], B :=|[z,y]|, and C := [y, y], and let a € C, |a| = 1 be such
that o[y, 2] = B. We have

0 < [z — tay, z — tay] = [z, 2] — taly, 2] — talz,y] + *[y.y], tER,

ie. A—2tB+t2C >0forallt € R. If C =0, thus also B =0. If C # 0, we
choose t = % to obtain AC — B2 > 0. 0

1.1.6 Corollary. Let (L,[.,.]) be a semidefinite inner product space. Then each
neutral element is isotropic.

Proof. Assume that « € £ and [z,z] = 0. Then

=

[z, y]] < [z,2] -[y,y]% =0, yel.

Structure preserving maps deserve to be named.

1.1.7 Definition. A map ¢ : £ — L5 between two inner product spaces
(L1, ], .J1) and (Lo, [.,.]2) is called isometric (or an isometry), if it is linear and
satisfies

[¢x7¢y]2:[$7y]17 xuyEEI'

/

Note that, clearly, the composition of two isometric maps is again isometric.
Also, the identity map of one inner product space onto itself is isometric.
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1.1.8 Ezample. Let (L,][.,.]) be an inner product space.

(1) Let M be a linear subspace of £. Then M becomes an inner product
space if endowed with the inner product inherited from L, i.e. if we set

[z, ylm = [z,y], @,y € M.
Then the set-theoretic inclusion t : M — L is an isometry.

(i7) Let M be a linear subspace of £°, and denote by @ : L — L/ the
canonical projection. Then an inner product is well-defined on the factor

space L/ Aq by
[z, myle),, =2,y z,y€L.

The canonical projection 7t is an isometry of £ onto £/ A4.

/

We will occasionally use the following homomorphy theorem.

1.1.9 Lemma. Let (Lq,[.,.]1) and (La,][.,.]2) be inner product spaces, and let
& : L1 — Lo be isometric. Then

o ([ran ¢]°) = L5 (1.1.1)

There exists a bijective isometry ¢ with

L4 —¢>rand> (1.1.2)

| |

Li/r3 —J)) ran d)/[ran ¢)°

where the downwards arrows are the respective canonical projections.

Proof. Let x € L] and y € ran . Then we can write y = ¢z with some z € L4,
and hence obtain

[z, y]2 = [bz, b2l = [2,2]1 = 0.
This shows that ¢(L9) C [ran¢]°. Conversely, let € £, and assume that
¢z € [ran ¢]°. Then

[xuy]l = [d)xu d)y]? = 07 Yy S El 9

and hence z € £9. This shows (1.1.1).

By (1.1.1), there exits a linear and bijective map ¢ making the diagram
(1.1.2) commute. Since the canonical projections are isometric, the map ¢ also
has this property. 0

1.2 Orthogonality

1.2.1 Definition. Let (L, [.,.]) be an inner product space.

A59

A60



1.2. ORTHOGONALITY 7

(1) Two elements z,y € L are called orthogonal, if [z,y] = 0. In this case we
write z[L]y. Two subsets A, B C L are called orthogonal, if [x,y] = 0 for
all z € A and y € B, and in this case we write A[L]B. 5

(ii) Let A C L. The set
L[-]A:={zeL: z[lly,yec A}
is called the orthogonal companion of A. ©

/

Let M be a linear subspace of an inner product space (L, [.,.]). The or-
thogonal companion £][—]M need not be a complement of M in the sense that
M+M* = L. Tt may happen that M N M+ # {0} or M + ML #£ L, or both.

Let us note that the isotropic part of an inner product space £ is nothing else
but £1. In fact, we should be more careful with abuse of language and rather
write £° = L[—]L, namely for the following reason: If M is a linear subspace

of L, it is itself an inner product space with the inner product inherited from
L. Then M° = M[-]M. The symbol M=+ however may have two essentially
different meanings (M° or L[—]M).

1.2.2 Definition. Let (£, [.,.]) be an inner product space, and let y € £. Then
we denote by [.,y] the linear functional

[-,y]:{'c oor

N A

/

If AC L, then clearly

At = () ker ([, 9]) . (1.2.1)

yeA

Thus At is a linear subspace of £. In particular, the isotropic part £° of L is
a linear subspace of L.

L A R e A
1.2.3 Ezample. Consider the inner product space (over the scalar field R)

(R3,[.,.]) where the inner product [.,.] is defined as
T Y1 I U
o |, | Y2 = T1Y1 — T2Yy2, T2 |, Y2 ] € R3.
T3 Y3 T3 Y3

Then (R3,[,,.]) is a degenerated indefinite inner product space.

The subspace M := {(x1,22,23)7 : 23 = 0} is nothing else but the non-
degenerated indefinite inner product space considered in Example 1.1.4. The
subspace My := {(r1,22,73)T : 1 = 0} is a negative semidefinite degenerated
space.

5If explicit notation of the inner product is not needed, we will write z L.y or A 1 B.
6If it is not necessary to emphasize the space £ within which the orthogonal companion is
taken, we will write A[+] or, even less specific, AL.
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. Zs3
negative
positive negative
Z1 Z2
neutral
= isotropic

/

LR A B A N R N

If £ is an inner product space and M € Sub £, we may have M + M+ # L.
For example, consider the subspace M := span{(1,1)T} in Example 1.1.4. Then
M = M=, and hence certainly M + M= # L.

1.2.4 Definition. Let (£, [.,.]) be an inner product space, and let M € Sub L.
Then M is called orthocomplemented, if M + M+ = L. /

Let us note that, if £ = {0} and M is finite-dimensional, then
MAME4£L = MMt +£{0}.

In general these two conditions need not coincide.

Orthocomplemented subspaces are of interest, since they allow for orthogonal
projections. Thereby a projection P : L — L is called orthogonal, if ran P |
ker P. Let £1 and L5 be linear subspaces of £. Then £1 4+ L5 denotes the sum
of them. If £; N Ly = {0}, and we wish to put emphasize on this fact, we will
use the notation £14Ls and speak of a direct sum. Similarly, if £; L Ls, we
will sometimes write £1[+]L2 and speak of an orthogonal sum. The combined
symbol £1[+]L£2 will have the obvious meaning.

1.2.5 Proposition. Let (£, [.,.]) be an inner product space, and let M € Sub L.
Then M is orthocomplemented if and only if there exists an orthogonal projec-
tion P with ran P = M. In this case the projection P is unique if and only if
M is nondegenerated.

Proof. A projection P with ran P = M is uniquely determined by the subspace
ker P. This subspace has the property that M+ ker P = £. Moreover, the
projection P is orthogonal if and only if ker P C M*. We see that the set of all
orthogonal projections whose range is M corresponds bijectively to the set of all
linear subspaces M’ of M=+ with M-+M’ = L. This set, however, is nonempty
if and only if M 4+ ML = L. Moerover, it contains exactly one element if and

only if M+M* = L. 0
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1.2.6 Corollary. Let (L,[.,.]) be an inner product space, and let M1, My €
Sub L be such that

My L Mo, MiN Mo ={0}.
If M1 and My are both orthocomplemented, so is My[+]Ma.

Proof. By the above proposition, there exist orthogonal projections of £ onto
M7 and Mj. Let us denote them by P; and P, respectively. Since M1 1L M,
we have PP, = PP, = 0. Since M1 N My = {0}, we have ker(P; + P») =
ker PiNker P,. We see that (P+P,)? = Pi+P», and ker(Py+P,) L ran(Py+P,).
Thus Py + P is an orthogonal projection. Clearly, ran(P; + P) = M [+ M.
Therefore, the space M;[+] M3 is orthocomplemented. O

Let us collect some simple properties of orthocomplemented subspaces.

1.2.7 Lemma. Let M be an orthocomplemented subspace of (C,[.,.]). Then
the following hold:

(i) M° C L°.
(ii) M= is orthocomplemented.
(i4i) (ML)° =L°.
(iv) M+ =M+ L°.
Proof. The inclusion () holds since
Me=MAMEC M+ ML =Lt =0,

The assertion (ii) follows since M1+ O M, and hence M+ + ML+ D ML +
M = L. To see (iit), note that

L MHAME =M+ M)t =Lt =0,
—_—
:(MJ_)O
Finally, for the proof of (iv), let # € M*+ be given. Write x = y + 2 with

y € M, z € M*. Then, by the already proved item (iii) and the fact that
M C M+, we have

z=x—yeMEtnamt=ro.

Hence x € M + L°. The converse inclusion M + £° C M=*+ in (iv) is is
trivial. 0

In general it is hard to decide whether or not a given subspace M is or-
thocomplemented. A simple, but important, example of orthocomplemented
subspaces is given by the following proposition.

1.2.8 Proposition. Let M be a finite-dimensional subspace of L with M° C
L°. Then M is orthocomplemented.
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Proof. Since m := dim M < oo, we can find a basis {b1,...,bn,bnt1,-..,0m}

of M, such that
1, i=j€e{l,...,n}
[bi,bj]:{

0 , otherwise

Thereby we have M° = span{b,t1,...,bn}. Put My := span{b,...,b,}, and
define P : £L — M as
[z, bi]
= b
2 [b:,0

=1

Then P is linear and P? = P. Moreover, ran P = M; and ker P = ran(I — P) L
M;. Tt follows that M; + M7 = L. Since span{bni1,...,bn} C L°, we have
M+ = Mi. Thus also M + M+ = L. O

1.3 Orthogonal decompositions and angular op-
erators

1.3.1 Definition. Let (£, [.,.]) be an inner product space. A pair j := (L1, L2)
of linear subspaces of L is called an orthogonal decomposition of L, if

L= 4L,
In this case, we will denote by P" and P? the orthogonal projections with
ranlezﬁl, keerlzﬁg, ranszﬁg, kerle2:£1.
/

Let j be an orthogonal decomposition of £. Then it is clear that the following
relations hold:
P'+P?=1I, P'P?=P!P' =0,

[Plz, P'y] = [P'z,y] = [z, P'y],
[PPx, PPy] = [PPx,y] = [z, PPy]
[z,y] = [Pa, Ply] + [Pz, P}y .

1.3.2 Definition. Let (£,[.,.]) be an inner product space. A pair J :=
(L4, L_) of linear subspaces of L is called an fundamental decomposition of
L, if

(’L) £+ € Subsg £ and £L_ € Sub( L.
(1) £ = L[+ L_[+)Le.
In this case, we will denote by Pgr and Py the orthogonal projections with
ramPgr = ﬁJr,kerPgr =L_+L° ranPy =L kerPy =L +L°.

Moreover, we put
Jy =Py = Py, (z,y)3 = [Jx,y].

The projections PﬁjE are called the fundamental projections, the map Jy the
fundamental symmetry associated with J. /
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Again it is clear that the following relations hold:
+p- _ p—pt _ + 7. +_ pt p-7g. _ - _ -
PPy =Py Py =0, Py Jy=J3P] =Py, Py Jy=J;Py =—Py,
J§|£+ = I£+, J3|57 = —Igf, kerJ3 = Eo,
_ -1
J§ = P3+ + P ) (J3|£++£7) = J3|£++£7 )
[Py z, P{y| = [Pya,y] = [z, Pyy), [z,y] = [Pfz, Pfyl+ [Py z, Py,
[Tz, y) =[x, J3y), [Jax, Jayl = [2,y], [Jyz,y] = [Pz, P{y] — [Py z, Pyl
Next we collect some basic properties of (.,.)5.

1.3.3 Lemma. Let J = (L, L_) be a fundamental decomposition of the inner
product space (L,[.,.]). Then (.,.)3 is a positive semidefinite inner product on
L. We have

<‘Ca ('a ')3>o = <‘Ca ['7 ']>07 L= ‘CJr(_i_)ﬁ‘C*(_i_)JEo )
(Jaw,y)s = (x, J39)3, (Jaw, J3y)s = (2. 9); -
Put p3(z) = (x,x)ﬁé, then py is a seminorm, and we have
[z, 9]l < p3(z) p3(y), z,y€L. (1.3.1)

We have pgl({O}) = L°. Thus py is a norm if and only if L° is nondegenerated.
In this case, we will also use the notation ||.||5 instead of py.

Proof. Since [Jyz,y] = [z, J3y], z,y € L, the map (.,.)5 : Lx L — C is an inner
product. Moreover, since L4 is positive and £_ is negative,

(z,2)3 = [Py z,P{a] — [Pyz,Pya] >0, z€ L.
Clearly, £l°) C £(®)3. Conversely, assume that z € £(°)3. Then z[1]ran.J; =
Ly + L£_. Since in any case z[L]£[]] it follows that z[1]L, i.e. x € £l
Since £4 and L£_ are Jy-invariant and [.,.]-orthogonal, it follows that also

L (L)3£_. Together with what we already saw, £ = £ (+)3£—(+)3£°. Next,
we compute

(J3z,9)5 = [J3z,y] = [P z,y] + [Py x,y] = [Pz, Pyl + [Py z, Py y] =
= [P;]—i_‘r - P3_$7P3+y - Pg_y] = [J3$, Jﬁy] = (JJ, sz)g

and
(Jax, J3y)z = [J3z, Jyy) = [J3(PF + Py )a,y) =

=[(Pf = Py)a,yl = [J32,y] = (2.9); -

To show (1.3.1), let z,y € L be given and put x4 = PE yy = Pﬁi. Then, by
the Schwartz inequality in (L, [, ]|z, x2. ), (L=, =], J|z_xc_), and R?,

|z, ]| < |l ]| + [lo-y-]] <
<log,m )iy el + (<o, 2 )3 (—y-,y )% <

< ([‘TJraiEJr]%.z + (—[I77x7])%'2) . ([yJ”er]%'Q 4 (—[y,,y,])%a) _
= (:Z?,:E)3 ’ (yvy)ﬁ .

Nl=

A19
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1.3.4 Definition. An inner product space (£, [.,.]) is called decomposable, if
there exists a fundamental decomposition of L. /

Let us in this place only remark that not every inner product space is de-
composable. Actually, being decomposable is a strong and important property
for an inner product space. An explicit example for non-decomposability will
be given later, cf. Example 2.3.4.

Orthogonal decompositions with semidefinite summands are closely related
to fundamental decompositions.

1.3.5 Lemma. Let (L,[.,.]) be an inner product space.

(i) Let 3 = (L4, L) be a fundamental decomposition of L, and let LE Ly €
Sub £ with L+Ly = L°. Put

El 3:£++£8_, EQ ZZE_—FEO_,

then L1 is positive semidefinite, Lo is negative semidefinite, and j :=
(L1, L2) is an orthogonal decomposition of L.

(15) Let j = (L1,L2) be an orthogonal decomposition of L, and assume that
L1 is positive semidefinite and Lo is negative semidefinite. Choose linear
subspaces L. and L_ such that L1 = L4+LS and Lo = L_+L3. Then
J:= (L4, L) is a fundamental decomposition of L.

Proof. The assertion (7) is clear. For (i7) note first that, because of the Schwartz
inequality, £, is positive definite and £_ is negative definite, cf. Lemma ?77.
Moreover, since L£1[L L9 and £ + L2 = L, we have L° = L + L3. 0

1.3.6 Definition. Letj = (L1, L2) be an orthogonal decomposition of the inner
product space (L, [.,.]). Then we denote

Subj :={M € SubL: MN Ly ={0}}.
If M € Subj, we define the angular operator of M with respect to j as

. PlM — EQ
GJ(M){ ) e szo(lelM)flx

/

Note here that the requirement M € Sub; just means that P]1| M is injective.
Thus a;(M) is well-defined.

For a given orthogonal decomposition j = (L1, L2) of (L, [.,.]), let us denote
by 2 the set

2 :={(D,K): D€ SubLy,K : D — L linear} .

The set 2; is partially ordered in a natural way, namely with the relation ‘=’
defined as
(D1, K1) =X (D2, K2) ¢ D1 C Da, Ka|p, = K

Note that, clearly, the set Sub; is partially ordered with respect to set-theoretic
inclusion.
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1.3.7 Proposition. Let j be an orthogonal decomposition of the inner product
space (L,[.,.]). The assignment

a: M (P'M,a;(M))
is an order-preserving bijection of Sub; onto ;. Its inverse is given as
(D,K)— {z+ Kz : z € D}. (1.3.2)

Proof. The fact that a maps Sub; into 2l;, and that it preserves the respective
orders, is obvious. Denote the map defined by (1.3.2) by b. Assume that
(D,K) € ;. Clearly, 9 := b(D, K) is a linear subspace of £. Moreover, if
y=x+Kx € MNLy forsomex € D, then z = y—Kx € DNLy C L1NL2 = {0}.
Thus z = 0 and hence also y = 0. We see that M & Sub;, and thus that b maps
2l into Suby;.

We shall show that aob = idg,. Let (D,K) € 2 be given, and put M :
b(D, K). We have z € P' M if and only if z = P! (z 4+ Kx) with some z € D. Tt
follows that z = = and P?(z + Kz) = Kz. Thus P'M = D and aj(M)z = Kz,
z € P'M, ie. a(M) = (D, K).

It remains to establish b o a = idgyp;. Let M € Sub; be given. If y € M,
then y = ley + Pjgy. However, if we set = := ley, then z € lej\/l and
PPy = aj(M)z. Hence y = z + aj(M)z. We conclude that M C (b o a)M.
To see the other inclusion, let z = z + a;(M)z with some z € leM be given.
Write # = Ply with some y € M, then a;(M)z = PPy, and we conclude that
z=Ply+ P?y =y e M. It follows that M = (bo a)M. 0

1.8.8 Ezample. Consider the (z,y)-plane R? endowed with the euclidean inner

product, and let
x x
L= :yzO,E::():sz.
= (D) su=0n o= (7 )

Then j := (L1, L) is an orthogonal decomposition of R%. The projections le
and Pj2 are the orthogonal projections onto the x-axis and onto the y-axis,
respectively.

A linear subspace M of R? belongs to Subj if and only if either M = {0}
or M is a line through the origin different from the y-axis. Let M € Sub;,
M #{0}. Then P'M = L;. If o € (=, 7) denotes the angle between M and
the z-axis, then the action of the angular operator aj(M) is multiplication by
tan a.

Lo

M)z o : Bt

A24
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/

Sometimes it is useful to know that orthogonality can be characterized via
angular operators.

1.3.9 Lemma. Let (L,[.,.]) be an inner product space, and let j = (L1, L) be
an orthogonal decomposition of L. Denote by j the orthogonal decomposition
j = (L2,L1) of L. Let My € Sub; and My € Sub;. Then My L My if and
only if

_[aj(Ml)Iay} = [a:,a;(MQ)y], RS leMl, ye P)jQ(M2)'
Proof. We have
My = {:1: +aj(Mi)z: z € le./\/ll}7 My = {:c—i— a;(Ma)z @ x € sz./\/lg} :
Hence, M; L My if and only if

0= [:c—i—aj(/\/ll):v,y—i—a;(/\/lg)y], ZCEleMh yEPf(Mg).

1.4 Semidefinite subspaces

For certain orthogonal decompositions, in particular for such arising from fun-
damental decompositions, the sets of definite/semindefinite/neutral subspaces
can be described with help of angular operators.

1.4.1 Proposition. Let j = (L1,L2) be an orthogonal decomposition of the
inner product space (L, ].,.]), and let M € Sub L.

(i) Assume that Lo is negative semidefinite. Then

M e Subsg L <—
M € Sub; and — [a;(M)z, 05(M)z] < [z, ], x € lej\/l \ {0}

(13) Assume that Lo is negative definite. Then
M e Subzo L —
M € Subj and — [a;(M)z,aj(M)z] < [z,2],2 € P'M
M e Sub_og L <
M € Sub; and — [a;(M)z,aj(M)z] = [z,2],2 € P'M
(iit) Assume that Lo is positive semidefinite. Then

Me Subg L —
M € Sub; and [a;(M)z, a;(M)zx] < —[z,z],2 € lej\/l \ {0}
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(iv) Assume that Lo is positive definite. Then

M e Subzoﬁ <
M € Suby and [aj(M)z, aj(M)z] < —[z,z],x € le./\/l

MeSub_oL <=
M € Sub; and [a;(M)z, aj(M)z] = —[z, 2],z € P'M

Proof. We shall restrict explicit proof to the item (i), the other items are seen
in the same way.

Assume first that M is positive definite. Since Lo is negative semidefinite,
we have M N Ly = {0}. Hence M = {z + aj(M)z : x € P'M}. Let z € P' M,
x # 0, then

0< [I + g (M)I, r + CLJ(M)ZE] = [x,x] + [CLj(M)ZE, a4 (M)I] .

Conversely, if M € Sub;j satisfies the condition on the right side, we just read
the above inequality backwards to obtain that « + a;(M)z is positive for each

x e P'M. 1l
This proposition has an immediate, but noteworthy, corollary.

1.4.2 Corollary. Let (L,[.,.]) be a nondegenerated inner product space, and
let 3 = (Ly,L-) be a fundamental decomposition of L, so that J is also an
orthogonal decomposition of L. Moreover, let M € Sub L. Then M is positive
semidefinite if and only if its angular operator az(M) is well-defined and is a

D3 |7D§M -to-py |7D§M —contraction. |

Each of the sets Subjngex, Wwhere index is one of j, > 0,> 0,=0,< 0,< 0, is
ordered by set-theoretic inclusion. Maximal elements will be of interest. First
let us note the following consequence of Proposition 1.3.7.

1.4.3 Corollary. Letj = (L1,L2) be an orthogonal decomposition of (L,].,.]),
and let M € Subj. Then M is a mazimal element of Sub; if and only if
leM = £1.

Proof. Since the map a is an order-preserving bijection of Sub; onto 2;, maximal
elements of Sub; correspond to maximal elements of ;. However, clearly, an
element (D, K) € 2 is maximal if and only if D = £;. O

1.4.4 Corollary. For each element M € Sub;j, there exists a maximal element

M’ of Sub; with M C M'.

Proof. Let M € Sub; be given. Choose a projection P of £; onto lej\/l, and
define K := a;(M)P. Then (L1, K) € 2, and clearly (P' M, a;(M)) = (L1, K).
Thus the subspace M’ := a=!(£;, K) is maximal in 2; and contains M. O

The obstacle when trying to construct maximal elements of, say, Sub>¢ £ in
the same way, is that we not only have to extend a;(M), but also to retain the
condition —[Kz, Kz] < [z, z]. In general this is not possible, however, existence
of maximal elements is ensured by Zorn’s Lemma.
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1.4.5 Lemma. Let M € Subsq L. Then there exists a maximal element M’
of Sub~q L such that M C M’. The same assertion holds for Subj,qex, where
index is one of > 0,=0,<0,< 0.

Proof. The union of an ascending chain of positive subspaces of £ is again a
positive subspace. Hence we may apply Zorn’s Lemma. The assertion for the
other classes of subspaces is seen in the same way. O

Of course, Zorn’s Lemma would also apply to Subj, but the argument used
above is more enlightening.

Since SubsoL C Subsg L, an element of Subsg £ which is maximal in
Sub>g £ is clearly also maximal in Subs¢ £. The converse, however, need not
hold true. The same remark is valid for each pair of classes Sub—y £ C Sub>¢ L,
Subco £ C Sub<o L, Sub—¢o L C Sub<o L. In this context maximal neutral
subspaces have an interesting property.

1.4.6 Proposition. Let M be a neutral subspace of L. Then the following are
equivalent:

(1) M is mazimal in Sub_g L.
(ii) Mt is semidefinite and M+ = M.
(i13) M is mazimal in Subso L or mazimal in Sub< L.

Proof.

Step 1, (i) = (i9): Assume that M is maximal neutral. Since M is neutral,

we have M C M, and hence M+ C (M*+)L. Thus M1+ is also neutral.

However, M+ D M, and we conclude from maximality of M that M+ = M.
Next assume that M is indefinite, and choose z, ,z_ € M+ with

[z4,7+] = 1 and [z_,2_] = —1. Let ¢ € R be such that e*’[z_,z,] € iR,

and put xg ==z + €®x_. Then zo L M and

[x0, 0] = [24 + 2,2, + 2 ] =

= oy, 2] + ez, + e ag,a) + [z, 2] =0.
Thus My := span(M U {z¢}) is neutral. By maximality of M, it follows that

x9 € M. Thus 2_ € span(MU{z}). The subspace span(MU{z, }), however,
is positive semidefinite. We have reached a contradiction.

Step 2, (i) = (iii): Let us consider the case that M= is positive semidefi-
nite. Let M_ be a negative semidefinite subspace which contains M. By the
Schwartz inequality, we have M L M_, i.e. M_ C M*. Since M~ is positive
semidefinite, this implies that M_ is neutral. Hence, again by the Schwartz
inequality, M_ L M*. It follows that M_ C M+t = M. We have shown
that M is maximal in Sub<q L.

The case that M= is negative semidefinite is treated in the same way.

Step 3, (iii) = (¢): This is clear, as we have already noted before the present
proposition. Il

1.4.7 Remark. In the proof of (i) = (iii) above we have shown that, for a
maximal neutral subspace M, M being positive semidefinite implies that M
is maximal nonpositive. Analogously, M* being negative semidefinite implies
that M is maximal nonnegative. /
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The above result motivates the following definition.

1.4.8 Definition. Let M be a subspace of (£, [.,.]). Then M is called hyper-
mazimal neutral, if M is neutral and maximal in both, Sub<g £ and Subx¢ L.

/

1.4.9 Corollary. Let M be a subspace of (L,][.,.]). Then M is hypermazimal
neutral if and only if M+ = M.

Proof. Assume that M+ = M. First of all this implies that M is neutral.
Also it follows that M+ = M*L and hence M = ML+, Moreover, M= is
neutral, and hence by Remark 1.4.7 M is maximal nonnegative and maximal
nonpositive.

Conversely, assume that M is maximal nonnegative and maximal nonpos-
itive. Then M is maximal neutral, and hence M= is semidefinite. Since

M C M, maximality of M implies that M = M. O

1.4.10 Example. Let (H,[.,.]) be a Hilbert space, and consider the linear space
‘H x 'H endowed with the inner product

[[(:C,y), (a,b)]] = i([x,b] — [y,a]), (x,y), (a,b) e H X H.

Let T be a densely defined closed operator in H. Then the Hilbert space adjoint
T* of T is defined as the operator with domain

domT* := {x €EH: JyeHst. [Ta,z]=la,y],a € domT}

which assigns to an element x € domT™ the element 7"z := y which exists
uniquely by the definition of domT*. Equivalently, we could define T* via its
graph graphT* as

graphT* = {(z,y) : [b,2] = [a,y], (a,b) € graph T}
Now observe that this just says that
graph T* = (graph 7)1,

Hence, an operator T is symmetric if and only if it is neutral, and it is selfadjoint
if and only if it is hypermaximal neutral. /

Finally, let us mention a result which relates maximal semidefiniteness of M
and M+,

1.4.11 Proposition. Let (L,[.,.]) be an inner product space, and let M €
Sub L. Then the following hold:

(i) If M is maximal in Sub>o £ or mazimal in Subsq L, then M+ € Sub<q L.
(ii) If M € Subs L and M is mazimal in Subso L, then M+ € Sub.o L.

(iii) If M is mazimal in Subsq £ and orthocomplemented, then M= is mazimal

in Sub<o L.
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Proof. To see (i), assume that z € M* and [z,z] > 0. Then the linear space
M = span(M U {z}) belongs to Sub>q £ or Subs¢ L, respectively. By max-
imality of M, it follows that M; = M, i.e. x € M. Thus x € M N M+, and
hence [z, 2] = 0, which contradicts our choice of x.

For (i1) we argue in the same way. Assume that z € M*\ {0} and [z, 2] > 0.
Then Mj := span(M U {z}) € Sub>( £ and, by maximality, M; = M. Again
it follows that [x,2] = 0 which now contradicts the fact that M is positive.

It remains to show (¢4¢). Under the hypothesis of (iii), by the already proved
item (i), the subspace M* is nonpositive. Let M; € Sub<y £ be such that
M+ C My, and let 2 € M;. Since M is orthocomplemented, we can write
r =1y+ 2z withy € M and z € M*. It follows that y = z — 2 € M N M;.
However, since M is positive and M; is nonpositive, we have M N M; = {0}.
Thus # = z € M*. We have shown that M; = M+, O

1.5 Inner product spaces with finite negative in-
dex

1.5.1 Definition. For an inner product space (L, [.,.]}), we define its negative
index as the cardinal number

ind_(L,[.,.]) :=sup{dimM : M € Subo L} .
Completely parallel, we define its positive index as
indy (L, [.,.]) :=sup {dimM : M € Subso L} .
Moreover, we will use the notation
indg(L, [.,.]) := dim L°,
and speak of the degree of degeneracy of L. /

1.5.2 Proposition. Let (L,[.,.]) be an inner product space, and assume that
there exists a subspace Mg which is finite-dimensional and mazimal in Subg L.

Set k 1= dim My. Then the following hold:

(i) We have

K , M mazimal in Sub<g L

dim M = . . .
k+indg £, M mazimal in Sub<o L

In particular, ind_ L = k.

(i1) A negative definite subspace M of L is mazimal in Sub<g L, if and only
if dim M = k. In case that indg £ < o0, a negative semidefinite subspace

M of L is mazimal in Sub<g L, if and only if dim M = k + indg L.

(#i7) The space L is decomposable. More precisely, for each mazimal element
M of Sub.o L, the subspace Mt is mazimal in Subs¢ L and (M, M1)
is an orthogonal decomposition of L.
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Proof. Since the space My is finite-dimensional and nondegenerated, it is or-
thocomplemented. Since M is maximal in Sub<g £, its orthogonal companion
is nonnegative. Moreover, we have (M )° = L°. In the following let j denote
the orthogonal decomposition j := (Mg, Mg ) of £, and let M € Sub.o L be
given.

We have Sub.o £ C Sub;, hence the projection le maps M injectively into
M. in particular, dim M < k. We already see that ind_ £ = k, and hence that
each negative subspace with dimension equal to x must be maximal negative.

Since My is finite-dimensional and definite, there exists an [.,.]-orthogonal
projection P of M onto le./\/l. Let M € Sub; be the unique subspace with

a; (./\/l) = Clj./\/lP.
Then M is maximal in Sub; and extends M. Moreover, we have

[aj(M)x, aj(/\;l)w} = [ajMP(E,CleP(E] <

(1.5.1)
< —|Pz, Px] < —[z,z], z= € M,.

However, if « ¢ ker P then the first inequality is strict, and if « € ker P\ {0}
the second one is strict. Hence, M € Sub. £. We conclude that each maximal
element M of Sub.( £ is mapped by bijectively onto M by le. Thus dim M =
dim M = k. This finishes the proof of the first formula in () and of the first
half of (i4).

For the proof of the second formula in (i), we first reduce to the case that
L is nondegenerated. Let M be a maximal element of Sub<¢ £. Since with M
also M+ L° is nonpositive, we conclude that £° C M. Denote by 7 : L — L/L°
the canonical projection, then m(M) € Sub<o(L/L°). If N € Sub<o(L/L°) and
N D 7(M), then 771(N) € Sub<o £ and 7= 1(N) D 7~} (7r(M)) = M. By
maximality, 771(N) = M, and hence N' = 7(M). Thus m(M) is maximal in
Sub<o(L/L°). If the desired assertion had already been proved for £/L°, we
could conclude that

dim M =dim7(M) + dim £° =k +indp L.

Assume that £ is nondegenerated. Then Mg is positive definite, and hence
Sub<g £ C Subj. If M € Sub<g L, thus dimM < k. Moreover, we can in
the same way as above extend M to the maximal element M of Sub;. Due to
(1.5.1), we have M € Sub<q £. Again it follows that le maps maximal elements
ofSub<q £ bijectively onto M. This finishes the proof of the second formula in
(i).

For the proof of the remaining implication in (i7) assume that indy £ < oo,
and let M € Sub<g £ with dim M = x+indg £ be given. If M; € Sub<o £ and
M C My, then

k+indg L =dim M < dim M; < k+indg L.

Thus M = M, and we conclude that M is maximal in Sub<g L.

We have by now shown that each maximal negative subspace has dimension
K, in particular, it is finite-dimensional. Hence, it is orthocomplemented and
ML € Subso L. Thus (M*, M) is an orthogonal decomposition of £ with
semidefinite components, and thus £ is decomposable, cf. Lemma 1.3.5. This is

(iid). 0
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Of course, with the obvious modifications, the analogous statements hold
for an inner product space which contains a finite-dimensional maximal positive
subspace.

1.6 Dual pairs

1.6.1 Definition. Let (L, [.,.]) be an inner product space, and let M, N €
Sub L. Then M, N is called a dual pair, if

MONE = MEnNN ={0}.

We will use the notation M#N to indicate that M, N form a dual pair.
If M and N are neutral, one also says that M and N are skewly linked in
order to express that M#N. /

Existence of dual pairs follows with help of a variant of the Gram-Schmidt
orthogonalization proceedure.

1.6.2 Lemma. Let (L,[.,.]) be an inner product space, let M € SubL,
dim M < oo, and let Lo € Sub L be such that M N Ly = {0}.

(i) There exists a subspace N C Ly, such that M#N .

(it) If M is neutral and M C Ly, then the space N in (i) can be chosen to be
neutral.

Proof. We will use induction on n := dim M to construct elements eq, ..., ey,
fi,--+, fn, such that

{e1,...,en}isbasisof M, f; €Ly, j=1,....,n

1.6.1
[elvfj]:61j7 iajzla"'vn ( )

Once this has been done, put N := span{fi,..., fn}. Then, clearly, N' C Lo
and M#N.

Consider the case n = 1. Choose e; € M \ {0}, and let f; € Ly be such
that [eq, f1] = 1. This choice is possible, since e; € L. Obviously, the elements
e1, f1 satisfy (1.6.1).

Let a subspace M with dim M = n + 1 be given. Choose M’ C M with
dim M’ = n, and let e;, f;, j = 1,...,n, be elements satistying (1.6.1) for M’.
Choose g € M\ M’ and put

n

€nt1 =9 — Z[gv fj]ej :
j=1
Then {e1,...,enq1} is a basis for M, and

[en+17fk]:07 k=1,...,n.

Since e, 41 € Lg, we can choose h € Ly with [e,11,h] = 1. Put

n

fn+1 i=h— Z[hvej]fj )
j=1
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then fn+1 € Lo and
[eks fat1] =0, k=1,...,n.

It remains to compute

[6n+1, fn+1] = [€n+1, h] - Z[ha ej] [fj’ 8n+1] =1.

=t
J -0

For the proof of (i), assume that M is neutral. Let elements e;, f;, j =1,. ..

satisfy (1.6.1). Choose a matrix A = (a;;)7;—, € C"*", such that

A+ A = —(fi fil)} =y -

For example, we may put

[fiv.fj] 3 Z<.]
aij =1 sl fil, i=3J
0 P>

Define elements

f]; = fk—l—Zakjej, k=1,...,n.

j=1

Then, since M is neutral,
[eiuf;] = [el7f]] = 51_]7 Za] = 17" -, 1,
and hence N’ :=span{ff{,..., f,} satisfies M#N’. Moreover,
o 11 = Ui £+ arsles, f1+ > @il fh es] =
j=1 j=1
=fu, il tam +ax =0, k,l=1,...,n,
and hence N’ is neutral.

Let us collect some simple properties of dual pairs.
| 11| ordentlich !|

21

1.6.3 Lemma. Let (L,[.,.]) be an inner product space, let M,N € Sub/.,

M, N #£ {0}, and assume that M#N . Then
(1) MNL=NnNL ={0}.
(ii) If M is neutral, then M NN = {0} and M+N is nondegenerated.
Assume additionally that dim M < oo. Then
(i4i) We have dim N = dim M.
(iv) If M is neutral, there exists a neutral subspace N” with

MH#N', MAN' =M+N.
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(v) If{e1,...,en} is a basis of M, then there exists a basis {f1,..., fn} of N,
such that
[ei,fj] :5ij7 i,jzl,...,n. (162)

(vi) We have MHN+ = M+4HN = L.
Proof. The first item follows since
MNL CMANE={0}, NNL> CN M+ ={0}.

Assume that M is neutral, i.e. M C M*. Then MNN C MLNN = {0}. Let
z € (M+N)*, and write z = z + y with x € M, y € N'. Then

y=z—1€(M+N)°+MC M.

However, y € N, and it follows that y = 0. Thus x = z € (M + N)° C 'L,
Since x € M, we obtain that also x = 0. Thus z = 0, and we conclude that
(M+N)° ={0}.

From now on assume that M is finite-dimensional. For the proof of (4i7)
choose a basis {e1,...,e,} of M. Then M+ = )=, ker[., e;], and hence
codim M+ < n. However, since N'N M=+ = {0}, we have dim N < codim M+,
Thus dim A < dim M and in particular is finite. Exchanging the roles of M
and N yields dim A = dim M.

The assertion in (iv) follows from applying Lemma 1.6.2, (i7), with Ly :=
M + N. For the proof of (v), choose a basis {e1,...,e,} of M, and put

My :=span ({e1,...,ex} \{ex}), k=1,...,n.

Then codim M < dim My =n — 1. Thus N'N M- # {0}. If 2 € N' N My,
x # 0, then [z, ex] # 0 since & cannot be orthogonal to all of M. Thus we may
choose

kaNﬂMé, lex, fu] =1, k=1,...,n,

i.e. fr € N and (1.6.2) holds. These relations imply that {fi, ..., f,} are linearly
independent, and hence is a basis for N.

Finally, we come to the proof of (vi). According to the already proved item
(v), we may choose bases {e1,...,e,} and {f1,..., fn} of M and N, respec-
tively, which are connected by (1.6.2). For x € £, put

n

Tp = Z[x,fj]ej .

j=1

Then zpq € M, and [zam, fi] = [z, fx], ¥ = 1,...,n. This shows that
x —xp LN, and it follows that M + At = £. The relation M+ + N = L is
seen in the same way. Il

1.7 Orthogonal coupling

Let us explicitly state the following simple geometric facts.
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1.7.1 Remark. Let (L,[.,.]) be an inner product space, and let M be a linear
subspace of £. Then (M, [., .]|mxa is an inner product space. We have

ind- M <ind_ £, indg M >dim(M NL®).

The inclusion map ¢ : M — L is isometric. Let (N, [.,.]Jar) be an inner product
space, and let ¢ : N'— M. Then ¢ is isometric if and only if ¢ o ¢ is. /

1.7.2 Remark. Let (L;,][.,.]:), ¢ =1,...,n, be inner product spaces, and define

L:= H‘Ch ['Ivy] = Z[Trixaﬂ-’iy]iv
i=1 i=1
where 7; denotes the canonical projection of £ onto £;. Then (L,[.,.]) is an

inner product space. We have indy £ = Z?:l indg £;, in fact

L‘O_ﬁlﬁj’,.

Moreover,
ind_ £ =) ind_£;.
=1

Let ¢; : L; — L,1=1,...,n, be the canonical embedding

ti(z) ==(0,...,x,...,0).

i-th place

Then ¢; is isometric. /

1.7.8 Remark. Let (L,[.,.]) be an inner product space, and let M be a linear
subspace of £ with M C £°. Moreover, denote by 7 : £ — £/M the canonical
projection. Then an inner product [.,.]~ on £/M is well-defined by

[z, myl~ = [z, y], z,y € L.
The canonical projection 7 is isometric. We have
ind_ L/ M =ind_ L, indgL/M =indyL —dim M.
Let (NV,[.,.]a) be an inner product space, and let ¢ : £L/M — N. Then ¢ is

isometric if and only if ¢ o 7 is. /

We will in this section study a geometric construction which is a combination
of product and factorization. Our starting point is the following observation.

1.7.4 Remark. If (L4,[.,.]1) and (L, ][, .]2) are nondegenerated inner product
spaces, then the direct and orthogonal sum £;[+]Ls is (up to isomorphisms) the
unique inner product space containing £; and Lo isometrically as orthogonal
subspaces which together span the whole space. /

If we move from the nondegenerated to the degenerated situation, then a
space with this property will not be unique anymore.
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1.7.5 Definition. Let (£y,].,.]1) and (La,][., .]2) be inner product spaces, and
let « be a linear subspace of £ x £3. Then the orthogonal coupling £1 By Lo
of £1 and L5 along « is defined as

L1 8q Lo = (L1[+H]L2) /o

Moreover, let ¢; be the canonical embedding of £; into £, [+] L2, mq the canonical
projection of £1[+]L2 onto (L£1[+]L2)/a, and define (& := 7, 011, 1§ := 74 0 L2,
that is

/

Let us note the following facts:
1.7.6 Remark. Let (Lq,][.,.]1) and (La,[.,.]2) be inner product spaces, and let «
be a linear subspace of £ x L35.
(1) We have
ind_ ,Cl EHQ LQ =ind_ El + ind_ EQ
indo El Bﬂa EQ = indo El + indo EQ —dim «
This follows from the formulas for negative index and degree of degeneracy

given in Remark 1.7.2 and Remark 1.7.3.

(ii) Since LS x L5 = (L1[+]L2)°, the mappings (& : L1 — L1 B, L2 and
1§+ Lo — L4 B, Lo are both isometric. Moreover,

$F(Ly) L g (L) and L1 By Lo =ranf + rancs .
This is obvious from the definition and the fact that ¢1(£1) L ta(L2).

(#4¢) The mappings ¢§ and ¢§ are both injective if and only if the linear subspace
« is the graph of a bijective map a : dom v — ran o between some linear
subspaces dom o C L7 and rana C £5. To see this, note that

(0,22) € @ <= 1§(x2) =0, (21,0) €a <= 1f(x1)=0.

/
1.7.7 Proposition. Let (Ly,[.,.]1) and (La,][.,.]2) be inner product spaces, and

let (L, [.,.]) be an inner product space together with isometric maps t; : Lj — L,
j=1,2, such that /;(L1) L 5(Ls2). Then there exists a unique linear subspace
a C L] x L3, such that

El Lﬁl El EE‘a EQ Lé EQ (171)
v

’ : ’
Ly v Lo
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with some injective and isometric linear map 1. Also the map ¥ is uniquely
determined by the diagram (1.7.1). In fact, o and ¢ are given by

o= {(a:l,xg) €Ly xLy:t)(z1) = —L'2(172)}, 1/)((3:1,x2)/a) = df(x1) + 15 (x2).

The map 1§ is injective if and only if L;- has this property, j = 1,2. Moreover,
rant = rand} +ranh, in particular ¥ is bijective if and only if rani| +randy =

L.

Proof. First we show existence of a and ¢. Since ¢j(£1) L t5(L2), the map
o(x) = f(x1) + th(x2), * = (x1,22), ¥1 € L1, T2 € L, is an isometry of
L1[+]Ls into L. Tt satisfies

’ \Ld) ’
L

and we have
ker ¢ = {(z1,22) € L1[+]L2 1 V) (z1) = —th(x2)} .

Let (21, 22) € ker ¢ be given. If y; € L, then
[(1,22), (1,0)] 2 14y, = (21, 01]1 = [h(21), 1 ()] = [ = (@), 44 (1)) = 0.

Similarly, [(z1,%2), (0,y2)] = 0 for all y € L2. Hence ker ¢ C (L£1[+]L2)°, i.e.
« = ker ¢ qualifies as a subspace being used in the definition of £1 B, £o. Let
1) be the injective isometry with

. [
Li[+]L2 —_;E

.

(L1[+]L2)/ o

Then we have
L6 (1.7.3)

L
> Tt
, #

L0 S L By Ly # )6

and hence (1.7.1) commutes. Moreover, clearly, rant = ran ¢ = ran ¢} + ran ).
Since 9 is injective, it follows that . is injective if and only if L; is.

In order to show uniqueness, assume that o C £ x L3 and ¢’ : £1 By Lo —
L also have the stated properties. If 1 € £y, then (1.7.1) gives

U ((21,0)/ar) = (¥ 018" )(w1) = ¢ (1)

A54
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Similarly, ¥'((0,22)/a’) = th(z2), x2 € Lo, and hence by linearity
Y ((x1,22) /o) = th(x1) + th(z2). Since 9 is injective, it follows that o C
kery/ = . Conversely, since ¢’ is a function, (z1,22) € o' implies that
Uy (z1) = —ih(z2). Altogether, we see that o' = o and ¢’ = 1. O

Combining Proposition 1.7.7 with Remark 1.7.6, (i), we obtain the follow-
ing corollary.

1.7.8 Corollary. Let L1 and Ly be inner product spaces. An inner product
space contains isomorphic copies of L1 and Lo as orthogonal subspaces which
span the whole space, if and only if it is isomorphic to L1 By Lo with some
bijective map o between subspaces of L] and LS. 0



Chapter 2

Topological inner product
spaces

2.1 Definition of TIPS

Let us recall the definition of vector topologies.

2.1.1 Definition (Vector topologies). Let £ be a linear space. A topology T
on L is called a vector topology, if

(VT) Themaps+:Lx L — Land-:Cx L — L are continuous, when
Lx L and Cx L are endowed with the respective product topologies.

If 7 is a vector topology on £, we will speak of (£, T) as a topological vector
space.
A vector topology 7 on L is called locally convex, if

(LC)  There exists a neighbourhood base of 0 which consists of convex
sets.

If 7 is a locally convex vector topology on L, we will speak of (£,7) as a locally
convez space. /

Note that we do not require any seperation properties, like e.g. that each
singleton set is closed. Still, the usual relation between locally convex vector
topologies and families of seminorms, as elaborated e.g. in [?, Theorem 1.36—
Remark 1.38], is present. Thereby Hausdorff topologies correspond to seperating
families of seminorms.

A combination of the notions of ‘inner product space’ and ‘locally convex
space’, together with the natural compatibility requirement, leads to the notion
of ‘topological inner product space’.

2.1.2 Definition. A triple (£,[.,.],7) is called a topological inner product
space, if

(TIPS1) L is a linear space.

(TIPS2) [.,.]is an inner product on L.

27
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(TIPS3) 7 is a locally convex vector topology on £ and the map [.,.] :
L x L — C is continuous, when £ x L is endowed with the
product topology.

/

2.2 Compatible topologies

We will often take the viewpoint that an inner product space (L, [.,.]) is given,
and ask for topologies 7 such that (£, [.,.],7) is a topological inner product
space.

2.2.1 Definition. Let (£,[.,.]) be an inner product space. A locally convex
vector topology 7 on L is called a compatible topology, if (L,].,.],T) is a topo-
logical inner product space.

The set of all compatible topologies on (L,[.,.]) will be denoted by
Top(L,[.,.]). As usual, we will sometimes write Top L if explicit mentioning
the pregiven inner product on £ is not necessary. /

The fact whether or not a vector topology is compatible, can be formulated
in terms of seminorms.

2.2.2 Proposition. Let (L,[.,.]) be an inner product space, and let T be a
locally convex vector topology on L. Then the following are equivalent:

(i) T € Top(L,[.,.]).

(it) There exists a T -continuous seminorm p : L — [0,00) and a constant
a >0, such that

[z, 9]| < ap(x)p(y), =yel. (2.2.1)

(7it) There exists a T-continuous seminorm p : L — [0,00) and a constant
8 >0, such that )
le.a]l* < Bple), ze L. (22.2)

Proof. Let {p; : © € I} be a family of T-continuous seminorms such that the
set of all finite intersections of balls

Upi,e) ={xeL:pi(zx)<e}, i€l,e>0
forms a 7-neighbourhood base at 0.

Step 1; (i) = (ii): Assume that [.,.] is 7 x T-continuous. In particular, the
inner product [.,.] is continuous at the point (0,0). Hence, there exists ¢ > 0
and a finite subset Iy of I, such that

[z, y]] <1 whenever p;(x),p;i(y) <€, i€ .
Set p := max;er, pi, then p is a 7-continuous seminorm. Moreover,
[z, y]] <1 whenever p(z),p(y) < €.
Assume that p(z), p(y) # 0. Then we obtain

23] = p(x)p(y) M € €

€2 p(x)
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Assume that p(z) # 0 but p(y) = 0. Then we have, for each A > 0,

)l = 22| [

A 1p(x)

Thus [z,y] = 0. In the same way we find that the inner product [z, y] vanishes
if p(x) = 0,p(y) # 0 or if p(x) = p(y) = 0. Thus (2.2.1) holds with a := ¢~2.

Step 2; (i1) = (i): Let a > 0 be such that (2.2.1) holds. Let (xg,y0) € £ X L
and € > 0 be given, and choose a neighbourhood U of 0 such that p(z) < e,
xz € U. We have

I,Ay}’ <

[, y] = [0, yol| < [[& — o, ¥l + |[z0, ¥ — o] | <

< ap(x — z0)p(y) + ap(zo)p(y — yo) -
Hence, if r € xg + U, y € yo + U,

[z, 9] — [z0, 0| < ae((p(yo) + €) + p(x0)) -
Thus [.,.] is continuous at (xo, yo).

Step 3; (11) <= (4it): The implication (i7) = (47) is trivial, in fact we can take
the same seminorm p and the constant § := y/a. In order to show the converse
implication, assume that the seminorm p and the constant 8 > 0 satisfy (2.2.2)
in (#i7). We will show that (2.2.1) holds with the same seminorm p and the
constant o := 432

The first step is to prove that

[z, 9]l < B2(p(z) +p(y))°, zy€eL. (2.2.3)

To this end let =,y € L be given, and choose v € C with |y| = 1 such that
~[z,y] > 0. Then

1 1
2|[z,y]| = [z, y) + [y, vz]| = ‘5[71’4'%7354'3/] - 5[7I—y,7f1?—y]| <

< S0Pl + )+ 5 Fplw — ) < (o) + ()

and this is (2.2.3).
Assume that p(z), p(y) # 0, then (2.2.3) gives

2,91l = p@)p(v)| [~ Jp()6°2% = 4Fp(a)p(y)

p(@)’p ‘—p

If p(x) = 0, we obtain from (2.2.3) that for each A > 0

91l = 513l < £ 57w

Thus [x,y] vanishes. If p(y) = 0, it follows in the same way that [z,y] = 0.
Altogether, we see that (2.2.1) holds with « := 432. 0

Let p be a seminorm on £. Then we will denote the topology induced on £
by the one-element family {p} as 7,,.
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2.2.3 Corollary. Let (L, ].,.]) be an inner product space, and let p be a semi-
norm on L. Then the following are equivalent:

(i) T, € Top(L, [, ).
(14) The seminorm p satifies (2.2.1) with some constant o > 0.
(i4i) The seminorm p satifies (2.2.2) with some constant 3 > 0.

Proof. The seminorm p is 7,-continuous. Hence (i) or (i4i) imply (). Con-
versely, assume that 7, € Top L. Then, for each 7,-continuous seminorm p;
there exists a constant v > 0 with py(x) < yp(x), ¢ € L. Hence (i) implies (1)
and (iii). 0

It is an immediate consequence that decomposable inner product spaces can
be made into topological inner product spaces.

2.2.4 Example. Let (L,].,.]) be an inner product space, and let J be a fun-
damental decomposition of £. By Lemma 1.3.3, the seminorm py satisfies an
inequality of the form (2.2.1), actually with v = 1. Thus 7,, € Top L. /

Let us collect some elementary, but useful, facts about topological inner
product spaces.

2.2.5 Lemma. Let (L,[.,.],T) be a topological inner product space. Then the
following hold:

(i) Each of the functionals [.,y], y € L, is continuous.

(i4) For each subset A C L, its orthogonal companion A*t is T-closed. More-
over, (A)+ = A+,

(#ii) {0} C L°.

Proof. Clearly, T x7T-continuity of [.,.] implies 7 -continuity of x +— [z, y] when-
ever y € L is fixed. This is (i).
Since A+ = e ker[., y], this set is closed, and this is the first part of (ii).

The inclusion (A)*+ C A* is trivial. To show the converse inclusion, let z € A+,
The function y — [z,y], y € L, is continuous and vanishes on A. Thus it also
vanishes on A, i.e. x € (A)*

To show (iii), let « € {0} be given. Then, for each continuous linear func-
tional ¢ on £ we have ¢(x) = 0. Since [.,y] is continuous, it follows that

r € LC. O

2.3 Existence of compatible topolgies

Let (£, [.,.]) be an inner product space. The question whether Top(L, [.,.]) is
nonempty, is a nontrivial matter.

2.3.1 Example. We give an example of an inner product space with no compat-
ible topologies.
Set
(C%»:: (gj)jel: ng(C, HNEZijZO,j<N},



2.3. EXISTENCE OF COMPATIBLE TOPOLGIES 31

and define an inner product [.,.] on C% by

[(&)sez (m)jez] =D &1, (&)sez (n))jez € Cit. (2.3.1)

JEL

Note here that in the sum on the right hand side of this relation contains only
finitely many nonzero summands.

Assume that p is a seminorm on C% and that o > 0 is a constant, such that
(2.2.1) holds. Let ey := (0x;)jez, and consider the sequence x := (§;);cz where

¢ o JUFDmax{ple). 1}, j20
70 , j<0

Then, for each k& € Ny,
(k+ 1) max{p(e_r-1),1} =& = [r,e_r—1] < ap(x)ple—x—1) <

< ap(w) max{p(e_x_1),1}.
It follows that £+ 1 < ap(x), k € Ny, and we have reached a contradiction.

Thus Top(C%, [.,.]) = 0. /

As we have observed in Example 2.2.4, fundamental decompositions of an
inner product space (L, [., .]) are a source for compatible vector topologies. These
topologies are constructed intrinsically from the inner product, and hence may
be regarded as the most natural elements of Top(L, [., .]).

2.3.2 Definition. Let (£, [.,.]) be an inner product space. If J is a fundamental
decomposition of £, then the topology induced by the seminorm pz will be
denoted by 7.

An element 7 € Top(L,[.,.]) is called a decomposition topology, if there
exists a fundamental decomposition J of (L, [.,.]), such that 7 = 73. The set
of all decomposition topologies of (L, [.,.]) will be denoted by Topgye.(L, [-,-])-

/

The question whether an inner product space (L, [., .]) possesses fundamental
decompositions, in other words whether Topy..(L, [.,.]) is nonempty, is again a
nontrivial matter. Let us show one result which says that existence of well-
behaved compatible topologies implies decomposability.

2.3.3 Theorem. Let (L,[.,.]) be an inner product space, and assume that there
exists an inner product (.,.) on L, such that (L, (.,.)) is a Hilbert space and the
topology induced by (.,.) on L is compatible. Then L is decomposable, and there
exists a fundamental decomposition J = (L4, L_) of L, such that each of

Ly, Lo, Lyi+L_, Ly+L°, L_+L°
is (.,.)-closed.

Proof. Since [.,.] is a (.,.)-continuous sesquilinearform on L, there exists a
bounded linear operator G on the Hilbert space (£, (.,.)), such that

[z,y] = (Gz,y), =z,y€L. (2.3.2)

B13
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Since [.,.] actually is an inner product, G is selfadjoint. Let E denote the
spectral measure of G, and set

Ly :=ranE((0,00)), L_:=ranE((—00,0)).

Then £ and L_ are (.,.)-closed, (.,.)-orthogonal, and G-invariant subspaces
of L. We have L° = ker G, and hence

Ly+L°=ranE([0,00)), L_+L°=ranE((—o0,0]).

Clearly, also £; + £_ = ran E(R \ {0}). We see that each of these spaces is
(.,.)-closed, and that
L=Ly(+H)L_(F)L°. (2.3.3)

Since L4 is G-invariant, and (., .)-orthogonal to £_, we have
[z,y] = (Gx,y) =0, xe€Lly,yeLl_,

ie. Li[L]L_. Tt follows together with (2.3.3) that E[f} [L]£ and cl! [L]£, and
hence that £; and £_ are both nondegenerated.
For z € L denote by E, , the positive Borel measure A — (E(A)z,z).

Then, by (2.3.2),
[z, z] :/tdEz_,z.
R

If z € L4 and A C (—00,0], then

It follows that
[x,x]z/ tdEy >0, zeLly.
(0,00)

This shows that £ is positive semidefinite. Since L is nondegenerated, it
follows that it is actually positive definite. Similarly, we have

[x,x]:/ tdE, <0, zel_,
(70070)

and conclude that £_ is negative definite.
Altogether, we have shown that J := (£, £_) is a fundamental decomposi-
tion of £ which possesses the required additional properties. 0

The following two examples show that the assumption in this theorem, that
the compatible topology is induced by a Hilbert space inner product, cannot be
weakened.

2.3.4 Example. We give an example of an inner product space which has a com-
patible topology induced by a positive definite inner product, but is not decom-
posable.

Consider the linear space £ := CZ N ¢?(Z) endowed with the inner product
[.,.] defined by (2.3.1).

If (.,.) denotes the usual ¢?(Z)-inner product, then

[z, 9] < (z,2)%(y,y)2, z,y€eLl.

B17
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Hence the topology induced by (.,.) on £ is a compatible topology.
Consider the map ¢ : £ — L defined as

¢((&)jez) = (&x-n0))) jez

where x_n denotes the characteristic function of the set —N; i.e.

() = 1, je-N
X-N\J) = 0, otherwise

Then
rang = {(&)jez: § €C, INEZ:£=0,j <N,j >0} =
= span{ey : k€ —N}.
ker ¢ = {(&)jez : & €C, & =0, <0} = (*(N) (2.3.4)
We see that ker ¢ is a neutral subspace of L.

Let M be a definite subspace of £. Then M Nker¢ = {0}, and hence ¢|rq
is injective. Thus ran ¢ contains an isomorphic copy of M, in particular, the
dimension of M is at most countable.

Assume that J = (L4, £_) is a fundamental decomposition of £. Then the
dimensions of £; and £_ are at most countable. Since, for each (§;);ez € £
and k € Z we have [(§;);ez, e—k—1] = &, the space £ is nondegenerated. Thus
L =L+ L_, and we conclude that also the dimension of £ is at most countable.
This contradicts the fact that £ contains an isomorphic copy of the Banach space
(2(N), cf. (2.3.4). /
2.3.5 Example. We give an example of an inner product space which admits a
compatible topology induced by a Banach space norm, but is not decomposable.

Let X := ¢P with p € (1,00)\{2}. Then X is a reflexive Banach space whose
norm is not equivalent to any norm induced by an inner product. This follows
since X contains noncomplemented closed subspaces.

Let conjugate linear and isometric mappings .# on X and X', respectively,
be defined as

(xn)ng = (m)neNa (xn)nEN eX,

¢ (2) = ¢(a#), ¢eX'.
Note that both of these maps are involutions.
Consider the vector space £ := X x X', and set

Iz, @)l = llzllx + lIgllx,  [(z,9), (v, 9)] = d(y™) + 47 (2).

Then (L, ||.||) is a Banach space and [.,.] is an inner product on £. Moreover,
note that [.,.] is nondegenerated. We have

|[(@, ), (g, )] | < o™ + 0% (@)] < ol xlyllx + [llx 2]l x <
< I, D) ws )

and hence the topology induced on £ by ||.|| is compatible. In particular, each
functional [., (y,%)] is continuous. We will show that every continuous linear
functional is of this form. To this end, let ® € (L, ||.||)’. Then the map

a:x— &(z,0), ze€X,

B19
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belongs to X’. The map

n:g— ©0,9), ¢e€X',

belongs to X”. Hence, by reflexivity, there exists an element y € X with
n(¢) = ¢(y), ¢ € X'. Tt follows that

(I)(CC,(;S) = @(m,0)+(1)(0,¢) = a(:v)+¢(y) = [(CL‘,(b), (a#ay#)}v (.’L‘,(b) € XxX'.

Assume that £ is decomposable and let J be a fundamental decomposition of
L. Then, borrowing from the later Proposition 2.4.3, (iii), we have 73 C 7).
It follows that

{l. 0] : () € LY C(LTRY LTy = {[. (. ¥)] : (y,9) € L},

and hence that
<£7 Tﬁ>/ = <£7 IZT|||>/ .
By the Hahn-Banach Theorem, this implies that the norms ||.||; and ||.|| are

equivalent. Thus also the norm ||.|[3]x o} is equivalent to [|.[|x = ||.[[|x x{o}-
We have reached a contradiction, since ||.|| is induced by an inner product.

/

2.4 Subclasses of Top(L, ., .])

We have already seen in Theorem 2.3.3 that existence of compatible topologies
with specific properties may allow for specific conclusions. In this section we
will investigate some subclasses of Top(L, [.,.]) more systematically.

2.4.1 Definition. Let (£,[.,.]) be an inner product space, and let 7 €
Top(L,[.,.]). Then we write 7 € Top;gex (L, [.,.]), where ‘index’ may be one
of

sn /n /ip /ip" / Bs / Hs,

if 7 is induced by:

sn e~ a single seminorm n e~ anorm

ip e~ a positive semidefinite ipT e~ a positive definite
inner product inner product

Bs e~ a norm turning £ Hs «w an inner product turning
into a Banach space L into a Hilbert space

/

The relation between these subclasses of Top(L,[.,.]) can be pictured as
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follows:
Top

Topy,

e

Top,, Topip

NI

TOsz TOpip+ Topdcc

N

TOpHs

Let us collect some results concerning these classes.
2.4.2 Proposition. Let (L, ].,.]) be an inner product space.

(1) We have TopL # 0 if and only if Top,, L # 0. More exactly: if T €
Top L, then there exists a seminorm p such that T, € Top L and T, C T .

(i1) We have Topg, L # 0 if and only if Top, L # 0. More exactly: if T €
Topy, L, then there exists a norm ||.|| such that Ty € Top L and 7y 2 T.

(i4i) We have Topy, L # 0 if and only if Top;,+ L # 0. More exactly: if
T € Top,, L, then there exists a positive definite inner product (.,.) such
that Ty € TopL and 7 )y 2 T.

(iv) Assume that T € Topps L, and that J = (L4, L_) is a fundamental de-
composition of L. If L and L_ are T -closed, then PEL and Py are T-
to-T |z, -continuous (T -to-T |, -continuous, respectively). Moreover, we
have T3 C T.

Proof.

Item (i): Let T € TopL. By Proposition 2.2.2 there exists a 7-continuous
seminorm p which satisfies (2.2.1) with some o > 0. As we have already noted
in Corollary 2.2.3, the topology 7, induced by this seminorm is compatible.
However, 7-continuity of p implies that 7, C 7.

Item (i1): Let p be a seminorm with 7, € Top £ be given. By Corollary 2.2.3,
p satisfies (2.2.2) with some 3 > 0. Put £o := p~1({0}), and choose a positive
semidefinite inner product (.,.)o on Ly. This can be done e.g. by choosing a basis
of Ly and defining the inner product so that this basis becomes an orthonormal
basis. Moreover, choose a linear subspace £; such that £ = £;+Ly, denote
by Py the projection of £ onto Ly with kernel £1, and let py be the seminorm

po(x) := (Pox,Pox)é. Define

lz|| := v/p(x)2 + (Pox, Pox)o = H (;%3))‘

zeLl.

R2’

Using the triangular inequality of the euclidean norm in R?, we obtain that ||.||
is a seminorm. However, ||z|| = 0 implies that p(z) = 0 and (Poz, Pox)o = 0
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which is Pox = 0. For z € p~1({0}) we have Pyz = z, and thus it follows that
2 = 0. Therefore ||.|| is actually a norm. Moreover,

el = p(z), =L,

and thus 7| 2 7,,. In particular, the inner product [., .] is 7} | x 7} -continuous.
Item (#i): Assume that the seminorm p is induced by an inner product (.,.),
ie.

p(z) = (z,2)?, z€L.
Then the norm ||.|| defined in the above given proof of (i7) is induced by the
inner product

(«I,y)l = ($7y)+(PO$7P0y)O7 .I,yGE
This inner product, however, is positive definite since ||.|| is a norm.

Item (iv): Let T € Topps £, and let J = (L4, L_) be a fundamental decom-
position whose components are 7-closed. Consider the fundamental projection
P3+ L — Ly. Let x, € L, n € N, and assume that

7|
T £t
Ty — T, Pgrzzrn - Yt

If z € £, then

[Pfz,z] = [x,2] = lim [z,,2] = lim [P{2,,2] = [y;,2],

n—oo n—oo

and we conclude that Pgr x = y4+. Thus the graph of P‘{r is closed. Since L
is 7-closed, it is itself a Banach space. Hence, by the Closed Graph Theorem,
Pgr is 7-to-T |, -continuous. In the same way, we see that Py is 7-to-7 |, -
continuous.

Choose a norm ||.|| which induces 7, and let @ > 0 be such that (2.2.1) holds
for ||.||]. Then we have

|2]13 = (2,2)5 = [Jo,a] = [P @, 2] - [Pya,] <
< allPfal -l + al Py all - llz] < a(I1P5 I+ 125 )l
and it follows that 73 C 7. 0
2.4.3 Proposition. Let (L,][.,.]) be a nondegenerated inner product space.

(i) We have Topg, £ = Top, L and Top;, L = Top;,+ L. More exactly: each
seminorm p with T, € Top L is a norm, and each positive semidefinite
inner product (.,.) with 7y € Top L is positive definite.

(13) | Topps £| < 1 contains at most one element.
(#9t) If Ty € Topge. £ and T € Topp, L, then To C 7.

Proof.
Item (i): To prove this item, it is enough to remember that for each seminorm
p with 7, € Top £ we have p~1({0}) C £°, cf. Lemma 2.2.5, (ii).
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Item (i1): Let 73,72 € Top L, and consider the identity map id : (£,77) —
(L, T5). Let (x;);cr be anet in £, and assume that

Ty T
T ST, T ST
Then, for each ¢ € (£, T1)' N (L, T3)’, we have

¢x) = lim (i) = $(y).
In particular, this applies with each functional [.,3], ¥ € £, and we conclude
that x —y € L°.

If [.,.] is nondegenerated, the above argument tells us that the graph of the
identity map id : (£,71) — (£, 7T2) is closed. If 73 and 73 are both induced by
Banach space norms, the Closed Graph Theorem yields that it is continuous.
Since id is bijective, it is a homeomorphism, and we conclude that 7; = 75.

Item (ii7): Let T € Top £ and let J = (L4, L£_) be a fundamental decomposi-
tion. Since £ is nondegenerated, we have £, = £+ and £_ = L. Hence £
and L£_ are both closed, and we may apply the already proved item (v). Il

2.5 Minimal elements of Top(L, |.,.])

The set Top L is ordered by set-theoretic inclusion. Clearly, if 7; and 75 are
vector topologies on £ with 73 C 75 and 77 is compatible, then also 73 is
compatible. Hence, asking for large elements of Top £ will lead to the same
questions and answers as for the set of all vector topologies. When asking for
small elements of Top £, the situation is more specific and depends on the addi-
tional structure provided by the inner product. In particular, the investigation
of minimal elements of Top L is interesting in various respects.

2.5.1 Definition. Let (£, ].,.]) be an inner product space. We denote the set
of all minimal elements of Top(L, [.,.]) by Top,;, £. That is, we write T €
Topmin (L, [, .]) if T € Top(L,[.,.]) and

T' € Top(L, [, ),T' CT = T =T.
/

In the study of Top,,;, £ the notion of the polar of a seminorm is useful.

2.5.2 Definition. Let (£,[.,.]) be an inner product space, and let p be a semi-
norm on £ with 7, € Top £. Then the map p’ : £ — [0, 00) which is defined
as

p'(x) = sup |[z,9]], zeL,
p(y)<1

is called the polar of p. /

Note that the supremum in the defining relation for p’ is finite, since 7, €
Top £ means that there exists some o > 0 with |[z, y]| < ap(x)p(y), =,y € L.
Thus,

p(z) = sup |[z,y]] < ap(z), xz€L. (2.5.1)
p(y)<1
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Actually, for given x € £, the number p’(z) is the smallest constant v such that
the inequality |[z, z]| < yp(x) holds for all z € L.
Let us collect some simple properties of polars.

2.5.3 Lemma. Let (L,[.,.]) be an inner product space, and let p, p1, pa be semi-
norms on L with 7,,,T,,,T,, € Top L. Then the following hold:

(i) p’ is a seminorm.

(1) If p1 < pa, then py > p,. For each X\ > 0 we have (\p)' = p’.
(#i7) If CTp,, then Ty 2Ty
(iv) We have Ty C Tp,.

Proof. To see (i), we compute

P'(Az) = sup [[Az,y]| = A sup [[z,y]|,
p(y)<1 p(y)<1

p(z1+a2) = sup |[z1 4+ x2,9]| < sup |[z1,y]] + sup |[[x2,9]].
p(y)<1 p(y)<1 p(y)<1

For the first part of (i7) note that p; < py implies that {y € L: p1(y) < 1} 2
{y € L: pa(y) < 1}. Hence,

pi(z) = sup |[z,y]| > sup |[z,y]] = py(z).
p1(y)<1 p1(y)<1

Next, for each A > 0 we have

(Ap)'(z) = sup |[z,y]| = sup |[z,y]| = sup I[x,/\]l 3
(Ap)(y)<1 p(Ay)<1 p(2)<1

In order to show (i), assume that 7,, C 7,,. Then p; is Tz-continuous, and
hence there exists a constant v > 0 with p1(z) < yp2(z), x € L. It follows that
/ / 1 /
pi = (yp2) = —ps,

v
and hence that 7;,/1 D 7;,/2.
Finally, item (¢v) is immediate from (2.5.1). O

Item (i3i) of the above lemma implies that the following notion is well-
defined.

2.5.4 Definition. Let (£,[.,.]) be an inner product space, and let 7 € Topg, L.
Choose a seminorm p with 7 = 7,,, and define 7' := 7,,. The vector topology
T’ is called the polar of T. /

From items (ii¢) and (iv) of Lemma 2.5.3 we immediately obtain the follow-
ing corollary.

2.5.5 Corollary. Let (L,][.,.]) be an inner product space. If T € Topg, (L, [.,.]),
then T' CT. If T, T; € Topg, (L, [.,.]) with Ty C T, then T/ D T. O

We can now give a characterization of minimal compatible topologies.
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2.5.6 Theorem. Let (L,].,.]) be an inner product space. Then
Topuin(Ls [, ]) = {7 € Top,, L: T =T'}. (2.5.2)

Proof. The inclusion ‘2’ in (2.5.2) is easy to see. Assume that 7 € Topy, £
and satisfies 7/ = 7. Let 73 € Top £ with 73 C 7 be given. By Proposition
2.4.2, (i), there exists T3 € Top,, £ with 75 C 77. Since 73 C 7, it follows from
Corollary 2.5.5 that

LT, 2T =T,

i.e. 7o = 7. Thus 77 = 7, and we conclude that 7 is a minimal element of
Top L.
In order to establish the reverse inclusion, we prove the following

Claim: If T € Topy, L, there exists T € Topy, L with Too €T and Too = TL,.

Since, by Proposition 2.4.2, (2), Top,,i, £ € Top,, £, the inequality ‘C’ in (2.5.2)
will follow immediately from this claim.

We come to the proof of the above claim. Let p be a seminorm with 7 = 7,,.
We inductively define maps p, : L — R, n € N, as follows. Choose a constant
a > 0 such that p satisfies (2.2.1) with this constant, and set

p1(z) == Vap(x), ze€L.

If p,, has already been defined, set

) x€eL.
R

st s 431)

Clearly, each map p,, is a seminorm. Next we verify by induction that
[, 9]| < Pn(2)pn(y), Pnir(z) <pn(z), z,y€LneN. (2.5.3)
Let n = 1. Then, by the definition of p; and (2.2.1), we have
[z, ]l < ep(@)p(y) = pr(@)p1(y), =,y €L,

The estimate (2.5.1) yields that

1
P <~Vap=np1,

n=g

and we conclude that po < p;. Assume that (2.5.3) has already been proved for
some n € N. From the definition of the polar p], we deduce that

el <2 @pa). o] < pu@h). wyelf.  (254)
Thus )
[z, y]] < E(p;(ﬂ?)pn(y) + pu(2)py, (y)) <
< L al@)? + 0@ - (0u)? + 20D = s (@i ()

Using (2.5.1), we obtain that p;,,; < p,41 and hence that p,io < ppy1.
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Due to monotonicity the limit

DPoo() == lim p,(x), z€L,

n—oo
exists. Clearly, po is a seminorm. Moreover, we have po < p,, n € N, and

hence in particular p,, < +/ap. Passing to the limit in (2.5.3) gives

Next we will show that

pl(z) = lim pl(x), ze€L. (2.5.5)
We have poe < ppy1 < pn, and hence p;, < p; ., < pl.. Hence the limit on
the right hand side of (2.5.5) exists and the inequality ‘>’ in (2.5.5) holds.
Conversely, passing to the limit in (2.5.4) gives

[z, y]] < (lim p,(2)) - peo(y), y €L,

n—oo

and we conclude that p/_(z) < limy,_ o p},(z). This establishes (2.5.5).
Finally, passing to the limit in the definition of p,; and using (2.5.5) gives

acls) =\ S (el 4 02)

and hence poo(2) = pl (2).

Setting 7o, := 7, , we have constructed an element of Topg, £ with the
required properties. This finishes the proof of our claim, and hence the proof of
the theorem. 0

2.5.7 Corollary. Let (L,][.,.]) be an inner product space. Then the following
hold:

(2) For each T € Top L, there exists Ty € Top,,;, £ with To C T.
(i1) We have Topye. £ C Top,;, £-

Proof. The claim explicitly stated in the proof of Theorem 2.5.6, together with
(2.5.2) and Proposition 2.4.2, (i), says that we can find 7y as required in ().

For the proof of (i7) we have, in view of Theorem 2.5.6, to show that for each
T € Topge, £ the equality 7 = 77 holds. Let a fundamental decomposition
J = (L4+,L_) be given, and let (H, (.,.)x) be the Hilbert space completion of
the positive definite inner product space (£/ e, (.,.)3/c°). Moreover, denote by
¢ the canonical map ¢ : L — H, i.e. projection followed by embedding. Then ¢
is isometric, and has dense range. We compute

1
pa(@) = ()l = sup |, 2wl = sup [(uz, )| =
z€H ueLl
llzll#<1 py(u)<1
= sup [(z,u)zl= sup |[z,Jul|= sup [[z,y]|=p;(z).
ueLl uel yeL
p3(u)<1 py(w)<1 p3(y)<1
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There exist situations when Top £ has a unique minimal element, cf. the
below Theorem 2.5.10. Because of Corollary 2.5.7, (2), this element will then be
the smallest element of Top L.

2.5.8 Definition. Let (£,[.,.]) be an inner product space. A positive definite
subspace M of L is called intrinsically complete, if (M, ][.,.J|mxnm) is a Hilbert
space. Similarly, a negative definite subspace M is called intrinsically complete,
it (M, —[.,.]) is a Hilbert space. /

The following property of an inner product space appears frequently.

2.5.9 Definition. Let (£,[.,.]) be an inner product space. Then L is called
semicompletely decomposable, if there exists a fundamental decomposition J =
(L4, L_) of £ such that (at least) one of £, and £_ is intrinsically complete.

/

2.5.10 Theorem. Let (L, ].,.]) be a semicompletely decomposable inner product
space. Then Top L contains a smallest element. This element is the decomposi-
tion topology Ty whenever J is a fundamental decomposition with (at least) one
intrinsically complete component.

Proof. Let J = (L4, L_) be a fundamental decomposition with (at least) one
intrinsically complete component. For definiteness, let us assume that £, is
intrinsically complete. The case that £_ satisfies this hypothesis is treated in
the same way.

We shall prove that 73 is the unique minimal, and thus smallest, element of
Top L. To this end let 7 € Top,,;, £ be given.

Step 1: According to Theorem 2.5.6, there exists a seminorm p and a constant
~v > 0 such that
T="1T, p)<(z), zecLl. (2.5.6)

Moreover choose @ > 0 according to (2.2.1), i.e. such that

[z, y]] < ap(x)p(y), =,yeLl. (2.5.7)

Consider the Hilbert space (£,[.,.]). The norm induced by [.,.] on Ly is
nothing else but pz|.. . Hence, for each y € £, the functional [.,y]|z, is belongs
to (L4,[.,.])’. Consider the family of functionals

{[yl: ply) <1} S Ly, [ ])

By (2.5.7) this family is pointwise bounded and hence, by the Principle of Uni-
form Boundedness, uniformly bounded. This means that there exists a constant
C > 0 such that

1Lyl <C. ply) <1, (2.5.8)

where ||.|| denotes the norm in (L, [.,.])’. Putting together (2.5.6) and (2.5.8)
yields

p(x) <yp'(x) =7 sup |[z,y]| <~Cpy(x), €Ly, (2.5.9)
p(y)<1

Step 2: Let © € L. Then, according to (2.5.6) and (2.5.9),

p(Pfx)? < (VC)?py(Pf a)? = (vO)? [P o, Pfa] = (vC)*[Pf x, 2] <
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< (vO)?ap(Pf x)p(z) .
Hence,
p(Pgr:v) < a(wC)Qp(x), zeLl.

Since z + JJx — 2P5rx € L°, it follows that
py(x)? = [J3z, 2] = [2Pf 2z —2,2] < ap(2Pfz —z) - p(x) <

< a(2a(y0)? + 1V)p(z) - p(z) .

We conclude that 73 € 7, = 7, and hence, by minimality of 7, that 73 =
7. O

2.6 Uniqueness of decomposition topologies

As we already noticed, decomposition topologies are of particular interest since
they arise intrinsically from the inner product. It is thus a most well-behaved
situation if there exists a unique decomposition topology. We know that the
question of existence of decomposition topologies, i.e. whether or not the space
under consideration is decomposable, is a nontrivial matter. The following ex-
ample shows that also uniqueness is not always present.

2.6.1 Example. We give an example of an inner product space with two different
decomposition topologies.
Consider the linear space

L:=Ch:={(&)jez: AN €Nsit. & =0,|j| > N},

endowed with the inner product

[(&5)5ezs (nj)jen] =D &5 — Y &5

§>0 j<0
Denote ey, := (0,,5) ez, n € Z, and put
LY :=span{e, : n >0}, L' :=spanfe,: n<0}.

Then, clearly, J; := (E}H L) is a fundamental decomposition of L.
Define elements f,, € L, n € Z, as

[l

ni=ép+———e_,, NEZL,
/ [n| +1
and put
L% :=span{f,: n >0}, L2 :=span{f,: n<0}.
We have
PRl :(e+ n| | )_ i (e I e):
B e N O A T A T
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and hence E%r + L£? = L. Let us compute inner products. By the definition of
[.,.], we have

[fnufm] =0, |n| # |m|7

2ln|+1
|n|2 Tn+D2 n>0
[fn, fn] = [en,en] + [e,n,e,n] = 2|n[+1
(|n| + 1) Dz M <0
n In
ny J—n] = |€n + € _n,e_pn+ €n| =
s f-n] = | In| +1 In| + 1 ]
n| In
= il 1[en,en] + BT [e—n,e—n] =0, neN.

It follows that Ei € SubsgL, £L2 € Sub.gL, and that Ei 1L £%2. Thus
J2 := (L%, £%) is a fundamental decomposition of L.
Consider the sequence (f,)nen. Then we have

n n n
||an31 = || €n n+ 1€—nH31 [emen] + [n—He_"’n—He_”] =
2
n
fr 1 _
G
2n+1
2 = =

We see that || fr|l3, — 0 whereas || fu|l3, > 1.
Consider the sequence (n_%en)neN. Then

105, = [ S = 3.

(n+1)2 2

n
I, = L o -
o (n+1)? N2 n n B
= (@ornvs) Ut - gl fl) =
o (n+1)? N2 2041 n? 2n+1y\
_((2n+1)\/ﬁ> ((714—1)2 (n+1)2(n+1)2)_
(D' 2n+1 n?
C (2n+1)2n (n+1)2 ( (n+ 1)2>
We sce that ||n"Ze,||3, — 0 whereas |[n " Zey |5, — 1. /

The following statement gives two useful conditions under which at most
one decomposition topology exists.

2.6.2 Theorem. Let (L,[.,.]) be an inner product space, and assume that (at
least) one of the following hypothesis holds true:

(i) L is semicompletely decomposable.
(i¢) The inner product [.,.] is nondegenerated and Topg, £ # 0.

Then there exists at most one decomposition topology on L.
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Proof. Under the assumption (i), the present assertion is an immediate conse-
quence of our previous results. Namely, by Corollary 2.5.7, (i), each decompo-
sition topology is minimal, and by Theorem 2.5.10 there exists only one minimal
element.

For the proof under the hypothesis (i7), assume that £ is nondegenerated,
let T € Topp, £, and choose a norm ||.|| which induces 7. Let two fundamental
decompositions J1 = (L1, L) and Jo = (£2,£?) of L be given. Since L is
nondegenerated, each of Ei, j =1,2,is T-closed. By Proposition 2.4.2, (iv),
the fundamental symmetries Ji,J> corresponding to J; and Jo are 7-to-7-
continuous, and 73,,73, C 7. Put T := JiJa, then J;T = Jy and hence

(Tx,y)3, = [Joz,y] =[x, J2y] = (2, Ty)3,, w,y€L.
For each n > 0 we have
n 2 n n n+1 n+1
py, (7% 2)" = (T% 2, T? :1:)31 = (17 x,x)31 <py (T* 2)py(z). (2.6.1)
We will show by induction that
P35, (TI) <Py (T2"I)2’" "Py ($)172’", n=0. (262)

If n = 0, this is just p3, (Tz) < p3,(Tz) - 1, and hence trivially true. Assume
that (2.6.2) holds for some n € Ny. Then, using (2.6.1), it follows that

D3. (TCL') < P3. (T2"x)2’" * P31 (w)1—2’" <

" P ($)1—2’" =

g ()12 <

< (pa, (T2 &) py, () 27

o 2n+1 27(n+1)
= P31 (T I) '
2—(n+1) 1,2*(”4’1)

n+1
:pﬁl(TQ I) 'pﬁl('r)
This finishes the proof of (2.6.2).
Since T3, C T, there exists a constant v > 0 such that pz, (z) < y|jz|, z € L.

Moreover, denote by ||T'|| the ||.||-to-||.||-operator norm of T. Then we obtain,
with help of (2.6.2),

pa(Ta) <7° T IT 2l pyy (@) 72" <2 T - ) - g ()2
Passing to the limit n — oo gives pg, (T'z) < ||T||p3,(«). From this we obtain
Py, (2)? = [Jow, 2] = [iT2, 2] = (Tz, 2)y, <

< py (T:C)pﬁl(x) < ||T||p31(17)27 HARS E,

i.e. 73, € 73,. Since decomposition topologies are minimal, cf. Corollary 2.5.7,
(44), this implies that 73, = 73,. O

Let us note explicitly that (i4) does not imply (¢), even if we assume the
existence of a fundamental decomposition. This comes for the following reason:
If, under the hypothesis (ii), J = (L4,£_) is a fundamental decomposition
of a nondegenerated space, then £, and £_ are 7-closed, i.e. complete with
respect to the norm ||.||. But this does not necessarily imply that £ior £_ is
intrinsically complete.

example 77
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2.6.3 Corollary. Let (L,[.,.]) be an inner product space, and assume that
ind_ £ < oo orindy £ < oco. Then | Topy.. £| = 1. In other words, for each two
fundamental decompositions J1,J2 of L, there exist constants 1,72 > 0 such
that

1103, (2) < py, () < yop3, (), €L,

Proof. Assume e.g. that ind_ £ < oco. Then, by Proposition 1.5.2, (iii), the
space L is decomposable. The negative definite component in a fundamental
decomposition is finite dimensional, and hence intrinsically complete. The as-
sertion follows. O

It is a noteworthy fact that, for nondegenerated spaces £, completeness of a
component in a fundamental decomposition does not depend on the particular
choice of the fundamental decomposition. In particular, if £ is semicompletely
decomposable, then either for every fundamental decomposition the positive
definite component is intrinsically complete or for every fundamental decompo-
sition the negative definite component is intrinsically complete (or both).

2.6.4 Proposition. Let (L,[.,.]) be nondegenerated, and let J = (L4, L_) and
I = (L, L) be two fundamental decompositions of L. If L', is intrinsically
complete, so is L. The same holds for L and L_.

The proof of this fact is based on the following observation, which will also
be useful later on.

2.6.5 Lemma. Let J = (L4, L_) be a fundamental decomposition of the inner
product space (L, [.,.]), and let j be the orthogonal decomposition j := (L4, L_ +
L£°). If M € Subso L N Subj, then the fundamental projection Pﬁ"' maps M

S +
p3-bicontinuously onto Pj" M.

Proof. Since M € Sub; and, with the notation of Definition 1.3.1, P}" = P
the map Pgr is a bijection of M onto P;./\/l. Clearly, pj (Pﬁ'kx) <pz(z), z €L,
and hence P3+ is pz-continuous.

To see boundedness of (P3+|M)’1, let € M be given. Since M € Sub>q L,
we obtain the estimate

pa(@)? = [Py o, P o] — [Py, Py a] = 2[Py &, P a] - [z,] < 2p5(Py (x))?.

>0

O

Note that always Subso £ C Subx>¢ £ N Sub;. For nondegenerated spaces L,
we even have Sub>g £ C Subj. Let us moreover point out the following fact.

2.6.6 Remark. If (L,].,.]) is a positive definite inner product space, and M €
Subs¢ £ is intrinsically complete, then M is orthocomplemented. This follows,
since the usual proof of existence of orthogonal projections in a Hilbert space
uses completeness of the subspace but not completeness of the whole space.

/

Proof (of Proposition 2.6.4). Assume that £, is intrinsically complete, i.e. com-
plete with respect to py/. First of all, Theorem 2.6.2 implies that 73 = Ty
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Hence, £/, is also pz-complete. By the above lemma, Pgr L' is a pz-complete
subspace of the positive definite inner product space L .

If Pgrﬁﬁr = L4, we are done. Assume that Pgrﬁﬁr # L. Then, by the above
remark, there exists an element z¢ € £, with

xo LPFL,, xo & PTL,.

The subspace M’ := span(L/, U{xo}) is thus a proper and positive definite ex-
tension of £’ . This implies M'NL" # {0}, and we have reached a contradiction
since M’ is positive and L is negative. O

If there exists a unique decomposition topology on an inner product space,
this topology is the most natural element of Top £, and appears in several
contexts. Hence, it deserves to be named.

2.6.7 Definition. Let (£,[.,.]) be an inner product space, and assume that
| Topgee £] = 1. Then we denote the unique decomposition topology of £ by
T*. Moreover, we let £* := (L£,7*)’ be the topological dual space of £ with
respect to the topology 7*. /

2.6.8 Remark. Assume that | Topg.. £| = 1, so that 7* is well-defined.

(1) We have T* € Top,, £, and it is a Hausdorff topology if and only if £ is
nondegenerated.

(#7) In the situation that £ is nondegenerated, so that 7* is induced by some
norm, we will freely speak of ‘completeness with respect to 7*’, ‘Cauchy
sequence with respect to 7+’, etc. meaning ‘complete with respect to some
norm inducing 7*’, ‘Cauchy sequence with respect to some norm inducing

T, etc.

/

2.7 Subspaces, products, factors

The constructs mentioned in the title of this section are defined in a natural
way, and give rise to topological inner product spaces.

2.7.1 Proposition. Let (L,[.,.],T) be a topological inner product space, and
let M be a linear subspace of L. Then (M, [, Jlmxm,T|m) is a topological
inner product space.

The inclusion map ¢ : M — L is a morphism. Let (N,[.,.Jn,Tn) be a
topological inner product space, and let ¢ : N'— M. Then ¢ is a morphism if
and only if Lo ¢ is such.

Proof. First of all note that the restriction 7| is a locally convex vector topol-

ogy on M. Clearly, 7-continuity of [.,.] implies that [.,.]|smxa 1S continuous
with respect to 7 |pq. Thus (M, [, J|mxm, T |m) is a topological inner product
space.

The fact that the inclusion map is linear, isometric, and continuous, is also
clear. Let (N[, .Jar, Zar) be another topological inner product space, and let
¢ : N — M. If ¢ is a morphism, then to¢ is, as a composition of two morphisms,
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itself such. Conversely, Zj-to-T -continuity of to¢ implies Tyr-to-7 | p-continuity
of ¢, since Ty is the inital topology with respect to {¢}. Moreover, isometry of
L o ¢ implies

(92, dylmxm = [tdz, 1y] = [v,yln, zy €N
Finally, since ¢ is injective, linearity of ¢ o ¢ implies linearity of ¢. 0

2.7.2 Proposition. Let (L;,].,.];,T;), i = 1,...,n, be topological inner product
spaces, and define

n n n

L= Hﬁi, [z,y] == Z[mx,m—y]i, T = H'];,

i=1 =1 =1

where m; denotes the canonical projection of L onto L;. Then (L,[.,.],T) is a
topological inner product space.
Letv;: L;i — L, i=1,...,n, be the canonical embedding

i-th place

Then 1; is a morphism. Let (N, [.,.|n, Tar) be a topological inner product space,
and let ¢ : N — L. Then ¢ is a morphism if and only if ¢ is isometric and
mop,i=1,...,n, are all continuous.

Proof. The product topology is a locally convex topology on L. Clearly, [.,.] is,
as a sum of continuous functions, itself continuous.

Isometry and continuity of ¢; is immediate. The fact that continuity of m;0¢
implies continuity of ¢ is the universal property of initial topologies. 0

Note that, in the situation of Proposition 2.7.2, the maps m; o ¢ need not be
isometric.

2.7.3 Proposition. Let (L,[.,.],T) be a toplogical inner product space, and let
M be a linear subspace of L with M C L°. Then an inner product [.,.]~ on
L/ M is well-defined by

[rz, 7yl = [2,y], zyeL,

where m denotes the canonical projection. The triple (L/ M, ., .]~, T /M), where
T /M denotes the quotient topology, is a topological inner product space.

The canonical projection m: L — L/M is a morphism. Let (N, [.,.|x, Tn)
be a topological inner product space, and let ¢ : L/M — N. Then ¢ is a
morphism if and only if ¢ o w is such.

Proof. The quotient topology is a locally convex vector topology on the factor
space. The fact that [.,.]~ is well-defined, follows since M C £°. Since 7 maps
open sets to open sets, [.,.]~ is 7 /M-continuous. Clearly, 7 is a morphism and
continuity of ¢ o 7 implies continuity of ¢. Moreover,

[z, myl~ = [, y] = [p7z, oy, w,y€L.
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Sometimes it is practical to have available a weak version of the 15 Homo-
morphism Theorem. This is an immediate consequence of the above statements.

2.7.4 Corollary. Let (Ly,][.,.]1,71) and (La,]., ]2, T2) be topological inner prod-
uct spaces, and let ¢ : L1 — Lo be a morphism. Then there exists a unique
morphism ¢ such that

<£1a['7']17’]1> <£27['a']2a75>

<£1/ker ¢a ['7 ']1,~7T/ ker¢> """""""" qg """" > <ran ¢a ['7 ']2|ran¢v><ran¢; 75|ran¢>

This map ¢E is bijective.

Proof. Existence of a linear and bijective map ¢E with the above diagram is
standard. Isometry of ¢ is clear, and continuity follows from the universal
property of initial and final topologies. O

Note that, although ¢ is bijective, we do not know in general that ¢ is an
isomorphism.



Chapter 3

Classes of complete TIPS. 1.
Krein spaces

3.1 Definition of Krein spaces

Let (£,].,.]) be a nondegenerated and decomposable inner product space. By
Proposition 2.6.4 the positive subspaces appearing in fundamental decomposi-
tions of L are either all intrinsically complete or all not intrinsically complete.
The same holds for the negative components in fundamental decompositions of

L.

3.1.1 Definition. An inner product space (K,[.,.]) is called a Krein space,
it
(KS1) K is nondegenerated.

(KS2) There exists a fundamental decomposition (Ki,K_) of K whose
components K and K_ are both intrinsically complete.

/

Let us start with some immediate reformulations of this definition.

3.1.2 Remark. Let (I, [.,.]) be an inner product space. Then the following are
equivalent:

(1) (K,[.,.]) is a Krein space.
(74) There exists a Hilbert space H; and a anti-Hilbert space Hs, such that

<K:a [-7 ]) =H; [+]H2 .

‘ [+] to be defined earlier (§1) ‘

(#41) K is nondegenerated, | Topge. K| = 1, and K is complete with respect to
7.

/
3.1.3 Remark. Let (K,[.,.]) be a Krein space.

49



50 CHAPTER 3. COMPLETE TIPS. I. KREIN SPACES

(1) Tt follows from our previous discussions, more precisely from Proposition
2.4.3, (i1), Theorem 2.5.10, and Theorem 2.6.2, that

TOpHs K= TOsz K= Topdcc K= Topmin K= {T*} .

Hence, Krein spaces may be considered in a canonical way as a particular
kind of topological inner product spaces. Namely if we additionally endow
(K,[.,.]) with the topology T*, and we will refer to 7* as the Krein space
topology of K.

Unless the contrary is stated explicitly, a Krein space K will always be

understood as the topological inner product space (K, [.,.], 7*).

(i4) Let J be a fundamental decomposition of K. Then (K, (.,.)3) is a Hilbert
space. Hence, the map y — (., y)5 is a conjugate linear bijection of K onto
the topological dual space of K. However, the fundamental symmetry J
is a linear bijection of IC onto itself, and we have (.,y);3 = [., Jy]. Hence,
also the map y — [.,y] is a conjugate linear bijection of K onto its dual.

/

VLLLLLLLLLL

‘ remove notion of KS-morphism... everywhere. maybe somewhere footnote ‘

On first sight it might seem natural to define a morphism of a Krein space
(K1,][.,.]) to another Krein space (Ko, [.,.]2) as a linear and isometric map of
K1 into Kq. Interestingly, this notion would be too weak in many respects; it is
necessary to include continuity into the definition.

3.1.4 Definition. Let (i, [.,.]1) and (Ks,][.,.]2) be topological inner product
spaces. Then ¢ is called a (KS—) morphism of K1 to K, if ¢ is a linear map of
K1 into Ko which is isometric and 77*-to-75'-continuous. /

Formulated in an abstract way, one could say that we consider Krein spaces,
which are by definition a particular kind of inner product spaces and by Re-
mark 3.1.3, (i), a particular kind of topological inner product spaces, rather as
subcategory of TIPS than of inner product spaces.

[RRARRARRARRARRN)

Let us turn to some alternative definitions of Krein spaces. First we proceed
via Gram operators. Revisiting the proof of Theorem 2.3.3, we can deduce the
next statement.

3.1.5 Theorem. Let (K,[.,.]) be an inner product space. Then (K,][.,.]) is a
Krein space, if and only if there exists an inner product (.,.) on IC which turns K
into a Hilbert space, induces a compatible topology, and has the property that the
Gram operator of [.,.] with respect to (.,.) is boundedly invertible as an operator
on the Hilbert space (K, (.,.)).

In this case, for each Hilbert space inner product on K which induces a
compatible topology, the corresponding Gram operator is boundedly invertible.
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Proof. If (KC,[.,.]) is a Krein space, then K becomes a Hilbert space if endowed
with the inner product (.,.)3, where J is any fundamental decomposition of K.
Moreover, the Gram-operator of [.,.] with respect to (., .)5 is just the fundamen-
tal symmetry Jy. The fundamental symmetry, however, is (.,.)j-unitary, and
in particular boundedly invertible.

Conversely, assume that (.,.) is an inner product on K which turns K into a
Hilbert space and satisfies the stated conditions. Denote the Gram-operator of
[.,.] with respect to (.,.) by G. Then G is a bounded and selfadjoint operator
in the Hilbert space (I, (.,.)), and 0 € p(G). We employ the same construction
as already used in the proof of Theorem 2.3.3. Let E be the spectral measure
of GG, and put

K4 :=ran E((0,00)), K_ :=ran E((—00,0)).

Then we know that (4, K_) is a fundamental decomposition of K, and that
K4 and K_ are both (.,.)-closed.

We have to show that K is nondegenerated and that K. are intrinsically
complete. This will follow from the fact that 0 € p(G). First, clearly,

KPPl = kerG = {0}.

Next, choose ¢ > 0 such that (—c,¢) C p(G). Then E((0,00)) = E([c, ||G|I])s
ie. Ky =ran E([c, ||G||]). Hence, for each z € K,

(x,z) = / 1dE; 5, [z,7] = (Gz,x) = / tdE; 5.
e, IGI) e, IGI)

It follows that

c(z,z) < [z,z] < ||G||(z,2), x € K5, (3.1.1)
i.e. the norms induced by (.,.) and [.,.] are equivalent. Since K} is (.,.)-closed,
it is (.,.)-complete, and we conclude that I is also [.,.]-complete. The fact

that K_ is intrinsically complete is seen in exactly the same way.

Finally, assume that (K, [.,.]) is a Krein space, and let (.,.) be any Hilbert
space inner product on K which induces a compatible topology. Denote the
corresponding Gram-operator of [.,.] by G, and fix a fundamental decomposition
J of K. The norms ||.|| and ||.||5 induced by (.,.) and (.,.)3, respectively, both
turn K into a Hilbert space, and are hence equivalent, cf. Proposition 2.4.3, (7).
In particular, there exist (||.||- or ||.]|3-) bounded operators G', G”, with

(z,y) = (G'z,y)3, (x,9); = (G"z,y), z,yek.

Since

(GIG”CL',y)g = (anv y) = (xvy)ﬁv (GHGI‘Tﬂ y) = (G/‘Tv y)3 = (‘Ta y)?

we have G'G"” = G""G' = I. Hence 0 € p(G"), 0 € p(G"), and (G")~! = G".
However,

(G/Gl',y)g = (vay) = [xvy] = (ng',y)g,

and hence G'G = Jy. This gives G = G" J3, and it follows that G is (]|.||- or
I-ll3-) boundedly invertible. O

C19
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3.1.6 Remark. For later reference, let us explicitly point out the following fact:
If (.,.) is a Hilbert space inner product on K with 7y € Top K, then a funda-
mental decomposition of I is given by

3= (ranE(—oo,O),ranE(O,oo)) ,

where E is the spectral measure of the Gram operator of [.,.] with respect to
(5-)- /
3.1.7 Example. Often Krein spaces occur reading Theorem 3.1.5 backwards,
i.e. as follows: Let (H,(.,.)) be a Hilbert space, and let G be a bounded and
boundedly invertible operator on H. Define

[z,y] = (Gz,y), z,y € H.

Then (H,[.,.]) is a Krein space. /
3.1.8 Remark. Let (KC1,[.,.]1) and (g, [, .]2) be Krein spaces, and consider their
direct and orthogonal sum K := K1[+]K2. Then (K, [.,.]+) is a Krein space.

In order to see this, remember that the inner product [.,.]+ on a direct and
orthogonal sum is defined as

[T + 22,51 +y2l4 = [T, 011 + [2,92]2, 1,91 € Ky, 22,92 € K2,

and that KC1[+]K2 contains K; and Kq as orthogonal subspaces.
Choose fundamental decompositions J1 = (K14,K1,-) and J2 =
(K24, K2 ) of Ky and Ko, respectively. Then the pair

Ji= (’CLJFH‘]’CZJN K1,— H_]ICZ*)

is a fundamental decomposition of . Clearly, its components are intrinsically
complete. The Krein space topology of K1 [+]K2 is equal to the product topology
of the Krein space topologies of 1 and Ks. /

3.2 Fundamental decompositions

In a Krein space those subspaces which are components of a fundamental de-
composition can be described.

3.2.1 Definition. Let (K, [.,.]) be a Krein space, let J be a fundamental de-
composition of I, and let M € Sub K. Then M is called uniformly positive, if
there exists a constant v > 0 such that

[z, 2] > y||zl}, ze€M.

The subspace M is called uniformly negative, if there exists a constant v > 0
such that
—[z,2] > y|z[5, zeM.

The set of all uniformly positive subspaces of K will be denoted by Subs.g KC,
the set of all uniformly negative ones by Sub K. /

Note that, since the norms induced on a Krein space by each two funda-
mental decompositions are equivalent, the definition of ‘uniformly positive’ and
‘uniformly negative’ does not depend on the particular choice of the fundamental
decomposition J in Definition 3.2.1.



3.2. FUNDAMENTAL DECOMPOSITIONS 53

3.2.2 Theorem. Let (KC,[.,.]) be a Krein space, and let L4, L_ € SubK. Then
there exists a fundamental decomposition J = (K4+,K_) of K with

LiCKy and Lo CK_
if and only if
LJr S Sub>>0 ’C, L_ € Sub<<0 IC, LJr 1L L. (321)

Thereby J can be chosen such that L = K4 if and only if, in addition to (3.2.1),
Ly 1s mazimal in Subs,o KC. In this case, L is even mazimal in Sub>o K. The
analogous statement holds for L_.

The proof of this result depends on the following lemmata; the crucial one
giving an extension property for operators between Hilbert spaces.

3.2.3 Lemma. Let (H1,(.,.)1) and (Hs,(.,.)2) be Hilbert spaces, and let
Ty :domTy CHy — Ha, To:domTy C Hy — Hy,
be bounded linear operators. Assume that
(Tlx,y)2 = (x,Tgy)l, x € domTy, y € domT;. (3.2.2)
Then there exist linear operators
Ty :Hi — Ha, To:Ho— Hi,
with
Tjlaomr, = Tj, | Tl < max{|| 1|, | T2l}, j=1,2, Ty =Tp.

Proof.
Step 1: First we extend 77 and Ty by continuity to operators

T, :domT) CHi — He, To:domTs C Ho — Hi.

Then ||Ty]| = | T5]|, j = 1,2, and

(Tlx,y)2 = (x,Tgy)l, x €domTi, y € domTy,

i.e. the pair of operators T; and T} satisfies the same hypothesis as T} and T
do. Hence, for the rest of the proof we may assume that dom 7} and dom 75 are
closed subspaces of H; and Ha, respectively.

Step 2: Denote by P, the orthogonal projection of Hs onto dom T, put v =
max{||T1||, || T2||}, and define

[,y] := 7y (z, )1 — (T2P2)*z, (ToP2)*y),, =,y € H.

Thereby, the adjoint (T5P;)* is understood as the adjoint of the bounded oper-
ator To P> acting between the Hilbert spaces H; and Hz. Then [.,.] is an inner
product on H;. Since

[(ToPe)* || = [ T2 P2 < || T2 <7,

C25
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we have
[z, 2] = ¥*||2[|] = [(T2P2) (|5 > (v* = (T2 P2)*||*)[|z[ly > 0, = € Hy,

i.e. [.,.] is positive semidefinite. If € dom 77, then we have by our assumption
(3.2.2)
(PTiw,y)2 = (Tha, Pay)2 = (2, ToPay)1, y € Ha.

Hence,
(TQPQ)*,T =Pz, v € domT] . (323)

It follows that

I(I = P2)Traoll3 = | Tall3 — |1 22Taal3 = | Taal3 — [(T2P2) =I5 <

9 19 . 12 (3.2.4)

<Yzl = [(TeP) 2[5 = [z, 2], = € dom Ty .
Let H; be the Hilbert space completion of the positive definite inner product
space (Hl/H[lo], [.,.]), and denote by ¢ : H; — H; the canonical map, i.e. projec-
tion followed by embedding. Since ran(f — P2)Ty C ran(I — P) and, by (3.2.4),
domT; Nkert = domT; N H[lo} C ker(I — Py)T1, there exists a linear operator
Vo : ¢«(domTy) C Hi — ran(l — P2) with Vy ot = (I — P»)T1. Once more by
(3.2.4), we have | Vo < 1. Let Vi : Hy — ran(I — P,) be an extension of V; with
V1|l = ||Vol|- For example, Vi can be taken as VP, where Vj is the extension
by continuity of Vj to (domT) and P is the orthogonal projection of H; onto
t(domTy). We are in the situation

I—P)T
dom T P van(l = Py) € Ho (3.2.5)

Vo
L
|41

t(domTy) < H;

Define
W:=Viowv:Hy —ran(l — Py) C Hs.

Clearly, then
[Wal3 = [Vi(@)|l3 < llezllsy, = [z,2], z € M.

Define
T1 = (TQPQ)* + W H1 - HQ.

Then, for each € dom T3, we obtain from (3.2.3) and (3.2.5) that
Tz = (ThPy)*x + Wa = PyTvx + (I — Py)Thx = Tz,

ie. TﬂdomT1 = Ty. Moreover, since ran(T2P2)* = (ker ToP2)*t C (ker Py)* =
ran Py, we have

|1 Tvell = (T2 Pe) @ + Wal3 = |[(TaPy) 2|l + [Well3 <

< N ToPo) @l + [z, 2] = y*|lolh, = € Hi,

C28
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ie. HT1|| < ~. Finally, for x € H; and y € domTs = ran P,, we have
(Tha,y)2 = (LPy)*z+Wa,y), = (ToP)*z,y), =

= (z,ToPoy)1 = (x,Toy)1

Altogether, we see that the pair of operators Ty and T5 satisfies the same hy-
pothesis as Ty and T3 do, and that max{||Ty|, [|T2]|} < 7.

Step 3: Applying what we showed in Step 2 with the pair of operators T and
T1 in place of 77 and T3, gives an operator Ty : Ho — H;p with T2|dom 7 = 1o,
| T2]| <, and i X

(Tay,x)1 = (y,T1)2, y € Ha,x € Hy,

i.e. Tg = Tl* |:|

3.2.4 Remark. Tt is worth to have a little closer look at the particular case that
dom Ty = {0} in Lemma 3.2.3. The hypothesis (3.2.2), as well as the conclusion
that Ty extends T5, becomes in this case of course void.

(i) We have Ty P, = 0, and hence [.,.] = ||T1||%(,.);. Hence, H; = M, and
T, =T\P (3.2.6)

where T} is the extension by continuity of 77 to domT7, agd P is the
orthogonal projection of H; onto domT;. Clearly, we have ||T3|| = || T3

Of course, this particular case could have been treated much simpler by
using (3.2.6) as the definition of T} and setting Th := T}.

(74) Assume that dom T is closed, and that T; satisfies
IThz|l2 < - ||z|l1, = € dom Ty \ {0},
with some a > 0. Since T} is given by (3.2.6), we obtain
[ Thz]|2 = |Ty(Pz)lls < a-||Pzlh < a-[|z], = &ker P,

and 3
IT1z]2 =0 < a - ||z||1, = € ker P\ {0}.
Together, it follows that ||Tiz|| < o - ||z, z € Hy \ {0}.
/

Next we translate uniform definiteness and orthogonal complements into the
language of angular operators.

3.2.5 Lemma. Let (KC,[.,.]) be a Krein space, and let M € SubK. Then the

following are equivalent:
(’L) M e Sub>>0 K.

(#3) For each fundamental decomposition J = (Ky,K_) of K, we have M €
Suby and |jaz(M)|| < 1. Here ||.| denotes the operator norm between the
Hilbert spaces (K4, [.,.]) and (K_,—][.,.]).
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(7it) There exists a fundamental decomposition J of IC, such that M € Suby
and |laz(M)]| < 1.

With the obuvious modifications, the analogous statement holds for ‘uniformly
negative’ instead of ‘uniformly positive’.

Proof. We first show that (i) implies (é¢). To this end let a fundamental de-
composition J = (K4, K_) of K be given. Since M is in particular nonnegative,
we have M € Subj. Let v > 0 be such that [z,z] > v||z||3, + € M. This
inequality, however, is nothing else but

1PFal2 — 1Pyl = v(IPFall? + | Py al2), = e M,
and hence we have

_ 1—7v
1Py |l < T7|\P§F$H§a rEeM,

i.e.
I—v
2 2 +
||Cl3(./\/l)y||3 < mHyHg, Yy E P3 M.

Thus

I—~
~ < — 1.
Jag(M)]| < 1+~ <

The implication (#4) = (4¢7) is trivial.
Assume that J is a fundamental decomposition of K, that M € Subj, and
that [Jaz(M)]| < 1. Then, for each 2 € P M, we have

[z 4+ az(M)z,z + ag(M)z] = [z,2] + [ag(M)z,a5(M)z] =

= 13 = lag (M]3 > f1al12 (1 = llaz(M)J) >
—_———
>0
o 1 fag(M)?
— 2
T+ aa (M)

Hence M is uniformly positive.
The case of uniformly negative subspaces is treated in the same way. O

Al + ag (M3 -

3.2.6 Lemma. Let J = (Ky,K_) be a fundamental decomposition of the Krein
space (K,[.,.]) Moreover, let K be a bounded operator of the Hilbert space
(K4, [,.]) into the Hilbert space (K_,—[.,.]), and put

M::{:v—i—K:v: :CEIC+},

so that M € Suby and az(M) = K. Then M* € Subs, where J is the orthog-
onal decomposition J := (K_,K) of K, and

Clﬁ(./\/lJ‘) = K*,

where K* denotes the Hilbert space adjoint of K.
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Proof. Assume that z € M+ N K. Then
0: [ZaI_FK‘:C] = [Z,I], HANS ’CJrv

and hence z = 0. Thus M+ N K, = {0}, i.e. M+ € Sub;.
If y € K_, then for each z € K4 we have

[z + Kz,y + K'y| = [z, K*y| + [Kx,y] = [z, K'y] — (= [K=,y]) = 0.

This shows that
{y+K*y:yeK_} S M*. (3.2.7)

Since K™ is defined on all of K_, the space on the left side is maximal in Subs,
cf. Corollary 1.4.3. It follows that in (3.2.7) already equality holds, and thus
also a5(M™*) = K*. O

Proof (of Theorem 3.2.2).
Step 1: Assume first that J = (K4,K_) is a fundamental decomposition with
Ly CK4 and L C K_. Then, clearly, £ 1 £_ and

[I,I]:(I,I)ﬁ, xELJrv —[I,I]:(I,I)g, rel_.

Thus £, € Subs,0 K and £_ € Subgg K.
Assume that even £y = K4, and let M € Sub K with M 2 £,. Choose
x € M\ L, then
y:::z:—Pger (MnK_)\{0}.

Thus [y, y] < 0, and we conclude that M ¢ Subsq K. Therefore, £, is maximal
in Sub>¢ K and hence in particular maximal in Subs,o K. The case of £_ is
treated in the same way.

Step 2: Assume that £, and L£_ satisfiy (3.2.1). Let J := (K4,K_) be a
fundamental decomposition of I, and consider the operators

ﬂ3(£+)IIC+—>K:_, aﬁ(ﬁ—):IC—_}IC-i-v

where J is the orthogonal decomposition J := (K_, K, ) of K. Note that, since
L is positive and L£_ is negative, we have £, € Suby and £_ € Subjz. Since £
and £_ are in fact uniformly definite, Lemma 3.2.5 gives |[ag(Ly)|], laz(L-)] <
1. By Lemma 1.3.9, the fact that £, L £_ implies that

_[aﬁ(‘CJr)xvy] = [Iaaf}(ﬁ*)y]a YIS P3+E+ay € P37£* .

Lemma 3.2.3, applied with the Hilbert spaces (K4, [.,.]), (K-, —[.,,.]), and the
pair of operators

a3(£+):P§rC+§/C+—>/C_, aj(ﬁ_):Pg(E_)QIC_—JC_,_,
furnishes us with operators
T, : Ky —K_, T_-:K_—Ky,

with

T+|P3+L+ =a3(Ly), T—|P§(L,) =a3(L-),
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|T|| < max {ag(Ly),a5(£-)} <1, (3.2.8)

and T_ = T*. Let K/, € Suby and K. € Subz be those subspaces with
ay(K) =Ty, a3(KL)=T-_.

Then, by Lemma 3.2.6, we have K = KZ. By (3.2.8), we have K, € Subs,o K
and K’ € Sub« K. Moreover, clearly, K’ 2 £ and K 2 L_.

Step 3: The next task is to show that K’ + K’ = K. Let z € K be given, and
define elements z € K4 and y € K_ as

xi= (I, —T-Ty) " (Pf

—T_P)z, yi=(Ix. —T4T_) " (Py =T Py)z.
Note here that | T_T |, |T+T_|| < 1. Moreover, set
d=a+ Tz ek, vy =y+Tyek., =2 +y ek, +K_.
Then we have ~ R
Pz =z+4+Ty Py =y+ Tz,

and hence

(Py =Ty Py)2 = (y+Tya) =Ty (4T y) = (I, —T:T )y = (Py =Ty PY)z,

(P;—T,Pg)z’ = (z+T_y)-T_(y+Tyz) = (Ix_ —T_-T} )z = (P;—T,Pg)z.

Thus } }
z—2 eker(Py —TyP{)Nker(Py —T_P;).

However, let w € ker(P; — T+P3+) N ker(P; - T,Pﬁ_), then
(Ic. —T-Ty)Pfw=Pfw—T_T Pfw=Pjw-T_Pyw=0,
(Ix, - T4T-)Pyw=Pyw—T,T_Pyw=Pyw—T,Pfw=0.

It follows that Pyw= P3+ w = 0, and hence that w = 0.
We conclude that z = 2/, i.e. 2 € K/, + K. Altogether, we have con-
structed a fundamental decomposition with the required properties, namely

3= (KL, KL).

Step 4: Assume that, besides (3.2.1), £ is maximal in Subs,o K. By what we
have proved in Step 2, there exists a fundamental decomposition J = (K4, K_)
with £y D £4. As we saw in Step 1, K4 € Subs K, and maximality of £
implies that Ky = £ — +. The case of £_ is treated in the same way. 0

Let us explicitly state the following immediate corollary of Theorem 3.2.2.

3.2.7 Corollary. Let (K,[.,.]) be a Krein space, and let M € Sub K. Then the
following are equivalent:

(1) M is a mazimal element of Subso K.

(14) There exists a fundamental decomposition J = (K4+,K_) of K with K4 =
M.
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(iii) (M, ML) is a fundamental decomposition of K.

The analogous set of equivalences holds for maximal uniformly negative sub-
spaces.

Proof. Assume that M is maximal uniformly positive. Applying Theorem 3.2.2
with the pair of subspaces M and {0}, gives a fundamental decomposition
J = (K4,K-) with K = M. Clearly, then we have K_ = Kf = M*. Hence
(¢) implies (4¢) and (#¢7). Conversely, if M is the component of some fundamental
decomposition, then Theorem 3.2.2 implies that M € Subs.g K. 0

Let us further exploit the method which led to Theorem 3.2.2 in order to
obtain some information on maximal semidefinite subspaces of a Krein space.
Note that, if J = (K4, K_) is a fundamental decomposition of a Krein space K,
then

Sub>>0 K - Sub>0 K - Subzolc - Sub3 .

3.2.8 Proposition. Let (I, [.,.]) be a Krein space, let J = (K4+,K_) be a fun-

damental decomposition of IC, and let M € Sub K. Assume that M has one of
the following properties:

(i) M is a mazimal element of Sub>o K.

(i1) M is a maximal element of Subs.o K.
(i71) M is closed and a mazimal element of Subsg K.
Then M is already a mazimal element of Subj.

Proof. Let M € Sub> K be given, and assume that M is not maximal in Subj.
By virtue of Corollary 1.4.3, this just means that Pg'./\/l C K4. Consider the
angular operator

ag(M):Pgr./\/lg/CJr—ﬂC,.

Then a3(M) is bounded, actually |laz(M)| < 1. Let T : Ky — K_ be the
extension of az(M) to all of Ky discussed in Remark 3.2.4. Then

IT)| = lag(M)] < 1. (3.2.9)

Let M € Subj be the subspace with a3(M) = T. Then M is maximal in Subg,
and M D M.

Assume that M is maximal in Subso K. By (3.2.9) we have M € Subs( K,
and it follows that M = M. Assume that M is maximal in Subs.q K. Then
in (3.2.9) actually ‘< 1’ holds, and we conclude that M € Subs,o K. It follows
again that M = M.

Finally, assume that M is closed and maximal in Subso /. Closedness
implies that M is complete in the norm ||.[[;. By Lemma 2.6.5, also P’ M
is complete in the norm ||.||3, and hence closed in K. Moreover, since M €
Subsg K, we have

lag(M)zll5 < [lz]l, = € Py (M)\{0}.
Remark 3.2.4, (i), implies that also
ITz]ly < lllls, = € K4\ {0},

and hence that M € Sub.oK. Maximality of M in Sub<oK yields M =
M. [l
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Note here that the obstacle mentioned in the discussion preceeding Lemma
1.4.5 vanishes due to completeness, which enters the discussion in the form of
Remark 3.2.4.

3.2.9 Corollary. Let (K,[.,.]) be a Krein space, and let My, My € SubK.
Assume that My has one of the properties (1), (i), or (iii), stated in Proposition
3.2.8, and that Ms also has one of the properties (i), (i), or (iii), stated in
Proposition 3.2.8. Then there exists a linear, bijective, and bicontinuous map

of My onto Ma.

Proof. Choose a fundamental decomposition J = (K4, K_) of K. By Corollary
1.4.3, Pgr maps maximal elements of Subg bijectively onto K. In particular,
if M satisfies (i), (éi), or (iii) of Proposition 3.2.8, this will be the case. By
Lemma 2.6.5, P‘{r is bicontinuous. 0

3.2.10 Remark. The statements analogous to Proposition 3.2.8 and Corollary
3.2.9 for negative semidefinite subspaces hold by the same proofs. Thereby,
we should replace ‘> 0, >0, > 0’ by ‘<0, <0, < 0’, and the fundamental
decomposition J by the orthogonal decomposition J := (K_, K ). For example,
then we have

Sub<<0 K - Sub<0 K - Subgo K - Subﬁ .

/
3.2.11 Corollary. Let (K,[.,.]) be a Krein space, and let J = (K4+,K_) be a
fundamental decomposition of KC. Then

indy £ :=dimK;, ind_ K:=dimk_.

Proof. Let M € Subsg K. Then there exists a maximal element M of Sub>o K
with M D M. By Corollary 3.2.9, dim M = dim K. Hence, ind_ K < dim K .
However, IC itself is a positive subspace of I, and thus the converse inequality
is trivial. The equality ind_ K = dim K_ is seen in the same way. 0

The next statement gives an improvement of Proposition 1.4.11.

3.2.12 Corollary. Let (K, [.,.]) be a Krein space. If M is mazimal in Sub>q IC,
then M is mazimal in Sub< K.

Proof. The angular operator az(M) is bounded and defined on all of K.
Lemma 3.2.6 gives M* € Subs and a5(M™*) = az(M)*. In particular, the
domain of this angular operator is all of X_, and hence M~ is maximal in
Subjz. Moreover, as we already know from Proposition 1.4.11, Mt € Sub<o K.
Thus, M~ is maximal in Sub<g K. O

3.3 Orthocomplemented subspaces

Let us start with some corollaries of Theorem 2.3.3.

3.3.1 Proposition. Let (K,[.,.]) be a Krein space, and let L be a closed sub-
space of K. Then the following hold:

(1) L possesses a fundamental decomposition Jp = (Ly,L_) such that each
of Lo, Lo+ L%, and L 4+ L_ are closed in K.
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(ii) We have L+ = L and (L1)° = L°.

Proof. Let J = (K4,K_) be a fundamental decomposition of K, then (K, (.,.)5)
is a Hilbert space. Since L is closed in K, also (L, (.,.)3) is a Hilbert space. By
Theorem 2.3.3 there exists a fundamental decomposition J, such that each of
the subspaces listed in () is closed in (L, (.,.)5) and thus also in K.

We come to the proof of (i7). We have

L] <= YyeL:|x,y=0 < VyeL:(x,J3y); =0,
ie. LM = (J3£)H)s = Jy - £HD3 Tt follows that
I — (Jﬁﬁma)m — (J3J3£<L>a)<i>s — Wy — g (3.3.1)
This also implies that
Ly =ctnett=ctnL=c0.

3.3.2 Corollary. Let (K,[.,.]) be a Krein space, and let L € Sub K.
(i) We have L = L.
(i) L is dense in K if and only if L+ = {0}.

Proof. We can do the computation (3.3.1) stopping before the last equality sign.
However, since (K, (.,.)3) is a Hilbert space, £(H3(1)s =7,

The space J3 £ is dense in K if and only if (J3£)(H3 = {0}, i.e. if and only if
£ = {0}. Since Jj is a homeomorphism, £ is dense if and only if J5£ is. []

Let £ be a closed and nondegenerated subspace of a Krein space. Although,
by Proposition 3.3.1, there exists a fundamental decomposition (L4, L_) of £
whose components are closed (and hence complete) in the norm of X, this does
not mean that £ are intrinsically complete, cf. Example 3.3.5.

3.3.3 Theorem. Let (K,[.,.]) be a Krein space, and let L € Subk. Then the
following are equivalent:

(1) L is orthocomplemented.

(i) L is closed in K, nondegenerated, and for each fundamental decompo-
sition Jr = (L4,L_) of L there exists a fundamental decomposition
I = (Ky,K_) of K with

EJ’_ g ICJ,_ and L_ g K_. (332)

(#i") L is closed in K, nondegenerated, and there exist fundamental decomposi-
tions Iz = (L4, L-) and I = (K1, K_) of L and K, respectively, such
that (3.3.2) holds.

(i4i) L is decomposable, nondegenerated, and for each fundamental decomposi-
tion Je = (Ly, L) of L we have

EJ’_ S Sub>>0 IC, L_€ SU-b<<O IC7 (333)

and Ly and L_ are closed in K.
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(iii') We have L = Li[+]L_ with some subspaces Ly satisfying (3.3.3) and
being closed in IC.

(iv) L is closed in K and (L,][.,.]) is a Krein space.
Proof. The proof will proceed as follows:

G) = (@) = (@)
I3 I3

@i) = (i) = () = ()
Thereby, the implication (i3) = (ii4’) is trivial.

(i) = (ii): Since L is orthocomplemented, we have £° C K° = {0} and L+ =
L, cf. Lemma 1.2.7. The first relation says that £ is nondegenerated, the second
one implies that £ is closed. Since with £ also £ is orthocomplemented, also
the space £+ is nondegenerated and closed. By Proposition 3.3.1, £ and £+
are decomposable.

Let J = (£4,£-) and §J' = (£/,, L") be fundamental decompositions of £
and L1, respectively, and put

Ky=Ly+L, Ko:=L_+L.

Clearly, then K 1L K_ and K4 +K_ = L+ L+ = K. Since L4, L/, € Subso K
and £, L L/, we also have K4 € SubsoK. Similarly, K_ € Sub.o K, and
we see that Ji := (K4, K_) is a fundamental decomposition of K. Obviously,
(3.3.2) holds.

(#3) = (i), (#i1): L being closed, implies that it is decomposable. Thus, under

the hypothesis (ii), the assertion (ii’) follows immediately. For (ii7), note that

each subspace of a component of some fundamental decomposition is uniformly

definite. Moreover, we can write £, = LN LY and £L_ = LN Eﬂ;, where the

orthogonal complement is understood in K. Hence £, and £_ are closed in .
This argument also shows that the implication (#i') = (¢i4") holds.

(iv) = (i): Let J be a fundamental decomposition of K, and let G denote the
Gram operator of [.,.] with respect to (.,.) := (.,.)3. Moreover, let P denote
the (.,.)-orthogonal projection of I onto £. Then, for z,y € L, we have

[z,y] = (Gz,y) = (Gz, Py) = (PGx,y). (3.3.4)

The inner product (.,.)|cx 2 turns £ into a Hilbert space, and the inner product
[, Jlzxc is continuous with respect to it. By (3.3.4) the Gram operator of
[, Jlcxc with respect to (.,.)|zxc is PG|z. Theorem 3.1.5 implies that PG| is
boundedly invertible as a operator on (L, (.,.)|zxz). In particular, ran(PG|z) =
L.

To show that K = £ + £+, let x € K be given. Since PGz € L, there exists
an element xy € £ such that PGzy = PGzx. It follows that, for each y € L,

[z —z0,y] = (G(z — 20),y) = (G(x — x0), Py) = (PG(x — 20),y) = 0.

Thus  — zg € £, and we have shown that © = xo + (z — z0) € £+ L.
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(19i") = (iv): Let L4 and £_ be as in (i77'), and let J denote a fundamental
decomposition of K. Since £ is uniformly positive, the norms

||| = [z,2]2, = € L,

and |.||3]z are equivalent. Since Ly is ||.||-closed, it is ||.||z-complete. By
equivalence of norms, £y is also complete with respect to ||.||, i.e. intrinsically
complete. The same argument shows that £_ is intrinsically complete, and
therefore £ = L [+]L£_ is a Krein space.

The subspace L4 is closed in K and, by what we saw above, (L4,[.,.])
is a Hilbert space. Thus, by the already proved implication (iv) = (i), L+
is orthocomplemented. Similarly, we see that £_ is orthocomplemented. It
follows that £ = £ [+]£_ is also orthocomplemented, cf. Corollary 1.2.6. In
particular, £ is closed. 0

Let us explicitly mention the following fact.

3.3.4 Remark. Let (K,[.,.]) be a Krein space, and let £ be an orthocom-
plemented subspace of K. Then the topology L carries as the Krein space
(L,[., Jlexc) coincides with the restriction to £ of the topology of K. This
follows for example from Proposition 2.4.3, (i). /

In the following example we elaborate the equivalences in Theorem 3.3.3.
This discussion points out many pecularities of Krein spaces.

3.8.5 Example. Let K := ¢?(N), and define an inner product [.,.] on K by

[(&)sens (my)jen] i= > (1) &5 -
j=1
Moreover, let £ be the subspace
2k
L= {(gj)jGN cK: §2k = mggkfl,k (S N} .

(K, [.,.]) is a Krein space (via definition): Put
Ky:= {(fj)jeN & =0,k odd}7 K_ = {(gj)jeN & =0,k even}.

Then, clearly, Ky is positive, K_ is negative, and K = K, [+]K_. Since
(K, [y =2 (K-, —[,,.]) 2 £%(N), we have found a fundamental decomposition
of I with intrinsically complete components.

(K,[.,.]) is a Krein space (via Gram operator): Denote by (.,.) the usual £2(N)-
inner product and by ||.|| the corresponding norm. Then (K, (.,.)) is a Hilbert
space. Since

|[(&)jen, (mj)jen]| < Z €51 - Ini] < 15D 5enll - [1(my) jenll

the inner product [.,.] is continuous with respect to (.,.). The Gram operator
G of [.,.] with respect to (.,.) acts as

G(&)jen = (1Y &) en, (&)jen €K
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We see that G is (.,.)-unitary, and hence in particular boundedly invertible.
Actually, G?> = I.

L is closed and positive: Let (§;)jen € £, then

[(fj)JeNa gj JGN i |§J|2 i [(%2—:)2 - 1} |§2k71|2-

j=1 k=1

Hence L is positive. Let 7 : (§j)jen — & denote the canonical projection
onto the k-th component. Then 7 is continuous with respect to |.||. Put
hy = mop, — %ng_l, then

L= m ker hy, .
keN
Hence £ is closed.

L is not uniformly positive: Consider the elements (5]") jen, n € N, defined by

1 , j=2n-1
§i=qmg, J=2n
0 , otherwise

Then

[(&)sen, (6 )jen] = =1+ (2712? 1)2 - (;::11)2 )

((€7)jen, (€])jen) =1+ (2n27z 1)2.

Hence there cannot exist a positive constant v > 0 with v||z||? < [z,z], = € L.

L is not intrinsically complete: Consider the sequences (£7')jen, n € N, defined
by

% . j<2n, jodd
& = \/ﬁ, j<2n, jeven
0 , otherwise
Then 2k 2k 1 2k
§o = (2k—1)3:2k—1\/m:2k—1€g’“_1’kSn’
& =0 %% &1, k>n,

and hence (£}')jen € £. For m > n we have

(€ )sen— (€ )sem (€)sen— (€ e Z[(%_l)Q—l}»&&_l—&ﬁ_l2:
=1

Z [(%-1)2_1}%1—1 = Zl(;:%llﬁzk—l—r
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It follows that ((§}')jen)nen is a Cauchy sequence in (L, [.,.]).

Assume that £ is intrinsically complete. Since L is closed with respect to
(.,.), this implies that the norms induced by [.,.] and (.,.) on L are equivalent.
Hence, there exists (&) en with lim, oo (£})jen = (£7)jen with respect to (., .).
Since the projections onto single components are (., .)-continuous, this implies
that

L .
o 7 , jodd
j
V=13’

This sequence, however, does not belong to ¢?(N), and we have reached a con-
tradiction.

j even

L is not orthocomplemented: We show that the orthogonal complement of L is

given as

2k —1
2k

£ = {(nj)jen € P(N) : nop = Nok—1, k € N}. (3.3.5)

To this end assume first that (1;);en satisfies 7o, = %n%_l, k € N. Then,
for each (§;)en € £, we have

[(&)jen, (n5)jen] = Z(—l)jﬁjn_j = Z (éorTol — Eon—1Tl2R—1) =
j=1 k=1

=1
Conversely, let (n;)jen € L1 be given. We have
2k —1

2k
2k-th place

(&)jen == (0,...,0, ,%,O,...)eﬁ,

and hence
2k —1

2k

This establishes the equality (3.3.5).
Consider the element ((;);en defined as

1 .

1. jeven
G ?—{J

0

Mok — Nok—1 = [(n;)jen(&;)jen] = 0.

, Jodd

and assume that ((j)jen = (&5)jen + (7j)jen with some (§;)jen € £ and
(Mj)jen € L+, Then

1
Son—1 +M2r—1 = 0, Lo + 1Mok, = % keN,

and we obtain, using the definition of £ and (3.3.5),

1 2k 2k -1

% op 1okt Top

2k 2k-1
2k -1 2k

Nok—1 = ( )§2k—1 =

C52



66 CHAPTER 3. COMPLETE TIPS. I. KREIN SPACES

k-1 c
T k- 12k

It follows that

2k —1 2k
] = — = - k .
k-1 4k_1,€2k -1 PFEN
We have reached a contradiction, since this sequence is not summable. /

3.4 Isometric mappings

Let H; and Hs be Hilbert space. Then each isometric map ¢, defined on some
subspace dom ¢ of Hy, is continuous and possesses an isometric continuation of
dom ¢ onto ran ¢. In the indefinite situation, this statement is no longer true.

3.4.1 Example. Let (K,[.,.]) be a Krein space with ind_ K = ind; K = co. We
are going to construct a dense linear subspace D and a linear, bijective, and
[., .]-isometric map of D onto itself which is not continuous with respect to the
topology of K.

Choose a fundamental decomposition J = (K4,K_) of K, choose (.,.)3-
orthonormal sequences (e, )nen, en € K4, and (fn)nen, fn € K—, and choose a
sequence (Vp)neN, Yn € (0,1) with lim, o v, = 1.

Set Dy := span{é,, : n € N}|[+]span{f, : n € N}, and

D := D [+]span{é, : n € N}[+]span{f, : n € N}. (3.4.1)

Since span{é, : n € N} C K, and span{f, : n € N} C K_, the space Dy is
orthocomplemented. In fact, we have Dy = (Dy N K4 )[+](Dg NK_) and

D NKy =Ky (=)zspan{é,: n € N}, DF NK_ = K_(—)3span{f,:n € N}.

In particular, we see that D is dense in K. Moreover, the three summands in
(3.4.1) are also pairwise orthogonal with respect to (.,.)3, and we have

1, n=m -1, n=m B
[enaem]—{o7 n;ém, [fmfm]—{o , n#m’ [ens fm] = 0.

Set S, :=span{ey, fn}, n € N, then the space D can be written as

D = Dg [+ ([4]5n) - (3.4.2)

neN

with all summands being pairwise orthogonal also with respect to (.,.)5. Hence,
a linear and [.,.]i—isometric map U : D — D will be well-defined by specifying
linear and [, .]x—isometric maps Uy : Dz — Dg and U,, : S,, — Sy, n € N, and
letting U be defined componentwise.

On the component Dé‘, we use the map Uy := idD#. The space S, is spanned
by {en, fn}, and this is an orthonormal system with respect to (.,.)x. Thus the
map

o aen+ Bfn o (g)

C66

C68



3.4. ISOMETRIC MAPPINGS 67

is an isometric isomorphism of (S, (.,.)x) onto the space C? endowed with the
euclidean inner product. Let u, : C*> — C?, n € N, be given by the matrix

1
un:=7<1 %)
VI=9Z2 \m 1

and set
U, ::(p_lounogp: Sp — Sh .
We have
1 1
Unen - 72(677, +'Ynfn)7 Unfn - 72('-)/77,677, + fn) 5
and hence

[Unen,Unen] =1, [Unen,Unfn] =0, [Unfn,Unfn] = —1.

This shows that U, is isometric with respect to ., .].

Let U : D — D be the [.,.]-isometric map defined by linearity and the re-
quirements that U|p+ = Uy, and Uls, = Up, n € N. Since detu, = /1 — 73 #
0, the map U is a bijection of D onto itself.

The eigenvalues of u,, are equal to

S A e 1

At = s An,— .
SRV 1—12

These numbers are thus also eigenvalues of U. Since vy, — 1, we have A, ; — o0
and hence U cannot be bounded with respect to any norm on D. /

3.4.2 Theorem. Let (K1,[.,.]1) and (Ka,[.,.]2) be Krein spaces, and let
¢:dom¢§l€1—>lC2
be isometric. Then the following hold:

(1) If dom ¢ is closed and nondegenerated, and ran ¢ is nondegenerated, then
@ s continuous.

(i1) Assume that dom ¢ = D, [+]1D_ with some subspaces D, € Subs.q K
and D_ € SubgoKy. Then ¢ is continuous if and only if ¢(Dy) €
Subs.g Ko and ¢(D_) € Subg Ks.

(i4i) Assume that dom ¢ is orthocomplemented. Then ¢ is continuous if and
only if ran ¢ is orthocomplemented.

(iv) If dom ¢ contains a mazximal uniformly definite subspace of K1 and ran ¢
18 orthocomplemented, then ¢ is continuous.

Assume that one of the hypothesis listed in (ii)—(iv) which implies continuity
of ¢ holds, and let ¢ : dom ¢ — Ky be the extension of ¢ by continuity. Then
ran ¢ = ran ¢.
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Proof. For the proof of (i) we consider ¢ as a linear operator defined on the
Banach space dom ¢ and taking values in the Banach space ran¢. Let x, €
dom ¢, n € N, and assume that

Ty — x € dom ¢, ¢x, — z Erang.

If y € dom ¢, then
(62, yla = [y} = lim [zn,yh = lim [pzn, dyla = [y, $y]2,

i.e. px — 2z L ran¢. Thus also ¢z — z L ran ¢, and hence ¢z = z. The Closed
Graph Theorem implies that ¢ is continuous.

We come to the proof of (ii). Let dom ¢ = D, [+]1 D_ with Dy € Subs, K1,
D_ € Subgg K. By Theorem 3.2.2 we can choose a fundamental decomposition
J1= (KL, KL) of Ky with Dy C KL, D_ CKL.

Assume first that ¢(D;) € Subs,o /Ko and ¢(D_) € Subgo K. Choose a
fundamental decomposition J» = (K3, K2) of Ky with ¢(D;) C K3, ¢(D-) C
K2. Let z,y € dom ¢, and write x = 2, +2_, y = y4 + y_ according to the
decomposition dom ¢ = D [+]; D_. Then

(¢JJ, (by)ﬁz = ((bx-i- + ¢$_,¢y+ + ¢y—)32 = [¢.’IJ+, (by-i-] - [¢$_, (by—] =

= [:EJrver] - [vay*] = (:Evy){h )

ie. ¢ is (.,.)5-to-(.,.)5,—isometric. This, however, implies that ¢ is ||.||3,-to-
[|.]l3,~continuous. Let ¢ : dom¢ — Ky be the extension of ¢ by continuity.
Then ¢ is again (.,.)3,-to-(., .)3,~isometric. Thus ran ¢ is (.,.)3,—complete and
hence closed in Ks.

Conversely, assume that ¢ is continuous. Then there exists some constant
v > 0 such that ||pz|l3, < v|z|l3,, * € dom ¢, where J2 denotes some funda-
mental symmetry of ;. We obtain

1
?llmlli <=3, = [z,2]1 = ¢z, ¢a]2, z € Dy,

1
?HMH%Q <|lzl3, = [z, 2} = —[¢z, ¢z]2, @ € D_.

It follows that ¢(Dy) is uniformly positive and ¢(D_) is uniformly negative.
For the proof of (iii) assume that dom ¢ is orthocomplemented.
Assume first that ¢ is continuous. By Theorem 3.3.3 we can decompose
dom ¢ as dom¢ = D, [+];D_ with some subspaces D, € Subs,K;, D_ €
Subo K1, which are closed in ;. Let J; be a fundamental decomposition

of Ky, then Dy and D_ are complete with respect to ||.||3,. However, uniform
1

definiteness implies that the norms ||.||3, and [.,.]2 on D or |.||5, and (=[.,.])2
on D_ | respectively, are equivalent. Thus D, and D_ are intrinsically complete.
Since ¢ is isometric, ¢(D4) and ¢(D_) are also intrinsically complete. An
application of the already proved item (i¢) yields that ¢(D4) and ¢(D_) are
uniformly definite. Hence, again by equivalence of the respective norms, D
and D_ are also complete with respect to the norm ||.||3,, where J2 is some
fundamental decomposition of ICy. Thus ¢(D4) and ¢(D_) are closed in Ko,
and Theorem 3.3.3 implies that ran ¢ = ¢(D)[+]¢(D-) is orthocomplemented.
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Conversely, assume that ran ¢ is orthocomplemented. In view of Theorem
3.3.3, we may apply the already proved item (i), to conclude that ¢ is continuous.
By the previous paragraph, the condition in (i¢) which ensures continuity is
satisfied. Hence, by what we already proved, rané is closed in /Cs.

We come to the proof of (iv). For definiteness assume that dom ¢ contains
a maximal uniformly positive subspace D of Ky. Then J := (Dy,D7) is a
fundamental decomposition of IC;. Since D4 C dom ¢, we have

dom ¢ = Do [+](Dy Ndom ).

Clearly, the subspace D_ = Di N dom ¢ is uniformly negative. Set R4 :=
¢(D+) and R := ¢(D_). We are going to show that R, and R_ are uniformly
definite.

The space Ry is, as isometric image of the intrinsically complete space D,
also intrinsically complete. Assume that z € R, and let (z,),en be a sequence
in Ry with z,, — « in the norm of K. Then (z,),en is a Cauchy sequence in

the norm of Ky and hence also in the norm induced by [.,.]|r, xr, . By intrinsic
completeness, there exists y € Ry such that x,, — y with respect to [.,.]. It
follows that
[I,Z]: lim [{En,Z]:[y,Z], ZeRJr'
n—oo

Since z,y € Ry, and hence are both orthogonal to R_, it follows that

[z,2] = [y,2], 2z € R [+]R_ =ran¢.

Since ran ¢ is orthocomplemented, and hence in particular nondegenerated, this
implies = y. We conclude that R4 is closed in the norm of ICy. In conjunction
with intrinsic completeness this gives R4 € Subs.g KCs.

Since ran ¢ is orthocomplemented, it is itself a Krein space and the topology
it carries as such coincides with the topology it inherits from /5. Hence, for a
subspace of ran ¢, uniform definiteness in Ko is equal to uniform definiteness in
ran ¢.

Since Ry is closed and uniformly positive, we have (considering R, as a
subspace of ran ¢)

ran¢ = Ry [+] Ry .

Hence the topology of ran ¢ equals the product topology of its restrictions to
R, and Rﬂ;, and we conclude that

Ri[+Ry =rand = Ry[+|R_ = Ry [+]R_.

Thus Rﬂ; = R_, and hence negative semidefinite. However, ran¢ is nonde-
generated, and it follows that Ri is negative definite. Thus (R+,Ri—) is a

fundamental decomposition of ran ¢, and hence Rﬂ; is uniformly negative. In
turn, this implies that R_ is uniformly negative.
An application of the already proved item (i7) yields the assertion (iv). [J

3.4.3 Corollary. Let (K1,[.,.]1) and (Ka,[.,.]2) be Krein spaces, and let ¢ :
K1 — K2 be a linear and isometric map. Then the following are equivalent:

(i) & is a morphism.
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(7i) ran¢ is orthocomplemented.
(#i7) ran ¢ is nondegenerated.

In this case ¢ is closed, i.e. maps closed subsets of K1 to closed subsets of Ks.
The map ¢ is an isomorphism if and only if it is surjective.

Proof. The domain of ¢ is all of K1, and hence in particular orthcomplemented.
Theorem 3.4.2, (iii), gives (i) < (i7). Trivially, (i4) = (#i7). The implication
(7i1) = (4) follows from Theorem 3.4.2, ().

If ¢ is a morphism then, by what we just proved, its range is a Banach space
with respect to the norm of 3. By the Open Mapping Theorem, ¢ maps open
subsets of I to relatively open subsets of ran ¢. Thus it maps closed subsets
of K1 to closed subsets of Ks.

As an isometry with nondegenerated domain, the map ¢ is in any case in-
jective. If ran ¢ = Ko then, by the just proved equivalences, ¢ is a morphism.
The same argument shows that ¢! is a morphism, and hence ¢ is an isomor-
phism. 0

We also obtain a corresponding version of the 1% Homomorphism Theorem.

3.4.4 Corollary. Let (K1,[.,.]1) and (Kq,[.,.]2) be Krein spaces, and let ¢ :
K1 — Ko be a morphism. Then (ran ¢, |.,.]) is a Krein space, and there exists
a unique isomorphism ¢ such that

(K[ ) = (2. [ )

[N

(ran ¢, [., .]2)

Proof. By the previous Corollary 3.4.3, the space ran ¢ is orthocomplemented,
and hence by Theorem 3.3.3 itself a Krein space. Trivially, there exists a linear
and isometric map ngS which makes the above diagram commute. Again by the
previous corollary, ¢E is an isomorphism. Uniqueness is clear. 0

3.5 Krein space completions

The concept of completion, as known from the setting of Banach or Hilbert
spaces, can be considered also in the setting of Krein spaces. The situation
changes drastically. Completions need not exist, neither be unique.

3.5.1 Definition. Let (£, [.,.]) be an inner product space. A pair (¢, (I, [.,.]))
is called a Krein space completion of (L,].,.]), if (K,[.,.]) is a Krein space, and
t: L — K is an isometric map whose range is dense in K.

Two completions (¢1,/K1) and (12,K2) are called isomorphic, if there exist
an isomorphism ¢ of K onto Kz, such that ¢ o t; = to, i.e. such that we have

the diagram

Ky —>IC2

(3.5.1)

C57
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In this case, we write (¢1, /K1) & (12, K2). /

Clearly, isomorphy of Krein space completions is an equivalence relation.
Moreover, if (¢,K) is a Krein space completion of £, and A is an isomorphism
of K onto some other Krein space K, then (Ao, K) is a Krein space completion
of £ isomorphic to (¢, K).

On the set of all isomorphy classes of Krein space completions of a given
inner product space £, a partial order can be defined. This construction is
based on the following simple geometric property.

3.5.2 Lemma. Let (L,[.,.]) be an inner product space.
(1) If (1,K) is a Krein space completion of L, then kert = L°.

(i) If (t1,K1) and (12, K2) are Krein space completions of L, then there exists
G uNique map L1 : ranty — rantg with

(3.5.2)

rani; ———————Tanis
12

The map 112 is isometric, and bijective.

Proof. Since ran: is dense in K, we have [ran¢]° = K Nran: = {0}. Since ¢ is
isometric,

£°=1""([ran]°) = kere,

cf. Lemma 1.1.9. This is (7). We come two the proof of (ii). Since ker¢; = £° =
ker to, a linear map ¢12 is uniquely defined by (3.5.2). Clearly, t12 is bijective.
Since ¢; and t9 are both isometric, also ¢15 has this property. 0

3.5.3 Definition. Let (£, [.,.]) be an inner product space, and let (¢1, /1) and
(12, K2) be two Krein space completions of £. Then we write (¢1, /K1) = (12, K2),
if 112 is continuous, where ran¢; is endowed with the restriction of the topology

of ICj. //
Obviously, the relation > is reflexive and transitive.

3.5.4 Lemma. Let (L,[.,.]) be an inner product space, and let (11,K1) and
(12,K2) be two Krein space completions of L. Then

((Ll,Kl)E(LQ,ICQ)/\(LQ,ICQ)E(Ll,K:l)) < (Ll,Kl)g(Lg,ICQ)

Proof. Tf (11,K1) =2 (12,K2), and ¢ is as in Definition 3.5.1, then ¢|ran,, = t12
and ¢_1|ran ., = t21. Hence 112 and 21 are both continuous.

Conversely, assume that t15 and t27; are both continuous. These maps are
mutually inverse bijections between ran ¢y and ran¢y. SinceTant; = Ky, j = 1,2,
they can be extended by continuity to mutually inverse continuous bijections
between Ky and 3. Clearly, these extensions are again isometric and make the
diagram (3.5.1) commute. Thus (¢1, K1) = (12, K2). O
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From this statement we see that indeed > induces a partial order on the set
of all isomorphy classes of Krein space completions of L.

When considering the notion of completions, two questions suggest them-
selves: Let an inner product space (L, [.,.]) be given.

(A) Does there exist a Krein space completion of £?

(B) If there exists a Krein space completion of £, is it unique (up to isomor-
phism)?

As we will see, the answer to both questions is in general negative, and it is a
nontrivial task to describe the totality of Krein space completions. If (£, [.,.]) is
semidefinite, however, matters are plain and simple. Let us discuss this situation
explicitly.

3.5.5 Proposition. Let (L,][.,.]) be a positive semidefinite inner product space.
Then the following hold:

(i) There exists a Krein space completion of L.

(#4) In each Krein space completion (1,K) of L, the Krein space K is positive
definite, i.e. is a Hilbert space.

(i4t) Fach two Krein space completions of L are isomorphic.

Proof. The factor space L£/L° is positive definite. Hence, there exists a Hilbert
space (H, (.,.)n) together with a linear map ¢y : £L/L£° — H, such that ran iy
is dense in ‘H and

(L'H.I,LHZJ)H = (.I,y), x,y € L.

Denote by 7 the canonical projection of £ onto £/L°, then (1 om, H) is a Krein
space completion of L.

Next, let (¢, KC) be any Krein space completion of £. Then ran: is a dense
and positive semidefinite subspace of L. Thus K is itself positive semidefinite,
and hence a Hilbert space.

Finally, let (¢1,K;) and (¢2,K2) be two Krein space completions of £. The
map t12 is an isometry between the dense subspaces rant; and rants of the
Hilbert spaces Ky and Ks. Hence, it extends to an isomorphism ¢ of Xy onto
Kso. Clearly, we have ¢ o117 = to:

/\

ran Ll ————1ran L2

U

In the situation of Proposition 3.5.5 we will also refer to the (up to isomor-
phism) unique Krein space completion of £ as its Hilbert space completion.

Clearly, the statement analogous to Proposition 3.5.5 also holds for nega-
tive semidefinite inner product spaces. Instead of Hilbert spaces, thereby, one
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will obtain anti-Hilbert spaces, i.e. spaces (H, (.,.)) such that (H, —(.,.)x) is
a Hilbert space. Correspondingly, we will speak of the anti-Hilbert space com-
pletion of L.

The existence part of Proposition 3.5.5 can be lifted easily to decomposable
spaces. Uniqueness is a more delicate matter and need not prevail, cf. Example
3.5.16. In this place we give a sufficient condition for uniqueness.

3.5.6 Proposition. Let (L,][.,.]) be a decomposable inner product space. Then
the following hold:

(i) There exists a Krein space completion of L.

(#3) If L has a fundamental decomposition with (at least) one intrinsically com-
plete component, then each two Krein space completions of L are isomor-
phic.

Proof. Let §J = (L4,L£_) be a fundamental decomposition of £, and let
(t4,H4) and (c—,H_) be the Hilbert space and anti-Hilbert space completion
of (L4,].,.]) and (L_,].,.]), respectively. Set

Ky :=Hy[+HH-
and let v3 : £ — K3 be defined as
3(xg o) =1yxy vz, zyely,x_€L_.
Then ICj is a Krein space, having
Ji=(Hy, Ho) (3.5.3)

as a fundamental decomposition. The map ¢3 is clearly [., .]-to-[., .|k, —isometric,
and ranty = rancy + ranc_ is dense in Ky. Thus (¢3,K3) is a Krein space
completion of L.

For the proof of (i), assume that J = (L4, £_) is a fundamental decomposi-
tion of £ with (at least) one intrinsically complete component. For definiteness
assume that £ is intrinsically complete. Then we may, in the construction of
the preceeding paragraph, choose H4 := L4 and ¢4 := id. The Krein space
completion Iy obtained in this way has (L4, H_) as a fundamental decomposi-
tion. Let (¢, K) be any Krein space completion of £, and consider the linear and
isometric map 7 : ranty — ran: defined by the corresponding diagram (3.5.2).
The domain of 7 is equal to £ [+]¢—(£_), and hence contains the maximal uni-
formly positive subspace £ of 3. The range of n is equal to ran¢, and hence
is dense in K. Theorem 3.4.2, (iv), implies that n extends to an isomorphism ¢
of I3 onto K. We have the diagram

2N

ran L‘; —> rant

/C3————¢———>]C

and hence ¢ is an isomorphism between the completions (¢3,/C3) and (¢, ). [
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3.5.7 Corollary. Let (K,[.,.]) be a Krein space. Then there exists (up
to isomorphism) a wunique Krein space completion of (K,[.,.]), namely

(idIC=<IC7 [7]>) O

We will refer to the Krein space completion constructed in the proof of
Proposition 3.5.6, (i), starting from a fundamental decomposition J as the Krein
space completion of (L,][.,.]) induced by J. In order to justify this terminology,
note that different choices of the Hilbert space completions (¢4, H4) in the above
construction give rise to isomorphic Krein space completions. However, as we
will see later, different fundamental decompositions may induce nonisomorphic
completions, cf. Example 3.5.16.

Sometimes the following continuity property is of good use.

3.5.8 Remark. Let (L,[.,.]) be an inner product space, let J = (L4,£_) be a
fundamental decomposition of £, let (t3,K5) be the Krein space completion
induced by J, and let J be the fundamental decomposition (3.5.3). Then the
embedding ¢35 is (.,.)z-to-(., .)5-isometric. In particular, it is continuous with
respect to the decomposition topology induced by J on £ and the Krein space
topology on Kj. /

Let us also observe that decomposability is not necessary in order that a
Krein space completion exists.

3.5.9 Example. Consider the inner product space (¢*(Z),[.,.]), where [.,.] is
given by (2.3.1), i.e.

(&) ez, (mj)jez] =Y &1

JEZ
Let (.,.) denote the usual £2(Z)-inner product, then we can write

[(&)iez, (n)jez] = (G(&)jez, (nj)jez)

where
G(&)jez == (E—j-1)jez, (&)jez € C(Z).

Apparently, G is a unitary operator of £2(Z) onto itself. This, first of all, justifies
the definition of [.,.] and, moreover, tells us that G is boundedly invertible with
respect to the norm of ¢2(Z). Theorem 3.1.5 implies that (¢%(Z), |.,.]) is a Krein
space.

The space L := (CIZf N ¢?(Z) considered in Example 2.3.4 is a dense subspace
of this Krein space. Hence, we may consider (¢%(Z),].,.]) as a Krein space
completion of (L, [.,.]).

As we saw in Example 2.3.4, the space (£, ][.,.]) is not decomposable. We
conclude that not every Krein space completion necessarily must be induced by
a fundamental decomposition. /

Krein space completions are related to certain compatible topologies on L.
In order to to describe this class, we need the following construction.

3.5.10 Lemma. Let (L, ][.,.]) be an inner product space, and let (.,.) be a pos-
itive semidefinite inner product on £ with £ = LIl Moreover, denote by
(ers (H, (-, )w)) a Hilbert space completion of (L,(.,.)). Then the following
hold:
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(1) There exists an inner product |.,.]5 on H which is continuous with respect
to (.,.)x, nondegenerated, and such that 13 is [.,.]-to-|., .]x—isometric.

(i7) The space (H,|.,.Jn) is decomposable, and each decomposition topology is
coarser than the Hilbert space topology of H.

(i4i) If the construction in (i) is carried out with two Hilbert space completions
H1 and Hz of (L, (.,.)), then there exists a linear and bijective map of Hy
onto Ha, which is [., Jr, -to-]., Jx, and (., ), -to-(.,.)n, isometric.

() If the construction in (i) is carried out with two inner products (.,.)1,
(.,.)2 on L which induce the same topology, and two respective Hilbert
space completions H; of (L, (.,.);), then there exists a linear and bijective
map of H1 onto Ha, which is [., .]x, -to-[., Jn, isometric and bicontinuous
with respect to the respective Hilbert space topologies of Hi and Hs.

Prooy .

—T
Let 7 € Top;, £, assume that {0} = L£!°! and choose a positive semidefinite

inner product (.,.) on £ which induces 7. Then £(°) = £[°), and hence Lemma
3.5.10 is applicable. Denote a Hilbert space and inner product obtained in
this way by (H7,(.,.)7) and [.,.]7. By Lemma 3.5.10, (iv), different choices
of (.,.) or of a Hilbert space completion, respectively, will give rise to ([.,.]-)
isometrically and ((., .)-) bicontinuously isomorphic spaces. Hence, the following
notion is well-defined.

3.5.11 Definition. Let (L, [.,.]) be an inner product space. Then we set
Topeom £ := {T € Top;, L : WT = £l and (M7, [, .]7) is a Krein space} .

/

The relation between Krein space completions of £ and the class Top.,,, £
of compatible topologies is established by the following construction.

3.5.12 Definition. Let (£, [.,.]) be an inner product space, and let (¢, K) be a
Krein space completion of £. Then we denote by T(¢, ) the initial topology on
L with respect to the map . /

3.5.13 Theorem. Let (L,[.,.]) be an inner product space.

(1) The assignment T : (1, K) — Z(1, K) induces an order-isomorphism of the
set of all isomorphy classes of Krein space completions of L onto Top,,, L.

—T
(i) For each T € Top;, L with {0} = L) there exists a Krein space comple-
tion (1, KC) of L with T(4,K) CT.

(1i1) The space L possesses a Krein space completion if and only if Top;, £ # 0.

Proof. Let (¢, (K,[.,.]x)) be a Krein space completion of (£, [.,.]), and choose a
positive definite inner product (.,.)x on K which induces the topology of K. Set

(l',y) = (vaby)Ka T,y € Eu
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then (.,.) is a positive semidefinite inner product on £. The topology induced
by (.,.) on L is the initial topology with respect to the map ¢ into the space K
endowed with its Krein space topology, i.e. equal to (¢, K).
—T(,K .
Clearly, £(°) = kert = £[°] and hence {0} - Ll Moreover, with an
appropriate constant v > 0,

[z, 2]| = [, @]k | < y(w, ) =~(x,2), z€Ll.

Hence, (¢, K) is compatible. Finally, the map ¢ is (.,.)-to-(.,.)x—isometric and
its range is dense in K. Thus (¢, (K, (.,.)x)) is a Hilbert space completion of

(L,(.,.)). Since ¢ is also [., .]-to-[., .Jx—isometric, the inner product defined on K
by means of Lemma 3.5.10 coincides with [., .]x, and we conclude that %(¢, K) €
TOpCOm ‘C'

Let (11,K1) and (e2,K2) be two Krein space completions of £. Then we
have T(11,K1) 2 T(12,K2) if and only if the identity map idz is (i1, Kq)-to-
% (1, Ka)-continuous. Consider the diagram

ide

<£, K(Ll, ’Cl)> —_— <£, K(LQ, ’C2)>

rant] —— = rants
t12

If ¢12 is continuous, then by the universal property of initial topologies also id,
is continuous. Denote by (.,.); the inner product defined on £ by (z,y); =
(tjz,t5y);, so that the topology T(¢j,K;) is induced by (.,.);. Since ¢; is (.,.);-
to-(.,.)x,-isometric, it is continuous and open when ran ¢; is considered with the
restriction of the topology of K;. Moreover, 115 (0O) = t1(15 1 (0)), O C rany.
Hence %(i2,K2) C %(t1,K;) implies that ¢12 is continuous. Together, it follows
that (Ll,lcl) i (LQ, ’CQ) if and OIlly if Q(Ll, ’Cl) 2 S:(LQ, ’CQ)

Up to now we have shown that the assignment ¥ induces an order isomor-
phism of the set of all isomorphy classes onto some subset of Top.,, £. Let
T € Topgom £ be given, and consider the Krein space (Hr,[.,.]7) together
with the map ¢7. Since [.,.]7 is nondegenerated, the Krein space topology of
(Hr,[.,.]T) must coincide with the Hilbert space topology induced on Hy by
(.,.)7. Thus rantr is dense in the Krein space Hy. It is also [.,.]-to-[.,.J7—
isometric, and we conclude that (v7, (H7,[.,.]7)) is a Krein space completion
of (£,[.,.]). Since vr is (.,.)-to-(.,.)r—isometric, when (.,.) denotes the inner
product on L chosen in the construction of Hy, this completion is mapped by
T to the topology 7.

We come to the proof of (ii). Let 7 € Top;, £ with WT = Ll°} be given.
Consider the inner product space (Hr,[.,.]7). Let J be a fundamental decom-
position of H7 whose components are closed in the Hilbert space topology of
Hr, let (¢, ) be the Krein space completion induced by J, and let 3 be the
fundamental decomposition (3.5.3) of K. The map ¢ is (., .)3-to-(.,.)5-isometric
and hence 73-to-75—continuous. However, the Hilbert space topology of Hr is
finer than Ty, cf. Proposition 2.4.2, (iv). Thus ¢ is also Hz-to-K—continuous.
Since ran: is dense, therefore + maps dense subsets of Hs onto dense subsets
of K, in particular, ran(c o ¢7) is dense in K. Clearly, ¢ o 7 is [.,.]-to-[., ]~
isometric, and it follows that (¢ o7, K) is a Krein space completion of (L, [., .]).
The map ¢ o v7 is T-to-K—continuous, and hence (¢, K) is coarser than 7.
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For the proof of (iii) assume that Top;,, £ # (), and choose a positive semidef-
inite inner product (.,.) on £ which induces a compatible topology. Choose a
linear subspace £; of £ such that £ = £,+£°, and define an inner product
(.,.)1 on L by

(1 + 20,91 +%0)1 = (z1,91), 1,91 € L1, To,y0 € L.
We have, with some appropriate constant v > 0,
[[r14+m0, 21+20]| = [[71, 21]| < (21, 21) = Y(T1+20, T1+T0)1, T1 € L1, 70 € L,

and hence (.,.); induces a compatible topology on £. This also implies that
L)1 C £l The inclusion §(°)1 D Ll is trivial. We have constructed an
element 7" € Top;, £ with {0} = £l and the already proved item (i4) implies
in particular that there exists a Krein space completion of L. Il

Without further notice, we obtain that Krein space completions neither need
to exist nor need to be unique.

8.5.14 Example. The inner product space constructed in Example 2.3.1 has no
compatible topologies at all, in particular Top;, £ = 0. /

3.5.15 Corollary. Let (L,][.,.]) be an inner product space, and assume that L
is decomposable. Let 31 and Jo be fundamental decompositions of L, and let
(t1,K1) and (12, K2) be the Krein space completions of L induced by J1 and Ja,
respectively. Then (11,K1) and (12, K2) are isomorphic if and only if T3, = T3,.

Proof. Since ¢; is (.,.)3,-to-(., .)jjfisometric, we have (15, /KC;) = T3,. Hence,
% being an order isomorphism implies the present assertion. 0

3.5.16 Example. The inner product space constructed in Example 2.6.1 has two
different decomposition topologies. Thus it has (at least) two nonisomorphic
Krein space completions. /

3.5.17 Theorem. Let (L, ].,.]) be an inner product space. Then each two Krein
space completions of L are isomorphic if and only if for each T € Top;, L with
—T
{0} = £l the space (Hr,[.,.]7) has a fundamental decomposition with (at
least) one intrinsically complete component.

Proof. The case that £ does not possess a Krein space completion is trivial,
since then Top;, £ = 0.

For the proof of sufficiency, assume that the stated condition holds true, and
let (t1,K1) and (i2,K2) be two Krein space completions of £. Choose positive
definite inner products (.,.); on K; which induce the topology of K;, j = 1,2,
and define a positive semidefinite inner product on £ by

(,9) = (1@, 1Y) + (122, 02y)2, @,y € L.
Then, with some appropriate constant v > 0,
|[$,$]| = |[L1{E,L1I]1| < V(lea le)l < ’Y(I,I), T,y € ‘Ca

and hence [.,.] is continuous with respect to the topology induced by (.,.).
Moreover, we have (x,2) = 0 if and only if ;;2 = 0 and (22 = 0. Remembering
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ker 1] = ker iy = L[°!, we conclude that £(°) = £[°l. According to Lemma 3.5.10,
let (12, (H, (.,.)n)) be a Hilbert space completion of (£, (.,.)) and let [.,.]» be
the correspondingly defined inner product on H.

Since ker iy = ker¢; = L] there exists a linear map n; :rant; CH — K
with no vy = ;. For z,y € £ we have

(tjz,2); < (x,2) = (bn, in®)w, [, )y < [z, 2] = [bne, tnx)n -
We see that 7; is continuous and [, .]y-to-[.,.];-isometric. Let ¢; : H — K; be
the extension of 7; by continuity. Then also ¢; is [.,.]x-to-]., .];~isometric. The

range of ¢; certainly contains ran¢;, and hence is dense in /C;. Thus (¢;,K;) is
a Krein space completion of (H, [.,.]#).

Our present assumption says that (H,[.,.]») has a fundamental decompo-
sition with (at least) one intrinsically complete component. Thus Proposition
3.5.6, (ii), applies, and we conclude that there exists an isomorphism ¢ of K3
onto ’CQ with (b 9] (]51 = ¢2.

K1
L1 /1 A¢>
/771 | 1
" - c |
L ran iy H )
N |
N N2
= N | 2
A\ Y
2

We see that also ¢ o 11 = 19, and hence (11,K;) and (12, K2) are isomorphic as
Krein space completions of (£, [.,.]).

The proof of necessity is more involved. Assume that the stated condition
does not hold. This means, there exists a positive semidefinite inner product (., .)
on £ with £ = £ such that (notation as in Lemma 3.5.10) the components
of a fundamental decomposition of (H, [.,.]#) are both not intrinsically complete.
Let G be the Gram operator of [.,.]y with respect to (.,.)x, and denote by F
the spectral measure of G. Our hypothesis says that for every € > 0 we have

E(0,€) # 0 and E(—¢,0) #0. (3.5.4)

We are going to construct two nonisomorphic Krein space completions of
L. One completion to be used is obvious: Let (¢, K) be the Krein space
completion of (H,[.,.]») induced by the fundamental decomposition J :=
(ran E(0, 00),ran E(—00,0)). Since itk is H-to-K—continuous and has dense
range, also ran(ic o tp¢) is dense in K. Thus (uc o 19, K) is a Krein space
completion of (L, [.,.]).

In order to obtain another, nonisomorphic, completion, we employ the con-
struction carried out in Example 3.4.1 with the Krein space K. To this end, we
need to specify the parameters (e, )nen, (fn)nen, and (Vn)nen-

Step 1, Choice of i, Vp, €n, fn: Due to (3.5.4) we can choose sequences (fi, )neN
and (vp)nen of numbers pi,, v, € (0,1) which monotonically decrease to zero,
such that

ran B ((u7, 11, 1)) # {0}, ran E([~v;1, vy 1)) # {0}

C65
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Choose elements €, € ran E((u2 ., u2]) and fn € ran E([—12, —v2,4)) with
[énaén]H =1, [fnafn]}_{ =-1,

and set e, := 1€, and f, := it fr. Moreover, set

Yo i=min{y/1 — p2, /1 —v2}.

Example 3.4.1 provides us with a dense linear subspace D of K and a linear,
bijective, [.,.]-isometric, but not continuous map U : D — D.

Step 2, The restriction A\ :== U o ixc|m: Set
H, :=ran E(0,00) Nspan{é, : n € N}

H_ :=ran E(—o0,0) Nspan{f, : n € N}(Hn

then
(span{é, : n € N} +span{f, : n € N})(L)H =H,+H_.

Hence, the subspace
H:=H, +H_+span{é, : n € N} +span{f, : n € N} (3.5.5)

is dense in H.
Isometry of tx implies that tc(Hy + H_) C Dg, and we conclude that
tic(H) 2 D. Thus the composition

A=Uouw|lg: HCH—-K

is well-defined.
Step 3, H-to-K—continuity of A\: The domain of A decomposes as

H=(H, + H_)[+n ([_i_]H span{éy, fn}) : (3.5.6)
neN

and the summands on the right hand side are also pairwise orthogonal with
respect to (.,.)x. Moreover, we have

MNH, +H_)C Dy, )\(span{én,fn}) = span{en, fn}, n € N.

Together with the fact that the decompositions (3.5.6) and (3.4.2) are (.,.)n—
orthogonal and (.,.)x—orthogonal, respectively, it is thus enough to show that
the restrictions A|g, +x_ and A y are bounded and that their (.,.)x-

Span{én7fn
to-(.,.)x—operator norms are uniformly bounded.
Clearly, we have Mg, +n_ = ix|g_+m_, and hence ||[A|g_4p_|| < 1. Since

én €ran E((u2 1, p2]), we have
(L/Cen; L/Cen)lc = (em en)ﬁ = [ena en]H =

= (G(. ) en,en) = / tdE., e, < 12 (en,en) -
o

C70

ce7
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Similarly, since f,, € ran E([—v2, —v2,,)),
(ticfns e fu)ic = (Frs frn)z = —[fns fuln =
Gt == [ By <0 fu

71/%
Since e, (L)x fn this implies that [|ti|spanen,f, 3| < max{pin, vn}.
The operator norm ||.|| on C2*? is equivalent to the maximum-entry norm.
Hence there exists a constant C' > 0 such that

¢
1—72'

n

[[unll <
Note here that C does not depend on n € N. Since ¢ : S,, — C is an isomor-
phism, it follows that

max{fiy, Vn }
V1i-12

We have shown that A is (.,.)»-to-(.,.)c—continuous.

H)‘|span{en,fn}|| < c = O, n €N.

Step 4, The nonisomorphic completion: Let n: H — K be the extension of A by
continuity. Since ik is [., .]x-to-[., .]c—isometric, and all maps Uy, U, n € N, are
[., Jxc—isometric, also the map A is [., .Jx-to-[., .]c—isometric. By continuity, thus
also n has this property. Moreover, since ¢x is continuous and has dense range,
the space v (H) is dense in K. However, we have U (1 (H)) = tx(H), and hence
ran A is dense in K. Tt follows that (1, K) is a completion of (H,[., .]x).

Since 7 is H-to-K—continuous and has dense ranges, also ran(tx oty) is dense
in K. Thus (n o ¢4, K) is a Krein space completion of (L, [.,.]).

LICOLH

Assume on the contrary that (ic o tp, K) = (9o 13, K). Then there exists a
continuous map ¢ : K — K with

LK07 \\LOLH

IC4>IC

This says that (¢otic)|ran s = Mlran - Since the maps ¢ and 1 are continuous,
it follows that actually ¢ o ux = ¢/. Consider the linear map U, x). Since
the eigenvectors of U,, n € N, belong to tx(H), we conclude that U|LK(H) is
unbounded. However, we have

Ulr) = (z) = ¢plicz), x €' (D)2 H,
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and hence U|,,(g) is bounded. We have derived a contradiction, and conclude
that
(1 013, K) # (Y o3, K)

in particular these completions cannot be isomorphic. 0
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Chapter 4

Classes of complete TIPS. II.
Pontryagin spaces

4.1 Definition of Pontryagin spaces

4.1.1 Definition. An inner product space (P,[.,.]) is called a Pontryagin
space, if

(PS1) P is nondegenerated and ind_ P < oco.

(PS2) There exists a fundamental decomposition (P;,P_) of P whose
component P, is intrinsically complete.

/

Appealing to Proposition 2.6.4, we see that this definition does not depend
on the particular choice of the fundamental decomposition in (Ps2). Moreover,
let us remark that, of course, a completely parallel theory could be developed
for spaces with ind4 P < oo instead of ind_ P < oo.

Again we start with some immediate reformulations of the defining property
of a Pontryagin space.

4.1.2 Remark. Let (P,[.,.]) be an inner product space. Then the following are
equivalent:

(i) (P,[.,.]) is a Pontryagin space.
(i) (P,[.,.]) is a Krein space and ind_ P < oo.

(#31) There exists a Hilbert space H; and a finite-dimensional negative definite
space Ha, such that
<737 ['a ]> = H1[+]H2 )

where H;[+]Hz2 is endowed with the sum inner product.

(iv) P is nondegenerated, ind_ P < oo, and P is complete with respect to 7*.
For the use of the terminology ‘complete with respect to 7*’ compare
Remark 2.6.8, (7).

/
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4.1.3 Remark. A Pontryagin space is a particular instance of a Krein space.
Hence:

(i) In view of Remark 3.1.3 and Definition 2.6.7, we have
TOpHs P= TOsz P = Topdec P= Topmin P= {T*} :

Unless the contrary is explicitly stated, all topological notions will be
understood with respect to this topology.

(14) The dual space of P is given as
(P.T*) ={[,yl: y e P}.

/

The fact whether P is a Pontryagin space can also be characterized via Gram
operators.

4.1.4 Proposition. Let (P,[.,.]) be an inner product space. Then the following

are equivalent:
(@) (P,[.,.]) is a Pontryagin space.

(ii) There exists an inner product (.,.) on P with Ty € Topy, P, such that
the Gram operator G of [.,.] with respect to (.,.) satisfies 0 € p(G) and

dimran F(—00,0) < c0. (4.1.1)

Here E denotes the spectral measure of G as a bounded selfadjoint operator
in the Hilbert space (P, (.,.)).

(iit) P is nondegenerated and there exists T € Topy, P and M € Subso P with
dim P/ M < oo, such that M is T -closed and intrinsically complete.

Proof. The equivalence of (i) and (i7) is obtained as a corollary of the corre-
sponding result for Krein spaces, cf. Theorem 3.1.5. We know from this source
that P is a Krein space if and only if the present item (i) without the condition
(4.1.1) holds. Thereby, a fundamental decomposition is given as (P4, P_) with

P, :=ran E(0,00), P_ :=ran E(—00,0).

Thus P is a Krein space with finite negative index, if and only if in addition
dimran F(—o00,0) < co.

For the proof of (i) = (4ii), choose a fundamental decomposition J =
(P4+,P-) of P. Then the inner product (.,.); and the subspace P has the
desired properties. Note here that (z,y); = [z,y], z,y € Ps, i.e. intrinsic
completeness equals ||.||3-completeness.

Finally, assume that (ié¢) holds. Choose a positive definite inner product (., .)
on P such that 7 = 7, then (.,.) is an inner product with 7y € Topy, P.
Let G be the Gram operators of [.,.] with respect to (.,.). Since M is (.,.)-
closed, and hence itself a Hilbert space, there exists a Gram operator G of
[, JImxm with respect to (., .)|mxam. The space M is not only (.,.)-complete,
but also intrinsically complete, i.e. complete with respect to the norm |[., .]%.
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Hence, the scalar products (.,.) and [.,.] induce equivalent norms. Therefore,
G > 01 for some 6 > 0.

Assume that z € ran E(—oo0, %) NM, where E denotes the spectral measure
of G. Then

§(z,z) < (Gma,x) = [z,2] = (Gx,z) < =(z,2),

N |

and it follows that z = 0. This shows that ran E(—oc, ) "M = {0}, and hence
. J .
dimran F(—oo0, 5) <dimP/M < 0.

Since P is nondegenerated, we have ker G = {0}. Hence, by discreteness of the
spectrum in (—oo, ], 0 € p(G). 0

4.1.5 Remark. Let (P,[.,.]) be a Pontryagin space, and let (.,.) any inner prod-
uct on P with 7y € Topy, P. Then the corresponding Gram operator satisfies
0 € p(G) and dimran E(—00,0) < co.

This follows, since in the proof of (iii) = (i7) above, we actually have started
with an arbitrary inner product (.,.) on P with 7y € Topy, P. /

Let us give another characterization of Pontryagin spaces which is of more
intrinsic nature, and rather related to Remark 4.1.2, (iv). For the use of the
term ‘completeness’, the same notice as in this place applies.

4.1.6 Proposition. Let (P,[.,.]) be an inner product space. Then P is a Pon-
tryagin space, if and only if P is nondegenerated and there exists M € Subsg P
with dim P/ M < oo, such that M is complete with respect to T*|m.

Proof. If P is a Pontryagin space, choose a fundamental decomposition § =
(Py,P_), and set M := P,. Then, clearly, M € Subso P and dimP/M < occ.
Since ||z|3 = [z,2]%, = € Py, the subspace M is moreover complete with
respect ||.||3-

Conversely, assume that a subspace M with the stated properties exists.
First of all, if N € Sub< P, then NN M = {0}, and hence dim N < dim P/ M.
Thus

ind_ P <dimP/M < 0.

In particular, P is decomposable and the topology 7* is well-defined.

Choose a fundamental decomposition J = (P4, P—) of P, and consider the
positive definite inner product (.,.)5. Since the subspace M is complete with
respect to (.,.)3, we have

M(F)gMEP =P,
Here we refer to the notice made in Remark 2.6.6. However, since
dim M3 = dim P/M < oo,

also the space M(1)3 is complete with respect to (.,.)y. Thus P is (.,.)3-
complete, and we conclude that P is a Pontryagin space, cf. Remark 4.1.2,

(iv). U
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4.1.7 Remark. Let (P1,][.,.]1) and (P2, [.,.]2) be Pontryagin spaces, and consider
the direct sum P := P; 4P endowed with the sum inner product. Then (K, [.,.])
is a Krein space, cf. Remark 3.1.8. However, we have ind_ P = ind_ P; +
ind_ P, and hence P is a Pontryagin space. /

Pontryagin spaces are very well-behaved instances of Krein spaces. It is the
following simple fact, which is responsible that many pecularities of Krein spaces
disappear.

4.1.8 Lemma. Let (L,].,.],7) be a topological inner product space, and let
MeSubL. If N € Subog M, and n € N with n < dim N, then there exists a
subspace N' € Sub.g M with dim N’ = n.

In particular, if ind_ M is finite, then ind_ M = ind_ M.

Proof. Choose a n-dimensional subspace Ni of N and write N7 =
span{x1, ..., o, }. Then the matrix A := ([z;,z;])]',—, is negative definite, i.e.
all zeros of the polynomial

p(A) :=det(A — \I)

are negative.

Since a polynomial depends continuously on its coeflicients in the topology
of locally uniform convergence, there exists some € > 0 such that the polynomial
det(A’ — AI) has exclusively negative zeros whenever |4’ — A|| < e. Here ||.||
denotes some matrix norm.

Since M is dense in M, there exist elements z/, ..., 2/, € £, such that

||([$;’I;]):J:1 - ([Ii’xj])zj‘:lH <€

By what we said above, this implies that the matrix ([}, z}])7;_; is negative
definite. The space

M :=span{z,..., 2}, } C L

is negative definite and has dimension n. O

4.1.9 Corollary. Let (P,].,.]) be a Pontryagin space, and let L be a dense
linear subspace. Then there exists a mazimal negative subspace M with M C L.

Proof. We have x := ind_ £ < co. By the above lemma, P = £ cannot contain
any negative subspace with dimension x+1. Thus ind_ P = &, and we conclude
that each maximal negative subspace of L is already maximal negative in P. []

As a first consequence, we obtain a characterization of the topology 7*,
which is explicit in terms of the inner product [.,.], i.e. does not refer to some
fundamental decomposition.

4.1.10 Proposition. Let (P,[.,.]) be a Pontryagin space, let x,, € P, n € N,
and x € P. Then the following hold:

(i) We have lim,,_, oo T, = x with respect to T*, if and only if there exists a
dense subset D of P, such that

lim [z, 2] = [z, 2], lim [z,,y] = [z,y], y€ D. (4.1.2)

n—oo n—oo

D12
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(12) The sequence (Tn)nen is a Cauchy sequence with respect to T* (i.e. with
respect to some norm inducing T*), if and only if there exists a maximal
negative subspace M of P, such that

lm [z, — T, Ty — Tim] = 0, lim |2, — Zm,y] =0, y € M.
(4.1.3)

Proof. Let J = (P4+,P-) be any fundamental decomposition of P. Then
[z, y]| < llzllsllylls, .,y € P. Thus the stated conditions (4.1.2) and (4.1.3),
respectively, are necessary. Thereby, we may take D := P.

Conversely, assume that D is a dense subset of P such that (4.1.2) or (4.1.3)
holds. Clearly, we may assume without loss of generality that D is a linear
subspace of P. According to Corollary 4.1.9, we can choose a maximal negative
subspace M which is contained in D. Then J := (M*, M) is a fundamental
decomposition of P.

Assume that (4.1.2) holds, and consider the sequences (P3+ ZTn)nen and

(Py @n)nen. The second relation in (4.1.2), together with our choice of M
as a subspace of D, gives

lim [Py iz, y] = lim [2,,y] = [2,y] = [Py 2, y], y € M.

n—oo

Since M is finite-dimensional and negative definite, this implies that

. - - 1
lim Pyz, = Pyzwrt |||5lm=(=[,])=.

Using the first relation in (4.1.2), it follows that

lim [Pz, Py x,] = lim ([xn,;vn] - [ngn,ngn]) =

= [z,2] — [Py x, Py x] = [P{z, P{a].
Moreover, by the second relation in (4.1.2),

lim [P 2y, y] = lim [z,y] = [2,y] = [Pfz,9), ye DOM*.

Since M C D the set D N M= is dense in the Hilbert space M-. Thus

: 1
lim Pfa, = Pfowrt. |||zlpme =1[]2.

n—oo

In total lim, o x, = x with respect to ||.||5.
Assume that (4.1.3) holds. We argue similarly, and show that both of
(P 2n)nen and (Py 2y)nen are Cauchy sequences in the norm |[|.||5. First,

lim [Py @, — Pyam,yl =0, ye M.

n,m— oo
Again finite dimensionality implies that (Pgr Zn)nen 18 a Cauchy sequence in the

norm (—[.,.])z. Next, we compute

lim [Pgrxn — Pgrxm, Pgrzzrn - Pgr:rm] =

n,m— o0

= lim ([:vn — Ty T — Tn] — [Py Tn — Py T, Py 1y — P3_$m]> =0.

n,m— oo
U

D13
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4.2 Fundamental decompositions, orthocomple-
mented subspaces

Also the geometry of Pontryagin spaces is significantly simpler than the one of
general Krein spaces. This fact origins from the following result.

4.2.1 Lemma. Let (P,[.,.]) be a Pontryagin space, and let M € SubP. Then
(i) If M is closed and positive definite, then M is uniformly positive.
(13) If M is negative definite, then M is uniformly negative.

Proof. Let J = (P4+,P-) be a fundamental decomposition of P. Assume that
M € Subs P and that M is closed, and consider the angular operator

azg(M): PyMC P —P_.
Then aj(M) is ||.||3-contractive, in fact
las(M)al2 = ~[a3(M), ay(M)z] < [r,2] = 2], = € PY M\ {0} (4:2.1)

Since M is closed, it is ||.||3-complete. By Lemma 2.6.5, also P{ M is ||.|3-
complete. The subspace ker az(M) is a |.||5-closed subspace of P; M, hence

we may write P;' M = keraz(M)[+]F. Note here once more that |.[[3|p, is
induced by the inner product [.,.]. We have

dim F = dimranaz(M) < dimP_ < co.
Thus the unit ball of F is compact, and we obtain an element zg € F, ||zoll3 < 1,
with
sup lag(M)zlz = [lag(M)zoll -
zeF|lzll3<1

Remembering (4.2.1), it follows that

lag(M)||= sup |lag(M)z|l3 = sup |laz(M)z|; =
z€PFM zeF
llzll5<1 llzllg <1

<llzolls =1, w0 #0

= [lag(M)zo|l5 {0 om0

This shows that M is uniformly positive. -
The proof of (i7) is similar, even simpler. Let J be the orthogonal decompo-
sition J := (P, P4), let M € Sub.o P, and consider the angular operator

ag(M) : Py M CP_ — Py

Then dim Py M < dimP_ < oo, and the same compactness argument as above
will apply and yield that |las(M)| < 1. O

As an immediate corollary, we obtain the following Pontryagin space version
of Theorem 3.2.2.

D15
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4.2.2 Corollary. Let (P,][.,.]) be a Pontryagin space, and let Ly, L_ € SubP.
Then there exists a fundamental decomposition J = (P4, P_) of P with

LJr Q PJr and L_ Q P_ (422)
if and only if
EJ’_ S SUb>>O P, L_ € Sub<0 7), EJ’_ L.

If we assume that Ly is closed, then there exists J with (4.2.2) if and only if
Ly €SubsoP, Lo €SuboP, and Ly L L_. 0

The Pontryagin space version of Theorem 3.3.3 on characterizing orthocom-
plementedness is less evident, and actually a quite important result.

4.2.3 Proposition. Let (P,].,.]) be a Pontryagin space, and let L € SubP.
Then the following are equivalent:

(1) L is orthocomplemented.
(13) L is closed and nondegenerated.

(1i1) L is decomposable, nondegenerated, and for each fundamental decomposi-
tion Jc = (L4, L) of L the component L is closed in P.

(iii') We have L = L[+]L_ with some subspaces L € SubsoP and L_ €
Sub<o P, where L4 is closed in P.

(iv) L is closed in P and (L,[.,.]) is a Pontryagin space.
(iv") The closure L is nondegenerated and (L,][.,.]) is a Pontryagin space.

Proof. The implications indicated on the left are immediate from Theorem 3.3.3,
those on the right are deduced from Theorem 3.3.3 with the help of Lemma 4.2.1:

(i)
( > (iii') == (i)
— (i) =—= (i) ﬂ
lL (i)

(ii)

(zid")

Moreover, we have (i) = (i4i’) since, by Proposition 3.3.1, (), a closed subspace
has a fundamental decomposition with closed components. This establishes the
equivalence of (7), (i), (i4i), and (i3d").

The implication (iv) = (#v’) is trivial. To finish the proof it is hence enough
to show that (iv') implies that £ is closed in P. To this end we will employ
Proposition 4.1.10. Let a sequence (zp)nen of points z, € L be given, and
assume that lim,, . z, =  in P. Then, certainly,

lim |2, — T, T — Ton) =0, lim [z, — 24, y] =0, y € L.

n,m—0oo n—oo

D17
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Thus (2, )nen is a Cauchy sequence in the Pontryagin space (L, [.,.]), and hence
convergent, say lim, ., z, = 2’ in L.
By convergence in P on the one hand and convergence in £ on the other,
we have
[z,y] = lim [z, y] = [2",y], y€ L,
n—oo
[w,y] = lim [2n, 5] =0 =[2",y), y € LT

n

Thus [z — 2’,y] = 0 whenever y € £ + L. However,
(L+LHr=ctnctt =T nL= (L) = {0},

and hence x — 2’ = 0. In particular 2’ € L. O

4.3 Isometric mappings, Completions

We saw that an isometric map defined on some subspace of a Krein space need
not be continuous. This does not change in the Pontryagin space situation.
However, we can give a quite useful condition which implies continuity.

4.3.1 Proposition. Let (P1,[.,.]1) and (Pa,][.,.]2) be Pontryagin spaces, and
let
¢ :dom¢p C P — P

be isometric. If ran ¢ is nondegenerated, then ¢ is continuous. Its continuation
¢ by continuity is isometric and maps dom ¢ surjectively onto ran ¢.

Proof. Since ran ¢ is closed and nondegenerated, it is itself a Pontryagin space
and the topology it carries as such coincides with the topology it inherits from
Ps. For the proof of the present assertion we may therefore consider ¢ as a map
of dom ¢ into ran ¢. Hence, assume throughout the following that ran ¢ is dense
hlﬁb.

Let D_ be a maximal negative subspace of dom ¢. Then P; = D*[+]D_ and
dom ¢ = (dom ¢N D+)[+]D_. The orthogonal projections P; and P» of P; onto
D=+ and D_, respectively, are continuous. Moreover, note that isometry of ¢
implies that the restriction ¢|p_ is injective, and that ¢(dom ¢N DL) L ¢(D_).
Finally, let ||.||1 be a norm which induces the topology of P1, and let C' > 0 be
such that |[z,z]| < C||z||?, = € P1.

By Lemma 4.1.8, we have ind_ Py = ind_ran¢ = ind_ dom ¢. Thus the
image R_ := ¢(D_) is a maximal negative subspace of Ps. Let ||.|5, be the
norm induced by the fundamental decomposition Js := (R, R_) of Py. For
x € dom ¢, we can then compute

lgz[|3, = || o(Pr1z) + ¢(Poz) |13, = [#(P12), o(Prz)]2 — [p(Paz), p(Pax)]s =
—— N —

ERL ER_

= [Pz, Piz)y — [Pz, Pox]y < C(|Prz||i+|Pexll}) < C(| PP+ P2l?)]|]|F -

This proves continuity of ¢. R
Let ¢ : dom¢ — P be the continuation of ¢ by continuity. Clearly, ¢ is

isometric. In order to show surjectivity of (;NS, it is enough to show that ran ¢ is
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closed in Ps. Set D := dom¢ N D+, then we have dom ¢ = D[+]D_ and, by
Lemma 4.1.8, D is positive semidefinite. Choose a closed subspace D of D with
D = D,[+]D°. Then, by Lemma 4.2.1, D is uniformly positive and hence a
Hilbert space with respect to the inner product [, .];. The image R, := ¢(Ds)
is thus complete with respect to the inner product |[.,.]s. However, R, C R*,
and hence the inner products (.,.)3, and [.,.]2 coincide on Ry. It follows that
R, is closed in the topology of P,. Since

rang = R, +¢(D° + D_),
—_————

dim<oo

we finally obtain that ran ¢ is closed in Ps. 0

4.3.2 Corollary. Let (P1,[.,.]1) and (Pa,[.,.]2) be Pontryagin spaces, and let
¢:dom¢§P1—>Pg

be isometric. Assume that dom ¢ is closed and ran ¢ is nondegenerated. Then
¢ is continuous and maps closed subsets of P1 to closed subsets of Po.

Proof. By the above proposition, ¢ is continuous and maps dom ¢ onto ran ¢.
Hence, ran¢ = ran¢, i.e. ran¢ is closed. By the Open Mapping Theorem, ¢
maps open subsets of P; to relatively open subsets of ran ¢. Since ran ¢ is closed,
this implies that ¢ maps closed subsets of P; to closed subsets of Ps. O

4.3.3 Corollary. Let (P1,[.,.]1) and (Pa,[.,.]2) be Pontryagin spaces, and let
¢ : dom¢p C P; — Py be isometric. Assume that dom ¢ and ran¢ are dense
in Py and Po, respectively. Then there exists an isomorphism o of P1 onto P2,
such that gi~)|dom¢ = ¢.

Proof. By density, (dom ¢)° = (dom ¢)° = {0} and (ran$)® = (ran $)° = {0}.
The map ¢ is a bijection of dom ¢ onto ran¢. Its inverse ¢ := ¢! : ran¢ —
dom ¢ is also isometric. The previous proposition may be applied to both, ¢
and ©. We conclude that ¢ and ¥ can be extended to continuous maps

¢:P1— Po, b:Py— P
Clearly, ¢ and v are inverses of each other. 0

4.8.4 Remark. Let us explicitly mention one instance when Proposition 4.3.1
will apply: If, with the notation of Proposition 4.3.1, we have ind_ dom ¢ =
ind_ Po then ran ¢ is nondegenerated.

To see this, choose a maximal negative subspace D_ of dom ¢. Then R_ :=
¢(D_) is maximal negative in P2. By Proposition 1.5.2, it is even maximal in
Sub<g P2. Assume that mo would contain a nonzero element xg. Then the
subspace M := R_ + span{zg} is a nonpositive subspace of Py which properly
contains R_, and we have obtained a contradiction. /

Concerning completions, inner product spaces with finite negative index be-
have very well.

4.3.5 Proposition. Let (L,[.,.]) be an inner product space with ind_ L < oo.
Then the following hold:
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(i) There exists a Krein space completion of L. In each Krein space comple-
tion (¢, KC) of L, the space K is a Pontryagin space with ind_ K = ind_ L.

(it) Each two Krein space completions of L are isomorphic.

Proof. Since ind_ £ < oo, L is decomposable. Hence, there exist Krein space
completions of £. Whenever (i, K) is such, then «(£) is dense in K. Thus K
cannot contain any negative definite subspace with dimension ind_ £ + 1, cf.
Lemma 4.1.8, and it follows that ind_ I = ind_ £ < oo.

Next, let (t1,K1) and (12, 2) be two Krein space completions of £. Then
K1 and Ky are Pontryagin spaces. Since keriv; = L£° = Kkerio, there exists a
linear and isometric map ¢ : rant; — rants such that ¢ o1 = to. Since raniy
and ranco are dense subspaces of the Pontryagin spaces K1 and K, and the
map ¢ is isometric, we may apply Proposition 4.3.1. This gives an isomorphism
D : Iy — Ky with P oy = 1o:

L

7N

rant] ——sraniy

N N
Ki===— =Ko
U
We will refer to a Krein space completion (i, K) of a space (L, [.,.]) with

ind_ K < oo as a Pontryagin space completion of L.

4.8.6 Remark. Let (L,].,.]) be an inner product space. Trivially, the existence
of Pontryagin space completion (¢, P) of £ implies that ind_ £ < oco. Hence,
the space £ admits a Pontryagin space completion if and only if ind_ £ < oo.

/

Let (L,].,.]) be an inner product space with ind_ £ < co. Then, by Propo-
sition 4.3.5, (i1), a Pontryagin space completion (¢, P) of L is an object intrin-
sically determined (up to isomorphism) by £. Thus also the topological dual
space of a Pontryagin space completion of £ has this property. Let us make this
precise.

4.3.7 Proposition. Let (L,].,.]) be an inner product space with ind_ L < oo,
and let (1, P) be a Pontryagin space completion of L. Then

GP =L,

Here P’ denotes the topological dual of P, and t* denotes the (algebraic) adjoint
of v, that is 1* : P* — L* and *f = fou.

Proof. Choose a fundamental decomposition J := (£, £_) of £, and let (,P)
be the Pontryagin space completion of £ induced by this fundamental decom-
position. As we also saw in this place, the decomposition topology 73 = T* is
the initial topology with respect to the map i. Hence, t*P’ = L*.

By Proposition 4.3.5, (ii), there exists an isomorphism ¢ : P — P with
I = ¢ o Passing to adjoints gives 7* = * o ¢*. Since ¢ is in particular a
homeomorphism, we have ¢*(P') = P’. Thus

CP =10 " (P) = (P) = L.
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4.4 Degenerated subspaces

If £ is a closed but degenerated subspace of a Pontryagin space P, then £ cannot
be orthocomplemented already for the simple reason that

(L+LHtr=ctnettoce.

However, unlike in the general case of Krein spaces, it turns out that existence
of a nontrivial isotropic part is the only obstacle. We will in this section es-
tablish the proper analogue of the decomposition P = L[+]L£* for degenerated
subspaces of P.

4.4.1 Theorem. Let (P,[.,.]) be a Pontryagin space, and let L be a closed and
degenerated subspace of P. Then

(i) There exists a closed and nondegenerated subspace L1 of P with L =
Lydce.

(ii) Whenever L1 and Lo are closed subspaces of P with L = L1[+]L° and
Lt = Lo[+]L°, then there exists M € Subg P with L°#M and

P = L[+ (LAM)[+]Ls . (4.4.1)

(i4i) If M € Subg P with LO#M, then there exist unique closed subspaces L4
and Lo of P, such that £ = L1[+]L°, L1 = La[+]L°, and (4.4.1).

Proof. For (4) it is enough to note that £° is finite dimensional, since this ensures
the existence of a closed complement of £° in £. Thereby [.,.]-orthogonality is
trivially satisfied.

Let £1, Lo be given as in (i7). Then, clearly, £; and L2 are nondegenerated,
and hence orthocomplemented. Moreover, £; L Lo and £1 N Lo = {0}. Thus
also L1[+] L is orthocomplemented, i.e.

P = (L[ HLo)H(LE N Ly).

Since £{ N L3 is nondegenerated and contains the neutral subspace £°, we find
a neutral subspace M C L1 N L3 with L°#M. Thereby, dim M = dim £° <
0o. Thus £°+M is a finite dimensional, and hence closed, subspace of the
Pontryagin space £ N L. Assume that @ € £{ N L3, # L (L°+M). Then

re (L +L)TN(Ly+ LY ME=Ltnct M=o Mt = {0},
It follows that
LENLy =LHM,
and this is (4.4.1).
We come to the proof of (iii). Let M € SubgP with L°#M be given.

Define
Li:=LN (,Co—i—./\/l)l, Lo = £tn (Lo-i-./\/l)L .

Clearly, £1 and Ly are closed, and £, C £, L C L+, Since L1,Ly L M, we
also have £1 N L° = Lo N L° = {0}.

D27
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In order to show that £ = £1[+]£°, let z € £ be given. The space £°+M
is nondegenerated and finite dimensional, and hence orthocomplemented. Thus
we may write

z = x +y with some x € L°4M,y € (LOFM)*.

Since z = z —y L £° and x € L°+M, it follows that € £°. This, in turn,
implies y = z —x € L, and hence y € £,. We conclude that z € £1 + L£°. The
relation £+ = L£5[+]L£° is seen in the same way.

Applying the already proved item (i) with the subspaces £; and Lo, gives
M’ € Suby P with L°# M’ and

P = L[+ (LOAM) [+ L.

However, we have £L°4+M' = L{ N L3 O L°+M. Since both spaces have the
same finite dimension, namely 2 dim £°, it follows that £°4+M’ = £°+M. This
shows that (4.4.1) holds with M.

In order to see uniqueness, assume that £} and £/ are closed subspaces of
P with £ = £{[+]£°, £+ = L4[+]£°, and P = L [+](L°+M)[+]LS. Then

LY CLn(LAM*E =Ly, £y C L n(LHM)E =L,

Since the relation (4.4.1) also holds with £, Lo, this implies that actually £} =
El and £/2 = EQ. |:|
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Chapter 5

Classes of complete TIPS.
III. Almost Pontryagin
spaces

5.1 Definition of aPs

5.1.1 Definition. A topological inner product space (A, [.,.],7) is called an
almost Pontryagin space, if

(APS1) indpA < o0, ind_ A < 0.
(APS2) T € Topg, A

(APS3) There exists a fundamental decomposition § = (A4, A_) of A,
such that Ay is 7-closed and intrinsically complete.

/

Note that the topology 7 and the fundamental decomposition (A4, A_) in
(APS3) are related. Thus the choice of (A4, A_) in (APS3) is not arbitrary.
The following statement is an immediate reformulation of this definition.

5.1.2 Remark. Let (A,[.,.],T7) be a topological inner product space. Then
(A,[.,.],7) is an almost Pontryagin space, if and only if there exists a
Hilbert space H;, a finite-dimensional negative definite space Hs, and a finite-
dimensional neutral space Hs, such that

(A, ), T) = Hq[+]Ha[+]Hs.

Here Hi[+]Hz[+]H3 is endowed with the sum inner product and the product
topology, where H; and Hs carry the topologies induced by their inner products,
and H3 carries the euclidean topology. /

5.1.3 Proposition. Let (A, [.,.],T) be a topological inner product space. Then
the following are equivalent:

(1) (A, [.,.],T) is an almost Pontryagin space.

95
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(ii) There exists an inner product (.,.) on A with Ty =T, such that T ) €
Topys A, and the Gram operator of [.,.] with respect to (.,.) satisfies

dimran F(—00,6) < oo

for some 6 > 0. Here, again, E denotes the spectral measure of G as
operator in (A, (.,.)).

(iit) We have T € Topy, A and there exists M € Subsg A with dim A/ M <

00, such that M is T -closed and intrinsically complete.

Proof. We show that (i) = (i4i). Assume that (A, [.,.],T) is an almost Pontrya-
gin space, and choose a fundamental decomposition J = (A4, A_) of A such
that A, is 7-closed and intrinsically complete. Since A = Ay [+]A_[+].A°, and
each component is 7 -closed, the topology 7 is equal to the product topology
Tla, xEa_ x Epo, where £4_ and €40 denote the euclidean topologies on the
respective finite dimensional spaces. However, since M is intrinsically com-
plete, the topology 7|4, is equal to the topology induced by the inner product
[, J|a;xa, . Altogether, T is induced by the inner product

(z,y) = [Pgriﬂapgry] —[P{;C,ng]-i-[Pow,Poy]o, r,y €A,

where we have set Py := I — P;” — P;, and where [, ]J¢ denotes any positive
definite inner product on 4°. We conclude that 7 € Topy, A. Set M = A,
then M has all the properties required in (i4z).

The proof of the implication (ii7) = (i¢) proceeds word by word as the proof
of the corresponding implication in Proposition 4.1.4, just deleting the last two
lines. Assume that (i) holds. Choose € € (0,d) such that o(G) N (0,¢) = 0, and
set

Ay :=ran E(e,00), A_ :=ran E(—00,0).

Then (A4, A_) is a fundamental decomposition of A, and
dim A_,dim A° < dimran F(—00,d) < 0.

As we have shown in the proof of Theorem 3.1.5, cf. (3.1.1), the inner products
(- )]ayxa, and [, ][4, x4, giverise to equivalent norms. Since Ay is 7-closed,
it is thus also intrinsically complete. 0

For the same reason as in Remark 4.1.5, we obtain the following statement.

5.1.4 Remark. Let (A,[.,.],T) be an almost Pontryagin space, and let (.,.) be
any inner product on A with 7y = 7. Then the corresponding Gram operator
satisfies dimran E(—o00,d) < oo for some ¢ > 0. /

As a corollary we obtain the following statements.
5.1.5 Corollary.

(i) If (P,[.,.]) is a Pontryagin space, then (P,[.,.],T*) is an almost Pontrya-
gin space.

(i7) If (A,[.,.],T) is an almost Pontryagin space and is nondegenerated, then
(A,[.,.]) is a Pontryagin space and T = T*.
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Proof. Let (P,[.,.]) be a Pontryagin space, and let J = (P4, P_) be a fun-
damental decomposition of P. Then P, = P~ is T3-closed and intrinsically
complete. Moreover, 7* = 73 and P is complete with respect to 7*. We see
that (P,[.,.],7*) is an almost Pontryagin space.

The assertion (47) follows immediately from the equivalences ‘(i) <= (ii3)’
in Proposition 4.1.4 and Proposition 5.1.3, respectively, and the fact that for
nondegenerated spaces | Topg, A| < 1, cf. Remark 4.1.3, (4). O

Unlike for nondegenerated spaces, in the presence of a nontrivial isotropic
part, we may have different compatible Banach space topologies. In fact,
the topology of an infinite dimensional degenerated almost Pontryagin space
(A,[.,.], T) is never uniquely determined by the inner product space (A, [.,.]).

5.1.6 Example. Let (A, [.,.],7) be an almost Pontryagin space with dim A = oo
and indg A > 0. Choose a fundamental decomposition J = (A4, A_) where A,
is T-closed and intrinsically complete, so that 7|4, = T3|4,. Moreover, choose
a norm ||.|| which induced by a Hilbert space inner product on A, which induces
T and satisifes ||z| = ||z||3, z € Ay + A_.

Let h € A°\ {0}, and let f be a linear functional f : .4; — C which is not
T | 4, -continuous. Define a map ¢ : A — A as

o(x) = :v—f—f(P;:v)h, zeA.

Then ¢ is obviously isometric and satisfies ¢|4_ 440 = id4_4 4. In particular,
ker¢p N (A- + A°) = {0}.
If x € Ay is given, then

(b(a: — f(a:)h) =z— f(x)h + f(Pg'(x — f(x)h) )h =z,
_Z,m_/
and we conclude that ¢ is surjective. If € ker ¢, then
0=¢(x) =z — f(Pyx)h,

and hence x € A°. This implies that z € ker¢ N A° = {0}, and we conclude
that ¢ is injective.
Let 7' := ¢~ 1(7), then 7’ is induced by the norm ||z||" := ||¢z||, = € A,
and A is complete with respect to |.||. Moreover, we have
[z, 9]l = |z, ¢yl < ellgz|l - gyl = allzl”- yl', =,y € A,
and hence 7’ € Topy,A. The subspace M := ¢~ 1(A,) is T'-closed, has finite

codimension, and

e, @)% = [pw, ¢a]2 = |lgz] = |lz], =z € M.

Hence M is also intrinsically complete. We conclude that (A,[.,.],7’) is an
almost Pontryagin space, and that ¢ is an isomorphism of (A, [.,.],7") onto
(A ].,.],T).
However, since (¢|a, —ida, )z = f(x)h, x € A4, the map ¢4, and hence
also ¢ cannot be T-to-7-continuous. Thus 7’ # 7. /
Nevertheless, of course, the fact whether or not an inner product space
(A,[.,.]) can be made into an almost Pontryagin space, is an intrinsic property.

The next statement is the analogue to Proposition 4.1.6.
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5.1.7 Proposition. Let (L,][.,.]) be an inner product space. Then the following
are equivalent:

(i) There exists a vector topology T such that (L,[.,.],T) is an almost Pon-
tryagin space.

(13) There exists a subspace M € Subsg L with dim £/ M < oo, such that M
is complete with respect to T*|p.

Note here that the existence of a positive subspace with finite codimension
implies ind_ L < oo, and hence ensures that T* is well-defined. More-
over, if M is positive, then certainly M N L° = {0}, and hence for each
fundamental decomposition J of L the seminorm p3z|m s a norm.

(#i1) L/L° is a Pontryagin space and indg £ < oo.

If one (and hence all) of these conditions hold, then for each T € Topg, L, the
triple (L,[.,.],T) is an almost Pontryagin space.

Proof.

(7) = (i1): Choose a fundamental decomposition J = (L4, L_) of £ such that
L is intrinsically complete. Then the subspace M := M has all the required
properties.

(i1) = (4i1): Clearly, £L/L° is nondegenerated. Let M be a subspace as in
(79), let § = (L4+,L_) be a fundamental decomposition of £, and denote by
m: L — L/L° the canonical projection. Then, since 7 is isometric, surjective,
and kerm = L°, the pair J. = (7(L4),7(L_)) is a fundamental decomposition
of £/L£°. We have

PiOW:TFOP:le,

and hence can compute
py_(mz)? = [Pg: X, P;wa] — [Py _mx, Py ma] =

= [ﬂ-Pﬁ*;p,ﬂ-Pﬁ*x]—[ﬂ-ng,ﬂ-ng] = [P;I,P;I]_[ngvpﬁfx] :pﬁ(fb)z, reLl.

Consider the subspace M. := m(M). The map 7| is a bijection of M onto
m(M). Since 7 is isometric, M., € Subso L/L°. Moreover, clearly,

dim(£/L°)/ M. < dim £L/M < .

Finally, since M is complete with respect to the norm pz|aq, this implies that
m(M) is complete with respect to the norm py_. We conclude from Proposition
4.1.6 that £/L° is a Pontryagin space.

(i17) = (i): Let J~ = (L7, L) be a fundamental decomposition of £/£°, and
choose L4, L_ € Sub L, such that

alLy = £odLe, LY =L L0

Since kerm = L°, we have Ly € SubsoL and £L_ € Sub.gL. Moreover,
dim£_ = dim £~ < oco. Since 7|, is a bijective isometry of £, onto L7,
and L7 is intrinsically complete, also £ has this property. We have

L= L, [He [0
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and hence £ becomes an almost Pontryagin space with the inner product [.,.]
and the topology 7" which is the product topology of 7|, ; T
and the euclidean topology on L°, cf. Remark 5.1.2.

loyxcy lc_xc_>

Finish of proof: To see the last assertion, let 7 € Topg, £ be given. Choose
a subspace M as in (ii), then 7(M) is a closed and positive subspace of the
Pontryagin space £/L£°. By Corollary 4.2.2, there exists a fundamental decom-
position (P4, P_) of £/L° with m(M) C Py. The subspace 71 (Py) of L is
closed. By Theorem 2.5.10 we have 7 2 7*, and hence 7~ !(P,) is also 7-
closed. Choose a T-closed subspace £, with 7Y (Py) = ﬁ++£°, and choose
a negative subspace £_ with w(£_) = P_. Then (£,,£_) is a fundamental

decomposition of £. The map 71'|£A+ is an [., .]-isometric bijection of £ onto P,
and hence £ is intrinsically complete. We see that (£,[.,.],7) is an almost
Pontryagin space. O

5.1.8 Corollary. Let (A,[.,.],7) be an almost Pontryagin space. Then in each
fundamental decomposition (A, A_) of A, the component A, is intrinsically
complete.

Proof. Let 7 denote the canonical projection of A onto A/A°.  Then
(m(A4), m(Ay)) is a fundamental decomposition of the Pontryagin space A/A°,
and hence 7(Ay) is intrinsically complete. However, 7|4, maps A, bijectively
and isometrically onto m(.A4), and hence A, is intrinsically complete. 0

The appropriate notion of a ‘structur-preserving’ map between two almost
Pontryagin spaces differs from the one in the setting of topological inner prod-
uct spaces. It turns out that requiring a map ¢ to be linear, isometric, and
continuous, is for several purposes too weak.

5.1.9 Definition. Let (A4,[.,.]1,71) and (As,[.,.]2, 72) be almost Pontryagin
spaces. Then ¢ is called a (aPs—) morphism of Ay to Aa, if ¢ is linear map of
A; into As, which is isometric and continuous, and for which ran ¢ is closed in

As. /

The following observation is simple but important.

5.1.10 Lemma. Let (Aj,[.,.]1,71) and (Ag,[.,.]2,T2) be almost Pontryagin
spaces, let ¢ : A1 — Ag be a morphism. Then ¢ maps closed linear subspaces
of Ai to closed linear subspaces of As.

Proof. Since ran ¢ is 7 -closed, ran ¢ is a Banach space with respect to a norm
inducing 7. By the Open Mapping Theorem, ¢ maps open subsets of A4; to
relatively open subsets of ran¢. Let M be a closed subspace of A;. Since
ker ¢ C A9, we have dimker ¢ < indy.4; < co. Thus also the subspace M+ker ¢
is closed. However, we have

[p(M)] = [¢(M +ker ¢)]“ = ¢(IM + ker ¢]°)

and hence the space ¢(M) is relatively closed in ran¢. Since ran ¢ is 7-closed
¢(M) is thus also T-closed. 0

5.1.11 Corollary. Let Ay, Az, A3 be almost Pontryagin spaces. The composi-
tion ¢a 0 ¢1 : A1 — Az of two morphisms ¢1 : Ay — Az and ¢ : Ay — A3z is a
morphism. The identity map id4 : A — A is a morphism. 0
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Let us note that a linear, isometric, and continuous map ¢ : A; — As
is an isomorphism, if and only if it is bijective. In other words, ¢ is an aPs-
isomorphism if and only if it is a bijective TIPS-morphism. Moreover, let us state
that, if A; and Ay are nondegenerated, then ¢ : A; — Ay is an aPs-morphism
if and only if it is a KS-morphism, cf. Corollary 3.4.3.

5.2 Subspaces, products, factors

In this section we investigate some natural constructions which can be carried
out with almost Pontryagin spaces.

5.2.1 Proposition. Let (A,[.,.],7) be an almost Pontryagin space, and let B
be a closed linear subspace of A. Then (B, [.,.]|sxB, 7 |B) is an almost Pontrya-
gin space. We have

ind_ B<ind_ A, indgB <indgA+ (ind_ A —ind_ B) . (5.2.1)

The inclusion map v : B — A is a morphism. Let (C,].,.]c,Tc) be an almost
Pontryagin space, and let ¢ : C — B. Then ¢ is a morphism if and only if
to¢:C — A is such.

Proof. Since T € Topy, A and B is T-closed, also T|g € Topy,B. Let M
be a 7T -closed, positive, and intrinsically complete subspace of A with finite
codimension in A, and set A' := M NB. Then N is T-closed and, in particular,
thus 7| g-closed and T | p¢-closed. Since M is intrinsically complete, the topology
7o induced on M by [.,.] is equal to 7 |r. Hence N is Zg-closed, and therefore
intrinsically complete. Clearly, dim B/N < dim A/M < co. We conclude that
(B,.,.], T|p) is an almost Pontryagin space.

insert proof of (5.2.1) ‘

In order to see the last assertion, it is enough to refer to Corollary 5.1.11
and Proposition 2.7.1. 0

5.2.2 Proposition. Let (A;,[.,.];,7:), « = 1,...,n, be almost Pontryagin
spaces, and define

L= Hﬁi, [x,y] == Z[mx,my]i, T = H']; ,
i=1 =1 i=1
where 7; denotes the canonical projection of A onto A;. Then (A,[.,.],T) is an

almost Pontryagin space. We have

ind_ A = Z ind_ .Ai, indo A = Z indo Al .

i=1 =1

In fact, if M;, i =1,...,n, are maximal negative subspaces of A;, then M =
[T, M; is a mazimal negative subspace of A. Moreover, A° =T["_; AS.
Denote by 1; : A; — A, i =1,...,n, the canonical embeddings

i-th place

E48
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Then v; is a morphism. Let (C,[.,.]c,Zc) be an almost Pontryagin space, and
let ¢ : C — A. Then ¢ is a morphism if and only if ¢ is isometric and 7; o ¢,
i=1,...,n, are all continuous and map closed subspaces to closed subspaces.

Proof. We argue completely similar as in Proposition 5.2.1, using N :=
[T;-, M; with subspaces M; C A;, i = 1,...,n, which are T;-closed, positive,
intrinsically complete, and have finite codimension in A4;. 0

5.2.3 Proposition. Let (A, [.,.],7) be an almost Pontryagin space, and let B
be a linear subspace of A with B C A°. Then an inner product [.,.]~ on A/B is
well-defined by

[rx, Ty~ = [2,y], 2,y €A,

where m denotes the canonical projection. The triple (A/B,[.,.]~, T /B), where
T /B denotes the quotient topology, is an almost Pontryagin space. We have

ind_ A/B=ind_ A, indgA/B=indgA—dimB.

The canonical projection m : A — A/B is a morphism. Let (C,][.,]Jc,Zc) be a
topological inner product space, and let ¢ : A/B — C. Then ¢ is a morphism if
and only if ¢ om is such.

Proof. Let (A4, A_) be a fundamental decomposition of A, with A, being
T-closed and intrinsically complete. Then (7w(A),7(A-)) is a fundamental
decomposition of A/B. Since 7|4, maps Ay bijectively and isometrically onto
7(A), the subspace m(Ay) is intrinsically complete. Since 7~ !(7(Ay)) =
A; 4+ A°is T-closed, m( A4 ) is T /B-closed. We conclude that (A/B, [.,.]~,7/B)
is an almost Pontryagin space.

The remaining assertions are immediate. O

Also a corresponding version of the 15 Homomorphism Theorem is valid.

5.2.4 Corollary. Let (A1,][.,.]1,71) and {As,].,.]2,72) be almost Pontryagin
spaces, and let ¢ : Ay — Az be a morphism. Then there exists a unique isomor-
phism ¢ such that

<A17['a']1a71> <A27['a']2a75>

<A1/ker¢7 ['a ']1,~a T/ ker ¢> """""""" qu """" > (ran ¢7 ['a ']2|ran ¢Xran¢77§|ran¢>

Proof. As we just showed that space in the lower row of this diagram actually
are almost Pontryagin spaces. For existence and uniqueness of QAS, it is enugh
to refer to Corollary 2.7.4, and recall that a bijective TIPS-morphism is an
aPs-isomorphism. O

Next, we turn to orthogonal couplings. Let A; and A3 be almost Pontryagin
spaces, and let a be a linear subspace of Ay x AS. Then, by the previous
statements, also .A4; B, Az is an almost Pontryagin space. The corresponding
version of Proposition 1.7.7 now reads as follows.
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5.2.5 Proposition. Let Ay and Az be almost Pontryagin spaces, and let A be
an almost Pontryagin space together with morphisms L} A - A =1,2,
such that { (A1) L t5(A2). Then the map ¢ : Ay By Ay — A in Proposition

1.7.7 is a morphism.

Proof. We already know that v is isometric. Continuity of ¢ follows easily from
continuity of L;, cf. the diagram (1.7.3). We need to show that ran is closed
in A.

As closed subspaces of the almost Pontryagin space A, both of rant} and
rant, are themselves almost Pontryagin spaces. Hence there exist closed and
intrinsically complete subspaces M of ran L;—, j = 1,2, with finite codimension
in ran/; Since ransj L rani, also My L My, in particular My N My = {0}.
Their sum M := M[—i—]/\/lg is thus also intrinsically complete. As the orthogonal
sum of two uniformly positive subspaces, M is itself uniformly positive. Thus
M is also complete, and hence closed, in the norm of A. Since M has finite
codimension in ran ¢} +ran ¢, it follows that ran ¢} 4+ ran is closed in the norm

of A. |

5.2.6 Remark. Let A; and Az be almost Pontryagin spaces, and let « be a bijec-
tive map between some subspaces dom « and ran« of A and A3, respectively.
The space A; H, Az can also be described explicitly. To this end choose closed
subspaces A; , and Aj , such that

Ar = Arp[HA], Az = Az, [+]43,
choose D and D5 such that
A = D1+ doma, A3 = Datrana,
and set D :=rana. Consider the almost Pontryagin space
A= Ay . [+](D1+D+D3) [+ Az, (5.2.2)

where the inner product and topology on A, and Ay, is the one inherited
from A; and Aj, respectively, and where D;+D+D; is neutral and endowed
with the euclidean topology. Moreover, define ¢} : 47 — A by

/ R ’ o
L1|A1,T+D1 =1id, ¢}ldoma = —a,

and let ¢4 : A2 — A be the identity map. Then ¢j and ¢4 are morphisms.
Moreover, it is apparent from their definition that ¢ (A;) L ¢5(A2) and ¢} (A1) +
15(Az) = A.

By Proposition 1.7.7 there exists & C A7 x A and an isomorphism ¢ :
A By Ay — A with

&

A — Ay EE_a/ As < As

!
Ly

!
Ly

Y
v
A

Thereby the linear subspace & is given as & = {(x1,22) € A x A : j(z1) =
ty(x2)}. Write 21 = a1 + by according to the decomposition A = D;+ dom a,

E47
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and let x5 = ag + by according to Ay = Do+rana. Then ¢)(z1) = a1 — a(by)
and th(x2) = as + ba. Hence we have ¢ (x1) = v5(x2) if and only if a; = as =0
and by = «(b1). This, in turn, is equivalent to (z1,x2) € a.

We see that & = «, and hence 1 is actually an isomorphism between A4; 8,45
and A, i.e. A can be regarded as a concrete realization of A; B, As. /

5.3 The canonical Pontryagin space extension

There is a natural way to associate with a given almost Pontryagin space a
Pontryagin space by means of a factorization process. Namely, for an almost
Pontryagin space A the space P(A) := A/ A° is a Pontryagin space, cf. Propo-
sition 5.2.3, Corollary 5.1.5.

It is an important observation that there is also a natural way to associate
with a given almost Pontryagin space A a Pontryagin space Pext(A) by means
of an extension process.

5.8.1. Construction of Pext(A): Let A be an almost Pontryagin space. Choose
a closed subspace B of A such that A = B[+]A°. Since B is a closed and
nondegenerated subspace of A, it is itself a Pontryagin space. Let C be a linear
space with dim C' = indg A =: A, and choose bases {a1,...,aa}and {c1,...,ca}
of A° and C, respectively. Set

Pext (A) := A+C = B+ A°+C,
and define on this linear space an inner product [.,.] by the requirements
Lo )laxa=1[,]a, BLC, J[a;c]=20;, C neutral.

As the direct and orthogonal sum of two Pontryagin spaces, (Bext(A),[.,.]) is
a Pontryagin space. Moreover, the natural embedding text of A into Pexs(A) is
isometric and has closed range, i.e. is a morphism. Clearly, text is injective and
dim Pexi (A) /A = indg A. /

Ad hoc the space Pext(A) depends on the choice of B and the respective
bases of A° and C. But actually we will shortly see that Pext(A) and text, are
uniquely determined up to isomorphisms by their properties that Pext(A) is a
Pontryagin space, tex i an injective morphism, and dim Pey(A)/ A = indg A,
cf. Remark 5.3.5. We will refer to Pext(A) as the canonical Pontryagin space
extension of A, and to tex; as the extension embedding of A into its canonical
Pontryagin space extension.

Morphisms between almost Pontryagin spaces can be extended to morphisms
between their Pontryagin space extensions.

5.3.2 Proposition. Let Ay, Ay be almost Pontryagin spaces, and let ¢ : Ay —
Ay be a morphism. Let spaces Poxt( A1/ ker ¢) and Pext(A2) be constructed as
in 5.8.1 from some subspaces By C A;/ker ¢ and Ba C As, respectively. Then
there exists a morphism ¢ : Pext (A1 / ker ¢) — Poxt(A2), such that

Ay —W>A1/ker¢ﬂ>‘ﬁext(A;/ker¢) (5.3.1)

¢L [
v

AQ mext (“42 )

Lext
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Proof. By the 15 Homomorphism Theorem, there exists an injective morphism
¢ : A/ ker ¢ — Ay such that

.Al —W>A1/ker¢

PR

As

cf. Corollary 5.2.4. Hence we may assume without loss of generality that ¢ is
injective.

The subspace (text ©P)(B1) of Pext (Az) is closed and nondegenerated. More-
over, (text © ¢)(A7) is a neutral subspace of (text © ¢)(B1)*. Applying Theorem
4.4.1 with the closed subspace

E = (Lext o (ZS)(BI)H'](Lext o QS)(AT) g mext(AZ) ’

we obtain a subspace M C (text © ¢)(B1)1, such that (text o ¢)(AS)#M.

Let {a1,...,aa} and {c1,...,ca} be the bases of A and Cy used in the
construction of Pext(A1). The set {toxt 0 P(a1),. .., text © Plan)} is a basis of
text © P(AY7). By Lemma 1.6.3, there exists a basis {b1,...,ba} of M such that

[Lexto(b(aj)abk]: jk> ]7k:177A
With these notations define ¢ : Pext (A1) — Pexe (Az) by
q~5|cht(.A1) = Lexto¢OLe_x1t7 é(c_]) = b]u jzluaA

The restriction (;3|Lext( A,) is continuous and maps closed subspaces of texi (A1)
to closed subspaces of Pext(Az2). Since toxt (A1) is a closed subspace with finite
codimension in YPex (A1), the map & inherits these properties from its restric-
tion. It is straightforward to check that ¢ is isometric. Finally, the fact that
(5.3.1) commutes is built into the definition. O

5.3.83 Remark. The extension q~5 in Proposition 5.3.2 is in general not unique.
For example, whenever P is a Pontryagin space with

(cht o ¢)(Al) g P g mcxt(A2) )
the choice of ¢ can be made such that ran¢ C P. /

5.3.4 Corollary. Let A be an almost Pontryagin space, and let Poxi(A) be
constructed as in 5.3.1 from some subspace B. Moreover, let P be a Pontryagin
space, let 1 : A — P an injective morphism, and assume that dim P/i(A) =
indg A. Then there exists an isomorphism of X : Pext(A) — P such that

e )

A
&

P
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Proof. Since P is a Pontryagin space, we have Pext(P) = P and text = id.
Proposition 5.3.2 applied with the map ¢ : A — P gives a morphism A :
PBext(A) — P. Since a morphism between Pontryagin spaces is injective, we
conclude from A(text(A)) = ¢(A) and

dimP/i(A) = indg A = dim Pext (A)/text (A) ,
that X is bijective, and hence an isomorphism. Il

5.3.5 Remark. We obtain from Corollary 5.3.4 that the canonical Pontryagin
space extension does not depend on the choice of the space B in its construction
5.3.1. This independence includes the embedding ioxs. More exactly, let A
be an almost Pontryagin space, and let B and B be two subspaces qualifed
for being used in 5.3.1. Denote the correspondingly constructed Pontryagin
space extensions of A by Pext(A) and ‘i}ext (A) and let text and eyt be the
corresponding embeddings. An application of Corollary 5.3.4 with P := Py (A)
and ¢ 1= lext gives an isomorphism A : Pexr(A) — if}cxt(A) which satisfies
Zcxt = Ao Lext- //

The following result shows that Pontryagin space extension is compatible
with orthogonal coupling.

5.3.6 Proposition. Let A; and Az be almost Pontryagin spaces and let « be a
bijective function between subspaces of A and AS. Then there exist morphisms
Y and 15, such that

[e3 [e3
L1 )

Ay A B, As Ao (5.3.2)

chtl l[/cxt l’«cxt

Bxt (A1) - o Pext (A1 Bo Ag) <o Pext (Az)

The choice of 1§ and 1§ can be made such that I (Pext (A1) NS (Pext (A2)) is a
nondegenerated subspace of Peoxt (A1 By A2) with dimension 2 dim(dom «) which
contains (text © t§)(dom(a)).

Proof. The existence of i and 7§ which satisfy (5.3.2) is immediate from Propo-
sition 5.3.2. We have to show that they can be chosen so to satisfy the stated
additional requirement. To this end we use the description of Ay B, As given
in Remark 5.2.6, cf. (5.2.2). With the notation introduced there, choose bases

{7117'-'777111}7 {715"-a’}/ﬂ}7 {737777212}

of Dy, D and D-, respectively, and use for the construction in Proposition 5.3.2
the basis

{7115 s 5771115 _ail(ﬁyl)a B _ail(ﬁyn)a’}/ga s 577212}
of (Al H, ./42)0. O

5.8.7 Remark. Since, in the situation of Proposition 5.3.6, the mappings ¢ and
1§ are both injective, we can think of Pext (A1 By Az2) as the biggest of all the
six spaces in (5.3.2) which contains all the others. Note here that all extension
embeddings text are by definition injective and that f, 7{ are morphisms whose
domain is nondegenerated and are thus also injective. /

E25
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5.8.8. : Thinking in terms of the concrete construction of A; B, Az given in
Remark 5.2.6 and in terms of the construction 5.3.1 of Pontryagin spaces exten-
sions, we can picture the situation present in Proposition 5.3.6 as follows:

Al EEa -A2 mcxt (-Al EEa AQ)

Ay
Abr[H1 Dy [+

;»cht (-Al)
A1 D1 D |1 Dy 11 Az,

+ +
Cy |C] (O
%ext (A2 )

[+ Do 141 A2
Az

Thereby we have C#D, C1# D1, Co# D5, and the spaces B, B and Bs, used in
the construction of Pext (A1 By A2), Pext (A1) and Pext (A2), respectively, are

B= A ,[+] A2, Bi=Ai,, Ba= Az,
Moreover, we see that
Pext (A1) N Pexi(A2) = D+C .
/

5.4 Fundamental decompositions, Orthocom-
plements, Isometries

The fact that we can map an almost Pontryagin space into or onto a Pontryagin
space, often allows us to employ Pontryagin space results. In this section we
give some results of this kind. We start with a geometric lemma.

5.4.1 Lemma. Let (A,[.,.],T) be an almost Pontryagin space, and let M be
a linear subspace of A. Moreover, denote by m : A — AJA° the canonical
projection. Then

(M)t =z(ML), 7(M°)=rn(M)°.

Proof. The first relation is clear, since 7 is isometric and surjective. Moreover,
the inclusion ‘C’ in the second relation is trivial. Assume that z € A and
7(x) € m(M)°. Then z € (M + A°) N M=, and hence we may choose 1 € M
with 7(z1) = m(z). Clearly, also 1 € ML, ie. 11 € M°. This gives the
inclusion ‘D’ in the second asserted relation. 0

As a first consequence, we obtain:

5.4.2 Corollary. Let (A,[.,.],7) be an almost Pontryagin space, and let M be
a linear subspace of A. Then the following hold.

(i) M =M+ A
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(ii) (ML) =M° 4 A°.
(iii) ML = A° if and only if M + A° is dense in A.

Proof. Again let m : A — A/A° be the canonical projection. Consider the
subspace 7(M). Using Corollary 3.3.2, we obtain

(ML) = (M) =7 (M) = n(M).

Since A° C M=+, taking inverse images gives (i). In order to see (ii), we
compute

(ML = MEAMH =M A (M+A°) =M + A
Finally, M + A° is dense in A if and only if 7(M) is dense in A/ A°. The latter

is, by Corollary 3.3.2, equivalent to m(M)*+ = {0}. Since 7(M)+ = (M),
this just means that M+ C A°. 0

Next we turn to fundamental decompositions of an almost Pontryagin space
(A,[.,.],T) compatible with the topology 7. To this end, we need the corre-
sponding notion of uniform definiteness.

5.4.3 Definition. Let (A, [.,.], 7) be an almost Pontryagin space, and let M €
Sub.A. Moreover, let ||.|| be a norm on A which induces 7. Then M is called
uniformly positive, if there exists a constant v > 0 such that

[w,2] > lla], @ € M.

The subspace M is called uniformly negative, if there exists a constant v > 0
such that

~[z. 2] 2 7llz]|*, 2 € M.
The set of all uniformly positive subspaces of I will be denoted by Subs.g.A4,
the set of all uniformly negative ones by Sub« A. /

Let us explicitly note that the 7T-closure of a uniformly positive (negative)
subspace of A is again uniformly positive (negative, respectively).

5.4.4 Proposition. Let (A,[.,.],T) be an almost Pontryagin space, and let
L, L_ € SubA. Then there exists a fundamental decomposition J = (A4, A_)
of A, with Ay being T -closed and

EJFQAJF and L_ Q.Af,
if and only if
LJr S Sub>>o A, L_ € Sub.g A, LJr 1L .

Proof. Assume that £ and £_ satisfy the stated conditions. We have to con-
struct a fundamental decomposition with the required properties. Since the
closure £ of £, is again uniformly positive, we may assume without loss of
generality that £ is closed. Then 7(L£y) is a closed and positive subspace of
A/ A°. Moreover, m(£_) is negative and 7w(£_) L n(L4+). By Corollary 4.2.2,
there exists a fundamental decomposition (P4, P-) of A/A° with

7T(£+) g P+, W(E_) g P_.
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The subspace 7~ (P, ) is closed in A, it contains the closed subspace £, and
the finite dimensional subspace .\A°, and their intersection equals {0}. Since 7 €
Topys A, there exists a subspace M such that £, +M is closed and 7~ 1(P;) =
Ly +A+M. Set A, := L, +M, and choose a negative subspace A_ with
m(A_) ="P_. Then (A4, A_) is a fundamental decomposition of A, and A, is
closed.

The converse follows since each positive, closed, and intrinsically complete
subspace of A is certainly uniformly positive, and in turn this property is in-
herited by subspaces. Il

5.4.5 Proposition. Let (A,[.,.],7) be an almost Pontryagin space, and let
M € Sub A. Then M is orthocomplemented if and only if M + A° is T -closed
and M° C A°.

Proof. Let 7 denote the canonical projection of A onto A/.A°. Since m(M)+ =
m(ML) and A° C M, we have

MAM=A = a(M)+a(M)t=A/A°.

By Proposition 4.2.3, (M) is orthocomplemented if and only if it is closed and
nondegenerated. However, (M) is closed if and only if M + A° is closed. By
Lemma 5.4.1, the space (M) is nondegenerated if and only if M°® C A°. [

5.4.6 Proposition. Let (A1, [.,.]1,71) and (As, ., ]2, T2) be almost Pontryagin
spaces, and let ¢ : dom¢ C A3 — Ag be isometric. If ran ¢ is nondegenerated,
then ¢ is continuous. Its continuation ¢Z by continuity is a morphism of dom ¢
onto ran ¢.

Proof. Let i/, A; — PBext(A;), 7 = 1,2, be the respective extension embed-

ext

dings. Consider the map
1/} = Lgxt © (b © (L;l:xt)il : L;l:xt (dOHl ¢) C ‘cht (Al) - ‘BCXt (AQ)

Then 1 is isometric, and ran) = (2, (ran ¢). Thus

T = 2 (rang) = i, (rang),

and hence ran is nondegenerated. By Proposition 4.3.1, v is continuous and
its extension ¢ by continuity maps dom ¢ onto rant. Since dom ) C 1l (Ar)
and ran¢ C 12 (A;), we may consider the map ¢ := (12,) Lot ol Itis
defined on dom ¢, is isometric, continuous, and its range is equal to ran ¢. Thus

it is a morphism of dom ¢ onto ran ¢. Il

5.4.7 Proposition. Let (A, [.,.],7) be an almost Pontryagin space, let L be a
closed subspace of A, and let L be a subspace with L° = L14+(L° N A°). Then

(1) There exist closed and nondegenerated subspaces L1 and Lo of A, such
that £ = L1[+]L° and L+ = Lo[+]LH+]A°.

(i7) Whenever L1 and Lo have the properties stated in (i), there exists N €
Subg A with L'#N and

A= Ly[H (L FN)[FH] Lo H]A° . (5.4.1)

E35
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(iii) Whenever N € Subg A with L*#N, there exist subspaces L1 and Ly as in
(i), such that (5.4.1) holds.

Proof. By finite-dimensionality, there exist closed complements £; of £° in L.
By Corollary 5.4.2, (ii), we have (£1)° = L° + A°. Hence, we may choose for
L5 any closed complement of £° + A° in £+. This shows (i).

For the proof of (ii), let £ and L2 be given. Let m denoten the canoni-
cal projection of A onto A/A°, and consider the closed subspace m(L) of the
Pontryagin space A/A°. We have

n(£)° = (L) = (L),

and

(L) = n(L)[FHr(LY), 7Lt =n(Lt) =x(L)[+H]m(LY).

Theorem 4.4.1, (i), furnishes us with a neutral subspace M of A/A° with
L1#M and . . .
AJA® = m(La)[FH] (7 (L) F M) [F]m(L2) -

Choose N' C A with dim N = dim M and 7(N) = M. Then
L[+ (LN [+ Lo
is a nondegenerated subspace of .4 which is mapped by 7 onto A/ A°. Thus the
desired decomposition (5.4.1) of A holds.
|11 fix: £H(A°NL) = L' (Ly)]
Finally, let A/ be given as in (ii7). Put M := 7(N), then M is a neutral

subspace of A/A° and M#r(L)°. Again employing Theorem 4.4.1 for the
subspace (L), we find closed subspaces £; and L2 of A/A° such that

Li[H (r(LHYFM)[H L2, m(L) = Ly[Hr(L), n(L)F = Lo[Hm(LY).

Set £, := LN7~(£;) and let L5 be a closed complement of A° in £+ N7~ 1(Ly).

Since £; C n(L), we have m(£1) = £; and hence £ = L£;[+]£°. Since
Lo Cr(L)t = m(LY), we have 7(Ly) = w(LF N7 (Ls)) = Lo. Tt follows that
the decomposition (5.4.1) holds. O

5.5 Almost Pontryagin space completions

5.5.1 Definition. Let (£, [.,.]) be an inner product space. A pair (¢,.4) is
called an aPs-completion of L, if A is an almost Pontryagin space, and ¢ is an
isometric map whose range is dense in A.

Two completions (¢1,.A1) and (2, A2) are called isomorphic, if there exist
an isomorphism ¢ of A; onto As, such that ¢ o 11 = 12, i.e. such that we have
the diagram

L (5.5.1)
SN
; 2

In this case, we write (¢1,.41) = (12, As2). /

Ay

E46
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If (£,[.,.]) has an aPs-completion, then clearly ind_ £ < co. Conversely, if
ind_ £ < oo, then by Proposition 4.3.5 there exists even a Pontryagin space
completion of £. We conclude that (L, [.,.]) admits an aPs-completion if and
only if ind_ £ < oo.

Unlike in the case of Pontryagin space completions, aPs-completions are
not uniquely determined up to isomorphism. However, their totality can be de-
scribed in a neat way. Let us introduce an order relation on the set of isomorphy
classes of aPs-completions of a given inner product space (£, [.,.]).

5.5.2 Definition. Let (L, [.,.]) be an inner product space, and let (¢1,.41) and
(12, A2) be two aPs-completions of £. Then we write (¢1,.41) = (12, As), if there
exists a surjective morphism 71 of A; onto As, such that 73 017 = 1o. /

The relation = is obviously reflexive and transitive. By density of ¢,;(£) in
Aj, 7 =1,2, and continuity of the involved maps, we have

((LluAl) = (12, A2) A (12, A2) = (Mw‘h)) = (11, A1) = (12, A2)

Hence indeed > induces a partial order on the set of all isomorphy classes of
aPs-completions of L.

5.5.83 Remark. Since the image of a dense set under a surjective and contin-
uous map is again dense, we may also proceed the other way. If (¢1,.41) is
an aPs-completion of £, Ay is an almost Pontryagin space, and 7 is a surjec-
tive morphism of A; onto Asg, then (7w o t1,.42) is an aPs-completion of £ and

(t1,A1) = (w o, As). /

5.5.4 Definition. Let (£, [.,.]) be an inner product space, and let (¢,.4) be an
aPs-completion of £. Then we denote by £(¢,.4) the linear subspace

L1, A) == 1A

of the algebraic dual £L* of £. Here A" denotes the topological dual of A, and ¢*
denotes the (algebraic) adjoint of ¢, that is * : A* — £* and *f = fo.. /

Passing to adjoints in the diagram (5.5.1), shows that (:1,.41) 2 (i2,.A2)
implies £(t1,41) = £(t2,A2). Hence £ induces a map of isomorphy classes of
aPs-completions to linear subspaces of L£*.

5.5.5 Theorem. Let (L,[.,.]) be an inner product space with ind_ £ < oo.
Then the assignment £ induces an order-isomorphism of the set of all aPs-
completions of L modulo isomorphism onto the set of all linear subspaces of L*
which contain £* with finite codimension. Thereby,

dim (£(z, A)/£*) =indg A. (5.5.2)
Proof.
Step 1: Let (11,.A1) and (12, A2) be two aPs-completions of £ with (¢1,.41) =
(12, A2). We are going to show that

£(L1,A1) D) E(Lz, Ag), dim (S(Ll, Al)/E(LQ, Az)) = indp A; —indg A; .
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Let 7 : A; — As be a surjective morphism with 7 ot; = 1. Passing to adjoints
yields

L L*

* *
/ \K B NN 31 2

Ay As A7 — As

T

Since 7 is continuous, we have 7*A5 C A]. It readily follows that
£(L2,.A2) = L;A/Q = LITF*.A/Q g LTA/I = E(Ll,.Al).

We need to compute codimension. Since ran¢; is dense in A;, the restriction of
3 to A} is injective. Thus

dim (S(Ll,Al)/Q(L2, Az)) = dim (L*{A'l/qﬁ* ’2) = dim (A’l/W*A/z) )

Since 7 is surjective, by the Closed Range Theorem, 7*A4) is a w*-closed sub-
space of Aj. It follows that

My =AY = (kerm)t, (5.5.3)
and hence
dim (A&/W*A/Q) = dim (Aﬁ/(ker W)l) = dim (ker 7)".

Since 7 is isometric, we have kerm C Af. In particular, ker 7 is finite dimen-
sional, and therefore
dim (ker 7)" = dim ker 7 .

The relation ker 7 C A7 also shows that ker 7 = ker(7|4¢). Since 7 is surjective,
we have 771 (A3) = A7, and hence 7| 4 maps A$ surjectively onto A3. It follows
that

dimker 7 = dim ker(7| 42 ) = dim A7 — dim A3 .

Putting together these relations, the desired formula follows.

Step 2: From Step 1 it is easy to deduce (5.5.2). Let (¢,.,A) be an aPs-
completion of £. Denote by = : A — A/A° the canonical projection, then
7 is a surjective morphism. Hence, (7o, A/A°) is also an aPs-completion and
(t, A) = (wor, A/ A°), cf. Remark 5.5.3. However, since A/A° is nondegenerated
(m o, A/ A°), actually is a Pontryagin space completion of £. By Proposition
4.3.7, £(m o1, A/ A°) = L*, and we obtain from Step 1 that £(:,.A) contains £*
with codimension indg .A°.

Step 3: Let (1t1,A1) and (t2,.A2) be aPs-completions of £ with £(¢1,.4;) 2
£(t2,Az). We are going to show that (t1,.41) = (12, A2). Let f € Al be given.
Then there exists f € A} with «jf = 5 f. Since t7].4; is injective, the element
f is uniquely determined by this property. Hence, a map A : Ay, — A is
well-defined by

GAN) =it fEeA.

Clearly, A is linear.

E42
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We will apply the Closed Graph Theorem to show that A is bounded. To
check the necessary hypothesis, let a sequence (fy,)nen of functionals f,, € A} be
given, and assume that f, — f in A, and Af,, — g in A}. Then, in particular,
for each fixed x € £

(3 fn)x = f(tox) — f2x) = (3 f)z = f(Af)x
Il
d(Afn)r = (Afp) () — g(uz) = (1ig)w
Since ¢}] A; is injective, this implies that Af = g. It follows that indeed A is
bounded.
Let ||.|l1 and .||z be norms on A; and Az which induce their respective

topologies. Moreover, let ||.]|} and ||.||5 be the corresponding operator norms on
Al and A,. We compute for z € L

leaxlle = sup { | (o) | = feAL 5 <1} =
——

Il
(3 Nz=1 (Af)z=(Af) (@)

=sup {|f(nz)|: feA({feAy: |Iflla <1}) } <Al flazlh . (5.5.4)

C{feAL:IflIL<IANY

It follows that ker:; C kerio, and therefore the map to o Lfl crant; — Ag is
well-defined. Moreover, again by (5.5.4), it is bounded. Let 7 : A7 — Ay be its
extension by continuity. Then 7 is isometric and its range is dense in As.

Let m; : Aj — A;j/Aj, j = 1,2, denote the canonical projections. Since
(my 001, A1/ AS) and (w3 0 1a, A2/ A3) are both Pontryagin space completions of
L, there exists an isomorphism ¢ of Ay /A$ onto A, /A§ with ¢o(ma0i9) = mro1.
Altogether, in left of the below diagrams, each outer triangle commutes. Passing
to adjoints then gives the outer triangles in the right diagram.

Ai ul Ao
st # L # T2 >
AL/ A3 - As /A3 (A ASY y

We see that ¢j o m] = ¢} o (' o w0 @), and injectivity of L*1‘|A/1 implies 7] =
7' omho¢'. In particular, ranm) C rann’ C A]. However, as we saw in (5.5.3)
applied with A;/A¢ in place of Ay, rann) is a closed subspace of A} with
finite codimension. It follows that ran7’ is closed in A}. By the Closed Range
Theorem, thus ran 7 is closed in A;, and hence 7 is surjective. Therefore 7 is a
morphism and we have shown that (¢1,.41) = (t2,.A2).

Step 4: So far, we have seen that £ maps aPs-completions into the set of all
subspaces of £* which contain £* with finite codimension, that actually (5.5.2)
holds, and that

(t1, A1) = (12, A2) <= L(11, A1) D £(12, A2) .
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In particular, £(¢1,.41) = £(t2, A2) if and only if (¢1,.4;) and (c2,.42) are iso-
morphic.

In order to complete the proof of Theorem 5.5.5, it remains to show that
for each given subspace M with £* C M and dim M/L* < oo, there exists an
aPs-completion (¢, A) of £ with £(¢, A) = M. To this end, set n := dim M/L*
and choose fi, ..., fn € L* such that M = span(L*U{f1,..., fn}). Let (tp,P)
denote a Pontryagin space completion of £. Then we define

A = P[+]C",

[z +&y+nla=[zylp, zyeP, {nel,
w=1pr+ (fi(x),..., fo(z)), z€L.

Moreover, the space A is endowed with the product topology 74 of the topol-
ogy P carries as a Pontryagin space and the euclidean topology on C™. Then
(A,[.,.]a,7T4) is, as the direct and orthogonal sum of two almost Pontryagin
spaces, itself an almost Pontryagin space. We have

A® = {0}[+]C",

and thus indg A = n = dim M/L*.

Denote by [.,.]1 the sum inner product on A of the inner product of P and the
euclidean inner product of C"™. Then (A, [.,.]1) is, as the direct and orthogonal
sum of two Pontryagin spaces, a Pontryagin space. Clearly, its Pontryagin space
topology equals T4. Hence, (A, T4) = (A,[.,.]1)’, and we conclude that each
T 4-continuous linear functional f : A — C can be represented as

fl+8) =z +&wa(f) +E(Hh, zeP,eC,

with some z(f) € P and £{(f) € C". In particular, for each x € L,
fl) = [pa + (fi(2), ..., fu(2)), pz(f) + E(F)], =

= [vpx,z(f)]p + Zf(f)afj (z). (5.5.5)

Due to Proposition 4.3.7, the first summand is £*-continuous.
Let f € A’ with f(rant) = 0 be given. Then we have

epa,x(F)lp+ Y () fi(x) =0, zeLl.
j=1

Thus 77, £(f);f; € £*, and hence §(f) = 0. Since ran.p is dense in P, thus
also z(f) = 0, and together f = 0. It follows that ran. is dense in .4. We have
shown that (¢,.A) is an aPs-completion of L.

By (5.5.5), we have A" C M. Together with (5.5.2) and the fact that
indg A = dim M /L*, this implies that actually A" = M, i.e. £(¢t, A) =M. [J

5.5.6 Corollary. Let (11,.A1) and (12, A2) be two aPs-completions of an inner
product space (L,[.,.]). Then (11, A1) = (12, A2) if and only if kert; C kerig
and o 0 Lfl :rant; — rants 1S bounded.

E44
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Proof. If (11,.A1) = (12, A2), then the map 7} guaranteed by the definition of >
is linear, bounded, and satisfies 7 o 11 = t5. The required properties of ¢; and
Lo follow. Conversely, assume that keret; C kerto and 5 0 Ll_l :rane; — rants
is bounded. Let 7 : A; — Ay be the extension by continuity of to o Ll_l, then
t5 =5 o’ and hence

S(LQ,AQ) = L;A/Q = (Lik o 7T/).A/2 C LIA’l = £(L1,A1) .



Chapter 6

Reproducing kernel spaces

6.1 Reproducing kernel Krein spaces

6.1.1 Definition. Let Q be a set, (U, ][.,.]y) a Krein space, and (K, [.,.]) an-
other Krein space. Then K is called a reproducing kernel Krein space of U-valued
functions on Q1 | if

(rk1)  The elements of K are functions of §2 into .

(rk2)  For each w € €, the point evaluation map
K - 2
Xe V' F — F (w)
is linear and continuous.

/

If I is a reproducing kernel Krein space with ind_ K < oo, then we will
speak of a reproducing kernel Pontryagin space of U-valued functions on €.

Let us remark that the axiom (rk2) could also be formulated in two parts as
follows:

(rk2,) The linear operations on K are given by pointwise addition and
pointwise scalar multiplication.

(rk2,) The topology of K is finer than the restriction to K of the topology
of pointwise convergence on 0.

Let (K,].,.]) be a reproducing kernel Krein space of P-valued functions on
0. Then, for each w € Q and f € U, the linear functional F — [F(w), fly is
continuous. Hence, there exists an element K., y € K such that

[F(w), flg = [F,Kw,y], FeK. (6.1.1)

If we do not want or do not need to be specific about the domain set € and the value
space U, we will shorter speak of a reproducing kernel Krein space.

115
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6.1.2 Definition. Let (K, [.,.]) be a reproducing kernel Krein space of U-valued
functions on €. Then the function K :  x  — U7 defined by

K(’LU,Z)f = Kw,f(z)a ’LU,ZEQ, fEQ],
is called the kernel function? of K. /

We will frequently use the notation K(w,.) to denote the function z —
K(w,z), z € . With this notation we have K(w,.)f = K, ;. Thus the
defining relation (6.1.1) of K, s rewrites, more suggestively, as

[F(w), fls = [F, K(w,.)f], Fek, weQ, f€7.
Let us note that, in particular,
[K(w,2)f,glw = [K(w,.)f,K(z,.)9], z,weQ, f,geDV.

In order to formulate the basic properties of kernel functions, we need to in-
troduce Krein space adjoints. Let (K1,[.,.]1) and (Ko, [, .]2) be Krein spaces.
Then we denote by B(K1, K2) the linear space of all continuous linear operators
of K1 into Ko. We will also write B(K) for B(K, K).
If A e B(Kq,K3), then there exists a unique operator A* € B(Ky, K1) which
satisfies
[A,Tl,xz]g = [J,'l, A*l'g]l, xr1 € Icl,l'g e Ks. (612)

To see existence, choose fundamental decompositions J1 and Jo of Ky and Ko,
respectively. Let A*) denote the Hilbert space adjoint of A considered as a
bounded operator of (K1, (.,.)3,) into (K, (.,.)3,). Then

A* = JlA(*)JQ

satisfies (6.1.2). Since the inner product [.,.]; is nondegenerated, A* is uniquely
determined by (6.1.2). The operator A* is called the adjoint of A. Of course,
it depends on the inner products under consideration3.

6.1.3 Lemma. Let (K,[.,.]) be a reproducing kernel Krein space of U-valued
functions on Q, and let K be the kernel function of IC. Then, for each w,z € €,
we have K(w, z) € B(Y) and K (w, 2)* = K(z,w).

Proof. Let w € Q, o, 8 € C and f, g € U, then the relation (6.1.1) gives
[F,aKy,; + Ky = alF, Ku,¢] + B[F, Ku,g] = @lF(w), flo + B[F(w), g]lu =

= [F(w)7 af + 69]‘5 = [F7 Kw,af—i—ﬁg] :

This shows that K (w, z) is linear.

To prove continuity, choose fundamental decompositions J and J’ of K and
0, respectively. Denote by || x| the ||.]|3-to-]|.||3—operator norm of x,,. Then
we have

|(Kw,p, F)3| = |[Kw.p, JEI| = |[f, (JE)(w)]w] < [[flla - [I(JF) (w)lly <

20r reproducing kernel
31f necessary, we will thus more precisely speak of the [.,.]1-to-[., .]Jo—adjoint of A.
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<Al - Ixall - 7 E Nz = 1 s - xell - 11E 5 5
It follows that || K fll3 < |[fll37 - [IXwl|, and hence
B (w, 2) fllar = [[Ew, (213 < Xl - Dl - 115 -

This shows that K (w, z) is continuous. In fact, the ||.||3/-to-||.||;7—operator norm
of K(w, z) does not exceed || x| - || Xw||-
It remains to compute adjoints:

[f,K(w,z)*g]m = [K(wvz)fa g]’B = [K(wa ')va(Za )g] = [K(Zv .)f,K(’LU, )g] =

Since f and g were arbitrary, it follows that K (w, z)* = K(z,w). O

The property of being a reproducing kernel Krein space is inherited by or-
thocomplemented subspaces.

6.1.4 Lemma. Let IC be a reproducing kernel Krein space, and let K1 be an or-
thocomplemented subspace. Then K1 and Ki- are both reproducing kernel Krein
spaces. If K, K1, and Ki- denote the kernel functions of K, K1, and Ki,
respectively, then we have

K(w,2) = Ki(w, 2) + Ki-(w, 2), z,we€ Q. (6.1.3)

Proof. First of all Iy is itself a Krein space. Its Krein space topology coincides
with the restriction of the topology of I, and hence point evaluation is contin-
uous. The same argument applies to Ki-, and we conclude that both, IC; and
K1, are reproducing kernel Krein spaces.

Denote by P the orthogonal projection of K onto KC;. Then, for F' € Ky, we
have

[F(w), flg = [F, K(w,.)f] = |F,PK(w,.)f], we, feDy.
Hence, the kernel function K; of K; is given as
Ki(w, 2)f = [PK(w,.)f](2) .

Similarly we obtain that Ki-(w, 2)f = [(I — P)K (w,.)f](z), and (6.1.3) follows.
U

6.2 Kernel functions

6.2.1 Definition. Let  be a set and (%, ], .]y) a Krein space. A function
K : Q x Q — B() which satisfies K(w, 2)* = K(z,w), w,z € , is called a
B-valued kernel on Q2. /

In the previous section we have associated to each reproducing kernel Krein
space a kernel. A converse question suggests itself: Assume that a U-valued ker-
nel K on € is given, does there exist a reproducing kernel Krein space having
K as its reproducing kernel? The answer to this question, and a corresond-
ing uniqueness question, depends on the geometry of an inner product space
constructed from the given function K.

We denote by Fin(€, ) the linear space of all functions from € into U which
have finite support.

4Less specific we will speak of a kernel
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6.2.2 Definition. Let Q be a set, (U, [., .]y) a Krein space, and K a U-valued
kernel on Q. Then set

il = [K(w,2)n(w), p(2)] 5, . p € Fin(Q, ).

ERTISIY)

Moreover, let tx : Fin(Q, ) — 0% be defined as

L i — Z K(w, )n(w).

/

The fact that [.,.]x is indeed an inner product is immediate from the prop-
erties of kernels.

6.2.3 Theorem. Let K be a U-valued kernel on Q.

(1) If (K,[.,.]) is a reproducing kernel Krein space with kernel function K,
then (tx,K) is a Krein space completion of (Fin(Q2,0), [, |k).

(13) Each isomorphy class of Krein space completions of (Fin(Q, ), [.,.]x)
contains an element (v,KC) where K is a reproducing kernel Krein space
with kernel function K and v = 1.

(#41) If Ky and Kq are both reproducing kernel Krein spaces with kernel func-
tion K, then (tx,K1) and (tx,K2) are isomorphic as completions of
(Fin(Q, D), [, .]x) if and only if K1 = Ko as sets of functions, and in
turn if and only if K1 = Ko as Krein spaces.

Proof. To show (i) assume that (K, [.,.]) is a reproducing kernel Krein space
having K as its kernel function. First of all, K (w,.)n(w) = Ky y(w), cf. Defini-
tion 6.1.2, and hence tx maps Fin(Q, Q) into K. Next, let 0, u € Fin(Q, V) be
given. Then

ok =Y [K(w,2)n(w), w(2)ls =

Z,WEN

= 3 [, Jn(w), K )] = [ 3 K, Jnw), 3 K Juz)]
RIS Y weN 1Y)
i.e. tx is isometric. Finally, if F' € K is orthogonal to ran g, then for all w € Q
and f €0
[F(w)vf]‘ﬂ = [FvK(wu')f] =0,

and thus F' = 0. This says that rantx is dense in K. We have shown that
(tr, K) is a Krein space completion of (Fin(2, %), [, .]x)-

Item (4¢) contains the most involved assertion of the present theorem. As-
sume that (¢, K) is a Krein space completion of (Fin(£2, D), [., .Jx). We need to
construct a reproducing kernel Krein space K whose kernel function equals K,
such that (¢, K) is isomorphic to (¢, K).

Step 1; The operators V(w): If M C Q, let xar : @ — {0, 1} denote the indicator
function of the set M. For each w € €2 we consider the map

¥ — K

[o= (fXqwy) (6.2.1)

viw: {

F13
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Clearly, V(w) is linear. Let (fy)nen be a sequence of elements of U which tends
to the limit f € 0. Then, for each g € ¥ and z € Q, we have

[V (w) fr, t(gx23)] = [L(faXqwy)s (aX123)] = [faX{wys 9X (2} K =

= [K(w, 2) fn: glw — [K(w,2)f, glw = [V(w) f, gx(=1)] -
Since rant is dense in K, this implies that V(w) has closed graph, and hence
that V(w) € B(, K).
For later use, let us state explicitly that

span U ranV(w) =ranc. (6.2.2)
weEN

Step 2; The embedding A: For each w € Q and x € K the linear functional
f— [V(w)f,z]k is continuous. Hence, there exists a unique element A, , € U
such that

V(w)f.z] = [f, Awalw, fED.
We define a map A : K — T by

(Az)(w) :=Ayo, zEK weN.

Clearly, A is linear. Let us show that A is injective: If Az = 0, then for all
w € Q and f € B we have [V(w)f,z] = 0. Thus, by (6.2.2), the element z is
orthogonal to ran¢, and hence must be equal to 0.

Step 3; The reproducing kernel space K: Set K := ranA, and define an inner

product [.,.]~ on K by requiring A to be isometric. Then (K, [.,.].) is a Krein
space and A is an isomorphism of K onto K. It follows that (Ao, K) is a Krein
space completion of (Fin(Q2,0), [.,.]x) which is isomorphic to (¢, K).

Let F € K, w e Q, and f € U be given, and let 2 € K be such that F = Ax.

Then we can compute

[F(w), flo = [(Az)(w), fly = [z, V(w) f] = [z, o fX{u})] =
= [A.”L‘, (A © L)(fX{w})]N = [F7 (A © L)(fX{w})]N .

Hence, for each fixed f € U the functional F' — [F(w), f]g is continuous. By the
Principle of Uniform Boundedness, the point evaluation map x,, : F' — F(w) on

K is continuous. This says that (I, [.,.]~) is a reproducing kernel Krein space.
Moreover, if K denotes the kernel function of K, we see from (6.2.3) that

(6.2.3)

R(’LU, )f=(Ao L)(fX{w})a wel, fel. (6.2.4)

Using this relation, we can compute

[K(w7 Z)f, g]‘B = [K(w7 )fu K(Zv ')Q]N = [(A o L)(fX{w})u (A 0 L)(gX{z})} ~

= [t(fxqw})s tlgxi21)] = [ xqur 93]k = [K(w, 2) f, glw -

It follows that K (w, z) = K (w, z) and, by (6.2.4), that Aot = tx. This finishes
the proof of (ii).

It remains to establish (7i7). Assume that (1x, K1) and (¢x, K2) are isomor-
phic, and let ¢ : K1 — K3 be an isomorphism with ¢ ot = 1. Let w €  be

F20

F21

F22
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fixed. The maps x, 0 @ : K1 — U and x,, : K1 — U are both continuous and
coincide on ran k. Thus they coincide on all of IC;. Since w € ) was arbitrary,
this shows that ¢ acts as the identity, and hence K7 and Ky are equal as Krein
spaces. Conversely, if 1 = Iy as sets of functions, then the identity map id is
a linear bijection of 'y onto KCy. Since point evaluation is continuous in both
spaces, it has closed graph, and hence is bicontinuous. Clearly, tx = idotx. By
continuity of inner products, this equality also implies that id is isometric. []

From our knowledge about Krein space completions, cf. Theorem 3.5.13,
(#4t), and Theorem 3.5.17, we immediately obtain the following statements.

6.2.4 Corollary. Let K be a U-valued kernel on €.

(i) There exists a reproducing kernel Krein space with kernel function K if

and only if Top;,(Fin(Q2, V), [., Jx) # 0.

(i) Assume that Top;, (Fin(Q,9),[.,.|x) # 0. Then there exists exactly one
reproducing kernel Krein space with kernel function K if and only if for

each T € Top;,(Fin(Q, ), [, .|x) with WT = Fin(Q, V)< the space
(Hr, [, ]r,1) is semicompletely decomposable.

O

Also the Pontryagin space situation is immediately settled. If K is a U-
valued kernel on €, then we write

ind_ K :=ind_(Fin(Q,9), [, ]x) -
Proposition 4.3.5 now gives:

6.2.5 Corollary. Let K be a *U-valued kernel on 2, and assume that ind_— K <
00. Then there exists a unique reproducing kernel Krein K space having K as
its kernel function. The space K is a Pontryagin space whose negative index

equals ind_ K. 0
Due to this corollary, the following notation is well-defined.

6.2.6 Definition. Let K be a U-valued kernel on 2 with ind_ K < oco. Then
the reproducing kernel Pontryagin space with kernel K will be denoted by &(K),
and we will speak of the reproducing kernel Pontryagin space generated by K

/

Existence of a space having K as its reproducing kernel can be characterized
in different ways than in the immediate transcription Corollary 6.2.4, (4).

6.2.7 Proposition. Let K be a B-valued kernel on Q. Then the following are
equivalent:

(1) There exists a reproducing kernel Krein space with kernel function K.

(i1) There exist kernels Ky and K_ with ind_ Ky =ind_ K_ = 0, such that
K=K, —K_ and &(K,)N&(K_) = 0.

(7it) There exist kernels K and K_ with ind_ Ky =ind_ K_ = 0, such that
K=K,—-K_.
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(iv) There exists a kernel L with ind_ L = 0 such that |[n,nx| < [n,7]L,
n € Fin(Q, V).

Proof. Assume that K is a reproducing kernel Krein space with kernel function
K. Choose a fundamental decomposition J = (K4, K_) of K, then K4 is an
orthocomplemented subspace of K and KX+ = K_. Denote by K the kernel
function of K, and set K_ := —Ki. Since K4 is positive definite and K_ is
negative definite, we have ind_ K = ind_ K_ = 0. Moreover, by (6.1.3), we
have K = K, — K_. Finally, 8K ) = K+ (as Krein spaces) and R(K_) = K_
(as sets; inner product changed sign). Hence (K ;) NR(K_) = 0.

The implication (i7) = (4i7) is trivial. Next, assume that K = K; — K, with
ind_ K7 =ind_ K9 =0. Set L := K1 + K>, then

I, )l = | nle, — [0l < nlk, + nlk, = ,mle, 1 € Fin(Q,9).

Finally, assume that L is as in (iv). Then [, .| is a positive semidefinite inner
product on Fin(Q, ), and [., .]x is continuous with respect to the topology in-
duced by [.,.]r. Thus Top;,(Fin(2, D), [., .]x) # 0, and hence (Fin($2, D), [., .| x)
possesses a Krein space completion, cf. Theorem 3.5.13, (4i7). 0

6.2.8 Definition. Let K be a QU-valued kernel on Q. A Krein space (K, [.,.])
together with a map V' : Q — B(0, K) which satisfy

K(w,z) =V(2)"V(w), z,weQ, and K =cls U ran V (w) (6.2.5)
weN

is called a Kolmogoroff decomposition of K. /

6.2.9 Proposition. Let K be a V-valued kernel on Q. Then there exists a
reproducing kernel Krein space with kernel function K if and only if there exists
a Kolmogoroff decomposition of K.

Proof. Assume first that I is a reproducing kernel Krein space with kernel
function K. Then (tx,K) is a completion of (Fin(Q2,D), [, .]x). Let V(w) be
the map defined in (6.2.1). By the definition of ¢x, this map acts as V(w)f =
K(w,.)f, f €. Thus, for f,g € U,

V() V(w)f,gl = V(w)f,V(2)g] = [K(w,.)f, K(z,.)g] = [K(w, 2)f, gl ,

and we conclude that K(w, z) = V(z)*V(w). Moreover, by (6.2.2), the linear
span of |J,cqranV (w) is dense in K. Together this says that IC and V : w —
V(w) is a Kolmogoroff decomposition of K.

Conversely, assume that /Cand V : Q — B(, K) are given subject to (6.2.5).
Consider the linear map ¢ defined by

Fin(Q2,0) — K
b n o= > Viwn(w)
weN
We have
[, nlx = z%ﬁ[K(wv z) n(w), p(z)]w = Z%Q[V(W)n(w), V(z)u(z)] =

=V (z2)*V(w)

F16
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:[ZV(w ). Y Vi)u } ,

weN z€Q)
i.e. ¢ is isometric. Moreover, by the second condition in (6.2.5), ran¢ is dense in
KC. This says that (¢, K) is a Krein space completion of (Fin(Q2,0),[.,.Jx). 0O

Also concerning uniqueness we can obtain a more specific statement than
Corollary 6.2.4, (i7).

6.2.10 Proposition. Let K be a U-valued kernel on ), and assume that there
exists a reproducing kernel Krein space with kernel function K. Then there
exists exactly one such space, if and only if the condition of Corollary 6.2.4

holds for all topologies induced by inner products [.,.|r with a kernel L, such
that |[n,1) k| < [n,n]L, n € Fin(Q, W), and Fin(Q, V)l = Fin(Q, B)elx

Proof. The present condition is weaker than the one formulated in Corollary
6.2.4, (i1), since the same property is required only for a smaller class of topolo-
gies. Hence, it is enough to show that the present condition implies uniqueness.

Step 1: Assume that K is a reproducing kernel Krein space with kernel function
K, and consider a fundamental decomposition § = (K,K_) of K. Then K1
are reproducing kernel Krein spaces, and their respective kernel functions are
given by

Ki(w,.)f = P{K(w,.)f.
Set L := Ky — K_, then L is a U-valued kernel function on 2 and ind_ L = 0.
Moreover, we compute

[Xqwy> 9x 3 = [L(w, 2) [, glw = [K4(w, 2) f, gl — [K—(w, 2) f, glw =
= [K+(w7 )fa KJr(Zv )g] - [K*(w ).fv K,(Z, ) ] =
:[P;K(wv)faP;K(Zv)g]_[PgK( )fvP K(v')]:
= (K(w, ) f, K(2,.)9)5 = (tx (fXqur)s tx (9X(21)) 5 -
It follows that
HfX{w}u fX{w}]K’ = ’ [LK(fX{w})v LK(fX{w})} ’ <
< (ex (FXqwy)s b (FXqw))) = [ X Qo) fX Q)L

Step 2: Assume that we are given two reproducing kernel Krein spaces K
and Kz with kernel function K. Choose fundamental decompositions J; of Kj,
j =1,2, and let L; be the kernels defined correspondingly as in Step 1.

Now inspect the proof of sufficiency in Theorem 3.5.17. There the assump-
tion on semicomplete decomposability is applied with the inner product

(m, 1) := (e, ek )3, + (Lkm Lk )32, 01 € Fin(Q, D).
However, by the above computation, we have

(fXqwy 9x82}) = [f X qwys 9X (23] La+La 5

and hence (.,.) = [,,.]r,+1,. Clearly, Ly + Lo is a kernel and satisfies all the
properties required in the condition of the present proposition. N
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Chapter 7

Linear Relations

7.1 Algebraic operations

7.1.1 Definition. Let £ and M be linear spaces. A subset T of £ x M is called
a linear relation of £ into M, if it is a linear subspace of £ x M. Explicitly this
is

(f1,91), (f2,92) €T = (fi+ fa,91+g2) €T,
(f,9)eT,AeC = (Af,A\g)€eT.

The set of all linear relations of £ into M will be denoted by LR(L, M). In
case L = M we will write abbreviatory LR(L) instead of LR(L, £). /

The reader probably wonders why we invent the new name LR(L, M) for
what was previously called Sub(£ x M), remember Definition 1.1.2. In the
present part we rather put emphasize on the operator theoretic viewpoint than
on linear algebra: If D is a linear subspace of £ and T : D — M is a linear
operator, then we may identify T with its graph

graphT := {(z,y) e Lx M : z € D,y =Tx},

and this is a linear subspace of £ x M. In this way, linear operators can be
regarded as linear relations, and we will interchangably think of T" as a map or
as a subspace.

The operator theoretic viewpoint on linear relations motivates the following
definitions.

7.1.2 Definition. Let £ and M be linear spaces, and denote by 7 : LXx M —
L and 7y : L x M — M the canonical projections. For T € LR(L, M) we set

domT :=m((T)={feLl: 3geM:(f,g) €T},
ranT :=m(T)={geM: IfeLl:(fg) €T},
ker T := 7y (m|7) 1 ({0}) = {f € L: (f,0) €T},
mul T := mo(mi|7) " ({0}) = {g € M : (0,9) € T},

and speak of the domain, range, kernel, and multivalued part, of T. /

125
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Let us remark that a linear relation T is (the graph of) a linear operator if
and only if mulT = {0}. In this case, dom T, ran T, and ker T' have their usual
meaning.

Also algebraic operations for linear relations can be defined by taking oper-
ations with linear operators as a model.

7.1.3 Definition. Let £, M, and N be linear spaces.
(1) IfT,S € LR(L, M), we set

T+S:= {(f,g)eﬁx./\/l: 3g1,92 € M with
(fugl)eTu(fug2)€Sug:gl +92}

Moreover, we denote Oz := {(f,g) € L x M : g=0} = £ x {0}. Explicit
notation of £ will be dropped unless necessary.

(i7) If T € LR(L, M) and A € C, we set
ANT:={(f,g9)eLxM: IgpeM:(fgo) €T, g=Ago}.
We will often write AT instead of X - T
(i73) If T € LR(L, M) and S € LR(M,N), we set
SoT:={(f,h)e LxN: Ige M:(f,g) €T, (g9,h)€S}.

We will often write ST instead of S oT.
If S,T € LR(L), we say that T and S commute, if SoT =T o S.
(iv) T € LR(L, M), we set

T-':={(g,f)eMxL: (f,g)eT}.

Moreover, we denote Iz := {(f,9) € L x L : g = f}. Again explicit
notation of £ will be dropped unless necessary. If A € C, we will often
write just A instead of AI.

/

It goes without saying that these operations do produce linear relations, so
that we have maps

+:LR(L, M) x LR(L, M) — LR(L,M)  -:C x LR(L, M) — LR(L, M)
o:LR(L, M) x LR(M,N) = LR(L,N)  .~':LR(L, M) — LR(M, L)

A word of caution is in order: The presently defined sum ‘4’ in LR(L, M) is
not the same as the sum of 7" and S in Sub(£ x M). Remember that

T + S=span(TUS) =
1

Sub(£L x M) :{(f,g)eﬁx./\/l:Elfl,fQGL',gl,ngMwith
(fi,91) €T, (f2,92) €S, f=fi+ fa.9= +92}
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Therefore we will, if confusion may occur, write span(7T' U S) for the sum in
Sub(L£ x M), and use the symbol ‘+’ for the sum in LR(L, M).

The use of the direct sum symbol ‘+’, however, is unambigous: For linear
relations T, S € LR(L, M) writing T+S still means that 7 NS = {0} and
denotes span(7T" U S) in this case. The same applies to the orthogonal sum
symbols ‘[+]” or ‘[+]".

The set LR(L, M) endowed with the operations ‘+’ and -’ does not form
a linear space, let alone (LR(L),+,-,0) is an algebra. Let us provide a list of
computation rules. Although mainly obvious, let us for completeness also write
down proofs explicitly.

7.1.4. Computation rules. I. Additive structure:

(1) The operation 4’ on LR(L, M) is associative and commutative, and Og
18 a neutral element. Fxplicitly, this is

(T+S)+R=T+(S+R), T+S=S+T, TH+0=0+T=T.

(#3) If mulT # {0}, then T has no additive inverse.

Proof. For (i) we compute

(T+8)+R= {(f,g) €L xM: 3g1,92 € M with
UJQET+&UJﬂ€RQZm+%}:
= {(fvg) € LXM: Jg11,912,92 € M with
(f,911) € T,(f,912) € S,(f,92) €R, g = (9114—912)4—92} =
—_————

=g11+(g12+92)
=T+ (S+R),

T—i—S:{(f,g)eExM: 341,92 € M with

Uﬂﬂeﬂﬁyﬂ€&9:m+m}:
—

=g2+91
—S+T,

T—l—O:{(f,g)eLxM: 391,92 € M with

(f7gl)€T7(fug2) eoag: g1 +g2 }
—
=g1+0=g1

=T.

For (ii), it is enough to note that always {0} x mulT C T'+ S. If T has an
additive inverse, i.e. there exists an element S € LR(L, M) with T+ S = 0,
hence mul T = {0}. O

7.1.5. Computation rules. II. Scalar multiplication:
(¢1) 0-T =domT x {0} = OgomT, and 1-T =T.
(@) A -(T+S)=A\N-T)+(1-9).
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(tit) A+ p)- T CN-T)+ (u-T). Thereby strict inequality holds if and only
ifA=—p#0 and mulT # {0}.

(iv) ()T =X~ (u-T).

Proof. For (i) compute

0-T={(f.9) € £x M: 3go € M with (f,g0) € Tg = 0go } = Ouom
>
1-T:{(f,g)e£></\/l: 390 € M with (f,g0) € T'g = 190}=T
~~

=90
For (i) compute

/\~(T+S):{(f,g)e/$></\/l: 3 g0 € M with
(fugO)ET+Svg:)‘90}:

={(f.9) € Lx M: 391,92 € M with
(fugl) ETu(fug2) eSug:)\(gl +g2)}:
—_———

Ag1+Ag2
=T+ \S

The inclusion asserted in (i47) follows in the same way:

(/\+u)-T:{(f,g)eL‘><M: I g0 € M with
(fago>€Tag:(/\+,u)g()}g
———

=Ago+Hgo
< {(f,g) €LXxM: Jgi1,92 € M with
(f,91) €T,(f,92) €T, g =g +ugz} =
= AT + uT

Let us check all cases to find out when in this relation equality holds: If A =
1 = 0, then both sides are equal to Ogom 7. Next, assume that A + p #£ 0, and
consider an elements (f, g1), (f,g2) € T. Then we can write

I
Ag1+ pg2 = (A + +——(2—91)),
g1+ ng2 = (o1 570 (02— 91))

cmulT
and see that (f,A\g1 + pg2) € (A + u)T. Again equality holds. If mulT = {0},
then in the expression for AT+ pT" we must have g; = g2, and thus also in this
case equality holds. It remains to have a look at the case that A = —u # 0 and
mul T # {0}. Then, however, the left sides equals Ogom 7 Whereas the right side
certainly contains {0} X mul7'. Thus, in this case, equality does not hold.
Finally, we compute

()\,u)-T:{(f,g)EEXM: Jgo € M with (f,g90) €T, g = ()\u)go}z
——
:)\(Hgo)
=A-(n-T)
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7.1.6. Computation rules. III. Composition:
(i) The operation ‘o’ is associative. Explicitly, this is To(SoR) = (ToS)oR.
(it) (ToS)"t=8"toT L
(#7) Let T € LR(L, M). Then

ToT™ ' = Lanr+({0} x mulT) =
={(g1,92) EM X M: g1,g2 €ranT, g1 — go € mul T}

T oT = Ljomr+(ker T x {0}) =
= {(flva) eLxXL: f1,foedomT, f; — fa € kerT}

(iv) \-T=N\-Ipq)oT =T o (N Iz). In particular, I is a neutral element
in (LR(L), o).

(v) (T+8S)oRC (ToR)+ (SoR). If mul R = {0}, then equality holds.
(vi) (RoT)+ (RoS)C Ro(T+S). Ifdom R = M, then equality holds.
(vii) If R commutes with T and S, then (T +S)oRC Ro (T +S5).
(vigi) If R commutes with T, S, and T+ S, then (T +S)oR= (ToR)+(SoR).

Proof.

(ToS)oR = {(f,k) €L xP: 3ge Mwith (f,9) € R, (g, k) eTos}:

:{(fak)EEXP: Jg € M,h e N with
(f.9) € R, (g,h) € S, (h, k) eT} -
=To(SoR),

(TOS>’1:{(f,h)eNxL: (h,f)eToS}:

:{(f,h)e/vxc; 39 € M with (h,g)e&(g,f)eT}z
:S_loT_l,

ToT™ ={(g1,02) € Mx M 3f € Lwith (91, /) €T, (f,92) € T} =

= {(gl,gg) EMXM: gi,90 €ranT, g — go € mulT},

T-loT = {(fl,fg) €L xL: 3ge Mwith (f1,9) € T, (g, f2) eT—l}z

= {(flaf2) ELXL: fi,fo€domT, fi — fo € kerT},
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A T:{f, YEL X M: Elgoe./\/lwith(f,go)eT,g:)\go}:

Z{(fg € L x M: Jgo € M with (f,g0) € T, (go, )GA-IM79=>\90}=
—(\-Ip)oT =

:{( EL‘xM:EIgOEMwith(f,)\f)€>\~IL,(/\f,/\go),g:/\goeT}:
—To(\-1Iz),

(T+S)oR={(f,h)e£><N: Jg € M with (f,g)eR7(g7h)eT+S}:

- {(f,h) €LxN: Jge M, hy,hs €N with
(fug) ERu(guhl) ETa(gahQ) ESah:hl+h2} g
c {(f,h) €LxN: 3g1,92 € M, hy, ha € N with
(fugl) ERu (gluhl) €T7(f792) €R7(927h2) ESah:hl+h2} =
=ToR+SoR,

If mul R = {0}, then the elements g1, g2 in the last but one line must coincide,
and hence equality holds.

RoT+ RoS = {(f,h) €LxN: 3hy, hy € N with
(fim) € RoT,(f ha) € RoS,h=hy+ha} =

— {(f,h) €LXN: 3g1,92 € M, hy, ha € N with

(fig1) €T,(f,92) € S,(g1,h1) € R, (g2, h2) 6R,h:h1+h2} -
c{(fmeLxN: 3ge Muith (f,9) €T+, (9.h) € R} =
—Ro(T+S),

The inclusion of the set in second line in the set in the third line thereby follows
by setting g := g1 + go. Assume that dom R = M, and let f, g, h be such that
(f,9) €T+ S and (g,h) € R. Choose g1,g92 € M with (f,g1) € T, (f,92) € S,
and g = g1 + g2, and choose hy € N with (g1, h1) € R. Then

(92,h —h1) = (g,h) — (g1,h1) € R,

and it follows that (f,h) belongs to the set written in the second line. Thus, in
case dom R = M, equality holds.

The assertions (vii) and (viii) follow easily from (v) and (vi). Assume that
R commutes with S and 7. Then we can compute

(T+S)oRCToR+SoR=RoT+RoSCRo(T+S).

If, in addition, R commutes with T + S, then the last term equals (T + 5) o R,
and hence throughout the above chain of inequalities the equality sign must
hold. 0

7.1.7. Computation rules. IV. Miscellaneous:
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(i) We have dom(T~1) = ranT, ran(T~ ') = dom T, and ker(T~!) = mul T,
mul(7-1) =ker T.

(#9) We have dom(ST) C domT, ran(ST) C ranS, and kerT C ker(ST),
mul(S) € mul(ST).

(151) If RC S, then
R+TCS+T, MN-RCX-S, R'DS!,
RoT CSoT, ToRCToS.

(iv) span(RoSURoT) C Rospan(SUT). IfranT C dom R orranS C dom R,
then equality holds.

(v) span(SoRUToR) C span(SUT)oR. IfdomT C ran R ordom S C ran R,
then equality holds.

Proof. Let T be the map

T.{LxM — MxL
' (f,9) — (g.f)

Then (m and 72 denote the respective projections onto first and second com-
ponents)

71 OT = T, Mo OT = T .

This immediately gives (¢). The first two inclusions in (¢7) are obvious, the third
inclusion follows since (0,0) € S, the fourth since (0,0) € T'. The inclusions in
(#91) are obvious from the definitions.

We come to the proof of (iv) and (v).

span (Ro SURoT) = {(f,h) €LXN: 3fi, fo€ Loh1,hs €N with
(fl,hl)eRoS,(fg,hg)eRoT,f:f1+f2,h:h1+h2}:

= {(fvh) €LXxN: 3fi,fo€L,g1,92 € M, hi,ha € N with
(f1,91) € S, (91, M) € R, (f2,92) € T, (g2, h2) € R,
f=fitfoh=hi+ha}
C {(f,h) €LxN: Jge M with (f,g) € span(SUT), (g,h) € R} =
=span(SUT)oR.
Thereby, the inclusion follows on setting g := g1 + g2. Assume that ranT C
dom R; the case that ran S C dom R follows in the same way. Let f,g,h with

(f,g) € span(S UT), (g,h) € R, be given. Then we can find f1, fo € £ and
g1, g2 € M such that

(f1,91) € S,(f2,92) €T, f=fi+fo9=01+g2.
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Choose hy € N such that (g2, ho) € R, and set g1 := g — ga, h1 := h— ha. Then
(91,h1) € R, and we see that in the above inclusion the equality sign holds.

span(soRuToR)z{(f,h)ecx/\/; 3 f1, fo € L, h1, ha € N with
(fl,h1> GSOR,(fQ,hQ)GTOR,f:f1+f2,h:h1+h2} =

= {(fuh) €LXN: 3fi,fo€L,g1,92 € M, h1,hy € N with
(flagl) € R7 (glvh’l) S Sa (f2792) S Ra (92;h2> € T’
F=fitfoh=hi+ha}
g{(f,h)eﬁx/\f: Jg € M with (f,g)ER,(g,h)Espan(SUT)}:
=span(SUT)oR.
Again the inclusion follows on setting g := g1 +g2. Assume that dom 7" C ran R;

the case that dom S C ran R follows in the same way. Let f, g, h with (f, g) € R,
(g,h) € span(S UT), be given. Choose g1, g € M and hy, hs € N with

(91, h1) € S,(g2,h2) €T, g=g1+g2,h=h1+hs.

Next, choose fo € £ such that (f2,g92) € R, and set f1 := f — f2, g1 := g — go.
Then (f1,91) € R, and we see that in the above inclusion the equality sign
holds. O

Let T € LR(L). Then powers T™ of T are defined for n € Z in the usual
way as

To...oT , neN
n times
T" .= IL N n=>0
Tlo...oT7! ne-N
—n times

If n € N and a,, € C, we may consider the expression Zg:o a,T™. This assign-
ment, however, is not fully compatible with algebraic operations. For example,
we have

T—T=domT x mulT,

which is not equal to 0, unless T is an everywhere defined operator. Or
0-T = OgomT )

which is not equal to O if domT # L.

7.2 Fractional linear transformations

Our next aim is to set up a functional calculus for fractional linear transforma-
tions. For T'€ LR(L) and M = (z 5) € C**2, we denote

oum(T) == {(vg+6f,ag+Bf): (f,9) €T}.
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Clearly, ¢ (T) is a linear relation. Thinking in terms of vectors instead of pairs,
we could equally well write (‘.7 denotes the transpose of a vector or a matrix)

i ={[(0 (3 )] er).

From this it is obvious that the assignment M +— ¢/ (T) is multiplicative in the
sense that

Py My (T> = om, (¢M2 (T)); My, M, € c?*2, (721)

Moreover, we have
om(T) = dam(T), A€ C\{0}. (7.2.2)

Mostly, we will work with ¢p/(T) when M is a matrix having nonzero determi-
nant. However, sometimes it happens that the case det M = 0 occurs. In order
to treat these somewhat exceptional cases, it is the best to explicitly write down
¢ (T) for all possibilities and thus make available a list to refer to:

¢(o 0) (T) = 040y, ¢(o 0) (T) = Oranr, 0 #0, ¢(o 0) (T) = Odomr, ¥ # 0

00 06 v 0

¢(2 g) (T) = Ospan(ranTUdomT)7 7,0 # 0, ¢(8 g) (T) = Or_a]l:lT? B#0

00 00

¢(a 0) (T) = OgolmT7 B #0, ¢(a ﬁ) (T) = Os_plan(ranTUdomT)’ o,[#0

¢(8 >§5> (T) = AMyanT, )\,5 7é 0, d)()\'y 0) (T) = Miom T, /\77 5& 0

~v 0

¢ Ay A6 (T) = )\Ispan(ranTUdomT)a )‘7’77 d 7é 0
(7 5)

If det M # 0, the relation ¢ps(7T) can be expressed via the algebraic operations
on LR(L). We will denote by GL(2,C) the group of all 2 x 2-matrices with
complex entries having nonzero determinant.

7.2.1 Lemma. Let T € LR(L) and M = (;“ f;) € GL(2,C). Then

24T+, v#0
¢M(T): ¥ ';2 ¥
sT+5 , 7=0

If T is an everywhere defined operator and YT + § is bijective, then
éu(T) = (T + B)(YT +6)~", (7.2.3)
in particular ¢pr(T) is an everywhere defined operator.

Proof. The matrix M can be written as
«a —det M [
AN A T R N 20
.
0 0 5y 10 0 1
a 0
. , =0

—_

S
(el
— @
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In view of (7.2.1), it remains to note that
(5 o)) ={0h00): (L) €Ty =% T. b0,
¢<1 ﬁ)(T) ={(f,g+8f): (f,9) eT}=T+3,

01

oR
oo

10

o D ={6.): o eT) =17,

Assume that T is an everywhere defined operator and 7T + § is bijective. If
v =0, (7.2.3) is trivial. Hence, assume that v # 0. If « = 0, again, (7.2.3) is
trivial. Assume that moreover a # 0, then

) ) B 5. detM
of +f=a(T+ =~ = +0) =a(l+2) = = +f=al +2) - ——.

Yoy Yy ¥ ¥
and hence

1 1) a detM 1)
T+ T+6) ' =—(aT+p)(T+-)"'=—- T+-)"'= T).
(aT'+ B) (v ) 7(04 B)( 7) 5 72( 7) om(T)

O

Concerning relational sums and products we have the following computation
rules.

7.2.2 Lemma. Let T € LR(L) and M, N € C**2.
(¢) If (0,1)M = (0,1)N, then

= Span (QZS((l(()g({\;I;IN)) (T) U ({0} x mul gf)N(T)))
(ii) If (0,1)M = (1,0)N, then

oum(T) o ¢n(T') = span (¢(<1,0>M)(T) U ({0} x mU1¢M(T))> =

(0, 1)N

oy (DU (ker o (T) x {0}))

(1
(0,

= span (QS(

Proof. Write M = (z g), N = (i ’g), and set P := (O‘:’\ B}-u). Let (z,y) €

601 (T) + 6 (T), and choose (f1,g1). (fa, g2) € T with
r=7f1+001=792+0f2, y=(agi+Bf)+ Ag2+pnf2).
Then
(0, (g1 —g2)+B(f1—f2)) = (Vf1+091, agi+Bf1)— (vg2+6 f2, aga+Bf2) € o (T),
and hence
(z,y) = (vg2 + 6f2, (@ + N)g2 + (B+ p) f2) + (0, algr — g2) + B(f1 — f2))
€ span (9p(T) U ({0} x mul 62(T)))
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Similarly,

(0, Mg2—g1)+u(fa=1f1)) = (vg2+0 f2, Aga+pufa) — (v f1+0g1, A1 +uf1) € on(T),

and hence

(z,y) = (vg1 + /1, (@ + Ng1 + (B4 ) f1) + (0, Mgz — g1) + p(f2 — f1))
€ span (¢p(T) U ({0} x mu1¢N(T)))

The reverse inclusion ‘2’ in (7) is obvious.

For the proof of (ii) write M = (3 §), N = (z Z), and set P := (?\t 5) If

(z,y) € ¢p(T), then there exists (f,g) € T with

(z,y) = A\g +puf,ag+6f).

Thus, setting z := vg + § f, we have

(z,2) = (Ag+pf,vg+0f) € on(T), (2,y) = (vg+df,ag+Bf) € om(T).

We see that ¢p(T) C ¢ (T) o dn(T). By the computation rule 7.1.7, (i7), we
also have

{0} X mul(bM(T) - gf)M(T) o gf)N(T), kerng(T) X {0} - gi)M(T) o gf)N(T)

Together, this shows that the inclusion ‘O’ in the desired equality holds. To see
the reverse inequality, assume that (z,y) € ¢ (T) o n(T"). Then there exist

(flagl)u (f2792) € T with
I:Agl+ﬂfla 791"’5](‘1:")/924—5]02, y:agz+6f2.

Set
o = Xge +pfe, Y i=ag+06f1,

then (z,y') € ¢p(T), (0,y —y') € ¢u(T), and (2',y) € ¢p(T), (x —2',0) €
on(T). Thus we also have the inequality ‘C’. 0

We can lift the assignment M — ¢/ (T') to a functional calculus for fractional
linear transformations. First some notation. If X and Y are analytic manifolds,
we denote by H(X,Y') the set of all analytic maps of X into Y. Recall that the
composition of analytic maps is again analytic.

The set H(X, C) is nothing else but the set of all analytic functions defined
on X; and we will write H(X) instead of H(X,C). Recall that H(X) becomes
a C-algebra if endowed with the pointwise defined algebraic operations, and
can be endowed with a complete metric which induces the topology of locally
uniform convergence.

A first example of an analytic manifold (not equal to an open subset of C),
and we will almost exclusively be concerned with this example, is the one-point
compactification Co, := C U {oo} of C. It becomes an analytic manifold when
endowed with the analytic structure comprised of the charts

N Csx\{0} — C
b1 : { Coo \ {00} ¢ b2 : { V1o 1 (7.2.5)

z = Zz z»—»{;zioo
0 z=o

I15
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If G is an open subset of the complex plane, then H(G,Cy,) is nothing else
but the set of all meromorphic functions on G. Moreover, let us note that
H(Cw, Cw) is equal to the set of all rational functions (extended to maps from
C to itself in the usual way).

For M = (v 6) € GL(2,C), we denote by ¢ : Coo — Co the fractional

linear transformation

WL 2#00,72+08#0

yz+9
o (z) =< o0 z#00,72+d6=00r z=00,7vy=0
S z=00,7#0

The assignment M — ¢y is a homomorphism of the group GL(2,C) onto the
group of invertible elements H(Cy,, Coo)* of the semigroup (H(Coo, Coo), 0). Its
kernel is equal to {A\I : A € C}.

If T € LR(L), we thus have a homomorphism of H(Cy, Co)* into LR(L),
remember (7.2.2):

The set H(Coso, Coo)* is not closed with respect to pointwise sums and products.
In fact, for M, N € GL(2,C),

oM+ on € H(Coo, Coo)™ =
(0,1)M, (0,1)N lin.dep., (1,0)(M + N), (0,1)M lin.indep.

and in this case

Pu + ON = Pamanin)
(1,00N
where A € C is such that A(0,1)M = (0,1)N.

én - on € H(Co,Coo)” =
either  (0,1)M, (1,0)N lin.dep., (1,0)M, (0,1)N lin.indep.
or (1,0)M,(0,1)N lin.dep., (0,1)M,(1,0)N lin.indep.

and in this case

oM - ON = Gra.omy OF Por - ON = ¢ o
( (0,1)N ) ()\(0,1)1&1)
where A € C is such that A(0,1)M = (1,0)N or A(1,0)M = (0,1)N, respec-
tively.
In these cases, the functional calculus ¢pr(2) — ¢ar(T) is compatible in the
sense of Lemma 7.2.2.
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7.3 Resolvent and spectrum

Let T € LR(L). Then T is called resolvable, if T—1 is an everywhere defined
operator, i.e. if dom 7! = £ and mul T~ = {0}. It is practical to note that,
by the computation rules 7.1.6, (ii7), a linear relation T is resolvable if and only
if
T 'rCcI,CcTT'.

7.3.1 Definition. Let T' € LR(L) and z € Co. Then we say that z belongs to
the resolvent set p(T) of T, if either z € C and (T — z) is resolvable or z = co
and T~ is resolvable. The assignment ‘z +— (T — z)~" maps p(T) into the

subset of LR(L) consisting of all everywhere defined linear operators, and is
called the resolvent of T. /

The definition of p(T") can be reformulated immediately as

ran(T — z) = £ and ker(T —z) ={0}, ze€C

€p(T) <=
z € p(T) {domTzﬁand mul T = {0} ; Z2=00

(T—2) Y T —-2)CI, C(T-2)(T-271, zeC

e
TT-'CI, CT-'T , Z=00

Finally, note that ker(7T' — z)~! and ran(7 — 2)~! do not depend on z. In fact,
ker(T — z) "' =mul T, ran(T — z) "' =domT, z¢€C.

It is an important fact that an operator valued function is the resolvent of a
linear relation if and only if it satisfies a functional equation.

7.3.2 Proposition. Let T € LR(L), and denote by R(z) = (T —2)7!, z €
p(T), the resolvent of T. Then the resolvent identity

R(z) — R(w) = (z —w)R(2)R(w), z,wep(T)NC (7.3.1)

holds. In particular, R(z) and R(w) commute.

Conversely, assume that D C C is nonempty, and R : D — LR(L) is
a function whose values are everywhere defined operators and which satisfies
(7.3.1) for all z,w € D. Then, for all z,w € D, the operators (I + (z — w)R(z))
and (I + (w — 2)R(w)) are mutually inverse bijections of L onto itself. There
exists a linear relation T with p(T) 2 D and R(z) = (T — 2)7, 2 € D. This
relation is uniquely determined by the facts that p(T)N D # 0 and (T — 2)~* =
R(z), z€ p(T)N D.

Proof. Let T € LR(L) and z,w € p(T), z # w, be given. Set

0 1 1 —z
M._<1 _Z>, N._<1 _w),

then ¢ (T) = R(z) and, using Lemma 7.2.1, ¢n(T) = I + (w — z) R(w). Since
mul R(z) = {0}, Lemma 7.2.2 gives

R(z) (I + (w — 2)R(w)) = ¢<o 1 >(T) = R(w).

137
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Since R(z) and R(w) are everywhere defined operators, (7.3.1) follows.
Assume now that R : D — LR(L) is given and subject to the stated condi-
tions. Since R(z) is always an everywhere defined operator, we can compute

(I+(z—w)R(2))(I + (w—2)R(w)) =
=I+4+(z—w)R(z)+ (w—2)R(w) + (z — w)(w — 2)R(z) R(w) =
=TI+ (z—w)R(z) + (w—2)R(w) + (w — 2)(R(z) — R(w)) =I.

For z € D, set

10

T.:=z+R(z)"' = ¢(z 1) (R(2)),

then (T, — 2)7! = ¢(0 1 >(Tz) = R(z). If w e D, w # z, then due to (7.3.1)
1 —=z
and Lemma 7.2.1 we have

R(z) = R(w) (I+(2—w)R(z)) = R(w) (I—l—(w—z)R(w)) = ¢( ) 0) (R(w)) )

It follows that

T, = ¢(z 1) (¢( 1 o) (R(w))) = ¢(w 1) (R(w))

10 w—z 1 10

I
.

Hence, a relation T is well-defined by T :=T,, z € D. As we already observed,
(T —2)"'=R(z),z€ D.

The uniqueness assertion is clear, since T' can be recovered from (T — z)~*
as T =z+[(T —z)~1~ L O

7.3.3 Corollary. Let T € LR(L), and let D C C with DN p(T) # 0. Assume
that there exists a function R of D into the set of all everywhere defined operators
which satisfies the resolvent identity for all z,w € D, and extends the resolvent
of T, i.e. R(z) = (T—2)"1, z € DNp(T). Then p(T) D D and R(z) = (T—z)"1,
z€D.

Proof. By Proposition 7.3.2, there exists a relation T with p(T) 2 D and R(z) =
(T —2)7"',zeD. If ze€ DN p(T), thus (T — 2)~" = (T — z)~", and hence

T=T. U

We conclude this algebraic discussion of resolvents with showing that resolv-
ability transfers to products.

7.3.4 Lemma. Let T1,...,T, € LR(L), and denote by T the product T :=
Tio...0T,. If each relation T; is resolvable, then also T has this property.
Conversely, if the relations T; pairwise commute, then T being resolvable implies
that each T; also is.

Proof. Due to associativity of compositions the case of an arbitrary finite num-
ber of factors will follow by induction once the case of two factors has been
shown. Assume that T} and T, are resolvable. Then

(Vo) N (TWTo) = Ty " T T C Ty ' T C I
N——

Cle
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(M) () =T LT, ' T DT D I
——
2lc
For the converse assume that T} and T commute. If T is not resolvable, then
either ker Th # {0} or ranT} # L. By the composition rules 7.1.7, (ii), we have
ker(T2T1) # {0} in the first case, and ran(T1T2) # £ in the second. Since Ty

and T3 commute, in both cases T7T5 is not resolvable. If T5 is not resolvable
the same argument applies. 0

7.3.5 Definition. Let T € LR(L). The complement o(7T') := Co \ p(T) is
called the spectrum of T

A point z € C is said to be an eigenvalue of T, if ker(T — z) # {0}; the point
z = oo is said to be such, if mul(T") # {0}. The set of all eigenvalues of T is
called the point spectrum of T, and is denoted by o, (7).

The root manifold E,(T) of T at a point z € C is defined as

B.(T) = Unenker(T'—2)", ze€C
¢ Unen mul 7" , Z=00

An eigenvalue z of T is called semi-simple, if E,(T) = ker(T — z) in case z € C
or E.(T) =mulT in case z = oc. /

Note that, clearly, o,(T) C o(T). Moreover, since ker(T — z)"*1 D ker(T —
2)" and mul 7" D mul 7™, n € N, the root manifold E,(T) is always a linear
subspace of L.

As a first observation, let us show that

zeo,)(T) < E,(T)%{0}.

Thereby the implication ‘= is trivial. To see the converse, assume that E,(T) #
{0}, i.e. that for some n € N we have ker(T — z)™" # {0} or mulT™ # {0},
respectively. Then there exist elements

(fo,fl),...,(fn_l,fn) c T—Z, with fo 75 O,fn =0,

if z€ C, or

(f07f1)7 RN (fnfl,fn) eT, with fo = O,fn }é 0,

if 2 = co. In the first case, there must exist i € {1,...,n} such that f;_1 # 0
and f; = 0, and we conclude that ker(7T — z) # {0}. In the second case, there
exists ¢ € {1,...,n} such that f;_; =0 and f; # 0, and thus mul T # {0}.

A less simple, and very important, result is the Spectral Mapping Theorem
for fractional linear transformations:

7.3.6 Proposition. Let T € LR(L) and M € GL(2,C). Then
o(¢pm(T)) = on(a(T))-

Moreover,

E¢M(Z) (¢M (T)) =E. (T) )
in particular, op(oa(T)) = dar(op(T)).
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Proof. In view of the factorization (7.2.4) of a matrix M € GL(2,C), it is
sufficient to consider the cases that (A € C\ {0})

1 A A0 0 1
o 1) s (68) e (o)

We have ¢, (T) =T + A, and hence
o, (T) —oar, (2) = (T+N) = (z+N) =T — 2.

Thus a point z € C belongs to the spectrum of T if and only if ¢y, (2) belongs

to the spectrum of ¢z, (T). Since either both of T and T + A, or non of them,

is an everywhere defined operators, we also have oo € o (¢, (T)) if and only if

o0 € o(T). The equality E.(T) = Ey,, (-)(¢nm, (T)) also follows immediately.
The case of Ms is similarly simple. We have ¢y, (T) = AT, and hence

Oy (T) — dpr, (2) = AT — Az = NT — 2).

Again, we see that o(¢ar, (T)) = ¢n, (0(T)) and Ey,,. () (¢ar, (1)) = E=(T).
The case of M3 requires a bit more calculation. Let z € C\ {0}, then

=¢,q1 NT)=—2—-22(T—-2)"".
(27)

Thus, (T~! — 1)~ is an everywhere defined operator if and only if (T — 2)~!

is, i.e. o(T71) N (C\ {0}) = [o(T)N (C\ {0})]7*. Since ker(T — z) = mul(—z —
2%(T — z)™1), this relation also implies that

ker (T7" — %) =ker(T — 2).

In order to show equality of root manifolds, we use induction on n to show that
ker(T='—1)" =ker(T—2)",n € N. Let n > 1 and f € ker(T~!—1)" be given.
Then there exists g € ker(T~! — 1)"~1 with (f,g) € T~ — 1. It follows by
the inductive hypothesis that g € ker(T' — 2)"~!, and by the above computation
(ffz’zgq,g) €T — 2. Thus f + 2g € ker(T — 2)", and hence also f € ker(T — z)".
The reverse inclusion follows in the same way.

It remains to consider the case that z = 0 or z = co. However, co € p(T')
just means that T is an everywhere defined operator, and this is nothing else
but 0 € p(T~1). The same argument applies with 7! in place in 7', and hence
we have 0 € o(T7!) if and only if co € o(T) and oo € o(T1) if and only if
0 € o(T). The assertion on root manifolds follows equally simple. We have

Eo(T) = |JkerT = | mul(T™") = Eoo(T"),
neN neN

and, using T~1 in place of T, E(T) = Eo(T1). O

In the analysis of a linear relation, the notion of invariant subspaces or re-
ducing decompositions is of importance, since it allows to split the given relation
in smaller parts.
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7.3.7 Definition. Let £ be a linear space, and M1, ..., M,, be linear subspaces
of £ with £ = M+ ...4+M,. Moreover, let T € LR(L). Then we say that the
decomposition £ = M+ ...+M,, reduces T, if

T=(TNnM})+...+(T'nM32). (7.3.2)
/

Note that, trivially, the inclusion ‘O’ in (7.3.2) always holds. Moreover, if
oo € p(T), then (7.3.2) is equivalent to

TM;) CM;, i=1,....n.

7.3.8 Proposition. Let L be a linear space, and Mq,..., M, be linear sub-
spaces of L with L = Mi+...+M,. Moreover, let T € LR(L). Then the
following are equivalent:

(i) The decomposition L = M+ ...+M,, reduces T.
(it) For all z € p(T) N C we have (T —2)"*M; CM;,i=1,....n
(iii) There exists z € p(T) N C with (T — 2z)7'*M; T M,;, i=1,.

In this case, we have
n

p(T) = p(TNM3).
i=1

Proof. Assume that £ = Mj+...+M,, reduces T, and let z € p(T) N C.
Let f € M, and set g := (T — 2)"'f. Write g = Y." | g; with g; € M,,
and set f; := 0, ¢ # j, and f; :== f. We have (g, f + zg) € T, and hence
(9. f +29) = > i (hi, ki) with (h;, k;) € TN M3. Tt follows that h; = g; and
k; = fi + zg;. For i # j, we have f; = 0, and hence k; = zg;. This implies that
(9i,29:) € T, and since z € p(T') therefore g; = 0. We see that g € M.

The implication ‘(i¢) = (4i¢)’ is trivial. Assume that (4i¢) holds, and pick
z € p(T)NC with (T'—2)"*M; € M;, i =1,...,n. We need to show the
inclusion ‘C’ in (7.3.2). Let (f,g) € T be given, and write f = > | fi, g =
S gi with fi, g; € M;. We have (g — 2f, f) € (T — z)~!, and hence

f=T-2"g—2)= Z(T —2)"gi — 2fi)-

Since (T — z)"!(g; — zfi) € M;, this 1mphes that (T — 2)"*(g; — 2fi) = fi- In
other words, (g; — 2 fi, fi) € (T — z)~* or (fi,9:) € T. We see that

fi
=3 (ig) € (TAM)F... H(TAME).

i=

[

We have shown ‘(4i7) = (4)’, and hence established the equivalence of the con-
ditions (4)—(éi).
Finally, if £ = M;+...4+M,, reduces T, then we have
(T—2)'=(TnM:—2) "5 HTnM2-2)"", zecC,

and hence (T — Z)~! is an everywhere defined operator if and only of each of
(T'NM?Z—2z)~ ! has this property. This says that p(T)NC = I, [p(TNMZ)NC].
Due to (7.3.2), T is an everywhere defined operator if and only if each relation

TNM:? is. 0

128
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7.4 Adjoints

7.4.1 Definition. Let (£, [, .]z) and (M, [.,.Jm) be inner product spaces, and
let T'€ LR(L, M). Then we define the adjoint of T' as

T* . — {(k,h)e/\/l x L [f,h][:_[gak]./\/l:()?(fug)ET}'
/

Clearly, T is a linear relation of M into £. If T and T™* are both everywhere
defined operators, the definition of T reduces to the usual definition of the
adjoint operator

[Tz, ylpm =[x, T*y]z, z€L,ye M.

The following viewpoint on adjoints is practical, since it allows us to use geom-
etry.

7.4.2 Remark. Consider the inner product space (L, [., .]z) X (M, —[., .Jam), that
is the product space £ x M endowed with the difference inner product

[[(fag)v (hvk)]]£><./\/l = [.fv h]ﬂ - [gvk]./\/lv (fvg)v (hv k) eELXM.

Explicit notation of £ and M will be dropped when no confusion is possible. If
T € LR(L, M), then
T+ = (T~
/
7.4.3. Computation rules. V. Adjoints:
(i) If T C S, then T* 2 S*. We always have M° x L° C T*. Moreover,
I* =span{I U (L° x L°)}.

(1) For M = (3 g) € C?*2 set M := (g ?) Then we have ¢pr(T)* D

¢5p(T*). If M € GL(2,C), then equality holds.
(tit) We have T C T** and T*** = T*.

(iv) T*+ S* C(T+95)*. IfdomS D domT and dom S* = M, then equality
holds.

(v) T*S* C (ST)*. Ifdom S D ranT and dom S* = N, then equality holds.
(vi) kerT* = ran T+, mul T* = dom T+.

Proof. Taking orthogonal complements reverses inclusions, taking inverses pre-
serves them. Hence the first assertion in (7) follows. The second one is obvious
from the definition of T*. Moreover, the inclusion ‘O’ in the asserted formula
for I* is clear. To see the reverse inclusion, let (k,h) € I* be given. We can
write

(k,h) = (k, k) + (0,h — k).

However, for all f € L, we have

[fvh_k]:[fvh]_[ka]207
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ie.h—Fke L.
For the proof of (ii), let M € C**2 be given. Let (f,g) € T and (k,h) € T*,
then

[(vg + 6,09 + Bf), (@h + Bk, Jh + k)] = [vg + 0 f,@h + Bk]—

—lag + Bf.7h+ 0k) = (a6 — 4B)(If, h] — [g,k]) = 0.
This says that
2 (1)L (b37(T))
Le. pur(T)* = (¢a (T) D=1 D or(T).
If M € GL(2,C), we may compute
= [pp— (¢M(Tm* D ¢y (om(T)%).

However, M—1 = (M)~!, and it follows that ¢57

() 2 (7).
We come to the proof of (¢i7). We have ( HM]] =

T-1IH | and hence
LIy LD e (L] — pILILDILD — (ss) 1
Tc ()= =7 T1H=T = (T"*) .

We turn to (iv).

(T+S)*:{(k,h)6/\/l><£:V(f,g)eT+S [, h] - g, ]_o}

= {(k,h) € Mx L ¥ .91, 92 with (f,01) €T, (f,00) € S
[fs h] = g1, k] — [g92, k] = O}

T*+S*:{(k:,h)6/\/l><£: Ihy, by € L with
(k, h1) € T*, (k, hy) eS*,h:h1+h2} -

:{(k,h)e/\/tx,c; Jh1, he € L with h = hy + ho,
V(f1.01) €T, (f2,92) € S :[f1,h1]—[91,k] = 0, [f2, ha] —[92, k] = 0}

Let (k,h) € T* 4+ S*, and choose hq, ha be as in the above description of this
relation. For all f,g1,g2 with (f,g1) € T,(f,92) € S we thus have [f, hi]—
[91, k] = [f, he]—[g2, k] = 0. Summing up shows (k,h) € (T + 5)*.

Assume that dom S D domT and dom S* = M, and let (k,h) € (T + S)*
be given. Choose he with (k, he) € S*, and set hy := h — ha. Let (f,q1) € T,
and choose g2 with (f,g2) € S. Then we have

0= [f,h] = [g1, k] — [92, k] = [f, ha] = [g1, k] + [f, h2] — [g2, K] ,
=0

and we see that (k, hy) € T*. Thus (k,h) € T* + S*.
For the proof of (v) we proceed similarly.

(ST) = {(k,j) €N x L ¥(f,1) € ST: [f,5] — [L,K] = 0}
:{(k,j)eNxc: v £, g,1 with (f,g)en(gJ)es;[f,j]—[z,k]zo}
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T*S*:{(k,j)e/\/xc: Ih € M with (k,h)eS*,(h,j)eT*}:
:{(k,j)e/\/xc; Ih € M with

V(f1.91) € T (92,12) € S : [, 5]~ lga, b] = 0, [g2, h] = [12, K] = 0}

Let (k,j) € T*S*, and choose h as in the description of this relation. Let
fyg,l with (f,g) € T and (g,l) € S be given. Then [f,j] — [g,h] = 0 and
lg,h] — [I, k] = 0. Summing up gives (k, j) € (ST)*.

Assume that dom S 2 ranT and dom S* = N, and let (k,j) € (ST)* be
given. Choose h with (k,h) € S*. Let (f1,91) € T be given, and choose I3
such that (g1,12) € S. Then (f1,l2) € ST, and hence [f1,j] — [l2, k] = 0. Using
[91, h] — [l2, k] = 0, gives [f1,7] — [g1, ] = 0. We conclude that (h,j) € T*, and
hence that (k,j) € T*S*.

For the first assertion in (vi) note that

(k,0) eT* < V(f,9)eT:|[f,0—[g,k]=0.
e

The second one follows since

(0,h) eT* <— V(f,g)eT:[f,h]—w:

O

The spectra of T and T are closely related. In the present, purely algebraic,
setting, we have the following result.

7.4.4 Lemma. Let T € LR(L) and z,w € C, then
E.(T) L E,(T*), z#Tw.
Proof. We have to show that for all n,m € Ny
ker(T' — z)" L ker(T* —w)™, z#w. (7.4.1)
We use induction. If one of n or m equals zero, (7.4.1) is trivial since by
definition (T'— 2)° = (T* —w)? = I.
Assume now that n,m > 1 are given. Let f € ker(T — 2)" and g € ker(T™* —

w)™, and choose f;, g;, 4,7 € N, with f; =0, 7 > n, and g; = 0, j > m, such
that

(f7 fl)u (fiufi-‘rl) eT — Z, (9791)7 (gjvg]-‘rl) € T* —w, Z,] e N.

Then we have f; € ker(T — 2)"~! and ¢g; € ker(T* —w)™!, and hence [f, g1] =
[f1,9] = 0. Tt follows that

0= [fugl+wg] - [f1+2fvg] = (Z_w)[fug]a
and hence that [f, g] = 0. O

In many situations relations occur which are related with their adjoint.

I16
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7.4.5 Definition. Let (L, [.,.]z) be an inner product space, let T € LR(L),
and M € GL(2,C). Then we say that T is M -selfadjoint, if

T = om(T).

/

The following simple fact helps to switch between different cases of M-
selfadjoint relations, M € GL(2,C).

7.4.6 Lemma. Let M,N € GL(2,C) and let T € LR(L). Then T is M-
selfadjoint if and only if ¢n(T) is NM N ~-selfadjoint.

Proof. We compute

ON(T)" = ¢ox(T*) = (o (1)) = darn—1 (O (1)) -

7.4.7 Example. Two cases are of particular importance.

(i) A relation A € LR(L) is I-selfadjoint, if and only if A* = A. In this case
we say that A is selfadjoint.

(i7) A relation U € LR(L) is (? é)—selfadjoint, if and only if U* = U~!. In
this case we will that U is unitary.

The fractional linear transformation which switches between selfadjoint and
unitary relations is known as the Cayley transform: For € C\ R, set C), :=

(1 7ﬁ). We have

1 —p
— - 01
CHI(O#) 1_<1 O)a

and hence a relation T' is selfadjoint, if and only if ¢c, (T') is unitary. /

7.5 Linear Relations in a Banach space

7.5.1 Definition. Let X and ) be topological vector spaces. A linear relation
T € LR(X,)) is called closed, if it is a closed subspace of X x ) with respect
to the product topology. The set of all closed linear relations of X' to ) will be
denoted as CLR(X,)). If X = Y, we will write CLR(X) instead of CLR(X, X).

/

The set of all continuous linear operators of X into ) is denoted by B(X, ).
Clearly, the graph of a continuous operator is closed, and hence we may regard
B(X,Y) as a subset of CLR(X,)). Conversely, if X and ) are Banach spaces,
then by the Closed Graph Theorem each T' € CLR(X,)) with domT = X and
mul T = {0} belongs to B(X,)).

First we check how algebraic operations are compatible with closure. The
symbol ‘Clos’ thereby always denotes the closure with respect to the appropriate
topologies.
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7.5.2. Computation rules. VI. Closure: Let X and )Y be topological vector
spaces, and T € LR(X, D).

(i) We have
Clos(T' 4+ S) = (ClosT)+ S, S e B(X,)), (7.5.1)

Clos(\-T) = A-ClosT, A € C\ {0}, Clos(T~ ") = (ClosT)™ !,
dm(ClosT) = Clos pp (T), M € GL(2,C), assuming X = .

In particular, if T € CLR(X,)), then the linear relations

(7.5.2)

T+S, SeB(X,Y), \-T, xeC\{o}, T
oM (T), M € GL(2,C) assuming X =),

are again closed.

(i7) Let in addition W be a topological vector space. If T € CLR(X,)Y) and
S e B(W,X), then also T o S is closed. If T € LR(X,)Y), then

Clos(T' o S) C (ClosT) o0 S, (7.5.3)
where equality holds if Clos(domT) C ran S and S~! € B(ran S, W).

(#4i) Let in addition Z be a topological vector space. If T € CLR(X,)) and
S € LRV, Z) with S~ € B(Z,Y), then So T is closed.

Proof. We start with showing (7.5.1). For S € B(X,Y) define a map

) AXxY — Xx)Y
U (@y) — (zy+ Sa)

Then 7g is continuous. Moreover, 7¢ 0 7_g = 7_g o Ts = id, and hence 75 is a
homeomorphism. However, 7¢(T) = T + S, and hence

Clos(T + S) = Clos(rs(T)) = 75(ClosT) = (ClosT) + S .

The assertions in (7.5.2) are proved with exactly the same argument, using the
homeomorphisms

) AXxY — Xx)Y . XxY — YxX
{ () — () @ MECNMOL T { (1) — (@2)

)

TM:{XXX -~ X xX . M= (5 ) ecLeo.

(z,y) — (yy+ 0z oy + fr)
Next, let S € B(W, X) be given. We consider the map

s | WxY — XxY
! { (w,y) — (Sw,y) (7.5.4)

Then 7° is continuous. We have

ToS:{(w,y)eWx)}: EIIEX:(Z,:C)GS,(z,y)GT}:

= {(w,y) EWxXY: (Sz,y) € T} — (TS)_l(T), (7.5.5)

I13
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Hence, T being closed implies that 705 is closed. If T is arbitrary, thus the right
side of (7.5.3) is a closed set which contains T o S, and hence also Clos(T o S).

If S~ € B(ranS, W), then S is a homeomorphism of W onto ranS. If
Clos(domT') C ran S, we certainly may consider T as a linear relation of ran S
to Y. Let 7° be the map (7.5.4) where S is considered as a linear relation of W
into ran S instead of X. Then it has an inverse, namely

Tsll{ranSxy — Wx)Y
' (z,y) — (S7'z,y)

and this map is also continuous. By the computation (7.5.5), we have T o S =
(75)~Y(T) = 757 (T), and hence

Clos(T o S) = Clos(r° (T)) =75 (ClosT) = (ClosT) o S.

Note here that dom ClosT' C Clos(domT) C ran S, and hence the application
of 757" is possible.

Finally, let S € LR(Y, Z) with S~! € B(Z,Y) and T' € CLR(X, )) be given.
Then T—! is closed, and hence also T~! o S~! is. This, in turn, implies that
SoT =(T"'o8 1)~ is closed. O

Let us note that the case A = 0 really needs to be excluded in (7.5.2): We
have

CIOS(O : T) = Clos Ogom T = OClos(dom T)> 0- ClosT = Ogom ClosT

and dom Clos T C Clos(dom T"), but equality need not hold.

Next, we turn to resolvent and spectrum of a closed linear relation in a
Banach space. Let X’ be a Banach space, T € CLR(X), and z € Co,. Then, by
the Closed Graph Theorem,

(T-2)"teBXx), zeC

2epd) = {TGB(X) , Z=00

For a closed subset K of C,, and z € C, we set

d(z, K) := u%161£(|z—w|,

where we understand |z — oo| := 0.

7.5.3 Proposition. Let X be a Banach space and T € CLR(X). Then p(T) is
an open subset of Co,. We have

(T = 2)7"| > d(z,0(T))"", zep(T)NC.

The resolvent z — (T — 2)~1 is an analytic function of p(T) N C into B(X). If
oo € p(T), then lim,| o 2(T — 2)~t=—I.

Proof. First a preparatory observation: Let w, z € C, and set M := ( ! (1))

w—=z

By the second part of Lemma 7.2.1 and the Closed Graph Theorem,

}) C B(X).

our ({T € B) : |IT]| < o
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Let w € p(T) N C be given, then we have

(T_Z)_1:¢<o 1>(T):¢< 1 0)(¢<0 1>(T)):¢< 1 0>((T—w)_1)

1 —=z w—z 1 1 —w w—z 1

Hence, |w—z| < ||(T—w)~!||~! implies that (T —2)~! € B(X). In other words,
p(T) contains the disk centered at w with radius ||(T — w)~!||=!. This shows
that w is an inner point of p(7T"), and that the distance of w to o(T) is at least
equal to ||(T —w) =] ~L.

The point w = oo belongs to p(T') if and only if T is a bounded operator. In
this case the exterior of the disk centered at 0 with radius ||T'||] entirely belongs
to p(T'). We see that again w is an inner point of p(T).

The resolvent of T depends analytically on z since it satisfies the resolvent
identity. In fact,

LT -2t = (T2 zepd)nC,

z

If T € B(X), we have the Neumann series

o0

1

(T_Z)_l = _ZWT]C7 |Z| > HT||7
k=0
and hence the stated limit relation follows. O

7.6 Linear relations in a Krein space

If T is a linear relation in a Krein space, we can say much more about the
relation between T" and T*. First, a preparatory observation.

7.6.1 Lemma. Let K be a Krein space, and T € LR(K). Then T** = ClosT.

Proof. With K also the product space K x K endowed with the difference inner
product [.,.] is a Krein space. Moreover, it carries the product topology. Hence,

7 = T = Clos T .

We extend complex conjugation to an involution
T:Cp — Cqx
by setting 36 := oo.
7.6.2 Proposition. Let K be a Krein space and T € CLR(K). Then
o(T*)={2€Cx:z€a(T)}.

Proof. First of all note that, since 7** = T, it is enough to show {Z € C : 2z €
p(T)} C p(T7).
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In the first step we settle the case z = oo. Assume that oo € p(T), i.e.
T € B(K). Let J be a fundamental decomposition of K, and set S := JT*)3.J €
B(K). Then

[Sa,y) = [JT 1 Jz,y] = (T J2,y), = (Jo,Ty), = [, Ty], z.yekK,

and hence S C T, However, dom T = K, and hence T* is an operator. Since
dom S = K, it thus follows that S = T*]. This shows that co € p(T*]).

Let z € p(T)NC, so that (T'—2)~! € B(K). Since [(T'—z)~']* = (T*—2)7!,
the first step gives (T* — %)~ ! € B(K). O

M-selfadjointness of a relation has consequences for its spectrum.

7.6.3 Proposition. Let K be a Krein space, M € GL(2,C), and let T be a
closed M -selfadjoint relation in K.

(1) We have

z€0(T) <= om(z)€a(T).

erated.

Proof. The first assertion follows immediately by combining Proposition 7.6.2
with the Spectral Mapping Theorem for fractional linear transformations: We
have z € o(T) if and only if Z € o(T*). However, o(T*) = o(¢pm(T)) =
ou (o(T)).

:

‘ normal eigenvalues ‘
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Chapter 8

The Riesz-Dunford
functional calculus

In the previous chapter we had endowed Co, with the analytic structure {¢1, ¢}
where ¢; are the charts (7.2.5). A more natural way of considering C, as an an-
alytic manifold is to enrich this analytic structure by taking all fractional linear
transformations as charts. Clearly, the analytic structure {¢1, ¢2} is isomorphic
to the analytic structure given by the collection of charts

{6a1 + Coo\ {03/ (00)} — € with M € GL(2,C) }.

8.1 An algebra of functions

Let K be a nonempty closed (and hence compact) subset of Co, and consider
the set H(K) of all functions F' which are defined and analytic on some open
subset of Co, which contains K, i.e.

H(K):= ] H(0). (8.1.1)

O open
KCO

Note that the union (8.1.1) is a disjoint union, since equality of functions includes
equality of domains. If F' € H(K), we will generically denote the domain of F'
On H(K) we define a relation ‘~’ as

F~G < EIOopen:KQOQOFQOGandF|O:G|O

It is obvious that ‘~’ is an equivalence relation.

8.1.1 Definition. Let K be a closed subset of Co,. Then we denote by H(K)
the factor set of H(K) with respect to ~, i.e.

(Y o)

O open
KCO

151
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and refer to H(K) as the algebra of germs of analytic functions on K. If F €
H(K), we denote the equivalence class which contains the element F by F.
Moreover, we let m denote the canonical projection of H(K) onto H(K). /

8.1.2. The set H(K). I. Algebraic structure:

(a) Algebra operations: The pointwise algebraic operations on H(O) give rise
to algebraic operations on H(K); one only has to take care of the respective
domains. Explicitly, we define (A € C)

) HK)xH(K) — H(K) [ HK) — H(K)
+'{ (F,G) + Flopnos + Glornoe A { F — MF

' (F,G) = Flopnoe  Glornos

Clearly,
Fi~F, G ~Gy — Fi+ Fy ~ Gy +Go
N-Fy~ )\ Fy
Fy - Fy ~ Gy -Gy

and hence algebraic operations ‘4, ‘A-’, and ‘-’ are well-defined on H(K) by
F+G=F+G, M F=)\F, F-G=F-G, FGecHK)MeC.

It is elementary to check that H(K) becomes a C-algebra when endowed with
these operations; we will not carry out the details.

(b) The algebra H(K) as a direct limit: Let us observe that H(K) is the direct
limit of the algebras H(O): As an index set we take {O C C, : O open, K C O}.
This set is directed by set-theoretic inclusion, namely

01j02:: 012025
and for each pair O; = Oy we have the restriction map

o) { H(O1) — H(O0)
Oy - F — F|O2

Clearly, these maps are algebra homomorphisms and satisfy pgi o pgé = pgé
whenever O7 = Oy < O3. Moreover, for each O, we have an algebra homomor-
phism of H(O) into H(K), namely the map x o to where 1o : H(O) — H(K) is
the set-theoretic inclusion map. Whenever O; < O,, these maps satisfy

H(O1) H(0,)
1& %2
H(K)

It is straightforward to check that for each C-algebra 2 together with algebra
homomorphisms ¢o : H(O) — 2 satisfying @0, o pgé = ¢0,, 01 < Oq, there
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exists a unique algebra homomorphism v : H(K) — 2 with

04
Pog

H(Oy) H(O2)
H(K) $Oq
PO, |
| ¥
Y
A

This, however, is just the defining property of a direct limit. Hence, H(K)
together with the maps m o 1o is the direct limit h_rr)l o H(O) in the category of
C-algebras. Let us note that, also if we consider H(O) and H(K) only as linear
spaces or merely as sets, still H(K) = lim j H(O) in the respective category.

(¢) Composition: Let K be a closed subset of Coo, and D C C, openwith K C
D. Moreover, let ¢ € H(D,Cy,) be injective, and set K := ¢(K), D := ¢(D).
Then K is a closed subset of Coo, D is an open, and K C D. If F € H(K), the
composite F o ¢ belongs to H(K). Clearly, F; ~ Fy implies that F} o¢ ~ Fyo0 ¢,
and hence a map o¢ : H(K) — H(K) is well defined by

op: F—Fo¢p, FeHK).

It is easy to check that o¢ is an algebra homomorphism.
The map ¢! belongs to H(D, D), and clearly o¢~! is inverse to o¢. Thus
we have mutually inverse algebra isomorphisms

/

8.1.3. The set H(K). II. Topologically: As we observed above, H(K) is as a linear
space the direct (or ‘inductive’) limit of the linear spaces H(O) coming together
with the restriction maps pg; The spaces H(O) carry a locally convex vector
topology, namely the topology of locally uniform convergence. The restriction
maps are clearly continuous. Hence, the linear space H(K) can be topologized
naturally. Namely, there exists a finest locally convex vector topology on H(K)
such that all maps 7 o 1o continuous. This topology has the property that a
linear map ¢ of H(K) into some locally convex vector space X is continuous if
and only if all compositions ¢ o w o 1o are continuous.

Let us remark that, if O1 < Oz but O7 # O,, the initial topology on H(O;)
with respect to the map pgé is strictly coarser than the topology of H(O;). In
the language of topological vector spaces this means that H(K) is not the strict
inductive limit of the spaces H(O). /

With the topology introduced above, H(K) is a locally convex vector space.

Next, we show that multiplication with a fixed function and composition are
compatible with this topology:
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8.1.4 Lemma. Let K be a closed subset of C.

(1) For each fixred G € H(K) the map

 H(K) — H(K
'Q'{ F — E-G

~—

1S continuous.

(1i) Let D C Co be open with K C D, and let ¢ € H(D,Cy) be injective.
Then the map o¢ : H(¢p(K)) — H(K) is a homeomorphism.

Proof. Let G € H(K) be fixed, and let an open set O C Co, with K C O be
given. Then we have

H(O) H(K) —— H(K)
H(O n Og) v H(O n Og)

Thus (-G) o (m o tp) is a composition of continuous maps, and hence itself
continuous. This shows that - G is continuous.

Let ¢ be given according to (i), and let O be an open sert with KCO.If
F,, — F in H(O), then also F,, o ¢ — F o ¢ in H(¢~'(0)), and hence F, o ¢ —
Fo¢in H(K). This shows that (o) o (z o 1) is continuous. Since the same
argument applies with o¢—!, it follows that o¢ is a homeomorphism. 0

8.1.5. The set H(K). III. H(K) vs. C(K),C(2):

(a) Relation with C(K): If F € H(K), then the restriction F|k is a continuous
function on K. Moreover, if Fy ~ Fy, then Fy|x = F3|k. Hence, the restriction
map of H(K) into C'(K) induces a map px of H(K) into C(K).

It is clear that px is an algebra homomorphism. Moreover, it is continuous
when C'(K) is endowed with the topology of uniform convergence. This follows
since locally uniform convergence in H(O), K C O, implies uniform convergence
on K, and hence each map pg o (7 o tp) is continuous.

(b) Relation with C(z): Denote by C(z) the set of all rational functions with
complex coefficients. If p € C(z), then p € H(K) if and only if p has no poles
in K. Since the maximal domain of analyticity of a rational function is always
connected, we have p; ~ ps if and only if p;(2) = p2(z), z € C. Hence, we have
an injective embedding of {p € C(z) : p no poles on K} into H(K), and will via
this embedding always consider this set as a subspace of H(K). Note that, using
this abuse of language, we can also write (w0 10)(C(z) NH(O)) C C(z) NH(K).

By Runge’s Theorem, C(z) NH(O) is dense in H(O). This fact transfers to
H(K): C(z) NH(K) is a dense subspace of H(K). To see this, let a nonempty
open subset W of H(K) be given. Then, for each open set O C C.,, K C O,
the set (mo1o) (W) is open in H(O). Since H(K) = J,(x o o) (H(O)), there
exists O with (7 010) 1 (W) # 0. Hence, also W N (C(2) NH(K)) # 0.

Let us note that, px maps C(z) N H(K) onto C(z) N C(K), and that this
map is injective if and only if K is infinite. /
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8.1.6. The set H(K). IV. Symmetry: For any subset V of C.,, we define
V#.:={2€Cyp:z€V}.

Clearly, V being open or closed implies that V# has the same property. For a
function F': V — C,, we define a function F# . V# = Cy, as

F#(z2) :=F(Z).

If V is open, and F is analytic or meromorphic on V, then also F'# is analytic
or meromorphic, respectively. Note that (V#)# =V and (F#)# = F.

Let K be a closed subset of Coo. Then the map F — F# induces a conjugate
linear map of H(K) to H(K#). Clearly, F; ~ F, implies that F{* o FJ", and
hence we obtain a conjugate linear map .# : H(K) — H(K#). Using the explicit
description of a neighbourhood of 0 in an inductive limit, it is straightforward
to check that this map is continuous. Moreover, it is a homeomorphism; its
inverse being given by .# : H(K#) — H(K).

Denote the closed real line by Ry, := RU {oo}. We will often meet the
situation that K is symmetric with respect to Ry, i.e. that K = K#. In this
case, the map .# becomes a homeomorphic conjugate linear involution of H(K)
onto itself.

Using fractional linear transformations, we can also speak of other kinds of
symmetry than with respect to Ro. Let M € GL(2,C) be given. For a set
V C Cy and a function F : V — C., we set

VO = {2 € Coo: da1(2) € V} = oA (VH), FO(z)i= F¥ oy, z€ VO,

In this way we obtain a conjugate linear and homeomorphic map . of H(K)
onto H(K"). The inverse of the map .U constructed with M is given by the

R vt | . .
map .U constructed with M ~. To see this, notice that ¢ﬁ = ¢37, and compute

(F*ogu)" oprs = (F#)# o gl opm i = Fodyrodm = F,

and, moreover remembering that ¢g;-1 = ¢,

(F* 0 dyr1) " 0 g = (F¥)# 0 dpys 0 fas = F.
If K satisfies K™ = K, we say that K is M-symmetric. In this case .” becomes
a map of H(K) onto itself. If M~ = M, then this map is involutory. /

The following result is useful to define elements of H(K) by pasting single
parts.

8.1.7 Proposition. Let K be a closed subset of Co, and assume that
Ky,..., K, are pairwise disjoint, nonempty, and relatively open subsets of K
with K = K1 U...UK,. Then the map

| HK) — H(K)) x...xH(K,)
‘/’0'{ F — (F,...,F)

induces an algebra isomorphism of H(K) onto H(K;) x ... x H(K,). This
isomorphism is also a homeomorphism.



156 CHAPTER 8. THE RIESZ-DUNFORD FUNCTIONAL CALCULUS

Proof (of Proposition 8.1.7; part 1). Tt is clear that every element of H(K) also
belongs to H(K;), and that Fy ~ Fy in H(K) implies that Fy ~ F» in H(Kj;).
Hence, if m; denotes the projection of H(K;) onto H(K;), there exists an algebra
homomorphism 1 : H(K) — H(K;) x H(K,) with

H(K) -2~ H(K)) x ... x H(K»)

ﬂ'l \Lﬂ'lx...xrrn

H(K) - " >H(Ky) x ... x H(K,)

Let O € Cy be open with K C O, and denote by ¢; o the set-theoretic inclusion
of H(O) into H(K;). Moreover, let 7; generically denote the projection of a direct
product onto its i-th component. Due to the definition of ¥y and v, we have

Y CH(KY) x ... x H(K,) — H(K)

ie. miotpo(moro) =m;ouL0. It follows that ¢ is continuous. 0
To complete the proof, we need to construct an inverse to ¥. This is based
on two general observations.

Observation 1: Let K be a closed subset of Co, and K, ..., K, pairwise dis-
joint, nonempty, and relatively open subsets of K whose union covers K. Then,
foreach i € {1,...,n}, K; is a closed subset of Co,. There exist pairwise disjoint
open sets O; C Cy, i = 1,...,n, such that

K,=KnoO;, i=1,...,n.

To see this, choose open sets OZ C Cy with K; = Ol N K. We have

UJ@)HK:m,i:L”m, (8.1.2)
j=1
J#i

and hence the sets K; are closed in C,,. Since C, is normal, we can therefore

choose pairwise disjoint open sets O; with the required property.

Observation 2: Let Vi, ..., V,, be pairwise disjoint, nonempty, and open subsets
of Cw, and set V := |J*, V;. Then the map

{ H(V) — H(Vi) x...xH(V,)
F — (Flw,....Flv,,)

J32
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is invertible. Its inverse is namely given by assigning to a tuple (Fy,...,F,,) €
H(V1) x ... x H(V,,) the pasted function

Fy (Z) , z€e€WN
F(z):= (8.1.3)

Fo(z), z€eV,
Proof (of Proposition 8.1.7; part 2). Let K and K; be given according to the
statement, choose pairwise disjoint open sets O; C C,, ¢ = 1,...,n, according
to Observation 1, and set Og := (J;_, O;. It is straightforward to check that a

continuous algebra homomorphism A; : H(K;) — H(K) is well-defined by the
requirement that for every open set O C C, with K C O

F—Flono, F—(F,0,...,0)
_—

H(O) H(ONO;) H(ON0;) x [] H(O;)
=1
g
lpasting map (8.1.3)
H(K)------ = H(K) =———— m((0n0o)u U 0;)
=1
i
H(K:) - - - - — — = H(K)

This definition of \; ensures that the map A defined as

A'{ H(K) x ... x H(K,) — H(K)
' (Byyeo s ) o M(E)) + o+ Ma(E)

satisfies Ao =id and ¢ o A = id. 0

Note that, due to compactness, each decomposition of K into disjoint rela-
tively open subsets is necessarily finite.

Clearly, in the situation of Proposition 8.1.7, each connected component of
K must be entirely contained in one of the subsets K;. However, the connected
components of K themselves will in general not be suitable since they need not
be open. Also note here that K may have infinitely many components. However,
the set K is connected if and only if it does not allow a decomposition of the
form used in Proposition 8.1.7.

Let us give some more facts which emphasize the interplay between algebraic
and topological structures.

8.1.8 Proposition. Let K be a closed subset of C.
(1) H(K) is an integral domain if and only if K is connected.

(#3) The restriction map px : H(K) — C(K) is injective if and only if K
contains no isolated points.

J28
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Proof. If K is not connected, we can write K = K; U Ko with nonempty,
disjoint, and relatively open subsets Ki, K. By Proposition 8.1.7, we have
H(K) = H(K;) x H(K3), and hence H(K) contains zero divisors. Conversely,
assume that F',G € H(K)\ {0} and F-G = 0. Then there exists an open set O,
K C O, with O COpNO¢g and F(2)G(z) =0, z € O. We may assume without
loss of generality that every connected component of O intersects K; simply by
removing from O all those components which do not intersect K. Let O; be the
union of all those components where the function F vanishes identically, and
let Oy be the union of all other components. Clearly, O; and Oy are disjoint
open sets and their union contains K. Since F # 0, the set Os is not empty,
and hence Oy N K # (. On the other hand, on Oy the function G must vanish
identically. Since G # 0, Oy cannot cover all of K. Thus also O1 N K # (). It
follows that K is not connected.

Next, we turn to the proof of (i7). Assume first that w is an isolated point of
K. Then K is the disjoint union of the two relatively open sets {w} and K\ {w}.
Thus H(K) 2 H({w}) x H(K \{w}). The set H({w}) contains nonzero elements
which vanish at w, e.g. take F,,(2) 1= z —w if w # 00, or F,(2) := L if w = occ.
The element (F,,0) € H({w}) x H(K \ {w}) is nonzero, still, its restriction
to K is identically zero. For the converse, assume that K contains no isolated
points, and let F' € kerpg. Let O;, I € I, be those connected components of
Op which intersect K. Each component O; must intersect K in infinitely many
points. Hence, O; N K has an accumulation point in K. Since O; N K is closed,
remember (8.1.2), each such point lies inside O;. Since F' vanishes on K, it
thus vanishes identically on O;. The union of all O;, i € I, covers K, and we
conclude that F = 0. 0

In view of our later needs, we will now investigate divisibility in H(K). Let
us recall the notion of the divisor 9y of a meromorphic function f. Let X be an
analytic manifold, f € H(X,Cy), and w € X. If f vanishes identically on some
neighbourhood of w, we set 2¢(w) := +o00. Otherwise, choose a chart ¢ whose
domain contains w, and let d;(w) be the unique integer such that the Laurent
expansion of f o ¢! at ¢(w) is of the form

oo

(foo™)(@) = D an(z—d(w)" with ay, ) #0.

n=0y(w)

In this way, 0 is a well-defined function of X into Z U {4+occ}. Note that, for
each two functions f,g € H(X,C) also f-g € H(X,Cx) and 5. =05 +0,.

Now consider a closed subset K of Coo, and let Fy, Fr € H(K). If Fy ~ Fb,
then for each w € K we have dp (w) = 0p,(w). Hence, for an element F €
H(K), a function 0p : K — N U {+00} is well-defined by

op(w) :=op(w), FeHK).
We will call 0 the divisor of F.
8.1.9 Proposition. Let K be a closed subset of Coo, K # Co.

(i) Let F,G € H(K). Then F |G in H(K) if and only 0p < dg. An element
F e H(K) is a unit if and only if op = 0.



8.1. AN ALGEBRA OF FUNCTIONS 159
(#3) For each function ® : K — Ng with finite support there exists an element
F e H(K) withd =0p. The function F' can be chosen to be rational.

(131) Let M be a nonempty subset of H(K), and assume that for each point
w € K there ezists an element F € M with dp(w) < 4+00. Set

M = min{DE: EEM},

then O pq maps K into Ng and supp 0 is finite. There exist finitely many
elements Fy,..., F,, € M, such that

oM ::min{bi,...,bpi}. (814)

An element D € H(K) is a greatest common diwisor of M in H(K) if and
only if 0p = 0aq. In particular, M has a greatest common divisor.

(iv) Let F,G € H(K) and assume that
min{dr,0¢} =0. (8.1.5)
Then there exist A, B € H(K) such that A-F+B-G=1.

(v) Let M be a nonempty subset of H(K), and assume that for each point
w € K there exists an element F € M with 9p(w) < +oo. Moreover, let
D € H(K) be a greatest common divisor of M. Then there exist finitely
many elements Fy,...,F,, € M and By,..., B, € H(K) such that

Q:zn:_i'_i-

=1

Proof. The statement (i) is easy to see. Assume that F |G in H(K), i.e. that
there exists an element H € H(K) with G = H - F. Then, for each w € K,

0g(w) =0 p(w) =0pr|k (W) = 0|k (W) +0p| k(W) > 0p|Kk(w) = 0p(w).

Conversely, assume that 9 < 0g. Denote by Oy, ..., O, the connected compo-
nents of Or N Og which intersect K. Set

Hiz) ggz; , 2z € 04, F does not vanish identically on O;
i\Z) =

0 , z€QO;, F vanishes identically on O;
then H; € H(O;). If H denotes the element of H(K) obtained by pasting
Hy,..., H, by means of Proposition 8.1.7, then G = H - F'. Note here that, if
F vanishes identically on O;, also G does.

If F is a unit in H(K), then 09p < 9; = 0. Conversely, if 9 = 0, then the
function + is analytic on O := {z € Op : F(z) # 0}, and hence belongs to
H(K). Cleatly, () - F = 1.

For the proof of (ii), let 0 : K — Ny with finite support be given. Since
K # Cs, we can choose M € GL(2,C) with ¢,;(c0) ¢ K. Let p be the
polynomial

(w)
p(z) = ] (z = énr(w))™,

weK

J31
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then p o ¢pr is analytic on Co \ {¢3/ (00)} and hence belongs to H(K). The
element F' := p o ¢ps has the required property.

We come to the proof of (ii7). By assumption, for each w € K there exists
an element Fy, € M with 95, (w) # 0. Let O,, be the connected component of
Op, which contains w, then dp, (2) < +oc for all z € O, and g, (2) # 0 for
at most finitely many values of z € O,, N K. The open sets O, w € K, cover K
and by compactness we can extract finitely many points wy, ..., w,, such that
Oy, U... U0y, 2 K. The function

[ ::min{bﬂ,...,bpw_m}

maps K into Ny and has finite support. Since 0py < g, it already follows
that 0 has finite support. Moreover, since each descending chain of functions
0 : K — Ny with finite support must remain constant from some index on, it
follows that we can find elements Fy, 1,...,F, € M such that (8.1.4) holds
with Fj == Fy,,i=1,...,m, and Fipq1,..., Fn.

By (i), an element D € H(K) is a common divisor of M if and only if
0p < dp. We already see that each element D with 0p = 0, is a greatest
common divisor of M. Assume that 0p < 04 and that there exists w € K with
op(w) < dp(w). Choose M € GL(2,C) with ¢,/ (00) € K, then the function

F = (¢um(2) — dnm(w)) - D

is a common divisor of M. However, apparently, it is not a divisor of D. We
have shown that D is a greatest common divisor of M if and only if 9p = 0.
It remains to note that, by (i¢), such elements do exist.

For the proof of (iv), let F,G € H(K) with (8.1.5) be given. Let Oq,...,0,
be the connected components of O N Og which intersect K. We are going to
define, for each ¢ € {1,...,n}, an open set O; with O,N K C O; C O, and
functions A;, B; € H(O;).

Case 1; F|o, = 0: Set O; := O; and A; := 0. Due to (8.1.5), the function G|,
is zerofree. Hence, we may set B; := (G|o,)”"'. Then, trivially, A;-F+B;-G = 1
Case 2; G|o, = 0: Set O; := O; and B; := 0. Due to (8.1.5), the function F|o,
is zerofree, and we thus may set A; := (F|o,)”!. Again, A;- F+ B;-G =1in
H(O;).

Case 3; neither F|o, = 0 nor G|o, = 0: The function (F|o, - G|o,)~ " is mero-
morphic in O;. From (8.1.5) it follows that the set of its poles in K is the
disjoint union of the sets of zeros in K of F' and of GG. In fact, we have

—DF(’LU), DF(U)) >0
drg)-1(w) = —0p(w) —dg(w) = § —dg(w), dg(w) >0
0 , otherwise

Denote by H,, the principal part of the Laurent expansion of (FG)™! at w € K,
understanding H,, = 0 if w is not a pole of (FG)~!. Then

FH, €e H(O;), o0p(w) >0 and GH, € H(O;), dg(w) > 0.
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The function H := (FG)™' =Y cjc Hyw is analytic on some open set O; with

KnNno,; C OZ C O;. Note here that in this sum only finitely many summands
are nonzero. Set

A:=GH+ Y  GH,, Bi:= Y FH,,

weK weK
0 (w)>0 0 (w)>0

then A;, B; € H(O;) and A; - F + B; - G =1 in H(O;).

As a consequence of (8.1.5), on no set O; both F|p, and Glp, can van-
ish identically, and hence we have defined O;, A;, By, for all i € {1,...,n}.
The required elements A, B € H(K) are now obtained by pasting the elements
Ay,..., Ay and By, ..., By, respectively, by means of Proposition 8.1.7.

Finally, we turn to the proof of (v). Due to (ii7), it suffices to show that
some greatest common divisor of a finite set F1,..., I}, can be represented as a
sum Z?Zl B; - F;. To show this, we use induction on n. If n =1, then D = Fy
is a greatest common divisor of {F}}, and the desired representation is trivially
present. Let n > 1, let D be a greatest common divisor of {Fi,...,F,}, and
Dg one of {F1, ..., F,_1}. By the inductive hypothesis, we find By,...,B,_; €

H(K) with Do = Y.7," B; - F;. We have
min{ag—lﬁ,bgflﬁ} :O,

and hence find A, B € H(K) with A- (D"'Dy) + B- (D 'F,) = 1. This gives

n—1
D=A-) Bi-F,+B-F,.
i=1

8.2 Definition of the functional calculus

For a closed rectifiable path 7 : [0,1] — C and z € C, we denote by n(v;, z) the
winding number of v around z. Moreover, we agree that n(y,o0) := 0.

Let v1,...,7 : [0,1] — C be closed and piecewise smooth paths, and let
K C C be compact and O C C open with K C O. Then we say that the
collection 71, ..., of paths satisfies (8.2.1) for O, K, if

7([0,1]) CO\K, j=1,...,n

" . _Jo, z¢0 (8.2.1)
;”(%az)—{L Se K

8.2.1 Definition. Let X be a Banach space and T € CLR(X) with p(T) # 0.
Then we define a map

Oy« H(o(T)) — B(X)
by the following procedure: If F' € H(o(T)) is given, choose M € GL(2,C)

such that ¢y} (00) & o(T), choose finitely many closed piecewise smooth paths
1, - - Yn Which satisfy (8.2.1) for ¢pr(Op) NC, ¢pprr(o(T)), and set

Bho(E) i= 5= > [(Fodi)(O)- (¢~ oalT)  dc. (8.2.2)
3y

Ji1

J13
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The map @, is called the Riesz-Dunford functional calculus. /
First of all, we have to justify this definition.

8.2.2 Proposition. Let X be a Banach space, T € CLR(X) with p(T) # 0,
and F € H(o(T)). Then there exists M € GL(2,C) such that ¢;, (c00) & o(T),
and there exist closed piecewise smooth paths yi1,...,v, which satisfy (8.2.1)
for opr(Or) NC, dpr(o(T)). The operator on the right side of (8.2.2) neither
depends on the choice of M and -y; subject to these properties, nor on the choice
of the representant F € H(K) of the element F € H(K).

The proof of this proposition is split into several lemmata. First an elemen-
tary but elaborate fact.

8.2.3 Lemma. Let § > 0 and a parazial grid of squares with edge length & be
given. Moreover, let Q be a finite set of squares of this grid, and set

K=|]JQ.

QeQ

Then the set K is compact and its boundary 0K is the union of all (closed)
edges with the property that exactly one of the two adjacent squares belongs to
Q.

There exist closed paths 71, ...,7n, each of which consists of a finite number
of edges of squares in Q, such that

(’L) 8K = UZ:I Yk s

(i1) each edge lying in -y is oriented such that the adjacent square in Q lies to
the left,

(134) no edge appears more than once in one path v;, or appears in two different
paths,

(iv) we have
in( 2) = 0 , zeKe¢
— T 1, zeK

k=1

Proof. Let w € C. Assume first that w lies on some (closed) edge E with the
stated property. Then, clearly, w € JK. Conversely, assume that w € 9K.
Then w cannot be an inner point of any square of the grid, since the interior
of each square either belongs entirely to K or entirely to K¢. Thus w must be
located on an edge of the grid. If w is not a vertex, then exactly one of the two
adjacent squares belongs to Q. If w is a vertex, then at least one of the four
adjacent squares must belong to Q and at least one of them must not belong to

Q.
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We see that in each case the point w lies on a closed edge E with the required
property that one adjacent square belongs to Q and the other does not. This
shows the required representation of JK.

In order to show the existence of paths ~1,...,7, with the properties (i) —
(iv), we use induction on the number of squares contained in Q. If Q consists
of only one square, then the assertion is obvious:

Q Y
Assume that a set @ which contains more than one square is given, and that
the assertion of the lemma has already been proved for all sets Q' with less
elements than O.

Let @ be the square in Q which has the maximal y-coordinate under all

squares with minimal z-coordinate. Then at least the left and the upper edge
of @ belongs to 0K:

nE N

Case 1; all edges of Q belong to 0K : Then we are in the situation

e

Set Q' := 9\ {Q} and define K’ correspondingly. Then 0K = 0K’ U 9Q and
0K’ and 9Q have no edge in common. Applying the inductive hypothesis to Q'
gives paths 71,...,7,. Let v be the (positively oriented) boundary of Q. We
are going to show that {v1,...,7,,7} are paths with the required properties
(i) — (iv) for the set Q. We already saw that (i) holds, the properties (ii) and
(#44) are obvious. In order to see (iv), it is enough to note that K = K’'UQ and
that the path v satisfies

(o) =40 270
nha =91 Lo

Case 2; three edges of Q belong to OK : Then we are in one of the two situations
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Again set Q' := Q\ {Q}, denote by s the edge of @ which does not belong to
0K liegt, and let o1, 09,03 be the other edges oriented as

o2 S a3 1

T3 s

Removing the square @ from Q can change 0K only in the edges of Q. It
follows that 0K’ = (0K \ {01,02,03}) U{s}. Let again ], ...,~,, be the paths
the inductive hypothesis gives us for Q’. Then the edge s appears in exactly
one of vi,...,7, and oriented such that @ lies to the right. Without loss of
generality, assume that s € 71, and write 7 as the sequence of the oriented line
segments s, 81,82, ..., Sm.

Define ~ as the sequence of the oriented line segments
01,09,03,81,82,...,8n. Remember that o1,09,03 are oriented such that
Q lies to the left. We are going to show that ,v5,...,~,, are required paths
for Q. Again, (i), (i7), and (iéi) is obvious. Moreover, we have

1 1 1 1 1 1
n(%Z)Zz—m/C_ZdC:Q—m/C_Zd<+2—m.7{—<_zdgz
Y Y1 o0Q

0, 2 K'UQ=K
1, zEIO(’UC,o?

Due to continuity of winding numbers, this also implies that n(v,2) =1, z € s.
Altogether, (iv) holds.

Case 3; two sides of Q belong to 0K and the square right and below of Q belongs
to Q: We are thus in the situation

Let s1, 52,01, and o2 be the right, lower, upper, and left, respectively, edge of
Q. Thereby let s1, so be oriented such that @ lies to the right, and let o1, 02 be
oriented such that @ lies to the left.
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52

Again let Q' := 9\ {Q}, then 0K’ = (0K \ {o1,02}) U {s1, 82} Let v1,...,7,
paths for Q’, and assume that s; appears in . Since the square right and
below of @ belongs to @', the edge which appears in ~; after s; must be sa.

Thus we can write 7] as the sequence of oriented lie segments s1, s2,t1, ..., tm.

Let v be defined as the sequence of oriented line segments o1, 092,t1,...,tm.
Then one shows similar as in ‘Case 2’ that v,v%,...,~,, are appropriate paths
for O.

Fall 4; two sides of Q belong to 0K and the square right and below of Q does
not belong to Q: We are in the situation

s Ky
t 2

Set Q' := Q\ {Q}, then 0K’ = (0K \ {o1,02}) U {51, s2}. Again let ~{,...,7v,
be paths for Q'.

Assume that all four edges si,s2,t1,%2 lie on one path, say on ;. Then
either

/
(CL) Y1 = S1,S82,U1,- ..,un,tl,tg,un+1,...,um,
or
!
(b) 1= S1,t2,U1, .- . 7un;t15527un+1um-
In the first case, set
V= 017027u17'"7un7t17t2un+17"'7um7

in the second

Vi =01,02,Up41, - Um, ;7’/ = t27u17"'7un7t1 .
Assume that the four edges s1, s2, t1, t2 are distributed over two different paths,
say s1 € 44 and t; € 4. Then either
(C) ’71 = 851,52,U1, ..., Un, ’75 = tl,tg,’l)l,...,’l}m,

or

(d) v = 81,t2, Uty ..y Upn, Yo =1,82,V1, ..., Um.
In the first case, set
Y i=01,02,Uly...,Up,
in the second
v = 0'1,0'2,1}1,...,Um,tl,tQ,ul,...,Um.

Corresponding to which case of (a), (b), (¢) or (d) applies, consider the sets of
paths
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(@) ¥, ¥s -+ Vs
(b) ’77’77757"'77;7,7
(C) ’}/7’757"'7’7’:’17

(d) Y2V Ve

These sets of paths satisfy (¢)—(ii¢). In the cases (a) and (c¢) one shows in the
same way as above that also (iv) holds. In case (b) we have

n(y,2) = n(v, 2) + n(y, 2 jé—dg, LeENO,

and hence

n n 1 . 3
n(v,2) +n(y, 2 +an,z):Zn(%,z)+fcjd<, z€K'NQ,
k=2 k=1 9

In case (d) we have

n(y2) =nn,2) 4l 2) + § o de, 2eRINQ,
0Q

and hence

n n 1 i i
2+ Y (s 2) Z+]{C_Zd<, SeKNO.
k=3 k=1 aQ

In both cases (iv) follows again:

4

8.2.4 Corollary. Let K C C be compact, and O C C open with K C O. Then
there exist closed piecewise smooth paths vi,...,7vn : [0,1] — C which satisfy
(8.2.1) for O, K.
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Proof. We apply Lemma 8.2.3 with § := %d(Oc, K) and the set Q of all squares
whose closure intersects K. This furnishes us with paths 71, ...,7,. Since

kcm(J@)cJaco,

QEQ QeQ

these paths satisfy (8.2.1). 0

Proof (of Proposition 8.2.2; Part 1). In this part of the proof we show existence
of M, ~y;, and the integral in (8.2.2), and independence of this integral from the
choice of ; when M is fixed.

For each point w € C4,, we can find a fractional linear transformation which
maps this point to co. Since p(T') # (), we can thus choose ¢ with ¢, (o) €
p(T). Corollary 8.2.4 applied with the compact set ¢ar(o(T")) and the open set
dm(Op) N C gives paths with the required properties.

By the Spectral Mapping Theorem for ¢y, the integrand in (8.2.2) is an
analytic function on

O = (¢ (0Or) NC) \ dpas(o(T)).

In particular, the integral exists.
Let M € GL(2,C) with ¢,; (c0) € p(T') be fixed, and assume that 71, ..., vn

and 74, ..., 7., are two collections of piecewise smooth paths which satisfy (8.2.1)
for ¢rr(Op) NC, drr(o(T)). Then

>l z) = D n(vh2) 2¢0,

k=1 k=1

and we obtain from the Cauchy Integral Theorem that

kl,

> [(Poah O (c—ou () ac=3" [(ovi Q) (Cona(m) dc =0,
k=1 .

0

The fact that the right side of (8.2.2) does not depend on the choice of the
chart ¢ps will be deduced from its below, more explicit, representation.

8.2.5 Lemma. Let F € H(o(T)), and let M € GL(2,C) be such that ¢y, (<) &
o(T). Assume that aq,...,ay : [0,1] = Co are closed piecewise smooth paths
with

a;([0,1]) S Or \ (o(T) U{oo, @3/ (00)}), G=1,....m,
and
n 0, z¢¢u(Or)
Zn(gf)M oaj,z) =41, z€dp(a(T)) (8.2.3)
J=1 0, z=0¢nm(0) and oo & a(T)

J18
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Then the paths parocy, j =1,...,n, satisfy (8.2.1) for ¢pr(Or)NC, par(o(T)),
and

> [ Fosih©) (- oum)tac=
I=1 g pr00
> [ F() (= T) s g o(T) (824)

Proof. As a preliminary observation, let us compute the derivative of a fractional
linear transformation:

d az—l—ﬁ) a(yz+0) = (az+p)y  detM
(vz+0)2 (yz46)2"

¢’(a B>(z): E(WM =

v 6
Let now F', M, and a; be given according to the assumptions of the present

lemma. The fact that v; :== ¢ 05, j =1,...,n, are closed piecewise smooth
paths and satisfy (8.2.1) for ¢ (Or) NC, ¢pr(o(T)) is clear.

Consider a point z € Cs \ {00, ¢3; (00)}. Then

- o)y = ou(z) =6
z=¢n-1(Pm(2)) = —vour(2) +a’

and —ydns(2) + a # 0. Using Lemma 7.2.1, we can compute

(¢M<T>—¢M<z>)1—¢(o L YD) =60 4 D)=

1 —¢m(2) 1 —dar(z)
=¢ (T) =
(awzf(z)v ﬁquif(z)a)
g det M B— dnr(2)5 \—1
— (g . Bou(2)8 _
a=on(n " (a= o) (T + o= ot (2)7 )

=—¢p-1(dn(2))=—2

Since ¢X41 = qS( 5 —B>’ we have

-y «a

det M 1w
(@—7om(2)2 (6r) (¢m(2))

J19



8.2. DEFINITION OF THE FUNCTIONAL CALCULUS 169

and obtain

/ (Fods)(C) - (¢ — dar(T)) " de =

Vi

=/0 F(a (1) - (énr(0(5) = dar (1)) - g (o (1)) (1) dt =

— ' Iy . v & o 0/4
-], P Syt e

+ [Py (0) - 03 o, 0))0s(0) = 1) oy () 0)dt =
= ot . i 2)-(z=T)tdz. 2.
—/(F 63(0) 7<_ad<+a/F<> (-~ 1) (8.25)

The second summand in this relation leads to the sum on the right side of
(8.2.4). We need to have a closer look at the first summand in (8.2.5). If v =0,
it vanishes. However, in this case, we have ¢p;(00) = oo and hence oo & o(T).
Thus (8.2.4) holds.

Assume that v # 0 and £ & drm(Op). Then the integrand in the first sum-
mand in (8.2.5) is analytic in ¢ (Op)NC. By (8.2.3) the Cauchy Integral The-
orem applies, and it follows that the integral vanishes. However, £ gZ om(OF)
just means that co ¢ Op, and hence in particular co & o(T). Agam (8.2.4)
follows.

Assume that v # 0 and £ € om(OF), i.e. 0o € Op. Then we use the Cauchy
Integral Formula and (8.2.3) to evaluate

"1 = 1 o
> o [(Fosi©) ¢ = 3203, 5 Fl6id ()
j=1 Vi 7 =1
_Jo , oo go(T)
| F(x)I, oo€o(T)
The desired equality (8.2.4) follows also in this case. O

8.2.6 Lemma. Let F € H(o(T)) be given, and let M,N € GL(2,C) be
such that ¢y, (0),¢5' (00) & o(T). Then there exist piecewise smooth paths
a1,...,ap : [0,1] = Co which have the properties required in Lemma 8.2.5 for
both matrices M and N in the same time.

Proof. First we show a preliminary observation on winding numbers, namely:
Let G1,G2 C C be open, ¥ : G; — G2 analytic and bijective, and v1,...,7v, :
[0,1] — G closed piecewise smooth paths in G; with

Zn(vj,z) =0, 2¢&G;.
j=1

Then 377, (i 0 v;,¥(2)) = 20—, n(74,2), 2 € G1. To see this, compute

/ %@b(z)dc‘/ol o= O, / e &

Poy;

J25
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By the Theorem of Logarithmic Residues, thus

n

Z”( %5 ¥ Z%z/w Zj: (V5:2) -

j=1

Now we turn to the situation of the present lemma, i.e. assume that F', M, and
N, are given. We apply Corollary 8.2.4 with

0= {¢M(0F> \ {00, @a1(00), éar (9" ()}, o0 ¢ o (T)
¢r(OF) \ {00, s (' (00))} , ooea(T)

This gives paths v1,...,Vn. Set o 1= gbgj 07, then

a;([0,1]) € Op \ (o(T) U {d}/ (0), 00, ¢ (20)}) ,

, K:=ou(a(T)).

0, =¢ouOr)
ST S 1, z€ou(o(T))
j;l (d)M js 2 J; 7]7 0, Z:¢M(()o) and oo gO—(T)

0, z=0ou(dy ()
In particular, the paths o satisfy all requirements of Lemma 8.2.5 for the matrix
M.
The map ¢y o ¢} is an analytic bijection of C \ {¢a(dy'(00))} onto C \

{on(dy) (00))}, and we have ¢ o a; = (¢n 0 ¢y ) 0y;. The above preliminary
observation gives

> n(én o ay, on(dy (2)) =D _n(v;,2),
j=1 j=1
and in turn
0, w¢on(OF)
- 1, wequaT
;"(¢N°aj’w): 0, N((oi)gndmg o(T)
0, w—¢N( dar (00))

The last line thereby follows since > =1 n(qS N ©aj,w) is a continuous function
of w, and since n(vy;,z) = 0 when z lies in the unbounded component of C\
Uj=1 75([0,1]). We see that the paths a; also satisfy all requirements of Lemma
8.2.5 for the matrix N. 0

Proof (of Proposition 8.2.2; Part 2). Next we show that the right side of (8.2.2)
does not depend on the choice of M. Let M and N be given with
dyf (00), o5t (00) & a(T). Choose paths a; according to Lemma 8.2.6. Then,
by Lemma 8.2.5, the right sides of (8.2.2) with M and ¢ o o; on the one hand,
and with N and ¢x o a; on the other coincide.

In order to finish the proof of Proposition 8.2.2, it remains to show that the
right side of (8.2.2) does not depend on the choice of the representant. Assume
that Fy ~ Fy, i.e. Filo = Fz|o for some open set O with o(T) C O. Choose
M € GL(2,C) with ¢} (c0) & o(T) and choose paths which satisfy (8.2.1) for
dm(0) N C,ppr(o(T)). Then these paths may be used in (8.2.2) for both F;
and Fy. Tt follows that the right sides of (8.2.2) are the same when buildt with
Fl or F2. [j
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8.3 Properties of &%,

In the below theorem we collect the main properties of the Riesz-Dunford func-
tional calculus.

From now on we will often drop explicit distinction between functions F' €
H(K) and equivalence classes F € H(K). For example, we will often write
®L(F) when F € H(K).

8.3.1 Theorem. Let X be a Banach space and T € CLR(X) with p(T) # 0.

(i) The map ®Lp is a continuous algebra homomorphism of H(co(T)) into
B(X).

(i1) Let F € C(z) NH(o(T')), and write

DF(’LU)
_Cuk
e S et Y
weC k=1
with a, by, ¢y € C. Then
DF OO) Dp(w)
L (F) = al + Z BTH+ 3" N cwr(T —w)
weC k=1

(131) Let M € GL(2,C) and G € H(o(¢a(T))). Then G o ¢pr € H(o(T)) and
we have
fp (G o our) = 2357 (C).

In particular, if ¢, (00) € o(T), then ®Lp(dar) = dar(T).

(iv) The Spectral Mapping Theorem: Whenever F € H(o(T')), we have

(v) Let F € H(o(T)) and G € H(o(®Lp(F))). Then G o F € H(o(T)), and
we have

I(GoF) =apan (@),

IfG(z) = 307 an(z — 20)™ is a Laurent series whose domain of con-

vergence contains o(®Ly (F)), then the series > oo an(Php(F) — 20)"
converges in the norm of B(X), and its sum is equal to ®Lp (G o F).

(vi) Let S € B(X), and let O C C, be open with o(T) C O. Then we have
S(T—w)~t = (T —w)~1S, we ONp(T)NC, if and only if SPLL(F) =
3% (F)S, F € H(o(T)).

Before we start the proof of this theorem, let us note that the assertion in
item (7i7) is not a particular case of item (v): in (i%¢) we do not require that
dur € H(o(T)).

Proof.
Step 1; Compatibility with +°, ‘\-", “*: Fix M € GL(2,C) with ¢}, (c0) & o(T).
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The fact that ®L(AF) = MA@ (F) is obvious. Let F,G € H(o(T)) be given.
Choose paths which satisfy (8.2.1) for

érm(Or) Non (Og) NC, o (o(T)),

then these paths may be used in the definition of both ®%(F) and ®%(G).
It follows that
Pfp(F + G) = ip(F) + Prp(G) .

Multiplicativity is not so straightforward. First choose paths ~1,..., 7y, which
satisfy (8.2.1) for ¢p(Or) Ndrr(Oc) NC, dpr(a(T)). Once this is done, choose
paths +1,...,7,, which satisfy (8.2.1) for

;o connected components of ¢ (Op) N épr(Og) NC
0= U{ which intersect ¢ (o (7)) e e }a ém(o(T)).

We use v, to compute ®L, (F), and ~; to compute ®%(G). Doing so, gives
(for abbreviation set f(z) := (F o ¢y} )(2) and g(z) := (G o ¢3,)(2))

‘I’fT{D(F) : ‘I’fT{D(G) =

1 n
=—.§ FOC—9 —hd¢- —E YA — o (T)) " dr =
o j_le/ M / M

()00 [ [ 50 (€= om ()1 = aa (1) drc =

2mi
Jj=11=1 !
n m B 1 B .
:(%)2;;//f(<)g(k)(c ou (@) A—(CA LI
303 [0 =ou@ - (553 [ L a)ar
12171/ jzl’YJ

If¢ e U;'l:1 v,([0,1]), then ¢ & O'. Thus, the inner integral in the first summand

evaluates as
d\ = =0.
2mz/A i =9(6) o0

If X € U2, %([0,1]), then A lies in the same connected component of O as
some point of ¢rr(o(T)), and hence Y77 n(y;,A) = 1. The inner integral in
the second summand thus evaluates as

2WZZ/C )\d< A ;n%, =/

Together, we obtain ®%, (F) - @5, (G) = L, (FG).
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Step 2; Computation of ®Lp(z" o ¢ar): Let M € GL(2,C) be such that
¢y (00) ¢ o(T), and let n € Np. In order to compute ®Lp (2" o ¢ar), we
use the chart ¢p; and the path y(t) := 2|/ (T) ||, t € [0,2n]. This gives

BLp (2" 0 dar) = /cn (¢ — o (T)) " dC.

The Neumann series ({ — ¢ar(T)) ™ = Y7y e éum (T)F converges uniformly
on v, and hence

2m/<"< o (T 2m/2<" F g (1) d =

-y (5 [ €t de)ors (D)t = bas(r)”
k=0

5
We see that ®Lp (2" o ¢ar) = ¢ar(T)™. Note that, in particular, ®Lp(1) = I.

Step 3; Rational functions: Let F € C(z) NH(o(T)) be given, and write I as
in the statement of (i7). We already know that ®Lp(a) = al. If the first sum
appears, i.e. if 9p(c0) > 0, we must have co € p(T'). Hence, we obtain from the
computation in Step 2 that

q’ﬁD(zk) = @%D(zk °¢r) = .

Consider a summand ﬁ Again, occurance of such a term in the repre-
sentation of F' implies that w € p(T), and hence we may apply Step 2 with
M = (‘i _1w>. This gives

‘bfT{D(ﬁ) = (I)FT{D(ZkO(b(o 1 )) = ¢(0 1 )(T)k = (T—w)ik-

1 —w 1 —w

Step 4; Continuity: In order to see continuity of fIJFT{D, let an open set O with
o(T) C O be given, and consider the map ®%p, o (w0 to) : H(O) — B(X). Let
F,,F € H(O) with F,, — F locally uniformly. If M € GL(2,C) and paths ~;
are paths which satisfy (8.2.1) for ¢pr(O) N C, ¢pr(o(T)), then these paths are
suitable forcomputing all operators ®%(F,), n € N, and ®%(F). However,
F, o ¢, converges to F o ¢, uniformly on U?:l v;([0,1]), and hence

(Fn 0 63)(C) (¢ = ou(T) ™ — (Fo gy )(Q) - (¢ = om(T)) 7
in B(X) uniformly on (J;_, v;([0, 1]). Thus, OLL(F,) — OEL(F) in B(X).
Step 5; Proof of (iii): Assume that M and G are given according to (¢ii). We
have (ér (T)) = dar(o(T)) and Ogog,, = ¢,/ (Oc). Hence indeed G o ¢y €
H(o(T)). Choose N € GL(2,C) and paths v; with

¢;,1(oo) & o(T), ~y; satisfy (8.2.1) for ¢n(Ogop,, ) NC, on(a(T)),
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i.e. N and ~; suitable for the computation of ®%p, (G o ¢ar). We have
Onnr-1(00) = ar (05 (00)) & b (0(T)) = o (b (T))

and

dnar-1(06) = on (937 (06)) = dn (Ogosn) »
o1 (0(da (1)) = (o 0 pr-1) (oo ((T))) = dn(a(T))

Hence, the matrix NM ~! and the paths ~; are suitable to compute @ﬁ%(m (@).
Doing so gives

Bip(Goon) = 5> [ (Goou)003)(Q) (¢~ on(T) " e =

2MZ/GO¢NM 1 ) (C_QSNMfl((bM(T))) d¢ = (I’¢M(T)(G).

Step 6; The Spectral Mapping Theorem: We start with showing the inclusion
‘o(®L(F)) C F(a(T))'. Since oo € o(®L(F)), it suffices to show that
C\ F(o(T)) C p(Pip(F)).

Let w € C\ F(o(T)), then the function G(z) := (F(2) — w)~! belongs to
H(o(T)), and we have

P4p(G) (‘I)FT{D(F) - w) = @4p(G)Pp (F —w) = gp(1) = 1.
This shows that w € p(®5(F)), in fact

(®LL(F) —w) " =@} (L) w ¢ F(o(T)). (8.3.1)

RD RO\F(Z) —w/)’

For the reverse inclusion, assume first that oo & o(T'). Let w € o(T) be given,
then the function G(z) := M belongs to H(o (7)), and we have

(T — w)<1>§D(G) = ‘I’RD(Z - w)‘I’RD(G) = ‘I’RD(F) — F(w).

If we had F(w) € p(®%p(F)), then also (T — w) had a bounded inverse. It
follows that F(w) € o(®%p (F)).

The general case now follows easily. Choose M € GL(2,C) with ¢} (c0) ¢
o(T). Then, by the above paragraph, the already proved item (iii), and the
Spectral Mapping Theorem for fractional linear transformations, we obtain

o(Dhip (1) = o (@58 (F o ¢31)) = (F o ¢31) (0(da (7)) = F(o(T)) .

Step 7; Proof of (v): Let F and G be given as in the statement of (iv). By the
Spectral Mapping Theorem, indeed G o F' € H(o(T)).
The relation @ﬁD(F) is a bounded operator, and hence we may compute

@;TT]SD(F)(G) using the chart ®;. Moreover, we choose paths v1,...,7, which
satisfy (8.2.1) for O¢ N C,o(®Lp(F)). Then

%k () = % Z/G(C) (¢ — oy (7)) e (8.3.2)
j=17

J24

J22
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Next, we choose paths appropriate for the definition of @&, (G o F). Set

O U connected components of (Og N C) \ Uj—, 7;([0, 1])
o which intersect o(®L (F)) = F(o(T))

and
0" := Ogor N (FH(O') \ {¢y/ (0)}) -

Then O” is an open subset of Co which contains o(7), and the func-
tion G o F is analytic on O”. The set ¢p(0”) is an open subset of C
which contains ¢ (o(T)). Choose paths ~1,...,7., which satisfy (8.2.1) for
¢m(0"), 621(o(T)). Then

1

PLH(GoF) = %Z/(GOFOQW)(A)-(A—(bM(T))’ dX. (8.3.3)
=17,

If 2 € 0" then F(z) € 0’, and hence F(z) & J;_, 7;([0,1]). In other words, we
have

Oc—r(zp-— 20", ¢e|Jy(0,1)
j=1
The paths 7; satisfy (8.2.1) for ¢ar(O(c—p(z))-1), and hence

1 -1
(I)RD(CT QWZZ/C (Fo qSM (N H(A= (1)) dA.

However, as we saw in (8.3.1), @5, ((¢ — F(2))™) = (( — ®Ep(F))~*. Substi-
tuting this into (8.3.2) gives

oy <G>
1 \2 m 1 B

m

L [(L G(© L
2w l(2wi;/<_(Fo¢&1)()\)dC> (A= om(T))  dA

=1

The interchange of integrals is thereby justified since the integrand is analytic
on the compact domain of integration.
If A € U, 7([0,1]) then (F o ¢/ )(\) € O', and hence belongs to the
same connected component of (Og N C) \ U?:l v;([0,1]) as some point of
o(®L(F)). Thus the inner integral evalutes as

27TZZ/< FO(b)M)()dC G(FO¢M ZHVJ’FOQZ)M)( ))

=1

Comparing with (8.3.3) shows that <I><DRD(F)(G) = 0L, (GoF).

J23
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Assume now that G is a Laurent series as in the statement of (v). For each
N € N we have

N N

oo ( D anz—20)") = D an(@hp(F) = 20)"

n=—N n=—N

Continuity of % implies the desired assertion.

Step 8; Proof of (vi): Assume first that S commutes with all operators ®L (F).
If w € p(T)NC, then - € H(o(T)), and hence (T —w)~! = %, (-2-). Thus
S commutes with all resolvents (T —w)™1, w € p(T) N C.

For the converse, assume that S commutes with (7" — w)™! for all w €
ONp(T)NC, and let F' € H(o(T)) be given. Without loss of generality, we
may assume that O C O. Choose M € GL(2,C) with ¢}, (c00) & o(T), and
choose paths a;; which satisfy the hypothesis of Lemma 8.2.5. By Lemma 8.2.6
this choice of paths is certainly possible. Then the relation (8.2.4) proved in
Lemma 8.2.5 implies that S commutes with ®% (F). O

If the spectrum of T splits into a disjoint union of finitely many relatively
open subsets, the Riesz-Dunford functional calculus together with the algebraic
decomposition result Proposition 8.1.7 can be used to obtain a decomposition
of the space X into T-invariant subspaces.

8.3.2 Definition. Let X be a Banach space, T' € CLR(X) with p(T") # 0, and
assume that o(T) is the disjoint union of nonempty and relatively open subsets
O1,...,0n. Let A\; : H(o;) — H(o(T')) be the map constructed in the proof of
Proposition 8.1.7. Then we denote

fI)FT{’]gi = 0L o\ H(o;) — B(X).

/

L. . . T.o.
As a composition of continuous algebra homomorphisms, the maps ®5}5" are
themselves continuous algebra homomorphisms.

8.3.3 Proposition. Let X be a Banach space, T € CLR(X) with p(T) # 0,
and assume that o(T) splits into the disjoint union of relatively open subsets
O1y...,0p. Set
T,o; .
P :=o,5'(1), i=1,...,n.

Then the operators P; are continuous projections, P;P; = P;P; =0, 1 # j, and
P+...+P, =1

Set X; == ranP;, © = 1,...,n. Then each space X; is closed and X =
X1+ ... 4+X,. This decomposition of X reduces T, and we have

o(TNX?) =0;. (8.3.4)
Proof. Consider the elements

T ::(O,...,O,%,O,...,O)EH(Ul)x...XH(an), i=1,...,n.

i-th place

J35
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Clearly,
T;x; = , z1=1.
’ {0 it ; 1
Let A : H(oy) X ... X H(op,) — H(o(T)) be the algebra homomorphism con-
structed in Proposition 8.1.7. Applying <I>FT{D o\, gives

T oo (zs), i=j "
(()@RD )N )7 Z_#;7 ;((I)gDo)\)(fbl):I.

However, by definition, (®5po\)(z;) = @ggi (1). This shows that the operators
P; are projections, that P,P; = P;P; =0, i # j, and that P, + ...+ P, = 1.

It remains to show that each space ran P; is T-invariant. —However,
®L(H(o(T))) is a commutative subalgebra of B(X) which contains all resol-
vents (T —w)™, w € p(T)NC and T in case oo € p(T). Hence, P; commutes
with all resolvents, and this just says that

(T —2)"'(ranP)) CranP;, i=1,...,n.

(‘I’ﬁDO)‘)(xi)(‘I’gDO)‘)(%) = {

Proposition 7.3.8 implies that X = X;+ ...+, reduces T.

By Proposition 7.3.8 we have o(T) = |JI_, o(T'N X?). Hence, in order to
show (8.3.4), it is enough to show that o(T'N X?) C o;.

We consider first the case that co € p(T). Let w € C, then w € p(T N X?)
if and only if there exists an operator S € B(X) with

ST —-—w)=T—-w)S=P,.

However, if w € o;, we have

_ 1 . 1 :

Vs (=) - (@ —w) = 5 (=) - hn (= —w) = ORF' (V) = P,
and hence have found an operator with this property. Thus the required inclu-
sion o(T N X?) C o; holds.

Next, reduce the general case to the already treated on with help of frac-
tional linear transformations. Let M € GL(2,C), and consider the relation
dm(T). Then o(dp(T)) = ¢ppr(o(T)). Hence, o(édps(T)) is the disjoint union
of the nonempty and relatively open subsets ¢as(0;), i = 1,...,n. We have the
diagram

(bf_:]g(T)vd)Al(“i)

(8.3.5)

T,04
RD

P

It follows that @ﬁ%(T)’(bM(m)(l) = ¢£gi(1), i.e. the reducing decomposition
obtained for ¢y (T) is the same as for T, namely X = Xj+...+4&,. It is
immediate from the definition of ¢ps that ¢n(T) N X2 = ¢ar (T N XP).

J33
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Making the choice of M € GL(2,C) in the above paragraph such that
¢yf (00) & o(T), we have ¢ (T) € B(X). Applying the already proved case
to the bounded operator ¢ps(T) gives o(par(T) N X?) C ¢par(o;). Again using
the Spectral Mapping Theorem for ¢y, we see that

om(o(TNAE)) = o(om(T)NAT) C bur(0)
and hence o(T' N X?) C o;. O
If X is not only a Banach space but in fact a Krein space, we have an
additional operation on B(KC), namely conjugation. Let us show that the Riesz-

Dunford functional calculus is compatible with conjugation in a most natural
sense.

8.3.4 Proposition. Let K be a Krein space, and T € CLR(K) with p(T) # 0.
Since o(T*) = o(T)#, the map .# is a conjugate linear homeomorphism of
H(o(T)) onto H(a(T)#). We have

Ohp(F)" = ®fp(F¥), FeH(o(T)).
Proof. Let F € H(o(T)) be given. In order to compute ®Lp, (F), choose M €
GL(2,C) with ¢,; (00) & o(T') and paths ~; which satisfy (8.2.1) for ¢ (Or) N
C,¢r(o(T)). Then we have

(I)FT{D(F)* = (%Z/(Fogf)&l)(o (¢ - ¢M(T))71 dC)* _
- i Z/(FO du )T () (¢ = dm(T)") " d¢ =

== [ (FF oo Q) (¢ —dpr(T)) " dC.

Since gb% (00) = ¢y} (00), we have gbfﬁl(oo) ¢ o(T*). If we can show that the
paths 7; satisfy (8.2.1) for ¢3;(Op#) NC, ¢y(o(T*)), we are done, since then
the last sum of integrals in the above computation equals @ﬁ; (F#). In order
to see this, however, it is enough to note that

¢57(Op#) NC = (6a1(Op) NC)F, G57(0(T7)) = (énr (o (T)))7,
and that n(7;,w) = n(y;, w). O

8.3.5 Corollary. Let K be a Krein space, M € GL(2,C), and T a closed
M -selfadjoint relation in K with p(T) # 0. Then the spectrum of T is M-
symmetric, cf. Proposition 7.6.3, and hence we have the conjugate linear home-
omorphism .2 of H(o(T)) onto itself, cf. 8.1.6. With these notations it holds
that

L (F) = ®hp(F°), F e H(o(T)).

Proof. Applying Proposition 8.3.4 and Theorem 8.3.1, (iii), gives

ol (F)" = ok (F#) = opn ™ (F#) = o, (F* 0 ¢r) = L (FP).



Chapter 9

The Langer-Jonas
functional calculus

If H is a Hilbert space, and A € B(H) is selfadjoint, then the Riesz-Dunford
functional calculus can be extended to all bounded and measurable functions
defined on the spectrum of A. Existence of this extension can be shown in
different ways, for example

(a) via extending the polynomial functional calculus p — p(A), p € C[z], by
continuity.

(b) via the Gelfand-transform; an approach which works even for normal oper-
ators.

Both approaches are bound to the fact that {A, A*} generates a commutative
B*-algebra. If K is a Krein space, the algebra B(K) endowed with the operator
norm induced by some fundamental decomposition is not anymore a B*-algebra;
the law ||za*|| = ||z||? fails. Hence, neither of these approaches works if we move
to the indefinite situation. Also considering A as an operator in the Hilbert space
(K, (.,.)3) does not help; A is in general not even normal in this Hilbert space,
remember that A®)s = JAM.J and hence A = Al gives

A A = JAM JA = JAJA whereas AA®s = AJAM T = AJAJ .

However, if we restrict to a certain subclass of selfadjoint operators, then we
can mimic the above approach (a). Continuity will arise from another source
than in the Hilbert space case, namely from

(¢) imposing and exploiting a positivity condition on A.

9.1 B(K)-valued measures

An object of major importance in spectral theory is the space of bounded mea-
sureable functions on the spectrum of an operator. We denote in general, for
a set 2 and a o-algebra X of subsets of Q, by BM(2, X) the linear space of all
complex-valued, bounded, and Y-measureable functions on 2. Moreover, we set

[flleo := sup [f(z)], f € BM(Q,X).
e
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The space (BM(2, X)), ||.||s) is @ Banach space. On BM(£2, ) we have the point-
wise defined operations of multiplication ((f-g)(z) := f(z)g(x)) and conjugation
(f)(z) := f(z). Endowed with this additional algebraic structure BM(£2, %) be-
comes a commutative B*-algebra.

We will frequently make use of another notion of convergence on BM((2, X))
than norm-convergence. This notion is closely related to the Banach space
L>°(p) when p : ¥ — [0,00] is some (additionally given) measure on . Let
(fn)nen be a sequence of functions in BM(£2, ) and let f € BM(€,%). Then

we say that (fy,)nen converges p-boundedly pointwise to f, if

sup || falloo < oo and  lim f,(z) = f(z), p-ae.
9.1.1 Remark. The following facts are immediate from the definition of u-
boundedly pointwise convergence.

(1) Let (fn)nen be a uniformly bounded sequence in BM(£2, %) which con-
verges pointwise to a function f. Then f belongs to BM(,X), and
(fn)nen converges to f p-boundedly pointwise for each measure p.

(77) The above item applies in particular to every uniformly convergent se-
quence.

(#4¢) Provided p is a finite measure, pu-boundedly pointwise convergence implies
convergence in the norm of L!(u).

(iv) The algebraic operations of the *-algebra BM(£, X)) are p-boundedly point-
wise continuous. Explicitly, we mean by this that f, — f, g — g, p-
boundedly pointwise implies that f, + g, — f+ g pu-boundedly pointwise,
frngn — fg p-boundedly pointwise, etc.

/

Thinking of spectral theory, we will be most interested in the case that
Q = K is a compact subset of C, and ¥ is the o-algebra of all Borel sets on K.
More generally, if K is a compact Hausdorff space and Bor(K) is the o-algebra of
Borel sets on K, we will write abbreviatory BM(K) instead of BM(K, Bor(K)).

As usual we denote by C(K) the Banach space of all continuous functions
on K endowed with the maximum norm. Clearly, C(K) C BM(K). Moreover,
if 1 is a Borel measure on K, then BM(K) C L'(u). In this place we should
say explicitly that we understand the term Borel measure as including that the
measure of compact sets is finite. Thus, if u is a Borel measure on a compact
space K, then p is a finite measure.

The following density properties are often of good use.

9.1.2 Remark. Let Q) be a set and ¥ a o-algebra on €.

(i) For each function f € BM(f2, X) there exists a uniformly bounded sequence
(fn)nen of measureable simple functions with which converges pointwise

to f.

This is immediate if f is nonnegative, cf. [R2, Theorem 1.17], and transfers by
linearity to arbitrary complex valued functions f.

Let K be a compact Hausdorff space, and let p be a regular Borel measure
on K.
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(ii) C(K) is dense in L*(u) with respect to the L'-norm.

(#74) For each function f € BM(K) there exists a sequence (f,)nen of continu-
ous functions which converges u-boundedly pointwise to f.

These are classical facts. See e.g. [R2, Theorem 3.14] for (i), and the Corollary
to Lusin’s Theorem [R2, p.56] for (i4).

Assume in addition that K is a compact subset of C,,, where C, is the
one-point compactification of the complex numbers.

(iv) For each f € BM(K) there exists a sequence (fp)nen of rational functions
being continuous on K which converges p-boundedly pointwise to f.

This follows by combining the above item (ii:) with the Stone-Weierstrafl Theo-
rem, and remembering that uniform convergence implies py-boundedly pointwise
convergence. /

9.1.3 Definition. Let  be a set, ¥ a o-algebra on 2, and (K, [.,.]) a Krein
space. We call a map F : ¥ — B(K) a weak B(K)-valued measure, if for each
countable family A,, n € N, of disjoint elements of ¥ the series Y > | E(A,)
converges in the weak operator topology and its sum is equal to E({J,—, Ay).

/

If E is a weak B(K)-valued measure, then for each fixed z,y € K the function

] Y — C
E{ A [B(A)y]

is a complex measure.
For any complex measure p defined on some o-algebra of subsets of a set €2,
we denote by |u| the total variation measure of i, and by ||| the total variation

of 1, that is [|u] = [1(©).
9.1.4 Definition. Let (K, [.,.]) be a Krein space, and choose a norm ||.||x on

K which induces the Krein space topology of K. We call a weak B(K)-valued
measure E uniformly bounded, if

sup ||Eg .z < 00. (9.1.1)
lzllx<1

/

Note that finiteness of the supremum in (9.1.1) does not depend on the choice
of the norm ||.||; the actual value of the supremum of course does. Moreover,
by the parallelogram rule for the inner product [.,.], validity of (9.1.1) implies
that

IE| = sup  ||Eqyll < o0.
llzllc,llylixc<1

In turn, by linearity, this gives
1Eeyll < NEI-zllcllylic, 2yek. (9-1.2)
If Q is a set, and A C €2, we denote by xa the characteristic function of the set

A. That is
() 1, z€A
) =
xa 0, z€Q\A
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9.1.5 Proposition. Let (K,[.,.]) be a Krein space, and fix a norm ||.||x on K
which induces the Krein space topology of K. Let Q) be a set, ¥ a o-algebra on
Q, and E a uniformly bounded weak B(K)-valued measure defined on ¥. Then
there exists a linear operator Vg : BM(Q, %) — B(K) such that

(1) Ugp(xa) = E(A) for all A € .

(it) Wg is bounded. In fact the ||.||xc-to-||.|x —operator norm ||Yg| of Vg is
equal to || E|| defined using the norm ||.||x.

(#i1) Wg has the following additional continuity property:
Vz,y € K Jpu finite positive measure :

fn — f w-boundedly pointwise = [Vg(f.)z,y] — [Ye(f)z,y]

(iv) Let T € B(K). Then T commutes with all operators E(A), A € X, if and
only if T commutes with all operators Yg(f), f € BM(Q,%).

Proof. Let f € BM(£, X) be given. Consider the map

KxK — C
[-a-]f5{ (z,y) (fzdex’y

We have
Epitasy(A) = [E(A)(21 + 22),y] = [E(A)z1,y] + [E(A)z2,y] =

= Ewl,y(A) + Em,y(A)v Aek,

and similarly
Er,y1+y2 (A) = Er,yl (A) + Er,yz (A) )

Ekw,y(A) = /\Ew,y(A)v Eﬂc)\y(A) = XEw,y(A) :

Hence [.,.]f is a sesquilinear form on K. Using (9.1.2), we obtain

[z 9l sl < [ fllocll BN - l2licliylic, =y ek,

ie. [.,.]; is a bounded sesquilinear form.
By 77 there exists an operator By € B(K) with ||Bs|| < [|E|| - || f]lco such
that
[z,y]f = [Brz,y], =z yeK.

Define ¥ : BM(Q,X) — B(K) as ¥g(f) := By. By linearity of the integral
o fdE;y in the argument f, the map Vg is linear. As we have noted above
e <E]-fllco, i-e. g is bounded and ||¥g|| < ||E||. Moreover, by its
definition,

W (xa)z.y) = / X8 By y = By y(A) = [B(A)zy], zy€K,
Q

and this says that Ug(xa) = E(A).



9.1. B(K)-VALUED MEASURES 183

To show the continuity property (iii), let x,y € K be given, and consider
the positive and finite measure p := |Ey 4|. If (fn)nen converges p-boundedly
pointwise to f, then by the dominated convergence theorem

(W5 (7a)e. 8] ~ (P57 a:y!—]/ dExy’</|fn— 0.

Next, we show the inequality ||E|| < ||¥g]||. Let z,y € K, and let A,,, n € N, be
a disjoint family of elements of ¥ with (J -, A,, = Q. Choose €, € C, |e,]| =1,
such that €,[Vgr(xa, )z, y] > 0, then

Z By (An Z ¥e(xa,) Z (Y E(Xe,n,)T,Y] -
n=1 n=1 n=1

Since the sets A,, are disjoint, we have

N
n=1

and, for each ¢ € €, the series Y | €,xa, (¢) converges. Thus, by the already
proved continuity property (iii), we obtain that

<1, NEeN,

o0
PRILECERNER] wE(ern 2)ay] 1] - eyl

It follows that || B, || < [|Vg]| - ||z]|x[ly]x-

Finally, let T € B(K) be given. If T commutes with all operators ¥ g(f),
f € BM(Q,%), then it commutes in particular with ¥g(xa) = E(A), A € X.
Conversely, assume that TE(A) = E(A)T, A € ¥. Then, for z,y € K,

Erey(A) = [E(A)T2,y] = [TE(A)z,y] = [E(A)z, T"Y| = Evr-y(D), A€X,

ie. Ergy = Eg1+y. It follows that

()T, y] = / f B, = / F By ey = [V (f)a. Ty = [TV p(f)z.y)
Q Q

0

The continuity property which appeared in Proposition 9.1.5, (iii), plays an
important role.

9.1.6 Definition. Let © be a set, ¥ a o-algebra on 2, and K a Krein space.
We will say that a map ¥ defined on a subset of BM(£2, ) and taking values in
B(K) is (9.1.3)-continuous, if

Vz,y € K Jp finite positive measure :

fn — f p-boundedly pointwise = [U(fn)z,y] — [¥(f)z,y] (9-1.3)

/
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The following notices are sometimes practical.
9.1.7 Lemma. Let D C BM(Q,X).

(i) Let ¥; : D — B(K), j = 1,...,n, be (9.1.3)-continuous, let \; € C,
7 =1,...,n, and consider the map Z?Zl A0 given by

(Z AjU5)(f) = Z)‘jlllj(f)v feD.

Then E?:l AU is (9.1.3)-continuous.

(i7) Let ¥ : D — B(K) be (9.1.3)-continuous, and let T € B(K). Consider the
maps TV, T : D — B(K) given by

(TO)(f) =TY(f), (¥T)(f) =¥ (T, feD.
Then TV and YT are (9.1.3)-continuous.

(7i1) Let U : D — B(K) be (9.1.3)-continuous, and consider the map ¥* : D —
B(K) given by
U f—U(f)Y, feD.

Then U* is (9.1.3)-continuous.

Proof. Throughout the proof let x,y € K be fixed.

Let ¥; and A;, j = 1,...,n, be given. Then, for each j € {1,...,n}, there
exists a positive finite measure p; such that f, — f p;-boundedly pointwise
implies (9 (fu) (\j2),5] — [05(F)(Aj2), 5], Set j1:= Sy . Then, clearly, p-
boundedly pointwise convergence implies p;-boundedly pointwise for all j. We
conclude that f, — f p-boundedly pointwise implies [Z?Zl NS (fo)x,y] —
D21 A (), y).

Next, let ¥ and T" be given. Then there exists a positive finite measure p such
that f, — f p-boundedly pointwise implies [U(f,)(Tx),y] — [P (f)(Tz),y], i.e.
[(OT)(fn)z,y] — [(PT)(f)x,y]. Also there exists a positive finite measure p
such that f, — f p-boundedly pointwise implies [U(f,,)z, T*y] — [Y(f)x, T*y],
and this gives [(T'V)(fn)z,y] — [(TV)(f)z, y].

Finally, for (iii), choose a positive finite measure p such that f, — f p-
boundedly pointwise implies that [U(f,,)y, z] — [¥(f)y, x]. It follows that f,, —
f w-boundedly pointwise implies that [U*(f,)z,y] — [¥*(f)z, y]. O

Also a converse to Proposition 9.1.5 holds.

9.1.8 Proposition. Let ¥ : BM(Q,X) — B(K) be a bounded and (9.1.3)-
continuous linear map. Then there exists a uniformly bounded weak B(KC)-valued
measure Ey such that ¥ = Wg,. The assignments E — Vg and ¥ — Eg are
mutually inverse.

Proof. Define Ey : ¥ — B(K) as

By(A) i=T(xa), A€X.
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Let A,, n € N, be a family of disjoint elements of ¥, and set A := J7° | A
Then the sequence (Zﬁ;l XAn) is uniformly bounded and pointwise con-
NEN

vergent to xa. Let x,y € K be given, and choose p as in (9.1.3). Since
25:1 XA, — xa p-boundedly pointwise, it follows that

W(ix%)x’y} — [¥(xa)z,y].
n=1

The elements z,y € K were arbitrary, and thus ¥ ( Zfzf:l xa,) — ¥(xa) weakly.
However, \11(27]:7:1 Xa,) = 25:1 Ey(A,) and ¥U(xa) = Ey(A). We conclude
that Fy is a weak B(K)-valued measure.

To show that Eg is uniformly bounded, we use the same argument as in
the proof of Proposition 9.1.5. Let xz,y € K, A, € X, n € N, be disjoint with
U2, Ay = Q, and |e,| = 1 with €,[¥(A,)z,y] > 0. Then (30 €nXAn) pen
is uniformly bounded by 1 and converges pointwise. Thus, using again (9.1.3)-
continuity of ¥, we obtain

Z E\I/ xy Z 6nXA ]—

(Zenm Jay] < 190 Jelclylic

It follows that |[(Ew)syll < [[¥] - ||lzll/lyllx, and thus that Eg is uniformly
bounded; in fact ||Ey| < ||¥].
Let us consider the operator ¥g,. Then we have

Vpy(xa) = Bw(xa) =¥(xa), A€,

and hence ¥, (f) = U(f) for all measurable simple functions. Let z,y € K,
and choose 1 according to (9.1.3)-continuity of ¥ and ps according to (9.1.3)-
continuity of ¥p,. If f € BM(Q2,X), we can find a sequence (f,)nen of simple
functions which is uniformly bounded and converges pointwise to f, cf. Remark
9.1.2. This sequence thus also converges p;-boundedly pointwise to f, j = 1,2,
and we obtain

Finally, if F is any weak B(K)-valued measure, then by the respective definitions

we have

O

The next statement is a variant of the Riesz Representation Theorem. Let
K be a Krein space. An operator T' € B(K) is called positive, if

[Tz,z] >0, zeK.

In this case, we write T' > 0.
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9.1.9 Proposition. Let K be a compact Hausdorff space, K a Krein space, and
U : C(K) — B(K) a bounded linear map. Then there exists a uniformly bounded
weak B(K)-valued measure E defined on Bor(K), such that

(1) W(f) =¥p(f) for all f € C(K).
(i4) For each z,y € K, the complex Borel measure Eg , is reqular.

(iit) ||E|| = ||¥]| where these norms understand with respect to a norm on K
which is induced by some fundamental decomposition.

(iv) Let T € B(K). Then T commutes with all operators E(A), A € Bor(K),
if and only if T commutes with all operators ¥(f), f € C(K).

(v) If U has the property that
(f) >0 for all f € C(K) with f >0, (9.1.4)
so does V.

The measure E is uniquely determined by its properties (i) and (ii).

Proof. Let ||.||x be a norm on K which is induced by some fundamental decom-
position. For x,y € K consider the linear functional

) C(K) - C
¢{ foe [ ()]

We have
Ve, (O] < 1] N flloo - lzllclyllc s

ie. Py, is bounded and ||z, < ||¥] - |l=zllc|lyllx- By the Riesz Repre-
sentation Theorem there exists a regular complex Borel measure u,, with
l[t12,9[l = [[$2,4 [, such that

7/)zﬂy(f):/fd,uz-,ya feC(K).
K

For A € Bor(K) set

[ Kxk — C
[.,.]A.{ (y) — pey(D)

We have

/fduzl+z2,y = [W(H) (@1 +22),y] = W)z, y] + [U(f)w2, 4] =
K

:/fd/izl,y-i-/fcluggwl7 feC(K),
K K

and hence fiy, +as,y = Hay,y T Has,y- Similarly, Ha,yitys = Moy T Haayy, My =

Mizy, and g xy = Miz,y. Thus [, .]a is a sesquilinear form. Moreover,

[, ylal = lpa,y (A < gyl = bzl < 11 ll2llxllyllx -

H44
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By 77 there exists Ba € B(K) with ||Bal| < ||¥]| such that
[z,9]a = [Baz,y], z,yek.
Define a function E : Bor(K) — B(K) by
E(A):=Ba, A €Bor(K).
Let A, € Bor(K), n € N, be disjoint, and set A :=J)~; A,,. Then

[Baz,y] = fa,y (A Zﬂz,y Z Ba, z,y],

ie. > >° | E(A,) = E(A) where the series converges weakly. This says that E
is a weak B(K)-valued measure. By the definition of F we have

Eyy(A) = [E(A)z,y] = [z,y]a = ptay(D), A € Bor(K),
ie. By y = floy. We see that

1Bz yll = llpayll < 11 - [lllcllyllx

and hence E is uniformly bounded; in fact |[|E|| < || ¥]|.
For f € C(K) we compute

W (f)z.y] = [yl = / fdE,, = / Fdttay = Gay(f) = [U(F),y].
K K

This shows that Ug(f) = ¥(f) for all f € C(K). It also follows that | E| =
[P g] > ||¥]. We have thus established existence of a uniformly bounded weak
B(K)-value measure with (7)—(ii).

To show (iv), let T € B(K) be given. If TE(A) = E(A)T, A € Bor(K), then
TUR(f)=Ye(f)T, f € BM(K). In particular, T commutes with all operators
U(f), f € C(K). Conversely, assume that TU(f) = U(f)T, f € C(K). Then

1/}Tz.,y(f) = [\I/(f>TIa y] = [T\I/(f)ft, y] = [‘Il(f)xa T*y] = ¢1,T*y(f) )

and hence pryy = pgr+y. This implies that [BaTz,y] = [Baxz, T*y], A €
Bor(K), and hence that

E(A)T = BAT = TBa = TE(A).

Next, assume that U has the positivity property (9.1.4). Then, for each x € K,
the functional v, , maps nonnegative functions to nonnegative numbers. The
Riesz Representations Theorem thus tells us that the measure p,, , is positive.
Since [V (f)z,z] = [} f ditz,x, this implies that Wp satisfies (9.1.4).

In order to show the desired uniqueness assertion, assume that F; and Fs
are uniformly bounded weak B(KC)-valued measures which satisfy (i) and (7).
Then g, (f) =9(f) = Vg, (f), f € C(K), and hence

/fd(El)m,y =Yg Nz, yl = Ve, (f)z,y] = /fd(E2)m,y, fed(K).
K K

By the uniqueness part of the Riesz Representation Theorem, this implies that
(E1)z,y = (E2)gy. Since z,y € K were arbitrary, it follows that By = Ea.  [J



188 CHAPTER 9. THE LANGER-JONAS FUNCTIONAL CALCULUS

Let us explicitly state the following consequence of Proposition 9.1.9.

9.1.10 Corollary. Let K be a compact Hausdorff space, IC a Krein space, and
U a bounded linear map of C(K) into B(K). Then there exists a continuation
¥ : BM(K) — B(K) of U which has the same norm as ¥, and is (9.1.3)-
continwous. In particular, U itself is (9.1.3)-continuous. Moreover, we have

(i) If U satisfies (9.1.4), then W has the corresponding property, i.e.

U(f) >0 for all f € BM(K) with f > 0.

(ii) Let T € B(K). Then T commutes with all operators ¥(f), f € C(K), if
and only if T commutes with all operators V(f), f € BM(K).

9.1.11 Remark. The continuation ¥ of ¥ to BM(K) with the properties statg
in Corollary 9.1.10 need not be unique. However, among all such continuations
there is exactly one with the property that for each z,y € K the function
A — [¥(xa)z,y] is a regular complex Borel measure. Hence, if K has the
property that all Borel measures are regular, then the continuation in Corollary

9.1.10 is unique. This applies, in particular, if K is metrizable. /

9.2 An algebra of functions

Denote by GL(2,R) the subgroup of GL(2,C) of all matrices with real entries.

9.2.1 Definition. Let 0 : R, — Ny be a function with finite support. Then
we denote by A(d) the set of all functions f € BM(R.,) with the following
property: For each w € suppd and M € GL(2,R) with ¢ps(w) = 0, there exist
ao(w), . .., Gy(w)—1(w) € C, €, > 0, and f, € BM([—€w, €4]), such that

o(w)—1
(fodu) () = Z a;(w)z? + 22 f,(2), T € [—€w,€w]. (9.2.1)

=0

/

Obviously, 2(0) is a *-subalgebra of BM (R ). However, it is not closed with

respect to ||.]co unless @ = 0 in which case 24(0) = BM(R ). Moreover, clearly,
07 <0 implies that 20(01) 2 A(D2).
9.2.2 Remark. Let 0 : Ry, — Ny be a function with finite support, and f € 2(0).
Then f € () if and only if for each w € supp d there exist M € GL(2,R) with
dm(w) =0, ag(w), ..., aywy—1(w) € C, €, >0, and f,, € BM([—€y, €4]), such
that (9.2.1) holds.

For example, it is enough to check (9.2.1) with the matrices M,,, w € Cy,

defined as
1 —w
(0 h ) , weC

M, =
01 _
(10) . w=c

/

H42
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We start with showing a basic representation of 2((9). For 6 € N denote by
C[z]s the set of all polynomials with degree at most § — 1. Note that dim C[z]s =
J.

9.2.3 Proposition. Let0: Ry, — Ny be a function with finite support, and set
§:= > per.. 0(w). Choose d € H(Ry) with 94 =0. Then

1

A(0) = H(Rwo) +d - BM(Ry) = Grip 1

Clzls+d -BM(Rs),  (9.2.2)

where we consider H(Roo) as a subspace of BM(Ry) via the map pr__, cf. 8.1.5.

oo 7

Proof. Let p € H(Ry), ¢ € BM(Ry), w € suppd, and M € GL(2,R) with
¢rm(w) = 0. Then poppr € H(R ), and hence on some neighbourhood [—€,, €]
of 0 we have the expansion

o(w)—1

(pooih)@) = 3 %Lpoqﬁxj](”(())w“rw“w)z %[po@l](”(o)wi‘a(w), 2 € [—cw, cul.
. 27

Jj=0

Moreover, since Vgog,, (0) = d4(w) = d(w),

[(dg) © ¢M] (JJ) = ‘Ta(w) ' (Ib(w)g(x)> .

We see that p + dg € 2(9). The second inclusion ‘D’ in (9.2.2) is trivial.

For the converse, we start with a preliminary observation. Denote R :=
(z414)~0=YCJz]s, then R is a linear subspace of H(Ry,) with dimension 6. The
map

R - HwEsuppD CD(U})

v 1 ena(w)-1 (9.2.3)

L (([TO(I)Mw](J))jZO )wESuppD
is linear. If r € kerv, then (z +)°~!7(2) is a polynomial whose degree does
not exceed 0 — 1 — 9(o0), and which has zeros on R of total multiplicity at
least >, cunponr 0(w). Since 2(00) + 37, counnonr 0(w) = 4, this implies that
(z4+14)°"'r(2) = 0, and hence that » = 0. Thus v is injective, and by equality
of dimensions hence bijective.

We show that () is contained in the rightmost sum. Let f € 2(d) be
given, and let a;(w) be as in (9.2.1). Define

NS | o(w)—-1
pi= v (@)} ™), coppo
and a function gg : Ry \ suppd — C as

go(z) := %, 2 € Roo \ suppd.

The certainly go is measurable. Our aim is to show that gg is bounded. On
each compact set which does not intersect supp 0 this is clear. Hence, it suffices
to find neighbourhoods of each point w € supp?® such that gy is bounded on
the respective neighbourhood. To this end, let ¢, and f,, be as in (9.2.1), and
choose €/, € (0,¢€,) such that the functions p o ¢X41w and do ¢X41w are analytic

H23

H63
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on some open neighbourhood of the closed disk {|z| < ew} and d o (;5;/[ has no
other zero than 0 in this disk. Then we have, for z € [—€,,, €, ]\ {0},

(do ¢hp, ) (@) - (g0 © dhp, ) @) = (f 0 dag, )(2) — (P o Py, ) (@) =

=20 [fu@) = 3 S]],
j=v(w) 7

and hence

do ¢t )z
(900¢X/[110)($)= {%} { Z [p ot (J)( )i 2w )} .
J= D(w)

(9.2.4)
Since ¢1\7/[1w is a bijective analytic map of C, onto itself, composition with ¢1\7/[1w
preserves zero-order. Thus the first factor is an analytic function on some neigh-
bourhood of [—e€,, €/,]. The second factor is, as the sum of a bounded function
and an analytic function, certainly bounded on this interval. Altogether, we see

that go is bounded on (;51\7/[110([—6;”, e\ {0}).

Extending go arbitrarily to all of R, e.g. by setting g(w) := 0, w €
supp 0(w), yields a bounded and measureable function ¢ : R, — C. By
construction, the equality f = p + dg holds. We have established that
A(0) € R +d-BM(Ry). To show that this sum is indeed direct, assume
that r € R Nd-BM(Rs). Then 9,(w) > d(w), w € Ry, and hence
r € kerv = {0}. O

Let 9 : Ry — Ny be a function with finite support, and choose d € H(R,)
with 94 = 0. By means of (9.2.2) we have a surjective map

. { H(Rs) X BM(Rs) —  2(0) (9.2.5)

(p,g) — p+dg

This map can be used to transfer properties of H(Rs) x BM(R) to (D).
First let us introduce more algebraic operations on H(R,) X BM (R ).

9.2.4. HRy) x BM(Rs) as an algebra: Let d € H(Ry) be fixed. Then we
define a multiplication ‘¢4’ on H(Ry) x BM(Ry,) as

(p1,91) ©d (P2, 92) == (P1P2, P192 + P21 + dg1g2) ,

and a conjugation

4 { H(Roo) x BM(Roo)
S (p,9)

H(Rs) x BM(Rao)
»*.9)
One can show by elementary computation that H(R) x BM(R) becomes a

commutative algebra if endowed with the usual vector space operations and the
multiplication ‘c4’. For example, let us check distributivity and associativity:

—
—

((p1,91) + (p2,92)) ©d (P, g3) = (p1 + P2, 91 + 92) ©a (p3, g3) =
= ((p1 4 p2)ps, (p1 + p2)g3 + p3(g1 + g2) + d(g1 + 92)g3) =
= (p1p3, 193 + P3g1 + dg193) + (D203, P2g3 + P3ga + dgag3) =
= (p1,91) ©a (p3,93) + (P2, 92) ©a (p3, 93)

H64
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((phgl) Cd (p2792)) Cd (p3,93) = (p1p27p192 + p2g1 + d9192) Od (p3a93) =

= ((P1p2)]937 (P1p2)93+p3(P192+Pp291+dg192)+
+d(p1g2+p291+dg192)93) =

= (p1p2p37p1p293 +D192p3+9g1p2p3+
+d(919203+ 91P293+P19293) +d*g19293) =

= (p1,91) ©a ((P2,g2) d (p3,93))

The conjugation ‘.7’ is obviously a conjugate linear involution. However, it is
compatible with o4 only if d = d; in general we have
)* )*.

#
((p1,91) 0a (p2,92))" = (p1,91)% ©(a%) (P2, 92

The maps ¢4 : [H(Roo) x BM(Rw)]? — H(Roo) x BM(Rs) and . # : H(Ry) X
BM(Ry) — H(Ry) X BM(Ry,) are continuous with respect to this topology.
For .# this is immediate, for o4 remember that convergence in H(R,,) implies
uniform convergence on R.

The space H(Rs) x BM(Ry) is naturally topologized with the product
topology of the inverse limit topology on H(K) and the norm topology on
BM(Ro).- /
9.2.5. A(0) as a quotient: Let 9 : Roc — Ny be a function with finite support,
and d € H(Ro) with 94 = 0. Then the map 74 : H(Ro) x BM(Ro) — (D) is
homomorphic with respect to multiplication. With the obvious modification, it
is also compatible with conjugation. To be precise, we have

[H(Roo) x BM(R,, )2 ™% (0)? H(R o) x BM(Roo ) —> 21(2)
H(Roo) x BM(Ro) —— 2(2) H(Roo) X BM(Roc) ——> 2(2)

Let us remark that 74(p, g) € H(Ry) if and only if there exists § € H(R,) with
g|]Roo\suppD = §|]Roo\supp0-

In view of (9.2.5), () is naturally topologized, namely with the quotient
topology with respect to the map m4. We will denote this topology on 20(d) by
T Let us show that 7y does not depend on the choice of d. If d' € H(R) is
another element with 9 = 0, then % is a unit in H(R). In particular, 4 is
bounded above and away from zero on R,,. Hence, multiplication with % is a

homeomorphism of BM(R,) onto itself. We have the diagram

d

H(Rso) x BM(Roo) —— 2A(0)

id ><(~di,)l -
H(Rs) X BM(Ry)

and this shows that the quotient topologies induced on 24(d) by 74 and 7,
respectively, coincide.

Let us remark that the topology Ty is finer than the topology which ()
carries as a subspace of BM(R, ), i.e. the norm topology induced by ||.||oc. This
follows since the map

7Ta : H(Roo) x BM(Roo) — (A(0), [|-]|c0)
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is continuous.
Unless the contrary is explicitly stated, all topological terms refer to the

topology Ty /
9.2.6 Lemma. For each fized fo € A(d) the map
jor{ 20 = 20
fo= ffo
is continuous. Moreover, the map ~: A(d) — A(D) is continuous.

Proof. Choose d as in Proposition 9.2.3, and write fo = 74(po, go). Then we
have the diagram

H(Rso) X BM(Roo) —— 2(0)

<>d(170790)l -fo

H(Ro) X BM(Roo) s A(0)
It follows that  fy’ is continuous. The (conjugate linear) map 7 is treated
similarly. 0

9.2.7. A(d) as a Banach space: In the quotient construction 9.2.5 we have used
the first equality in (9.2.2). The second equality in this relation can be used to
endow 2(?) with a Banach space topology.

Let 9 : R — Ny be a function with finite support. Choose d € H(R) and
a finite-dimensional subspace R of H(R,), such that

%2 =0, m(RxBMRx)) =2(0). (9.2.6)

The space R x BM(R+) is a Banach space, when endowed with the sum norm
(IPlloc = sup,cp., [P(x)])

1@, DI+ = llpllc +[lgllocs (P, 9) € R X BM(Ro)

Clearly, kermy is ||.||+-closed, and hence 2((d) becomes a Banach space when
endowed with the quotient norm of ||.||+ with respect to m4. We will denote this
norm as ||.||z,4 and the topology it induces on 2(2) by Ty .-

Let us show that two norms obtained in this way are equivalent. The same
argument as in 9.2.5 shows that always ||.||r,q is equivalent to ||.|r,q¢ when
R,d,d are subject to (9.2.6). It remains to check equivalence of norms when d
is fixed. Since each two finite-dimensional subspaces of H(R ) satisfying (9.2.6)
are contained in one common finite-dimensional subspace with (9.2.6), namely
in their linear span, it is enough to prove that ||.||r,q¢ is equivalent to ||.||%’ ¢
whenever R C R'. However, if R € R/, we have the diagram

d

R x BM(Roo) —= (A(0), [|.||=,a)

Td

R’ x BM(Roo) —= (A(2), ||.||=".a)

and hence the identity map is ||.||&,a-to-||.]| =’ ¢—continuous. By the Open Map-
ping Theorem, it is thus bicontinuous.

H54
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Note that the topology Tg .| is finer than Ty . This follows from continuity
of the inclusion map C: R x BM(Ry) — H(Ry) X BM(Ro ) and the diagram

Td

R x BM(Roo ) —2~— 2(2)

/

It turns out that algebraic operations are continuous with respect to Ty a),||. -
9.2.8 Lemma. The maps
= (QA@), To ) — (@), o) and 7 {A0), T ) — (&), T )

are continuous. In other words, whenever R and d are chosen with (9.2.6),
there exist constants C1,Co > 0 such that

I fifellm.a < Crllfillm.all follmoas (1 fllRoa < CollfllRias  fr, f2, f € A(D).

Proof. 1t is obvious from the definition that

(P1,91) ©a (p2; g2) [+ < B+ [ldlloo) - [ (P1, 1) I+ - (P2, 92) [+

1, )M+ = 11, 9) I+,

whenever all occuring elements belong to R x BM(Ry).
Set Ry := (2+14)°"'C[z]s and Ry := (2 +1)?°~2C[z]25_1 Using distributivity
and conjugate-linearity, respectively, it follows that

o4 1 [R1 x BM(Ru))> = R2 x BM(R..)

F#:Ri x BM(Ry) — R1 x BM(Ry,)

are ||.||+-continuous. The assertion of the lemma now follows from the diagrams

(RixBM(Roo), ||[|+)2 —= (Ra x BM(Roc ), ||-[14) (Rax BM(Roc), |11 +) —— (Ry x BM(Ruc), |.]1+)
(raxma) ™t @A), [|-Ira.a) ! @A@), |lIzya%)
lid lid
@A), lls.4)? ———— (A(2), |l.ll..a) @A), [|-I=.0) - @A), [I=,.a)
O

9.2.9 Remark. For later reference let us remark that, for each positive Borel
measure p and fixed p1,p2,p € H(Ro ), the maps
(91,92) = (P1,91) ©a (p2,92) and g+ (Pag)#

are p-boundedly pointwise continuous. /

Finally, let us show how the algebras 2((9) transform when performing a
fractional linear transformation.
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9.2.10 Lemma. Let 0 : Ry, — Ng be a function with finite support, let N €
GL(2,R), and set 0 := 0o ¢n. Then composition with ¢ is a homeomorphic
and Ty ||| -homeomorphic *-algebra isomorphism of A(0) onto A(0).

Proof. Choose d € H(Ry,) with 94 = 0, and set d := d o ¢. Then 0; =
Vg0 N = 0. We have the diagram

Td

H(Rso) X BM(Ro) BM(Ro)

0PN XO0PN < > o' xop N 0PN < >°¢N1

H(Rso) X BM(Rx) BM(R o)

The maps opn X oy and O¢;,1 X O¢;,1 are mutually inverse bijections, and
hence it follows that o¢y maps 2(0) bijectively onto 24(?).

By Lemma 8.1.4, (i), o¢n : H(Ry) — H(Rs) is homeomorphic. Clearly,
o¢n : BM(Rs) — BM(Ry) is isometric. We conclude that ogx : 2(2) — A(0)
is a homeomorphism. Using the same argument, only restricting the left sides
of the above diagram to R x BM(R.,) where R satisfies (9.2.6), shows that
o¢y is also homeomorphic with respect to the topologies 7y .| The fact that
composition with ¢y is homomorphic with respect to algebraic operations is
immediate. 0

9.3 The algebra C*(R)

The set R, endowed with the restriction of the topology of C., is nothing else
but the one-point compactification of R. Let V' be an open subset of R,,. Then
V' becomes a C'°°-manifold when endowed with the collection of charts

{¢>M VA {7 (00)} — C with M € GL(z,R)} . (9.3.1)

The linear space of all arbitrarily differentiable functions f : V' — C is denoted
by C°°(V). With the pointwise defined algebraic operations and conjugation
C*(V) becomes a commutative *-algebra.

With help of the charts (9.3.1) we can also define a locally convex vector
topology on C°°(V). Namely, for M € GL(2,R), € > 0 with [—¢,¢] C ¢ (V),
and k € Ny, we consider the seminorms

Phi(f) = sup |(fosy )P (@), feC™(V).

TE[—e€,€]

Then the family
{p’;“ . M € GL(2,R), e > 0 with [—e,¢] C ¢ (V) k € NO}

is a separating family of seminorms, and hence defines a Hausdorff and locally
convex topology on C* (V). We will refer to this topology as 7.

9.3.1 Remark.
(i) Let M; € GL(2,R), ¢; > 0 with [—¢;, €] € énr,(V), @ € I, be such that

U b, ((—€ire)) = V.

icl
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Then the family {p’f\/[E : i €I,k € Ny} is a separating family of semi-
norms on C°(V'), and induces the topology 7o.

(ii) Let O C C be open, and set V' := ONR4. Then we have the restriction
map po,v : F — F|y. Clearly, po,y maps H(O) into C*(V). Since
the seminorms pﬁd)é evaluate derivatives on compact intervals, po,v is
continuous.

/

It is an important fact that C*°(Ry) is contained in 2(9).

9.3.2 Proposition. Let 0 : R, — Ny be a function with finite support.
Then C®(Ru) € A(0) and the set-theoretic inclusion map is Too-to-To .|~
continuous.

Proof.

Step 1; C°(Ry) C 2A(0): Let f € C*°(Rw) be given. Then, for each w € Ry,
the function f o (b;&lw also belongs to C*°(Rw). Let f, : R\ {0} — C be the
function which is uniquely defined by the relation

o(w)—1

(fodn )@ = >

Jj=0

1 , ,
ﬁ[f 0 a1V (0)27 + 2°) fu(2), =€ R\ {0}
Then, by Taylor’s Theorem, for each x € R\ {0} there exists a point &, on the
line segment connecting = with 0 such that f,(z) = ﬁ[f o ¢>I\_/[1w](°(w))(§z).
We see that, for each € > 0,

1
sup | fuw(z)] € —— sup |[fo¢p) 100 (2)]. (9.3.2)
TE[—e€,€] U(U))' TE[—e€,€] | M ‘

We see that f o ¢1\_/[1w possesses a representation as required in (9.2.2), and con-
clude that f € 2(9).

Step 2; Continuity of g: Let d € H(Ry) be such that 94 = 0, and set ¢ :=
> wesuppo 0(w). Let f € C%(Ru), then by means of Proposition 9.2.3 we find
p € (z+i)"0NC[z]; and g € BM(Ry) such that f = p + dg. Then the
function g can be chosen to be continuous. Continuity at a point w ¢ supp?d
readily follows from the fact that f = p +dg. If w € supp?, then g o ¢1T41w
coincides on some neighbourhood of 0 with the function f,, constructed above.
However, if  — 0 then also £, — 0, and hence f,,(z) — ﬁ[f o ¢y 1CN(0).

Thus redefining g on supp 0 as g(w) := ﬁ[foqﬁ&llu](a(w))(O) gives a continuous
function.

Step 3; Continuity of the map f — (p,g): By means of the previous steps a
map of C®(Rs) — R x C(Ry) is well-defined by mapping a function f to the
pair (p,g) with f = p+ dg. Let v be the map defined in (9.2.3), and let €,
w € suppd, be chosen as in the proof of Proposition 9.2.3. Let 8, € (0,€.,) be
such that the distance of the closed set ¢X41w({|z| < fBw}) to the point —i is at
least %

We consider the space R endowed with the supremum norm || :=

SUP|, 44> 1 [r(2)], and the space [[,cquppo C*™) endowed with the maximum
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norm ||((aj7w)?(:“6)71)w65uppa|| = maxXy,j [a;w|. Since v is a bijection between
these finite dimensional spaces, it is bicontinuous. Let ||[»~!|| be the operator
norm of =1 corresponding to these norms.

Choose finitely many points wi,...,w, € Ry and numbers €, ...,€6, > 0,
such that

supp 0 N U (;51\7[1%_ ([—ei, ez]) =0,
i=1
and .
U ol (=8u:B) U 6af, (—eis6) = R
weEsupp 0 i=1

Since z~°()[(dg) o (;51\_/[1 ](z) remains bounded when x tends to 0, we must have

v(p) = (( 17003 1205557, couppo
and it follows that

1 .

<=1 . 2 _

Ipll < =t - max = pi, g, (f)
0<j<v(w)

Set D; := (minwe‘b;{l () ) ld(z ))~t. Then we have
0 -1 1 i
< (Prec D+ I o <iph, 6,(£)) - D

wesupp 0
0<j<0(w)

T e gb&lwl ([—ei,ei]) )
To estimate |g(z)| on the sets QSJT/_[lw ((—=Buw, Bw)), we use (9.2.4). Set D,

o () —
(minge(—g,,5.] %) 1, and remember that (9.3.2) says
Lo
sup [ fu(7)] < ——=p (f)-
w€[~Bu Bl ()1 e

To estimate the series in (9.2.4), we use the Maximum Principle. It gives

3 %[po@i]“)(omf““} =

<

0
Putting together these estimates gives

o(w o(w)
) < Du - (s e )+ (50) " Inl+

( )D(w) wz ]l ‘5\411/)611/ )6 )’ xed)&lw((_ﬁwaﬁw))-

7=0
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We see that

Pl = sup |p(z)

and [|g]lec = sup |g()|
rER zER

are bounded by expressions which involve constants not depending on f and
the seminorms

p?wwmi, i=1,...,n, Py g, WESUPP,0 < j <d(w).

Step 4; Finish of proof: We have

d

R % C(Roo) —2> (A(2), Tay 1)

_ 7
fH(pyg)T -
C*(Roo)
and hence the inclusion map is the composition of two continuous maps. O

Let f be a function defined on an analytic manifold X and taking values in a
locally convex vector space X'. Then we say that f is strongly analytic if for each
chart ¢ : U — C of X, then map fop~!:¢{U)— X is complex differentiable
with respect to the topology of X. We say that f is weakly analytic, if for each
continuous linear functional A € X’ the complex valued function A o f belongs
to H(X).

Clearly, f being norm analytic implies that f is weakly analytic. If X is a
Banach space, also the converse holds, and we will shortly speak of an analytic
map.

In our later considerations, the following construction appears.

9.3.3 Proposition. Let 0 : Ry, — Ny be a function with finite support, and let
f € A(D). For each fixed value of the parameter z € C consider the function

£ 1 (Coo \supp f) x Roe = C

defined as
w=—=f(x), weC\suppf,zeR, w#x
0 , weC\suppf,zeR, w==zx
Er(w,x) == \ ! B (9.3.3)
0 , wé€C\supp f,x =00
fl) , we{oo} \supp f,z € Reo

Then, for each fized w € Cx \ supp f, the function xz — &r(w,x) belongs to
A(0). The function w — &5(w,.) is an analytic map of Cs \ supp f into the
Banach space (A(0), Toy . ) -

The main argument is the following ‘H(O) version’.

9.3.4 Lemma. Let O C Co be open, nonempty, with O # Cu, and consider
the function

go: (Coo \O) x O — C
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which is defined as
w—z = eC\O, x€0)\ {oo}

x

go(w,z):=40 , weC\O, z€0n{co}
1, we{o}\O, z€0

Then, for each fired w € Co \ O, the function x — go(w, x) belongs to H(O).
The function w — go(w,.) is an analytic map of Co \ O into H(O).

Proof. We will use the charts

om0 \DIV (e} = € pnimap 1y 1€\ D\ (0= €

to describe the analytic manifold C, \ O, and the charts
Y1 :=¢r: O\ {0} = C, 1 ::qﬁ(o 1) :0\ {0} = C

10

to describe the analytic manifold O. Moreover, we compute

goler (W xvr (1) =457 , u€pi([Cou \ O]\ {00}), t € ¥1(0\ {o0})
go(ior () xthy (1) = Bi=2 L w € @1([Coc \ O]\ {oo}), £ € 92(0\ {0})
go(pa (W)= (1) =15 , u € v2([Coc \ O]\ {0}), t € %1 (O \ {o0})
go (i3 () x by (1)) = G5, w € @a([Coc \ O]\ {0}), £ € 42(0\ {0})

(9.3.4)

Each of these functions depends, for u fixed, analytically on ¢. This already
shows that go(w,.) € H(O).

The function w — go(w,.) being an analytic map of C, \ O into H(O),

means that for both charts ¢;, j = 1,2, and each ug € p1([Cx \ O] \ {oc}) and

uo € 2([Coo \ O] \ {0}), respectively, the limit

_gole; (), x) — go(e; " (uo), )
lim
u—ug U — Ug

exists locally uniformly for € O. Since the sets O \ {oo} and O \ {0} are an
open cover of O, it is enough to show that, for each j € {1,2}, the limits

-1 -1
“(u), ) — “(ug), T
grsluo,z) = lim go(p;  (u),x) — go(p;  (uo) ), i=12.
uU—uo U — Uug

exist locally uniformly on O \ {oo} and O \ {0}, respectively, and coincide on
the intersection of these sets. This, however, follows from (9.3.4). It is straight-
forward that

) — g 90007 0.V (0) — go (et (wo) v (1) |z~
gll(’UJval (t)) o u1~>u0 U — Uug N (UQ - t)2

Sy e goler Hw), 3t (1) = goler H(uo) vy (1) - zt—1
120,45 (1)) = Tim. e RECTEE

locally uniformly for ¢ € ¢1(O\ {oc}) and t € ¢1(O\{0}), respectively, and that

1
Z—x zz—1 1 00
— z = 0O\ {0 .
gll(uo,x) = (uo I)2 (%UO 1)2 . 912(U07$)7 T e \{ ) }
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Next,
gy g 90003 (W), ¥ (1) — go(ey H(uo) U () 2 —t
goa(uo, 7 (1)) = Jim SRS R
=1(0) bt _ 1w -1 —z
g2 (g, 5 (1)) = lim golps (u), vy (t)i—ii(% (uo), ¥y (1)) :t(;_ u0t)2

locally uniformly for t € ¢1(O \ {o0}) and ¢ € ¢1(O \ {0}), respectively, and

z—x 11—z
ng(u()’I) = ( = 71 - 2 2922(u07x)7 HARS O\{0,00}

L —zup)? (L —up)

Proof (of Proposition 9.3.3).
Step 1: Let x € C°(Ry), O C Cy open, and define a function

hy.0: (Coo \O) x Roo — C

as

by o(w, ) : go(w,x)x(z), z€O
x o , @ € Ry \ supp x

Note that, since supp x C O, this function is well-defined on all of R,,. More-
over, for each fixed w € Coo\O, we have hy o (w,.) € C*°(Ry). Since multiplica-
tion with a fixed function is a continuous map of C*°(0) into itself, the function
w — go(w,.)x(.) is analytic. The zero function of Co, \ O into C*°(Cy, \supp )
is trivially analytic. Again, since supp x C O, the function w — h, o(w,.) is
thus an analytic map of Co, \ O into C®(Ry,).

Step 2: Let f € 2(0) be given. Choose O C C open with supp f C O, and
choose a partition of unity x1,x2 € C°°(Rw) subordinate to the open cover
{ONRw, R \ supp f}. Then f = x1f, and

Er(w,x) = hy, o(w,z) f(z), wECx\O,z € Ry.

By Proposition 9.3.2, and since multiplication with a fixed function in 20(0) is
continuous, it follows that {s(w,.)|c_\5 is an analytic map of C \ O into the
Banach space 24(?).

Since O was arbitrary, it follows that &; is in fact analytic on all of C \

supp f. O

9.4 The functional calculus. I. Definitizability
along R

9.4.1 Definition. Let I be a Krein space, and A be a selfadjoint linear relation
in K. Then we say that A is definitizable along R, if

(7) The sets 0(A) "Ry and o(A) \ Ry are relatively open in o(A).

(#7) Denote o¢ := 0(A) NRu. There exists an element d € H(Ry,) \ {0} such
that ®7;7°(d) > 0.
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If d € H(o(A) "Ry ) is an element with the properties required in (i), we call
d Ry -definitizing for A. /

In the next theorem we comprehensively formulate the properties of the
functional calculus for selfadjoint relations which are definitizable along R..
Recall that pr__ denotes the canonical map of H(Ry) into C'(Re).

9.4.2 Theorem. Let K be a Krein space, and A a selfadjoint relation in K
which is definitizable along Ro. Denote

Dét := min {Od : d Ryo-definitizing for A} ,

and let A4 be the commutative *-algebra A = A(02,). Then there erists a
continuous *-algebra homomorphism ® 4 : A4 — B(K) which extends the Riesz-
Dunford functional calculus in the sense that (oo := 0(A) NRu)

q>A,<70

H(Roo) —— B(K)

The map ® 4 has the following additional properties:
(i) Set Ky := ran@égo(l) and Ky := kerfbég”(l). Then for all f € A4 the
decomposition K = K1[+]Kq reduces ®(f). Moreover, ®4(f)|x, = 0.
Let T € B(K1). Then we have T - (A — w) Y, = (A —w) Y, - T,
w € p(A)NC, if and only if TO®A(f) = Pa(f)T, f € Aa.

(1i) Let d be Roo-definitizing for A and f € A 4. Ifé is bounded and nonneg-
ative, then ®4(f) > 0.

(#4t) The Spectral Mapping Theorem: Let f € A4, and assume that each func-
tion fy, in (9.2.1) is continuous at 0. Then

o (@a(f)licy) = f(o(A) NR) .

(iv) The set o(A)NRo is the smallest closed subset C of Roo with the property
that
Vie[Aa: Cnsuppf=0 = P4(f)=0 (9.4.1)

We refer to ®4 as the Langer-Jonas functional calculus for A.

The rest of this section is devoted to the proof of this result. It is quite elab-
orate and will be carried out in several steps according to the following schedule:

Step 1: Positivity ensures continuity and therefore existence of continuous ex-
tensions.

Step 2: For each R..-definitizing element d a map ¥¢ : BM(R.,) — B(K) is
constructed.

Step 3: The maps U? give rise to continuous algebra homomorphisms Agj of
H(Rs) X BM(Ry) into B(K).

Step 4: We define the desired functional calculus ® 4.
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Step 5: We show properties (7) and (44).
Step 6: We deduce the Spectral Mapping Theorem with help of a perturbation
argument.

Step 7: We show that the support of the functional calculus is equal to the
spectrum of A.

Step 1; Consequences of positivity

9.4.3 Proposition. Let K be a Krein space, and K a compact Hausdorff space.
Moreover, let D be a dense linear subspace of C(K) which contains the constant
function 1 and is closed with respect to complex conjugation, and let ¥ : D —
B(K) be a linear map which fullfills the positivity property

W(f) >0 for all f €D with f>0. (9.4.2)

Then there exist a linear || s -to-||.||-bounded and (9.1.3)-continuous extension
U of U to BM(K) with

U(f) >0 for all f € BM(K) with f > 0. (9.4.3)

Moreover, an operator T' € B(K) commutes with all operators W(f), f € D, if
and only if it commutes with all operators V(f), f € BM(K).

In the proof we use the following two statements which ensure norm-
boundedness.

9.4.4 Lemma. Let K be a compact Hausdorff space. Moreover, let D be a
linear subspace of C(K) which contains the constant function 1 and is closed
with respect to complex conjugation, and let ¢ : D — C be a linear functional.

If
o(f)>0 forall feD with f>0,

then ¢ is bounded.

Proof. First we consider a real-valued function f € D. Then | f|le — f > 0,
and hence ¢(]| fllco — f) > 0. The value ¢(|| f|loo) is nonnegative. Since ¢(f) =
o(f = I flloc) + (|l flloo), it follows that ¢(f) is real and satisfies the inequality

o(f) < @[l flloo) = I flloo - ¢(1).

Since with f also — f belongs to D and is real-valued, we find that also —p(f) =

e(=f) < [[fllsc - (1). In total, thus |o(f)] < [|flle - (1) N
Let f € D be arbitrary, and write f = f1 + ife with f; = %(f + f) and

fo = %(f — f). Since with f also f belongs to D, the functions f; and fo
belong to D. Moreover, they are real-valued and | fjlloc < [|fllocs 7 = 1,2.
From what we showed above, it follows that

(N < Te(fl + [e(f2)] < 20(1) - [ flloo -
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9.4.5 Lemma. Let K be a Krein space, and T; € B(K), j € J, a family of
bounded linear operators. If

sup |[Tjz,z]] < o0, z€K,
JjEJ

then sup;¢ ; || T < oo.

Proof. By the parallelogram rule we have

AT,y = [Tj(x +y), (¢ +y)] = [Ti(z —y), (= —y)] +i[Tj(x +iy), (= + iy)] -
—i[T;(xz — iy), (x —iy)], z,yek.

Hence, the present hypothesis implies that

sup |[Tjz,y]] < o0, x,y€K.
jel

Let J be a fundamental decomposition of X, and denote by J the corresponding
fundamental symmetry. Then, for each x € IC, the family

{(,JTjz); : jeJ} C (K (,.)35)

is pointwise bounded. Using the Banach-Steinhaus Theorem twice, this implies
that sup;c ; [|JT;z|| < 0o, z € K, and in turn sup,¢ ; | JT}|| < co. Since [|J 71| =
1, thus also sup;¢ ; [|T}]| < oo. O

Proof (of Proposition 9.4.3). For each x € K, the map

_{D — C
L F e ()

is a linear functional. By the assumption (9.4.2) of the proposition, it satisfies
the hypothesis of Lemma 9.4.4, and hence is bounded. This means that

sup |ez(f)] < o0, z€K.
feD
[l flloo<1

Lemma 9.4.5, applied with the family {U(f): f € D,|flloo <1}, gives

sup || W(f)[] <oo.
feD
flle<1
This just says that U : D — B(K) is ||.|lco-to-||.||-bounded.
Since ¥ is bounded, there exists a bounded linear continuation of ¥ to

C(K), say ¥, : C(K) — B(K). By Corollary 9.1.10 ¥, possesses a ||.||co-to-||.||—
bounded and (9.1.3)-continuous continuation

¥ : BM(D) — B(K).

In order to show that ¥ satisfies (9.4.3), it suffices to show that ¥, has the
corresponding positivity property, cf. Corollary 9.1.10. Let f € C(K), f > 0,
be given. Choose a sequence f,, € D, n € N, with f,, — f in C(K). Set

Gn = fn — ;Téllféfn(x) + gélﬁ f(;E) )
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then g, € D, g, > 0, and g, — f in C(K). Therefore

[P .(f)x,z] = nlingo[‘llc(gn)x,x] = nlingo[\ll(gn):zr,x] >0.
In order to show the last assertion, assume that T € B(K) and commutes with
all operators ¥(f), f € D. Since VU, is the continuation of ¥ by continuity,
it follows that T" commutes with all operators W.(f), f € C(K). Once again
referring to Corollary 9.1.10, yields that T commutes with all operators \if( 1),
£ € BM(K). [

Step 2; Construction of U4, d Ro-definitizing

Let d € H(Rs) be Roo-definitizing for A, and set og := 0(A) NRy. Since pr_,
maps C(z) NH(R) bijectively onto C(z) N C(Rs ), we may define

{(C(z)ﬂC(ROO) ~ BK)
g = Ppi(d-pgl(9)

Our aim is to apply Proposition 9.4.3 with K = R,. Clearly, U2, is linear. The
set C(2)NC(R) is a subalgebra of C(R) which contains the constant function
1. It is point separating since it contains the function (z —4)~!, and it is closed
with respect to complex conjugation since it contains with a function g also
the function ¢*. By the Stone-Weierstral Theorem, therefore, C(z) N C(Ro) is
dense in C'(Roo).

The required positivity property (9.4.2) can be deduced from d being defini-
tizing with help of the following lemma.

9.4.6 Lemma. Let g € C(z) N C(Ry), and assume that g(z) > 0, z € Ru.
Then there exists ¢ € C(2) N C(Ry) such that g = qq.

d .
rat *

Proof. Since g takes real values along the real axis, we must have ¢# = ¢. In
particular,
04(2) =% (2) =04(2), 2¢€C,

i.e. the zeros and poles of g are located symmetrically with respect to the real
line. Moreover, since g takes only nonnegative values along the R, each real zero
must have even order. Set

S(Z) = H (2 —u})ag(w) . H(Z _w) ayéw) ,

Im w>0 weR

then the function g- (s#s)~! is a rational function which has no poles and zeros
in C. Thus it is constant, say g - (s#s)~! = 4. Evaluating at a point w € R
which is no zero of g shows that v > 0. We see that the function q := /7 - s
satisfies the required identity g = ¢¥q. 0

Let g € C(2) N C(Ry) and assume that g(z) > 0, z € Ry. According to
Lemma 9.4.6 we can choose ¢ € C(2) N C(Ry) with g = ¢#q. It follows that

(@ (9)z, 2] = [@Ri°(d- pa (¢F))w, 2] =
= [P355° (pr (a™)) - PR1°(d) - PRI (pr ()2, 2] =
= [255°(d) - 215" (Pt (@) 2, PRis” (P (9)) 2] > 0.
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All hypothesis of Proposition 9.4.3 are verfied, and we obtain a linear extension
U of U, to BM(Ry) which is ||.||co-to-||.]|-bounded, (9.1.3)-continuous, and

rat
maps nonnegative functions to nonnegative operators.

9.4.7 Lemma. We have
U (pr..(9) = 35" (dg), g € H(Ro).
Proof. By the definition of U?, we have
o pr,. ‘(C(z)r‘wH(]Roo) = @ég‘) ° (d')‘C(z)mH(Rm) :
Both functions ¥?opr__ : H(R,) — B(K) and @é’go o(d") : H(Rs) — B(K) are

continuous. Since C(z) NH(Ry) is dense in H(R), cf. 8.1.5, these functions
coincide on all of H(Ry). O

Step 8; The maps AZ;

From now on we will suppress explicit notation of pr__, and consider H(K) as
a ‘subset’ of C(K). Note that, in places, this abuse of language has to handled
with care since pr_ need not be injective.

Let di,...,d, € H(Rw) be Roo-definitizing for A, and let by,...,b, €
H(Rs). Then we define a map

H(Rs) x BM(Rs) — B(K)

Adj . A n
bi (p,9) = Prp°(p)+ > Wi(b;g)
=
9.4.8 Lemma. The map AZ; is linear and continuous. Set d := Z?:l bjd;,
then
Ayl
b
H(Ruo) x H(Ry ) —— B(K) (9.4.4)
ﬂ'dl /
wg
H(Ro)

For each fized p € H(Rw) the function g — Agj (p, g) is (9.1.3)-continuous.

d; - . . .
Proof. The map A,’ is a composition of linear and continuous maps, namely of
J

the projections, the maps g — b;g, and the maps @ég”, U Thus it is itself
linear and continuous. In order to show (9.4.4), let (p, g) € H(Rw) x H(Ry) be
given. Using Lemma 9.4.7, we obtain

Ay (p.g) = PR (p) + Y U (big) = Ppi°(p) + Y PR° (dsbsg) =
=1

Jj=1

=Ppi (p+ Y dibig) = Ppiy (p+dg) = (Ppy° 0 7a) (0. g)
=1
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Finally, let p € H(R) be fixed. For each measure p, multiplication by b;
maps p-boundedly pointwise convergent sequences to u-boundedly pointwise
convergent sequences. Hence, (9.1.3)-continuity of ¥% implies that the map g ~—
Ui (b;g) has the same property. Thus also g +— AZ; (p, g) is (9.1.3)-continuous.

U

We can now deduce the main properties of AZ;.

9.4.9 Proposition. Let dy,...,d, € H(Ry) be definitizing functions for A,
bi,... by € H(R), and set d := 377, b;d;.

(i) The map AZ; : HRw) x BM(Ro) — B(K) is a continuous algebra ho-
momorphism, when H(Ry) x BM(Ry) is endowed with the multiplication

¢ ’

Sq .
(ii) We have

d#

AZZ (»".9) = [Ab% (.9)]" (,g) € H(Rw) x BM(R).

(131) We have ker mq C ker AZ?.
J
(iv) Let in addition to d;,b; some Ry -definitizing elements di,...,d,, €
H(R) and elements by,...,b, € H(Rs) be given, and set d' :=
S bd. If d'|d in H(Ro ), then

J=1"3"3"

/

. d’ d
Ay (p.g) = Ay (1% 59)7 (p,9) € H(Roo) X BM(Ro) -

Proof. For (i) it remains to check compatibility with multiplication. To do so,
we use (9.1.3)-continuity. For p1,p2 € H(Rs) and g1,92 € C(z) NH(Rx), we
can compute

Ay ((p1,91) ©a (D2, 92)) = PR° (ma((p1, 91) ©a (P2, 92))) =

on do i i (9.4.5)
= Dpps” (ma(p1, 91)) PRy’ (a2, g2)) = Ay (01, 91) A, (P2 g2)
Let p1,p2 € H(Ro) and g2 € C(2) NH(R ) be fixed. Both functions
d; d; d;
91— Ay ((p1,91) ©d (p2,92)) and gy — Ay (p1, 1) Ay (P2, 92)
are (9.1.3)-continuous. Thus (9.4.5) implies that
d; d; d;
Ay (P15 91) ©a (02, 92)) = Ay (D1, 91)A, (P2, 92),  p1,p2 € H(Ro), (9.4.6)

92 € C(2) NH(Rs), 91 € BM(Ry) .

Next keep, besides p1,p2 € H(Ry), a function g1 € BM(Ry) fixed. Both
functions

dj(

dj dj
g2 = N ((p1,91) ©a (p2,92))  and g2 = Ay’ (p1, 91) Ay (P2, g2)

H28

H32
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are (9.1.3)-continuous. Thus (9.4.6) implies that

dj dj dj
Ay ((p1,91) ©d (2, 92)) = Ay (p1, 91)Ay) (P2,92), p1,p2 € H(R),
91,92 € BM(ROO) .

We come to the proof of (7). We know that with d; also df is Roo-definitizing for

#

A. Hence, the map AZ;* is well-defined. Let p € H(R) and g € C(z) NH(Ro).
Then ’

dj — Ao — Ao

Ay (07,9) = O (ma(0™.9)) = ®Ri5° ([m(as) (0, 9)]7) =
A,o0 * d?& *
= Ppi5° (mam (p,9))" = (Ab# (p; g)) -
#

Again (9.1.3)-continuity yields that Agj (p*,9) = (AZ; (p,g))* forall p € HR),
9 € BM(Ro). ’

For (iii), assume that (p,g) € kermy, i.e. p+dg = 0. Then g = —d~!p,
and hence g is the restriction to R, of a meromorphic function defined in some

neighbourhood of R.,. However, since g € BM(Ry,), actually —d~'p € H(Ry).
Thus

d]‘ ,0
Ay (p,9) = O3 (ma(p, 9)) = 0.
Finally, assume that additionally d} and b; are given. For p € H(Ry) and
g € C(z) NH(Ro) we can compute

d’; d P d o d.
Ay (P 379) = 5 (p + d'29) = SR (p + dg) = Ay (p, g).-

Both functions

d’, d d;
9= A (p.59) and g A7(p,g)

are (9.1.3)-continuous. It follows that they coincide on all of H(Ry) X BM(Ry).
U

Step 4; Definition of ® 4

Let d be a greatest common divisor of the set of all Ro,-definitizing elements of A,
and choose Roo-definitizing elements dy, . . ., d, H(R ) and elements b1, ...,b, €
H(Rs) such that d = Y"1 | b;d;. Since 04 = 04, we have A4 = A(dg).

Due to Proposition 9.4.9, (i), there exists a continuous algebra homomor-

phism ® 4 with

Ay
H(Ro) x BM(Ry) d > B(K)
Trdl B _ /<I)/A

9.4.10 Lemma.

(i) The map ® 4 does not depend on the choice of d.
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(ii) We have ®4(f) = ®%, f € Aa.
(131) Whenever F' € H(Ro), then ®4(F) = @ég” (F).

Proof. Write d =Y, bjd;. Assume that d’ is another greatest common divisor
of the set of all Ro.-definitizing elements of A, write ' = Y_!", b.d}, and let &/,
be the correspondingly defined map. We have

-7 - ﬁd/ g/ . =~ <
-7 / 1d><(di/-) \ RN
o4 H(Roo)x BM(Roo) H(Roo)xBM(Rs)
Sl \ dj d;/ ~ 7
~ < _ Abj A7 -
- - _ \\ /_// i =
>B(K)=

and hence ® 4 and @/, coincide. This proves (7).

To show (i), note that with d also the element d” is a greatest common
divisor of the set of all Ro-definitizing elements of A. We have d# = """ bf&d#
and, due to the already proved item (¢), the diagram

Dy )><BM o)

Finally, we turn to (i4i). Let F' € H(Ry) be given. The definitions of ®4 and
A J glve
DA(F) = A} (F,0) = B5is° (F).

Step 5; The properties (i) and (i)

Let f € 2A4 be given. We have @g]’g”(l) = ®4(1), and

PA(f)Pa(l) = 2a(1)@a(f) = Pa(f).

This already shows that the decomposition K = K;[+]K2 reduces ®4(f) and
that ®4(f)|x, = 0.

Next, let T € B(K1) be given, and assume that 7' commutes with all op-
erators (A — w) l|x,. Set A1 = AN K2, then 0(4;) = 0(A) N Ry and
(A1 —w) ' = (A—w) i, w € p(A)NC. The set O := Cx \ (0(A4)\Roo) is an
open subset of Co, and contains o(A;). Moreover, O Np(A41) = ONp(A). The-
orem 8.3.1 implies that 7' commutes with all operators ®qph (F), F € H(a(A;)).
However, if f € H(R), then @ﬁg“(f) = ®4L(f), and we conclude that

TN (f) = piy®(/)T. | € H(Roo) .
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Let d € H(Rs) be Roo-definitizing for A. By the above relation 7' commutes
with all operators ¥e (f), f € C(z) N C(Ry), and by Proposition 9.4.3 hence

rat

with all operators U?(f), f € BM(R,,). The definition of AZj shows imme-

diately that T" commutes with all AZ; (,9), (p,g9) € H(Rs) x BM(Rs). This
gives, by the definition of ® 4, that T commutes with all 4 (f), f € A4.

Conversely, assume that T®4(f) = @a(f)T, f € Aa. Let w € p(A) \ Reo,
then the function f(z) := L= belongs to H(Rs), and we have

DA(f) = PR°(f) = (A —w) ' Da(1).

Hence, T' commutes with (A —w)~!|x,. Since the resolvent (4 —w)~! depends
continuously on w, and p(A)\ R is dense in p(A)NC, the operator T' commutes
also with all operators (A —w)~!, w € p(A) NR.

We turn to the proof of (ii). Let d be Roo-definitizing for A, and let f € A4
be such that 5 € BM(R.) and takes nonnegative values. According to the

definition of ® 4 choose d;-, b;- € HRw), d' := E?:l b;-d;-, such that ®4 oy =

AZ’j' Then d’|d in H(Ry,), and hence using Proposition 9.4.9, (iv),

’ d
@4(1) = A 0.9y = a1(0. 2y = w(d).

However, U has the property to map nonnegative functions to nonnegative
operators.

Step 6; The Spectral Mapping Theorem

Let f be given according to Theorem 9.4.2; (iii). According to the definition of
P 4 choose dj,b; € H(Rw) such that (d:=>"" | b;d;)

(I)A OTg = AZJJ .
Moreover, write f = p 4+ dg with p € H(Ry) and ¢ € BM(R,). Due to

the continuity assumptions put on f, the function g is continuous at each point

w € supp 0q. If w € Ry \supp 04, then g(z) = % in a neighbourhood of w

with d(z) being nonzero, and hence is continuous at w. Altogether, g € C(Rs).
Choose a sequence g, € C(z) N C(Ry) which converges to g uniformly on
Ro. We can write

Pa(f) =Pa(p+dgn) + Pal(d(g — gn))-
Continuity of AZ; gives
lim @4(d(g - ga) = lim A (g —ga) =0,
and hence we have

DA(f) = lim [®a(f) — Pald(g — gn))] = Jim 4 (p + dgn) -

However, since g, € H(R), we have ® 4(p + dg,,) = @SB’” (p+dgn).
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By the Spectral Mapping Theorem for the Riesz-Dunford calculus we thus
have o(®4(p+dgn)) = (p+dgn)(c(A)). Since p+dg, converges to f uniformly,
(p+dgn)(c(A)) converges to f(c(A)) in the Hausdorff metric. Since ® 4(p+dg,)
converges to ®4(f) in the norm of B(K), and the perturbation ®4(p + dgn) —
D 4(f) commutes with ®4(f), [K, IV.Theorem 3.6] implies that o(®4(p+ dgn))
converges to o(®4(f)) with respect to the Hausdorff metric. Putting together
these pieces, we obtain a(®4(f)) = f(c(A)).

Step 7; The support of ®4

The crucial construction is to assign to each function f € 24 an analytic func-
tion 2y : p(A) U (Cox \ supp f) — B(K). To this end, fix a point z € p(A) N C,
and consider the functions

L(w) = —(w—2)(A—w)"tPA(f), wepA)nC
- 2al) ., w € p(A) N {0}

Q(w) = (I)A(gf(wv ))7 w € Cw \suppf

Both functions are analytic on their domains. For =9 this follows from Propo-
sition 9.3.3, for Z; we only have to remember that lim,, ., w(A —w)~! = —T
in case co € p(A).

Next, we show that Z; and Z5 coincide on the intersection of their domains.
First we consider a point w € C\ R which belongs to p(A4) N (Cx \ supp f).
Then the function —— belongs to H(Rs) as a function of z, and

[1]

[1]

@a( . )= ( ! )= (A=) (1) = (A - w) @A)

r —w r —w

Since & (w,x) = =2 f(x), we find

Ea(w) = Pa(&f(w,.) = —(w—2)- (A—w) ' @A(1) - @a(f) = Er(w).

The set [C\ R] N [p(A) N (Co \ supp f)] is dense in p(A) N (Cx \ supp f), and
hence by continuity Zq(w) = Zz(w) for all w € p(A4) N (Co \ supp f).

Due to what we just showed a function Z; : p(A) U (Cx \ supp f) — B(K)
is well-defined by

= (w) = § W) W XA
Ea(w), we Cq \supp f

and is analytic.

After this preparation, we come to the actual proof of Theorem 9.4.2, (iv).
First, we show that the set 0(A) "R indeed has the property (9.4.1). Let f €
A4 with supp fN(c(4) "Ry ) = 0 be given. Since, by definition, supp f C R,
this means that supp f C p(A). Hence p(A) U (Cw \ supp f) = Cx, and thus
Ey is an analytic map defined on all of C,. By Liouville’s Theorem it is thus
constant. The actual value of this constant can be computed by taking limits:

limy o0 Z1(u), o0 € p(A)

hmuﬁoo EQ (u) ) o0 g supp f

(1]

U—00

f(w) =Eg(o0) = lim Zp(u) = {
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If co € p(A), then limy, o[~ (w — 2)(A—w)™1] = I and hence lim,, o Z;(u) =
D4(f). If oo & supp f, then limy, o0 &5 (u,.) = f(.) and again lim, oo Z2(u) =
D 4(f). Thus
Ef(w) =2a(f), weCx.

However, we have Z;(z) = Z;1(z) = 0, and it follows that ®4(f) = 0.

To show that o (A)NR is the smallest set with (9.4.1), let some closed subset
C of Ry with this property be given. We have to show that C' O 0(A) "R, in
other words, Roo \ C C p(A). To this end, we first separate the real and nonreal
parts of the spectrum of A. Set

X =ran @70 (1), Xp = ker®5;7°(1), A; = ANXZ, Ay = ANAZ.
Then A = A;+A4; and (A1) = 0(A) NRy, 0(Az) = 0(A) \ Ry. Moreover,
(= w)™ = (A= w) W), = (A= w) AW, wep(d).

Next, for each open subset O of C,, with C C O, choose a partition of unity
X0, X2 € C(Ry) subordinate to the open cover {O N Ry, Ro \ C} of Reo.
Since C' satisfies (9.4.1), we then have

DA(f) = Palxof) + Palxaf) = Palxof), [feUa. (9.4.7)

In particular, ®4(1) = ®a(xo). Set
D:=Cn[p(A4)U(Cs \suppxo)],

and consider the analytic function R(w) := :"Z‘i—gu)ul, weD. Ifwe p(A)NC,
then R(w) = (A —w) '®4(1)|x, = (A1 —w)~". For u,w € p(A) NC, thus the
resolvent identity
R(u) = R(w) = (u — w)R(u) R(w)

holds. The set D contains C\ R, and hence is connected. Keeping w € p(A)NC
fixed, and applying the Identity Theorem, we obtain that the resolvent identity
holds in fact for all uw € D and w € p(A) N C. Keeping u € D fixed and again
applying the Identity Theorem, yields that R satisfies the resolvent identity
for all w,w € D. By Corollary 7.3.3, this implies that p(A;) 2 D. Since
supp xo C O, thus

C\ O Cp(A1) NReo = p(A) NRo C p(A).

Consider the point co and assume that oo € O. We are going to show that A;
is a bounded operator, i.e. that co € p(A). Fix z € p(A) \ Ry. For w € C\ R,
w # z, define a function g,, : Roc — C as

Guw(x) == {Z_QEXO(JC), zeR

0 , T =00

Then g, € C®(Ru), and gy () - &y (w, ) = xo(z), © € R. Remembering
(9.4.7), thus

P a(gw) - Pa(byo(w,.)) = Pa(xo) = Pa(l). (9.4.8)
Let R > ||¢a(290)], and choose w € p(A) \ Ro with |w| > R. Note here that
this choice of w is possible, since o(A) N R and o(A) \ R are disjoint and

H60

H61
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relatively open subsets of o(A) and hence oo is not an accumulation point of
(A) \ Roo. We have

1 1

®a(guw) = == (Pa(z90) = wPa(1)) = ————(Pa(2g0) —w)@a(1),

and hence ® 4(gw )i, is boundedly invertible. Moreover, by (9.4.8), we have

(@atamnle, =)™ = = (Ratole) = g a0 ), =
C Bw)| Eiw)| » ) -
Cz—wlk,  z—w ;cl_(A_w) Da(x0)lK, = (A1 —w) ™.

We conclude that Ay = @ 4(2g0)|x,, and in particular that thus 4; € B(Ky).
We have so far established that Co, \ O C p(A), in other words that O D
o(A). However, since C'is closed, we have

C:ﬂ{O: Og(Cooopen,CgO},

and hence C' D o(A).

The proof of Theorem 9.4.2 is finished. 0
9.4.11 Remark. The Langer-Jonas functional calculus can be extended imme-
diately so to include the nonreal spectrum. Simply, by mapping an element
(f,r) € A4 x H(o(A) \ Reo) to Pa(f) + QQS(A)\R‘” (r). This again gives a
continuous *-algebra homomorphism with properties corresponding to the re-

spective properties of ®4 and @é’g(A)\R“’, J

Let us use the Langer-Jonas functional calculus to obtain more knowledge
on the set of R-definitizing functions.

9.4.12 Proposition. Let K be a Krein space, and A a selfadjoint relation in
K such that 0(A) NRs and 0(A) \ Re are relatively open subsets of o(A).
Then A is definitizable along R if and only if there exists a rational function
d € C(2) N C(Ru) with d = d” which is Roo-definitizing for A.

Proof.

Stepfl : Our first aim is to show that there exists a Ro,-definitizing function d;
with dfﬁ = d;. Let dy be any Ry.-definitizing function. If dy = d#, we set dq :=
dy and are done. Otherwise, consider d; := i(do — df ). Then d; € H(Rx,)\ {0}
and d; = d?&. We have

A,o A,o A,o
0 < [Priy° (do)w, x| = [z, @RDO(d#)x] = [CI)RDO(d#):E,x], e,
and hence
(@237 (i(do — d¥f )z, 2] =0, zek.
We see that dy is Reo-definitizing for A.
Step 2: Choose a Roo-definitizing function d with d#* = d,and M € GL(2,R)
with ¢pr(00) & suppdg4. Set d := do ¢y, then d € H(Ry) and suppd; C R. Set

i) = ] (z—wp™,

weESupp 0 5
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and g := go ¢,;. Then g € C(2) NH(R.), satisfies 9, = 04, and g# = g. The

function 4 is therefore analytic in H(R.), has no zeros, and takes real values.

Thus it is either positive on all of R, or negative on all of R,,. Set

dy = g
-9,

then by Theorem 9.4.2, (i), it follows that

positive

Ul alke

negative

57 (dy) = ®a(dr) > 0.

O

It is apparent from the definition of the algebra 2l 4 that the points ofsupp 02,
play a particular role.

9.4.13 Definition. Let K be a Krein space, and A a selfadjoint relation in
which is definitizable along R,,. A point z € R, is called a critical point, if
T € supp 0, and we will use the notation crt(A) := supp 94,. /

9.4.14 Proposition. Let K be a Krein space, and A a selfadjoint relation in
K which is definitizable along Ry .

(1) If zo € p(A) N R, then there exists a Roo-definitizing element d with
04(xo) € {0, 1}.

(i1) We have crt(A) C o(A).

Proof. Choose a Ry-definitizing element dy € H(R,). Let us first consider the
case that 2o € R. Set a := [%OT(%)], and

d(z) := do(2)

(2 — @)%’
Then d € H(R), and 94(xo) € {0,1}. Choose a partition of unity xi1,x2 €

C* (R ) subordinate to the open cover {Ro \ {0}, Roo \ 0(A)}. Then x1d €
C*®(Rs), and the function

a@d@) )
do(x) (x — )2

belongs to C*°(R) and takes nonnegative values. Thus, by Theorem 9.4.2,
(43), we have ® 4(x1d) > 0. However, by Theorem 9.4.2, (iv),

Da(x1d) = Ba(d) = Dpp°(d).

This shows that d is Ro-definitizing. The case that xy = oo is treated in the
same way using d(z) := x2“dp(x). This finishes the proof of (7).

We come to the proof of (i7). Assume that ¢ € p(A) "R, then we already
know that there exists a Roo-definitizing d with 04(zo) € {0,1}. If 94(x0) = 0,
it already follows that z¢ ¢ crt(A). Assume that 94(z¢) = 1, and consider first
the case that g € R. Let x1,x2 be as in the above part of this proof, and
choose x1 > xg such that [zg,21] Nsupp x1 = 0. Set

zZ— T

d(z) == d(z),

Z— X0
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then d € H(Rs) and 0;(xo) = 0. The function

Xl(:z:)cz(x) B T — T
W = Xl(x)x — 2z

belongs to C*°(R,) and takes nonnegative values. Hence,

o9 (d) = ®a(xad) > 0,

ie. d is Roo-definitizing. The case that zo = oo is treated in the same way
choosing =7 < minsupp x1 and using d(x) := (x — x1)d(z). This finishes the
proof of (7). O

Let us conclude this chapter with a remark on fractional linear transforma-
tions.

9.4.15 Proposition. Let K be a Krein space and A a Ry -definitizing selfad-
joint relation in K. Moreover, let N € GL(2,R). Then A := ¢n(A) is self-
adjoint and R -definitizing. We have 02, = 02, o (;5;\,1. The composition map
opn is an homeomorphic *-algebra isomorphism of U ; onto A4, and we have

O;(f)=a(foodn), feA;. (9.4.9)

Proof. First of all, by Lemma 7.4.6, certainly A is selfadjoint. Moreover, by the
Spectral Mapping Theorem, o(A) = ¢n(0(A)). Since ¢y is a homeomorphism
of Co onto itself, thus o(A) is the disjoint union of its relatively open subsets
dN(0(A) NR) and ¢n(0(A) \ Re). However, since ¢ maps Ro, onto itself,
we have

o (0(A4) \ Rec) = ¢n(0(4)) \ Roo = 0(4) \ Rec

ON(0(A) NR) = dn(0(A)) NReo = 0(A) MR .
This shows that the requirement () of Definition 9.4.1 is satisfied by A.

Set gy := 0(A) N R, the we know from (8.3.5) that

P (F) = B (fodw), [ H(Ru). (9.4.10)

Remember here that composition with ¢n is a homeomorphic *-algebra iso-
morphism of H(Rs) onto itself. The above relation shows that d € H(Ry) is
Roo-definitizing for A if and only if d:=do (;5]_\,1 is Roo-definitizing for A. It
follows that A is R -definitizable and

A _ A -1
D(:1rt_0(:1rto¢N .

By Lemma 9.2.10, thus, composition with ¢;,1 is a homeomorphic *-algebra
isomorphism of 2[4 onto A ;.

For the proof of (9.4.9) we need some preparation. Choose d € H(R.,) with
0 = 04, and let d; € H(Rw) be Roo-definitizing for A and b; € H(Ry,) such
that d = Y°7_ bid;. Set d; :=dj oy, bj :=bjo ', d:=do¢y', then d; are
Roo-definitizing for A, d = > byd;, and 07 = 02,

Let x,y € K be fixed, and choose measures p1, pia such that

hy, — h pi-boundedly pointwise = [AZZ (p, b))z, y] — [AZ; (p, h)z,y],
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hn, — h po-boundedly pointwise = [Agj (P, hn)z,y] — [Agj (B, h)x,y],

and set f1 1= p1 + p2 + [ © ] + [p2 0 Pn]. )

Now we come to the actual proof of (9.4.9). Let f € A; be given, and set
f:=foon. Let (5,§) € H(Rs) x BM(Rw) be such that f = 7;(p, ), and
set p:=po oy and g := go ¢dy. Then f = 74(p,g). Choose g, € H(Ry,) such
that g, — g p-boundedly pointwise, and set ¢, := g, © ¢n. Then, due to the
definition of u, also g, — g pu-boundedly pointwise. It follows that

[®a(H)z,y) = (A (p.g)w,y] = lim (A} (P, gz y) = lim (A (5, Gu)e.y] =

= (A (3,9),9) = [24(F).0).

Thereby the third equality sign holds because of (9.4.4) and (9.4.10). Since z,y
were arbitrary, we conclude that ®4(f) = ® ;(f). O
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