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Chapter 1

Geometry of inner product

spaces

1.1 Inner product spaces

We start with recalling some vocabulary from linear algebra. Throughout our
exposition, with exception of the below example dealing with Minkowski space-
time, linear spaces will be over the scalar field C of complex numbers.

DEA1 1.1.1 Definition. Let L be a linear space. An inner product on L is a map

[., .] : L × L → C

such that

(IP1) [x+ y, z] = [x, z] + [y, z], x, y, z ∈ L.

(IP2) [αx, y] = α[x, y], x, y ∈ L, α ∈ C.

(IP3) [x, y] = [y, x], x, y ∈ L.

If [., .] is an inner product on L, we will speak of 〈L, [., .]〉 as an inner product
space1. �

Note that we do not require any definiteness properties, like e.g. [x, x] ≥ 0,
x ∈ L.

DEA2 1.1.2 Definition. Let 〈L, [., .]〉 be an inner product space.

(i) An element x ∈ L is called

positive :⇔ [x, x] > 0
negative :⇔ [x, x] < 0
neutral :⇔ [x, x] = 0

nonnegative :⇔ [x, x] ≥ 0
nonpositive :⇔ [x, x] ≤ 0

(ii) A linear subspace M of L is called

1Often we will drop explicit notation of the inner product, and speak of an ‘inner product
space L’, implicitly understanding that on L an inner product [., .] is given.

3



4 CHAPTER 1. GEOMETRY OF INNER PRODUCT SPACES

positive definite :⇔ [x, x] > 0, x ∈ M\{0}
negative definite :⇔ [x, x] < 0, x ∈ M\{0}

neutral :⇔ [x, x] = 0, x ∈ M

2

positive semidefinite :⇔ [x, x] ≥ 0, x ∈ M
negative semidefinite :⇔ [x, x] ≤ 0, x ∈ M

3

The set of all linear subspaces of L will be denoted by SubL. The set
of all positive definite subspaces by Sub>0 L, and the notations Sub≥0 L,
Sub<0 L, Sub≤0 L, Sub=0 L, have their obvious meaning.

(iii) A linear subspace M of L is called

definite :⇔ M ∈ Sub>0 L ∨M ∈ Sub<0 L
semidefinite :⇔ M ∈ Sub≥0 L ∨M ∈ Sub≤0 L

indefinite :⇔ M 6∈ Sub≥0 L ∧M 6∈ Sub≤0 L

(iv) An inner product [., .] on L, or the inner product space 〈L, [., .]〉, is called
positive definite, negative definite, etc., if the subspace L of 〈L, [., .]〉 has
the corresponding property.

�

Also, we do not require nondegeneracy.

DEA57 1.1.3 Definition. Let 〈L, [., .]〉 be an inner product space.

(i) An element x of L is called isotropic, if [x, y] = 0 for all y ∈ L. The set
of all isotropic elements of L is called the isotropic part of L, and will be
denoted by 〈L, [., .]〉◦ 4.

(ii) An inner product [., .] on L, or the inner product space 〈L, [., .]〉, is called
degenerated , if L◦ 6= {0}. If L[◦] = {0}, it is called nondegenerated .

�

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓

examples: minkowski space-time, dirichlet space

EXA3 1.1.4 Example. In order to visualize geometric notions it is more practical to
use a linear space over the field R. Consider for example the linear space R2

endowed with the inner product [., .] defined as

[(x1

x2

)

,

(
y1
y2

)]

:= x1y1 − x2y2,

(
x1

x2

)

,

(
y1
y2

)

∈ R2 .

Then 〈R2, [., .]〉 is an indefinite inner product space.

2Sometimes instead of ‘positive definite subspace’ or ‘negative definite subspace’ one also
uses the shorter terms positive subspace or negative subspace, respectively.

3Sometimes positive semidefinite subspaces are also called nonnegative, and negative
semidefinite ones nonpositive.

4Often we use the shorthand notation L◦ or, a little more specific, L[◦].



1.1. INNER PRODUCT SPACES 5

x1 x1

x2 x2

positive

negative

neutral

positve/negative/neutral
subspaces

positive/negative/neutral
elements

positive

negative

neutral

�

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑
It is a basic fact that in semidefinite inner product spaces the Schwarz in-

equality holds.

LEA58 1.1.5 Lemma. Let 〈L, [., .]〉 be a semidefinite inner product space. Then

|[x, y]| ≤ |[x, x]| 12 · |[y, y]| 12 , x, y ∈ L .

Proof. Consider the case that L is positive semidefinite, the case that L is
negative semidefinite is settled with the same argument.

Set A := [x, x], B := |[x, y]|, and C := [y, y], and let α ∈ C, |α| = 1 be such
that α[y, x] = B. We have

0 ≤ [x− tαy, x− tαy] = [x, x] − tα[y, x] − tα[x, y] + t2[y, y], t ∈ R ,

i.e. A − 2tB + t2C ≥ 0 for all t ∈ R. If C = 0, thus also B = 0. If C 6= 0, we
choose t = B

C to obtain AC −B2 ≥ 0. ❑

COA9 1.1.6 Corollary. Let 〈L, [., .]〉 be a semidefinite inner product space. Then each
neutral element is isotropic.

Proof. Assume that x ∈ L and [x, x] = 0. Then

|[x, y]| ≤ [x, x]
1
2 · [y, y] 1

2 = 0, y ∈ L .

❑

Structure preserving maps deserve to be named.

DEA4 1.1.7 Definition. A map φ : L1 → L2 between two inner product spaces
〈L1, [., .]1〉 and 〈L2, [., .]2〉 is called isometric (or an isometry), if it is linear and
satisfies

[φx,φy]2 = [x, y]1, x, y ∈ L1 .

�

Note that, clearly, the composition of two isometric maps is again isometric.
Also, the identity map of one inner product space onto itself is isometric.
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EXA58 1.1.8 Example. Let 〈L, [., .]〉 be an inner product space.

(i) Let M be a linear subspace of L. Then M becomes an inner product
space if endowed with the inner product inherited from L, i.e. if we set

[x, y]M := [x, y], x, y ∈ M .

Then the set-theoretic inclusion ι : M → L is an isometry.

(ii) Let M be a linear subspace of L◦, and denote by π : L → L/M the
canonical projection. Then an inner product is well-defined on the factor
space L/M by

[πx,πy]L/M := [x, y], x, y ∈ L .
The canonical projection π is an isometry of L onto L/M.

�
We will occasionally use the following homomorphy theorem.

LEA5 1.1.9 Lemma. Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces, and let
φ : L1 → L2 be isometric. Then

φ−1
(
[ranφ]◦

)
= L◦

1 . (1.1.1) A59

There exists a bijective isometry φ̃ with

L1
φ //

��

ranφ

��
L1/L◦

1
φ̃

// ranφ/[ran φ]◦

(1.1.2) A60

where the downwards arrows are the respective canonical projections.

Proof. Let x ∈ L◦
1 and y ∈ ranφ. Then we can write y = φz with some z ∈ L1,

and hence obtain

[φx, y]2 = [φx,φz]2 = [x, z]1 = 0 .

This shows that φ(L◦
1) ⊆ [ranφ]◦. Conversely, let x ∈ L1, and assume that

φx ∈ [ranφ]◦. Then

[x, y]1 = [φx,φy]2 = 0, y ∈ L1 ,

and hence x ∈ L◦
1. This shows (1.1.1).

By (1.1.1), there exits a linear and bijective map φ̃ making the diagram
(1.1.2) commute. Since the canonical projections are isometric, the map φ̃ also
has this property. ❑

1.2 Orthogonality

DEA6 1.2.1 Definition. Let 〈L, [., .]〉 be an inner product space.
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(i) Two elements x, y ∈ L are called orthogonal , if [x, y] = 0. In this case we
write x[⊥]y. Two subsets A,B ⊆ L are called orthogonal , if [x, y] = 0 for
all x ∈ A and y ∈ B, and in this case we write A[⊥]B. 5

(ii) Let A ⊆ L. The set

L[−]A := {x ∈ L : x[⊥]y, y ∈ A}

is called the orthogonal companion of A. 6

�
Let M be a linear subspace of an inner product space 〈L, [., .]〉. The or-

thogonal companion L[−]M need not be a complement of M in the sense that
M+̇M⊥ = L. It may happen that M∩M⊥ 6= {0} or M+ M⊥ 6= L, or both.

Let us note that the isotropic part of an inner product space L is nothing else
but L⊥. In fact, we should be more careful with abuse of language and rather
write L◦ = L[−]L, namely for the following reason: If M is a linear subspace
of L, it is itself an inner product space with the inner product inherited from
L. Then M◦ = M[−]M. The symbol M⊥ however may have two essentially
different meanings (M◦ or L[−]M).

DEA7 1.2.2 Definition. Let 〈L, [., .]〉 be an inner product space, and let y ∈ L. Then
we denote by [., y] the linear functional

[., y] :

{
L → C
x 7→ [x, y]

�
If A ⊆ L, then clearly

A⊥ =
⋂

y∈A
ker
(
[., y]

)
. (1.2.1) A8

Thus A⊥ is a linear subspace of L. In particular, the isotropic part L◦ of L is
a linear subspace of L.

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓
EXA10 1.2.3 Example. Consider the inner product space (over the scalar field R)

〈R3, [., .]〉 where the inner product [., .] is defined as

[





x1

x2

x3



 ,





y1
y2
y3





]

:= x1y1 − x2y2,





x1

x2

x3



 ,





y1
y2
y3



 ∈ R3 .

Then 〈R3, [., .]〉 is a degenerated indefinite inner product space.
The subspace M1 := {(x1, x2, x3)

T : x3 = 0} is nothing else but the non-
degenerated indefinite inner product space considered in Example 1.1.4. The
subspace M2 := {(x1, x2, x3)

T : x1 = 0} is a negative semidefinite degenerated
space.

5If explicit notation of the inner product is not needed, we will write x ⊥ y or A ⊥ B.
6If it is not necessary to emphasize the space L within which the orthogonal companion is

taken, we will write A[⊥] or, even less specific, A⊥.
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x1 x2

x2 x3

negativepositive

negative

neutral
= isotropic

�

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑

If L is an inner product space and M ∈ SubL, we may have M+M⊥ 6= L.
For example, consider the subspace M := span{(1, 1)T} in Example 1.1.4. Then
M = M⊥, and hence certainly M + M⊥ 6= L.

DEA11 1.2.4 Definition. Let 〈L, [., .]〉 be an inner product space, and let M ∈ SubL.
Then M is called orthocomplemented , if M + M⊥ = L. �

Let us note that, if L = {0} and M is finite-dimensional, then

M + M⊥ 6= L ⇐⇒ M∩M⊥ 6= {0} .

In general these two conditions need not coincide.

Orthocomplemented subspaces are of interest, since they allow for orthogonal
projections. Thereby a projection P : L → L is called orthogonal , if ranP ⊥
kerP . Let L1 and L2 be linear subspaces of L. Then L1 + L2 denotes the sum
of them. If L1 ∩ L2 = {0}, and we wish to put emphasize on this fact, we will
use the notation L1+̇L2 and speak of a direct sum. Similarly, if L1 ⊥ L2, we
will sometimes write L1[+]L2 and speak of an orthogonal sum. The combined
symbol L1[+̇]L2 will have the obvious meaning.

PRA12 1.2.5 Proposition. Let 〈L, [., .]〉 be an inner product space, and let M ∈ SubL.
Then M is orthocomplemented if and only if there exists an orthogonal projec-
tion P with ranP = M. In this case the projection P is unique if and only if
M is nondegenerated.

Proof. A projection P with ranP = M is uniquely determined by the subspace
kerP . This subspace has the property that M+̇ kerP = L. Moreover, the
projection P is orthogonal if and only if kerP ⊆ M⊥. We see that the set of all
orthogonal projections whose range is M corresponds bijectively to the set of all
linear subspaces M′ of M⊥ with M+̇M′ = L. This set, however, is nonempty
if and only if M + M⊥ = L. Moerover, it contains exactly one element if and
only if M+̇M⊥ = L. ❑
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COA13 1.2.6 Corollary. Let 〈L, [., .]〉 be an inner product space, and let M1,M2 ∈
SubL be such that

M1 ⊥ M2, M1 ∩M2 = {0} .

If M1 and M2 are both orthocomplemented, so is M1[+̇]M2.

Proof. By the above proposition, there exist orthogonal projections of L onto
M1 and M2. Let us denote them by P1 and P2, respectively. Since M1 ⊥ M2,
we have P1P2 = P2P1 = 0. Since M1 ∩ M2 = {0}, we have ker(P1 + P2) =
kerP1∩kerP2. We see that (P1+P2)

2 = P1+P2, and ker(P1+P2) ⊥ ran(P1+P2).
Thus P1 + P2 is an orthogonal projection. Clearly, ran(P1 + P2) = M1[+̇]M2.
Therefore, the space M1[+̇]M2 is orthocomplemented. ❑

Let us collect some simple properties of orthocomplemented subspaces.

LEA14 1.2.7 Lemma. Let M be an orthocomplemented subspace of 〈L, [., .]〉. Then
the following hold:

(i) M◦ ⊆ L◦.

(ii) M⊥ is orthocomplemented.

(iii) (M⊥)◦ = L◦.

(iv) M⊥⊥ = M + L◦.

Proof. The inclusion (i) holds since

M◦ = M∩M⊥ ⊆ (M⊥ + M)⊥ = L⊥ = L◦ .

The assertion (ii) follows since M⊥⊥ ⊇ M, and hence M⊥ + M⊥⊥ ⊇ M⊥ +
M = L. To see (iii), note that

L◦ ⊆ M⊥⊥ ∩M⊥
︸ ︷︷ ︸

=(M⊥)◦

= (M⊥ + M)⊥ = L⊥ = L◦ .

Finally, for the proof of (iv), let x ∈ M⊥⊥ be given. Write x = y + z with
y ∈ M, z ∈ M⊥. Then, by the already proved item (iii) and the fact that
M ⊆ M⊥⊥, we have

z = x− y ∈ M⊥⊥ ∩M⊥ = L◦ .

Hence x ∈ M + L◦. The converse inclusion M + L◦ ⊆ M⊥⊥ in (iv) is is
trivial. ❑

In general it is hard to decide whether or not a given subspace M is or-
thocomplemented. A simple, but important, example of orthocomplemented
subspaces is given by the following proposition.

PRA15 1.2.8 Proposition. Let M be a finite-dimensional subspace of L with M◦ ⊆
L◦. Then M is orthocomplemented.
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Proof. Since m := dimM < ∞, we can find a basis {b1, . . . , bn, bn+1, . . . , bm}
of M, such that

[bi, bj] =

{

±1 , i = j ∈ {1, . . . , n}
0 , otherwise

Thereby we have M◦ = span{bn+1, . . . , bm}. Put M1 := span{b1, . . . , bn}, and
define P : L → M1 as

Px :=

n∑

i=1

[x, bi]

[bi, bi]
bi .

Then P is linear and P 2 = P . Moreover, ranP = M1 and kerP = ran(I−P ) ⊥
M1. It follows that M1 + M⊥

1 = L. Since span{bn+1, . . . , bm} ⊆ L◦, we have
M⊥ = M⊥

1 . Thus also M + M⊥ = L. ❑

1.3 Orthogonal decompositions and angular op-

erators

DEA16 1.3.1 Definition. Let 〈L, [., .]〉 be an inner product space. A pair j := (L1,L2)
of linear subspaces of L is called an orthogonal decomposition of L, if

L = L1[+̇]L2 .

In this case, we will denote by P 1
j and P 2

j the orthogonal projections with

ranP 1
j = L1, kerP 1

j = L2, ranP 2
j = L2, kerP 2

j = L1 .

�

Let j be an orthogonal decomposition of L. Then it is clear that the following
relations hold:

P 1
j + P 2

j = I, P 1
j P

2
j = P 2

j P
1
j = 0 ,

[P 1
j x, P

1
j y] = [P 1

j x, y] = [x, P 1
j y] ,

[P 2
j x, P

2
j y] = [P 2

j x, y] = [x, P 2
j y] ,

[x, y] = [P 1
j x, P

1
j y] + [P 2

j x, P
2
j y] .

DEA17 1.3.2 Definition. Let 〈L, [., .]〉 be an inner product space. A pair J :=
(L+,L−) of linear subspaces of L is called an fundamental decomposition of
L, if

(i) L+ ∈ Sub>0 L and L− ∈ Sub<0 L.

(ii) L = L+[+̇]L−[+̇]L◦.

In this case, we will denote by P+
J and P−

J the orthogonal projections with

ranP+
J = L+, kerP+

J = L− + L◦, ranP−
J = L−, kerP−

J = L+ + L◦ .

Moreover, we put
JJ := P+

J − P−
J , (x, y)J := [Jx, y] .

The projections P±
J are called the fundamental projections , the map JJ the

fundamental symmetry associated with J. �
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Again it is clear that the following relations hold:

P+
J P

−
J = P−

J P
+
J = 0, P+

J JJ = JJP
+
J = P+

J , P
−
J JJ = JJP

−
J = −P−

J ,

JJ|L+ = IL+ , JJ|L−
= −IL−

, kerJJ = L◦ ,

J2
J = P+

J + P−
J ,

(
JJ|L++L−

)−1
= JJ|L++L−

,

[P±
J x, P

±
J y] = [P±

J x, y] = [x, P±
J y], [x, y] = [P+

J x, P
+
J y] + [P−

J x, P
−
J y] ,

[JJx, y] = [x, JJy], [JJx, JJy] = [x, y], [JJx, y] = [P+
J x, P

+
J y] − [P−

J x, P
−
J y] .

Next we collect some basic properties of (., .)J.

LEA18 1.3.3 Lemma. Let J = (L+,L−) be a fundamental decomposition of the inner
product space 〈L, [., .]〉. Then (., .)J is a positive semidefinite inner product on
L. We have

〈L, (., .)J〉◦ = 〈L, [., .]〉◦, L = L+(+̇)JL−(+̇)JL◦ ,

(JJx, y)J = (x, JJy)J, (JJx, JJy)J = (x, y)J .

Put pJ(x) := (x, x)
1
2

J , then pJ is a seminorm, and we have

|[x, y]| ≤ pJ(x) · pJ(y), x, y ∈ L . (1.3.1) A19

We have p−1
J ({0}) = L◦. Thus pJ is a norm if and only if L◦ is nondegenerated.

In this case, we will also use the notation ‖.‖J instead of pJ.

Proof. Since [JJx, y] = [x, JJy], x, y ∈ L, the map (., .)J : L×L → C is an inner
product. Moreover, since L+ is positive and L− is negative,

(x, x)J = [P+
J x, P

+
J x] − [P−

J x, P
−
J x] ≥ 0, x ∈ L .

Clearly, L[◦] ⊆ L(◦)J . Conversely, assume that x ∈ L(◦)J . Then x[⊥] ranJJ =
L+ + L−. Since in any case x[⊥]L[◦], it follows that x[⊥]L, i.e. x ∈ L[◦].

Since L+ and L− are JJ-invariant and [., .]-orthogonal, it follows that also
L+(⊥)JL−. Together with what we already saw, L = L+(+̇)JL−(+̇)JL◦. Next,
we compute

(JJx, y)J = [J2
Jx, y] = [P+

J x, y] + [P−
J x, y] = [P+

J x, P
+
J y] + [P−

J x, P
−
J y] =

= [P+
J x− P−

J x, P
+
J y − P−

J y] = [JJx, JJy] = (x, JJy)J

and
(JJx, JJy)J = [J2

Jx, JJy] = [JJ(P+
J + P−

J )x, y] =

= [(P+
J − P−

J )x, y] = [JJx, y] = (x, y)J .

To show (1.3.1), let x, y ∈ L be given and put x± := P±
J , y± := P±

J . Then, by

the Schwartz inequality in 〈L+, [., .]|L+×L+〉, 〈L−,−[., .]|L−×L−
〉, and R2,

∣
∣[x, y]

∣
∣ ≤

∣
∣[x+, y+]

∣
∣+
∣
∣[x−, y−]

∣
∣ ≤

≤ [x+, x+]
1
2 [y+, y+]

1
2 + (−[x−, x−])

1
2 (−[y−, y−])

1
2 ≤

≤
(
[x+, x+]

1
2 ·2 + (−[x−, x−])

1
2 ·2
) 1

2 ·
(
[y+, y+]

1
2 ·2 + (−[y−, y−])

1
2 ·2
) 1

2 =

= (x, x)J · (y, y)J .

❑
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DEA20 1.3.4 Definition. An inner product space 〈L, [., .]〉 is called decomposable, if
there exists a fundamental decomposition of L. �

Let us in this place only remark that not every inner product space is de-
composable. Actually, being decomposable is a strong and important property
for an inner product space. An explicit example for non-decomposability will
be given later, cf. Example 2.3.4.

Orthogonal decompositions with semidefinite summands are closely related
to fundamental decompositions.

LEA21 1.3.5 Lemma. Let 〈L, [., .]〉 be an inner product space.

(i) Let J = (L+,L−) be a fundamental decomposition of L, and let L+
0 ,L−

0 ∈
SubL with L+

0 +̇L−
0 = L◦. Put

L1 := L+ + L+
0 , L2 := L− + L−

0 ,

then L1 is positive semidefinite, L2 is negative semidefinite, and j :=
(L1,L2) is an orthogonal decomposition of L.

(ii) Let j = (L1,L2) be an orthogonal decomposition of L, and assume that
L1 is positive semidefinite and L2 is negative semidefinite. Choose linear
subspaces L+ and L− such that L1 = L++̇L◦

1 and L2 = L−+̇L◦
2. Then

J := (L+,L−) is a fundamental decomposition of L.

Proof. The assertion (i) is clear. For (ii) note first that, because of the Schwartz
inequality, L+ is positive definite and L− is negative definite, cf. Lemma ??.
Moreover, since L1[⊥ L2 and L1 + L2 = L, we have L◦ = L◦

1 + L◦
2. ❑

DEA22 1.3.6 Definition. Let j = (L1,L2) be an orthogonal decomposition of the inner
product space 〈L, [., .]〉. Then we denote

Subj :=
{
M ∈ SubL : M∩L2 = {0}

}
.

If M ∈ Subj, we define the angular operator of M with respect to j as

aj(M) :

{
P 1

j M → L2

x 7→ P 2
j ◦ (P 1

j |M)−1x

�

Note here that the requirement M ∈ Subj just means that P 1
j |M is injective.

Thus aj(M) is well-defined.
For a given orthogonal decomposition j = (L1,L2) of 〈L, [., .]〉, let us denote

by Aj the set

Aj :=
{
(D,K) : D ∈ SubL1,K : D → L2 linear

}
.

The set Aj is partially ordered in a natural way, namely with the relation ‘�’
defined as

(D1,K1) � (D2,K2) :⇔ D1 ⊆ D2,K2|D1 = K1

Note that, clearly, the set Subj is partially ordered with respect to set-theoretic
inclusion.
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PRA23 1.3.7 Proposition. Let j be an orthogonal decomposition of the inner product
space 〈L, [., .]〉. The assignment

a : M 7→
(
P 1

j M, aj(M)
)

is an order-preserving bijection of Subj onto Aj. Its inverse is given as

(D,K) 7→ {x+Kx : x ∈ D} . (1.3.2) A24

Proof. The fact that a maps Subj into Aj, and that it preserves the respective
orders, is obvious. Denote the map defined by (1.3.2) by b. Assume that
(D,K) ∈ Aj. Clearly, M := b(D,K) is a linear subspace of L. Moreover, if
y = x+Kx ∈ M∩L2 for some x ∈ D, then x = y−Kx ∈ D∩L2 ⊆ L1∩L2 = {0}.
Thus x = 0 and hence also y = 0. We see that M ∈ Subj, and thus that b maps
Aj into Subj.

We shall show that a ◦ b = idAj
. Let (D,K) ∈ Aj be given, and put M :

b(D,K). We have z ∈ P 1
j M if and only if z = P 1

j (x+Kx) with some x ∈ D. It
follows that z = x and P 2

j (x+Kx) = Kx. Thus P 1
j M = D and aj(M)z = Kz,

z ∈ P 1
j M, i.e. a(M) = (D,K).

It remains to establish b ◦ a = idSubj
. Let M ∈ Subj be given. If y ∈ M,

then y = P 1
j y + P 2

j y. However, if we set x := P 1
j y, then x ∈ P 1

j M and
P 2

j y = aj(M)x. Hence y = x + aj(M)x. We conclude that M ⊆ (b ◦ a)M.
To see the other inclusion, let z = x + aj(M)x with some x ∈ P 1

j M be given.
Write x = P 1

j y with some y ∈ M, then aj(M)x = P 2
j y, and we conclude that

z = P 1
j y + P 2

j y = y ∈ M. It follows that M = (b ◦ a)M. ❑

EXA25 1.3.8 Example. Consider the (x, y)-plane R2 endowed with the euclidean inner
product, and let

L1 := {
(
x

y

)

: y = 0}, L2 := {
(
x

y

)

: x = 0} .

Then j := (L1,L2) is an orthogonal decomposition of R2. The projections P 1
j

and P 2
j are the orthogonal projections onto the x-axis and onto the y-axis,

respectively.
A linear subspace M of R2 belongs to Subj if and only if either M = {0}

or M is a line through the origin different from the y-axis. Let M ∈ Subj,
M 6= {0}. Then P 1

j M = L1. If α ∈ (−π, π) denotes the angle between M and
the x-axis, then the action of the angular operator aj(M) is multiplication by
tanα.

M ∈ Subj

L1

L2

x∈P 1
j
M

aj(M)x

aj(M)x = x · tanα

α

P 2
j

P 1
j



14 CHAPTER 1. GEOMETRY OF INNER PRODUCT SPACES

�
Sometimes it is useful to know that orthogonality can be characterized via

angular operators.

LEA26 1.3.9 Lemma. Let 〈L, [., .]〉 be an inner product space, and let j = (L1,L2) be
an orthogonal decomposition of L. Denote by j̄ the orthogonal decomposition
j̄ := (L2,L1) of L. Let M1 ∈ Subj and M2 ∈ Subj̄. Then M1 ⊥ M2 if and
only if

−
[
aj(M1)x, y

]
=
[
x, aj̄(M2)y

]
, x ∈ P 1

j M1, y ∈ P 2
j (M2) .

Proof. We have

M1 =
{
x+ aj(M1)x : x ∈ P 1

j M1

}
, M2 =

{
x+ aj̄(M2)x : x ∈ P 2

j M2

}
.

Hence, M1 ⊥ M2 if and only if

0 =
[
x+ aj(M1)x, y + aj̄(M2)y

]
, x ∈ P 1

j M1, y ∈ P 2
j (M2) .

❑

1.4 Semidefinite subspaces

For certain orthogonal decompositions, in particular for such arising from fun-
damental decompositions, the sets of definite/semindefinite/neutral subspaces
can be described with help of angular operators.

PRA27 1.4.1 Proposition. Let j = (L1,L2) be an orthogonal decomposition of the
inner product space 〈L, [., .]〉, and let M ∈ SubL.

(i) Assume that L2 is negative semidefinite. Then

M ∈ Sub>0 L ⇐⇒
M ∈ Subj and − [aj(M)x, aj(M)x] < [x, x], x ∈ P 1

j M\ {0}

(ii) Assume that L2 is negative definite. Then

M ∈ Sub≥0 L ⇐⇒
M ∈ Subj and − [aj(M)x, aj(M)x] ≤ [x, x], x ∈ P 1

j M

M ∈ Sub=0 L ⇐⇒
M ∈ Subj and − [aj(M)x, aj(M)x] = [x, x], x ∈ P 1

j M

(iii) Assume that L2 is positive semidefinite. Then

M ∈ Sub<0 L ⇐⇒
M ∈ Subj and [aj(M)x, aj(M)x] < −[x, x], x ∈ P 1

j M\ {0}
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(iv) Assume that L2 is positive definite. Then

M ∈ Sub≥0 L ⇐⇒
M ∈ Subj and [aj(M)x, aj(M)x] ≤ −[x, x], x ∈ P 1

j M

M ∈ Sub=0 L ⇐⇒
M ∈ Subj and [aj(M)x, aj(M)x] = −[x, x], x ∈ P 1

j M

Proof. We shall restrict explicit proof to the item (i), the other items are seen
in the same way.

Assume first that M is positive definite. Since L2 is negative semidefinite,
we have M∩L2 = {0}. Hence M = {x+ aj(M)x : x ∈ P 1

j M}. Let x ∈ P 1
j M,

x 6= 0, then

0 < [x+ aj(M)x, x + aj(M)x] = [x, x] + [aj(M)x, aj(M)x] .

Conversely, if M ∈ Subj satisfies the condition on the right side, we just read
the above inequality backwards to obtain that x + aj(M)x is positive for each
x ∈ P 1

j M. ❑

This proposition has an immediate, but noteworthy, corollary.

COA28 1.4.2 Corollary. Let 〈L, [., .]〉 be a nondegenerated inner product space, and
let J = (L+,L−) be a fundamental decomposition of L, so that J is also an
orthogonal decomposition of L. Moreover, let M ∈ SubL. Then M is positive
semidefinite if and only if its angular operator aJ(M) is well-defined and is a
pJ|P+

J
M-to-pJ|P−

J
M–contraction. ❑

Each of the sets Subindex, where index is one of j, > 0,≥ 0,= 0,≤ 0, < 0, is
ordered by set-theoretic inclusion. Maximal elements will be of interest. First
let us note the following consequence of Proposition 1.3.7.

COA29 1.4.3 Corollary. Let j = (L1,L2) be an orthogonal decomposition of 〈L, [., .]〉,
and let M ∈ Subj. Then M is a maximal element of Subj if and only if
P 1

j M = L1.

Proof. Since the map a is an order-preserving bijection of Subj onto Aj, maximal
elements of Subj correspond to maximal elements of Aj. However, clearly, an
element (D,K) ∈ Aj is maximal if and only if D = L1. ❑

COA30 1.4.4 Corollary. For each element M ∈ Subj, there exists a maximal element
M′ of Subj with M ⊆ M′.

Proof. Let M ∈ Subj be given. Choose a projection P of L1 onto P 1
j M, and

define K := aj(M)P . Then (L1,K) ∈ Aj, and clearly (P 1
j M, aj(M)) � (L1,K).

Thus the subspace M′ := a−1(L1,K) is maximal in Aj and contains M. ❑

The obstacle when trying to construct maximal elements of, say, Sub≥0 L in
the same way, is that we not only have to extend aj(M), but also to retain the
condition −[Kx,Kx] ≤ [x, x]. In general this is not possible, however, existence
of maximal elements is ensured by Zorn’s Lemma.
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LEA31 1.4.5 Lemma. Let M ∈ Sub>0 L. Then there exists a maximal element M′

of Sub>0 L such that M ⊆ M′. The same assertion holds for Subindex, where
index is one of ≥ 0,= 0,≤ 0, < 0.

Proof. The union of an ascending chain of positive subspaces of L is again a
positive subspace. Hence we may apply Zorn’s Lemma. The assertion for the
other classes of subspaces is seen in the same way. ❑

Of course, Zorn’s Lemma would also apply to Subj, but the argument used
above is more enlightening.

Since Sub>0 L ⊆ Sub≥0 L, an element of Sub>0 L which is maximal in
Sub≥0 L is clearly also maximal in Sub>0 L. The converse, however, need not
hold true. The same remark is valid for each pair of classes Sub=0 L ⊆ Sub≥0 L,
Sub<0 L ⊆ Sub≤0 L, Sub=0 L ⊆ Sub≤0 L. In this context maximal neutral
subspaces have an interesting property.

PRA32 1.4.6 Proposition. Let M be a neutral subspace of L. Then the following are
equivalent:

(i) M is maximal in Sub=0 L.

(ii) M⊥ is semidefinite and M⊥⊥ = M.

(iii) M is maximal in Sub≥0 L or maximal in Sub≤0 L.

Proof.
Step 1, (i) ⇒ (ii): Assume that M is maximal neutral. Since M is neutral,
we have M ⊆ M⊥, and hence M⊥⊥ ⊆ (M⊥⊥)⊥. Thus M⊥⊥ is also neutral.
However, M⊥⊥ ⊇ M, and we conclude from maximality of M that M⊥⊥ = M.

Next assume that M⊥ is indefinite, and choose x+, x− ∈ M⊥ with
[x+, x+] = 1 and [x−, x−] = −1. Let φ ∈ R be such that eiφ[x−, x+] ∈ iR,
and put x0 := x+ + eiφx−. Then x0 ⊥ M and

[x0, x0] = [x+ + eiφx−, x+ + eiφx−] =

= [x+, x+] + eiφ[x−, x+] + e−iφ[x+, x−] + [x−, x−] = 0 .

Thus M0 := span(M∪ {x0}) is neutral. By maximality of M, it follows that
x0 ∈ M. Thus x− ∈ span(M∪{x+}). The subspace span(M∪{x+}), however,
is positive semidefinite. We have reached a contradiction.

Step 2, (ii) ⇒ (iii): Let us consider the case that M⊥ is positive semidefi-
nite. Let M− be a negative semidefinite subspace which contains M. By the
Schwartz inequality, we have M ⊥ M−, i.e. M− ⊆ M⊥. Since M⊥ is positive
semidefinite, this implies that M− is neutral. Hence, again by the Schwartz
inequality, M− ⊥ M⊥. It follows that M− ⊆ M⊥⊥ = M. We have shown
that M is maximal in Sub≤0 L.

The case that M⊥ is negative semidefinite is treated in the same way.

Step 3, (iii) ⇒ (i): This is clear, as we have already noted before the present
proposition. ❑

REA33 1.4.7 Remark. In the proof of (ii) ⇒ (iii) above we have shown that, for a
maximal neutral subspace M, M⊥ being positive semidefinite implies that M
is maximal nonpositive. Analogously, M⊥ being negative semidefinite implies
that M is maximal nonnegative. �



1.4. SEMIDEFINITE SUBSPACES 17

The above result motivates the following definition.

DEA34 1.4.8 Definition. Let M be a subspace of 〈L, [., .]〉. Then M is called hyper-
maximal neutral , if M is neutral and maximal in both, Sub≤0 L and Sub≥0 L.

�

COA35 1.4.9 Corollary. Let M be a subspace of 〈L, [., .]〉. Then M is hypermaximal
neutral if and only if M⊥ = M.

Proof. Assume that M⊥ = M. First of all this implies that M is neutral.
Also it follows that M⊥ = M⊥⊥, and hence M = M⊥⊥. Moreover, M⊥ is
neutral, and hence by Remark 1.4.7 M is maximal nonnegative and maximal
nonpositive.

Conversely, assume that M is maximal nonnegative and maximal nonpos-
itive. Then M is maximal neutral, and hence M⊥ is semidefinite. Since
M ⊆ M⊥, maximality of M implies that M = M⊥. ❑

EXA36 1.4.10 Example. Let 〈H, [., .]〉 be a Hilbert space, and consider the linear space
H×H endowed with the inner product

q
(x, y), (a, b)

y
:= i

(
[x, b] − [y, a]

)
, (x, y), (a, b) ∈ H×H .

Let T be a densely defined closed operator in H. Then the Hilbert space adjoint
T ∗ of T is defined as the operator with domain

domT ∗ :=
{

x ∈ H : ∃y ∈ H s.t. [Ta, x] = [a, y], a ∈ domT
}

which assigns to an element x ∈ domT ∗ the element T ∗x := y which exists
uniquely by the definition of domT ∗. Equivalently, we could define T ∗ via its
graph graphT ∗ as

graphT ∗ =
{
(x, y) : [b, x] = [a, y] , (a, b) ∈ graphT

}

Now observe that this just says that

graphT ∗ = (graphT )J⊥K .

Hence, an operator T is symmetric if and only if it is neutral, and it is selfadjoint
if and only if it is hypermaximal neutral. �

Finally, let us mention a result which relates maximal semidefiniteness of M
and M⊥.

PRA37 1.4.11 Proposition. Let 〈L, [., .]〉 be an inner product space, and let M ∈
SubL. Then the following hold:

(i) If M is maximal in Sub≥0 L or maximal in Sub>0 L, then M⊥ ∈ Sub≤0 L.

(ii) If M ∈ Sub>0 L and M is maximal in Sub≥0 L, then M⊥ ∈ Sub<0 L.

(iii) If M is maximal in Sub>0 L and orthocomplemented, then M⊥ is maximal
in Sub≤0 L.
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Proof. To see (i), assume that x ∈ M⊥ and [x, x] > 0. Then the linear space
M1 := span(M ∪ {x}) belongs to Sub≥0 L or Sub>0 L, respectively. By max-
imality of M, it follows that M1 = M, i.e. x ∈ M. Thus x ∈ M ∩M⊥, and
hence [x, x] = 0, which contradicts our choice of x.

For (ii) we argue in the same way. Assume that x ∈ M⊥\{0} and [x, x] ≥ 0.
Then M1 := span(M∪ {x}) ∈ Sub≥0 L and, by maximality, M1 = M. Again
it follows that [x, x] = 0 which now contradicts the fact that M is positive.

It remains to show (iii). Under the hypothesis of (iii), by the already proved
item (i), the subspace M⊥ is nonpositive. Let M1 ∈ Sub≤0 L be such that
M⊥ ⊆ M1, and let x ∈ M1. Since M is orthocomplemented, we can write
x = y + z with y ∈ M and z ∈ M⊥. It follows that y = x − z ∈ M ∩ M1.
However, since M is positive and M1 is nonpositive, we have M∩M1 = {0}.
Thus x = z ∈ M⊥. We have shown that M1 = M⊥. ❑

1.5 Inner product spaces with finite negative in-

dex

DEA38 1.5.1 Definition. For an inner product space 〈L, [., .]〉, we define its negative
index as the cardinal number

ind−〈L, [., .]〉 := sup
{

dimM : M ∈ Sub<0 L
}
.

Completely parallel, we define its positive index as

ind+〈L, [., .]〉 := sup
{

dimM : M ∈ Sub>0 L
}
.

Moreover, we will use the notation

ind0〈L, [., .]〉 := dimL◦ ,

and speak of the degree of degeneracy of L. �

PRA39 1.5.2 Proposition. Let 〈L, [., .]〉 be an inner product space, and assume that
there exists a subspace M0 which is finite-dimensional and maximal in Sub<0 L.
Set κ := dimM0. Then the following hold:

(i) We have

dimM =

{

κ , M maximal in Sub<0 L
κ+ ind0 L , M maximal in Sub≤0 L

In particular, ind− L = κ.

(ii) A negative definite subspace M of L is maximal in Sub<0 L, if and only
if dimM = κ. In case that ind0 L < ∞, a negative semidefinite subspace
M of L is maximal in Sub≤0 L, if and only if dimM = κ+ ind0 L.

(iii) The space L is decomposable. More precisely, for each maximal element
M of Sub<0 L, the subspace M⊥ is maximal in Sub≥0 L and (M,M⊥)
is an orthogonal decomposition of L.
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Proof. Since the space M0 is finite-dimensional and nondegenerated, it is or-
thocomplemented. Since M0 is maximal in Sub<0 L, its orthogonal companion
is nonnegative. Moreover, we have (M⊥

0 )◦ = L◦. In the following let j denote
the orthogonal decomposition j := (M0,M⊥

0 ) of L, and let M ∈ Sub<0 L be
given.

We have Sub<0 L ⊆ Subj, hence the projection P 1
j maps M injectively into

M0. in particular, dimM ≤ κ. We already see that ind− L = κ, and hence that
each negative subspace with dimension equal to κ must be maximal negative.

Since M0 is finite-dimensional and definite, there exists an [., .]-orthogonal
projection P of M0 onto P 1

j M. Let M̃ ∈ Subj be the unique subspace with

aj(M̃) = ajMP .

Then M̃ is maximal in Subj and extends M. Moreover, we have
[
aj(M̃)x, aj(M̃)x

]
=
[
ajMPx, ajMPx

]
≤

≤ −[Px, Px] ≤ −[x, x], x ∈ M0 .
(1.5.1) A40

However, if x 6∈ kerP then the first inequality is strict, and if x ∈ kerP \ {0}
the second one is strict. Hence, M̃ ∈ Sub<0 L. We conclude that each maximal
element M of Sub<0 L is mapped by bijectively onto M0 by P 1

j . Thus dimM =
dimM0 = κ. This finishes the proof of the first formula in (i) and of the first
half of (ii).

For the proof of the second formula in (i), we first reduce to the case that
L is nondegenerated. Let M be a maximal element of Sub≤0 L. Since with M
also M+L◦ is nonpositive, we conclude that L◦ ⊆ M. Denote by π : L → L/L◦

the canonical projection, then π(M) ∈ Sub≤0(L/L◦). If N ∈ Sub≤0(L/L◦) and
N ⊇ π(M), then π−1(N ) ∈ Sub≤0 L and π−1(N ) ⊇ π−1(π(M)) = M. By
maximality, π−1(N ) = M, and hence N = π(M). Thus π(M) is maximal in
Sub≤0(L/L◦). If the desired assertion had already been proved for L/L◦, we
could conclude that

dimM = dimπ(M) + dimL◦ = κ+ ind0 L .

Assume that L is nondegenerated. Then M⊥
0 is positive definite, and hence

Sub≤0 L ⊆ Subj. If M ∈ Sub≤0 L, thus dimM ≤ κ. Moreover, we can in

the same way as above extend M to the maximal element M̃ of Subj. Due to
(1.5.1), we have M̃ ∈ Sub≤0 L. Again it follows that P 1

j maps maximal elements
ofSub≤0 L bijectively onto M0. This finishes the proof of the second formula in
(i).

For the proof of the remaining implication in (ii) assume that ind0 L < ∞,
and let M ∈ Sub≤0 L with dimM = κ+ind0 L be given. If M1 ∈ Sub≤0 L and
M ⊆ M1, then

κ+ ind0 L = dimM ≤ dimM1 ≤ κ+ ind0 L .

Thus M = M1, and we conclude that M is maximal in Sub≤0 L.
We have by now shown that each maximal negative subspace has dimension

κ, in particular, it is finite-dimensional. Hence, it is orthocomplemented and
M⊥ ∈ Sub≥0 L. Thus (M⊥,M) is an orthogonal decomposition of L with
semidefinite components, and thus L is decomposable, cf. Lemma 1.3.5. This is
(iii). ❑
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Of course, with the obvious modifications, the analogous statements hold
for an inner product space which contains a finite-dimensional maximal positive
subspace.

1.6 Dual pairs

DEA41 1.6.1 Definition. Let 〈L, [., .]〉 be an inner product space, and let M,N ∈
SubL. Then M,N is called a dual pair , if

M∩N⊥ = M⊥ ∩ N = {0} .

We will use the notation M#N to indicate that M,N form a dual pair.
If M and N are neutral, one also says that M and N are skewly linked in

order to express that M#N . �

Existence of dual pairs follows with help of a variant of the Gram-Schmidt
orthogonalization proceedure.

LEA42 1.6.2 Lemma. Let 〈L, [., .]〉 be an inner product space, let M ∈ SubL,
dimM <∞, and let L0 ∈ SubL be such that M∩L⊥

0 = {0}.

(i) There exists a subspace N ⊆ L0, such that M#N .

(ii) If M is neutral and M ⊆ L0, then the space N in (i) can be chosen to be
neutral.

Proof. We will use induction on n := dimM to construct elements e1, . . . , en,
f1, . . . , fn, such that

{e1, . . . , en} is basis of M, fj ∈ L0, j = 1, . . . , n

[ei, fj ] = δij , i, j = 1, . . . , n
(1.6.1) A43

Once this has been done, put N := span{f1, . . . , fn}. Then, clearly, N ⊆ L0

and M#N .
Consider the case n = 1. Choose e1 ∈ M \ {0}, and let f1 ∈ L0 be such

that [e1, f1] = 1. This choice is possible, since e1 6∈ L⊥
0 . Obviously, the elements

e1, f1 satisfy (1.6.1).
Let a subspace M with dimM = n + 1 be given. Choose M′ ⊆ M with

dimM′ = n, and let ej, fj , j = 1, . . . , n, be elements satisfying (1.6.1) for M′.
Choose g ∈ M \M′, and put

en+1 := g −
n∑

j=1

[g, fj]ej .

Then {e1, . . . , en+1} is a basis for M, and

[en+1, fk] = 0, k = 1, . . . , n .

Since en+1 6∈ L⊥
0 , we can choose h ∈ L0 with [en+1, h] = 1. Put

fn+1 := h−
n∑

j=1

[h, ej]fj ,



1.6. DUAL PAIRS 21

then fn+1 ∈ L0 and
[ek, fn+1] = 0, k = 1, . . . , n .

It remains to compute

[en+1, fn+1] = [en+1, h] −
n∑

j=1

[h, ej ] [fj, en+1]
︸ ︷︷ ︸

=0

= 1 .

For the proof of (ii), assume that M is neutral. Let elements ej, fj , j = 1, . . . , n,
satisfy (1.6.1). Choose a matrix A = (aij)

n
i,j=1 ∈ Cn×n, such that

A+ A∗ = −
(
[fi, fj]

)n

i,j=1
.

For example, we may put

aij :=







[fi, fj ] , i < j
1
2 [fi, fj ] , i = j

0 , i > j

Define elements

f ′
k := fk +

n∑

j=1

akjej, k = 1, . . . , n .

Then, since M is neutral,

[ei, f
′
j ] = [ei, fj ] = δij , i, j = 1, . . . , n ,

and hence N ′ := span{f ′
1, . . . , f

′
n} satisfies M#N ′. Moreover,

[f ′
k, f

′
l ] = [fk, fl] +

n∑

j=1

akj [ej , f
′
l ] +

n∑

j=1

alj [f
′
k, ej ] =

= [fk, fl] + akl + alk = 0, k, l = 1, . . . , n ,

and hence N ′ is neutral. ❑

Let us collect some simple properties of dual pairs.

↓↓↓ ordentlich !

LEA44 1.6.3 Lemma. Let 〈L, [., .]〉 be an inner product space, let M,N ∈ SubL,
M,N 6= {0}, and assume that M#N . Then

(i) M∩L◦ = N ∩ L◦ = {0}.

(ii) If M is neutral, then M∩N = {0} and M+̇N is nondegenerated.

Assume additionally that dimM <∞. Then

(iii) We have dimN = dimM.

(iv) If M is neutral, there exists a neutral subspace N ′ with

M#N ′, M + N ′ = M + N .
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(v) If {e1, . . . , en} is a basis of M, then there exists a basis {f1, . . . , fn} of N ,
such that

[ei, fj] = δij , i, j = 1, . . . , n . (1.6.2) A45

(vi) We have M+̇N⊥ = M⊥+̇N = L.

Proof. The first item follows since

M∩L◦ ⊆ M∩N⊥ = {0}, N ∩ L◦ ⊆ N ∩M⊥ = {0} .

Assume that M is neutral, i.e. M ⊆ M⊥. Then M∩N ⊆ M⊥∩N = {0}. Let
z ∈ (M + N )⊥, and write z = x+ y with x ∈ M, y ∈ N . Then

y = z − x ∈ (M + N )◦ + M ⊆ M⊥.

However, y ∈ N , and it follows that y = 0. Thus x = z ∈ (M + N )◦ ⊆ N⊥.
Since x ∈ M, we obtain that also x = 0. Thus z = 0, and we conclude that
(M + N )◦ = {0}.

From now on assume that M is finite-dimensional. For the proof of (iii)
choose a basis {e1, . . . , en} of M. Then M⊥ =

⋂n
j=1 ker[., ej ], and hence

codimM⊥ ≤ n. However, since N ∩M⊥ = {0}, we have dimN ≤ codimM⊥.
Thus dimN ≤ dimM and in particular is finite. Exchanging the roles of M
and N yields dimN = dimM.

The assertion in (iv) follows from applying Lemma 1.6.2, (ii), with L0 :=
M + N . For the proof of (v), choose a basis {e1, . . . , en} of M, and put

Mk := span
(
{e1, . . . , en} \ {ek}

)
, k = 1, . . . , n .

Then codimM⊥
k ≤ dimMk = n − 1. Thus N ∩M⊥

k 6= {0}. If x ∈ N ∩M⊥
k ,

x 6= 0, then [x, ek] 6= 0 since x cannot be orthogonal to all of M. Thus we may
choose

fk ∈ N ∩M⊥
k , [ek, fk] = 1, k = 1, . . . , n ,

i.e. fk ∈ N and (1.6.2) holds. These relations imply that {f1, . . . , fn} are linearly
independent, and hence is a basis for N .

Finally, we come to the proof of (vi). According to the already proved item
(v), we may choose bases {e1, . . . , en} and {f1, . . . , fn} of M and N , respec-
tively, which are connected by (1.6.2). For x ∈ L, put

xM :=

n∑

j=1

[x, fj ]ej .

= Projektion

Then xM ∈ M, and [xM, fk] = [x, fk], k = 1, . . . , n. This shows that
x− xM ⊥ N , and it follows that M + N⊥ = L. The relation M⊥ + N = L is
seen in the same way. ❑

1.7 Orthogonal coupling

Let us explicitly state the following simple geometric facts.
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REA46 1.7.1 Remark. Let 〈L, [., .]〉 be an inner product space, and let M be a linear
subspace of L. Then 〈M, [., .]|M×M is an inner product space. We have

ind− M ≤ ind−L, ind0 M ≥ dim(M∩L◦) .

The inclusion map ι : M → L is isometric. Let 〈N , [., .]N 〉 be an inner product
space, and let φ : N → M. Then φ is isometric if and only if ι ◦ φ is. �

REA47 1.7.2 Remark. Let 〈Li, [., .]i〉, i = 1, . . . , n, be inner product spaces, and define

L :=

n∏

i=1

Li, [x, y] :=

n∑

i=1

[πix, πiy]i ,

where πi denotes the canonical projection of L onto Li. Then 〈L, [., .]〉 is an
inner product space. We have ind0 L =

∑n
i=1 ind0 Li, in fact

L◦ =

n∏

i=1

L◦
I .

Moreover,

ind− L =

n∑

i=1

ind− Li .

Let ιi : Li → L, i = 1, . . . , n, be the canonical embedding

ιi(x) := (0, . . . , x
↑

i-th place

, . . . , 0) .

Then ιi is isometric. �
REA48 1.7.3 Remark. Let 〈L, [., .]〉 be an inner product space, and let M be a linear

subspace of L with M ⊆ L◦. Moreover, denote by π : L → L/M the canonical
projection. Then an inner product [., .]∼ on L/M is well-defined by

[πx, πy]∼ := [x, y], x, y ∈ L .

The canonical projection π is isometric. We have

ind− L/M = ind− L, ind0 L/M = ind0 L − dimM .

Let 〈N , [., .]N 〉 be an inner product space, and let φ : L/M → N . Then φ is
isometric if and only if φ ◦ π is. �

We will in this section study a geometric construction which is a combination
of product and factorization. Our starting point is the following observation.

REA49 1.7.4 Remark. If 〈L1, [., .]1〉 and 〈L2, [., .]2〉 are nondegenerated inner product
spaces, then the direct and orthogonal sum L1[+̇]L2 is (up to isomorphisms) the
unique inner product space containing L1 and L2 isometrically as orthogonal
subspaces which together span the whole space. �

If we move from the nondegenerated to the degenerated situation, then a
space with this property will not be unique anymore.
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DEA50 1.7.5 Definition. Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces, and
let α be a linear subspace of L◦

1 × L◦
2. Then the orthogonal coupling L1 ⊞α L2

of L1 and L2 along α is defined as

L1 ⊞α L2 :=
(
L1[+̇]L2

)/

α .

Moreover, let ιj be the canonical embedding of Lj into L1[+̇]L2, πα the canonical
projection of L1[+̇]L2 onto (L1[+̇]L2)/α, and define ια1 := πα ◦ ι1, ια2 := πα ◦ ι2,
that is

L1[+̇]L2

πα

��
Lj

ιj
;;vvvvvvvvv

ιαj

// L1 ⊞α L2

�

Let us note the following facts:

REA51 1.7.6 Remark. Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces, and let α
be a linear subspace of L◦

1 × L◦
2.

(i) We have
ind− L1 ⊞α L2 = ind− L1 + ind− L2

ind0 L1 ⊞α L2 = ind0 L1 + ind0 L2 − dimα

This follows from the formulas for negative index and degree of degeneracy
given in Remark 1.7.2 and Remark 1.7.3.

(ii) Since L◦
1 × L◦

2 = (L1[+̇]L2)
◦, the mappings ια1 : L1 → L1 ⊞α L2 and

ια2 : L2 → L1 ⊞α L2 are both isometric. Moreover,

ια1 (L1) ⊥ ια2 (L2) and L1 ⊞α L2 = ran ια1 + ran ια2 .

This is obvious from the definition and the fact that ι1(L1) ⊥ ι2(L2).

(iii) The mappings ια1 and ια2 are both injective if and only if the linear subspace
α is the graph of a bijective map α : domα → ranα between some linear
subspaces domα ⊆ L◦

1 and ranα ⊆ L◦
2. To see this, note that

(0, x2) ∈ α ⇐⇒ ια2 (x2) = 0, (x1, 0) ∈ α ⇐⇒ ια1 (x1) = 0 .

�

PRA52 1.7.7 Proposition. Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces, and
let 〈L, [., .]〉 be an inner product space together with isometric maps ι′j : Lj → L,
j = 1, 2, such that ι′1(L1) ⊥ ι′2(L2). Then there exists a unique linear subspace
α ⊆ L◦

1 × L◦
2, such that

L1

ια1 //

ι′1 $$J
JJJJJJJJJ L1 ⊞α L2

ψ

��

L2

ια2oo

ι′2zztttttttttt

L

(1.7.1) A53
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with some injective and isometric linear map ψ. Also the map ψ is uniquely
determined by the diagram (1.7.1). In fact, α and ψ are given by

α =
{
(x1, x2) ∈ L1×L2 : ι′1(x1) = −ι′2(x2)

}
, ψ

(
(x1, x2)/α

)
= ι′1(x1)+ ι′2(x2) .

The map ιαj is injective if and only if ι′j has this property, j = 1, 2. Moreover,
ranψ = ran ι′1 +ran ι′2, in particular ψ is bijective if and only if ran ι′1 +ran ι′2 =
L.

Proof. First we show existence of α and φ. Since ι′1(L1) ⊥ ι′2(L2), the map
φ(x) := ι′1(x1) + ι′2(x2), x = (x1, x2), x1 ∈ L1, x2 ∈ L2, is an isometry of
L1[+̇]L2 into L. It satisfies

L1
ι1 //

ι′1 ##H
HH

HHHHHHH
L1[+̇]L2

φ

��

L2
ι2oo

ι′2{{vvvvvv
vvvv

L

(1.7.2) A54

and we have

kerφ =
{
(x1, x2) ∈ L1[+̇]L2 : ι′1(x1) = −ι′2(x2)

}
.

Let (x1, x2) ∈ kerφ be given. If y1 ∈ L1, then

[
(x1, x2), (y1, 0)

]

L1[+̇]L2
= [x1, y1]1 =

[
ι′1(x1), ι

′
1(y1)

]
=
[
− ι′2(x2), ι

′
1(y1)

]
= 0 .

Similarly, [(x1, x2), (0, y2)] = 0 for all y2 ∈ L2. Hence kerφ ⊆ (L1[+̇]L2)
◦, i.e.

α := kerφ qualifies as a subspace being used in the definition of L1 ⊞α L2. Let
ψ be the injective isometry with

L1[+̇]L2
φ //

πα

��

L

(L1[+̇]L2)/α

ψ

::

Then we have

L1[+̇]L2

πα′

��
φ

vv

L1

ι1
::uuuuuuuuu ια

′

1 //

ι′1 %%JJJJ
JJ

JJJ
JJ L1 ⊞α′ L2

ψ′

��

#

#

L

(1.7.3) A55

and hence (1.7.1) commutes. Moreover, clearly, ranψ = ranφ = ran ι′1 + ran ι′2.
Since ψ is injective, it follows that ιαj is injective if and only if ι′j is.

In order to show uniqueness, assume that α′ ⊆ L◦
1×L◦

2 and ψ′ : L1 ⊞α′ L2 →
L also have the stated properties. If x1 ∈ L1, then (1.7.1) gives

ψ′((x1, 0)/α′

)
= (ψ′ ◦ ια′

1 )(x1) = ι′1(x1) .
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Similarly, ψ′((0, x2)/α′) = ι′2(x2), x2 ∈ L2, and hence by linearity
ψ′((x1, x2)/α′) = ι′1(x1) + ι′2(x2). Since ψ′ is injective, it follows that α ⊆
kerψ′ = α′. Conversely, since ψ′ is a function, (x1, x2) ∈ α′ implies that
ι′1(x1) = −ι′2(x2). Altogether, we see that α′ = α and ψ′ = ψ. ❑

Combining Proposition 1.7.7 with Remark 1.7.6, (iii), we obtain the follow-
ing corollary.

COA56 1.7.8 Corollary. Let L1 and L2 be inner product spaces. An inner product
space contains isomorphic copies of L1 and L2 as orthogonal subspaces which
span the whole space, if and only if it is isomorphic to L1 ⊞α L2 with some
bijective map α between subspaces of L◦

1 and L◦
2. ❑



Chapter 2

Topological inner product

spaces

2.1 Definition of TIPS

Let us recall the definition of vector topologies.

DEB1 2.1.1 Definition (Vector topologies). Let L be a linear space. A topology T
on L is called a vector topology, if

(VT) The maps + : L × L → L and · : C × L → L are continuous, when
L×L and C×L are endowed with the respective product topologies.

If T is a vector topology on L, we will speak of 〈L, T 〉 as a topological vector
space.

A vector topology T on L is called locally convex , if

(LC) There exists a neighbourhood base of 0 which consists of convex
sets.

If T is a locally convex vector topology on L, we will speak of 〈L, T 〉 as a locally
convex space. �

Note that we do not require any seperation properties, like e.g. that each
singleton set is closed. Still, the usual relation between locally convex vector
topologies and families of seminorms, as elaborated e.g. in [?, Theorem 1.36–
Remark 1.38], is present. Thereby Hausdorff topologies correspond to seperating
families of seminorms.

A combination of the notions of ‘inner product space’ and ‘locally convex
space’, together with the natural compatibility requirement, leads to the notion
of ‘topological inner product space’.

DEB2 2.1.2 Definition. A triple 〈L, [., .], T 〉 is called a topological inner product
space, if

(TIPS1) L is a linear space.

(TIPS2) [., .] is an inner product on L.

27
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(TIPS3) T is a locally convex vector topology on L and the map [., .] :
L × L → C is continuous, when L × L is endowed with the
product topology.

�

2.2 Compatible topologies

We will often take the viewpoint that an inner product space 〈L, [., .]〉 is given,
and ask for topologies T such that 〈L, [., .], T 〉 is a topological inner product
space.

DEB4 2.2.1 Definition. Let 〈L, [., .]〉 be an inner product space. A locally convex
vector topology T on L is called a compatible topology, if 〈L, [., .], T 〉 is a topo-
logical inner product space.

The set of all compatible topologies on 〈L, [., .]〉 will be denoted by
Top〈L, [., .]〉. As usual, we will sometimes write TopL if explicit mentioning
the pregiven inner product on L is not necessary. �

The fact whether or not a vector topology is compatible, can be formulated
in terms of seminorms.

PRB5 2.2.2 Proposition. Let 〈L, [., .]〉 be an inner product space, and let T be a
locally convex vector topology on L. Then the following are equivalent:

(i) T ∈ Top〈L, [., .]〉.
(ii) There exists a T -continuous seminorm p : L → [0,∞) and a constant

α > 0, such that
|[x, y]| ≤ αp(x)p(y), x, y ∈ L . (2.2.1) B6

(iii) There exists a T -continuous seminorm p : L → [0,∞) and a constant
β > 0, such that

|[x, x]| 12 ≤ βp(x), x ∈ L . (2.2.2) B7

Proof. Let {pi : i ∈ I} be a family of T -continuous seminorms such that the
set of all finite intersections of balls

U(pi, ǫ) = {x ∈ L : pi(x) ≤ ǫ}, i ∈ I, ǫ > 0

forms a T -neighbourhood base at 0.

Step 1; (i) ⇒ (ii): Assume that [., .] is T ×T -continuous. In particular, the
inner product [., .] is continuous at the point (0, 0). Hence, there exists ǫ > 0
and a finite subset I0 of I, such that

|[x, y]| ≤ 1 whenever pi(x), pi(y) ≤ ǫ, i ∈ I0 .

Set p := maxi∈I0 pi, then p is a T -continuous seminorm. Moreover,

|[x, y]| ≤ 1 whenever p(x), p(y) ≤ ǫ .

Assume that p(x), p(y) 6= 0. Then we obtain

|[x, y]| =
p(x)p(y)

ǫ2

∣
∣
∣

[ ǫ

p(x)
x,

ǫ

p(y)
y
]
∣
∣
∣ ≤ 1

ǫ2
p(x)p(y) .
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Assume that p(x) 6= 0 but p(y) = 0. Then we have, for each λ > 0,

|[x, y]| =
p(x)

ǫλ

∣
∣
∣

[ ǫ

p(x)
x, λy

]
∣
∣
∣ ≤ p(x)

ǫ

1

λ
.

Thus [x, y] = 0. In the same way we find that the inner product [x, y] vanishes
if p(x) = 0, p(y) 6= 0 or if p(x) = p(y) = 0. Thus (2.2.1) holds with α := ǫ−2.

Step 2; (ii) ⇒ (i): Let α > 0 be such that (2.2.1) holds. Let (x0, y0) ∈ L × L
and ǫ > 0 be given, and choose a neighbourhood U of 0 such that p(x) ≤ ǫ,
x ∈ U . We have

|[x, y] − [x0, y0]| ≤ |[x− x0, y]| + |[x0, y − y0]| ≤

≤ αp(x− x0)p(y) + αp(x0)p(y − y0) .

Hence, if x ∈ x0 + U , y ∈ y0 + U ,

|[x, y] − [x0, y0]| ≤ αǫ
(
(p(y0) + ǫ) + p(x0)

)
.

Thus [., .] is continuous at (x0, y0).

Step 3; (ii) ⇐⇒ (iii): The implication (ii) ⇒ (iii) is trivial, in fact we can take
the same seminorm p and the constant β :=

√
α. In order to show the converse

implication, assume that the seminorm p and the constant β > 0 satisfy (2.2.2)
in (iii). We will show that (2.2.1) holds with the same seminorm p and the
constant α := 4β2.

The first step is to prove that

|[x, y]| ≤ β2
(
p(x) + p(y)

)2
, x, y ∈ L . (2.2.3) B8

To this end let x, y ∈ L be given, and choose γ ∈ C with |γ| = 1 such that
γ[x, y] ≥ 0. Then

2|[x, y]| = |[γx, y] + [y, γx]| =
∣
∣
1

2
[γx+ y, γx+ y] − 1

2
[γx− y, γx− y]

∣
∣ ≤

≤ 1

2
β2p(γx+ y)2 +

1

2
β2p(γx− y)2 ≤ β2

(
p(x) + p(y)

)2
,

and this is (2.2.3).
Assume that p(x), p(y) 6= 0, then (2.2.3) gives

|[x, y]| = p(x)p(y)
∣
∣
∣

[ x

p(x)
,
y

p(y)

]
∣
∣
∣ ≤ p(x)p(y)β222 = 4β2p(x)p(y) .

If p(x) = 0, we obtain from (2.2.3) that for each λ > 0

|[x, y]| =
1

λ
|[λx, y]| ≤ 1

λ
β2p(y)2 .

Thus [x, y] vanishes. If p(y) = 0, it follows in the same way that [x, y] = 0.
Altogether, we see that (2.2.1) holds with α := 4β2. ❑

Let p be a seminorm on L. Then we will denote the topology induced on L
by the one-element family {p} as Tp.
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COB9 2.2.3 Corollary. Let 〈L, [., .]〉 be an inner product space, and let p be a semi-
norm on L. Then the following are equivalent:

(i) Tp ∈ Top〈L, [., .]〉.

(ii) The seminorm p satifies (2.2.1) with some constant α > 0.

(iii) The seminorm p satifies (2.2.2) with some constant β > 0.

Proof. The seminorm p is Tp-continuous. Hence (ii) or (iii) imply (i). Con-
versely, assume that Tp ∈ TopL. Then, for each Tp-continuous seminorm p1

there exists a constant γ > 0 with p1(x) ≤ γp(x), x ∈ L. Hence (i) implies (ii)
and (iii). ❑

It is an immediate consequence that decomposable inner product spaces can
be made into topological inner product spaces.

EXB10 2.2.4 Example. Let 〈L, [., .]〉 be an inner product space, and let J be a fun-
damental decomposition of L. By Lemma 1.3.3, the seminorm pJ satisfies an
inequality of the form (2.2.1), actually with α = 1. Thus TpJ

∈ TopL. �
Let us collect some elementary, but useful, facts about topological inner

product spaces.

LEB11 2.2.5 Lemma. Let 〈L, [., .], T 〉 be a topological inner product space. Then the
following hold:

(i) Each of the functionals [., y], y ∈ L, is continuous.

(ii) For each subset A ⊆ L, its orthogonal companion A⊥ is T -closed. More-
over, (A)⊥ = A⊥.

(iii) {0} ⊆ L◦.

Proof. Clearly, T ×T -continuity of [., .] implies T -continuity of x 7→ [x, y] when-
ever y ∈ L is fixed. This is (i).

Since A⊥ =
⋂

y∈A ker[., y], this set is closed, and this is the first part of (ii).

The inclusion (A)⊥ ⊆ A⊥ is trivial. To show the converse inclusion, let x ∈ A⊥.
The function y 7→ [x, y], y ∈ L, is continuous and vanishes on A. Thus it also
vanishes on A, i.e. x ∈ (A)⊥.

To show (iii), let x ∈ {0} be given. Then, for each continuous linear func-
tional φ on L we have φ(x) = 0. Since [., y] is continuous, it follows that
x ∈ L◦. ❑

2.3 Existence of compatible topolgies

Let 〈L, [., .]〉 be an inner product space. The question whether Top〈L, [., .]〉 is
nonempty, is a nontrivial matter.

EXB12 2.3.1 Example. We give an example of an inner product space with no compat-
ible topologies.

Set

CZ

lf :=
{
(ξj)j∈Z : ξj ∈ C, ∃N ∈ Z : ξj = 0, j < N

}
,
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and define an inner product [., .] on CZ

lf by

[
(ξj)j∈Z, (ηj)j∈Z

]
:=
∑

j∈Z

ξjη−j−1, (ξj)j∈Z, (ηj)j∈Z ∈ CZ

lf . (2.3.1) B13

Note here that in the sum on the right hand side of this relation contains only
finitely many nonzero summands.

Assume that p is a seminorm on CZ

lf and that α > 0 is a constant, such that
(2.2.1) holds. Let ek := (δkj)j∈Z, and consider the sequence x := (ξj)j∈Z where

ξj :=

{

(j + 1)max{p(e−j−1), 1} , j ≥ 0

0 , j < 0

Then, for each k ∈ N0,

(k + 1)max{p(e−k−1), 1} = ξk = [x, e−k−1] ≤ αp(x)p(e−k−1) ≤

≤ αp(x)max{p(e−k−1), 1} .
It follows that k + 1 ≤ αp(x), k ∈ N0, and we have reached a contradiction.
Thus Top〈CZ

lf , [., .]〉 = ∅. �
As we have observed in Example 2.2.4, fundamental decompositions of an

inner product space 〈L, [., .]〉 are a source for compatible vector topologies. These
topologies are constructed intrinsically from the inner product, and hence may
be regarded as the most natural elements of Top〈L, [., .]〉.

DEB14 2.3.2 Definition. Let 〈L, [., .]〉 be an inner product space. If J is a fundamental
decomposition of L, then the topology induced by the seminorm pJ will be
denoted by TJ.

An element T ∈ Top〈L, [., .]〉 is called a decomposition topology, if there
exists a fundamental decomposition J of 〈L, [., .]〉, such that T = TJ. The set
of all decomposition topologies of 〈L, [., .]〉 will be denoted by Topdec〈L, [., .]〉.

�

The question whether an inner product space 〈L, [., .]〉 possesses fundamental
decompositions, in other words whether Topdec〈L, [., .]〉 is nonempty, is again a
nontrivial matter. Let us show one result which says that existence of well-
behaved compatible topologies implies decomposability.

THB15 2.3.3 Theorem. Let 〈L, [., .]〉 be an inner product space, and assume that there
exists an inner product (., .) on L, such that 〈L, (., .)〉 is a Hilbert space and the
topology induced by (., .) on L is compatible. Then L is decomposable, and there
exists a fundamental decomposition J = (L+,L−) of L, such that each of

L+, L−, L+ + L−, L+ + L◦, L− + L◦

is (., .)-closed.

Proof. Since [., .] is a (., .)-continuous sesquilinearform on L, there exists a
bounded linear operator G on the Hilbert space 〈L, (., .)〉, such that

[x, y] = (Gx, y), x, y ∈ L . (2.3.2) B16
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Since [., .] actually is an inner product, G is selfadjoint. Let E denote the
spectral measure of G, and set

L+ := ranE
(
(0,∞)

)
, L− := ranE

(
(−∞, 0)

)
.

Then L+ and L− are (., .)-closed, (., .)-orthogonal, and G-invariant subspaces
of L. We have L◦ = kerG, and hence

L+ + L◦ = ranE
(
[0,∞)

)
, L− + L◦ = ranE

(
(−∞, 0]

)
.

Clearly, also L+ + L− = ranE(R \ {0}). We see that each of these spaces is
(., .)-closed, and that

L = L+(+̇)L−(+̇)L◦ . (2.3.3) B17

Since L+ is G-invariant, and (., .)-orthogonal to L−, we have

[x, y] = (Gx, y) = 0, x ∈ L+, y ∈ L− ,

i.e. L+[⊥]L−. It follows together with (2.3.3) that L[◦]
+ [⊥]L and L[◦]

− [⊥]L, and
hence that L+ and L− are both nondegenerated.

For x ∈ L denote by Ex,x the positive Borel measure ∆ 7→ (E(∆)x, x).
Then, by (2.3.2),

[x, x] =

∫

R

t dEx,x .

If x ∈ L+ and ∆ ⊆ (−∞, 0], then

E(∆)x = E(∆)E((0,∞))x = 0 .

It follows that

[x, x] =

∫

(0,∞)

t dEx,x ≥ 0, x ∈ L+ .

This shows that L+ is positive semidefinite. Since L+ is nondegenerated, it
follows that it is actually positive definite. Similarly, we have

[x, x] =

∫

(−∞,0)

t dEx,x ≤ 0, x ∈ L− ,

and conclude that L− is negative definite.
Altogether, we have shown that J := (L+,L−) is a fundamental decomposi-

tion of L which possesses the required additional properties. ❑

The following two examples show that the assumption in this theorem, that
the compatible topology is induced by a Hilbert space inner product, cannot be
weakened.

EXB18 2.3.4 Example. We give an example of an inner product space which has a com-
patible topology induced by a positive definite inner product, but is not decom-
posable.

Consider the linear space L := CZ

lf ∩ ℓ2(Z) endowed with the inner product
[., .] defined by (2.3.1).

If (., .) denotes the usual ℓ2(Z)-inner product, then

|[x, y]| ≤ (x, x)
1
2 (y, y)

1
2 , x, y ∈ L .
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Hence the topology induced by (., .) on L is a compatible topology.
Consider the map φ : L → L defined as

φ
(
(ξj)j∈Z

)
:=
(
ξjχ−N(j)

)

j∈Z
,

where χ−N denotes the characteristic function of the set −N, i.e.

χ−N(j) :=

{

1 , j ∈ −N

0 , otherwise

Then

ranφ =
{
(ξj)j∈Z : ξj ∈ C, ∃N ∈ Z : ξj = 0, j < N, j ≥ 0

}
=

= span{ek : k ∈ −N} .
kerφ =

{
(ξj)j∈Z : ξj ∈ C, ξj = 0, j < 0

} ∼= ℓ2(N) (2.3.4) B19

We see that kerφ is a neutral subspace of L.
Let M be a definite subspace of L. Then M∩ kerφ = {0}, and hence φ|M

is injective. Thus ranφ contains an isomorphic copy of M, in particular, the
dimension of M is at most countable.

Assume that J = (L+,L−) is a fundamental decomposition of L. Then the
dimensions of L+ and L− are at most countable. Since, for each (ξj)j∈Z ∈ L
and k ∈ Z we have [(ξj)j∈Z, e−k−1] = ξk, the space L is nondegenerated. Thus
L = L++L−, and we conclude that also the dimension of L is at most countable.
This contradicts the fact that L contains an isomorphic copy of the Banach space
ℓ2(N), cf. (2.3.4). �

EXB20 2.3.5 Example. We give an example of an inner product space which admits a
compatible topology induced by a Banach space norm, but is not decomposable.

Let X := ℓp with p ∈ (1,∞)\{2}. Then X is a reflexive Banach space whose
norm is not equivalent to any norm induced by an inner product. This follows
since X contains noncomplemented closed subspaces.

Let conjugate linear and isometric mappings .# on X and X ′, respectively,
be defined as

(xn)#n∈N
:= (xn)n∈N, (xn)n∈N ∈ X ,

φ#(x) := φ(x#), φ ∈ X ′ .

Note that both of these maps are involutions.
Consider the vector space L := X ×X ′, and set

‖(x, φ)‖ := ‖x‖X + ‖φ‖X′ ,
[
(x, φ), (y, ψ)

]
:= φ(y#) + ψ#(x) .

Then 〈L, ‖.‖〉 is a Banach space and [., .] is an inner product on L. Moreover,
note that [., .] is nondegenerated. We have

∣
∣
[
(x, φ), (y, ψ)

]∣
∣ ≤ |φ(y#)| + |ψ#(x)| ≤ ‖φ‖X′‖y‖X + ‖ψ‖X′‖x‖X ≤

≤ ‖(x, φ)‖‖(y, ψ)‖ ,
and hence the topology induced on L by ‖.‖ is compatible. In particular, each
functional [., (y, ψ)] is continuous. We will show that every continuous linear
functional is of this form. To this end, let Φ ∈ 〈L, ‖.‖〉′. Then the map

α : x 7→ Φ(x, 0), x ∈ X ,
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belongs to X ′. The map

η : φ 7→ Φ(0, φ), φ ∈ X ′ ,

belongs to X ′′. Hence, by reflexivity, there exists an element y ∈ X with
η(φ) = φ(y), φ ∈ X ′. It follows that

Φ(x, φ) = Φ(x, 0)+Φ(0, φ) = α(x)+φ(y) =
[
(x, φ), (α#, y#)

]
, (x, φ) ∈ X×X ′ .

Assume that L is decomposable and let J be a fundamental decomposition of
L. Then, borrowing from the later Proposition 2.4.3, (iii), we have TJ ⊆ T‖.‖.
It follows that

{
[., (y, ψ)] : (y, ψ) ∈ L

}
⊆ 〈L, TJ〉′ ⊆ 〈L, T‖.‖〉′ =

{
[., (y, ψ)] : (y, ψ) ∈ L

}
,

and hence that

〈L, TJ〉′ = 〈L, T‖.‖〉′ .

By the Hahn-Banach Theorem, this implies that the norms ‖.‖J and ‖.‖ are
equivalent. Thus also the norm ‖.‖J|X×{0} is equivalent to ‖.‖X = ‖.‖|X×{0}.
We have reached a contradiction, since ‖.‖J is induced by an inner product.

�

2.4 Subclasses of Top〈L, [., .]〉
We have already seen in Theorem 2.3.3 that existence of compatible topologies
with specific properties may allow for specific conclusions. In this section we
will investigate some subclasses of Top〈L, [., .]〉 more systematically.

DEB21 2.4.1 Definition. Let 〈L, [., .]〉 be an inner product space, and let T ∈
Top〈L, [., .]〉. Then we write T ∈ Top

index
〈L, [., .]〉, where ‘index’ may be one

of

sn / n / ip / ip+ / Bs / Hs ,

if T is induced by:

sn ! a single seminorm n ! a norm

ip ! a positive semidefinite
inner product

ip+
! a positive definite

inner product

Bs ! a norm turning L
into a Banach space

Hs ! an inner product turning
L into a Hilbert space

�

The relation between these subclasses of Top〈L, [., .]〉 can be pictured as
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follows:
Top

Topsn

uuuuuuuuu

Topn

IIIIIIIII
Topip

IIIIIIIII

TopBs

IIIIIIIII
Topip+ Topdec

TopHs

Let us collect some results concerning these classes.

PRB22 2.4.2 Proposition. Let 〈L, [., .]〉 be an inner product space.

(i) We have TopL 6= ∅ if and only if Topsn L 6= ∅. More exactly: if T ∈
TopL, then there exists a seminorm p such that Tp ∈ TopL and Tp ⊆ T .

(ii) We have Topsn L 6= ∅ if and only if Topn L 6= ∅. More exactly: if T ∈
Topsn L, then there exists a norm ‖.‖ such that T‖.‖ ∈ TopL and T‖.‖ ⊇ T .

(iii) We have Topip L 6= ∅ if and only if Topip+ L 6= ∅. More exactly: if
T ∈ Topsn L, then there exists a positive definite inner product (., .) such
that T(.,.) ∈ TopL and T(.,.) ⊇ T .

(iv) Assume that T ∈ TopBs L, and that J = (L+,L−) is a fundamental de-
composition of L. If L+ and L− are T -closed, then P+

J and P−
J are T -

to-T |L+-continuous (T -to-T |L+-continuous, respectively). Moreover, we
have TJ ⊆ T .

Proof.
Item (i): Let T ∈ TopL. By Proposition 2.2.2 there exists a T -continuous
seminorm p which satisfies (2.2.1) with some α > 0. As we have already noted
in Corollary 2.2.3, the topology Tp induced by this seminorm is compatible.
However, T -continuity of p implies that Tp ⊆ T .

Item (ii): Let p be a seminorm with Tp ∈ TopL be given. By Corollary 2.2.3,
p satisfies (2.2.2) with some β > 0. Put L0 := p−1({0}), and choose a positive
semidefinite inner product (., .)0 on L0. This can be done e.g. by choosing a basis
of L0 and defining the inner product so that this basis becomes an orthonormal
basis. Moreover, choose a linear subspace L1 such that L = L1+̇L0, denote
by P0 the projection of L onto L0 with kernel L1, and let p0 be the seminorm

p0(x) := (P0x, P0x)
1
2
0 . Define

‖x‖ :=
√

p(x)2 + (P0x, P0x)0 =
∥
∥
∥

(
p(x)

p0(x)

)∥
∥
∥

R2
, x ∈ L .

Using the triangular inequality of the euclidean norm in R2, we obtain that ‖.‖
is a seminorm. However, ‖x‖ = 0 implies that p(x) = 0 and (P0x, P0x)0 = 0
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which is P0x = 0. For x ∈ p−1({0}) we have P0x = x, and thus it follows that
x = 0. Therefore ‖.‖ is actually a norm. Moreover,

‖x‖ ≥ p(x), x ∈ L ,

and thus T‖.‖ ⊇ Tp. In particular, the inner product [., .] is T‖.‖×T‖.‖-continuous.

Item (iii): Assume that the seminorm p is induced by an inner product (., .),
i.e.

p(x) = (x, x)
1
2 , x ∈ L .

Then the norm ‖.‖ defined in the above given proof of (ii) is induced by the
inner product

(x, y)1 := (x, y) + (P0x, P0y)0, x, y ∈ L .
This inner product, however, is positive definite since ‖.‖ is a norm.

Item (iv): Let T ∈ TopBs L, and let J = (L+,L−) be a fundamental decom-
position whose components are T -closed. Consider the fundamental projection
P+

J : L → L+. Let xn ∈ L, n ∈ N, and assume that

xn
T→ x, P+

J xn
T |L+→ y+ .

If z ∈ L+, then

[P+
J x, z] = [x, z] = lim

n→∞
[xn, z] = lim

n→∞
[P+

J xn, z] = [y+, z] ,

and we conclude that P+
J x = y+. Thus the graph of P+

J is closed. Since L+

is T -closed, it is itself a Banach space. Hence, by the Closed Graph Theorem,
P+

J is T -to-T |L+ -continuous. In the same way, we see that P−
J is T -to-T |L−

-
continuous.

Choose a norm ‖.‖ which induces T , and let α > 0 be such that (2.2.1) holds
for ‖.‖. Then we have

‖x‖2
J = (x, x)J = [Jx, x] = [P+

J x, x] − [P−
J x, x] ≤

≤ α‖P+
J x‖ · ‖x‖ + α‖P−

J x‖ · ‖x‖ ≤ α
(
‖P+

J ‖ + ‖P−
J ‖
)
‖x‖2 ,

and it follows that TJ ⊆ T . ❑

PRB3 2.4.3 Proposition. Let 〈L, [., .]〉 be a nondegenerated inner product space.

(i) We have Topsn L = Topn L and Topip L = Topip+ L. More exactly: each
seminorm p with Tp ∈ TopL is a norm, and each positive semidefinite
inner product (., .) with T(.,.) ∈ TopL is positive definite.

(ii) |TopBs L| ≤ 1 contains at most one element.

(iii) If T0 ∈ Topdec L and T ∈ TopBs L, then T0 ⊆ T .

Proof.
Item (i): To prove this item, it is enough to remember that for each seminorm
p with Tp ∈ TopL we have p−1({0}) ⊆ L◦, cf. Lemma 2.2.5, (ii).
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Item (ii): Let T1, T2 ∈ TopL, and consider the identity map id : 〈L, T1〉 →
〈L, T2〉. Let (xi)i∈I be a net in L, and assume that

xi
T1→ x, xi

T2→ x .

Then, for each φ ∈ 〈L, T1〉′ ∩ 〈L, T2〉′, we have

φ(x) = lim
i∈I

φ(xi) = φ(y) .

In particular, this applies with each functional [., y], y ∈ L, and we conclude
that x− y ∈ L◦.

If [., .] is nondegenerated, the above argument tells us that the graph of the
identity map id : 〈L, T1〉 → 〈L, T2〉 is closed. If T1 and T2 are both induced by
Banach space norms, the Closed Graph Theorem yields that it is continuous.
Since id is bijective, it is a homeomorphism, and we conclude that T1 = T2.

Item (iii): Let T ∈ TopL and let J = (L+,L−) be a fundamental decomposi-
tion. Since L is nondegenerated, we have L+ = L⊥

− and L− = L⊥
+. Hence L+

and L− are both closed, and we may apply the already proved item (v). ❑

2.5 Minimal elements of Top〈L, [., .]〉
The set TopL is ordered by set-theoretic inclusion. Clearly, if T1 and T2 are
vector topologies on L with T1 ⊆ T2 and T1 is compatible, then also T2 is
compatible. Hence, asking for large elements of TopL will lead to the same
questions and answers as for the set of all vector topologies. When asking for
small elements of TopL, the situation is more specific and depends on the addi-
tional structure provided by the inner product. In particular, the investigation
of minimal elements of TopL is interesting in various respects.

DEB23 2.5.1 Definition. Let 〈L, [., .]〉 be an inner product space. We denote the set
of all minimal elements of Top〈L, [., .]〉 by Topmin L. That is, we write T ∈
Topmin〈L, [., .]〉 if T ∈ Top〈L, [., .]〉 and

T ′ ∈ Top〈L, [., .]〉, T ′ ⊆ T =⇒ T ′ = T .

�

In the study of Topmin L the notion of the polar of a seminorm is useful.

DEB24 2.5.2 Definition. Let 〈L, [., .]〉 be an inner product space, and let p be a semi-
norm on L with Tp ∈ TopL. Then the map p′ : L → [0,∞) which is defined
as

p′(x) := sup
p(y)≤1

|[x, y]|, x ∈ L ,

is called the polar of p. �

Note that the supremum in the defining relation for p′ is finite, since Tp ∈
TopL means that there exists some α > 0 with |[x, y]| ≤ αp(x)p(y), x, y ∈ L.
Thus,

p′(x) = sup
p(y)≤1

|[x, y]| ≤ αp(x), x ∈ L . (2.5.1) B25
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Actually, for given x ∈ L, the number p′(x) is the smallest constant γ such that
the inequality |[x, x]| ≤ γp(x) holds for all x ∈ L.

Let us collect some simple properties of polars.

LEB26 2.5.3 Lemma. Let 〈L, [., .]〉 be an inner product space, and let p, p1, p2 be semi-
norms on L with Tp, Tp1 , Tp2 ∈ TopL. Then the following hold:

(i) p′ is a seminorm.

(ii) If p1 ≤ p2, then p′1 ≥ p′2. For each λ > 0 we have (λp)′ = 1
λp

′.

(iii) If Tp1 ⊆ Tp2 , then Tp′1 ⊇ Tp′2 .

(iv) We have Tp′ ⊆ Tp.

Proof. To see (i), we compute

p′(λx) = sup
p(y)≤1

|[λx, y]| = |λ| sup
p(y)≤1

|[x, y]| ,

p′(x1 + x2) = sup
p(y)≤1

|[x1 + x2, y]| ≤ sup
p(y)≤1

|[x1, y]| + sup
p(y)≤1

|[x2, y]| .

For the first part of (ii) note that p1 ≤ p2 implies that {y ∈ L : p1(y) ≤ 1} ⊇
{y ∈ L : p2(y) ≤ 1}. Hence,

p′1(x) = sup
p1(y)≤1

|[x, y]| ≥ sup
p1(y)≤1

|[x, y]| = p′2(x) .

Next, for each λ > 0 we have

(λp)′(x) = sup
(λp)(y)≤1

|[x, y]| = sup
p(λy)≤1

|[x, y]| = sup
p(z)≤1

|[x, z
λ

]| =
1

λ
p′(x) .

In order to show (iii), assume that Tp1 ⊆ Tp2 . Then p1 is T2-continuous, and
hence there exists a constant γ > 0 with p1(x) ≤ γp2(x), x ∈ L. It follows that

p′1 ≥ (γp2)
′ =

1

γ
p′2 ,

and hence that Tp′1 ⊇ Tp′2 .
Finally, item (iv) is immediate from (2.5.1). ❑

Item (iii) of the above lemma implies that the following notion is well-
defined.

DEB27 2.5.4 Definition. Let 〈L, [., .]〉 be an inner product space, and let T ∈ Topsn L.
Choose a seminorm p with T = Tp, and define T ′ := Tp′ . The vector topology
T ′ is called the polar of T . �

From items (iii) and (iv) of Lemma 2.5.3 we immediately obtain the follow-
ing corollary.

COB28 2.5.5 Corollary. Let 〈L, [., .]〉 be an inner product space. If T ∈ Topsn〈L, [., .]〉,
then T ′ ⊆ T . If T1, T2 ∈ Topsn〈L, [., .]〉 with T1 ⊆ T2, then T ′

1 ⊇ T ′
2 . ❑

We can now give a characterization of minimal compatible topologies.
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THB29 2.5.6 Theorem. Let 〈L, [., .]〉 be an inner product space. Then

Topmin〈L, [., .]〉 =
{
T ∈ Topsn L : T = T ′} . (2.5.2) B30

Proof. The inclusion ‘⊇’ in (2.5.2) is easy to see. Assume that T ∈ Topsn L
and satisfies T ′ = T . Let T1 ∈ TopL with T1 ⊆ T be given. By Proposition
2.4.2, (i), there exists T2 ∈ Topsn L with T2 ⊆ T1. Since T2 ⊆ T , it follows from
Corollary 2.5.5 that

T2 ⊇ T ′
2 ⊇ T ′ = T ,

i.e. T2 = T . Thus T1 = T , and we conclude that T is a minimal element of
TopL.

In order to establish the reverse inclusion, we prove the following

Claim: If T ∈ Topsn L, there exists T∞ ∈ Topsn L with T∞ ⊆ T and T∞ = T ′
∞.

Since, by Proposition 2.4.2, (i), Topmin L ⊆ Topsn L, the inequality ‘⊆’ in (2.5.2)
will follow immediately from this claim.

We come to the proof of the above claim. Let p be a seminorm with T = Tp.
We inductively define maps pn : L → R, n ∈ N, as follows. Choose a constant
α > 0 such that p satisfies (2.2.1) with this constant, and set

p1(x) :=
√
αp(x), x ∈ L .

If pn has already been defined, set

pn+1(x) :=

√

1

2

(
pn(x)2 + p′n(x)2

)
=
∥
∥
∥

1

2

(
pn(x)

p′n(x)

)∥
∥
∥

R2
, x ∈ L .

Clearly, each map pn is a seminorm. Next we verify by induction that

|[x, y]| ≤ pn(x)pn(y), pn+1(x) ≤ pn(x), x, y ∈ L, n ∈ N . (2.5.3) B31

Let n = 1. Then, by the definition of p1 and (2.2.1), we have

|[x, y]| ≤ αp(x)p(y) = p1(x)p1(y), x, y ∈ L .

The estimate (2.5.1) yields that

p′1 =
1√
α
p′ ≤ √

αp = p1 ,

and we conclude that p2 ≤ p1. Assume that (2.5.3) has already been proved for
some n ∈ N. From the definition of the polar p′n we deduce that

|[x, y]| ≤ p′n(x)pn(y), |[x, y]| ≤ pn(x)p
′
n(y), x, y ∈ L . (2.5.4) B32

Thus

|[x, y]| ≤ 1

2

(
p′n(x)pn(y) + pn(x)p

′
n(y)

)
≤

≤ 1

2

(
pn(x)

2 + p′n(x)
2
) 1

2 ·
(
pn(y)

2 + p′n(y)
2
) 1

2 = pn+1(x)pn+1(y) .

Using (2.5.1), we obtain that p′n+1 ≤ pn+1 and hence that pn+2 ≤ pn+1.
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Due to monotonicity the limit

p∞(x) := lim
n→∞

pn(x), x ∈ L ,

exists. Clearly, p∞ is a seminorm. Moreover, we have p∞ ≤ pn, n ∈ N, and
hence in particular p∞ ≤ √

αp. Passing to the limit in (2.5.3) gives

|[x, y]| ≤ p∞(x)p∞(y), x, y ∈ L .

Next we will show that

p′∞(x) = lim
n→∞

p′n(x), x ∈ L . (2.5.5) B33

We have p∞ ≤ pn+1 ≤ pn, and hence p′n ≤ p′n+1 ≤ p′∞. Hence the limit on
the right hand side of (2.5.5) exists and the inequality ‘≥’ in (2.5.5) holds.
Conversely, passing to the limit in (2.5.4) gives

|[x, y]| ≤ ( lim
n→∞

p′n(x)) · p∞(y), y ∈ L ,

and we conclude that p′∞(x) ≤ limn→∞ p′n(x). This establishes (2.5.5).
Finally, passing to the limit in the definition of pn+1 and using (2.5.5) gives

p∞(x) =

√

1

2

(
p∞(x)2 + p′∞(x)2

)
,

and hence p∞(x) = p′∞(x).
Setting T∞ := Tp∞ , we have constructed an element of Topsn L with the

required properties. This finishes the proof of our claim, and hence the proof of
the theorem. ❑

COB34 2.5.7 Corollary. Let 〈L, [., .]〉 be an inner product space. Then the following
hold:

(i) For each T ∈ TopL, there exists T0 ∈ Topmin L with T0 ⊆ T .

(ii) We have Topdec L ⊆ Topmin L.

Proof. The claim explicitly stated in the proof of Theorem 2.5.6, together with
(2.5.2) and Proposition 2.4.2, (i), says that we can find T0 as required in (i).

For the proof of (ii) we have, in view of Theorem 2.5.6, to show that for each
T ∈ Topdec L the equality T = T ′ holds. Let a fundamental decomposition
J = (L+,L−) be given, and let 〈H, (., .)H〉 be the Hilbert space completion of
the positive definite inner product space 〈L/L◦ , (., .)J/L◦〉. Moreover, denote by
ι the canonical map ι : L → H, i.e. projection followed by embedding. Then ι
is isometric, and has dense range. We compute

pJ(x) = (ιx, ιx)
1
2

H = sup
z∈H

‖z‖H≤1

|(ιx, z)H| = sup
u∈L

pJ(u)≤1

|(ιx, ιu)H| =

= sup
u∈L

pJ(u)≤1

|(x, u)J| = sup
u∈L

pJ(u)≤1

|[x, Ju]| = sup
y∈L

pJ(y)≤1

|[x, y]| = p′J(x) .

❑
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There exist situations when TopL has a unique minimal element, cf. the
below Theorem 2.5.10. Because of Corollary 2.5.7, (i), this element will then be
the smallest element of TopL.

DEB35 2.5.8 Definition. Let 〈L, [., .]〉 be an inner product space. A positive definite
subspace M of L is called intrinsically complete, if 〈M, [., .]|M×M〉 is a Hilbert
space. Similarly, a negative definite subspace M is called intrinsically complete,
if 〈M,−[., .]〉 is a Hilbert space. �

The following property of an inner product space appears frequently.

DEB55 2.5.9 Definition. Let 〈L, [., .]〉 be an inner product space. Then L is called
semicompletely decomposable, if there exists a fundamental decomposition J =
(L+,L−) of L such that (at least) one of L+ and L− is intrinsically complete.

�

THB36 2.5.10 Theorem. Let 〈L, [., .]〉 be a semicompletely decomposable inner product
space. Then TopL contains a smallest element. This element is the decomposi-
tion topology TJ whenever J is a fundamental decomposition with (at least) one
intrinsically complete component.

Proof. Let J = (L+,L−) be a fundamental decomposition with (at least) one
intrinsically complete component. For definiteness, let us assume that L+ is
intrinsically complete. The case that L− satisfies this hypothesis is treated in
the same way.

We shall prove that TJ is the unique minimal, and thus smallest, element of
TopL. To this end let T ∈ Topmin L be given.

Step 1: According to Theorem 2.5.6, there exists a seminorm p and a constant
γ > 0 such that

T = Tp, p(x) ≤ γp′(x), x ∈ L . (2.5.6) B37

Moreover choose α > 0 according to (2.2.1), i.e. such that

|[x, y]| ≤ αp(x)p(y), x, y ∈ L . (2.5.7) B38

Consider the Hilbert space 〈L+, [., .]〉. The norm induced by [., .] on L+ is
nothing else but pJ|L+ . Hence, for each y ∈ L, the functional [., y]|L+ is belongs
to 〈L+, [., .]〉′. Consider the family of functionals

{[., y] : p(y) ≤ 1} ⊆ 〈L+, [., .]〉′ .

By (2.5.7) this family is pointwise bounded and hence, by the Principle of Uni-
form Boundedness, uniformly bounded. This means that there exists a constant
C > 0 such that

‖[., y]‖ ≤ C, p(y) ≤ 1 , (2.5.8) B39

where ‖.‖ denotes the norm in 〈L+, [., .]〉′. Putting together (2.5.6) and (2.5.8)
yields

p(x) ≤ γp′(x) = γ sup
p(y)≤1

|[x, y]| ≤ γCpJ(x), x ∈ L+ . (2.5.9) B40

Step 2: Let x ∈ L. Then, according to (2.5.6) and (2.5.9),

p(P+
J x)

2 ≤ (γC)2pJ(P+
J x)

2 = (γC)2[P+
J x, P

+
J x] = (γC)2[P+

J x, x] ≤
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≤ (γC)2αp(P+
J x)p(x) .

Hence,
p(P+

J x) ≤ α(γC)2p(x), x ∈ L .

Since x+ JJx− 2P+
J x ∈ L◦, it follows that

pJ(x)2 = [JJx, x] = [2P+
J x− x, x] ≤ αp(2P+

J x− x) · p(x) ≤

≤ α(2α(γC)2 + 1)p(x) · p(x) .
We conclude that TJ ⊆ Tp = T , and hence, by minimality of T , that TJ =
T . ❑

2.6 Uniqueness of decomposition topologies

As we already noticed, decomposition topologies are of particular interest since
they arise intrinsically from the inner product. It is thus a most well-behaved
situation if there exists a unique decomposition topology. We know that the
question of existence of decomposition topologies, i.e. whether or not the space
under consideration is decomposable, is a nontrivial matter. The following ex-
ample shows that also uniqueness is not always present.

EXB41 2.6.1 Example. We give an example of an inner product space with two different
decomposition topologies.

Consider the linear space

L := CZ

f :=
{
(ξj)j∈Z : ∃N ∈ N s.t. ξj = 0, |j| > N

}
,

endowed with the inner product

[
(ξj)j∈Z, (ηj)j∈Z

]
:=
∑

j≥0

ξjηj −
∑

j<0

ξjηj .

Denote en := (δnj)j∈Z, n ∈ Z, and put

L1
+ := span{en : n ≥ 0}, L1

− := span{en : n < 0} .

Then, clearly, J1 := (L1
+,L1

−) is a fundamental decomposition of L.
Define elements fn ∈ L, n ∈ Z, as

fn := en +
|n|

|n| + 1
e−n, n ∈ Z ,

and put
L2

+ := span{fn : n ≥ 0}, L2
− := span{fn : n < 0} .

We have

fn − |n|
|n| + 1

f−n =
(

en +
|n|

|n| + 1
e−n

)

− |n|
|n| + 1

(

e−n +
|n|

|n| + 1
en

)

=

= en

(

1 − |n|2
(|n| + 1)2

)

=
2|n| + 1

(|n| + 1)2
en, n ∈ Z ,
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and hence L2
+ + L2

− = L. Let us compute inner products. By the definition of
[., .], we have

[fn, fm] = 0, |n| 6= |m| ,

[fn, fn] = [en, en] +
|n|2

(|n| + 1)2
[e−n, e−n] =

{
2|n|+1

(|n|+1)2 , n ≥ 0

− 2|n|+1
(|n|+1)2 , n < 0

[fn, f−n] =
[
en +

|n|
|n| + 1

e−n, e−n +
|n|

|n| + 1
en
]

=

=
|n|

|n| + 1
[en, en] +

|n|
|n| + 1

[e−n, e−n] = 0, n ∈ N .

It follows that L2
+ ∈ Sub>0 L, L2

− ∈ Sub<0 L, and that L2
+ ⊥ L2

−. Thus
J2 := (L2

+,L2
−) is a fundamental decomposition of L.

Consider the sequence (fn)n∈N. Then we have

‖fn‖2
J1

= ‖en +
n

n+ 1
e−n‖2

J1
= [en, en] +

[ n

n+ 1
e−n,

n

n+ 1
e−n

]
=

= 1 +
n2

(n+ 1)2
,

‖fn‖2
J2

= [fn, fn] =
2n+ 1

(n+ 1)2
.

We see that ‖fn‖J2 → 0 whereas ‖fn‖J1 ≥ 1.

Consider the sequence (n− 1
2 en)n∈N. Then

∥
∥
en√
n

∥
∥

2

J1
=
[ en√

n
,
en√
n

]
=

1

n
,

∥
∥
en√
n

∥
∥

2

J2
=
∥
∥
∥

(n+ 1)2

(2n+ 1)
√
n

(
fn − n

n+ 1
f−n

)
∥
∥
∥

2

J2

=

=
( (n+ 1)2

(2n+ 1)
√
n

)2(

[fn, fn] −
[ n

n+ 1
f−n,

n

n+ 1
f−n

])

=

=
( (n+ 1)2

(2n+ 1)
√
n

)2( 2n+ 1

(n+ 1)2
+

n2

(n+ 1)2
2n+ 1

(n+ 1)2

)

=

=
(n+ 1)4

(2n+ 1)2n

2n+ 1

(n+ 1)2

(

1 +
n2

(n+ 1)2

)

We see that ‖n− 1
2 en‖J1 → 0 whereas ‖n− 1

2 en‖J2 → 1. �
The following statement gives two useful conditions under which at most

one decomposition topology exists.

THB42 2.6.2 Theorem. Let 〈L, [., .]〉 be an inner product space, and assume that (at
least) one of the following hypothesis holds true:

(i) L is semicompletely decomposable.

(ii) The inner product [., .] is nondegenerated and TopBs L 6= ∅.

Then there exists at most one decomposition topology on L.
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Proof. Under the assumption (i), the present assertion is an immediate conse-
quence of our previous results. Namely, by Corollary 2.5.7, (ii), each decompo-
sition topology is minimal, and by Theorem 2.5.10 there exists only one minimal
element.

For the proof under the hypothesis (ii), assume that L is nondegenerated,
let T ∈ TopBs L, and choose a norm ‖.‖ which induces T . Let two fundamental
decompositions J1 = (L1

+,L1
−) and J2 = (L2

+,L2
−) of L be given. Since L is

nondegenerated, each of Lj±, j = 1, 2, is T -closed. By Proposition 2.4.2, (iv),
the fundamental symmetries J1, J2 corresponding to J1 and J2 are T -to-T -
continuous, and TJ1 , TJ2 ⊆ T . Put T := J1J2, then J1T = J2 and hence

(Tx, y)J1 = [J2x, y] = [x, J2y] = (x, T y)J1 , x, y ∈ L .

For each n ≥ 0 we have

pJ1

(
T 2n

x
)2

=
(
T 2n

x, T 2n

x
)

J1
=
(
T 2n+1

x, x
)

J1
≤ pJ1

(
T 2n+1

x
)
pJ1(x) . (2.6.1) B43

We will show by induction that

pJ1(Tx) ≤ pJ1

(
T 2n

x)2
−n · pJ1(x)

1−2−n

, n ≥ 0 . (2.6.2) B44

If n = 0, this is just pJ1(Tx) ≤ pJ1(Tx) · 1, and hence trivially true. Assume
that (2.6.2) holds for some n ∈ N0. Then, using (2.6.1), it follows that

pJ1(Tx) ≤ pJ1

(
T 2n

x)2
−n · pJ1(x)

1−2−n ≤

≤
(
pJ1

(
T 2n+1

x
)
pJ1(x)

) 1
2 ·2−n

· pJ1(x)
1−2−n

=

= pJ1

(
T 2n+1

x
)2−(n+1)

· pJ1(x)
1−2−n+2−(n+1)

=

= pJ1

(
T 2n+1

x
)2−(n+1)

· pJ1(x)
1−2−(n+1)

.

This finishes the proof of (2.6.2).
Since TJ1 ⊆ T , there exists a constant γ > 0 such that pJ1(x) ≤ γ‖x‖, x ∈ L.

Moreover, denote by ‖T ‖ the ‖.‖-to-‖.‖-operator norm of T . Then we obtain,
with help of (2.6.2),

pJ1(Tx) ≤ γ2−n‖T 2n

x‖2−n · pJ1(x)
1−2−n ≤ γ2−n‖T ‖ · ‖x‖2−n · pJ1(x)

1−2−n

.

Passing to the limit n→ ∞ gives pJ1(Tx) ≤ ‖T ‖pJ1(x). From this we obtain

pJ2(x)
2 = [J2x, x] = [J1Tx, x] = (Tx, x)J1 ≤

≤ pJ1(Tx)pJ1(x) ≤ ‖T ‖pJ1(x)
2, x ∈ L ,

i.e. TJ2 ⊆ TJ1 . Since decomposition topologies are minimal, cf. Corollary 2.5.7,
(ii), this implies that TJ1 = TJ2 . ❑

Let us note explicitly that (ii) does not imply (i), even if we assume the
existence of a fundamental decomposition. This comes for the following reason:
If, under the hypothesis (ii), J = (L+,L−) is a fundamental decomposition
of a nondegenerated space, then L+ and L− are T -closed, i.e. complete with
respect to the norm ‖.‖. But this does not necessarily imply that L+or L− is
intrinsically complete.

example ??
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COB45 2.6.3 Corollary. Let 〈L, [., .]〉 be an inner product space, and assume that
ind− L <∞ or ind+ L <∞. Then |Topdec L| = 1. In other words, for each two
fundamental decompositions J1, J2 of L, there exist constants γ1, γ2 > 0 such
that

γ1pJ1(x) ≤ pJ2(x) ≤ γ2pJ1(x), x ∈ L .

Proof. Assume e.g. that ind− L < ∞. Then, by Proposition 1.5.2, (iii), the
space L is decomposable. The negative definite component in a fundamental
decomposition is finite dimensional, and hence intrinsically complete. The as-
sertion follows. ❑

It is a noteworthy fact that, for nondegenerated spaces L, completeness of a
component in a fundamental decomposition does not depend on the particular
choice of the fundamental decomposition. In particular, if L is semicompletely
decomposable, then either for every fundamental decomposition the positive
definite component is intrinsically complete or for every fundamental decompo-
sition the negative definite component is intrinsically complete (or both).

PRB46 2.6.4 Proposition. Let 〈L, [., .]〉 be nondegenerated, and let J = (L+,L−) and
J′ = (L′

+,L′
−) be two fundamental decompositions of L. If L′

+ is intrinsically
complete, so is L+. The same holds for L′

− and L−.

The proof of this fact is based on the following observation, which will also
be useful later on.

LEB47 2.6.5 Lemma. Let J = (L+,L−) be a fundamental decomposition of the inner
product space 〈L, [., .]〉, and let j be the orthogonal decomposition j := (L+,L− +
L◦). If M ∈ Sub≥0 L ∩ Subj, then the fundamental projection P+

J maps M
pJ-bicontinuously onto P+

J M.

Proof. Since M ∈ Subj and, with the notation of Definition 1.3.1, P+
J = P 1

j ,

the map P+
J is a bijection of M onto P+

J M. Clearly, pJ(P+
J x) ≤ pJ(x), x ∈ L,

and hence P+
J is pJ-continuous.

To see boundedness of (P+
J |M)−1, let x ∈ M be given. Since M ∈ Sub≥0 L,

we obtain the estimate

pJ(x)2 = [P+
J x, P

+
J x] − [P−

J x, P
−
J x] = 2[P+

J x, P
+
J x] − [x, x]

︸ ︷︷ ︸

≥0

≤ 2pJ(P+
J (x))2 .

❑

Note that always Sub>0 L ⊆ Sub≥0 L∩ Subj. For nondegenerated spaces L,
we even have Sub≥0 L ⊆ Subj. Let us moreover point out the following fact.

REB48 2.6.6 Remark. If 〈L, [., .]〉 is a positive definite inner product space, and M ∈
Sub>0 L is intrinsically complete, then M is orthocomplemented. This follows,
since the usual proof of existence of orthogonal projections in a Hilbert space
uses completeness of the subspace but not completeness of the whole space.

�

Proof (of Proposition 2.6.4). Assume that L′
+ is intrinsically complete, i.e. com-

plete with respect to pJ′ . First of all, Theorem 2.6.2 implies that TJ = TJ′ .
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Hence, L′
+ is also pJ-complete. By the above lemma, P+

J L′
+ is a pJ-complete

subspace of the positive definite inner product space L+.
If P+

J L′
+ = L+, we are done. Assume that P+

J L′
+ 6= L+. Then, by the above

remark, there exists an element x0 ∈ L+ with

x0 ⊥ P+
J L′

+, x0 6∈ P+
J L′

+ .

The subspace M′ := span(L′
+ ∪ {x0}) is thus a proper and positive definite ex-

tension of L′
+. This implies M′∩L′

− 6= {0}, and we have reached a contradiction
since M′ is positive and L′

− is negative. ❑

If there exists a unique decomposition topology on an inner product space,
this topology is the most natural element of TopL, and appears in several
contexts. Hence, it deserves to be named.

DEB49 2.6.7 Definition. Let 〈L, [., .]〉 be an inner product space, and assume that
|Topdec L| = 1. Then we denote the unique decomposition topology of L by
T �. Moreover, we let L� := 〈L, T �〉′ be the topological dual space of L with
respect to the topology T �. �

REB50 2.6.8 Remark. Assume that |Topdec L| = 1, so that T � is well-defined.

(i) We have T � ∈ Topsn L, and it is a Hausdorff topology if and only if L is
nondegenerated.

(ii) In the situation that L is nondegenerated, so that T � is induced by some
norm, we will freely speak of ‘completeness with respect to T �’, ‘Cauchy
sequence with respect to T �’, etc. meaning ‘complete with respect to some
norm inducing T �’, ‘Cauchy sequence with respect to some norm inducing
T �’, etc.

�

2.7 Subspaces, products, factors

The constructs mentioned in the title of this section are defined in a natural
way, and give rise to topological inner product spaces.

PRB51 2.7.1 Proposition. Let 〈L, [., .], T 〉 be a topological inner product space, and
let M be a linear subspace of L. Then 〈M, [., .]|M×M, T |M〉 is a topological
inner product space.

The inclusion map ι : M → L is a morphism. Let 〈N , [., .]N , TN 〉 be a
topological inner product space, and let φ : N → M. Then φ is a morphism if
and only if ι ◦ φ is such.

Proof. First of all note that the restriction T |M is a locally convex vector topol-
ogy on M. Clearly, T -continuity of [., .] implies that [., .]|M×M is continuous
with respect to T |M. Thus 〈M, [., .]|M×M, T |M〉 is a topological inner product
space.

The fact that the inclusion map is linear, isometric, and continuous, is also
clear. Let 〈N , [., .]N , TN 〉 be another topological inner product space, and let
φ : N → M. If φ is a morphism, then ι◦φ is, as a composition of two morphisms,
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itself such. Conversely, TN -to-T -continuity of ι◦φ implies TN -to-T |M-continuity
of φ, since TM is the inital topology with respect to {ι}. Moreover, isometry of
ι ◦ φ implies

[φx, φy]M×M = [ιφx, ιφy] = [x, y]N , x, y ∈ N .

Finally, since ι is injective, linearity of ι ◦ φ implies linearity of φ. ❑

PRB52 2.7.2 Proposition. Let 〈Li, [., .]i, Ti〉, i = 1, . . . , n, be topological inner product
spaces, and define

L :=

n∏

i=1

Li, [x, y] :=

n∑

i=1

[πix, πiy]i, T :=

n∏

i=1

Ti ,

where πi denotes the canonical projection of L onto Li. Then 〈L, [., .], T 〉 is a
topological inner product space.

Let ιi : Li → L, i = 1, . . . , n, be the canonical embedding

ιi(x) := (0, . . . , x
↑

i-th place

, . . . , 0) .

Then ιi is a morphism. Let 〈N , [., .]N , TN 〉 be a topological inner product space,
and let φ : N → L. Then φ is a morphism if and only if φ is isometric and
πi ◦ φ, i = 1, . . . , n, are all continuous.

Proof. The product topology is a locally convex topology on L. Clearly, [., .] is,
as a sum of continuous functions, itself continuous.

Isometry and continuity of ιi is immediate. The fact that continuity of πi ◦φ
implies continuity of φ is the universal property of initial topologies. ❑

Note that, in the situation of Proposition 2.7.2, the maps πi ◦φ need not be
isometric.

PRB53 2.7.3 Proposition. Let 〈L, [., .], T 〉 be a toplogical inner product space, and let
M be a linear subspace of L with M ⊆ L◦. Then an inner product [., .]∼ on
L/M is well-defined by

[πx, πy]∼ := [x, y], x, y ∈ L ,

where π denotes the canonical projection. The triple 〈L/M, [., .]∼, T /M〉, where
T /M denotes the quotient topology, is a topological inner product space.

The canonical projection π : L → L/M is a morphism. Let 〈N , [., .]N , TN 〉
be a topological inner product space, and let φ : L/M → N . Then φ is a
morphism if and only if φ ◦ π is such.

Proof. The quotient topology is a locally convex vector topology on the factor
space. The fact that [., .]∼ is well-defined, follows since M ⊆ L◦. Since π maps
open sets to open sets, [., .]∼ is T /M-continuous. Clearly, π is a morphism and
continuity of φ ◦ π implies continuity of φ. Moreover,

[πx, πy]∼ = [x, y] = [φπx, φπy]N , x, y ∈ L .

❑
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Sometimes it is practical to have available a weak version of the 1st Homo-
morphism Theorem. This is an immediate consequence of the above statements.

COB54 2.7.4 Corollary. Let 〈L1, [., .]1, T1〉 and 〈L2, [., .]2, T2〉 be topological inner prod-
uct spaces, and let φ : L1 → L2 be a morphism. Then there exists a unique
morphism φ̂ such that

〈L1, [., .]1, T1〉
π

��

φ // 〈L2, [., .]2, T2〉

〈L1/ kerφ, [., .]1,∼, T / kerφ〉
φ̂

// 〈ranφ, [., .]2|ranφ×ranφ, T2|ranφ〉

ι

OO

This map φ̂ is bijective.

Proof. Existence of a linear and bijective map φ̂ with the above diagram is
standard. Isometry of φ̂ is clear, and continuity follows from the universal
property of initial and final topologies. ❑

Note that, although φ is bijective, we do not know in general that φ is an
isomorphism.



Chapter 3

Classes of complete TIPS. I.

Krein spaces

3.1 Definition of Krein spaces

Let 〈L, [., .]〉 be a nondegenerated and decomposable inner product space. By
Proposition 2.6.4 the positive subspaces appearing in fundamental decomposi-
tions of L are either all intrinsically complete or all not intrinsically complete.
The same holds for the negative components in fundamental decompositions of
L.

DEC14 3.1.1 Definition. An inner product space 〈K, [., .]〉 is called a Krein space,
if

(KS1) K is nondegenerated.

(KS2) There exists a fundamental decomposition (K+,K−) of K whose
components K+ and K− are both intrinsically complete.

�

Let us start with some immediate reformulations of this definition.

REC15 3.1.2 Remark. Let 〈K, [., .]〉 be an inner product space. Then the following are
equivalent:

(i) 〈K, [., .]〉 is a Krein space.

(ii) There exists a Hilbert space H1 and a anti-Hilbert space H2, such that

〈K, [., .]〉 = H1[+̇]H2 .

[+̇] to be defined earlier (§1)

(iii) K is nondegenerated, |Topdec K| = 1, and K is complete with respect to
T �.

�
REC16 3.1.3 Remark. Let 〈K, [., .]〉 be a Krein space.

49
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(i) It follows from our previous discussions, more precisely from Proposition
2.4.3, (ii), Theorem 2.5.10, and Theorem 2.6.2, that

TopHs K = TopBs K = Topdec K = Topmin K = {T �} .

Hence, Krein spaces may be considered in a canonical way as a particular
kind of topological inner product spaces. Namely if we additionally endow
〈K, [., .]〉 with the topology T �, and we will refer to T � as the Krein space
topology of K.

Unless the contrary is stated explicitly, a Krein space K will always be
understood as the topological inner product space 〈K, [., .], T �〉.

(ii) Let J be a fundamental decomposition of K. Then 〈K, (., .)J〉 is a Hilbert
space. Hence, the map y 7→ (., y)J is a conjugate linear bijection of K onto
the topological dual space of K. However, the fundamental symmetry J
is a linear bijection of K onto itself, and we have (., y)J = [., Jy]. Hence,
also the map y 7→ [., y] is a conjugate linear bijection of K onto its dual.

�

↓↓↓↓↓↓↓↓↓↓↓↓

remove notion of KS-morphism... everywhere. maybe somewhere footnote

On first sight it might seem natural to define a morphism of a Krein space
〈K1, [., .]〉 to another Krein space 〈K2, [., .]2〉 as a linear and isometric map of
K1 into K2. Interestingly, this notion would be too weak in many respects; it is
necessary to include continuity into the definition.

DEC17 3.1.4 Definition. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be topological inner product
spaces. Then φ is called a (KS–) morphism of K1 to K2, if φ is a linear map of
K1 into K2 which is isometric and T �

1 -to-T �
2 -continuous. �

Formulated in an abstract way, one could say that we consider Krein spaces,
which are by definition a particular kind of inner product spaces and by Re-
mark 3.1.3, (i), a particular kind of topological inner product spaces, rather as
subcategory of TIPS than of inner product spaces.

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

Let us turn to some alternative definitions of Krein spaces. First we proceed
via Gram operators. Revisiting the proof of Theorem 2.3.3, we can deduce the
next statement.

THC18 3.1.5 Theorem. Let 〈K, [., .]〉 be an inner product space. Then 〈K, [., .]〉 is a
Krein space, if and only if there exists an inner product (., .) on K which turns K
into a Hilbert space, induces a compatible topology, and has the property that the
Gram operator of [., .] with respect to (., .) is boundedly invertible as an operator
on the Hilbert space 〈K, (., .)〉.

In this case, for each Hilbert space inner product on K which induces a
compatible topology, the corresponding Gram operator is boundedly invertible.
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Proof. If 〈K, [., .]〉 is a Krein space, then K becomes a Hilbert space if endowed
with the inner product (., .)J, where J is any fundamental decomposition of K.
Moreover, the Gram-operator of [., .] with respect to (., .)J is just the fundamen-
tal symmetry JJ. The fundamental symmetry, however, is (., .)J-unitary, and
in particular boundedly invertible.

Conversely, assume that (., .) is an inner product on K which turns K into a
Hilbert space and satisfies the stated conditions. Denote the Gram-operator of
[., .] with respect to (., .) by G. Then G is a bounded and selfadjoint operator
in the Hilbert space 〈K, (., .)〉, and 0 ∈ ρ(G). We employ the same construction
as already used in the proof of Theorem 2.3.3. Let E be the spectral measure
of G, and put

K+ := ranE
(
(0,∞)

)
, K− := ranE

(
(−∞, 0)

)
.

Then we know that (K+,K−) is a fundamental decomposition of K, and that
K+ and K− are both (., .)-closed.

We have to show that K is nondegenerated and that K± are intrinsically
complete. This will follow from the fact that 0 ∈ ρ(G). First, clearly,

K[◦] = kerG = {0} .

Next, choose c > 0 such that (−c, c) ⊆ ρ(G). Then E((0,∞)) = E([c, ‖G‖]),
i.e. K+ = ranE([c, ‖G‖]). Hence, for each x ∈ K+,

(x, x) =

∫

[c,‖G‖]
1 dEx,x, [x, x] = (Gx, x) =

∫

[c,‖G‖]
t dEx,x .

It follows that
c(x, x) ≤ [x, x] ≤ ‖G‖(x, x), x ∈ K+ , (3.1.1) C19

i.e. the norms induced by (., .) and [., .] are equivalent. Since K+ is (., .)-closed,
it is (., .)-complete, and we conclude that K+ is also [., .]-complete. The fact
that K− is intrinsically complete is seen in exactly the same way.

Finally, assume that 〈K, [., .]〉 is a Krein space, and let (., .) be any Hilbert
space inner product on K which induces a compatible topology. Denote the
corresponding Gram-operator of [., .] by G, and fix a fundamental decomposition
J of K. The norms ‖.‖ and ‖.‖J induced by (., .) and (., .)J, respectively, both
turn K into a Hilbert space, and are hence equivalent, cf. Proposition 2.4.3, (ii).
In particular, there exist (‖.‖- or ‖.‖J-) bounded operators G′, G′′, with

(x, y) = (G′x, y)J, (x, y)J = (G′′x, y), x, y ∈ K .

Since

(G′G′′x, y)J = (G′′x, y) = (x, y)J, (G′′G′x, y) = (G′x, y)J = (x, y) ,

we have G′G′′ = G′′G′ = I. Hence 0 ∈ ρ(G′), 0 ∈ ρ(G′′), and (G′)−1 = G′′.
However,

(G′Gx, y)J = (Gx, y) = [x, y] = (JJx, y)J ,

and hence G′G = JJ. This gives G = G′′JJ, and it follows that G is (‖.‖- or
‖.‖J-) boundedly invertible. ❑
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REC20 3.1.6 Remark. For later reference, let us explicitly point out the following fact:
If (., .) is a Hilbert space inner product on K with T(.,.) ∈ TopK, then a funda-
mental decomposition of K is given by

J :=
(
ranE(−∞, 0), ranE(0,∞)

)
,

where E is the spectral measure of the Gram operator of [., .] with respect to
(., .). �

EXC21 3.1.7 Example. Often Krein spaces occur reading Theorem 3.1.5 backwards,
i.e. as follows: Let 〈H, (., .)〉 be a Hilbert space, and let G be a bounded and
boundedly invertible operator on H. Define

[x, y] := (Gx, y), x, y ∈ H .

Then 〈H, [., .]〉 is a Krein space. �
REC22 3.1.8 Remark. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be Krein spaces, and consider their

direct and orthogonal sum K := K1[+̇]K2. Then 〈K, [., .]+〉 is a Krein space.
In order to see this, remember that the inner product [., .]+ on a direct and

orthogonal sum is defined as

[x1 + x2, y1 + y2]+ = [x1, y1]1 + [x2, y2]2, x1, y1 ∈ K1, x2, y2 ∈ K2 ,

and that K1[+̇]K2 contains K1 and K2 as orthogonal subspaces.
Choose fundamental decompositions J1 = (K1,+,K1,−) and J2 =

(K2,+,K2,−) of K1 and K2, respectively. Then the pair

J :=
(
K1,+[+̇]K2,+,K1,−[+̇]K2,−

)

is a fundamental decomposition of K. Clearly, its components are intrinsically
complete. The Krein space topology of K1[+̇]K2 is equal to the product topology
of the Krein space topologies of K1 and K2. �

3.2 Fundamental decompositions

In a Krein space those subspaces which are components of a fundamental de-
composition can be described.

DEC23 3.2.1 Definition. Let 〈K, [., .]〉 be a Krein space, let J be a fundamental de-
composition of K, and let M ∈ SubK. Then M is called uniformly positive, if
there exists a constant γ > 0 such that

[x, x] ≥ γ‖x‖2
J, x ∈ M .

The subspace M is called uniformly negative, if there exists a constant γ > 0
such that

−[x, x] ≥ γ‖x‖2
J, x ∈ M .

The set of all uniformly positive subspaces of K will be denoted by Sub≫0 K,
the set of all uniformly negative ones by Sub≪0 K. �

Note that, since the norms induced on a Krein space by each two funda-
mental decompositions are equivalent, the definition of ‘uniformly positive’ and
‘uniformly negative’ does not depend on the particular choice of the fundamental
decomposition J in Definition 3.2.1.
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THC24 3.2.2 Theorem. Let 〈K, [., .]〉 be a Krein space, and let L+,L− ∈ SubK. Then
there exists a fundamental decomposition J = (K+,K−) of K with

L+ ⊆ K+ and L− ⊆ K−

if and only if

L+ ∈ Sub≫0 K, L− ∈ Sub≪0 K, L+ ⊥ L− . (3.2.1) C25

Thereby J can be chosen such that L+ = K+ if and only if, in addition to (3.2.1),
L+ is maximal in Sub≫0 K. In this case, L+ is even maximal in Sub≥0 K. The
analogous statement holds for L−.

The proof of this result depends on the following lemmata; the crucial one
giving an extension property for operators between Hilbert spaces.

LEC26 3.2.3 Lemma. Let 〈H1, (., .)1〉 and 〈H2, (., .)2〉 be Hilbert spaces, and let

T1 : domT1 ⊆ H1 → H2, T2 : domT2 ⊆ H2 → H1 ,

be bounded linear operators. Assume that

(
T1x, y

)

2
=
(
x, T2y

)

1
, x ∈ domT1, y ∈ domT2 . (3.2.2) C27

Then there exist linear operators

T̃1 : H1 → H2, T̃2 : H2 → H1 ,

with

T̃j|domTj
= Tj, ‖T̃j‖ ≤ max{‖T1‖, ‖T2‖}, j = 1, 2, T̃ ∗

1 = T̃2 .

Proof.
Step 1: First we extend T1 and T2 by continuity to operators

T̄1 : domT1 ⊆ H1 → H2, T̄2 : domT2 ⊆ H2 → H1 .

Then ‖T̄j‖ = ‖Tj‖, j = 1, 2, and

(
T̄1x, y

)

2
=
(
x, T̄2y

)

1
, x ∈ domT1, y ∈ domT2 ,

i.e. the pair of operators T̄1 and T̄2 satisfies the same hypothesis as T1 and T2

do. Hence, for the rest of the proof we may assume that domT1 and domT2 are
closed subspaces of H1 and H2, respectively.

Step 2: Denote by P2 the orthogonal projection of H2 onto domT2, put γ :=
max{‖T1‖, ‖T2‖}, and define

[x, y] := γ2(x, y)1 −
(
(T2P2)

∗x, (T2P2)
∗y
)

2
, x, y ∈ H1 .

Thereby, the adjoint (T2P2)
∗ is understood as the adjoint of the bounded oper-

ator T2P2 acting between the Hilbert spaces H1 and H2. Then [., .] is an inner
product on H1. Since

‖(T2P2)
∗‖ = ‖T2P2‖ ≤ ‖T2‖ ≤ γ ,
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we have

[x, x] = γ2‖x‖2
1 − ‖(T2P2)

∗x‖2
2 ≥ (γ2 − ‖(T2P2)

∗‖2)‖x‖1 ≥ 0, x ∈ H1 ,

i.e. [., .] is positive semidefinite. If x ∈ domT1, then we have by our assumption
(3.2.2)

(P2T1x, y)2 = (T1x, P2y)2 = (x, T2P2y)1, y ∈ H2 .

Hence,

(T2P2)
∗x = P2T1x, x ∈ domT1 . (3.2.3) C28

It follows that

‖(I − P2)T1x‖2
2 = ‖T1x‖2

2 − ‖P2T1x‖2
2 = ‖T1x‖2

2 − ‖(T2P2)
∗x‖2

2 ≤
≤ γ2‖x‖2

1 − ‖(T2P2)
∗x‖2

2 = [x, x], x ∈ domT1 .
(3.2.4) C29

Let Ĥ1 be the Hilbert space completion of the positive definite inner product

space 〈H1/H[◦]
1 , [., .]〉, and denote by ι : H1 → Ĥ1 the canonical map, i.e. projec-

tion followed by embedding. Since ran(I −P2)T1 ⊆ ran(I −P2) and, by (3.2.4),

domT1 ∩ ker ι = domT1 ∩ H[◦]
1 ⊆ ker(I − P2)T1, there exists a linear operator

V0 : ι(domT1) ⊆ Ĥ1 → ran(I − P2) with V0 ◦ ι = (I − P2)T1. Once more by
(3.2.4), we have ‖V0‖ ≤ 1. Let V1 : Ĥ1 → ran(I−P2) be an extension of V0 with
‖V1‖ = ‖V0‖. For example, V1 can be taken as V̄0P , where V̄0 is the extension
by continuity of V0 to ι(dom T1) and P is the orthogonal projection of Ĥ1 onto
ι(domT1). We are in the situation

domT1

(I−P2)T1 //

ι

��

ran(I − P2) ⊆ H2

ι(domT1)

V0

33gggggggggggggggggggggg

⊆ Ĥ1

V1

55kkkkkkkkkkkkkkkk

(3.2.5) C30

Define

W := V1 ◦ ι : H1 → ran(I − P2) ⊆ H2 .

Clearly, then

‖Wx‖2
2 = ‖V1(ιx)‖2

2 ≤ ‖ιx‖2
Ĥ1

= [x, x], x ∈ H1 .

Define

T̃1 := (T2P2)
∗ +W : H1 → H2 .

Then, for each x ∈ domT1, we obtain from (3.2.3) and (3.2.5) that

T̃1x = (T2P2)
∗x+Wx = P2T1x+ (I − P2)T1x = T1x ,

i.e. T̃1|domT1 = T1. Moreover, since ran(T2P2)
∗ = (kerT2P2)

⊥ ⊆ (kerP2)
⊥ =

ranP2, we have

‖T̃1x‖2
2 = ‖(T2P2)

∗x+Wx‖2
2 = ‖(T2P2)

∗x‖2
2 + ‖Wx‖2

2 ≤

≤ ‖(T2P2)
∗x‖2

2 + [x, x] = γ2‖x‖1, x ∈ H1 ,
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i.e. ‖T̃1‖ ≤ γ. Finally, for x ∈ H1 and y ∈ domT2 = ranP2, we have

(T̃1x, y)2 =
(
(T2P2)

∗x+Wx, y
)

2
=
(
(T2P2)

∗x, y
)

2
=

= (x, T2P2y)1 = (x, T2y)1 .

Altogether, we see that the pair of operators T̃1 and T2 satisfies the same hy-
pothesis as T1 and T2 do, and that max{‖T̃1‖, ‖T2‖} ≤ γ.

Step 3: Applying what we showed in Step 2 with the pair of operators T2 and
T̃1 in place of T1 and T2, gives an operator T̃2 : H2 → H1 with T̃2|domT2 = T2,
‖T̃2‖ ≤ γ, and

(T̃2y, x)1 = (y, T̃1)2, y ∈ H2, x ∈ H1 ,

i.e. T̃2 = T̃ ∗
1 . ❑

REC31 3.2.4 Remark. It is worth to have a little closer look at the particular case that
domT2 = {0} in Lemma 3.2.3. The hypothesis (3.2.2), as well as the conclusion
that T̃2 extends T2, becomes in this case of course void.

(i) We have T2P2 = 0, and hence [., .] = ‖T1‖2(., .)1. Hence, Ĥ1 = H1, and

T̃1 = T̄1P (3.2.6) C32

where T̄1 is the extension by continuity of T1 to domT1, and P is the
orthogonal projection of H1 onto domT1. Clearly, we have ‖T̃1‖ = ‖T1‖.
Of course, this particular case could have been treated much simpler by
using (3.2.6) as the definition of T̃1 and setting T̃2 := T̃ ∗

1 .

(ii) Assume that domT1 is closed, and that T1 satisfies

‖T1x‖2 < α · ‖x‖1, x ∈ domT1 \ {0} ,

with some α > 0. Since T̃1 is given by (3.2.6), we obtain

‖T̃1x‖2 = ‖T1(Px)‖2 < α · ‖Px‖1 ≤ α · ‖x‖1, x 6∈ kerP ,

and

‖T̃1x‖2 = 0 < α · ‖x‖1, x ∈ kerP \ {0} .
Together, it follows that ‖T̃1x‖ < α · ‖x‖1, x ∈ H1 \ {0}.

�
Next we translate uniform definiteness and orthogonal complements into the

language of angular operators.

LEC33 3.2.5 Lemma. Let 〈K, [., .]〉 be a Krein space, and let M ∈ SubK. Then the
following are equivalent:

(i) M ∈ Sub≫0 K.

(ii) For each fundamental decomposition J = (K+,K−) of K, we have M ∈
SubJ and ‖aJ(M)‖ < 1. Here ‖.‖ denotes the operator norm between the
Hilbert spaces 〈K+, [., .]〉 and 〈K−,−[., .]〉.
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(iii) There exists a fundamental decomposition J of K, such that M ∈ SubJ

and ‖aJ(M)‖ < 1.

With the obvious modifications, the analogous statement holds for ‘uniformly
negative’ instead of ‘uniformly positive’.

Proof. We first show that (i) implies (ii). To this end let a fundamental de-
composition J = (K+,K−) of K be given. Since M is in particular nonnegative,
we have M ∈ SubJ. Let γ > 0 be such that [x, x] ≥ γ‖x‖J, x ∈ M. This
inequality, however, is nothing else but

‖P+
J x‖2

J − ‖P−
J x‖2

J ≥ γ
(
‖P+

J x‖2
J + ‖P−

J x‖2
J

)
, x ∈ M ,

and hence we have

‖P−
J x‖2

J ≤ 1 − γ

1 + γ
‖P+

J x‖2
J, x ∈ M ,

i.e.

‖aJ(M)y‖2
J ≤ 1 − γ

1 + γ
‖y‖2

J, y ∈ P+
J M .

Thus

‖aJ(M)‖ ≤ 1 − γ

1 + γ
< 1 .

The implication (ii) ⇒ (iii) is trivial.

Assume that J is a fundamental decomposition of K, that M ∈ SubJ, and
that ‖aJ(M)‖ < 1. Then, for each x ∈ P+

J M, we have

[
x+ aJ(M)x, x + aJ(M)x

]
= [x, x] +

[
aJ(M)x, aJ(M)x

]
=

= ‖x‖2
J − ‖aJ(M)x‖2

J ≥ ‖x‖2
J

(
1 − ‖aJ(M)‖2

)

︸ ︷︷ ︸

>0

≥

≥ 1 − ‖aJ(M)‖2

1 + ‖aJ(M)‖2
· ‖x+ aJ(M)x‖2

J .

Hence M is uniformly positive.
The case of uniformly negative subspaces is treated in the same way. ❑

LEC34 3.2.6 Lemma. Let J = (K+,K−) be a fundamental decomposition of the Krein
space 〈K, [., .]〉 Moreover, let K be a bounded operator of the Hilbert space
〈K+, [., .]〉 into the Hilbert space 〈K−,−[., .]〉, and put

M :=
{
x+Kx : x ∈ K+

}
,

so that M ∈ SubJ and aJ(M) = K. Then M⊥ ∈ SubJ̄, where J̄ is the orthog-
onal decomposition J̄ := (K−,K+) of K, and

aJ̄(M⊥) = K∗ ,

where K∗ denotes the Hilbert space adjoint of K.
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Proof. Assume that z ∈ M⊥ ∩ K+. Then

0 = [z, x+Kx] = [z, x], x ∈ K+ ,

and hence z = 0. Thus M⊥ ∩ K+ = {0}, i.e. M⊥ ∈ SubJ̄.
If y ∈ K−, then for each x ∈ K+ we have

[x+Kx, y +K∗y] = [x,K∗y] + [Kx, y] = [x,K∗y] − (−[Kx, y]) = 0 .

This shows that
{
y +K∗y : y ∈ K−

}
⊆ M⊥ . (3.2.7) C35

Since K∗ is defined on all of K−, the space on the left side is maximal in SubJ̄,
cf. Corollary 1.4.3. It follows that in (3.2.7) already equality holds, and thus
also aJ̄(M⊥) = K∗. ❑

Proof (of Theorem 3.2.2).
Step 1: Assume first that J = (K+,K−) is a fundamental decomposition with
L+ ⊆ K+ and L− ⊆ K−. Then, clearly, L+ ⊥ L− and

[x, x] = (x, x)J, x ∈ L+, −[x, x] = (x, x)J, x ∈ L− .

Thus L+ ∈ Sub≫0 K and L− ∈ Sub≪0 K.
Assume that even L+ = K+, and let M ∈ SubK with M ) L+. Choose

x ∈ M \L+, then
y := x− P+

J x ∈
(
M∩K−

)
\ {0} .

Thus [y, y] < 0, and we conclude that M 6∈ Sub≥0 K. Therefore, L+ is maximal
in Sub≥0 K and hence in particular maximal in Sub≫0 K. The case of L− is
treated in the same way.

Step 2: Assume that L+ and L− satisfiy (3.2.1). Let J := (K+,K−) be a
fundamental decomposition of K, and consider the operators

aJ(L+) : K+ → K−, aJ̄(L−) : K− → K+ ,

where J̄ is the orthogonal decomposition J̄ := (K−,K+) of K. Note that, since
L+ is positive and L− is negative, we have L+ ∈ SubJ and L− ∈ SubJ̄. Since L+

and L− are in fact uniformly definite, Lemma 3.2.5 gives ‖aJ(L+)‖, ‖aJ̄(L−)‖ <
1. By Lemma 1.3.9, the fact that L+ ⊥ L− implies that

−[aJ(L+)x, y] = [x, aJ̄(L−)y], x ∈ P+
J L+, y ∈ P−

J L− .

Lemma 3.2.3, applied with the Hilbert spaces 〈K+, [., .]〉, 〈K−,−[., .]〉, and the
pair of operators

aJ(L+) : P+
J L+ ⊆ K+ → K−, aJ̄(L−) : P−

J (L−) ⊆ K− → K+ ,

furnishes us with operators

T̃+ : K+ → K−, T̃− : K− → K+ ,

with
T̃+|P+

J
L+

= aJ(L+), T̃−|P−
J

(L−) = aJ̄(L−) ,



58 CHAPTER 3. COMPLETE TIPS. I. KREIN SPACES

‖T̃±‖ ≤ max
{
aJ(L+), aJ̄(L−)

}
< 1 , (3.2.8) C36

and T̃− = T̃ ∗
+. Let K′

+ ∈ SubJ and K′
− ∈ SubJ̄ be those subspaces with

aJ(K′
+) = T̃+, aJ̄(K′

−) = T̃− .

Then, by Lemma 3.2.6, we have K+ = K⊥
−. By (3.2.8), we have K′

+ ∈ Sub≫0 K
and K′

− ∈ Sub≪0 K. Moreover, clearly, K′
+ ⊇ L+ and K′

− ⊇ L−.

Step 3: The next task is to show that K′
+ + K′

− = K. Let z ∈ K be given, and
define elements x ∈ K+ and y ∈ K− as

x := (IK+ − T̃−T̃+)−1(P+
J − T̃−P

−
J )z, y := (IK−

− T̃+T̃−)−1(P−
J − T̃+P

+
J )z .

Note here that ‖T̃−T̃+‖, ‖T̃+T̃−‖ < 1. Moreover, set

x′ := x+ T̃+x ∈ K′
+, y

′ := y + T̃−y ∈ K′
−, z′ := x′ + y′ ∈ K′

+ + K′
− .

Then we have
P+

J z
′ = x+ T̃−y, P

−
J z

′ = y + T̃+x ,

and hence

(P−
J − T̃+P

+
J )z′ = (y+ T̃+x)− T̃+(x+ T̃−y) = (IK+ − T̃+T̃−)y = (P−

J − T̃+P
+
J )z ,

(P+
J − T̃−P−

J )z′ = (x+ T̃−y)− T̃−(y+ T̃+x) = (IK−
− T̃−T̃+)x = (P+

J − T̃−P−
J )z .

Thus
z − z′ ∈ ker(P−

J − T̃+P
+
J ) ∩ ker(P+

J − T̃−P
−
J ) .

However, let w ∈ ker(P−
J − T̃+P

+
J ) ∩ ker(P+

J − T̃−P
−
J ), then

(IK−
− T̃−T̃+)P+

J w = P+
J w − T̃−T̃+P

+
J w = P+

J w − T̃−P
−
J w = 0 ,

(IK+ − T̃+T̃−)P−
J w = P−

J w − T̃+T̃−P
−
J w = P−

J w − T̃+P
+
J w = 0 .

It follows that P−
J w = P+

J w = 0, and hence that w = 0.
We conclude that z = z′, i.e. z ∈ K′

+ + K′
−. Altogether, we have con-

structed a fundamental decomposition with the required properties, namely
J′ := (K′

+,K′
−).

Step 4: Assume that, besides (3.2.1), L+ is maximal in Sub≫0 K. By what we
have proved in Step 2, there exists a fundamental decomposition J = (K+,K−)
with K+ ⊇ L+. As we saw in Step 1, K+ ∈ Sub≫0 K, and maximality of L+

implies that K+ = L− +. The case of L− is treated in the same way. ❑

Let us explicitly state the following immediate corollary of Theorem 3.2.2.

COC37 3.2.7 Corollary. Let 〈K, [., .]〉 be a Krein space, and let M ∈ SubK. Then the
following are equivalent:

(i) M is a maximal element of Sub≫0 K.

(ii) There exists a fundamental decomposition J = (K+,K−) of K with K+ =
M.
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(iii) (M,M⊥) is a fundamental decomposition of K.

The analogous set of equivalences holds for maximal uniformly negative sub-
spaces.

Proof. Assume that M is maximal uniformly positive. Applying Theorem 3.2.2
with the pair of subspaces M and {0}, gives a fundamental decomposition
J = (K+,K−) with K+ = M. Clearly, then we have K− = K⊥

+ = M⊥. Hence
(i) implies (ii) and (iii). Conversely, if M is the component of some fundamental
decomposition, then Theorem 3.2.2 implies that M ∈ Sub≫0 K. ❑

Let us further exploit the method which led to Theorem 3.2.2 in order to
obtain some information on maximal semidefinite subspaces of a Krein space.
Note that, if J = (K+,K−) is a fundamental decomposition of a Krein space K,
then

Sub≫0 K ⊆ Sub>0 K ⊆ Sub≥0 K ⊆ SubJ .

PRC38 3.2.8 Proposition. Let 〈K, [., .]〉 be a Krein space, let J = (K+,K−) be a fun-
damental decomposition of K, and let M ∈ SubK. Assume that M has one of
the following properties:

(i) M is a maximal element of Sub≥0 K.

(ii) M is a maximal element of Sub≫0 K.

(iii) M is closed and a maximal element of Sub>0 K.

Then M is already a maximal element of SubJ.

Proof. Let M ∈ Sub≥0 K be given, and assume that M is not maximal in SubJ.
By virtue of Corollary 1.4.3, this just means that P+

J M ( K+. Consider the
angular operator

aJ(M) : P+
J M ( K+ → K− .

Then aJ(M) is bounded, actually ‖aJ(M)‖ ≤ 1. Let T̃ : K+ → K− be the
extension of aJ(M) to all of K+ discussed in Remark 3.2.4. Then

‖T̃‖ = ‖aJ(M)‖ ≤ 1 . (3.2.9) C39

Let M̃ ∈ SubJ be the subspace with aJ(M̃) = T̃ . Then M̃ is maximal in SubJ,
and M̃ ⊇ M.

Assume that M is maximal in Sub≥0 K. By (3.2.9) we have M̃ ∈ Sub≥0 K,

and it follows that M = M̃. Assume that M is maximal in Sub≫0 K. Then
in (3.2.9) actually ‘< 1’ holds, and we conclude that M̃ ∈ Sub≫0 K. It follows
again that M = M̃.

Finally, assume that M is closed and maximal in Sub>0 K. Closedness
implies that M is complete in the norm ‖.‖J. By Lemma 2.6.5, also P+

J M
is complete in the norm ‖.‖J, and hence closed in K+. Moreover, since M ∈
Sub>0 K, we have

‖aJ(M)x‖J < ‖x‖J, x ∈ P+
J (M) \ {0} .

Remark 3.2.4, (ii), implies that also

‖T̃x‖J < ‖x‖J, x ∈ K+ \ {0} ,
and hence that M̃ ∈ Sub>0 K. Maximality of M in Sub<0 K yields M =
M̃. ❑
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Note here that the obstacle mentioned in the discussion preceeding Lemma
1.4.5 vanishes due to completeness, which enters the discussion in the form of
Remark 3.2.4.

COC40 3.2.9 Corollary. Let 〈K, [., .]〉 be a Krein space, and let M1,M2 ∈ SubK.
Assume that M1 has one of the properties (i), (ii), or (iii), stated in Proposition
3.2.8, and that M2 also has one of the properties (i), (ii), or (iii), stated in
Proposition 3.2.8. Then there exists a linear, bijective, and bicontinuous map
of M1 onto M2.

Proof. Choose a fundamental decomposition J = (K+,K−) of K. By Corollary
1.4.3, P+

J maps maximal elements of SubJ bijectively onto K+. In particular,
if M satisfies (i), (ii), or (iii) of Proposition 3.2.8, this will be the case. By
Lemma 2.6.5, P+

J is bicontinuous. ❑

REC41 3.2.10 Remark. The statements analogous to Proposition 3.2.8 and Corollary
3.2.9 for negative semidefinite subspaces hold by the same proofs. Thereby,
we should replace ‘≥ 0, > 0, ≫ 0’ by ‘≤ 0, < 0, ≪ 0’, and the fundamental
decomposition J by the orthogonal decomposition J̄ := (K−,K+). For example,
then we have

Sub≪0 K ⊆ Sub<0 K ⊆ Sub≤0 K ⊆ SubJ̄ .

�

COC42 3.2.11 Corollary. Let 〈K, [., .]〉 be a Krein space, and let J = (K+,K−) be a
fundamental decomposition of K. Then

ind+ K := dimK+, ind− K := dimK− .

Proof. Let M ∈ Sub>0 K. Then there exists a maximal element M̃ of Sub≥0 K
with M̃ ⊇ M. By Corollary 3.2.9, dimM̃ = dimK+. Hence, ind− K ≤ dimK+.
However, K+ itself is a positive subspace of K, and thus the converse inequality
is trivial. The equality ind−K = dimK− is seen in the same way. ❑

The next statement gives an improvement of Proposition 1.4.11.

COC43 3.2.12 Corollary. Let 〈K, [., .]〉 be a Krein space. If M is maximal in Sub≥0 K,
then M⊥ is maximal in Sub≤0 K.

Proof. The angular operator aJ(M) is bounded and defined on all of K+.
Lemma 3.2.6 gives M⊥ ∈ SubJ̄ and aJ̄(M⊥) = aJ(M)∗. In particular, the
domain of this angular operator is all of K−, and hence M⊥ is maximal in
SubJ̄. Moreover, as we already know from Proposition 1.4.11, M⊥ ∈ Sub≤0 K.
Thus, M⊥ is maximal in Sub≤0 K. ❑

3.3 Orthocomplemented subspaces

Let us start with some corollaries of Theorem 2.3.3.

PRC44 3.3.1 Proposition. Let 〈K, [., .]〉 be a Krein space, and let L be a closed sub-
space of K. Then the following hold:

(i) L possesses a fundamental decomposition JL = (L+,L−) such that each
of L±, L± + L◦, and L+ + L− are closed in K.
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(ii) We have L⊥⊥ = L and (L⊥)◦ = L◦.

Proof. Let J = (K+,K−) be a fundamental decomposition of K, then 〈K, (., .)J〉
is a Hilbert space. Since L is closed in K, also 〈L, (., .)J〉 is a Hilbert space. By
Theorem 2.3.3 there exists a fundamental decomposition JL such that each of
the subspaces listed in (i) is closed in 〈L, (., .)J〉 and thus also in K.

We come to the proof of (ii). We have

x[⊥]L ⇐⇒ ∀y ∈ L : [x, y] = 0 ⇐⇒ ∀y ∈ L : (x, JJy)J = 0 ,

i.e. L[⊥] = (JJL)(⊥)J = JJ · L(⊥)J . It follows that

L[⊥][⊥] =
(
JJL(⊥)J

)[⊥]
=
(
JJJJL(⊥)J

)(⊥)J = L(⊥)J(⊥)J = L . (3.3.1) C45

This also implies that

(L⊥)◦ = L⊥ ∩ L⊥⊥ = L⊥ ∩ L = L◦ .

❑

COC46 3.3.2 Corollary. Let 〈K, [., .]〉 be a Krein space, and let L ∈ SubK.

(i) We have L = L⊥⊥.

(ii) L is dense in K if and only if L⊥ = {0}.
Proof. We can do the computation (3.3.1) stopping before the last equality sign.
However, since 〈K, (., .)J〉 is a Hilbert space, L(⊥)J(⊥)J = L.

The space JJL is dense in K if and only if (JJL)(⊥)J = {0}, i.e. if and only if
L[⊥] = {0}. Since JJ is a homeomorphism, L is dense if and only if JJL is. ❑

Let L be a closed and nondegenerated subspace of a Krein space. Although,
by Proposition 3.3.1, there exists a fundamental decomposition (L+,L−) of L
whose components are closed (and hence complete) in the norm of K, this does
not mean that L± are intrinsically complete, cf. Example 3.3.5.

THC47 3.3.3 Theorem. Let 〈K, [., .]〉 be a Krein space, and let L ∈ SubK. Then the
following are equivalent:

(i) L is orthocomplemented.

(ii) L is closed in K, nondegenerated, and for each fundamental decompo-
sition JL = (L+,L−) of L there exists a fundamental decomposition
JK = (K+,K−) of K with

L+ ⊆ K+ and L− ⊆ K− . (3.3.2) C48

(ii′) L is closed in K, nondegenerated, and there exist fundamental decomposi-
tions JL = (L+,L−) and JK = (K+,K−) of L and K, respectively, such
that (3.3.2) holds.

(iii) L is decomposable, nondegenerated, and for each fundamental decomposi-
tion JL = (L+,L−) of L we have

L+ ∈ Sub≫0 K, L− ∈ Sub≪0 K , (3.3.3) C49

and L+ and L− are closed in K.
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(iii′) We have L = L+[+̇]L− with some subspaces L± satisfying (3.3.3) and
being closed in K.

(iv) L is closed in K and 〈L, [., .]〉 is a Krein space.

Proof. The proof will proceed as follows:

(i) ⇒ (ii) ⇒ (ii′)⇒ ⇒

(iii) ⇒ (iii′) ⇒ (iv) ⇒ (i)

Thereby, the implication (iii) ⇒ (iii′) is trivial.

(i) ⇒ (ii): Since L is orthocomplemented, we have L◦ ⊆ K◦ = {0} and L⊥⊥ =
L, cf. Lemma 1.2.7. The first relation says that L is nondegenerated, the second
one implies that L is closed. Since with L also L⊥ is orthocomplemented, also
the space L⊥ is nondegenerated and closed. By Proposition 3.3.1, L and L⊥

are decomposable.
Let J = (L+,L−) and J′ = (L′

+,L′
−) be fundamental decompositions of L

and L⊥, respectively, and put

K+ := L+ + L′
+, K− := L− + L′

− .

Clearly, then K+ ⊥ K− and K+ +K− = L+ L⊥ = K. Since L+,L′
+ ∈ Sub>0 K

and L+ ⊥ L′
+, we also have K+ ∈ Sub>0 K. Similarly, K− ∈ Sub<0 K, and

we see that JK := (K+,K−) is a fundamental decomposition of K. Obviously,
(3.3.2) holds.

(ii) ⇒ (ii′), (iii): L being closed, implies that it is decomposable. Thus, under
the hypothesis (ii), the assertion (ii′) follows immediately. For (iii), note that
each subspace of a component of some fundamental decomposition is uniformly
definite. Moreover, we can write L+ = L ∩ L⊥

− and L− = L ∩ L⊥
+, where the

orthogonal complement is understood in K. Hence L+ and L− are closed in K.
This argument also shows that the implication (ii′) ⇒ (iii′) holds.

(iv) ⇒ (i): Let J be a fundamental decomposition of K, and let G denote the
Gram operator of [., .] with respect to (., .) := (., .)J. Moreover, let P denote
the (., .)-orthogonal projection of K onto L. Then, for x, y ∈ L, we have

[x, y] = (Gx, y) = (Gx,Py) = (PGx, y) . (3.3.4) C50

The inner product (., .)|L×L turns L into a Hilbert space, and the inner product
[., .]|L×L is continuous with respect to it. By (3.3.4) the Gram operator of
[., .]|L×L with respect to (., .)|L×L is PG|L. Theorem 3.1.5 implies that PG|L is
boundedly invertible as a operator on 〈L, (., .)|L×L〉. In particular, ran(PG|L) =
L.

To show that K = L + L⊥, let x ∈ K be given. Since PGx ∈ L, there exists
an element x0 ∈ L such that PGx0 = PGx. It follows that, for each y ∈ L,

[x− x0, y] = (G(x− x0), y) = (G(x − x0), Py) = (PG(x − x0), y) = 0 .

Thus x− x0 ∈ L⊥, and we have shown that x = x0 + (x − x0) ∈ L + L⊥.
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(iii′) ⇒ (iv): Let L+ and L− be as in (iii′), and let J denote a fundamental
decomposition of K. Since L+ is uniformly positive, the norms

‖x‖ := [x, x]
1
2 , x ∈ L,

and ‖.‖J|L are equivalent. Since L+ is ‖.‖J-closed, it is ‖.‖J-complete. By
equivalence of norms, L+ is also complete with respect to ‖.‖, i.e. intrinsically
complete. The same argument shows that L− is intrinsically complete, and
therefore L = L+[+̇]L− is a Krein space.

The subspace L+ is closed in K and, by what we saw above, 〈L+, [., .]〉
is a Hilbert space. Thus, by the already proved implication (iv) ⇒ (i), L+

is orthocomplemented. Similarly, we see that L− is orthocomplemented. It
follows that L = L+[+̇]L− is also orthocomplemented, cf. Corollary 1.2.6. In
particular, L is closed. ❑

Let us explicitly mention the following fact.

REC13 3.3.4 Remark. Let 〈K, [., .]〉 be a Krein space, and let L be an orthocom-
plemented subspace of K. Then the topology L carries as the Krein space
〈L, [., .]|L×L〉 coincides with the restriction to L of the topology of K. This
follows for example from Proposition 2.4.3, (ii). �

In the following example we elaborate the equivalences in Theorem 3.3.3.
This discussion points out many pecularities of Krein spaces.

EXC51 3.3.5 Example. Let K := ℓ2(N), and define an inner product [., .] on K by

[
(ξj)j∈N, (ηj)j∈N

]
:=

∞∑

j=1

(−1)jξjηj .

Moreover, let L be the subspace

L :=
{
(ξj)j∈N ∈ K : ξ2k =

2k

2k − 1
ξ2k−1, k ∈ N

}
.

〈K, [., .]〉 is a Krein space (via definition): Put

K+ :=
{
(ξj)j∈N : ξk = 0, k odd

}
, K− :=

{
(ξj)j∈N : ξk = 0, k even

}
.

Then, clearly, K+ is positive, K− is negative, and K = K+[+̇]K−. Since
〈K+, [., .]〉 ∼= 〈K−,−[., .]〉 ∼= ℓ2(N), we have found a fundamental decomposition
of K with intrinsically complete components.

〈K, [., .]〉 is a Krein space (via Gram operator): Denote by (., .) the usual ℓ2(N)-
inner product and by ‖.‖ the corresponding norm. Then 〈K, (., .)〉 is a Hilbert
space. Since

∣
∣
[
(ξj)j∈N, (ηj)j∈N

]∣
∣ ≤

∞∑

j=1

|ξj | · |ηj | ≤ ‖(ξj)j∈N‖ · ‖(ηj)j∈N‖ ,

the inner product [., .] is continuous with respect to (., .). The Gram operator
G of [., .] with respect to (., .) acts as

G(ξj)j∈N = ((−1)jξj)j∈N, (ξj)j∈N ∈ K .



64 CHAPTER 3. COMPLETE TIPS. I. KREIN SPACES

We see that G is (., .)-unitary, and hence in particular boundedly invertible.
Actually, G2 = I.

L is closed and positive: Let (ξj)j∈N ∈ L, then

[
(ξj)j∈N, (ξj)j∈N

]
=

∞∑

j=1

(−1)j |ξj |2 =
∞∑

k=1

[( 2k

2k − 1

)2

− 1
]

|ξ2k−1|2 .

Hence L is positive. Let πk : (ξj)j∈N → ξk denote the canonical projection
onto the k-th component. Then πk is continuous with respect to ‖.‖. Put
hk := π2k − 2k

2k−1π2k−1, then

L =
⋂

k∈N

kerhk .

Hence L is closed.

L is not uniformly positive: Consider the elements (ξnj )j∈N, n ∈ N, defined by

ξnj :=







1 , j = 2n− 1
2n

2n−1 , j = 2n

0 , otherwise

Then
[
(ξnj )j∈N, (ξ

n
j )j∈N

]
= −1 +

( 2n

2n− 1

)2

=
4n− 1

(2n− 1)2
,

(
(ξnj )j∈N, (ξ

n
j )j∈N

)
= 1 +

( 2n

2n− 1

)2

.

Hence there cannot exist a positive constant γ > 0 with γ‖x‖2 ≤ [x, x], x ∈ L.

L is not intrinsically complete: Consider the sequences (ξnj )j∈N, n ∈ N, defined
by

ξnj :=







1√
j

, j ≤ 2n, j odd
j√

(j−1)3
, j ≤ 2n, j even

0 , otherwise

Then

ξn2k =
2k

√

(2k − 1)3
=

2k

2k − 1

1√
2k1

=
2k

2k − 1
ξn2k−1, k ≤ n ,

ξn2k = 0 =
2k

2k − 1
ξn2k−1, k > n ,

and hence (ξnj )j∈N ∈ L. For m > n we have

[
(ξnj )j∈N−(ξmj )j∈N, (ξ

n
j )j∈N−(ξmj )j∈N

]
=

∞∑

k=1

[( 2k

2k − 1

)2

−1
]∣
∣ξn2k−1−ξm2k−1

∣
∣
∣

2

=

=

m∑

k=n+1

[( 2k

2k − 1

)2

− 1
] 1

2k − 1
≤

m∑

k=n+1

4k − 1

(2k − 1)2
1

2k − 1
.
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It follows that ((ξnj )j∈N)n∈N is a Cauchy sequence in 〈L, [., .]〉.
Assume that L is intrinsically complete. Since L is closed with respect to

(., .), this implies that the norms induced by [., .] and (., .) on L are equivalent.
Hence, there exists (ξ0j )j∈N with limn→∞(ξnj )j∈N = (ξ0j )j∈N with respect to (., .).
Since the projections onto single components are (., .)-continuous, this implies
that

ξ0j =







1√
j

, j odd
j√

(j−1)3
, j even

This sequence, however, does not belong to ℓ2(N), and we have reached a con-
tradiction.

L is not orthocomplemented: We show that the orthogonal complement of L is
given as

L⊥ =
{
(ηj)j∈N ∈ ℓ2(N) : η2k =

2k − 1

2k
η2k−1, k ∈ N

}
. (3.3.5) C52

To this end assume first that (ηj)j∈N satisfies η2k = 2k−1
2k η2k−1, k ∈ N. Then,

for each (ξj)j∈N ∈ L, we have

[
(ξj)j∈N, (ηj)j∈N

]
=

∞∑

j=1

(−1)jξjηj =
∞∑

k=1

(
ξ2kη2k − ξ2k−1η2k−1

)
=

=

∞∑

k=1

( 2k

2k − 1
ξ2k

2k − 1

2k
η2k − ξ2k−1η2k−1

)

= 0 .

Conversely, let (ηj)j∈N ∈ L⊥ be given. We have

(ξj)j∈N :=
(
0, . . . , 0,

2k − 1

2k
, 1
↑

2k-th place

, 0, . . .
)
∈ L ,

and hence

η2k −
2k − 1

2k
η2k−1 =

[
(ηj)j∈N(ξj)j∈N

]
= 0 .

This establishes the equality (3.3.5).
Consider the element (ζj)j∈N defined as

ζj :=

{
1
j , j even

0 , j odd

and assume that (ζj)j∈N = (ξj)j∈N + (ηj)j∈N with some (ξj)j∈N ∈ L and
(ηj)j∈N ∈ L⊥. Then

ξ2k−1 + η2k−1 = 0, ξ2k + η2k =
1

2k
, k ∈ N ,

and we obtain, using the definition of L and (3.3.5),

1

2k
=

2k

2k − 1
ξ2k−1 +

2k − 1

2k
η2k−1 =

( 2k

2k − 1
− 2k − 1

2k

)

ξ2k−1 =
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=
4k − 1

(2k − 1)2k
ξ2k−1 .

It follows that

ξ2k−1 =
2k − 1

4k − 1
, ξ2k =

2k

4k − 1
, k ∈ N .

We have reached a contradiction, since this sequence is not summable. �

3.4 Isometric mappings

Let H1 and H2 be Hilbert space. Then each isometric map φ, defined on some
subspace domφ of H1, is continuous and possesses an isometric continuation of
domφ onto ranφ. In the indefinite situation, this statement is no longer true.

EXC76 3.4.1 Example. Let 〈K, [., .]〉 be a Krein space with ind− K = ind+ K = ∞. We
are going to construct a dense linear subspace D and a linear, bijective, and
[., .]-isometric map of D onto itself which is not continuous with respect to the
topology of K.

Choose a fundamental decomposition J = (K+,K−) of K, choose (., .)J-
orthonormal sequences (en)n∈N, en ∈ K+, and (fn)n∈N, fn ∈ K−, and choose a
sequence (γn)n∈N, γn ∈ (0, 1) with limn→∞ γn = 1.

Set D0 := span{ên : n ∈ N}[+̇]span{f̂n : n ∈ N}, and

D := D⊥
0 [+̇] span{ên : n ∈ N}[+̇] span{f̂n : n ∈ N} . (3.4.1) C66

Since span{ên : n ∈ N} ⊆ K+ and span{f̂n : n ∈ N} ⊆ K−, the space D0 is
orthocomplemented. In fact, we have D⊥

0 = (D⊥
0 ∩ K+)[+̇](D⊥

0 ∩ K−) and

D⊥
0 ∩ K+ = K+(−)J span{ên : n ∈ N}, D⊥

0 ∩ K− = K−(−)J span{f̂n : n ∈ N} .

In particular, we see that D is dense in K. Moreover, the three summands in
(3.4.1) are also pairwise orthogonal with respect to (., .)J, and we have

[en, em] =

{

1 , n = m

0 , n 6= m
, [fn, fm] =

{

−1 , n = m

0 , n 6= m
, [en, fm] = 0 .

Set Sn := span{en, fn}, n ∈ N, then the space D can be written as

D = D⊥
0 [+̇]

([

+̇
]

n∈N

Sn

)

, (3.4.2) C68

with all summands being pairwise orthogonal also with respect to (., .)J. Hence,
a linear and [., .]K–isometric map U : D → D will be well-defined by specifying
linear and [., .]K–isometric maps U0 : D⊥

0 → D⊥
0 and Un : Sn → Sn, n ∈ N, and

letting U be defined componentwise.
On the componentD⊥

0 , we use the map U0 := idD⊥
0
. The space Sn is spanned

by {en, fn}, and this is an orthonormal system with respect to (., .)K. Thus the
map

ϕ : αen + βfn 7→
(
α

β

)
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is an isometric isomorphism of 〈Sn, (., .)K〉 onto the space C2 endowed with the
euclidean inner product. Let un : C2 → C2, n ∈ N, be given by the matrix

un :=
1

√

1 − γ2
n

(
1 γn
γn 1

)

and set

Un := ϕ−1 ◦ un ◦ ϕ : Sn → Sn .

We have

Unen =
1

√

1 − γ2
n

(
en + γnfn

)
, Unfn =

1
√

1 − γ2
n

(
γnen + fn

)
,

and hence

[
Unen, Unen

]
= 1,

[
Unen, Unfn

]
= 0,

[
Unfn, Unfn

]
= −1 .

This shows that Un is isometric with respect to [., .].

Let U : D → D be the [., .]–isometric map defined by linearity and the re-
quirements that U |D⊥

0
= U0, and U |Sn

= Un, n ∈ N. Since detun =
√

1 − γ2
n 6=

0, the map U is a bijection of D onto itself.

The eigenvalues of un are equal to

λn,+ =
1 + γ2

n
√

1 − γ2
n

, λn,− =
1 − γ2

n
√

1 − γ2
n

.

These numbers are thus also eigenvalues of U . Since γn → 1, we have λn,+ → ∞
and hence U cannot be bounded with respect to any norm on D. �

THC53 3.4.2 Theorem. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be Krein spaces, and let

φ : domφ ⊆ K1 → K2

be isometric. Then the following hold:

(i) If domφ is closed and nondegenerated, and ranφ is nondegenerated, then
φ is continuous.

(ii) Assume that domφ = D+[+̇]1D− with some subspaces D+ ∈ Sub≫0 K1

and D− ∈ Sub≪0 K1. Then φ is continuous if and only if φ(D+) ∈
Sub≫0 K2 and φ(D−) ∈ Sub≪0 K2.

(iii) Assume that domφ is orthocomplemented. Then φ is continuous if and
only if ranφ is orthocomplemented.

(iv) If domφ contains a maximal uniformly definite subspace of K1 and ranφ
is orthocomplemented, then φ is continuous.

Assume that one of the hypothesis listed in (ii)–(iv) which implies continuity

of φ holds, and let φ̂ : domφ → K2 be the extension of φ by continuity. Then
ran φ̂ = ranφ.
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Proof. For the proof of (i) we consider φ as a linear operator defined on the
Banach space domφ and taking values in the Banach space ranφ. Let xn ∈
domφ, n ∈ N, and assume that

xn → x ∈ domφ, φxn → z ∈ ranφ .

If y ∈ domφ, then

[φx, φy]2 = [x, y]1 = lim
n→∞

[xn, y]1 = lim
n→∞

[φxn, φy]2 = [y, φy]2 ,

i.e. φx − z ⊥ ranφ. Thus also φx − z ⊥ ranφ, and hence φx = z. The Closed
Graph Theorem implies that φ is continuous.

We come to the proof of (ii). Let domφ = D+[+̇]1D− with D+ ∈ Sub≫0 K1,
D− ∈ Sub≪0 K1. By Theorem 3.2.2 we can choose a fundamental decomposition
J1 = (K1

+,K1
−) of K1 with D+ ⊆ K1

+, D− ⊆ K1
−.

Assume first that φ(D+) ∈ Sub≫0 K2 and φ(D−) ∈ Sub≪0 K2. Choose a
fundamental decomposition J2 = (K2

+,K2
−) of K2 with φ(D+) ⊆ K2

+, φ(D−) ⊆
K2

−. Let x, y ∈ domφ, and write x = x+ + x−, y = y+ + y− according to the
decomposition domφ = D+[+̇]1D−. Then

(φx, φy)J2 =
(
φx+ + φx−, φy+ + φy−

)

J2
= [φx+, φy+] − [φx−, φy−] =

= [x+, y+] − [x−, y−] = (x, y)J1 ,

i.e. φ is (., .)J1 -to-(., .)J2–isometric. This, however, implies that φ is ‖.‖J1-to-

‖.‖J2–continuous. Let φ̂ : domφ → K2 be the extension of φ by continuity.

Then φ̂ is again (., .)J1 -to-(., .)J2–isometric. Thus ran φ̂ is (., .)J2–complete and
hence closed in K2.

Conversely, assume that φ is continuous. Then there exists some constant
γ > 0 such that ‖φx‖J2 ≤ γ‖x‖J1 , x ∈ domφ, where J2 denotes some funda-
mental symmetry of K2. We obtain

1

γ2
‖φx‖2

J2
≤ ‖x‖2

J1
= [x, x]1 = [φx, φx]2, x ∈ D+ ,

1

γ2
‖φx‖2

J2
≤ ‖x‖2

J1
= −[x, x]1 = −[φx, φx]2, x ∈ D− .

It follows that φ(D+) is uniformly positive and φ(D−) is uniformly negative.
For the proof of (iii) assume that domφ is orthocomplemented.
Assume first that φ is continuous. By Theorem 3.3.3 we can decompose

domφ as domφ = D+[+̇]1D− with some subspaces D+ ∈ Sub≫0 K1, D− ∈
Sub≪0 K1, which are closed in K1. Let J1 be a fundamental decomposition
of K1, then D+ and D− are complete with respect to ‖.‖J1 . However, uniform

definiteness implies that the norms ‖.‖J1 and [., .]
1
2 on D+ or ‖.‖J1 and (−[., .])

1
2

onD−, respectively, are equivalent. ThusD+ andD− are intrinsically complete.
Since φ is isometric, φ(D+) and φ(D−) are also intrinsically complete. An
application of the already proved item (ii) yields that φ(D+) and φ(D−) are
uniformly definite. Hence, again by equivalence of the respective norms, D+

and D− are also complete with respect to the norm ‖.‖J2 , where J2 is some
fundamental decomposition of K2. Thus φ(D+) and φ(D−) are closed in K2,
and Theorem 3.3.3 implies that ranφ = φ(D+)[+̇]φ(D−) is orthocomplemented.
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Conversely, assume that ranφ is orthocomplemented. In view of Theorem
3.3.3, we may apply the already proved item (i), to conclude that φ is continuous.
By the previous paragraph, the condition in (ii) which ensures continuity is

satisfied. Hence, by what we already proved, ran φ̂ is closed in K2.
We come to the proof of (iv). For definiteness assume that domφ contains

a maximal uniformly positive subspace D+ of K1. Then J := (D+, D
⊥
+) is a

fundamental decomposition of K1. Since D+ ⊆ domφ, we have

domφ = D+[+̇](D⊥
+ ∩ domφ) .

Clearly, the subspace D− := D⊥
+ ∩ domφ is uniformly negative. Set R+ :=

φ(D+) and R− := φ(D−). We are going to show that R+ and R− are uniformly
definite.

The space R+ is, as isometric image of the intrinsically complete space D+,
also intrinsically complete. Assume that x ∈ R+, and let (xn)n∈N be a sequence
in R+ with xn → x in the norm of K2. Then (xn)n∈N is a Cauchy sequence in
the norm of K2 and hence also in the norm induced by [., .]|R+×R+ . By intrinsic
completeness, there exists y ∈ R+ such that xn → y with respect to [., .]. It
follows that

[x, z] = lim
n→∞

[xn, z] = [y, z], z ∈ R+ .

Since x, y ∈ R+, and hence are both orthogonal to R−, it follows that

[x, z] = [y, z], z ∈ R+[+̇]R− = ranφ .

Since ranφ is orthocomplemented, and hence in particular nondegenerated, this
implies x = y. We conclude that R+ is closed in the norm of K2. In conjunction
with intrinsic completeness this gives R+ ∈ Sub≫0 K2.

Since ranφ is orthocomplemented, it is itself a Krein space and the topology
it carries as such coincides with the topology it inherits from K2. Hence, for a
subspace of ranφ, uniform definiteness in K2 is equal to uniform definiteness in
ranφ.

Since R+ is closed and uniformly positive, we have (considering R+ as a
subspace of ranφ)

ranφ = R+[+̇]R⊥
+ .

Hence the topology of ranφ equals the product topology of its restrictions to
R+ and R⊥

+, and we conclude that

R+[+̇]R⊥
+ = ranφ = R+[+̇]R− = R+[+̇]R− .

Thus R⊥
+ = R−, and hence negative semidefinite. However, ranφ is nonde-

generated, and it follows that R⊥
+ is negative definite. Thus (R+, R

⊥
+) is a

fundamental decomposition of ranφ, and hence R⊥
+ is uniformly negative. In

turn, this implies that R− is uniformly negative.
An application of the already proved item (ii) yields the assertion (iv). ❑

COC54 3.4.3 Corollary. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be Krein spaces, and let φ :
K1 → K2 be a linear and isometric map. Then the following are equivalent:

(i) φ is a morphism.
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(ii) ranφ is orthocomplemented.

(iii) ranφ is nondegenerated.

In this case φ is closed, i.e. maps closed subsets of K1 to closed subsets of K2.
The map φ is an isomorphism if and only if it is surjective.

Proof. The domain of φ is all of K1, and hence in particular orthcomplemented.
Theorem 3.4.2, (iii), gives (i) ⇔ (ii). Trivially, (ii) ⇒ (iii). The implication
(iii) ⇒ (i) follows from Theorem 3.4.2, (i).

If φ is a morphism then, by what we just proved, its range is a Banach space
with respect to the norm of K2. By the Open Mapping Theorem, φ maps open
subsets of K1 to relatively open subsets of ranφ. Thus it maps closed subsets
of K1 to closed subsets of K2.

As an isometry with nondegenerated domain, the map φ is in any case in-
jective. If ranφ = K2 then, by the just proved equivalences, φ is a morphism.
The same argument shows that φ−1 is a morphism, and hence φ is an isomor-
phism. ❑

We also obtain a corresponding version of the 1st Homomorphism Theorem.

COC55 3.4.4 Corollary. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be Krein spaces, and let φ :
K1 → K2 be a morphism. Then 〈ranφ, [., .]〉 is a Krein space, and there exists

a unique isomorphism φ̂ such that

〈K1, [., .]1〉

φ̂ ''

φ // 〈K2, [., .]2〉

〈ranφ, [., .]2〉

ι

OO

Proof. By the previous Corollary 3.4.3, the space ranφ is orthocomplemented,
and hence by Theorem 3.3.3 itself a Krein space. Trivially, there exists a linear
and isometric map φ̂ which makes the above diagram commute. Again by the
previous corollary, φ̂ is an isomorphism. Uniqueness is clear. ❑

3.5 Krein space completions

The concept of completion, as known from the setting of Banach or Hilbert
spaces, can be considered also in the setting of Krein spaces. The situation
changes drastically. Completions need not exist, neither be unique.

DEC56 3.5.1 Definition. Let 〈L, [., .]〉 be an inner product space. A pair (ι, 〈K, [., .]〉)
is called a Krein space completion of 〈L, [., .]〉, if 〈K, [., .]〉 is a Krein space, and
ι : L → K is an isometric map whose range is dense in K.

Two completions (ι1,K1) and (ι2,K2) are called isomorphic, if there exist
an isomorphism φ of K1 onto K2, such that φ ◦ ι1 = ι2, i.e. such that we have
the diagram

L
ι1

~~}}
}}

}}
}

ι2

  A
AA

AA
AA

K1
φ

// K2

(3.5.1) C57
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In this case, we write (ι1,K1) ∼= (ι2,K2). �

Clearly, isomorphy of Krein space completions is an equivalence relation.
Moreover, if (ι,K) is a Krein space completion of L, and λ is an isomorphism
of K onto some other Krein space K̃, then (λ ◦ ι, K̃) is a Krein space completion
of L isomorphic to (ι,K).

On the set of all isomorphy classes of Krein space completions of a given
inner product space L, a partial order can be defined. This construction is
based on the following simple geometric property.

LEC58 3.5.2 Lemma. Let 〈L, [., .]〉 be an inner product space.

(i) If (ι,K) is a Krein space completion of L, then ker ι = L◦.

(ii) If (ι1,K1) and (ι2,K2) are Krein space completions of L, then there exists
a unique map ι12 : ran ι1 → ran ι2 with

L
ι1

||yy
yy

yy
yy

y
ι2

""E
EE

EE
EE

EE

ran ι1 ι12
// ran ι2

(3.5.2) C1

The map ι12 is isometric, and bijective.

Proof. Since ran ι is dense in K, we have [ran ι]◦ = K⊥ ∩ ran ι = {0}. Since ι is
isometric,

L◦ = ι−1
(
[ran ι]◦

)
= ker ι ,

cf. Lemma 1.1.9. This is (i). We come two the proof of (ii). Since ker ι1 = L◦ =
ker ι2, a linear map ι12 is uniquely defined by (3.5.2). Clearly, ι12 is bijective.
Since ι1 and ι2 are both isometric, also ι12 has this property. ❑

DEC61 3.5.3 Definition. Let 〈L, [., .]〉 be an inner product space, and let (ι1,K1) and
(ι2,K2) be two Krein space completions of L. Then we write (ι1,K1) � (ι2,K2),
if ι12 is continuous, where ran ιj is endowed with the restriction of the topology
of Kj . �

Obviously, the relation � is reflexive and transitive.

LEC62 3.5.4 Lemma. Let 〈L, [., .]〉 be an inner product space, and let (ι1,K1) and
(ι2,K2) be two Krein space completions of L. Then

(

(ι1,K1)�(ι2,K2) ∧ (ι2,K2)�(ι1,K1)
)

⇐⇒ (ι1,K1) ∼= (ι2,K2)

Proof. If (ι1,K1) ∼= (ι2,K2), and φ is as in Definition 3.5.1, then φ|ran ι1 = ι12
and φ−1|ran ι2 = ι21. Hence ι12 and ι21 are both continuous.

Conversely, assume that ι12 and ι21 are both continuous. These maps are
mutually inverse bijections between ran ι1 and ran ι2. Since ran ιj = Kj , j = 1, 2,
they can be extended by continuity to mutually inverse continuous bijections
between K1 and K2. Clearly, these extensions are again isometric and make the
diagram (3.5.1) commute. Thus (ι1,K1) ∼= (ι2,K2). ❑
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From this statement we see that indeed � induces a partial order on the set
of all isomorphy classes of Krein space completions of L.

When considering the notion of completions, two questions suggest them-
selves: Let an inner product space 〈L, [., .]〉 be given.

(A) Does there exist a Krein space completion of L?

(B) If there exists a Krein space completion of L, is it unique (up to isomor-
phism)?

As we will see, the answer to both questions is in general negative, and it is a
nontrivial task to describe the totality of Krein space completions. If 〈L, [., .]〉 is
semidefinite, however, matters are plain and simple. Let us discuss this situation
explicitly.

PRC59 3.5.5 Proposition. Let 〈L, [., .]〉 be a positive semidefinite inner product space.
Then the following hold:

(i) There exists a Krein space completion of L.

(ii) In each Krein space completion (ι,K) of L, the Krein space K is positive
definite, i.e. is a Hilbert space.

(iii) Each two Krein space completions of L are isomorphic.

Proof. The factor space L/L◦ is positive definite. Hence, there exists a Hilbert
space 〈H, (., .)H〉 together with a linear map ιH : L/L◦ → H, such that ran ιH
is dense in H and

(ιHx, ιHy)H = (x, y), x, y ∈ L .
Denote by π the canonical projection of L onto L/L◦, then (ιH ◦π,H) is a Krein
space completion of L.

Next, let (ι,K) be any Krein space completion of L. Then ran ι is a dense
and positive semidefinite subspace of K. Thus K is itself positive semidefinite,
and hence a Hilbert space.

Finally, let (ι1,K1) and (ι2,K2) be two Krein space completions of L. The
map ι12 is an isometry between the dense subspaces ran ι1 and ran ι2 of the
Hilbert spaces K1 and K2. Hence, it extends to an isomorphism φ of K1 onto
K2. Clearly, we have φ ◦ ι1 = ι2:

L
ι1

||yy
yy

yy
yy

y
ι2

""E
EE

EE
EE

EE

ran ι1 ι12
// ran ι2⊆ ⊆

K1
φ

//________ K2

❑

In the situation of Proposition 3.5.5 we will also refer to the (up to isomor-
phism) unique Krein space completion of L as its Hilbert space completion.

Clearly, the statement analogous to Proposition 3.5.5 also holds for nega-
tive semidefinite inner product spaces. Instead of Hilbert spaces, thereby, one
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will obtain anti-Hilbert spaces, i.e. spaces 〈H, (., .)H〉 such that 〈H,−(., .)H〉 is
a Hilbert space. Correspondingly, we will speak of the anti-Hilbert space com-
pletion of L.

The existence part of Proposition 3.5.5 can be lifted easily to decomposable
spaces. Uniqueness is a more delicate matter and need not prevail, cf. Example
3.5.16. In this place we give a sufficient condition for uniqueness.

PRC5 3.5.6 Proposition. Let 〈L, [., .]〉 be a decomposable inner product space. Then
the following hold:

(i) There exists a Krein space completion of L.

(ii) If L has a fundamental decomposition with (at least) one intrinsically com-
plete component, then each two Krein space completions of L are isomor-
phic.

Proof. Let J = (L+,L−) be a fundamental decomposition of L, and let
(ι+,H+) and (ι−,H−) be the Hilbert space and anti-Hilbert space completion
of 〈L+, [., .]〉 and 〈L−, [., .]〉, respectively. Set

KJ := H+[+̇]H−

and let ιJ : L → KJ be defined as

ιJ(x+ + x−) := ι+x+ + ι−x−, x+ ∈ L+, x− ∈ L− .

Then KJ is a Krein space, having

J̃ := (H+,H−) (3.5.3) C6

as a fundamental decomposition. The map ιJ is clearly [., .]-to-[., .]KJ
–isometric,

and ran ιJ = ran ι+ + ran ι− is dense in KJ. Thus (ιJ,KJ) is a Krein space
completion of L.

For the proof of (ii), assume that J = (L+,L−) is a fundamental decomposi-
tion of L with (at least) one intrinsically complete component. For definiteness
assume that L+ is intrinsically complete. Then we may, in the construction of
the preceeding paragraph, choose H+ := L+ and ι+ := id. The Krein space
completion KJ obtained in this way has (L+,H−) as a fundamental decomposi-
tion. Let (ι,K) be any Krein space completion of L, and consider the linear and
isometric map η : ran ιJ → ran ι defined by the corresponding diagram (3.5.2).
The domain of η is equal to L+[+̇]ι−(L−), and hence contains the maximal uni-
formly positive subspace L+ of KJ. The range of η is equal to ran ι, and hence
is dense in K. Theorem 3.4.2, (iv), implies that η extends to an isomorphism φ
of KJ onto K. We have the diagram

L
ιJ

||yy
yy

yy
yy

y
ι2

!!D
DD

DD
DD

DD

ran ιJ
η

// ran ι⊆ ⊆

KJ
φ

//________ K

and hence φ is an isomorphism between the completions (ιJ,KJ) and (ι,K). ❑
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COC64 3.5.7 Corollary. Let 〈K, [., .]〉 be a Krein space. Then there exists (up
to isomorphism) a unique Krein space completion of 〈K, [., .]〉, namely
(idK, 〈K, [., .]〉). ❑

We will refer to the Krein space completion constructed in the proof of
Proposition 3.5.6, (i), starting from a fundamental decomposition J as the Krein
space completion of 〈L, [., .]〉 induced by J. In order to justify this terminology,
note that different choices of the Hilbert space completions (ι±,H±) in the above
construction give rise to isomorphic Krein space completions. However, as we
will see later, different fundamental decompositions may induce nonisomorphic
completions, cf. Example 3.5.16.

Sometimes the following continuity property is of good use.

REC7 3.5.8 Remark. Let 〈L, [., .]〉 be an inner product space, let J = (L+,L−) be a
fundamental decomposition of L, let (ιJ,KJ) be the Krein space completion
induced by J, and let J̃ be the fundamental decomposition (3.5.3). Then the
embedding ιJ is (., .)J-to-(., .)J̃–isometric. In particular, it is continuous with
respect to the decomposition topology induced by J on L and the Krein space
topology on KJ. �

Let us also observe that decomposability is not necessary in order that a
Krein space completion exists.

EXC60 3.5.9 Example. Consider the inner product space 〈ℓ2(Z), [., .]〉, where [., .] is
given by (2.3.1), i.e.

[
(ξj)j∈Z, (ηj)j∈Z

]
:=
∑

j∈Z

ξjη−j−1 .

Let (., .) denote the usual ℓ2(Z)-inner product, then we can write

[
(ξj)j∈Z, (ηj)j∈Z

]
=
(
G(ξj)j∈Z, (ηj)j∈Z

)

where
G(ξj)j∈Z := (ξ−j−1)j∈Z, (ξj)j∈Z ∈ ℓ2(Z) .

Apparently, G is a unitary operator of ℓ2(Z) onto itself. This, first of all, justifies
the definition of [., .] and, moreover, tells us that G is boundedly invertible with
respect to the norm of ℓ2(Z). Theorem 3.1.5 implies that 〈ℓ2(Z), [., .]〉 is a Krein
space.

The space L := CZ

lf ∩ ℓ2(Z) considered in Example 2.3.4 is a dense subspace
of this Krein space. Hence, we may consider 〈ℓ2(Z), [., .]〉 as a Krein space
completion of 〈L, [., .]〉.

As we saw in Example 2.3.4, the space 〈L, [., .]〉 is not decomposable. We
conclude that not every Krein space completion necessarily must be induced by
a fundamental decomposition. �

Krein space completions are related to certain compatible topologies on L.
In order to to describe this class, we need the following construction.

LEC72 3.5.10 Lemma. Let 〈L, [., .]〉 be an inner product space, and let (., .) be a pos-
itive semidefinite inner product on L with L(◦) = L[◦]. Moreover, denote by
(ιH, 〈H, (., .)H〉) a Hilbert space completion of 〈L, (., .)〉. Then the following
hold:
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(i) There exists an inner product [., .]H on H which is continuous with respect
to (., .)H, nondegenerated, and such that ιH is [., .]-to-[., .]H–isometric.

(ii) The space 〈H, [., .]H〉 is decomposable, and each decomposition topology is
coarser than the Hilbert space topology of H.

(iii) If the construction in (i) is carried out with two Hilbert space completions
H1 and H2 of 〈L, (., .)〉, then there exists a linear and bijective map of H1

onto H2, which is [., .]H1-to-[., .]H2 and (., .)H1-to-(., .)H2 isometric.

(iv) If the construction in (i) is carried out with two inner products (., .)1,
(., .)2 on L which induce the same topology, and two respective Hilbert
space completions Hj of 〈L, (., .)j〉, then there exists a linear and bijective
map of H1 onto H2, which is [., .]H1-to-[., .]H2 isometric and bicontinuous
with respect to the respective Hilbert space topologies of H1 and H2.

Proof. insert proof ❑

Let T ∈ Topip L, assume that {0}T = L[◦], and choose a positive semidefinite

inner product (., .) on L which induces T . Then L(◦) = L[◦], and hence Lemma
3.5.10 is applicable. Denote a Hilbert space and inner product obtained in
this way by 〈HT , (., .)T 〉 and [., .]T . By Lemma 3.5.10, (iv), different choices
of (., .) or of a Hilbert space completion, respectively, will give rise to ([., .]-)
isometrically and ((., .)-) bicontinuously isomorphic spaces. Hence, the following
notion is well-defined.

DEC71 3.5.11 Definition. Let 〈L, [., .]〉 be an inner product space. Then we set

Topcom L :=
{
T ∈ Topip L : {0}T = L[◦] and 〈HT , [., .]T 〉 is a Krein space

}
.

�

The relation between Krein space completions of L and the class Topcom L
of compatible topologies is established by the following construction.

DEC73 3.5.12 Definition. Let 〈L, [., .]〉 be an inner product space, and let (ι,K) be a
Krein space completion of L. Then we denote by T(ι,K) the initial topology on
L with respect to the map ι. �

THC74 3.5.13 Theorem. Let 〈L, [., .]〉 be an inner product space.

(i) The assignment T : (ι,K) 7→ T(ι,K) induces an order-isomorphism of the
set of all isomorphy classes of Krein space completions of L onto Topcom L.

(ii) For each T ∈ Topip L with {0}T = L[◦] there exists a Krein space comple-
tion (ι,K) of L with T(ι,K) ⊆ T .

(iii) The space L possesses a Krein space completion if and only if Topip L 6= ∅.

Proof. Let (ι, 〈K, [., .]K〉) be a Krein space completion of 〈L, [., .]〉, and choose a
positive definite inner product (., .)K on K which induces the topology of K. Set

(x, y) := (ιx, ιy)K, x, y ∈ L ,
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then (., .) is a positive semidefinite inner product on L. The topology induced
by (., .) on L is the initial topology with respect to the map ι into the space K
endowed with its Krein space topology, i.e. equal to T(ι,K).

Clearly, L(◦) = ker ι = L[◦] and hence {0}T(ι,K)
= L[◦]. Moreover, with an

appropriate constant γ > 0,
∣
∣[x, x]

∣
∣ =

∣
∣[ιx, ιx]K

∣
∣ ≤ γ(ιx, ιx)K = γ(x, x), x ∈ L .

Hence, T(ι,K) is compatible. Finally, the map ι is (., .)-to-(., .)K–isometric and
its range is dense in K. Thus (ι, 〈K, (., .)K〉) is a Hilbert space completion of
〈L, (., .)〉. Since ι is also [., .]-to-[., .]K–isometric, the inner product defined on K
by means of Lemma 3.5.10 coincides with [., .]K, and we conclude that T(ι,K) ∈
Topcom L.

Let (ι1,K1) and (ι2,K2) be two Krein space completions of L. Then we
have T(ι1,K1) ⊇ T(ι2,K2) if and only if the identity map idL is T(ι1,K1)-to-
T(ι2,K2)-continuous. Consider the diagram

〈L,T(ι1,K1)〉
idL //

ι1

��

〈L,T(ι2,K2)〉
ι2

��
ran ι1 ι12

// ran ι2

If ι12 is continuous, then by the universal property of initial topologies also idL
is continuous. Denote by (., .)j the inner product defined on L by (x, y)j :=
(ιjx, ιjy)j , so that the topology T(ιj ,Kj) is induced by (., .)j . Since ιj is (., .)j-
to-(., .)Kj

–isometric, it is continuous and open when ran ιj is considered with the

restriction of the topology of Kj . Moreover, ι−1
12 (O) = ι1(ι

−1
2 (O)), O ⊆ ran ι2.

Hence T(ι2,K2) ⊆ T(ι1,K1) implies that ι12 is continuous. Together, it follows
that (ι1,K1) � (ι2,K2) if and only if T(ι1,K1) ⊇ T(ι2,K2).

Up to now we have shown that the assignment T induces an order isomor-
phism of the set of all isomorphy classes onto some subset of Topcom L. Let
T ∈ Topcom L be given, and consider the Krein space 〈HT , [., .]T 〉 together
with the map ιT . Since [., .]T is nondegenerated, the Krein space topology of
〈HT , [., .]T 〉 must coincide with the Hilbert space topology induced on HT by
(., .)T . Thus ran ιT is dense in the Krein space HT . It is also [., .]-to-[., .]T –
isometric, and we conclude that (ιT , 〈HT , [., .]T 〉) is a Krein space completion
of 〈L, [., .]〉. Since ιT is (., .)-to-(., .)T –isometric, when (., .) denotes the inner
product on L chosen in the construction of HT , this completion is mapped by
T to the topology T .

We come to the proof of (ii). Let T ∈ Topip L with {0}T = L[◦] be given.
Consider the inner product space 〈HT , [., .]T 〉. Let J be a fundamental decom-
position of HT whose components are closed in the Hilbert space topology of
HT , let (ι,K) be the Krein space completion induced by J, and let J̃ be the
fundamental decomposition (3.5.3) of K. The map ι is (., .)J-to-(., .)J̃–isometric
and hence TJ-to-TJ̃–continuous. However, the Hilbert space topology of HT is
finer than TJ, cf. Proposition 2.4.2, (iv). Thus ι is also HT -to-K–continuous.
Since ran ι is dense, therefore ι maps dense subsets of HT onto dense subsets
of K, in particular, ran(ι ◦ ιT ) is dense in K. Clearly, ι ◦ ιT is [., .]-to-[., .]K–
isometric, and it follows that (ι ◦ ιT ,K) is a Krein space completion of 〈L, [., .]〉.
The map ι ◦ ιT is T -to-K–continuous, and hence T(ι,K) is coarser than T .
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For the proof of (iii) assume that Topip L 6= ∅, and choose a positive semidef-
inite inner product (., .) on L which induces a compatible topology. Choose a
linear subspace L1 of L such that L = L1+̇L◦, and define an inner product
(., .)1 on L by

(x1 + x0, y1 + y0)1 := (x1, y1), x1, y1 ∈ L1, x0, y0 ∈ L◦ .

We have, with some appropriate constant γ > 0,

|[x1+x0, x1+x0]| = |[x1, x1]| ≤ γ(x1, x1) = γ(x1+x0, x1+x0)1, x1 ∈ L1, x0 ∈ L◦ ,

and hence (., .)1 induces a compatible topology on L. This also implies that
L(◦)1 ⊆ L[◦]. The inclusion L(◦)1 ⊇ L[◦] is trivial. We have constructed an

element T ∈ Topip L with {0}T = L[◦], and the already proved item (ii) implies
in particular that there exists a Krein space completion of L. ❑

Without further notice, we obtain that Krein space completions neither need
to exist nor need to be unique.

EXC4 3.5.14 Example. The inner product space constructed in Example 2.3.1 has no
compatible topologies at all, in particular Topip L = ∅. �

COC11 3.5.15 Corollary. Let 〈L, [., .]〉 be an inner product space, and assume that L
is decomposable. Let J1 and J2 be fundamental decompositions of L, and let
(ι1,K1) and (ι2,K2) be the Krein space completions of L induced by J1 and J2,
respectively. Then (ι1,K1) and (ι2,K2) are isomorphic if and only if TJ1 = TJ2 .

Proof. Since ιj is (., .)Jj
-to-(., .)J̃j

–isometric, we have T(ιj ,Kj) = TJj
. Hence,

T being an order isomorphism implies the present assertion. ❑

EXC12 3.5.16 Example. The inner product space constructed in Example 2.6.1 has two
different decomposition topologies. Thus it has (at least) two nonisomorphic
Krein space completions. �

THC75 3.5.17 Theorem. Let 〈L, [., .]〉 be an inner product space. Then each two Krein
space completions of L are isomorphic if and only if for each T ∈ Topip L with

{0}T = L[◦] the space 〈HT , [., .]T 〉 has a fundamental decomposition with (at
least) one intrinsically complete component.

Proof. The case that L does not possess a Krein space completion is trivial,
since then Topip L = ∅.

For the proof of sufficiency, assume that the stated condition holds true, and
let (ι1,K1) and (ι2,K2) be two Krein space completions of L. Choose positive
definite inner products (., .)j on Kj which induce the topology of Kj , j = 1, 2,
and define a positive semidefinite inner product on L by

(x, y) := (ι1x, ι1y)1 + (ι2x, ι2y)2, x, y ∈ L .

Then, with some appropriate constant γ > 0,

|[x, x]| = |[ι1x, ι1x]1| ≤ γ(ι1x, ι1x)1 ≤ γ(x, x), x, y ∈ L ,

and hence [., .] is continuous with respect to the topology induced by (., .).
Moreover, we have (x, x) = 0 if and only if ι1x = 0 and ι2x = 0. Remembering
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ker ι1 = ker ι2 = L[◦], we conclude that L(◦) = L[◦]. According to Lemma 3.5.10,
let (ιH, 〈H, (., .)H〉) be a Hilbert space completion of 〈L, (., .)〉 and let [., .]H be
the correspondingly defined inner product on H.

Since ker ιH = ker ιj = L[◦], there exists a linear map ηj : ran ιj ⊆ H → Kj
with η ◦ ιH = ιj . For x, y ∈ L we have

(ιjx, ιjx)j ≤ (x, x) = (ιHx, ιHx)H, [ιjx, ιjx]j ≤ [x, x] = [ιHx, ιHx]H .

We see that ηj is continuous and [., .]H-to-[., .]j–isometric. Let φj : H → Kj be
the extension of ηj by continuity. Then also φj is [., .]H-to-[., .]j–isometric. The
range of φj certainly contains ran ιj , and hence is dense in Kj . Thus (φj ,Kj) is
a Krein space completion of 〈H, [., .]H〉.

Our present assumption says that 〈H, [., .]H〉 has a fundamental decompo-
sition with (at least) one intrinsically complete component. Thus Proposition
3.5.6, (ii), applies, and we conclude that there exists an isomorphism φ of K1

onto K2 with φ ◦ φ1 = φ2.

K1

φ

yy

L ιH //

ι2

**VVVVVVVVVVVVVVVVVVVVVVVV

ι1

44iiiiiiiiiiiiiiiiiiiiiiii ran ιH
⊆ //

η2

##G
G

G
G

G

η1

;;w
w

w
w

w
H
φ2

���
�
�

φ1

OO�
�
�

K2

We see that also φ ◦ ι1 = ι2, and hence (ι1,K1) and (ι2,K2) are isomorphic as
Krein space completions of 〈L, [., .]〉.

The proof of necessity is more involved. Assume that the stated condition
does not hold. This means, there exists a positive semidefinite inner product (., .)
on L with L(⊥) = L[⊥], such that (notation as in Lemma 3.5.10) the components
of a fundamental decomposition of 〈H, [., .]H〉 are both not intrinsically complete.
Let G be the Gram operator of [., .]H with respect to (., .)H, and denote by E
the spectral measure of G. Our hypothesis says that for every ǫ > 0 we have

E(0, ǫ) 6= 0 and E(−ǫ, 0) 6= 0 . (3.5.4) C65

We are going to construct two nonisomorphic Krein space completions of
L. One completion to be used is obvious: Let (ι,K) be the Krein space
completion of 〈H, [., .]H〉 induced by the fundamental decomposition J :=
(ranE(0,∞), ranE(−∞, 0)). Since ιK is H-to-K–continuous and has dense
range, also ran(ιK ◦ ιH) is dense in K. Thus (ιK ◦ ιH,K) is a Krein space
completion of 〈L, [., .]〉.

In order to obtain another, nonisomorphic, completion, we employ the con-
struction carried out in Example 3.4.1 with the Krein space K. To this end, we
need to specify the parameters (en)n∈N, (fn)n∈N, and (γn)n∈N.

Step 1, Choice of µn, νn, en, fn: Due to (3.5.4) we can choose sequences (µn)n∈N

and (νn)n∈N of numbers µn, νn ∈ (0, 1) which monotonically decrease to zero,
such that

ranE
(
(µ2
n+1, µ

2
n]
)
6= {0}, ranE

(
[−ν2

n,−ν2
n+1)

)
6= {0} .
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Choose elements ẽn ∈ ranE((µ2
n+1, µ

2
n]) and f̃n ∈ ranE([−ν2

n,−ν2
n+1)) with

[
ẽn, ẽn

]

H = 1,
[
f̃n, f̃n

]

H = −1 ,

and set en := ιKẽn and fn := ιKf̃n. Moreover, set

γn := min{
√

1 − µ2
n,
√

1 − ν2
n} .

Example 3.4.1 provides us with a dense linear subspace D of K and a linear,
bijective, [., .]-isometric, but not continuous map U : D → D.

Step 2, The restriction λ := U ◦ ιK|H : Set

H+ := ranE(0,∞) ∩ span{ẽn : n ∈ N}(⊥)H ,

H− := ranE(−∞, 0) ∩ span{f̃n : n ∈ N}(⊥)H ,

then
(
span{ẽn : n ∈ N} + span{f̃n : n ∈ N}

)(⊥)H
= H+ +H− .

Hence, the subspace

H := H+ +H− + span{ẽn : n ∈ N} + span{f̃n : n ∈ N} (3.5.5) C70

is dense in H.
Isometry of ιK implies that ιK(H+ + H−) ⊆ D⊥

0 , and we conclude that
ιK(H) ⊇ D. Thus the composition

λ := U ◦ ιK|H : H ⊆ H → K

is well-defined.

Step 3, H-to-K–continuity of λ: The domain of λ decomposes as

H = (H+ +H−)[+̇]H
([

+̇
]

H
n∈N

span{ẽn, f̃n}
)

, (3.5.6) C67

and the summands on the right hand side are also pairwise orthogonal with
respect to (., .)H. Moreover, we have

λ(H+ +H−) ⊆ D⊥
0 , λ

(
span{ẽn, f̃n}

)
= span{en, fn}, n ∈ N .

Together with the fact that the decompositions (3.5.6) and (3.4.2) are (., .)H–
orthogonal and (., .)K–orthogonal, respectively, it is thus enough to show that
the restrictions λ|H++H−

and λ|span{ẽn,f̃n} are bounded and that their (., .)H-

to-(., .)K–operator norms are uniformly bounded.
Clearly, we have λ|H++H−

= ιK|H−+H−
, and hence ‖λ|H−+H−

‖ ≤ 1. Since
ẽn ∈ ranE((µ2

n+1, µ
2
n]), we have

(ιKen, ιKen)K = (en, en)J = [en, en]H =

= (G(.,.)en, en) =

∫ µ2
n

µ2
n+1

t dEen,en
≤ µ2

n(en, en)H .
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Similarly, since fn ∈ ranE([−ν2
n,−ν2

n+1)),

(ιKfn, ιKfn)K = (fn, fn)J = −[fn, fn]H =

= −(G(.,.)fn, fn) = −
∫ −ν2

n+1

−ν2
n

t dEfn,fn
≤ ν2

n(fn, fn)H .

Since en(⊥)Hfn this implies that ‖ιK|span{en,fn}‖ ≤ max{µn, νn}.
The operator norm ‖.‖ on C2×2 is equivalent to the maximum-entry norm.

Hence there exists a constant C > 0 such that

‖un‖ ≤ C
√

1 − γ2
n

.

Note here that C does not depend on n ∈ N. Since ϕ : Sn → C is an isomor-
phism, it follows that

‖λ|span{en,fn}‖ ≤ C
max{µn, νn}
√

1 − γ2
n

= C, n ∈ N .

We have shown that λ is (., .)H-to-(., .)K–continuous.

Step 4, The nonisomorphic completion: Let η : H → K be the extension of λ by
continuity. Since ιK is [., .]H-to-[., .]K–isometric, and all maps U0, Un, n ∈ N, are
[., .]K–isometric, also the map λ is [., .]H-to-[., .]K–isometric. By continuity, thus
also η has this property. Moreover, since ιK is continuous and has dense range,
the space ιK(H) is dense in K. However, we have U(ιK(H)) = ιK(H), and hence
ranλ is dense in K. It follows that (η,K) is a completion of 〈H, [., .]H〉.

Since η is H-to-K–continuous and has dense ranges, also ran(ιK◦ιH) is dense
in K. Thus (η ◦ ιH,K) is a Krein space completion of 〈L, [., .]〉.

K D
U //⊇oo D

⊆ // K

H

ιK

OO

η

CC

H
⊇oo

ιK

OO

λ

77nnnnnnnnnnnnnn

L

ιH

OOιK◦ιH

>>

η◦ιH

HH

Assume on the contrary that (ιK ◦ ιH,K) � (η ◦ ιH,K). Then there exists a
continuous map φ : K → K with

L
ιK◦ιH

����
��

��
�

ι′◦ιH

��?
??

??
??

K
φ

// K

This says that (φ◦ ιK)|ran ιH = η|ran ιH . Since the maps ιK and η are continuous,
it follows that actually φ ◦ ιK = ι′. Consider the linear map U |ιK(H). Since
the eigenvectors of Un, n ∈ N, belong to ιK(H), we conclude that U |ιK(H) is
unbounded. However, we have

U(ιKx) = ι′(x) = φ(ιKx), x ∈ ι−1
K (D) ⊇ H ,
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and hence U |ιK(H) is bounded. We have derived a contradiction, and conclude
that

(ιK ◦ ιH,K) � (ι′ ◦ ιH,K) ,

in particular these completions cannot be isomorphic. ❑
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Chapter 4

Classes of complete TIPS. II.

Pontryagin spaces

4.1 Definition of Pontryagin spaces

DED1 4.1.1 Definition. An inner product space 〈P , [., .]〉 is called a Pontryagin
space, if

(PS1) P is nondegenerated and ind− P <∞.

(PS2) There exists a fundamental decomposition (P+,P−) of P whose
component P+ is intrinsically complete.

�

Appealing to Proposition 2.6.4, we see that this definition does not depend
on the particular choice of the fundamental decomposition in (Ps2). Moreover,
let us remark that, of course, a completely parallel theory could be developed
for spaces with ind+ P <∞ instead of ind− P <∞.

Again we start with some immediate reformulations of the defining property
of a Pontryagin space.

RED2 4.1.2 Remark. Let 〈P , [., .]〉 be an inner product space. Then the following are
equivalent:

(i) 〈P , [., .]〉 is a Pontryagin space.

(ii) 〈P , [., .]〉 is a Krein space and ind− P <∞.

(iii) There exists a Hilbert space H1 and a finite-dimensional negative definite
space H2, such that

〈P , [., .]〉 = H1[+̇]H2 ,

where H1[+̇]H2 is endowed with the sum inner product.

(iv) P is nondegenerated, ind− P <∞, and P is complete with respect to T �.
For the use of the terminology ‘complete with respect to T �’ compare
Remark 2.6.8, (ii).

�

83
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RED3 4.1.3 Remark. A Pontryagin space is a particular instance of a Krein space.
Hence:

(i) In view of Remark 3.1.3 and Definition 2.6.7, we have

TopHs P = TopBs P = Topdec P = Topmin P = {T �} .

Unless the contrary is explicitly stated, all topological notions will be
understood with respect to this topology.

(ii) The dual space of P is given as

〈P , T �〉′ =
{
[., y] : y ∈ P

}
.

�
The fact whether P is a Pontryagin space can also be characterized via Gram

operators.

PRD4 4.1.4 Proposition. Let 〈P , [., .]〉 be an inner product space. Then the following
are equivalent:

(i) 〈P , [., .]〉 is a Pontryagin space.

(ii) There exists an inner product (., .) on P with T(.,.) ∈ TopHs P, such that
the Gram operator G of [., .] with respect to (., .) satisfies 0 ∈ ρ(G) and

dim ranE(−∞, 0) <∞ . (4.1.1) D5

Here E denotes the spectral measure of G as a bounded selfadjoint operator
in the Hilbert space 〈P , (., .)〉.

(iii) P is nondegenerated and there exists T ∈ TopHs P and M ∈ Sub>0 P with
dimP/M <∞, such that M is T -closed and intrinsically complete.

Proof. The equivalence of (i) and (ii) is obtained as a corollary of the corre-
sponding result for Krein spaces, cf. Theorem 3.1.5. We know from this source
that P is a Krein space if and only if the present item (ii) without the condition
(4.1.1) holds. Thereby, a fundamental decomposition is given as (P+,P−) with

P+ := ranE(0,∞), P− := ranE(−∞, 0) .

Thus P is a Krein space with finite negative index, if and only if in addition
dim ranE(−∞, 0) <∞.

For the proof of (i) ⇒ (iii), choose a fundamental decomposition J =
(P+,P−) of P . Then the inner product (., .)J and the subspace P+ has the
desired properties. Note here that (x, y)J = [x, y], x, y ∈ P+, i.e. intrinsic
completeness equals ‖.‖J-completeness.

Finally, assume that (iii) holds. Choose a positive definite inner product (., .)
on P such that T = T(.,.), then (., .) is an inner product with T(.,.) ∈ TopHs P .
Let G be the Gram operators of [., .] with respect to (., .). Since M is (., .)-
closed, and hence itself a Hilbert space, there exists a Gram operator GM of
[., .]|M×M with respect to (., .)|M×M. The space M is not only (., .)-complete,

but also intrinsically complete, i.e. complete with respect to the norm [., .]
1
2 .
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Hence, the scalar products (., .) and [., .] induce equivalent norms. Therefore,
GM ≥ δI for some δ > 0.

Assume that x ∈ ranE(−∞, δ2 )∩M, where E denotes the spectral measure
of G. Then

δ(x, x) ≤ (GMx, x) = [x, x] = (Gx, x) ≤ δ

2
(x, x) ,

and it follows that x = 0. This shows that ranE(−∞, δ2 )∩M = {0}, and hence

dim ranE(−∞,
δ

2
) ≤ dimP/M <∞ .

Since P is nondegenerated, we have kerG = {0}. Hence, by discreteness of the
spectrum in (−∞, δ2 ], 0 ∈ ρ(G). ❑

RED6 4.1.5 Remark. Let 〈P , [., .]〉 be a Pontryagin space, and let (., .) any inner prod-
uct on P with T(.,.) ∈ TopHs P . Then the corresponding Gram operator satisfies
0 ∈ ρ(G) and dim ranE(−∞, 0) <∞.

This follows, since in the proof of (iii) ⇒ (ii) above, we actually have started
with an arbitrary inner product (., .) on P with T(.,.) ∈ TopHs P . �

Let us give another characterization of Pontryagin spaces which is of more
intrinsic nature, and rather related to Remark 4.1.2, (iv). For the use of the
term ‘completeness’, the same notice as in this place applies.

PRD7 4.1.6 Proposition. Let 〈P , [., .]〉 be an inner product space. Then P is a Pon-
tryagin space, if and only if P is nondegenerated and there exists M ∈ Sub>0 P
with dimP/M <∞, such that M is complete with respect to T �|M.

Proof. If P is a Pontryagin space, choose a fundamental decomposition J =
(P+,P−), and set M := P+. Then, clearly, M ∈ Sub>0 P and dimP/M <∞.

Since ‖x‖J = [x, x]
1
2 , x ∈ P+, the subspace M is moreover complete with

respect ‖.‖J.
Conversely, assume that a subspace M with the stated properties exists.

First of all, if N ∈ Sub<0 P , then N ∩M = {0}, and hence dimN ≤ dimP/M.
Thus

ind− P ≤ dimP/M <∞ .

In particular, P is decomposable and the topology T � is well-defined.
Choose a fundamental decomposition J = (P+,P−) of P , and consider the

positive definite inner product (., .)J. Since the subspace M is complete with
respect to (., .)J, we have

M(+̇)JM(⊥)J = P .

Here we refer to the notice made in Remark 2.6.6. However, since

dimM(⊥)J = dimP/M <∞ ,

also the space M(⊥)J is complete with respect to (., .)J. Thus P is (., .)J-
complete, and we conclude that P is a Pontryagin space, cf. Remark 4.1.2,
(iv). ❑
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RED8 4.1.7 Remark. Let 〈P1, [., .]1〉 and 〈P2, [., .]2〉 be Pontryagin spaces, and consider
the direct sum P := P1+̇P2 endowed with the sum inner product. Then 〈K, [., .]〉
is a Krein space, cf. Remark 3.1.8. However, we have ind− P = ind− P1 +
ind− P2, and hence P is a Pontryagin space. �

Pontryagin spaces are very well-behaved instances of Krein spaces. It is the
following simple fact, which is responsible that many pecularities of Krein spaces
disappear.

LED9 4.1.8 Lemma. Let 〈L, [., .], T 〉 be a topological inner product space, and let
M ∈ SubL. If N ∈ Sub<0 M, and n ∈ N with n ≤ dimN , then there exists a
subspace N ′ ∈ Sub<0 M with dimN ′ = n.

In particular, if ind− M is finite, then ind− M = ind−M.

Proof. Choose a n-dimensional subspace N1 of N and write N1 =
span{x1, . . . , xn}. Then the matrix A := ([xi, xj ])

n
i,j=1 is negative definite, i.e.

all zeros of the polynomial

p(λ) := det(A− λI)

are negative.
Since a polynomial depends continuously on its coefficients in the topology

of locally uniform convergence, there exists some ǫ > 0 such that the polynomial
det(A′ − λI) has exclusively negative zeros whenever ‖A′ − A‖ < ǫ. Here ‖.‖
denotes some matrix norm.

Since M is dense in M, there exist elements x′1, . . . , x
′
n ∈ L, such that

∥
∥
(
[x′i, x

′
j ]
)n

i,j=1
−
(
[xi, xj ]

)n

i,j=1

∥
∥ < ǫ .

By what we said above, this implies that the matrix ([x′i, x
′
j ])

n
i,j=1 is negative

definite. The space
M := span{x′1, . . . , x′n} ⊆ L

is negative definite and has dimension n. ❑

COD10 4.1.9 Corollary. Let 〈P , [., .]〉 be a Pontryagin space, and let L be a dense
linear subspace. Then there exists a maximal negative subspace M with M ⊆ L.

Proof. We have κ := ind− L <∞. By the above lemma, P = L cannot contain
any negative subspace with dimension κ+1. Thus ind− P = κ, and we conclude
that each maximal negative subspace of L is already maximal negative in P . ❑

As a first consequence, we obtain a characterization of the topology T �,
which is explicit in terms of the inner product [., .], i.e. does not refer to some
fundamental decomposition.

PRD11 4.1.10 Proposition. Let 〈P , [., .]〉 be a Pontryagin space, let xn ∈ P, n ∈ N,
and x ∈ P. Then the following hold:

(i) We have limn→∞ xn = x with respect to T �, if and only if there exists a
dense subset D of P, such that

lim
n→∞

[xn, xn] = [x, x], lim
n→∞

[xn, y] = [x, y], y ∈ D . (4.1.2) D12
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(ii) The sequence (xn)n∈N is a Cauchy sequence with respect to T � (i.e. with
respect to some norm inducing T �), if and only if there exists a maximal
negative subspace M of P, such that

lim
n,m→∞

[xn − xm, xn − xm] = 0, lim
n,m→∞

[xn − xm, y] = 0, y ∈ M .

(4.1.3) D13

Proof. Let J = (P+,P−) be any fundamental decomposition of P . Then
|[x, y]| ≤ ‖x‖J‖y‖J, x, y ∈ P . Thus the stated conditions (4.1.2) and (4.1.3),
respectively, are necessary. Thereby, we may take D := P .

Conversely, assume that D is a dense subset of P such that (4.1.2) or (4.1.3)
holds. Clearly, we may assume without loss of generality that D is a linear
subspace of P . According to Corollary 4.1.9, we can choose a maximal negative
subspace M which is contained in D. Then J := (M⊥,M) is a fundamental
decomposition of P .

Assume that (4.1.2) holds, and consider the sequences (P+
J xn)n∈N and

(P−
J xn)n∈N. The second relation in (4.1.2), together with our choice of M

as a subspace of D, gives

lim
n→∞

[P−
J xn, y] = lim

n→∞
[xn, y] = [x, y] = [P−

J x, y], y ∈ M .

Since M is finite-dimensional and negative definite, this implies that

lim
n→∞

P−
J xn = P−

J x w.r.t. ‖.‖J|M = (−[., .])
1
2 .

Using the first relation in (4.1.2), it follows that

lim
n→∞

[P+
J xn, P

+
J xn] = lim

n→∞

(

[xn, xn] − [P−
J xn, P

−
J xn]

)

=

= [x, x] − [P−
J x, P

−
J x] = [P+

J x, P
+
J x] .

Moreover, by the second relation in (4.1.2),

lim
n→∞

[P+
J xn, y] = lim

n→∞
[xn, y] = [x, y] = [P+

J x, y], y ∈ D ∩M⊥ .

Since M ⊆ D the set D ∩M⊥ is dense in the Hilbert space M⊥. Thus

lim
n→∞

P+
J xn = P+

J x w.r.t. ‖.‖J|M⊥ = [., .]
1
2 .

In total limn→∞ xn = x with respect to ‖.‖J.
Assume that (4.1.3) holds. We argue similarly, and show that both of

(P+
J xn)n∈N and (P−

J xn)n∈N are Cauchy sequences in the norm ‖.‖J. First,

lim
n,m→∞

[P−
J xn − P−

J xm, y] = 0, y ∈ M .

Again finite dimensionality implies that (P+
J xn)n∈N is a Cauchy sequence in the

norm (−[., .])
1
2 . Next, we compute

lim
n,m→∞

[P+
J xn − P+

J xm, P
+
J xn − P+

J xm] =

= lim
n,m→∞

(

[xn − xm, xn − xm] − [P−
J xn − P−

J xm, P
−
J xn − P−

J xm]
)

= 0 .

❑
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4.2 Fundamental decompositions, orthocomple-

mented subspaces

Also the geometry of Pontryagin spaces is significantly simpler than the one of
general Krein spaces. This fact origins from the following result.

LED14 4.2.1 Lemma. Let 〈P , [., .]〉 be a Pontryagin space, and let M ∈ SubP. Then

(i) If M is closed and positive definite, then M is uniformly positive.

(ii) If M is negative definite, then M is uniformly negative.

Proof. Let J = (P+,P−) be a fundamental decomposition of P . Assume that
M ∈ Sub>0 P and that M is closed, and consider the angular operator

aJ(M) : P+
J M ⊆ P+ → P− .

Then aJ(M) is ‖.‖J-contractive, in fact

‖aJ(M)x‖2
J = −

[
aJ(M)x, aJ(M)x

]
< [x, x] = ‖x‖2

J, x ∈ P+
J M\ {0} . (4.2.1) D15

Since M is closed, it is ‖.‖J-complete. By Lemma 2.6.5, also P+
J M is ‖.‖J-

complete. The subspace ker aJ(M) is a ‖.‖J-closed subspace of P+
J M, hence

we may write P+
J M = ker aJ(M)[+̇]F . Note here once more that ‖.‖J|P+ is

induced by the inner product [., .]. We have

dimF = dim ran aJ(M) ≤ dimP− <∞ .

Thus the unit ball of F is compact, and we obtain an element x0 ∈ F , ‖x0‖J ≤ 1,
with

sup
x∈F ,‖x‖J≤1

‖aJ(M)x‖J = ‖aJ(M)x0‖J .

Remembering (4.2.1), it follows that

‖aJ(M)‖ = sup
x∈P+

J
M

‖x‖J≤1

‖aJ(M)x‖J = sup
x∈F

‖x‖J≤1

‖aJ(M)x‖J =

= ‖aJ(M)x0‖J

{

< ‖x0‖J = 1 , x0 6= 0

0 , x0 = 0
.

This shows that M is uniformly positive.
The proof of (ii) is similar, even simpler. Let J̄ be the orthogonal decompo-

sition J̄ := (P−,P+), let M ∈ Sub<0 P , and consider the angular operator

aJ̄(M) : P−
J M ⊆ P− → P+ .

Then dimP−
J M ≤ dimP− <∞, and the same compactness argument as above

will apply and yield that ‖aJ̄(M)‖ < 1. ❑

As an immediate corollary, we obtain the following Pontryagin space version
of Theorem 3.2.2.
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COD16 4.2.2 Corollary. Let 〈P , [., .]〉 be a Pontryagin space, and let L+,L− ∈ SubP.
Then there exists a fundamental decomposition J = (P+,P−) of P with

L+ ⊆ P+ and L− ⊆ P− (4.2.2) D17

if and only if

L+ ∈ Sub≫0 P , L− ∈ Sub<0 P , L+ ⊥ L− .

If we assume that L+ is closed, then there exists J with (4.2.2) if and only if
L+ ∈ Sub>0 P, L− ∈ Sub<0 P, and L+ ⊥ L−. ❑

The Pontryagin space version of Theorem 3.3.3 on characterizing orthocom-
plementedness is less evident, and actually a quite important result.

PRD18 4.2.3 Proposition. Let 〈P , [., .]〉 be a Pontryagin space, and let L ∈ SubP.
Then the following are equivalent:

(i) L is orthocomplemented.

(ii) L is closed and nondegenerated.

(iii) L is decomposable, nondegenerated, and for each fundamental decomposi-
tion JL = (L+,L−) of L the component L+ is closed in P.

(iii′) We have L = L+[+̇]L− with some subspaces L+ ∈ Sub>0 P and L− ∈
Sub<0 P, where L+ is closed in P.

(iv) L is closed in P and 〈L, [., .]〉 is a Pontryagin space.

(iv′) The closure L is nondegenerated and 〈L, [., .]〉 is a Pontryagin space.

Proof. The implications indicated on the left are immediate from Theorem 3.3.3,
those on the right are deduced from Theorem 3.3.3 with the help of Lemma 4.2.1:

(iv)

��
(iii′) (i) +3ks

��

?G

(ii)

(iii)

(iii′) +3 (i)
KS

(iii)

Moreover, we have (ii) ⇒ (iii′) since, by Proposition 3.3.1, (i), a closed subspace
has a fundamental decomposition with closed components. This establishes the
equivalence of (i), (ii), (iii), and (iii′).

The implication (iv) ⇒ (iv′) is trivial. To finish the proof it is hence enough
to show that (iv′) implies that L is closed in P . To this end we will employ
Proposition 4.1.10. Let a sequence (xn)n∈N of points xn ∈ L be given, and
assume that limn→∞ xn = x in P . Then, certainly,

lim
n,m→∞

[xn − xm, xn − xm] = 0, lim
n→∞

[xn − xm, y] = 0, y ∈ L .
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Thus (xn)n∈N is a Cauchy sequence in the Pontryagin space 〈L, [., .]〉, and hence
convergent, say limn→∞ xn = x′ in L.

By convergence in P on the one hand and convergence in L on the other,
we have

[x, y] = lim
n→∞

[xn, y] = [x′, y], y ∈ L ,

[x, y] = lim
n→∞

[xn, y] = 0 = [x′, y], y ∈ L⊥ .

Thus [x− x′, y] = 0 whenever y ∈ L + L⊥. However,

(L + L⊥)⊥ = L⊥ ∩ L⊥⊥ = L⊥ ∩ L = (L)◦ = {0} ,

and hence x− x′ = 0. In particular x′ ∈ L. ❑

4.3 Isometric mappings, Completions

We saw that an isometric map defined on some subspace of a Krein space need
not be continuous. This does not change in the Pontryagin space situation.
However, we can give a quite useful condition which implies continuity.

PRD19 4.3.1 Proposition. Let 〈P1, [., .]1〉 and 〈P2, [., .]2〉 be Pontryagin spaces, and
let

φ : domφ ⊆ P1 → P2

be isometric. If ranφ is nondegenerated, then φ is continuous. Its continuation
φ̃ by continuity is isometric and maps domφ surjectively onto ranφ.

Proof. Since ranφ is closed and nondegenerated, it is itself a Pontryagin space
and the topology it carries as such coincides with the topology it inherits from
P2. For the proof of the present assertion we may therefore consider φ as a map
of domφ into ranφ. Hence, assume throughout the following that ranφ is dense
in P2.

Let D− be a maximal negative subspace of domφ. Then P1 = D⊥
−[+̇]D− and

domφ = (domφ∩D⊥
−)[+̇]D−. The orthogonal projections P1 and P2 of P1 onto

D⊥
− and D−, respectively, are continuous. Moreover, note that isometry of φ

implies that the restriction φ|D−
is injective, and that φ(domφ∩D⊥

−) ⊥ φ(D−).
Finally, let ‖.‖1 be a norm which induces the topology of P1, and let C > 0 be
such that |[x, x]| ≤ C‖x‖2

1, x ∈ P1.
By Lemma 4.1.8, we have ind− P2 = ind− ranφ = ind− domφ. Thus the

image R− := φ(D−) is a maximal negative subspace of P2. Let ‖.‖J2 be the
norm induced by the fundamental decomposition J2 := (R⊥

−, R−) of P2. For
x ∈ domφ, we can then compute

‖φx‖2
J2

= ‖φ(P1x)
︸ ︷︷ ︸

∈R⊥
−

+φ(P2x)
︸ ︷︷ ︸

∈R−

‖2
J2

= [φ(P1x), φ(P1x)]2 − [φ(P2x), φ(P2x)]2 =

= [P1x, P1x]1−[P2x, P2x]1 ≤ C
(
‖P1x‖2

1+‖P2x‖2
1

)
≤ C(‖P1‖2+‖P2‖2)‖x‖2

1 .

This proves continuity of φ.
Let φ̃ : domφ → P2 be the continuation of φ by continuity. Clearly, φ̃ is

isometric. In order to show surjectivity of φ̃, it is enough to show that ran φ̃ is
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closed in P2. Set D := domφ ∩ D⊥
−, then we have domφ = D[+̇]D− and, by

Lemma 4.1.8,D is positive semidefinite. Choose a closed subspaceD+ ofD with
D = D+[+̇]D◦. Then, by Lemma 4.2.1, D+ is uniformly positive and hence a
Hilbert space with respect to the inner product [., .]1. The image R+ := φ̃(D+)
is thus complete with respect to the inner product [., .]2. However, R+ ⊆ R⊥

−,
and hence the inner products (., .)J2 and [., .]2 coincide on R+. It follows that
R+ is closed in the topology of P2. Since

ran φ̃ = R+ + φ̃(D◦ +D−)
︸ ︷︷ ︸

dim<∞

,

we finally obtain that ran φ̃ is closed in P2. ❑

COD20 4.3.2 Corollary. Let 〈P1, [., .]1〉 and 〈P2, [., .]2〉 be Pontryagin spaces, and let

φ : domφ ⊆ P1 → P2

be isometric. Assume that domφ is closed and ranφ is nondegenerated. Then
φ is continuous and maps closed subsets of P1 to closed subsets of P2.

Proof. By the above proposition, φ is continuous and maps domφ onto ranφ.
Hence, ranφ = ranφ, i.e. ranφ is closed. By the Open Mapping Theorem, φ
maps open subsets of P1 to relatively open subsets of ranφ. Since ranφ is closed,
this implies that φ maps closed subsets of P1 to closed subsets of P2. ❑

COD21 4.3.3 Corollary. Let 〈P1, [., .]1〉 and 〈P2, [., .]2〉 be Pontryagin spaces, and let
φ : domφ ⊆ P1 → P2 be isometric. Assume that domφ and ranφ are dense
in P1 and P2, respectively. Then there exists an isomorphism φ̃ of P1 onto P2,
such that φ̃|domφ = φ.

Proof. By density, (domφ)◦ = (domφ)◦ = {0} and (ranφ)◦ = (ranφ)◦ = {0}.
The map φ is a bijection of domφ onto ranφ. Its inverse ψ := φ−1 : ranφ →
domφ is also isometric. The previous proposition may be applied to both, φ
and ψ. We conclude that φ and ψ can be extended to continuous maps

φ̃ : P1 → P2, ψ̃ : P2 → P1 .

Clearly, φ̃ and ψ̃ are inverses of each other. ❑

RED22 4.3.4 Remark. Let us explicitly mention one instance when Proposition 4.3.1
will apply: If, with the notation of Proposition 4.3.1, we have ind− domφ =
ind− P2 then ranφ is nondegenerated.

To see this, choose a maximal negative subspace D− of domφ. Then R− :=
φ(D−) is maximal negative in P2. By Proposition 1.5.2, it is even maximal in

Sub≤0 P2. Assume that ranφ
◦

would contain a nonzero element x0. Then the
subspace M := R− + span{x0} is a nonpositive subspace of P2 which properly
contains R−, and we have obtained a contradiction. �

Concerning completions, inner product spaces with finite negative index be-
have very well.

PRD23 4.3.5 Proposition. Let 〈L, [., .]〉 be an inner product space with ind−L < ∞.
Then the following hold:
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(i) There exists a Krein space completion of L. In each Krein space comple-
tion (ι,K) of L, the space K is a Pontryagin space with ind− K = ind−L.

(ii) Each two Krein space completions of L are isomorphic.

Proof. Since ind− L < ∞, L is decomposable. Hence, there exist Krein space
completions of L. Whenever (ι,K) is such, then ι(L) is dense in K. Thus K
cannot contain any negative definite subspace with dimension ind− L + 1, cf.
Lemma 4.1.8, and it follows that ind− K = ind− L <∞.

Next, let (ι1,K1) and (ι2,K2) be two Krein space completions of L. Then
K1 and K2 are Pontryagin spaces. Since ker ι1 = L◦ = ker ι2, there exists a
linear and isometric map φ : ran ι1 → ran ι2 such that φ ◦ ι1 = ι2. Since ran ι1
and ran ι2 are dense subspaces of the Pontryagin spaces K1 and K2, and the
map φ is isometric, we may apply Proposition 4.3.1. This gives an isomorphism
Φ : K1 → K2 with Φ ◦ ι1 = ι2:

L
ι1

||yy
yy

yy
yy

y
ι2

""E
EE

EE
EE

EE

ran ι1
φ

// ran ι2⊆ ⊆

K1
Φ

//________ K2

❑

We will refer to a Krein space completion (ι,K) of a space 〈L, [., .]〉 with
ind− K <∞ as a Pontryagin space completion of L.

RED24 4.3.6 Remark. Let 〈L, [., .]〉 be an inner product space. Trivially, the existence
of Pontryagin space completion (ι,P) of L implies that ind− L < ∞. Hence,
the space L admits a Pontryagin space completion if and only if ind− L < ∞.

�
Let 〈L, [., .]〉 be an inner product space with ind− L < ∞. Then, by Propo-

sition 4.3.5, (ii), a Pontryagin space completion (ι,P) of L is an object intrin-
sically determined (up to isomorphism) by L. Thus also the topological dual
space of a Pontryagin space completion of L has this property. Let us make this
precise.

PRD25 4.3.7 Proposition. Let 〈L, [., .]〉 be an inner product space with ind− L < ∞,
and let (ι,P) be a Pontryagin space completion of L. Then

ι∗P ′ = L� .

Here P ′ denotes the topological dual of P, and ι∗ denotes the (algebraic) adjoint
of ι, that is ι∗ : P∗ → L∗ and ι∗f = f ◦ ι.
Proof. Choose a fundamental decomposition J := (L+,L−) of L, and let (ι̃, P̃)
be the Pontryagin space completion of L induced by this fundamental decom-
position. As we also saw in this place, the decomposition topology TJ = T � is
the initial topology with respect to the map ι̃. Hence, ι∗P ′ = L�.

By Proposition 4.3.5, (ii), there exists an isomorphism φ : P → P̃ with
ι̃ = φ ◦ ι. Passing to adjoints gives ι̃∗ = ι∗ ◦ φ∗. Since φ is in particular a
homeomorphism, we have φ∗(P̃ ′) = P ′. Thus

ι∗P ′ = ι∗ ◦ φ∗(P̃ ′) = ι̃∗(P̃ ′) = L� .
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❑

4.4 Degenerated subspaces

If L is a closed but degenerated subspace of a Pontryagin space P , then L cannot
be orthocomplemented already for the simple reason that

(L + L⊥)⊥ = L⊥ ∩ L⊥⊥ ⊇ L◦ .

However, unlike in the general case of Krein spaces, it turns out that existence
of a nontrivial isotropic part is the only obstacle. We will in this section es-
tablish the proper analogue of the decomposition P = L[+̇]L⊥ for degenerated
subspaces of P .

THD26 4.4.1 Theorem. Let 〈P , [., .]〉 be a Pontryagin space, and let L be a closed and
degenerated subspace of P. Then

(i) There exists a closed and nondegenerated subspace L1 of P with L =
L1[+̇]L◦.

(ii) Whenever L1 and L2 are closed subspaces of P with L = L1[+̇]L◦ and
L⊥ = L2[+̇]L◦, then there exists M ∈ Sub0 P with L◦#M and

P = L1[+̇](L◦+̇M)[+̇]L2 . (4.4.1) D27

(iii) If M ∈ Sub0 P with L◦#M, then there exist unique closed subspaces L1

and L2 of P, such that L = L1[+̇]L◦, L⊥ = L2[+̇]L◦, and (4.4.1).

Proof. For (i) it is enough to note that L◦ is finite dimensional, since this ensures
the existence of a closed complement of L◦ in L. Thereby [., .]-orthogonality is
trivially satisfied.

Let L1,L2 be given as in (ii). Then, clearly, L1 and L2 are nondegenerated,
and hence orthocomplemented. Moreover, L1 ⊥ L2 and L1 ∩ L2 = {0}. Thus
also L1[+̇]L2 is orthocomplemented, i.e.

P = (L1[+̇]L2)[+̇](L⊥
1 ∩ L⊥

2 ) .

Since L⊥
1 ∩L⊥

2 is nondegenerated and contains the neutral subspace L◦, we find
a neutral subspace M ⊆ L⊥

1 ∩ L⊥
2 with L◦#M. Thereby, dimM = dimL◦ <

∞. Thus L◦+̇M is a finite dimensional, and hence closed, subspace of the
Pontryagin space L⊥

1 ∩ L⊥
2 . Assume that x ∈ L⊥

1 ∩ L⊥
2 , x ⊥ (L◦+̇M). Then

x ∈ (L1 + L◦)⊥ ∩ (L2 + L◦)⊥ ∩M⊥ = L⊥ ∩ L⊥⊥ ∩M⊥ = L◦ ∩M⊥ = {0} .

It follows that
L⊥

1 ∩ L⊥
2 = L◦+̇M ,

and this is (4.4.1).
We come to the proof of (iii). Let M ∈ Sub0 P with L◦#M be given.

Define
L1 := L ∩ (L◦+̇M)⊥, L2 := L⊥ ∩ (L◦+̇M)⊥ .

Clearly, L1 and L2 are closed, and L1 ⊆ L, L2 ⊆ L⊥. Since L1,L2 ⊥ M, we
also have L1 ∩ L◦ = L2 ∩ L◦ = {0}.
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In order to show that L = L1[+̇]L◦, let z ∈ L be given. The space L◦+̇M
is nondegenerated and finite dimensional, and hence orthocomplemented. Thus
we may write

z = x+ y with some x ∈ L◦+̇M, y ∈ (L◦+̇M)⊥ .

Since x = z − y ⊥ L◦ and x ∈ L◦+̇M, it follows that x ∈ L◦. This, in turn,
implies y = z − x ∈ L, and hence y ∈ L1. We conclude that z ∈ L1 + L◦. The
relation L⊥ = L2[+̇]L◦ is seen in the same way.

Applying the already proved item (ii) with the subspaces L1 and L2, gives
M′ ∈ Sub0 P with L◦#M′ and

P = L1[+̇](L◦+̇M′)[+̇]L2 .

However, we have L◦+̇M′ = L⊥
1 ∩ L⊥

2 ⊇ L◦+̇M. Since both spaces have the
same finite dimension, namely 2 dimL◦, it follows that L◦+̇M′ = L◦+̇M. This
shows that (4.4.1) holds with M.

In order to see uniqueness, assume that L′
1 and L′

2 are closed subspaces of
P with L = L′

1[+̇]L◦, L⊥ = L′
2[+̇]L◦, and P = L′

1[+̇](L◦+̇M)[+̇]L′
2. Then

L′
1 ⊆ L ∩ (L◦+̇M)⊥ = L1, L′

2 ⊆ L⊥ ∩ (L◦+̇M)⊥ = L2 .

Since the relation (4.4.1) also holds with L1,L2, this implies that actually L′
1 =

L1 and L′
2 = L2. ❑



Chapter 5

Classes of complete TIPS.

III. Almost Pontryagin

spaces

5.1 Definition of aPs

DEE1 5.1.1 Definition. A topological inner product space 〈A, [., .], T 〉 is called an
almost Pontryagin space, if

(APS1) ind0 A <∞, ind− A <∞.

(APS2) T ∈ TopBs A.

(APS3) There exists a fundamental decomposition J = (A+,A−) of A,
such that A+ is T -closed and intrinsically complete.

�

Note that the topology T and the fundamental decomposition (A+,A−) in
(APS3) are related. Thus the choice of (A+,A−) in (APS3) is not arbitrary.

The following statement is an immediate reformulation of this definition.

REE2 5.1.2 Remark. Let 〈A, [., .], T 〉 be a topological inner product space. Then
〈A, [., .], T 〉 is an almost Pontryagin space, if and only if there exists a
Hilbert space H1, a finite-dimensional negative definite space H2, and a finite-
dimensional neutral space H3, such that

〈A, [., .], T 〉 = H1[+̇]H2[+̇]H3 .

Here H1[+̇]H2[+̇]H3 is endowed with the sum inner product and the product
topology, where H1 and H2 carry the topologies induced by their inner products,
and H3 carries the euclidean topology. �

PRE3 5.1.3 Proposition. Let 〈A, [., .], T 〉 be a topological inner product space. Then
the following are equivalent:

(i) 〈A, [., .], T 〉 is an almost Pontryagin space.

95
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(ii) There exists an inner product (., .) on A with T(.,.) = T , such that T(.,.) ∈
TopHs A, and the Gram operator of [., .] with respect to (., .) satisfies

dim ranE(−∞, δ) <∞

for some δ > 0. Here, again, E denotes the spectral measure of G as
operator in 〈A, (., .)〉.

(iii) We have T ∈ TopHs A and there exists M ∈ Sub>0 A with dimA/M <
∞, such that M is T -closed and intrinsically complete.

Proof. We show that (i) ⇒ (iii). Assume that 〈A, [., .], T 〉 is an almost Pontrya-
gin space, and choose a fundamental decomposition J = (A+,A−) of A such
that A+ is T -closed and intrinsically complete. Since A = A+[+̇]A−[+̇]A◦, and
each component is T -closed, the topology T is equal to the product topology
T |A+ × EA−

× EA◦ , where EA−
and EA◦ denote the euclidean topologies on the

respective finite dimensional spaces. However, since M is intrinsically com-
plete, the topology T |A+ is equal to the topology induced by the inner product
[., .]|A+×A+ . Altogether, T is induced by the inner product

(x, y) := [P+
J x, P

+
J y] − [P−

J x, P
−
J y] + [P0x, P0y]0, x, y ∈ A ,

where we have set P0 := I − P+
J − P−

J , and where [., .]E denotes any positive
definite inner product on A◦. We conclude that T ∈ TopHs A. Set M := A+,
then M has all the properties required in (iii).

The proof of the implication (iii) ⇒ (ii) proceeds word by word as the proof
of the corresponding implication in Proposition 4.1.4, just deleting the last two
lines. Assume that (ii) holds. Choose ǫ ∈ (0, δ) such that σ(G)∩ (0, ǫ) = ∅, and
set

A+ := ranE(ǫ,∞), A− := ranE(−∞, 0) .

Then (A+,A−) is a fundamental decomposition of A, and

dimA−, dimA◦ ≤ dim ranE(−∞, δ) <∞ .

As we have shown in the proof of Theorem 3.1.5, cf. (3.1.1), the inner products
(., .)|A+×A+ and [., .]|A+×A+ give rise to equivalent norms. Since A+ is T -closed,
it is thus also intrinsically complete. ❑

For the same reason as in Remark 4.1.5, we obtain the following statement.

REE4 5.1.4 Remark. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let (., .) be
any inner product on A with T(.,.) = T . Then the corresponding Gram operator
satisfies dim ranE(−∞, δ) <∞ for some δ > 0. �

As a corollary we obtain the following statements.

COE5 5.1.5 Corollary.

(i) If 〈P , [., .]〉 is a Pontryagin space, then 〈P , [., .], T �〉 is an almost Pontrya-
gin space.

(ii) If 〈A, [., .], T 〉 is an almost Pontryagin space and is nondegenerated, then
〈A, [., .]〉 is a Pontryagin space and T = T �.
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Proof. Let 〈P , [., .]〉 be a Pontryagin space, and let J = (P+,P−) be a fun-
damental decomposition of P . Then P+ = P⊥

− is TJ-closed and intrinsically
complete. Moreover, T � = TJ and P is complete with respect to T �. We see
that 〈P , [., .], T �〉 is an almost Pontryagin space.

The assertion (ii) follows immediately from the equivalences ‘(i) ⇐⇒ (iii)’
in Proposition 4.1.4 and Proposition 5.1.3, respectively, and the fact that for
nondegenerated spaces |TopBs A| ≤ 1, cf. Remark 4.1.3, (i). ❑

Unlike for nondegenerated spaces, in the presence of a nontrivial isotropic
part, we may have different compatible Banach space topologies. In fact,
the topology of an infinite dimensional degenerated almost Pontryagin space
〈A, [., .], T 〉 is never uniquely determined by the inner product space 〈A, [., .]〉.

EXE6 5.1.6 Example. Let 〈A, [., .], T 〉 be an almost Pontryagin space with dimA = ∞
and ind0 A > 0. Choose a fundamental decomposition J = (A+,A−) where A+

is T -closed and intrinsically complete, so that T |A+ = TJ|A+ . Moreover, choose
a norm ‖.‖ which induced by a Hilbert space inner product on A, which induces
T and satisifes ‖x‖ = ‖x‖J, x ∈ A+ + A−.

Let h ∈ A◦ \ {0}, and let f be a linear functional f : A+ → C which is not
T |A+ -continuous. Define a map φ : A → A as

φ(x) := x+ f(P+
J x)h, x ∈ A .

Then φ is obviously isometric and satisfies φ|A−+A◦ = idA−+A◦ . In particular,
kerφ ∩ (A− + A◦) = {0}.

If x ∈ A+ is given, then

φ
(
x− f(x)h

)
= x− f(x)h+ f

(
P+

J (x− f(x)h)
︸ ︷︷ ︸

=x

)
h = x ,

and we conclude that φ is surjective. If x ∈ kerφ, then

0 = φ(x) = x− f(P+
J x)h ,

and hence x ∈ A◦. This implies that x ∈ kerφ ∩ A◦ = {0}, and we conclude
that φ is injective.

Let T ′ := φ−1(T ), then T ′ is induced by the norm ‖x‖′ := ‖φx‖, x ∈ A,
and A is complete with respect to ‖.‖′. Moreover, we have

|[x, y]| = |[φx, φy]| ≤ α‖φx‖ · ‖φy‖ = α‖x‖′ · ‖y‖′, x, y ∈ A ,

and hence T ′ ∈ TopHs A. The subspace M := φ−1(A+) is T ′-closed, has finite
codimension, and

[x, x]
1
2 = [φx, φx]

1
2 = ‖φx‖ = ‖x‖′, x ∈ M .

Hence M is also intrinsically complete. We conclude that 〈A, [., .], T ′〉 is an
almost Pontryagin space, and that φ is an isomorphism of 〈A, [., .], T ′〉 onto
〈A, [., .], T 〉.

However, since (φ|A+ − idA+)x = f(x)h, x ∈ A+, the map φ|A+ and hence
also φ cannot be T -to-T -continuous. Thus T ′ 6= T . �

Nevertheless, of course, the fact whether or not an inner product space
〈A, [., .]〉 can be made into an almost Pontryagin space, is an intrinsic property.
The next statement is the analogue to Proposition 4.1.6.
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PRE7 5.1.7 Proposition. Let 〈L, [., .]〉 be an inner product space. Then the following
are equivalent:

(i) There exists a vector topology T such that 〈L, [., .], T 〉 is an almost Pon-
tryagin space.

(ii) There exists a subspace M ∈ Sub>0 L with dimL/M < ∞, such that M
is complete with respect to T �|M.

Note here that the existence of a positive subspace with finite codimension
implies ind− L < ∞, and hence ensures that T � is well-defined. More-
over, if M is positive, then certainly M∩ L◦ = {0}, and hence for each
fundamental decomposition J of L the seminorm pJ|M is a norm.

(iii) L/L◦ is a Pontryagin space and ind0 L <∞.

If one (and hence all) of these conditions hold, then for each T ∈ TopBs L, the
triple 〈L, [., .], T 〉 is an almost Pontryagin space.

Proof.
(i) ⇒ (ii): Choose a fundamental decomposition J = (L+,L−) of L such that
L+ is intrinsically complete. Then the subspace M := M+ has all the required
properties.

(ii) ⇒ (iii): Clearly, L/L◦ is nondegenerated. Let M be a subspace as in
(ii), let J = (L+,L−) be a fundamental decomposition of L, and denote by
π : L → L/L◦ the canonical projection. Then, since π is isometric, surjective,
and kerπ = L◦, the pair J∼ := (π(L+), π(L−)) is a fundamental decomposition
of L/L◦. We have

P±
J∼

◦ π = π ◦ P±
J ,

and hence can compute

pJ∼
(πx)2 = [P+

J∼
πx, P+

J∼
πx] − [P−

J∼
πx, P−

J∼
πx] =

= [πP+
J x, πP

+
J x]−[πP−

J x, πP
−
J x] = [P+

J x, P
+
J x]−[P−

J x, P
−
J x] = pJ(x)2, x ∈ L .

Consider the subspace M∼ := π(M). The map π|M is a bijection of M onto
π(M). Since π is isometric, M∼ ∈ Sub>0 L/L◦. Moreover, clearly,

dim(L/L◦)/M∼ ≤ dimL/M <∞ .

Finally, since M is complete with respect to the norm pJ|M, this implies that
π(M) is complete with respect to the norm pJ∼

. We conclude from Proposition
4.1.6 that L/L◦ is a Pontryagin space.

(iii) ⇒ (i): Let J∼ = (L∼
+,L∼

−) be a fundamental decomposition of L/L◦, and
choose L+,L− ∈ SubL, such that

π−1L∼
+ = L++̇L◦, π−1L∼

− = L−+̇L◦ .

Since kerπ = L◦, we have L+ ∈ Sub>0 L and L− ∈ Sub<0 L. Moreover,
dimL− = dimL∼

− < ∞. Since π|L+ is a bijective isometry of L+ onto L∼
+,

and L∼
+ is intrinsically complete, also L+ has this property. We have

L = L+[+̇]L−[+̇]L◦ .
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and hence L becomes an almost Pontryagin space with the inner product [., .]
and the topology T which is the product topology of T[.,.]|L+×L+

, T−[.,.]|L−×L−
,

and the euclidean topology on L◦, cf. Remark 5.1.2.

Finish of proof: To see the last assertion, let T ∈ TopBs L be given. Choose
a subspace M as in (ii), then π(M) is a closed and positive subspace of the
Pontryagin space L/L◦. By Corollary 4.2.2, there exists a fundamental decom-
position (P+,P−) of L/L◦ with π(M) ⊆ P+. The subspace π−1(P+) of L is
closed. By Theorem 2.5.10 we have T ⊇ T �, and hence π−1(P+) is also T -
closed. Choose a T -closed subspace L̂+ with π−1(P+) = L̂++̇L◦, and choose
a negative subspace L̂− with π(L̂−) = P−. Then (L̂+, L̂−) is a fundamental
decomposition of L. The map π|L̂+

is an [., .]-isometric bijection of L̂+ onto P+,

and hence L̂+ is intrinsically complete. We see that 〈L, [., .], T 〉 is an almost
Pontryagin space. ❑

COE8 5.1.8 Corollary. Let 〈A, [., .], T 〉 be an almost Pontryagin space. Then in each
fundamental decomposition (A+,A−) of A, the component A+ is intrinsically
complete.

Proof. Let π denote the canonical projection of A onto A/A◦. Then
(π(A+), π(A1)) is a fundamental decomposition of the Pontryagin space A/A◦,
and hence π(A+) is intrinsically complete. However, π|A+ maps A+ bijectively
and isometrically onto π(A+), and hence A+ is intrinsically complete. ❑

The appropriate notion of a ‘structur-preserving’ map between two almost
Pontryagin spaces differs from the one in the setting of topological inner prod-
uct spaces. It turns out that requiring a map φ to be linear, isometric, and
continuous, is for several purposes too weak.

DEE9 5.1.9 Definition. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin
spaces. Then φ is called a (aPs–) morphism of A1 to A2, if φ is linear map of
A1 into A2, which is isometric and continuous, and for which ranφ is closed in
A2. �

The following observation is simple but important.

LEE10 5.1.10 Lemma. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin
spaces, let φ : A1 → A2 be a morphism. Then φ maps closed linear subspaces
of A1 to closed linear subspaces of A2.

Proof. Since ranφ is T -closed, ranφ is a Banach space with respect to a norm
inducing T . By the Open Mapping Theorem, φ maps open subsets of A1 to
relatively open subsets of ranφ. Let M be a closed subspace of A1. Since
kerφ ⊆ A◦

1, we have dimkerφ ≤ ind0 A1 <∞. Thus also the subspace M+kerφ
is closed. However, we have

[
φ(M)

]c
=
[
φ(M + kerφ)

]c
= φ

(
[M + kerφ]c

)
,

and hence the space φ(M) is relatively closed in ranφ. Since ranφ is T -closed
φ(M) is thus also T -closed. ❑

COE11 5.1.11 Corollary. Let A1,A2,A3 be almost Pontryagin spaces. The composi-
tion φ2 ◦ φ1 : A1 → A3 of two morphisms φ1 : A1 → A2 and φ2 : A2 → A3 is a
morphism. The identity map idA : A → A is a morphism. ❑
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Let us note that a linear, isometric, and continuous map φ : A1 → A2

is an isomorphism, if and only if it is bijective. In other words, φ is an aPs-
isomorphism if and only if it is a bijective TIPS-morphism. Moreover, let us state
that, if A1 and A2 are nondegenerated, then φ : A1 → A2 is an aPs-morphism
if and only if it is a KS-morphism, cf. Corollary 3.4.3.

5.2 Subspaces, products, factors

In this section we investigate some natural constructions which can be carried
out with almost Pontryagin spaces.

PRE12 5.2.1 Proposition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let B
be a closed linear subspace of A. Then 〈B, [., .]|B×B, T |B〉 is an almost Pontrya-
gin space. We have

ind− B ≤ ind− A, ind0 B ≤ ind0 A +
(
ind− A− ind− B

)
. (5.2.1) E48

The inclusion map ι : B → A is a morphism. Let 〈C, [., .]C , TC〉 be an almost
Pontryagin space, and let φ : C → B. Then φ is a morphism if and only if
ι ◦ φ : C → A is such.

Proof. Since T ∈ TopHs A and B is T -closed, also T |B ∈ TopHs B. Let M
be a T -closed, positive, and intrinsically complete subspace of A with finite
codimension in A, and set N := M∩B. Then N is T -closed and, in particular,
thus T |B-closed and T |M-closed. Since M is intrinsically complete, the topology
T0 induced on M by [., .] is equal to T |M. Hence N is T0-closed, and therefore
intrinsically complete. Clearly, dimB/N ≤ dimA/M < ∞. We conclude that
〈B, [., .], T |B〉 is an almost Pontryagin space.

insert proof of (5.2.1)

In order to see the last assertion, it is enough to refer to Corollary 5.1.11
and Proposition 2.7.1. ❑

PRE13 5.2.2 Proposition. Let 〈Ai, [., .]i, Ti〉, i = 1, . . . , n, be almost Pontryagin
spaces, and define

L :=

n∏

i=1

Li, [x, y] :=

n∑

i=1

[πix, πiy]i, T :=

n∏

i=1

Ti ,

where πi denotes the canonical projection of A onto Ai. Then 〈A, [., .], T 〉 is an
almost Pontryagin space. We have

ind− A =

n∑

i=1

ind− Ai, ind0 A =

n∑

i=1

ind0 Ai .

In fact, if Mi, i = 1, . . . , n, are maximal negative subspaces of Ai, then M :=
∏n
i=1 Mi is a maximal negative subspace of A. Moreover, A◦ =

∏n
i=1 A◦

i .
Denote by ιi : Ai → A, i = 1, . . . , n, the canonical embeddings

ιi(x) := (0, . . . , x
↑

i-th place

, . . . , 0) .
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Then ιi is a morphism. Let 〈C, [., .]C , TC〉 be an almost Pontryagin space, and
let φ : C → A. Then φ is a morphism if and only if φ is isometric and πi ◦ φ,
i = 1, . . . , n, are all continuous and map closed subspaces to closed subspaces.

Proof. We argue completely similar as in Proposition 5.2.1, using N :=
∏n
i=1 Mi with subspaces Mi ⊆ Ai, i = 1, . . . , n, which are Ti-closed, positive,

intrinsically complete, and have finite codimension in Ai. ❑

PRE14 5.2.3 Proposition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let B
be a linear subspace of A with B ⊆ A◦. Then an inner product [., .]∼ on A/B is
well-defined by

[πx, πy]∼ := [x, y], x, y ∈ A ,

where π denotes the canonical projection. The triple 〈A/B, [., .]∼, T /B〉, where
T /B denotes the quotient topology, is an almost Pontryagin space. We have

ind− A/B = ind−A, ind0 A/B = ind0 A− dimB .

The canonical projection π : A → A/B is a morphism. Let 〈C, [., .]C , TC〉 be a
topological inner product space, and let φ : A/B → C. Then φ is a morphism if
and only if φ ◦ π is such.

Proof. Let (A+,A−) be a fundamental decomposition of A, with A+ being
T -closed and intrinsically complete. Then (π(A+), π(A−)) is a fundamental
decomposition of A/B. Since π|A+ maps A+ bijectively and isometrically onto
π(A+), the subspace π(A+) is intrinsically complete. Since π−1(π(A+)) =
A++A◦ is T -closed, π(A+) is T /B-closed. We conclude that 〈A/B, [., .]∼, T /B〉
is an almost Pontryagin space.

The remaining assertions are immediate. ❑

Also a corresponding version of the 1st Homomorphism Theorem is valid.

COE15 5.2.4 Corollary. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin
spaces, and let φ : A1 → A2 be a morphism. Then there exists a unique isomor-
phism φ̂ such that

〈A1, [., .]1, T1〉
π

��

φ // 〈A2, [., .]2, T2〉

〈A1/ kerφ, [., .]1,∼, T / kerφ〉
φ̂

// 〈ranφ, [., .]2|ran φ×ranφ, T2|ranφ〉

ι

OO

Proof. As we just showed that space in the lower row of this diagram actually
are almost Pontryagin spaces. For existence and uniqueness of φ̂, it is enugh
to refer to Corollary 2.7.4, and recall that a bijective TIPS-morphism is an
aPs-isomorphism. ❑

Next, we turn to orthogonal couplings. Let A1 and A2 be almost Pontryagin
spaces, and let α be a linear subspace of A◦

1 × A◦
2. Then, by the previous

statements, also A1 ⊞α A2 is an almost Pontryagin space. The corresponding
version of Proposition 1.7.7 now reads as follows.
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PRE16 5.2.5 Proposition. Let A1 and A2 be almost Pontryagin spaces, and let A be
an almost Pontryagin space together with morphisms ι′j : Aj → A, j = 1, 2,
such that ι′1(A1) ⊥ ι′2(A2). Then the map ψ : A1 ⊞α A2 → A in Proposition
1.7.7 is a morphism.

Proof. We already know that ψ is isometric. Continuity of ψ follows easily from
continuity of ι′j , cf. the diagram (1.7.3). We need to show that ranψ is closed
in A.

As closed subspaces of the almost Pontryagin space A, both of ran ι′1 and
ran ι′2 are themselves almost Pontryagin spaces. Hence there exist closed and
intrinsically complete subspaces Mj of ran ι′j , j = 1, 2, with finite codimension
in ran ι′j Since ran ι′1 ⊥ ran ι′2, also M1 ⊥ M2, in particular M1 ∩M2 = {0}.
Their sum M := M[+̇]M2 is thus also intrinsically complete. As the orthogonal
sum of two uniformly positive subspaces, M is itself uniformly positive. Thus
M is also complete, and hence closed, in the norm of A. Since M has finite
codimension in ran ι′1 +ran ι′2, it follows that ran ι′1 +ran ι′2 is closed in the norm
of A. ❑

REE17 5.2.6 Remark. Let A1 and A2 be almost Pontryagin spaces, and let α be a bijec-
tive map between some subspaces domα and ranα of A◦

1 and A◦
2, respectively.

The space A1 ⊞αA2 can also be described explicitly. To this end choose closed
subspaces A1,r and A2,r such that

A1 = A1,r[+̇]A◦
1, A2 = A2,r[+̇]A◦

2 ,

choose D1 and D2 such that

A◦
1 = D1+̇ domα, A◦

2 = D2+̇ ranα ,

and set D := ranα. Consider the almost Pontryagin space

A := A1,r[+̇]
(
D1+̇D+̇D2

)
[+̇]A2,r (5.2.2) E47

where the inner product and topology on A1,r and A2,r is the one inherited
from A1 and A2, respectively, and where D1+̇D+̇D2 is neutral and endowed
with the euclidean topology. Moreover, define ι′1 : A1 → A by

ι′1|A1,r+̇D1
:= id, ι′1|domα := −α ,

and let ι′2 : A2 → A be the identity map. Then ι′1 and ι′2 are morphisms.
Moreover, it is apparent from their definition that ι′1(A1) ⊥ ι′2(A2) and ι′1(A1)+
ι′2(A2) = A.

By Proposition 1.7.7 there exists α̂ ⊆ A◦
1 × A◦

2 and an isomorphism ψ :
A1 ⊞α̂ A2 → A with

A1

ια̂1 //

ι′1 %%KKKKKKKKKKK A1 ⊞α′ A2

ψ

��

A2

ια̂2oo

ι′2yysssssssssss

A

Thereby the linear subspace α̂ is given as α̂ = {(x1, x2) ∈ A◦
1 ×A◦

2 : ι′1(x1) =
ι′2(x2)}. Write x1 = a1 + b1 according to the decomposition A◦

1 = D1+̇ domα,
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and let x2 = a2 + b2 according to A2 = D2+̇ ranα. Then ι′1(x1) = a1 − α(b1)
and ι′2(x2) = a2 + b2. Hence we have ι′1(x1) = ι′2(x2) if and only if a1 = a2 = 0
and b2 = α(b1). This, in turn, is equivalent to (x1, x2) ∈ α.

We see that α̂ = α, and hence ψ is actually an isomorphism between A1⊞αA2

and A, i.e. A can be regarded as a concrete realization of A1 ⊞α A2. �

5.3 The canonical Pontryagin space extension

There is a natural way to associate with a given almost Pontryagin space a
Pontryagin space by means of a factorization process. Namely, for an almost
Pontryagin space A the space P(A) := A/A◦ is a Pontryagin space, cf. Propo-
sition 5.2.3, Corollary 5.1.5.

It is an important observation that there is also a natural way to associate
with a given almost Pontryagin space A a Pontryagin space Pext(A) by means
of an extension process.

5.3.1. Construction of Pext(A): Let A be an almost Pontryagin space. ChooseNRE18
a closed subspace B of A such that A = B[+̇]A◦. Since B is a closed and
nondegenerated subspace of A, it is itself a Pontryagin space. Let C be a linear
space with dimC = ind0 A =: ∆, and choose bases {a1, . . . , a∆}and {c1, . . . , c∆}
of A◦ and C, respectively. Set

Pext(A) := A+̇C = B+̇A◦+̇C ,

and define on this linear space an inner product [., .] by the requirements

[., .]|A×A = [., .]A, B ⊥ C, [ai, ci] = δij , C neutral .

As the direct and orthogonal sum of two Pontryagin spaces, 〈Pext(A), [., .]〉 is
a Pontryagin space. Moreover, the natural embedding ιext of A into Pext(A) is
isometric and has closed range, i.e. is a morphism. Clearly, ιext is injective and
dimPext(A)/A = ind0 A. �

Ad hoc the space Pext(A) depends on the choice of B and the respective
bases of A◦ and C. But actually we will shortly see that Pext(A) and ιext are
uniquely determined up to isomorphisms by their properties that Pext(A) is a
Pontryagin space, ιext is an injective morphism, and dimPext(A)/A = ind0 A,
cf. Remark 5.3.5. We will refer to Pext(A) as the canonical Pontryagin space
extension of A, and to ιext as the extension embedding of A into its canonical
Pontryagin space extension.

Morphisms between almost Pontryagin spaces can be extended to morphisms
between their Pontryagin space extensions.

PRE19 5.3.2 Proposition. Let A1,A2 be almost Pontryagin spaces, and let φ : A1 →
A2 be a morphism. Let spaces Pext(A1/ kerφ) and Pext(A2) be constructed as
in 5.3.1 from some subspaces B1 ⊆ A1/ kerφ and B2 ⊆ A2, respectively. Then
there exists a morphism φ̃ : Pext(A1/ kerφ) → Pext(A2), such that

A1

φ

��

π // A1/ kerφ
ιext // Pext(A1/ kerφ)

φ̃

��
A2 ιext

// Pext(A2)

(5.3.1) E23
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Proof. By the 1st Homomorphism Theorem, there exists an injective morphism
φ′ : A1/ kerφ→ A2 such that

A1
π //

φ

��

A1/ kerφ

φ′

zz
A2

cf. Corollary 5.2.4. Hence we may assume without loss of generality that φ is
injective.

The subspace (ιext◦φ)(B1) of Pext(A2) is closed and nondegenerated. More-
over, (ιext ◦ φ)(A◦

1) is a neutral subspace of (ιext ◦ φ)(B1)
⊥. Applying Theorem

4.4.1 with the closed subspace

L := (ιext ◦ φ)(B1)[+̇](ιext ◦ φ)(A◦
1) ⊆ Pext(A2) ,

we obtain a subspace M ⊆ (ιext ◦ φ)(B1)
⊥, such that (ιext ◦ φ)(A◦

1)#M.

Let {a1, . . . , a∆} and {c1, . . . , c∆} be the bases of A◦
1 and C1 used in the

construction of Pext(A1). The set {ιext ◦ φ(a1), . . . , ιext ◦ φ(a∆)} is a basis of
ιext ◦ φ(A◦

1). By Lemma 1.6.3, there exists a basis {b1, . . . , b∆} of M such that

[ιext ◦ φ(aj), bk] = δjk, j, k = 1, . . . ,∆ .

With these notations define φ̃ : Pext(A1) → Pext(A2) by

φ̃|ιext(A1) := ιext ◦ φ ◦ ι−1
ext, φ̃(cj) := bj , j = 1, . . . ,∆ .

The restriction φ̃|ιext(A1) is continuous and maps closed subspaces of ιext(A1)
to closed subspaces of Pext(A2). Since ιext(A1) is a closed subspace with finite
codimension in Pext(A1), the map φ̃ inherits these properties from its restric-
tion. It is straightforward to check that φ̃ is isometric. Finally, the fact that
(5.3.1) commutes is built into the definition. ❑

REE20 5.3.3 Remark. The extension φ̃ in Proposition 5.3.2 is in general not unique.
For example, whenever P is a Pontryagin space with

(ιext ◦ φ)(A1) ⊆ P ⊆ Pext(A2) ,

the choice of φ̃ can be made such that ran φ̃ ⊆ P . �

COE21 5.3.4 Corollary. Let A be an almost Pontryagin space, and let Pext(A) be
constructed as in 5.3.1 from some subspace B. Moreover, let P be a Pontryagin
space, let ι : A → P an injective morphism, and assume that dimP/ι(A) =
ind0 A. Then there exists an isomorphism of λ : Pext(A) → P such that

A ιext //

ι

��

Pext(A)

λ
{{

P
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Proof. Since P is a Pontryagin space, we have Pext(P) = P and ιext = id.
Proposition 5.3.2 applied with the map ι : A → P gives a morphism λ :
Pext(A) → P . Since a morphism between Pontryagin spaces is injective, we
conclude from λ(ιext(A)) = ι(A) and

dimP/ι(A) = ind0 A = dimPext(A)/ιext(A) ,

that λ is bijective, and hence an isomorphism. ❑

REE22 5.3.5 Remark. We obtain from Corollary 5.3.4 that the canonical Pontryagin
space extension does not depend on the choice of the space B in its construction
5.3.1. This independence includes the embedding ιext. More exactly, let A
be an almost Pontryagin space, and let B and B̃ be two subspaces qualifed
for being used in 5.3.1. Denote the correspondingly constructed Pontryagin
space extensions of A by Pext(A) and P̃ext(A) and let ιext and ι̃ext be the
corresponding embeddings. An application of Corollary 5.3.4 with P := P̃ext(A)
and ι := ι̃ext gives an isomorphism λ : Pext(A) → P̃ext(A) which satisfies
ι̃ext = λ ◦ ιext. �

The following result shows that Pontryagin space extension is compatible
with orthogonal coupling.

PRE24 5.3.6 Proposition. Let A1 and A2 be almost Pontryagin spaces and let α be a
bijective function between subspaces of A◦

1 and A◦
2. Then there exist morphisms

ι̃α1 and ι̃α2 , such that

A1

ια1 //

ιext

��

A1 ⊞α A2

ιext

��

A2

ια2oo

ιext

��
Pext(A1)

ι̃α1

// Pext(A1 ⊞α A2) Pext(A2)
ι̃α2

oo

(5.3.2) E25

The choice of ι̃α1 and ι̃α2 can be made such that ι̃α1 (Pext(A1))∩ ι̃α2 (Pext(A2)) is a
nondegenerated subspace of Pext(A1 ⊞αA2) with dimension 2 dim(domα) which
contains (ιext ◦ ια1 )(dom(α)).

Proof. The existence of ι̃α1 and ι̃α2 which satisfy (5.3.2) is immediate from Propo-
sition 5.3.2. We have to show that they can be chosen so to satisfy the stated
additional requirement. To this end we use the description of A1 ⊞α A2 given
in Remark 5.2.6, cf. (5.2.2). With the notation introduced there, choose bases

{γ1
1 , . . . , γ

1
n1
}, {γ1, . . . , γn}, {γ2

2 , . . . , γ
2
n2
}

of D1, D and D2, respectively, and use for the construction in Proposition 5.3.2
the basis

{
γ1
1 , . . . , γ

1
n1
,−α−1(γ1), . . . ,−α−1(γn), γ

2
2 , . . . , γ

2
n2

}

of (A1 ⊞α A2)
◦. ❑

REE26 5.3.7 Remark. Since, in the situation of Proposition 5.3.6, the mappings ια1 and
ια2 are both injective, we can think of Pext(A1 ⊞α A2) as the biggest of all the
six spaces in (5.3.2) which contains all the others. Note here that all extension
embeddings ιext are by definition injective and that ι̃α1 , ι̃

α
1 are morphisms whose

domain is nondegenerated and are thus also injective. �
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5.3.8. : Thinking in terms of the concrete construction of A1 ⊞α A2 given inNRE27

Remark 5.2.6 and in terms of the construction 5.3.1 of Pontryagin spaces exten-
sions, we can picture the situation present in Proposition 5.3.6 as follows:

A1 ⊞α A2

A1

A2

[+̇] [+̇] [+̇] [+̇]A1,r A2,rD1 D D2

Pext(A1 ⊞α A2)

Pext(A1)

Pext(A2)

[+̇] [+̇] [+̇] [+̇]

+̇ +̇ +̇

A1,r A2,rD1 D D2

C1 C C2

Thereby we have C#D, C1#D1, C2#D2, and the spaces B, B1 and B2, used in
the construction of Pext(A1 ⊞α A2), Pext(A1) and Pext(A2), respectively, are

B = A1,r[+̇]A2,r, B1 = A1,r, B2 = A2,r

Moreover, we see that

Pext(A1) ∩ Pext(A2) = D+̇C .

�

5.4 Fundamental decompositions, Orthocom-

plements, Isometries

The fact that we can map an almost Pontryagin space into or onto a Pontryagin
space, often allows us to employ Pontryagin space results. In this section we
give some results of this kind. We start with a geometric lemma.

LEE28 5.4.1 Lemma. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let M be
a linear subspace of A. Moreover, denote by π : A → A/A◦ the canonical
projection. Then

π(M)⊥ = π(M⊥), π(M◦) = π(M)◦ .

Proof. The first relation is clear, since π is isometric and surjective. Moreover,
the inclusion ‘⊆’ in the second relation is trivial. Assume that x ∈ A and
π(x) ∈ π(M)◦. Then x ∈ (M + A◦) ∩M⊥, and hence we may choose x1 ∈ M
with π(x1) = π(x). Clearly, also x1 ∈ M⊥, i.e. x1 ∈ M◦. This gives the
inclusion ‘⊇’ in the second asserted relation. ❑

As a first consequence, we obtain:

COE29 5.4.2 Corollary. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let M be
a linear subspace of A. Then the following hold.

(i) M⊥⊥ = M + A◦.
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(ii) (M⊥)◦ = M◦
+ A◦.

(iii) M⊥ = A◦ if and only if M + A◦ is dense in A.

Proof. Again let π : A → A/A◦ be the canonical projection. Consider the
subspace π(M). Using Corollary 3.3.2, we obtain

π(M⊥⊥) = π(M)⊥⊥ = π(M) = π(M) .

Since A◦ ⊆ M⊥⊥, taking inverse images gives (i). In order to see (ii), we
compute

(M⊥)◦ = M⊥ ∩M⊥⊥ = M⊥ ∩
(
M + A◦) = M◦

+ A◦ .

Finally, M+A◦ is dense in A if and only if π(M) is dense in A/A◦. The latter
is, by Corollary 3.3.2, equivalent to π(M)⊥ = {0}. Since π(M)⊥ = π(M⊥),
this just means that M⊥ ⊆ A◦. ❑

Next we turn to fundamental decompositions of an almost Pontryagin space
〈A, [., .], T 〉 compatible with the topology T . To this end, we need the corre-
sponding notion of uniform definiteness.

DEE30 5.4.3 Definition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let M ∈
SubA. Moreover, let ‖.‖ be a norm on A which induces T . Then M is called
uniformly positive, if there exists a constant γ > 0 such that

[x, x] ≥ γ‖x‖2, x ∈ M .

The subspace M is called uniformly negative, if there exists a constant γ > 0
such that

−[x, x] ≥ γ‖x‖2, x ∈ M .

The set of all uniformly positive subspaces of K will be denoted by Sub≫0 A,
the set of all uniformly negative ones by Sub≪0 A. �

Let us explicitly note that the T -closure of a uniformly positive (negative)
subspace of A is again uniformly positive (negative, respectively).

PRE31 5.4.4 Proposition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let
L+,L− ∈ SubA. Then there exists a fundamental decomposition J = (A+,A−)
of A, with A+ being T -closed and

L+ ⊆ A+ and L− ⊆ A− ,

if and only if

L+ ∈ Sub≫0 A, L− ∈ Sub<0 A, L+ ⊥ L− .

Proof. Assume that L+ and L− satisfy the stated conditions. We have to con-
struct a fundamental decomposition with the required properties. Since the
closure L+ of L+ is again uniformly positive, we may assume without loss of
generality that L+ is closed. Then π(L+) is a closed and positive subspace of
A/A◦. Moreover, π(L−) is negative and π(L−) ⊥ π(L+). By Corollary 4.2.2,
there exists a fundamental decomposition (P+,P−) of A/A◦ with

π(L+) ⊆ P+, π(L−) ⊆ P− .
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The subspace π−1(P+) is closed in A, it contains the closed subspace L+ and
the finite dimensional subspace A◦, and their intersection equals {0}. Since T ∈
TopHs A, there exists a subspace M such that L++̇M is closed and π−1(P+) =
L++̇A◦+̇M. Set A+ := L++̇M, and choose a negative subspace A− with
π(A−) = P−. Then (A+,A−) is a fundamental decomposition of A, and A+ is
closed.

The converse follows since each positive, closed, and intrinsically complete
subspace of A is certainly uniformly positive, and in turn this property is in-
herited by subspaces. ❑

PRE32 5.4.5 Proposition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, and let
M ∈ SubA. Then M is orthocomplemented if and only if M+ A◦ is T -closed
and M◦ ⊆ A◦.

Proof. Let π denote the canonical projection of A onto A/A◦. Since π(M)⊥ =
π(M⊥) and A◦ ⊆ M⊥, we have

M + M⊥ = A ⇐⇒ π(M) + π(M)⊥ = A/A◦ .

By Proposition 4.2.3, π(M) is orthocomplemented if and only if it is closed and
nondegenerated. However, π(M) is closed if and only if M + A◦ is closed. By
Lemma 5.4.1, the space π(M) is nondegenerated if and only if M◦ ⊆ A◦. ❑

PRE33 5.4.6 Proposition. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin
spaces, and let φ : domφ ⊆ A1 → A2 be isometric. If ranφ is nondegenerated,
then φ is continuous. Its continuation φ̃ by continuity is a morphism of domφ
onto ranφ.

Proof. Let ιjext : Aj → Pext(Aj), j = 1, 2, be the respective extension embed-
dings. Consider the map

ψ := ι2ext ◦ φ ◦ (ι1ext)
−1 : ι1ext(domφ) ⊆ Pext(A1) → Pext(A2)

Then ψ is isometric, and ranψ = ι2ext(ranφ). Thus

ranψ = ι2ext(ranφ) = ι2ext(ranφ) ,

and hence ranψ is nondegenerated. By Proposition 4.3.1, ψ is continuous and
its extension ψ̂ by continuity maps domψ onto ranψ. Since domψ ⊆ ι1ext(A1)

and ranψ ⊆ ι2ext(A2), we may consider the map φ̂ := (ι2ext)
−1 ◦ ψ̂ ◦ ι1ext. It is

defined on domφ, is isometric, continuous, and its range is equal to ranφ. Thus
it is a morphism of domφ onto ranφ. ❑

PRE34 5.4.7 Proposition. Let 〈A, [., .], T 〉 be an almost Pontryagin space, let L be a
closed subspace of A, and let L1 be a subspace with L◦ = L1+̇(L◦ ∩ A◦). Then

(i) There exist closed and nondegenerated subspaces L1 and L2 of A, such
that L = L1[+̇]L◦ and L⊥ = L2[+̇]L1[+̇]A◦.

(ii) Whenever L1 and L2 have the properties stated in (i), there exists N ∈
Sub0 A with L1#N and

A = L1[+̇](L1+̇N )[+̇]L2[+̇]A◦ . (5.4.1) E35
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(iii) Whenever N ∈ Sub0 A with L1#N , there exist subspaces L1 and L2 as in
(i), such that (5.4.1) holds.

Proof. By finite-dimensionality, there exist closed complements L1 of L◦ in L.
By Corollary 5.4.2, (ii), we have (L⊥)◦ = L◦ + A◦. Hence, we may choose for
L2 any closed complement of L◦ + A◦ in L⊥. This shows (i).

For the proof of (ii), let L1 and L2 be given. Let π denoten the canoni-
cal projection of A onto A/A◦, and consider the closed subspace π(L) of the
Pontryagin space A/A◦. We have

π(L)◦ = π(L◦) = π(L1) ,

and
π(L) = π(L1)[+̇]π(L1), π(L)⊥ = π(L⊥) = π(L2)[+̇]π(L1) .

Theorem 4.4.1, (ii), furnishes us with a neutral subspace M of A/A◦ with
L1#M and

A/A◦ = π(L1)[+̇]
(
π(L1)+̇M

)
[+̇]π(L2) .

Choose N ⊆ A with dimN = dimM and π(N ) = M. Then

L1[+̇]
(
L1+̇N

)
[+̇]L2

is a nondegenerated subspace of A which is mapped by π onto A/A◦. Thus the
desired decomposition (5.4.1) of A holds.

↓↓ fix: L1+̇(A◦ ∩ L) = L ∩ π−1(L1)

Finally, let N be given as in (iii). Put M := π(N ), then M is a neutral
subspace of A/A◦ and M#π(L)◦. Again employing Theorem 4.4.1 for the
subspace π(L), we find closed subspaces L̂1 and L̂2 of A/A◦ such that

L̂1[+̇]
(
π(L1)+̇M

)
[+̇]L̂2, π(L) = L̂1[+̇]π(L1), π(L)⊥ = L̂2[+̇]π(L1) .

Set L1 := L∩π−1(L̂1) and let L2 be a closed complement of A◦ in L⊥∩π−1(L̂2).
Since L̂1 ⊆ π(L), we have π(L1) = L̂1 and hence L = L1[+̇]L◦. Since

L̂2 ⊆ π(L)⊥ = π(L⊥), we have π(L2) = π(L⊥ ∩ π−1(L̂2)) = L̂2. It follows that
the decomposition (5.4.1) holds. ❑

5.5 Almost Pontryagin space completions

DEE36 5.5.1 Definition. Let 〈L, [., .]〉 be an inner product space. A pair (ι,A) is
called an aPs-completion of L, if A is an almost Pontryagin space, and ι is an
isometric map whose range is dense in A.

Two completions (ι1,A1) and (ι2,A2) are called isomorphic, if there exist
an isomorphism φ of A1 onto A2, such that φ ◦ ι1 = ι2, i.e. such that we have
the diagram

L
ι1

~~}}
}}

}}
}} ι2

  A
AA

AA
AA

A

A1
φ

// A2

(5.5.1) E46

In this case, we write (ι1,A1) ∼= (ι2,A2). �
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If 〈L, [., .]〉 has an aPs-completion, then clearly ind− L < ∞. Conversely, if
ind− L < ∞, then by Proposition 4.3.5 there exists even a Pontryagin space
completion of L. We conclude that 〈L, [., .]〉 admits an aPs-completion if and
only if ind− L <∞.

Unlike in the case of Pontryagin space completions, aPs-completions are
not uniquely determined up to isomorphism. However, their totality can be de-
scribed in a neat way. Let us introduce an order relation on the set of isomorphy
classes of aPs-completions of a given inner product space 〈L, [., .]〉.

DEE37 5.5.2 Definition. Let 〈L, [., .]〉 be an inner product space, and let (ι1,A1) and
(ι2,A2) be two aPs-completions of L. Then we write (ι1,A1) � (ι2,A2), if there
exists a surjective morphism π1

2 of A1 onto A2, such that π1
2 ◦ ι1 = ι2. �

The relation � is obviously reflexive and transitive. By density of ιj(L) in
Aj , j = 1, 2, and continuity of the involved maps, we have

(

(ι1,A1) � (ι2,A2) ∧ (ι2,A2) � (ι1,A1)
)

⇐⇒ (ι1,A1) ∼= (ι2,A2)

Hence indeed � induces a partial order on the set of all isomorphy classes of
aPs-completions of L.

REE38 5.5.3 Remark. Since the image of a dense set under a surjective and contin-
uous map is again dense, we may also proceed the other way. If (ι1,A1) is
an aPs-completion of L, A2 is an almost Pontryagin space, and π is a surjec-
tive morphism of A1 onto A2, then (π ◦ ι1,A2) is an aPs-completion of L and
(ι1,A1) � (π ◦ ι1,A2). �

DEE39 5.5.4 Definition. Let 〈L, [., .]〉 be an inner product space, and let (ι,A) be an
aPs-completion of L. Then we denote by L(ι,A) the linear subspace

L(ι,A) := ι∗A′

of the algebraic dual L∗ of L. Here A′ denotes the topological dual of A, and ι∗

denotes the (algebraic) adjoint of ι, that is ι∗ : A∗ → L∗ and ι∗f = f ◦ ι. �

Passing to adjoints in the diagram (5.5.1), shows that (ι1,A1) ∼= (ι2,A2)
implies L(ι1,A1) = L(ι2,A2). Hence L induces a map of isomorphy classes of
aPs-completions to linear subspaces of L∗.

THE40 5.5.5 Theorem. Let 〈L, [., .]〉 be an inner product space with ind− L < ∞.
Then the assignment L induces an order-isomorphism of the set of all aPs-
completions of L modulo isomorphism onto the set of all linear subspaces of L∗

which contain L� with finite codimension. Thereby,

dim
(
L(ι,A)

/

L�
)

= ind0 A . (5.5.2) E41

Proof.
Step 1: Let (ι1,A1) and (ι2,A2) be two aPs-completions of L with (ι1,A1) �
(ι2,A2). We are going to show that

L(ι1,A1) ⊇ L(ι2,A2), dim
(
L(ι1,A1)

/

L(ι2,A2)
)

= ind0 A1 − ind0 A2 .
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Let π : A1 → A2 be a surjective morphism with π ◦ ι1 = ι2. Passing to adjoints
yields

L
ι1

~~}}
}}

}}
}} ι2

  A
AA

AA
AA

A

A1 π
// A2

///o/o/o/o/o

L∗

A∗
1

ι∗1

>>||||||||
A∗

2
π∗

oo

ι∗2

``BBBBBBBB

Since π is continuous, we have π∗A′
2 ⊆ A′

1. It readily follows that

L(ι2,A2) = ι∗2A′
2 = ι∗1π

∗A′
2 ⊆ ι∗1A′

1 = L(ι1,A1) .

We need to compute codimension. Since ran ι1 is dense in A1, the restriction of
ι∗1 to A′

1 is injective. Thus

dim
(
L(ι1,A1)

/

L(ι2,A2)
)

= dim
(
ι∗1A′

1

/

ι∗1π
∗A′

2

)
= dim

(
A′

1

/

π∗A′
2

)
.

Since π is surjective, by the Closed Range Theorem, π∗A′
2 is a w∗-closed sub-

space of A′
1. It follows that

π∗A′
2 = π∗A′

2

w∗

= (kerπ)⊥ , (5.5.3) E42

and hence

dim
(
A′

1

/

π∗A′
2

)
= dim

(
A′

1

/

(ker π)⊥
)

= dim (kerπ)′ .

Since π is isometric, we have kerπ ⊆ A◦
1. In particular, kerπ is finite dimen-

sional, and therefore
dim (kerπ)′ = dim kerπ .

The relation kerπ ⊆ A◦
1 also shows that kerπ = ker(π|A◦

1
). Since π is surjective,

we have π−1(A◦
2) = A◦

1, and hence π|A◦
1

maps A◦
1 surjectively onto A◦

2. It follows
that

dimkerπ = dimker(π|A◦
1
) = dimA◦

1 − dimA◦
2 .

Putting together these relations, the desired formula follows.

Step 2: From Step 1 it is easy to deduce (5.5.2). Let (ι,A) be an aPs-
completion of L. Denote by π : A → A/A◦ the canonical projection, then
π is a surjective morphism. Hence, (π ◦ ι,A/A◦) is also an aPs-completion and
(ι,A) � (π◦ι,A/A◦), cf. Remark 5.5.3. However, since A/A◦ is nondegenerated
(π ◦ ι,A/A◦), actually is a Pontryagin space completion of L. By Proposition
4.3.7, L(π ◦ ι,A/A◦) = L�, and we obtain from Step 1 that L(ι,A) contains L�

with codimension ind0 A◦.

Step 3: Let (ι1,A1) and (ι2,A2) be aPs-completions of L with L(ι1,A1) ⊇
L(ι2,A2). We are going to show that (ι1,A1) � (ι2,A2). Let f ∈ A′

2 be given.
Then there exists f̃ ∈ A′

1 with ι∗1f̃ = ι∗2f . Since ι∗1|A′
1

is injective, the element

f̃ is uniquely determined by this property. Hence, a map Λ : A′
2 → A′

1 is
well-defined by

ι∗1(Λf) = ι∗2f, f ∈ A′
2 .

Clearly, Λ is linear.
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We will apply the Closed Graph Theorem to show that Λ is bounded. To
check the necessary hypothesis, let a sequence (fn)n∈N of functionals fn ∈ A′

2 be
given, and assume that fn → f in A′

2 and Λfn → g in A′
1. Then, in particular,

for each fixed x ∈ L
(ι∗2fn)x = fn(ι2x) −→ f(ι2x) = (ι∗2f)x = ι∗1(Λf)x

=

ι∗1(Λfn)x = (Λfn)(ι1x) −→ g(ι1x) = (ι∗1g)x

Since ι∗1|A′
1

is injective, this implies that Λf = g. It follows that indeed Λ is
bounded.

Let ‖.‖1 and ‖.‖2 be norms on A1 and A2 which induce their respective
topologies. Moreover, let ‖.‖′1 and ‖.‖′2 be the corresponding operator norms on
A′

1 and A′
2. We compute for x ∈ L

‖ι2x‖2 = sup
{
| f(ι2x)
︸ ︷︷ ︸

=

(ι∗2f)x=ι∗1(Λf)x=(Λf)(ι1x)

| : f ∈A′
2, ‖f‖′2 ≤ 1

}
=

= sup
{
|f̃(ι1x)| : f̃ ∈ Λ

(
{f ∈A′

2 : ‖f‖′2 ≤ 1}
)

︸ ︷︷ ︸

⊆{f̃∈A′
1: ‖f̃‖′

1≤‖Λ‖}

}
≤ ‖Λ‖ · ‖ι1x‖1 . (5.5.4) E43

It follows that ker ι1 ⊆ ker ι2, and therefore the map ι2 ◦ ι−1
1 : ran ι1 → A2 is

well-defined. Moreover, again by (5.5.4), it is bounded. Let π : A1 → A2 be its
extension by continuity. Then π is isometric and its range is dense in A2.

Let πj : Aj → Aj/A◦
j , j = 1, 2, denote the canonical projections. Since

(π1 ◦ ι1,A1/A◦
1) and (π2 ◦ ι2,A2/A◦

2) are both Pontryagin space completions of
L, there exists an isomorphism φ of A2/A◦

2 onto A1/A◦
1 with φ◦(π2◦ι2) = π1◦ι1.

Altogether, in left of the below diagrams, each outer triangle commutes. Passing
to adjoints then gives the outer triangles in the right diagram.

A1
π //

π1

��

A2

π2

��

L
ι1

ccFFFFFFFFF ι2

;;xxxxxxxxx

π1◦ι1

||xx
xx

xx
xx

x
π2◦ι2

""F
FF

FF
FF

FF
##

#

#

A1/A◦
1 A2/A◦

2φ
oo

///o/o/o/o/o

A′
1

ι∗1 $$H
HHH

HHH
HH

H
A′

2
π′

oo

ι∗2zzvv
vv

vvv
vv

v

L ##

#

#

(A1/A◦
1)

′

ι∗1◦π′
1

::vvvvvvvvv

φ′
//

π′
1

OO

(A2/A◦
2)

′

π′
2

OO

ι∗2◦π′
2

ddHHHHHHHHH

We see that ι∗1 ◦ π′
1 = ι∗1 ◦ (π′ ◦ π′

2 ◦ φ′), and injectivity of ι∗1|A′
1

implies π′
1 =

π′ ◦ π′
2 ◦ φ′. In particular, ranπ′

1 ⊆ ranπ′ ⊆ A′
1. However, as we saw in (5.5.3)

applied with A1/A◦
1 in place of A2, ranπ′

1 is a closed subspace of A′
1 with

finite codimension. It follows that ranπ′ is closed in A′
1. By the Closed Range

Theorem, thus ranπ is closed in A1, and hence π is surjective. Therefore π is a
morphism and we have shown that (ι1,A1) � (ι2,A2).

Step 4: So far, we have seen that L maps aPs-completions into the set of all
subspaces of L∗ which contain L� with finite codimension, that actually (5.5.2)
holds, and that

(ι1,A1) � (ι2,A2) ⇐⇒ L(ι1,A1) ⊇ L(ι2,A2) .
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In particular, L(ι1,A1) = L(ι2,A2) if and only if (ι1,A1) and (ι2,A2) are iso-
morphic.

In order to complete the proof of Theorem 5.5.5, it remains to show that
for each given subspace M with L� ⊆ M and dimM/L� <∞, there exists an
aPs-completion (ι,A) of L with L(ι,A) = M. To this end, set n := dimM/L�

and choose f1, . . . , fn ∈ L∗ such that M = span(L� ∪{f1, . . . , fn}). Let (ιP ,P)
denote a Pontryagin space completion of L. Then we define

A := P [+̇]Cn ,

[x+ ξ, y + η]A := [x, y]P , x, y ∈ P , ξ, η ∈ Cn ,

ιx := ιPx+
(
f1(x), . . . , fn(x)

)
, x ∈ L .

Moreover, the space A is endowed with the product topology TA of the topol-
ogy P carries as a Pontryagin space and the euclidean topology on Cn. Then
〈A, [., .]A, TA〉 is, as the direct and orthogonal sum of two almost Pontryagin
spaces, itself an almost Pontryagin space. We have

A◦ = {0}[+̇]Cn ,

and thus ind0 A = n = dimM/L�.
Denote by [., .]1 the sum inner product on A of the inner product of P and the

euclidean inner product of Cn. Then 〈A, [., .]1〉 is, as the direct and orthogonal
sum of two Pontryagin spaces, a Pontryagin space. Clearly, its Pontryagin space
topology equals TA. Hence, 〈A, TA〉′ = 〈A, [., .]1〉′, and we conclude that each
TA-continuous linear functional f : A → C can be represented as

f(x+ ξ) = [x+ ξ, ιPx(f) + ξ(f)]1, x ∈ P , ξ ∈ Cn ,

with some x(f) ∈ P and ξ(f) ∈ Cn. In particular, for each x ∈ L,

f(ιx) =
[
ιPx+ (f1(x), . . . , fn(x)), ιPx(f) + ξ(f)

]

1
=

= [ιPx, x(f)]P +
n∑

j=1

ξ(f)jfj(x) .
(5.5.5) E44

Due to Proposition 4.3.7, the first summand is L�-continuous.
Let f ∈ A′ with f(ran ι) = 0 be given. Then we have

[ιPx, x(f)]P +

n∑

j=1

ξ(f)jfj(x) = 0, x ∈ L .

Thus
∑n
j=1 ξ(f)jfj ∈ L�, and hence ξ(f) = 0. Since ran ιP is dense in P , thus

also x(f) = 0, and together f = 0. It follows that ran ι is dense in A. We have
shown that (ι,A) is an aPs-completion of L.

By (5.5.5), we have A′ ⊆ M. Together with (5.5.2) and the fact that
ind0 A = dimM/L�, this implies that actually A′ = M, i.e. L(ι,A) = M. ❑

COE45 5.5.6 Corollary. Let (ι1,A1) and (ι2,A2) be two aPs-completions of an inner
product space 〈L, [., .]〉. Then (ι1,A1) � (ι2,A2) if and only if ker ι1 ⊆ ker ι2
and ι2 ◦ ι−1

1 : ran ι1 → ran ι2 is bounded.
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Proof. If (ι1,A1) � (ι2,A2), then the map π1
2 guaranteed by the definition of �

is linear, bounded, and satisfies π1
2 ◦ ι1 = ι2. The required properties of ι1 and

ι2 follow. Conversely, assume that ker ι1 ⊆ ker ι2 and ι2 ◦ ι−1
1 : ran ι1 → ran ι2

is bounded. Let π : A1 → A2 be the extension by continuity of ι2 ◦ ι−1
1 , then

ι∗2 = ι∗1 ◦ π′ and hence

L(ι2,A2) = ι∗2A′
2 =

(
ι∗1 ◦ π′)A′

2 ⊆ ι∗1A′
1 = L(ι1,A1) .

❑



Chapter 6

Reproducing kernel spaces

6.1 Reproducing kernel Krein spaces

DEF1 6.1.1 Definition. Let Ω be a set, 〈V, [., .]V〉 a Krein space, and 〈K, [., .]〉 an-
other Krein space. Then K is called a reproducing kernel Krein space of V-valued
functions on Ω 1 , if

(rk1) The elements of K are functions of Ω into V.

(rk2) For each w ∈ Ω, the point evaluation map

χw :

{
K → V

F 7→ F (w)

is linear and continuous.

�

If K is a reproducing kernel Krein space with ind− K < ∞, then we will
speak of a reproducing kernel Pontryagin space of V-valued functions on Ω.

Let us remark that the axiom (rk2) could also be formulated in two parts as
follows:

(rk2a) The linear operations on K are given by pointwise addition and
pointwise scalar multiplication.

(rk2b) The topology of K is finer than the restriction to K of the topology
of pointwise convergence on VΩ.

Let 〈K, [., .]〉 be a reproducing kernel Krein space of V-valued functions on
Ω. Then, for each w ∈ Ω and f ∈ V, the linear functional F 7→ [F (w), f ]V is
continuous. Hence, there exists an element Kw,f ∈ K such that

[F (w), f ]V = [F,Kw,f ], F ∈ K . (6.1.1) F3

1If we do not want or do not need to be specific about the domain set Ω and the value
space V, we will shorter speak of a reproducing kernel Krein space.

115
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DEF2 6.1.2 Definition. Let 〈K, [., .]〉 be a reproducing kernel Krein space of V-valued
functions on Ω. Then the function K : Ω × Ω → VV defined by

K(w, z)f := Kw,f(z), w, z ∈ Ω, f ∈ V ,

is called the kernel function2 of K. �

We will frequently use the notation K(w, .) to denote the function z 7→
K(w, z), z ∈ Ω. With this notation we have K(w, .)f = Kw,f . Thus the
defining relation (6.1.1) of Kw,f rewrites, more suggestively, as

[F (w), f ]V = [F,K(w, .)f ], F ∈ K, w ∈ Ω, f ∈ V .

Let us note that, in particular,

[K(w, z)f, g]V = [K(w, .)f,K(z, .)g], z, w ∈ Ω, f, g ∈ V .

In order to formulate the basic properties of kernel functions, we need to in-
troduce Krein space adjoints. Let 〈K1, [., .]1〉 and 〈K2, [., .]2〉 be Krein spaces.
Then we denote by B(K1,K2) the linear space of all continuous linear operators
of K1 into K2. We will also write B(K) for B(K,K).

If A ∈ B(K1,K2), then there exists a unique operator A∗ ∈ B(K2,K1) which
satisfies

[Ax1, x2]2 = [x1, A
∗x2]1, x1 ∈ K1, x2 ∈ K2 . (6.1.2) F5

To see existence, choose fundamental decompositions J1 and J2 of K1 and K2,
respectively. Let A(∗) denote the Hilbert space adjoint of A considered as a
bounded operator of 〈K1, (., .)J1〉 into 〈K2, (., .)J2〉. Then

A∗ := J1A
(∗)J2

satisfies (6.1.2). Since the inner product [., .]1 is nondegenerated, A∗ is uniquely
determined by (6.1.2). The operator A∗ is called the adjoint of A. Of course,
it depends on the inner products under consideration3.

LEF4 6.1.3 Lemma. Let 〈K, [., .]〉 be a reproducing kernel Krein space of V-valued
functions on Ω, and let K be the kernel function of K. Then, for each w, z ∈ Ω,
we have K(w, z) ∈ B(V) and K(w, z)∗ = K(z, w).

Proof. Let w ∈ Ω, α, β ∈ C and f, g ∈ V, then the relation (6.1.1) gives

[F, αKw,f + βKw,g] = α[F,Kw,f ] + β[F,Kw,g] = α[F (w), f ]V + β[F (w), g]V =

= [F (w), αf + βg]V = [F,Kw,αf+βg] .

This shows that K(w, z) is linear.
To prove continuity, choose fundamental decompositions J and J′ of K and

V, respectively. Denote by ‖χw‖ the ‖.‖J-to-‖.‖J′–operator norm of χw. Then
we have

|(Kw,f , F )J| = |[Kw,f , JF ]| = |[f, (JF )(w)]V| ≤ ‖f‖J′ · ‖(JF )(w)‖J′ ≤
2Or reproducing kernel
3If necessary, we will thus more precisely speak of the [., .]1-to-[., .]2–adjoint of A.
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≤ ‖f‖J′ · ‖χw‖ · ‖JF‖J = ‖f‖J′ · ‖χw‖ · ‖F‖J ,

It follows that ‖Kw,f‖J ≤ ‖f‖J′ · ‖χw‖, and hence

‖K(w, z)f‖J′ = ‖Kw,f(z)‖J′ ≤ ‖χz‖ · ‖χw‖ · ‖f‖J′ .

This shows that K(w, z) is continuous. In fact, the ‖.‖J′-to-‖.‖J′–operator norm
of K(w, z) does not exceed ‖χz‖ · ‖χw‖.

It remains to compute adjoints:

[f,K(w, z)∗g]V = [K(w, z)f, g]V = [K(w, .)f,K(z, .)g] = [K(z, .)f,K(w, .)g] =

= [K(z, w)g, f ]V = [f,K(z, w)g]V .

Since f and g were arbitrary, it follows that K(w, z)∗ = K(z, w). ❑

The property of being a reproducing kernel Krein space is inherited by or-
thocomplemented subspaces.

LEF8 6.1.4 Lemma. Let K be a reproducing kernel Krein space, and let K1 be an or-
thocomplemented subspace. Then K1 and K⊥

1 are both reproducing kernel Krein
spaces. If K, K1, and K⊥

1 denote the kernel functions of K, K1, and K⊥
1 ,

respectively, then we have

K(w, z) = K1(w, z) +K⊥
1 (w, z), z, w ∈ Ω . (6.1.3) F11

Proof. First of all K1 is itself a Krein space. Its Krein space topology coincides
with the restriction of the topology of K, and hence point evaluation is contin-
uous. The same argument applies to K⊥

1 , and we conclude that both, K1 and
K⊥

1 , are reproducing kernel Krein spaces.
Denote by P the orthogonal projection of K onto K1. Then, for F ∈ K1, we

have

[F (w), f ]V = [F,K(w, .)f ] = [F, PK(w, .)f ], w ∈ Ω, f ∈ V .

Hence, the kernel function K1 of K1 is given as

K1(w, z)f = [PK(w, .)f ](z) .

Similarly we obtain that K⊥
1 (w, z)f = [(I −P )K(w, .)f ](z), and (6.1.3) follows.

❑

6.2 Kernel functions

DEF18 6.2.1 Definition. Let Ω be a set and 〈V, [., .]V〉 a Krein space. A function
K : Ω × Ω → B(V) which satisfies K(w, z)∗ = K(z, w), w, z ∈ Ω, is called a
V-valued kernel on Ω4. �

In the previous section we have associated to each reproducing kernel Krein
space a kernel. A converse question suggests itself: Assume that a V-valued ker-
nel K on Ω is given, does there exist a reproducing kernel Krein space having
K as its reproducing kernel? The answer to this question, and a corresond-
ing uniqueness question, depends on the geometry of an inner product space
constructed from the given function K.

We denote by Fin(Ω,V) the linear space of all functions from Ω into V which
have finite support.

4Less specific we will speak of a kernel
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DEF6 6.2.2 Definition. Let Ω be a set, 〈V, [., .]V〉 a Krein space, and K a V-valued
kernel on Ω. Then set

[η, µ]K :=
∑

z,w∈Ω

[
K(w, z)η(w), µ(z)

]

V
, η, µ ∈ Fin(Ω,V) .

Moreover, let ιK : Fin(Ω,V) → VΩ be defined as

ιK : η 7→
∑

w∈Ω

K(w, .)η(w) .

�

The fact that [., .]K is indeed an inner product is immediate from the prop-
erties of kernels.

THF10 6.2.3 Theorem. Let K be a V-valued kernel on Ω.

(i) If 〈K, [., .]〉 is a reproducing kernel Krein space with kernel function K,
then (ιK ,K) is a Krein space completion of 〈Fin(Ω,V), [., .]K〉.

(ii) Each isomorphy class of Krein space completions of 〈Fin(Ω,V), [., .]K〉
contains an element (ι,K) where K is a reproducing kernel Krein space
with kernel function K and ι = ιK .

(iii) If K1 and K2 are both reproducing kernel Krein spaces with kernel func-
tion K, then (ιK ,K1) and (ιK ,K2) are isomorphic as completions of
〈Fin(Ω,V), [., .]K〉 if and only if K1 = K2 as sets of functions, and in
turn if and only if K1 = K2 as Krein spaces.

Proof. To show (i) assume that 〈K, [., .]〉 is a reproducing kernel Krein space
having K as its kernel function. First of all, K(w, .)η(w) = Kw,η(w), cf. Defini-
tion 6.1.2, and hence ιK maps Fin(Ω,V) into K. Next, let η, µ ∈ Fin(Ω,V) be
given. Then

[η, µ]K =
∑

z,w∈Ω

[K(w, z)η(w), µ(z)]V =

=
∑

z,w∈Ω

[K(w, .)η(w),K(z, .)µ(z)] =
[ ∑

w∈Ω

K(w, .)η(w),
∑

z∈Ω

K(z, .)µ(z)
]

,

i.e. ιK is isometric. Finally, if F ∈ K is orthogonal to ran ιK , then for all w ∈ Ω
and f ∈ V

[F (w), f ]V = [F,K(w, .)f ] = 0 ,

and thus F = 0. This says that ran ιK is dense in K. We have shown that
(ιK ,K) is a Krein space completion of 〈Fin(Ω,V), [., .]K〉.

Item (ii) contains the most involved assertion of the present theorem. As-
sume that (ι,K) is a Krein space completion of 〈Fin(Ω,V), [., .]K〉. We need to
construct a reproducing kernel Krein space K̃ whose kernel function equals K,
such that (ιK , K̃) is isomorphic to (ι,K).

Step 1; The operators V (w): If M ⊆ Ω, let χM : Ω → {0, 1} denote the indicator
function of the set M . For each w ∈ Ω we consider the map

V (w) :

{
V → K
f 7→ ι(fχ{w})

(6.2.1) F13
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Clearly, V (w) is linear. Let (fn)n∈N be a sequence of elements of V which tends
to the limit f ∈ V. Then, for each g ∈ V and z ∈ Ω, we have

[V (w)fn, ι(gχ{z})] = [ι(fnχ{w}), ι(gχ{z})] = [fnχ{w}, gχ{z}]K =

= [K(w, z)fn, g]V → [K(w, z)f, g]V = [V (w)f, ι(gχ{z})] .

Since ran ι is dense in K, this implies that V (w) has closed graph, and hence
that V (w) ∈ B(V,K).

For later use, let us state explicitly that

span
⋃

w∈Ω

ranV (w) = ran ι . (6.2.2) F20

Step 2; The embedding Λ: For each w ∈ Ω and x ∈ K the linear functional
f 7→ [V (w)f, x]K is continuous. Hence, there exists a unique element Λw,x ∈ V

such that
[V (w)f, x] = [f,Λw,x]V, f ∈ V .

We define a map Λ : K → VΩ by

(Λx)(w) := Λw,x, x ∈ K, w ∈ Ω .

Clearly, Λ is linear. Let us show that Λ is injective: If Λx = 0, then for all
w ∈ Ω and f ∈ V we have [V (w)f, x] = 0. Thus, by (6.2.2), the element x is
orthogonal to ran ι, and hence must be equal to 0.

Step 3; The reproducing kernel space K̃: Set K̃ := ranΛ, and define an inner
product [., .]∼ on K̃ by requiring Λ to be isometric. Then 〈K̃, [., .]∼〉 is a Krein
space and Λ is an isomorphism of K onto K̃. It follows that (Λ ◦ ι, K̃) is a Krein
space completion of 〈Fin(Ω,V), [., .]K〉 which is isomorphic to (ι,K).

Let F ∈ K̃, w ∈ Ω, and f ∈ V be given, and let x ∈ K be such that F = Λx.
Then we can compute

[F (w), f ]V = [(Λx)(w), f ]V = [x, V (w)f ] = [x, ι(fχ{w})] =

=
[
Λx, (Λ ◦ ι)(fχ{w})

]

∼ =
[
F, (Λ ◦ ι)(fχ{w})

]

∼ .
(6.2.3) F21

Hence, for each fixed f ∈ V the functional F 7→ [F (w), f ]V is continuous. By the
Principle of Uniform Boundedness, the point evaluation map χw : F 7→ F (w) on
K̃ is continuous. This says that 〈K̃, [., .]∼〉 is a reproducing kernel Krein space.
Moreover, if K̃ denotes the kernel function of K̃, we see from (6.2.3) that

K̃(w, .)f = (Λ ◦ ι)(fχ{w}), w ∈ Ω, f ∈ V . (6.2.4) F22

Using this relation, we can compute

[K̃(w, z)f, g]V = [K̃(w, .)f, K̃(z, .)g]∼ =
[
(Λ ◦ ι)(fχ{w}), (Λ ◦ ι)(gχ{z})

]

∼ =

=
[
ι(fχ{w}), ι(gχ{z})

]
= [fχ{w}, gχ{z}]K = [K(w, z)f, g]V .

It follows that K̃(w, z) = K(w, z) and, by (6.2.4), that Λ ◦ ι = ιK . This finishes
the proof of (ii).

It remains to establish (iii). Assume that (ιK ,K1) and (ιK ,K2) are isomor-
phic, and let φ : K1 → K2 be an isomorphism with φ ◦ ιK = ιK . Let w ∈ Ω be
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fixed. The maps χw ◦ φ : K1 → V and χw : K1 → V are both continuous and
coincide on ran ιK . Thus they coincide on all of K1. Since w ∈ Ω was arbitrary,
this shows that φ acts as the identity, and hence K1 and K2 are equal as Krein
spaces. Conversely, if K1 = K2 as sets of functions, then the identity map id is
a linear bijection of K1 onto K2. Since point evaluation is continuous in both
spaces, it has closed graph, and hence is bicontinuous. Clearly, ιK = id ◦ιK . By
continuity of inner products, this equality also implies that id is isometric. ❑

From our knowledge about Krein space completions, cf. Theorem 3.5.13,
(iii), and Theorem 3.5.17, we immediately obtain the following statements.

COF17 6.2.4 Corollary. Let K be a V-valued kernel on Ω.

(i) There exists a reproducing kernel Krein space with kernel function K if
and only if Topip〈Fin(Ω,V), [., .]K〉 6= ∅.

(ii) Assume that Topip〈Fin(Ω,V), [., .]K〉 6= ∅. Then there exists exactly one
reproducing kernel Krein space with kernel function K if and only if for

each T ∈ Topip〈Fin(Ω,V), [., .]K〉 with {0}T = Fin(Ω,V)[◦]K the space
〈HT , [., .]K,T 〉 is semicompletely decomposable.

❑

Also the Pontryagin space situation is immediately settled. If K is a V-
valued kernel on Ω, then we write

ind−K := ind−〈Fin(Ω,V), [., .]K〉 .

Proposition 4.3.5 now gives:

COF19 6.2.5 Corollary. Let K be a V-valued kernel on Ω, and assume that ind−K <
∞. Then there exists a unique reproducing kernel Krein K space having K as
its kernel function. The space K is a Pontryagin space whose negative index
equals ind−K. ❑

Due to this corollary, the following notation is well-defined.

DEF9 6.2.6 Definition. Let K be a V-valued kernel on Ω with ind−K < ∞. Then
the reproducing kernel Pontryagin space with kernelK will be denoted by K(K),
and we will speak of the reproducing kernel Pontryagin space generated by K

�

Existence of a space having K as its reproducing kernel can be characterized
in different ways than in the immediate transcription Corollary 6.2.4, (i).

PRF12 6.2.7 Proposition. Let K be a V-valued kernel on Ω. Then the following are
equivalent:

(i) There exists a reproducing kernel Krein space with kernel function K.

(ii) There exist kernels K+ and K− with ind−K+ = ind−K− = 0, such that
K = K+ −K− and K(K+) ∩ K(K−) = 0.

(iii) There exist kernels K+ and K− with ind−K+ = ind−K− = 0, such that
K = K+ −K−.
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(iv) There exists a kernel L with ind− L = 0 such that |[η, η]K | ≤ [η, η]L,
η ∈ Fin(Ω,V).

Proof. Assume that K is a reproducing kernel Krein space with kernel function
K. Choose a fundamental decomposition J = (K+,K−) of K, then K+ is an
orthocomplemented subspace of K and K⊥

+ = K−. Denote by K+ the kernel
function of K+, and set K− := −K⊥

+ . Since K+ is positive definite and K− is
negative definite, we have ind−K+ = ind−K− = 0. Moreover, by (6.1.3), we
have K = K+ −K−. Finally, K(K+) = K+ (as Krein spaces) and K(K−) = K−
(as sets; inner product changed sign). Hence K(K+) ∩ K(K−) = ∅.

The implication (ii) ⇒ (iii) is trivial. Next, assume that K = K1−K2 with
ind−K1 = ind−K2 = 0. Set L := K1 +K2, then

|[η, η]K | = |[η, η]K1 − [η, η]K2 | ≤ [η, η]K1 + [η, η]K2 = [η, η]L, η ∈ Fin(Ω,V) .

Finally, assume that L is as in (iv). Then [., .]L is a positive semidefinite inner
product on Fin(Ω,V), and [., .]K is continuous with respect to the topology in-
duced by [., .]L. Thus Topip〈Fin(Ω,V), [., .]K〉 6= ∅, and hence 〈Fin(Ω,V), [., .]K〉
possesses a Krein space completion, cf. Theorem 3.5.13, (iii). ❑

DEF14 6.2.8 Definition. Let K be a V-valued kernel on Ω. A Krein space 〈K, [., .]〉
together with a map V : Ω → B(V,K) which satisfy

K(w, z) = V (z)∗V (w), z, w ∈ Ω, and K = cls
⋃

w∈Ω

ranV (w) (6.2.5) F16

is called a Kolmogoroff decomposition of K. �

PRF15 6.2.9 Proposition. Let K be a V-valued kernel on Ω. Then there exists a
reproducing kernel Krein space with kernel function K if and only if there exists
a Kolmogoroff decomposition of K.

Proof. Assume first that K is a reproducing kernel Krein space with kernel
function K. Then (ιK ,K) is a completion of 〈Fin(Ω,V), [., .]K〉. Let V (w) be
the map defined in (6.2.1). By the definition of ιK , this map acts as V (w)f =
K(w, .)f , f ∈ V. Thus, for f, g ∈ V,

[V (z)∗V (w)f, g] = [V (w)f, V (z)g] = [K(w, .)f,K(z, .)g] = [K(w, z)f, g]V ,

and we conclude that K(w, z) = V (z)∗V (w). Moreover, by (6.2.2), the linear
span of

⋃

w∈Ω ranV (w) is dense in K. Together this says that K and V : w 7→
V (w) is a Kolmogoroff decomposition of K.

Conversely, assume that K and V : Ω → B(V,K) are given subject to (6.2.5).
Consider the linear map ι defined by

ι :







Fin(Ω,V) → K
η 7→ ∑

w∈Ω

V (w)η(w)

We have

[η, µ]K =
∑

z,w∈Ω

[K(w, z)
︸ ︷︷ ︸

=V (z)∗V (w)

η(w), µ(z)]V =
∑

z,w∈Ω

[V (w)η(w), V (z)µ(z)] =
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=
[ ∑

w∈Ω

V (w)η(w),
∑

z∈Ω

V (z)µ(z)
]

K
,

i.e. ι is isometric. Moreover, by the second condition in (6.2.5), ran ι is dense in
K. This says that (ι,K) is a Krein space completion of 〈Fin(Ω,V), [., .]K〉. ❑

Also concerning uniqueness we can obtain a more specific statement than
Corollary 6.2.4, (ii).

PRF7 6.2.10 Proposition. Let K be a V-valued kernel on Ω, and assume that there
exists a reproducing kernel Krein space with kernel function K. Then there
exists exactly one such space, if and only if the condition of Corollary 6.2.4
holds for all topologies induced by inner products [., .]L with a kernel L, such
that |[η, η]K | ≤ [η, η]L, η ∈ Fin(Ω,V), and Fin(Ω,V)[◦]L = Fin(Ω,V)[◦]K .

Proof. The present condition is weaker than the one formulated in Corollary
6.2.4, (ii), since the same property is required only for a smaller class of topolo-
gies. Hence, it is enough to show that the present condition implies uniqueness.

Step 1: Assume that K is a reproducing kernel Krein space with kernel function
K, and consider a fundamental decomposition J = (K+,K−) of K. Then K±
are reproducing kernel Krein spaces, and their respective kernel functions are
given by

K±(w, .)f = P±
J K(w, .)f .

Set L := K+ −K−, then L is a V-valued kernel function on Ω and ind− L = 0.
Moreover, we compute

[fχ{w}, gχ{z}]L = [L(w, z)f, g]V = [K+(w, z)f, g]V − [K−(w, z)f, g]V =

= [K+(w, .)f,K+(z, .)g] − [K−(w, .)f,K−(z, .)g] =

= [P+
J K(w, .)f, P+

J K(z, .)g] − [P−
J K(w, .)f, P−

J K(z, .)g] =

= (K(w, .)f,K(z, .)g)J =
(
ιK(fχ{w}), ιK(gχ{z})

)

J
.

It follows that
∣
∣[fχ{w}, fχ{w}]K

∣
∣ =

∣
∣
[
ιK(fχ{w}), ιK(fχ{w})

]∣
∣ ≤

≤
(
ιK(fχ{w}), ιK(fχ{w})

)
= [fχ{w}, fχ{w}]L .

Step 2: Assume that we are given two reproducing kernel Krein spaces K1

and K2 with kernel function K. Choose fundamental decompositions Jj of Kj ,
j = 1, 2, and let Lj be the kernels defined correspondingly as in Step 1.

Now inspect the proof of sufficiency in Theorem 3.5.17. There the assump-
tion on semicomplete decomposability is applied with the inner product

(η, µ) := (ιKη, ιKµ)J1 + (ιKη, ιKµ)J2 , η, µ ∈ Fin(Ω,V) .

However, by the above computation, we have

(fχ{w}, gχ{z}) = [fχ{w}, gχ{z}]L1+L2 ,

and hence (., .) = [., .]L1+L2 . Clearly, L1 + L2 is a kernel and satisfies all the
properties required in the condition of the present proposition. ❑
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Chapter 7

Linear Relations

7.1 Algebraic operations

DEI7 7.1.1 Definition. Let L and M be linear spaces. A subset T of L×M is called
a linear relation of L into M, if it is a linear subspace of L×M. Explicitly this
is

(f1, g1), (f2, g2) ∈ T ⇒ (f1 + f2, g1 + g2) ∈ T ,

(f, g) ∈ T, λ ∈ C ⇒ (λf, λg) ∈ T .

The set of all linear relations of L into M will be denoted by LR(L,M). In
case L = M we will write abbreviatory LR(L) instead of LR(L,L). �

The reader probably wonders why we invent the new name LR(L,M) for
what was previously called Sub(L × M), remember Definition 1.1.2. In the
present part we rather put emphasize on the operator theoretic viewpoint than
on linear algebra: If D is a linear subspace of L and T : D → M is a linear
operator, then we may identify T with its graph

graphT :=
{
(x, y) ∈ L ×M : x ∈ D, y = Tx

}
,

and this is a linear subspace of L × M. In this way, linear operators can be
regarded as linear relations, and we will interchangably think of T as a map or
as a subspace.

The operator theoretic viewpoint on linear relations motivates the following
definitions.

DEI8 7.1.2 Definition. Let L and M be linear spaces, and denote by π1 : L×M →
L and π2 : L×M → M the canonical projections. For T ∈ LR(L,M) we set

domT := π1(T ) = {f ∈ L : ∃ g ∈ M : (f, g) ∈ T },
ranT := π2(T ) = {g ∈ M : ∃ f ∈ L : (f, g) ∈ T },
kerT := π1(π2|T )−1({0}) = {f ∈ L : (f, 0) ∈ T },
mulT := π2(π1|T )−1({0}) = {g ∈ M : (0, g) ∈ T },

and speak of the domain, range, kernel , and multivalued part , of T . �

125
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Let us remark that a linear relation T is (the graph of) a linear operator if
and only if mulT = {0}. In this case, domT , ranT , and kerT have their usual
meaning.

Also algebraic operations for linear relations can be defined by taking oper-
ations with linear operators as a model.

DEI9 7.1.3 Definition. Let L, M, and N be linear spaces.

(i) If T, S ∈ LR(L,M), we set

T + S :=
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T, (f, g2) ∈ S, g = g1 + g2

}

.

Moreover, we denote 0L := {(f, g) ∈ L ×M : g = 0} = L × {0}. Explicit
notation of L will be dropped unless necessary.

(ii) If T ∈ LR(L,M) and λ ∈ C, we set

λ · T :=
{
(f, g) ∈ L ×M : ∃ g0 ∈ M : (f, g0) ∈ T, g = λg0

}
.

We will often write λT instead of λ · T .

(iii) If T ∈ LR(L,M) and S ∈ LR(M,N ), we set

S ◦ T :=
{
(f, h) ∈ L ×N : ∃ g ∈ M : (f, g) ∈ T, (g, h) ∈ S

}
.

We will often write ST instead of S ◦ T .

If S, T ∈ LR(L), we say that T and S commute, if S ◦ T = T ◦ S.

(iv) If T ∈ LR(L,M), we set

T−1 :=
{
(g, f) ∈ M×L : (f, g) ∈ T

}
.

Moreover, we denote IL := {(f, g) ∈ L × L : g = f}. Again explicit
notation of L will be dropped unless necessary. If λ ∈ C, we will often
write just λ instead of λI.

�

It goes without saying that these operations do produce linear relations, so
that we have maps

+ : LR(L,M) × LR(L,M) → LR(L,M) · : C × LR(L,M) → LR(L,M)

◦ : LR(L,M) × LR(M,N ) → LR(L,N ) .−1 : LR(L,M) → LR(M,L)

A word of caution is in order: The presently defined sum ‘+’ in LR(L,M) is
not the same as the sum of T and S in Sub(L ×M). Remember that

T +
↑

sum in
Sub(L×M)

S = span
(
T ∪ S

)
=

=
{

(f, g) ∈ L×M : ∃ f1, f2 ∈ L, g1, g2 ∈ M with

(f1, g1) ∈ T, (f2, g2) ∈ S, f = f1 + f2, g = g1 + g2

}
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Therefore we will, if confusion may occur, write span(T ∪ S) for the sum in
Sub(L ×M), and use the symbol ‘+’ for the sum in LR(L,M).

The use of the direct sum symbol ‘+̇’, however, is unambigous: For linear
relations T, S ∈ LR(L,M) writing T +̇S still means that T ∩ S = {0} and
denotes span(T ∪ S) in this case. The same applies to the orthogonal sum
symbols ‘[+]’ or ‘[+̇]’.

The set LR(L,M) endowed with the operations ‘+’ and ‘·’ does not form
a linear space, let alone 〈LR(L),+, ·, ◦〉 is an algebra. Let us provide a list of
computation rules. Although mainly obvious, let us for completeness also write
down proofs explicitly.

7.1.4. Computation rules. I. Additive structure:NTI10

(i) The operation ‘+’ on LR(L,M) is associative and commutative, and 0L
is a neutral element. Explicitly, this is

(T + S) +R = T + (S +R), T + S = S + T, T + 0 = 0 + T = T .

(ii) If mulT 6= {0}, then T has no additive inverse.

Proof. For (i) we compute

(T + S) +R =
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T + S, (f, g2) ∈ R, g = g1 + g2

}

=

=
{

(f, g) ∈ L ×M : ∃ g11, g12, g2 ∈ M with

(f, g11) ∈ T, (f, g12) ∈ S, (f, g2) ∈ R, g = (g11 + g12) + g2
︸ ︷︷ ︸

=g11+(g12+g2)

}

=

= T + (S +R) ,

T + S =
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T, (f, g2) ∈ S, g = g1 + g2
︸ ︷︷ ︸

=g2+g1

}

=

= S + T ,

T + 0 =
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T, (f, g2) ∈ 0, g = g1 + g2
︸ ︷︷ ︸

=g1+0=g1

}

= T .

For (ii), it is enough to note that always {0} × mulT ⊆ T + S. If T has an
additive inverse, i.e. there exists an element S ∈ LR(L,M) with T + S = 0,
hence mulT = {0}. ❑

7.1.5. Computation rules. II. Scalar multiplication:NTI11

(i) 0 · T = domT × {0} = 0domT , and 1 · T = T .

(ii) λ · (T + S) = (λ · T ) + (λ · S).
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(iii) (λ + µ) · T ⊆ (λ · T ) + (µ · T ). Thereby strict inequality holds if and only
if λ = −µ 6= 0 and mulT 6= {0}.

(iv) (λµ) · T = λ · (µ · T ).

Proof. For (i) compute

0 · T =
{

(f, g) ∈ L×M : ∃ g0 ∈ M with (f, g0) ∈ T g = 0g0
︸︷︷︸

=0

}

= 0domT

1 · T =
{

(f, g) ∈ L ×M : ∃ g0 ∈ M with (f, g0) ∈ T g = 1g0
︸︷︷︸

=g0

}

= T

For (ii) compute

λ · (T + S) =
{

(f, g) ∈ L×M : ∃ g0 ∈ M with

(f, g0) ∈ T + S, g = λg0

}

=

=
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T, (f, g2) ∈ S, g = λ(g1 + g2)
︸ ︷︷ ︸

λg1+λg2

}

=

= λT + λS

The inclusion asserted in (iii) follows in the same way:

(λ+ µ) · T =
{

(f, g) ∈ L ×M : ∃ g0 ∈ M with

(f, g0) ∈ T, g = (λ+ µ)g0
︸ ︷︷ ︸

=λg0+µg0

}

⊆

⊆
{

(f, g) ∈ L ×M : ∃ g1, g2 ∈ M with

(f, g1) ∈ T, (f, g2) ∈ T, g = λg1 + µg2

}

=

= λT + µT

Let us check all cases to find out when in this relation equality holds: If λ =
µ = 0, then both sides are equal to 0domT . Next, assume that λ + µ 6= 0, and
consider an elements (f, g1), (f, g2) ∈ T . Then we can write

λg1 + µg2 = (λ+ µ)
(
g1 +

µ

λ+ µ
(g2 − g1)
︸ ︷︷ ︸

∈mulT

)
,

and see that (f, λg1 + µg2) ∈ (λ + µ)T . Again equality holds. If mulT = {0},
then in the expression for λT + µT we must have g1 = g2, and thus also in this
case equality holds. It remains to have a look at the case that λ = −µ 6= 0 and
mulT 6= {0}. Then, however, the left sides equals 0domT whereas the right side
certainly contains {0} × mulT . Thus, in this case, equality does not hold.

Finally, we compute

(λµ) · T =
{

(f, g) ∈ L ×M : ∃ g0 ∈ M with (f, g0) ∈ T, g = (λµ)g0
︸ ︷︷ ︸

=λ(µg0)

}

=

= λ · (µ · T )
❑
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7.1.6. Computation rules. III. Composition:NTI12

(i) The operation ‘ ◦’ is associative. Explicitly, this is T ◦(S ◦R) = (T ◦S)◦R.

(ii) (T ◦ S)−1 = S−1 ◦ T−1.

(iii) Let T ∈ LR(L,M). Then

T ◦ T−1 = Iran T +̇({0} × mulT ) =

=
{
(g1, g2) ∈ M×M : g1, g2 ∈ ranT, g1 − g2 ∈ mulT

}

T−1 ◦ T = IdomT +̇(kerT × {0}) =

=
{
(f1, f2) ∈ L× L : f1, f2 ∈ domT, f1 − f2 ∈ kerT

}

(iv) λ · T = (λ · IM) ◦ T = T ◦ (λ · IL). In particular, IL is a neutral element
in 〈LR(L), ◦〉.

(v) (T + S) ◦R ⊆ (T ◦R) + (S ◦R). If mulR = {0}, then equality holds.

(vi) (R ◦ T ) + (R ◦ S) ⊆ R ◦ (T + S). If domR = M, then equality holds.

(vii) If R commutes with T and S, then (T + S) ◦R ⊆ R ◦ (T + S).

(viii) If R commutes with T , S, and T +S, then (T +S)◦R = (T ◦R)+(S ◦R).

Proof.

(T ◦ S) ◦R =
{

(f, k) ∈ L × P : ∃ g ∈ M with (f, g) ∈ R, (g, k) ∈ T ◦ S
}

=

=
{

(f, k) ∈ L× P : ∃ g ∈ M, h ∈ N with

(f, g) ∈ R, (g, h) ∈ S, (h, k) ∈ T
}

=

= T ◦ (S ◦R) ,

(T ◦ S)−1 =
{

(f, h) ∈ N × L : (h, f) ∈ T ◦ S
}

=

=
{

(f, h) ∈ N × L : ∃ g ∈ M with (h, g) ∈ S, (g, f) ∈ T
}

=

= S−1 ◦ T−1 ,

T ◦ T−1 =
{

(g1, g2) ∈ M×M : ∃ f ∈ L with (g1, f) ∈ T−1, (f, g2) ∈ T
}

=

=
{

(g1, g2) ∈ M×M : g1, g2 ∈ ranT, g1 − g2 ∈ mulT
}

,

T−1 ◦ T =
{

(f1, f2) ∈ L × L : ∃ g ∈ M with (f1, g) ∈ T, (g, f2) ∈ T−1
}

=

=
{

(f1, f2) ∈ L× L : f1, f2 ∈ domT, f1 − f2 ∈ kerT
}

,
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λ · T =
{

(f, g) ∈ L ×M : ∃ g0 ∈ M with (f, g0) ∈ T, g = λg0

}

=

=
{

(f, g) ∈ L ×M : ∃ g0 ∈ M with (f, g0) ∈ T, (g0, g) ∈ λ · IM, g = λg0

}

=

= (λ · IM) ◦ T =

=
{

(f, g) ∈ L×M : ∃ g0 ∈ M with (f, λf) ∈ λ·IL, (λf, λg0), g = λg0 ∈ T
}

=

= T ◦ (λ · IL) ,

(T + S) ◦R =
{

(f, h) ∈ L×N : ∃ g ∈ M with (f, g) ∈ R, (g, h) ∈ T + S
}

=

=
{

(f, h) ∈ L ×N : ∃ g ∈ M, h1, h2 ∈ N with

(f, g) ∈ R, (g, h1) ∈ T, (g, h2) ∈ S, h = h1 + h2

}

⊆

⊆
{

(f, h) ∈ L ×N : ∃ g1, g2 ∈ M, h1, h2 ∈ N with

(f, g1) ∈ R, (g1, h1) ∈ T, (f, g2) ∈ R, (g2, h2) ∈ S, h = h1 + h2

}

=

= T ◦R+ S ◦R ,

If mulR = {0}, then the elements g1, g2 in the last but one line must coincide,
and hence equality holds.

R ◦ T + R ◦ S =
{

(f, h) ∈ L ×N : ∃h1, h2 ∈ N with

(f, h1) ∈ R ◦ T, (f, h2) ∈ R ◦ S, h = h1 + h2

}

=

=
{

(f, h) ∈ L ×N : ∃ g1, g2 ∈ M, h1, h2 ∈ N with

(f, g1) ∈ T, (f, g2) ∈ S, (g1, h1) ∈ R, (g2, h2) ∈ R, h = h1 + h2

}

⊆

⊆
{

(f, h) ∈ L ×N : ∃ g ∈ M with (f, g) ∈ T + S, (g, h) ∈ R
}

=

= R ◦ (T + S) ,

The inclusion of the set in second line in the set in the third line thereby follows
by setting g := g1 + g2. Assume that domR = M, and let f, g, h be such that
(f, g) ∈ T + S and (g, h) ∈ R. Choose g1, g2 ∈ M with (f, g1) ∈ T , (f, g2) ∈ S,
and g = g1 + g2, and choose h1 ∈ N with (g1, h1) ∈ R. Then

(g2, h− h1) = (g, h) − (g1, h1) ∈ R ,

and it follows that (f, h) belongs to the set written in the second line. Thus, in
case domR = M, equality holds.

The assertions (vii) and (viii) follow easily from (v) and (vi). Assume that
R commutes with S and T . Then we can compute

(T + S) ◦R ⊆ T ◦R+ S ◦R = R ◦ T + R ◦ S ⊆ R ◦ (T + S) .

If, in addition, R commutes with T + S, then the last term equals (T + S) ◦R,
and hence throughout the above chain of inequalities the equality sign must
hold. ❑

7.1.7. Computation rules. IV. Miscellaneous:NTI22
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(i) We have dom(T−1) = ranT , ran(T−1) = domT , and ker(T−1) = mulT ,
mul(T−1) = kerT .

(ii) We have dom(ST ) ⊆ domT , ran(ST ) ⊆ ranS, and kerT ⊆ ker(ST ),
mul(S) ⊆ mul(ST ).

(iii) If R ⊆ S, then

R+ T ⊆ S + T, λ · R ⊆ λ · S, R−1 ⊇ S−1 ,

R ◦ T ⊆ S ◦ T, T ◦R ⊆ T ◦ S .

(iv) span(R◦S∪R◦T ) ⊆ R◦span(S∪T ). If ranT ⊆ domR or ranS ⊆ domR,
then equality holds.

(v) span(S◦R∪T ◦R) ⊆ span(S∪T )◦R. If domT ⊆ ranR or domS ⊆ ranR,
then equality holds.

Proof. Let τ be the map

τ :

{
L ×M → M×L

(f, g) 7→ (g, f)

Then (π1 and π2 denote the respective projections onto first and second com-
ponents)

π1 ◦ τ = π2, π2 ◦ τ = π1 .

This immediately gives (i). The first two inclusions in (ii) are obvious, the third
inclusion follows since (0, 0) ∈ S, the fourth since (0, 0) ∈ T . The inclusions in
(iii) are obvious from the definitions.

We come to the proof of (iv) and (v).

span
(
R ◦ S ∪R ◦ T

)
=
{

(f, h) ∈ L×N : ∃ f1, f2 ∈ L, h1, h2 ∈ N with

(f1, h1) ∈ R ◦ S, (f2, h2) ∈ R ◦ T, f = f1 + f2, h = h1 + h2

}

=

=
{

(f, h) ∈ L×N : ∃ f1, f2 ∈ L, g1, g2 ∈ M, h1, h2 ∈ N with

(f1, g1) ∈ S, (g1, h1) ∈ R, (f2, g2) ∈ T, (g2, h2) ∈ R,

f = f1 + f2, h = h1 + h2

}

⊆

⊆
{

(f, h) ∈ L×N : ∃ g ∈ M with (f, g) ∈ span(S ∪ T ), (g, h) ∈ R
}

=

= span(S ∪ T ) ◦R .

Thereby, the inclusion follows on setting g := g1 + g2. Assume that ranT ⊆
domR; the case that ranS ⊆ domR follows in the same way. Let f, g, h with
(f, g) ∈ span(S ∪ T ), (g, h) ∈ R, be given. Then we can find f1, f2 ∈ L and
g1, g2 ∈ M such that

(f1, g1) ∈ S, (f2, g2) ∈ T, f = f1 + f2, g = g1 + g2 .
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Choose h2 ∈ N such that (g2, h2) ∈ R, and set g1 := g− g2, h1 := h−h2. Then
(g1, h1) ∈ R, and we see that in the above inclusion the equality sign holds.

span
(
S ◦R ∪ T ◦R

)
=
{

(f, h) ∈ L ×N : ∃ f1, f2 ∈ L, h1, h2 ∈ N with

(f1, h1) ∈ S ◦R, (f2, h2) ∈ T ◦R, f = f1 + f2, h = h1 + h2

}

=

=
{

(f, h) ∈ L ×N : ∃ f1, f2 ∈ L, g1, g2 ∈ M, h1, h2 ∈ N with

(f1, g1) ∈ R, (g1, h1) ∈ S, (f2, g2) ∈ R, (g2, h2) ∈ T,

f = f1 + f2, h = h1 + h2

}

⊆

⊆
{

(f, h) ∈ L ×N : ∃ g ∈ M with (f, g) ∈ R, (g, h) ∈ span(S ∪ T )
}

=

= span(S ∪ T ) ◦R .

Again the inclusion follows on setting g := g1+g2. Assume that domT ⊆ ranR;
the case that domS ⊆ ranR follows in the same way. Let f, g, h with (f, g) ∈ R,
(g, h) ∈ span(S ∪ T ), be given. Choose g1, g2 ∈ M and h1, h2 ∈ N with

(g1, h1) ∈ S, (g2, h2) ∈ T, g = g1 + g2, h = h1 + h2 .

Next, choose f2 ∈ L such that (f2, g2) ∈ R, and set f1 := f − f2, g1 := g − g2.
Then (f1, g1) ∈ R, and we see that in the above inclusion the equality sign
holds. ❑

Let T ∈ LR(L). Then powers T n of T are defined for n ∈ Z in the usual
way as

T n :=







T ◦ . . . ◦ T
︸ ︷︷ ︸

n times

, n ∈ N

IL , n = 0

T−1 ◦ . . . ◦ T−1
︸ ︷︷ ︸

−n times

, n ∈ −N

If n ∈ N and an ∈ C, we may consider the expression
∑N

n=0 anT
n. This assign-

ment, however, is not fully compatible with algebraic operations. For example,
we have

T − T = domT × mulT ,

which is not equal to 0L unless T is an everywhere defined operator. Or

0 · T = 0domT ,

which is not equal to 0L if domT 6= L.

7.2 Fractional linear transformations

Our next aim is to set up a functional calculus for fractional linear transforma-

tions. For T ∈ LR(L) and M =
(
α β
γ δ

)

∈ C2×2, we denote

φM (T ) :=
{
(γg + δf, αg + βf) : (f, g) ∈ T

}
.
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Clearly, φM (T ) is a linear relation. Thinking in terms of vectors instead of pairs,
we could equally well write (‘.T ’ denotes the transpose of a vector or a matrix)

φM (T ) =
{[(0 1

1 0

)

M

(
0 1
1 0

)

· (f, g)T
]T

: (f, g) ∈ T
}

.

From this it is obvious that the assignment M 7→ φM (T ) is multiplicative in the
sense that

φM1M2(T ) = φM1

(
φM2(T )

)
, M1,M2 ∈ C2×2 . (7.2.1) I30

Moreover, we have
φM (T ) = φλM (T ), λ ∈ C \ {0} . (7.2.2) I25

Mostly, we will work with φM (T ) when M is a matrix having nonzero determi-
nant. However, sometimes it happens that the case detM = 0 occurs. In order
to treat these somewhat exceptional cases, it is the best to explicitly write down
φM (T ) for all possibilities and thus make available a list to refer to:

φ„

0 0
0 0

«(T ) = 0{0}, φ„

0 0
0 δ

«(T ) = 0ranT , δ 6= 0, φ„

0 0
γ 0

«(T ) = 0domT , γ 6= 0

φ„

0 0
γ δ

«(T ) = 0span(ranT∪domT ), γ, δ 6= 0, φ„

0 β
0 0

«(T ) = 0−1
ranT , β 6= 0

φ„

α 0
0 0

«(T ) = 0−1
domT , β 6= 0, φ„

α β
0 0

«(T ) = 0−1
span(ranT∪domT ), α, β 6= 0

φ„

0 λδ
0 δ

«(T ) = λIran T , λ, δ 6= 0, φ„

λγ 0
γ 0

«(T ) = λIdom T , λ, γ 6= 0

φ„

λγ λδ
γ δ

«(T ) = λIspan(ranT∪domT ), λ, γ, δ 6= 0

If detM 6= 0, the relation φM (T ) can be expressed via the algebraic operations
on LR(L). We will denote by GL(2,C) the group of all 2 × 2-matrices with
complex entries having nonzero determinant.

LEI31 7.2.1 Lemma. Let T ∈ LR(L) and M =
(
α β
γ δ

)

∈ GL(2,C). Then

φM (T ) =







α
γ − detM

γ2 (T + δ
γ )−1 , γ 6= 0

α
δ T + β

δ , γ = 0

If T is an everywhere defined operator and γT + δ is bijective, then

φM (T ) = (αT + β)(γT + δ)−1 , (7.2.3) I38

in particular φM (T ) is an everywhere defined operator.

Proof. The matrix M can be written as

M =







(

1 α
γ

0 1

)

·
(

− detM
γ 0

0 γ

)

·
(

0 1

1 0

)

·
(

1 δ
γ

0 1

)

, γ 6= 0

(

1 β
δ

0 1

)

·
(

α 0

0 δ

)

, γ = 0

(7.2.4) I20
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In view of (7.2.1), it remains to note that

φ„

α 0
0 δ

«(T ) =
{
(δf, αg) : (f, g) ∈ T

}
=
α

δ
· T, α, δ 6= 0 ,

φ„

1 β
0 1

«(T ) =
{
(f, g + βf) : (f, g) ∈ T

}
= T + β ,

φ„

0 1
1 0

«(T ) =
{
(g, f) : (f, g) ∈ T

}
= T−1 .

Assume that T is an everywhere defined operator and γT + δ is bijective. If
γ = 0, (7.2.3) is trivial. Hence, assume that γ 6= 0. If α = 0, again, (7.2.3) is
trivial. Assume that moreover α 6= 0, then

αT + β = α(T +
δ

γ
− δ

γ
+ β) = α(T +

δ

γ
) − αδ

γ
+ β = a(T +

δ

γ
) − detM

γ
,

and hence

(αT +β)(γT + δ)−1 =
1

γ
(αT +β)(T +

δ

γ
)−1 =

α

γ
− detM

γ2
(T +

δ

γ
)−1 = φM (T ) .

❑

Concerning relational sums and products we have the following computation
rules.

LEI36 7.2.2 Lemma. Let T ∈ LR(L) and M,N ∈ C2×2.

(i) If (0, 1)M = (0, 1)N , then

φM (T ) + φN (T ) = span
(

φ((1,0)(M+N)
(0,1)M )(T ) ∪

(
{0} × mulφM (T )

))

=

= span
(

φ((1,0)(M+N)
(0,1)M )(T ) ∪

(
{0} × mulφN (T )

))

(ii) If (0, 1)M = (1, 0)N , then

φM (T ) ◦ φN (T ) = span
(

φ((1,0)M
(0,1)N )(T ) ∪

(
{0} × mulφM (T )

))

=

= span
(

φ((1,0)M
(0,1)N )(T ) ∪

(
kerφN (T ) × {0}

))

Proof. Write M =
(
α β
γ δ

)

, N =
(
λ µ
γ δ

)

, and set P :=
(
α + λ β + µ
γ δ

)

. Let (x, y) ∈
φM (T ) + φN (T ), and choose (f1, g1), (f2, g2) ∈ T with

x = γf1 + δg1 = γg2 + δf2, y = (αg1 + βf1) + (λg2 + µf2) .

Then
(
0, α(g1−g2)+β(f1−f2)

)
= (γf1+δg1, αg1+βf1)−(γg2+δf2, αg2+βf2) ∈ φM (T ) ,

and hence

(x, y) =
(
γg2 + δf2, (α+ λ)g2 + (β + µ)f2

)
+
(
0, α(g1 − g2) + β(f1 − f2)

)

∈ span
(

φP (T ) ∪
(
{0} × mulφM (T )

))
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Similarly,

(
0, λ(g2−g1)+µ(f2−f1)

)
= (γg2+δf2, λg2+µf2)−(γf1+δg1, λg1+µf1) ∈ φN (T ) ,

and hence

(x, y) =
(
γg1 + δf1, (α+ λ)g1 + (β + µ)f1

)
+
(
0, λ(g2 − g1) + µ(f2 − f1)

)

∈ span
(

φP (T ) ∪
(
{0} × mulφN (T )

))

The reverse inclusion ‘⊇’ in (i) is obvious.

For the proof of (ii) write M =
(
α β
γ δ

)

, N =
(
γ δ
λ µ

)

, and set P :=
(
α β
λ µ

)

. If

(x, y) ∈ φP (T ), then there exists (f, g) ∈ T with

(x, y) = (λg + µf, αg + βf) .

Thus, setting z := γg + δf , we have

(x, z) = (λg + µf, γg + δf) ∈ φN (T ), (z, y) = (γg + δf, αg + βf) ∈ φM (T ) .

We see that φP (T ) ⊆ φM (T ) ◦ φN (T ). By the computation rule 7.1.7, (ii), we
also have

{0} × mulφM (T ) ⊆ φM (T ) ◦ φN (T ), kerφN (T ) × {0} ⊆ φM (T ) ◦ φN (T ) .

Together, this shows that the inclusion ‘⊇’ in the desired equality holds. To see
the reverse inequality, assume that (x, y) ∈ φM (T ) ◦ φN (T ). Then there exist
(f1, g1), (f2, g2) ∈ T with

x = λg1 + µf1, γg1 + δf1 = γg2 + δf2, y = αg2 + βf2 .

Set
x′ := λg2 + µf2, y′ := αg1 + βf1 ,

then (x, y′) ∈ φP (T ), (0, y − y′) ∈ φM (T ), and (x′, y) ∈ φP (T ), (x − x′, 0) ∈
φN (T ). Thus we also have the inequality ‘⊆’. ❑

We can lift the assignmentM 7→ φM (T ) to a functional calculus for fractional
linear transformations. First some notation. If X and Y are analytic manifolds,
we denote by H(X,Y ) the set of all analytic maps of X into Y . Recall that the
composition of analytic maps is again analytic.

The set H(X,C) is nothing else but the set of all analytic functions defined
on X ; and we will write H(X) instead of H(X,C). Recall that H(X) becomes
a C-algebra if endowed with the pointwise defined algebraic operations, and
can be endowed with a complete metric which induces the topology of locally
uniform convergence.

A first example of an analytic manifold (not equal to an open subset of C),
and we will almost exclusively be concerned with this example, is the one-point
compactification C∞ := C ∪ {∞} of C. It becomes an analytic manifold when
endowed with the analytic structure comprised of the charts

φ1 :

{
C∞ \ {∞} → C

z 7→ z
φ2 :

{
C∞ \ {0} → C

z 7→
{

1
z

z 6= ∞
0 z = ∞

(7.2.5) I15
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If G is an open subset of the complex plane, then H(G,C∞) is nothing else
but the set of all meromorphic functions on G. Moreover, let us note that
H(C∞,C∞) is equal to the set of all rational functions (extended to maps from
C∞ to itself in the usual way).

For M =
(
α β
γ δ

)

∈ GL(2,C), we denote by φM : C∞ → C∞ the fractional

linear transformation

φM (z) :=







αz+β
γz+δ z 6= ∞, γz + δ 6= 0

∞ z 6= ∞, γz + δ = 0 or z = ∞, γ = 0
α
γ z = ∞, γ 6= 0

The assignment M 7→ φM is a homomorphism of the group GL(2,C) onto the
group of invertible elements H(C∞,C∞)∗ of the semigroup 〈H(C∞,C∞), ◦〉. Its
kernel is equal to {λI : λ ∈ C}.

If T ∈ LR(L), we thus have a homomorphism of H(C∞,C∞)∗ into LR(L),
remember (7.2.2):

GL(2,C)

M 7→φM (z)

wwppppppppppp
M 7→φM (T )

%%K
KKKKKKKK

H(C∞,C∞)∗
φM (z) 7→φM (T )

//__________ LR(L)

The set H(C∞,C∞)∗ is not closed with respect to pointwise sums and products.
In fact, for M,N ∈ GL(2,C),

φM + φN ∈ H(C∞,C∞)∗ ⇐⇒
(0, 1)M, (0, 1)N lin.dep., (1, 0)(M +N), (0, 1)M lin.indep.

and in this case

φM + φN = φ((1,0)(λM+N)
(1,0)N )

where λ ∈ C is such that λ(0, 1)M = (0, 1)N .

φM · φN ∈ H(C∞,C∞)∗ ⇐⇒
either (0, 1)M, (1, 0)N lin.dep., (1, 0)M, (0, 1)N lin.indep.

or (1, 0)M, (0, 1)N lin.dep., (0, 1)M, (1, 0)N lin.indep.

and in this case

φM · φN = φ(λ(1,0)M
(0,1)N ) or φM · φN = φ( (1,0)N

λ(0,1)M)

where λ ∈ C is such that λ(0, 1)M = (1, 0)N or λ(1, 0)M = (0, 1)N , respec-
tively.

In these cases, the functional calculus φM (z) 7→ φM (T ) is compatible in the
sense of Lemma 7.2.2.
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7.3 Resolvent and spectrum

Let T ∈ LR(L). Then T is called resolvable, if T−1 is an everywhere defined
operator, i.e. if domT−1 = L and mulT−1 = {0}. It is practical to note that,
by the computation rules 7.1.6, (iii), a linear relation T is resolvable if and only
if

T−1T ⊆ IL ⊆ TT−1 .

DEI33 7.3.1 Definition. Let T ∈ LR(L) and z ∈ C∞. Then we say that z belongs to
the resolvent set ρ(T ) of T , if either z ∈ C and (T − z) is resolvable or z = ∞
and T−1 is resolvable. The assignment ‘z 7→ (T − z)−1’ maps ρ(T ) into the
subset of LR(L) consisting of all everywhere defined linear operators, and is
called the resolvent of T . �

The definition of ρ(T ) can be reformulated immediately as

z ∈ ρ(T ) ⇐⇒
{

ran(T − z) = L and ker(T − z) = {0} , z ∈ C

domT = L and mulT = {0} , z = ∞

⇐⇒
{

(T − z)−1(T − z) ⊆ IL ⊆ (T − z)(T − z)−1 , z ∈ C

TT−1 ⊆ IL ⊆ T−1T , z = ∞

Finally, note that ker(T − z)−1 and ran(T − z)−1 do not depend on z. In fact,

ker(T − z)−1 = mulT, ran(T − z)−1 = domT, z ∈ C .

It is an important fact that an operator valued function is the resolvent of a
linear relation if and only if it satisfies a functional equation.

PRI35 7.3.2 Proposition. Let T ∈ LR(L), and denote by R(z) := (T − z)−1, z ∈
ρ(T ), the resolvent of T . Then the resolvent identity

R(z) −R(w) = (z − w)R(z)R(w), z, w ∈ ρ(T ) ∩ C (7.3.1) I37

holds. In particular, R(z) and R(w) commute.
Conversely, assume that D ⊆ C is nonempty, and R : D → LR(L) is

a function whose values are everywhere defined operators and which satisfies
(7.3.1) for all z, w ∈ D. Then, for all z, w ∈ D, the operators (I + (z−w)R(z))
and (I + (w − z)R(w)) are mutually inverse bijections of L onto itself. There
exists a linear relation T with ρ(T ) ⊇ D and R(z) = (T − z)−1, z ∈ D. This
relation is uniquely determined by the facts that ρ(T )∩D 6= ∅ and (T − z)−1 =
R(z), z ∈ ρ(T ) ∩D.

Proof. Let T ∈ LR(L) and z, w ∈ ρ(T ), z 6= w, be given. Set

M :=

(
0 1
1 −z

)

, N :=

(
1 −z
1 −w

)

,

then φM (T ) = R(z) and, using Lemma 7.2.1, φN (T ) = I + (w − z)R(w). Since
mulR(z) = {0}, Lemma 7.2.2 gives

R(z)
(
I + (w − z)R(w)

)
= φ„

0 1
1 −w

«(T ) = R(w) .
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Since R(z) and R(w) are everywhere defined operators, (7.3.1) follows.
Assume now that R : D → LR(L) is given and subject to the stated condi-

tions. Since R(z) is always an everywhere defined operator, we can compute

(
I + (z − w)R(z)

)(
I + (w − z)R(w)

)
=

= I + (z − w)R(z) + (w − z)R(w) + (z − w)(w − z)R(z)R(w) =

= I + (z − w)R(z) + (w − z)R(w) + (w − z)
(
R(z) −R(w)

)
= I .

For z ∈ D, set
Tz := z +R(z)−1 = φ„

z 1
1 0

«(R(z)) ,

then (Tz − z)−1 = φ„

0 1
1 −z

«(Tz) = R(z). If w ∈ D, w 6= z, then due to (7.3.1)

and Lemma 7.2.1 we have

R(z) = R(w)
(
I+(z−w)R(z)

)
= R(w)

(
I+(w−z)R(w)

)−1
= φ„

1 0
w−z 1

«

(
R(w)

)
.

It follows that

Tz = φ„

z 1
1 0

«

(

φ„

1 0
w−z 1

«

(
R(w)

))

= φ„

w 1
1 0

«

(
R(w)

)
= Tw .

Hence, a relation T is well-defined by T := Tz, z ∈ D. As we already observed,
(T − z)−1 = R(z), z ∈ D.

The uniqueness assertion is clear, since T can be recovered from (T − z)−1

as T = z + [(T − z)−1]−1. ❑

COI29 7.3.3 Corollary. Let T ∈ LR(L), and let D ⊆ C with D ∩ ρ(T ) 6= ∅. Assume
that there exists a function R̃ of D into the set of all everywhere defined operators
which satisfies the resolvent identity for all z, w ∈ D, and extends the resolvent
of T , i.e. R̃(z) = (T−z)−1, z ∈ D∩ρ(T ). Then ρ(T ) ⊇ D and R̃(z) = (T−z)−1,
z ∈ D.

Proof. By Proposition 7.3.2, there exists a relation T̃ with ρ(T̃ ) ⊇ D and R̃(z) =
(T̃ − z)−1, z ∈ D. If z ∈ D ∩ ρ(T ), thus (T̃ − z)−1 = (T − z)−1, and hence
T̃ = T . ❑

We conclude this algebraic discussion of resolvents with showing that resolv-
ability transfers to products.

LEI34 7.3.4 Lemma. Let T1, . . . , Tn ∈ LR(L), and denote by T the product T :=
T1 ◦ . . . ◦ Tn. If each relation Ti is resolvable, then also T has this property.
Conversely, if the relations Ti pairwise commute, then T being resolvable implies
that each Ti also is.

Proof. Due to associativity of compositions the case of an arbitrary finite num-
ber of factors will follow by induction once the case of two factors has been
shown. Assume that T1 and T2 are resolvable. Then

(T1T2)
−1(T1T2) = T−1

2 T−1
1 T1
︸ ︷︷ ︸

⊆IL

T2 ⊆ T−1
2 T2 ⊆ IL ,
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(T1T2)(T1T2)
−1 = T1 T2T

−1
2

︸ ︷︷ ︸

⊇IL

T−1
1 ⊇ T1T

−1
1 ⊇ IL .

For the converse assume that T1 and T2 commute. If T1 is not resolvable, then
either kerT1 6= {0} or ranT1 6= L. By the composition rules 7.1.7, (ii), we have
ker(T2T1) 6= {0} in the first case, and ran(T1T2) 6= L in the second. Since T1

and T2 commute, in both cases T1T2 is not resolvable. If T2 is not resolvable
the same argument applies. ❑

DEI50 7.3.5 Definition. Let T ∈ LR(L). The complement σ(T ) := C∞ \ ρ(T ) is
called the spectrum of T .

A point z ∈ C is said to be an eigenvalue of T , if ker(T −z) 6= {0}; the point
z = ∞ is said to be such, if mul(T ) 6= {0}. The set of all eigenvalues of T is
called the point spectrum of T , and is denoted by σp(T ).

The root manifold Ez(T ) of T at a point z ∈ C∞ is defined as

Ez(T ) :=

{⋃

n∈N
ker(T − z)n , z ∈ C

⋃

n∈N
mulT n , z = ∞

An eigenvalue z of T is called semi-simple, if Ez(T ) = ker(T − z) in case z ∈ C
or Ez(T ) = mulT in case z = ∞. �

Note that, clearly, σp(T ) ⊆ σ(T ). Moreover, since ker(T − z)n+1 ⊇ ker(T −
z)n and mulT n+1 ⊇ mulT n, n ∈ N, the root manifold Ez(T ) is always a linear
subspace of L.

As a first observation, let us show that

z ∈ σp(T ) ⇐⇒ Ez(T ) 6= {0} .

Thereby the implication ‘⇒’ is trivial. To see the converse, assume that Ez(T ) 6=
{0}, i.e. that for some n ∈ N we have ker(T − z)−n 6= {0} or mulT n 6= {0},
respectively. Then there exist elements

(f0, f1), . . . , (fn−1, fn) ∈ T − z, with f0 6= 0, fn = 0 ,

if z ∈ C, or

(f0, f1), . . . , (fn−1, fn) ∈ T, with f0 = 0, fn 6= 0 ,

if z = ∞. In the first case, there must exist i ∈ {1, . . . , n} such that fi−1 6= 0
and fi = 0, and we conclude that ker(T − z) 6= {0}. In the second case, there
exists i ∈ {1, . . . , n} such that fi−1 = 0 and fi 6= 0, and thus mulT 6= {0}.

A less simple, and very important, result is the Spectral Mapping Theorem
for fractional linear transformations:

PRI32 7.3.6 Proposition. Let T ∈ LR(L) and M ∈ GL(2,C). Then

σ(φM (T )) = φM (σ(T )) .

Moreover,
EφM (z)

(
φM (T )

)
= Ez(T ) ,

in particular, σp(φM (T )) = φM (σp(T )).
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Proof. In view of the factorization (7.2.4) of a matrix M ∈ GL(2,C), it is
sufficient to consider the cases that (λ ∈ C \ {0})

M1 =

(
1 λ
0 1

)

, M2 =

(
λ 0
0 1

)

, M3 =

(
0 1
1 0

)

We have φM1 (T ) = T + λ, and hence

φM1(T ) − φM1 (z) = (T + λ) − (z + λ) = T − z .

Thus a point z ∈ C belongs to the spectrum of T if and only if φM1(z) belongs
to the spectrum of φM1(T ). Since either both of T and T + λ, or non of them,
is an everywhere defined operators, we also have ∞ ∈ σ(φM1 (T )) if and only if
∞ ∈ σ(T ). The equality Ez(T ) = EφM1 (z)(φM1 (T )) also follows immediately.

The case of M2 is similarly simple. We have φM2 (T ) = λT , and hence

φM2 (T ) − φM2(z) = λT − λz = λ(T − z) .

Again, we see that σ(φM2 (T )) = φM2(σ(T )) and EφM2 (z)(φM2 (T )) = Ez(T ).
The case of M3 requires a bit more calculation. Let z ∈ C \ {0}, then

(
T−1 − 1

z

)−1
= φ„

0 1
1 − 1

z

«

(
T−1

)
= φ„

0 1
1 − 1

z

«

·
„

0 1
1 0

«(T ) =

= φ„

1 0
− 1

z
1

«(T ) = −z − z2(T − z)−1 .

Thus, (T−1 − 1
z )

−1 is an everywhere defined operator if and only if (T − z)−1

is, i.e. σ(T−1) ∩ (C \ {0}) = [σ(T )∩ (C \ {0})]−1. Since ker(T − z) = mul(−z −
z2(T − z)−1), this relation also implies that

ker
(
T−1 − 1

z

)
= ker(T − z) .

In order to show equality of root manifolds, we use induction on n to show that
ker(T−1− 1

z )
n = ker(T −z)n, n ∈ N. Let n > 1 and f ∈ ker(T−1− 1

z )
n be given.

Then there exists g ∈ ker(T−1 − 1
z )
n−1 with (f, g) ∈ T−1 − 1

z . It follows by
the inductive hypothesis that g ∈ ker(T − z)n−1, and by the above computation
(f+zg

−z2 , g) ∈ T − z. Thus f + zg ∈ ker(T − z)n, and hence also f ∈ ker(T − z)n.
The reverse inclusion follows in the same way.

It remains to consider the case that z = 0 or z = ∞. However, ∞ ∈ ρ(T )
just means that T is an everywhere defined operator, and this is nothing else
but 0 ∈ ρ(T−1). The same argument applies with T−1 in place in T , and hence
we have 0 ∈ σ(T−1) if and only if ∞ ∈ σ(T ) and ∞ ∈ σ(T−1) if and only if
0 ∈ σ(T ). The assertion on root manifolds follows equally simple. We have

E0(T ) =
⋃

n∈N

kerT =
⋃

n∈N

mul(T−1) = E∞(T−1) ,

and, using T−1 in place of T , E∞(T ) = E0(T
−1). ❑

In the analysis of a linear relation, the notion of invariant subspaces or re-
ducing decompositions is of importance, since it allows to split the given relation
in smaller parts.
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DEI26 7.3.7 Definition. Let L be a linear space, and M1, . . . ,Mn be linear subspaces
of L with L = M1+̇ . . . +̇Mn. Moreover, let T ∈ LR(L). Then we say that the
decomposition L = M1+̇ . . . +̇Mn reduces T , if

T =
(
T ∩M2

1

)
+̇ . . . +̇

(
T ∩M2

n

)
. (7.3.2) I28

�
Note that, trivially, the inclusion ‘⊇’ in (7.3.2) always holds. Moreover, if

∞ ∈ ρ(T ), then (7.3.2) is equivalent to

T (Mi) ⊆ Mi, i = 1, . . . , n .

PRI27 7.3.8 Proposition. Let L be a linear space, and M1, . . . ,Mn be linear sub-
spaces of L with L = M1+̇ . . . +̇Mn. Moreover, let T ∈ LR(L). Then the
following are equivalent:

(i) The decomposition L = M1+̇ . . . +̇Mn reduces T .

(ii) For all z ∈ ρ(T ) ∩ C we have (T − z)−1Mi ⊆ Mi, i = 1, . . . , n.

(iii) There exists z ∈ ρ(T ) ∩ C with (T − z)−1Mi ⊆ Mi, i = 1, . . . , n.

In this case, we have

ρ(T ) =

n⋂

i=1

ρ
(
T ∩M2

i

)
.

Proof. Assume that L = M1+̇ . . . +̇Mn reduces T , and let z ∈ ρ(T ) ∩ C.
Let f ∈ Mj, and set g := (T − z)−1f . Write g =

∑n
i=1 gi with gi ∈ Mi,

and set fi := 0, i 6= j, and fj := f . We have (g, f + zg) ∈ T , and hence
(g, f + zg) =

∑n
i=1(hi, ki) with (hi, ki) ∈ T ∩M2

i . It follows that hi = gi and
ki = fi + zgi. For i 6= j, we have fi = 0, and hence ki = zgi. This implies that
(gi, zgi) ∈ T , and since z ∈ ρ(T ) therefore gi = 0. We see that g ∈ Mj .

The implication ‘(ii) ⇒ (iii)’ is trivial. Assume that (iii) holds, and pick
z ∈ ρ(T ) ∩ C with (T − z)−1Mi ⊆ Mi, i = 1, . . . , n. We need to show the
inclusion ‘⊆’ in (7.3.2). Let (f, g) ∈ T be given, and write f =

∑n
i=1 fi, g =

∑n
i=1 gi with fi, gi ∈ Mi. We have (g − zf, f) ∈ (T − z)−1, and hence

f = (T − z)−1(g − zf) =
∑

i=1

(T − z)−1(gi − zfi) .

Since (T − z)−1(gi − zfi) ∈ Mi, this implies that (T − z)−1(gi − zfi) = fi. In
other words, (gi − zfi, fi) ∈ (T − z)−1 or (fi, gi) ∈ T . We see that

(f, g) =
n∑

i=1

(fi, gi) ∈
(
T ∩M2

1

)
+̇ . . . +̇

(
T ∩M2

n

)
.

We have shown ‘(iii) ⇒ (i)’, and hence established the equivalence of the con-
ditions (i)–(iii).

Finally, if L = M1+̇ . . . +̇Mn reduces T , then we have

(T − z)−1 =
(
T ∩M2

1 − z
)−1

+̇ . . . +̇
(
T ∩M2

n − z
)−1

, z ∈ C ,

and hence (T − Z)−1 is an everywhere defined operator if and only of each of
(T∩M2

i−z)−1 has this property. This says that ρ(T )∩C =
⋂n
i=1[ρ(T∩M2

i )∩C].
Due to (7.3.2), T is an everywhere defined operator if and only if each relation
T ∩M2

i is. ❑
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7.4 Adjoints

DEI42 7.4.1 Definition. Let 〈L, [., .]L〉 and 〈M, [., .]M〉 be inner product spaces, and
let T ∈ LR(L,M). Then we define the adjoint of T as

T ∗ :=
{
(k, h) ∈ M×L : [f, h]L − [g, k]M = 0, (f, g) ∈ T

}
.

�

Clearly, T ∗ is a linear relation of M into L. If T and T ∗ are both everywhere
defined operators, the definition of T ∗ reduces to the usual definition of the
adjoint operator

[Tx, y]M = [x, T ∗y]L, x ∈ L, y ∈ M .

The following viewpoint on adjoints is practical, since it allows us to use geom-
etry.

REI43 7.4.2 Remark. Consider the inner product space 〈L, [., .]L〉×〈M,−[., .]M〉, that
is the product space L×M endowed with the difference inner product

J(f, g), (h, k)KL×M := [f, h]L − [g, k]M, (f, g), (h, k) ∈ L ×M .

Explicit notation of L and M will be dropped when no confusion is possible. If
T ∈ LR(L,M), then

T ∗ =
(
T J⊥K

)−1
.

�

7.4.3. Computation rules. V. Adjoints:NTI44

(i) If T ⊆ S, then T ∗ ⊇ S∗. We always have M◦ × L◦ ⊆ T ∗. Moreover,
I∗ = span{I ∪ (L◦ × L◦)}.

(ii) For M =
(
α β
γ δ

)

∈ C2×2 set M :=
(
α β

γ δ

)

. Then we have φM (T )∗ ⊇
φM (T ∗). If M ∈ GL(2,C), then equality holds.

(iii) We have T ⊆ T ∗∗ and T ∗∗∗ = T ∗.

(iv) T ∗ + S∗ ⊆ (T + S)∗. If domS ⊇ domT and domS∗ = M, then equality
holds.

(v) T ∗S∗ ⊆ (ST )∗. If domS ⊇ ranT and domS∗ = N , then equality holds.

(vi) kerT ∗ = ranT⊥, mulT ∗ = domT⊥.

Proof. Taking orthogonal complements reverses inclusions, taking inverses pre-
serves them. Hence the first assertion in (i) follows. The second one is obvious
from the definition of T ∗. Moreover, the inclusion ‘⊇’ in the asserted formula
for I∗ is clear. To see the reverse inclusion, let (k, h) ∈ I∗ be given. We can
write

(k, h) = (k, k) + (0, h− k) .

However, for all f ∈ L, we have

[f, h− k] = [f, h] − [f, k] = 0 ,
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i.e. h− k ∈ L.
For the proof of (ii), let M ∈ C2×2 be given. Let (f, g) ∈ T and (k, h) ∈ T ∗,

then

q
(γg + δf, αg + βf), (αh+ βk, γh+ δk)

y
= [γg + δf, αh+ βk]−

−[αg + βf, γh+ δk] = (αδ − γβ)
(
[f, h] − [g, k]

)
= 0 .

This says that

φM (T )J⊥K
(
φM (T ∗)

)−1

i.e. φM (T )∗ = (φM (T )J⊥K)−1 ⊇ φM (T ∗).
If M ∈ GL(2,C), we may compute

T ∗ =
[
φM−1

(
φM (T )

)]∗ ⊇ φM−1

(
φM (T )∗

)
.

However, M−1 = (M)−1, and it follows that φM (T ∗) ⊇ φM (T )∗.
We come to the proof of (iii). We have (T J⊥K)−1 = (T−1)J⊥K, and hence

T ⊆
(
T J⊥K

)J⊥K
= T ∗∗, T J⊥K = T J⊥KJ⊥KJ⊥K =

(
T ∗∗∗)−1

.

We turn to (iv).

(T + S)∗ =
{

(k, h) ∈ M×L : ∀ (f, g) ∈ T + S : [f, h] − [g, k] = 0
}

=

=
{

(k, h) ∈ M×L : ∀ f, g1, g2 with (f, g1) ∈ T, (f, g2) ∈ S :

[f, h] − [g1, k] − [g2, k] = 0
}

T ∗ + S∗ =
{

(k, h) ∈ M×L : ∃h1, h2 ∈ L with

(k, h1) ∈ T ∗, (k, h2) ∈ S∗, h = h1 + h2

}

=

=
{

(k, h) ∈ M×L : ∃h1, h2 ∈ L with h = h1 + h2,

∀ (f1, g1) ∈ T, (f2, g2) ∈ S : [f1, h1]−[g1, k] = 0, [f2, h2]−[g2, k] = 0
}

Let (k, h) ∈ T ∗ + S∗, and choose h1, h2 be as in the above description of this
relation. For all f, g1, g2 with (f, g1) ∈ T, (f, g2) ∈ S we thus have [f, h1]−
[g1, k] = [f, h2]−[g2, k] = 0. Summing up shows (k, h) ∈ (T + S)∗.

Assume that domS ⊇ domT and domS∗ = M, and let (k, h) ∈ (T + S)∗

be given. Choose h2 with (k, h2) ∈ S∗, and set h1 := h − h2. Let (f, g1) ∈ T ,
and choose g2 with (f, g2) ∈ S. Then we have

0 = [f, h] − [g1, k] − [g2, k] = [f, h1] − [g1, k] + [f, h2] − [g2, k]
︸ ︷︷ ︸

=0

,

and we see that (k, h1) ∈ T ∗. Thus (k, h) ∈ T ∗ + S∗.
For the proof of (v) we proceed similarly.

(ST )∗ =
{

(k, j) ∈ N × L : ∀ (f, l) ∈ ST : [f, j] − [l, k] = 0
}

=
{

(k, j) ∈ N × L : ∀ f, g, l with (f, g) ∈ T, (g, l) ∈ S : [f, j]−[l, k] = 0
}
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T ∗S∗ =
{

(k, j) ∈ N × L : ∃h ∈ M with (k, h) ∈ S∗, (h, j) ∈ T ∗
}

=

=
{

(k, j) ∈ N × L : ∃h ∈ M with

∀ (f1, g1) ∈ T, (g2, l2) ∈ S : [f1, j]−[g1, h] = 0, [g2, h]−[l2, k] = 0
}

Let (k, j) ∈ T ∗S∗, and choose h as in the description of this relation. Let
f, g, l with (f, g) ∈ T and (g, l) ∈ S be given. Then [f, j] − [g, h] = 0 and
[g, h] − [l, k] = 0. Summing up gives (k, j) ∈ (ST )∗.

Assume that domS ⊇ ranT and domS∗ = N , and let (k, j) ∈ (ST )∗ be
given. Choose h with (k, h) ∈ S∗. Let (f1, g1) ∈ T be given, and choose l2
such that (g1, l2) ∈ S. Then (f1, l2) ∈ ST , and hence [f1, j] − [l2, k] = 0. Using
[g1, h] − [l2, k] = 0, gives [f1, j] − [g1, h] = 0. We conclude that (h, j) ∈ T ∗, and
hence that (k, j) ∈ T ∗S∗.

For the first assertion in (vi) note that

(k, 0) ∈ T ∗ ⇐⇒ ∀ (f, g) ∈ T : [f, 0]
︸︷︷︸

=0

−[g, k] = 0 .

The second one follows since

(0, h) ∈ T ∗ ⇐⇒ ∀ (f, g) ∈ T : [f, h] − [g, 0]
︸︷︷︸

=0

= 0 .

❑

The spectra of T and T ∗ are closely related. In the present, purely algebraic,
setting, we have the following result.

LEI45 7.4.4 Lemma. Let T ∈ LR(L) and z, w ∈ C, then

Ez(T ) ⊥ Ew(T ∗), z 6= w .

Proof. We have to show that for all n,m ∈ N0

ker(T − z)n ⊥ ker(T ∗ − w)m, z 6= w . (7.4.1) I16

We use induction. If one of n or m equals zero, (7.4.1) is trivial since by
definition (T − z)0 = (T ∗ − w)0 = I.

Assume now that n,m ≥ 1 are given. Let f ∈ ker(T − z)n and g ∈ ker(T ∗ −
w)m, and choose fi, gj , i, j ∈ N, with fi = 0, i ≥ n, and gj = 0, j ≥ m, such
that

(f, f1), (fi, fi+1) ∈ T − z, (g, g1), (gj , gj+1) ∈ T ∗ − w, i, j ∈ N .

Then we have f1 ∈ ker(T − z)n−1 and g1 ∈ ker(T ∗−w)m−1, and hence [f, g1] =
[f1, g] = 0. It follows that

0 = [f, g1 + wg] − [f1 + zf, g] = (z − w)[f, g] ,

and hence that [f, g] = 0. ❑

In many situations relations occur which are related with their adjoint.
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DEI46 7.4.5 Definition. Let 〈L, [., .]L〉 be an inner product space, let T ∈ LR(L),
and M ∈ GL(2,C). Then we say that T is M -selfadjoint , if

T ∗ = φM (T ) .

�

The following simple fact helps to switch between different cases of M -
selfadjoint relations, M ∈ GL(2,C).

LEI17 7.4.6 Lemma. Let M,N ∈ GL(2,C) and let T ∈ LR(L). Then T is M -
selfadjoint if and only if φN (T ) is NMN−1-selfadjoint.

Proof. We compute

φN (T )∗ = φN (T ∗) = φN
(
φM (T )

)
= φNMN−1

(
φN (T )

)
.

❑

EXI19 7.4.7 Example. Two cases are of particular importance.

(i) A relation A ∈ LR(L) is I-selfadjoint, if and only if A∗ = A. In this case
we say that A is selfadjoint .

(ii) A relation U ∈ LR(L) is
(

0 1
1 0

)

-selfadjoint, if and only if U∗ = U−1. In

this case we will that U is unitary.

The fractional linear transformation which switches between selfadjoint and
unitary relations is known as the Cayley transform: For µ ∈ C \ R, set Cµ :=
(

1 −µ
1 −µ

)

. We have

Cµ · I · (Cµ)−1 =

(
0 1
1 0

)

,

and hence a relation T is selfadjoint, if and only if φCµ
(T ) is unitary. �

7.5 Linear Relations in a Banach space

DEI1 7.5.1 Definition. Let X and Y be topological vector spaces. A linear relation
T ∈ LR(X ,Y) is called closed , if it is a closed subspace of X × Y with respect
to the product topology. The set of all closed linear relations of X to Y will be
denoted as CLR(X ,Y). If X = Y, we will write CLR(X ) instead of CLR(X ,X ).

�

The set of all continuous linear operators of X into Y is denoted by B(X ,Y).
Clearly, the graph of a continuous operator is closed, and hence we may regard
B(X ,Y) as a subset of CLR(X ,Y). Conversely, if X and Y are Banach spaces,
then by the Closed Graph Theorem each T ∈ CLR(X ,Y) with domT = X and
mulT = {0} belongs to B(X ,Y).

First we check how algebraic operations are compatible with closure. The
symbol ‘Clos’ thereby always denotes the closure with respect to the appropriate
topologies.
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7.5.2. Computation rules. VI. Closure: Let X and Y be topological vectorNTI2

spaces, and T ∈ LR(X ,Y).

(i) We have
Clos(T + S) = (ClosT ) + S, S ∈ B(X ,Y) , (7.5.1) I3

Clos(λ·T ) = λ·ClosT, λ ∈ C \ {0}, Clos(T−1) = (ClosT )−1,

φM (ClosT ) = ClosφM (T ), M ∈ GL(2,C), assuming X = Y . (7.5.2) I4

In particular, if T ∈ CLR(X ,Y), then the linear relations

T + S, S ∈ B(X ,Y), λ · T, λ ∈ C \ {0}, T−1,

φM (T ), M ∈ GL(2,C) assuming X = Y ,

are again closed.

(ii) Let in addition W be a topological vector space. If T ∈ CLR(X ,Y) and
S ∈ B(W ,X ), then also T ◦ S is closed. If T ∈ LR(X ,Y), then

Clos(T ◦ S) ⊆ (ClosT ) ◦ S , (7.5.3) I5

where equality holds if Clos(domT ) ⊆ ranS and S−1 ∈ B(ranS,W).

(iii) Let in addition Z be a topological vector space. If T ∈ CLR(X ,Y) and
S ∈ LR(Y,Z) with S−1 ∈ B(Z,Y), then S ◦ T is closed.

Proof. We start with showing (7.5.1). For S ∈ B(X ,Y) define a map

τS :

{
X × Y → X × Y
(x, y) 7→ (x, y + Sx)

Then τS is continuous. Moreover, τS ◦ τ−S = τ−S ◦ τS = id, and hence τS is a
homeomorphism. However, τS(T ) = T + S, and hence

Clos(T + S) = Clos(τS(T )) = τS(ClosT ) = (ClosT ) + S .

The assertions in (7.5.2) are proved with exactly the same argument, using the
homeomorphisms

τλ :

{
X × Y → X × Y
(x, y) 7→ (x, λy)

, λ ∈ C \ {0}, τ :

{
X × Y → Y ×X
(x, y) 7→ (y, x)

,

τM :

{
X × X → X ×X
(x, y) 7→ (γy + δx, αy + βx)

, M =
(
α β
γ δ

)

∈ GL(2,C) .

Next, let S ∈ B(W ,X ) be given. We consider the map

τS :

{
W ×Y → X × Y
(w, y) 7→ (Sw, y)

(7.5.4) I6

Then τS is continuous. We have

T ◦ S =
{
(w, y) ∈ W × Y : ∃x ∈ X : (z, x) ∈ S, (x, y) ∈ T

}
=

=
{
(w, y) ∈ W × Y : (Sx, y) ∈ T

}
= (τS)−1(T ) .

(7.5.5) I13
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Hence, T being closed implies that T ◦S is closed. If T is arbitrary, thus the right
side of (7.5.3) is a closed set which contains T ◦ S, and hence also Clos(T ◦ S).

If S−1 ∈ B(ranS,W), then S is a homeomorphism of W onto ranS. If
Clos(domT ) ⊆ ranS, we certainly may consider T as a linear relation of ranS
to Y . Let τS be the map (7.5.4) where S is considered as a linear relation of W
into ranS instead of X . Then it has an inverse, namely

τS
−1

:

{
ranS × Y → W ×Y

(x, y) 7→ (S−1x, y)

and this map is also continuous. By the computation (7.5.5), we have T ◦ S =

(τS)−1(T ) = τS
−1

(T ), and hence

Clos(T ◦ S) = Clos(τS
−1

(T )) = τS
−1

(ClosT ) = (ClosT ) ◦ S .

Note here that domClosT ⊆ Clos(domT ) ⊆ ranS, and hence the application

of τS
−1

is possible.
Finally, let S ∈ LR(Y,Z) with S−1 ∈ B(Z,Y) and T ∈ CLR(X ,Y) be given.

Then T−1 is closed, and hence also T−1 ◦ S−1 is. This, in turn, implies that
S ◦ T = (T−1 ◦ S−1)−1 is closed. ❑

Let us note that the case λ = 0 really needs to be excluded in (7.5.2): We
have

Clos(0 · T ) = Clos 0domT = 0Clos(domT ), 0 · ClosT = 0domClos T ,

and domClosT ⊆ Clos(domT ), but equality need not hold.
Next, we turn to resolvent and spectrum of a closed linear relation in a

Banach space. Let X be a Banach space, T ∈ CLR(X ), and z ∈ C∞. Then, by
the Closed Graph Theorem,

z ∈ ρ(T ) ⇐⇒
{

(T − z)−1 ∈ B(X ) , z ∈ C

T ∈ B(X ) , z = ∞

For a closed subset K of C∞ and z ∈ C, we set

d(z,K) := inf
w∈K

|z − w| ,

where we understand |z −∞| := ∞.

PRI14 7.5.3 Proposition. Let X be a Banach space and T ∈ CLR(X ). Then ρ(T ) is
an open subset of C∞. We have

‖(T − z)−1‖ ≥ d(z, σ(T ))−1, z ∈ ρ(T ) ∩ C .

The resolvent z 7→ (T − z)−1 is an analytic function of ρ(T ) ∩ C into B(X ). If
∞ ∈ ρ(T ), then lim|z|→∞ z(T − z)−1 = −I.

Proof. First a preparatory observation: Let w, z ∈ C, and set M :=
(

1 0
w−z 1

)

.

By the second part of Lemma 7.2.1 and the Closed Graph Theorem,

φM

({
T ∈ B(X ) : ‖T ‖ < 1

|w − z|
})

⊆ B(X ) .
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Let w ∈ ρ(T ) ∩ C be given, then we have

(T − z)−1 = φ„

0 1
1 −z

«(T ) = φ„

1 0
w−z 1

«

(

φ„

0 1
1 −w

«(T )
)

= φ„

1 0
w−z 1

«

(
(T −w)−1

)

Hence, |w−z| < ‖(T −w)−1‖−1 implies that (T −z)−1 ∈ B(X ). In other words,
ρ(T ) contains the disk centered at w with radius ‖(T − w)−1‖−1. This shows
that w is an inner point of ρ(T ), and that the distance of w to σ(T ) is at least
equal to ‖(T − w)−1‖−1.

The point w = ∞ belongs to ρ(T ) if and only if T is a bounded operator. In
this case the exterior of the disk centered at 0 with radius ‖T ‖ entirely belongs
to ρ(T ). We see that again w is an inner point of ρ(T ).

The resolvent of T depends analytically on z since it satisfies the resolvent
identity. In fact,

d

dz
(T − z)−1 = (T − z)−2, z ∈ ρ(T ) ∩ C .

If T ∈ B(X ), we have the Neumann series

(T − z)−1 = −
∞∑

k=0

1

zk+1
T k, |z| > ‖T ‖ ,

and hence the stated limit relation follows. ❑

7.6 Linear relations in a Krein space

If T is a linear relation in a Krein space, we can say much more about the
relation between T and T ∗. First, a preparatory observation.

LEI21 7.6.1 Lemma. Let K be a Krein space, and T ∈ LR(K). Then T ∗∗ = ClosT .

Proof. With K also the product space K×K endowed with the difference inner
product J., .K is a Krein space. Moreover, it carries the product topology. Hence,

T ∗∗ = T J⊥KJ⊥K = ClosT .

❑

We extend complex conjugation to an involution

. : C∞ → C∞

by setting ∞ := ∞.

PRI18 7.6.2 Proposition. Let K be a Krein space and T ∈ CLR(K). Then

σ(T ∗) =
{
z ∈ C∞ : z ∈ σ(T )

}
.

Proof. First of all note that, since T ∗∗ = T , it is enough to show {z ∈ C∞ : z ∈
ρ(T )} ⊆ ρ(T ∗).
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In the first step we settle the case z = ∞. Assume that ∞ ∈ ρ(T ), i.e.
T ∈ B(K). Let J be a fundamental decomposition of K, and set S := JT (∗)JJ ∈
B(K). Then

[Sx, y] =
[
JT (∗)JJx, y

]
=
(
T (∗)JJx, y

)

J
=
(
Jx, T y

)

J
= [x, T y], x, y ∈ K ,

and hence S ⊆ T [∗]. However, domT = K, and hence T ∗ is an operator. Since
domS = K, it thus follows that S = T [∗]. This shows that ∞ ∈ ρ(T [∗]).

Let z ∈ ρ(T )∩C, so that (T −z)−1 ∈ B(K). Since [(T −z)−1]∗ = (T ∗−z)−1,
the first step gives (T ∗ − z)−1 ∈ B(K). ❑

M -selfadjointness of a relation has consequences for its spectrum.

PRI24 7.6.3 Proposition. Let K be a Krein space, M ∈ GL(2,C), and let T be a
closed M -selfadjoint relation in K.

(i) We have
z ∈ σ(T ) ⇐⇒ φM (z) ∈ σ(T ) .

(ii) ????????? If z ∈ σp(T ) and ker(T − z) or mulT , respectively, is nonde-

generated, then z = φ−1
M (z), and z is a semi-simple eigenvalue.

(iii) ????????? If z 6∈ φM (R∞), then span(Ez(T )∪EφM (z)(T )) is nondegen-
erated.

Proof. The first assertion follows immediately by combining Proposition 7.6.2
with the Spectral Mapping Theorem for fractional linear transformations: We
have z ∈ σ(T ) if and only if z ∈ σ(T ∗). However, σ(T ∗) = σ(φM (T )) =
φM (σ(T )).

insert proof ❑

normal eigenvalues



150 CHAPTER 7. LINEAR RELATIONS



Chapter 8

The Riesz-Dunford

functional calculus

In the previous chapter we had endowed C∞ with the analytic structure {φ1, φ2}
where φj are the charts (7.2.5). A more natural way of considering C∞ as an an-
alytic manifold is to enrich this analytic structure by taking all fractional linear
transformations as charts. Clearly, the analytic structure {φ1, φ2} is isomorphic
to the analytic structure given by the collection of charts

{

φM : C∞ \ {φ−1
M (∞)} → C with M ∈ GL(2,C)

}

.

8.1 An algebra of functions

Let K be a nonempty closed (and hence compact) subset of C∞, and consider
the set H(K) of all functions F which are defined and analytic on some open
subset of C∞ which contains K, i.e.

H(K) :=
⋃

O open
K⊆O

H(O) . (8.1.1) J27

Note that the union (8.1.1) is a disjoint union, since equality of functions includes
equality of domains. If F ∈ H(K), we will generically denote the domain of F
by OF .

On H(K) we define a relation ‘∼’ as

F ∼ G ⇐⇒ ∃O open : K ⊆ O ⊆ OF ∩OG and F |O = G|O

It is obvious that ‘∼’ is an equivalence relation.

DEJ4 8.1.1 Definition. Let K be a closed subset of C∞. Then we denote by H(K)
the factor set of H(K) with respect to ∼, i.e.

H(K) :=

(
⋃

O open
K⊆O

H(O)

)/

∼

151
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and refer to H(K) as the algebra of germs of analytic functions on K. If F ∈
H(K), we denote the equivalence class which contains the element F by F .
Moreover, we let π denote the canonical projection of H(K) onto H(K). �

8.1.2. The set H(K). I. Algebraic structure:NRJ6

(a) Algebra operations: The pointwise algebraic operations on H(O) give rise
to algebraic operations on H(K); one only has to take care of the respective
domains. Explicitly, we define (λ ∈ C)

+ :

{
H(K)×H(K) → H(K)

(F,G) 7→ F |OF ∩OG
+G|OF ∩OG

, λ· :

{
H(K) → H(K)

F 7→ λF

· :

{
H(K)×H(K) → H(K)

(F,G) 7→ F |OF ∩OG
·G|OF ∩OG

Clearly,

F1 ∼ F2, G1 ∼ G2 =⇒ F1 + F2 ∼ G1 +G2

λ · F1 ∼ λ · F2

F1 · F2 ∼ G1 ·G2

and hence algebraic operations ‘+’, ‘λ·’, and ‘·’ are well-defined on H(K) by

F +G := F +G, λ · F := λ · F , F · G := F ·G, F,G ∈ H(K), λ ∈ C .

It is elementary to check that H(K) becomes a C-algebra when endowed with
these operations; we will not carry out the details.

(b) The algebra H(K) as a direct limit: Let us observe that H(K) is the direct
limit of the algebras H(O): As an index set we take {O ⊆ C∞ : O open,K ⊆ O}.
This set is directed by set-theoretic inclusion, namely

O1 � O2 :⇐⇒ O1 ⊇ O2 ,

and for each pair O1 � O2 we have the restriction map

ρO1

O2
:

{
H(O1) → H(O2)

F 7→ F |O2

Clearly, these maps are algebra homomorphisms and satisfy ρO2

O3
◦ ρO1

O2
= ρO1

O3

whenever O1 � O2 � O3. Moreover, for each O, we have an algebra homomor-
phism of H(O) into H(K), namely the map π ◦ ιO where ιO : H(O) → H(K) is
the set-theoretic inclusion map. Whenever O1 � O2, these maps satisfy

H(O1)
ρ

O1
O2 //

π◦ιO1 $$H
HH

HH
HH

HH
H(O2)

π◦ιO2zzvvv
vv

vv
vv

H(K)

It is straightforward to check that for each C-algebra A together with algebra
homomorphisms ϕO : H(O) → A satisfying ϕO2 ◦ ρO1

O2
= ϕO1 , O1 � O2, there
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exists a unique algebra homomorphism ψ : H(K) → A with

H(O1)
ρ

O1
O2 //

π◦ιO1 $$H
HH

HH
HH

HH

ϕO1

%%

H(O2)

π◦ιO2zzvvv
vv

vv
vv

ϕO2

yy

H(K)

ψ

���
�
�

A

This, however, is just the defining property of a direct limit. Hence, H(K)
together with the maps π ◦ ιO is the direct limit lim−→O

H(O) in the category of

C-algebras. Let us note that, also if we consider H(O) and H(K) only as linear
spaces or merely as sets, still H(K) = lim−→O

H(O) in the respective category.

(c) Composition: Let K be a closed subset of C∞, and D ⊆ C∞ openwith K ⊆
D. Moreover, let φ ∈ H(D,C∞) be injective, and set K̃ := φ(K), D̃ := φ(D).
Then K̃ is a closed subset of C∞, D̃ is an open, and K̃ ⊆ D̃. If F ∈ H(K̃), the
composite F ◦φ belongs to H(K). Clearly, F1 ∼ F2 implies that F1 ◦φ ∼ F2 ◦φ,
and hence a map ◦φ : H(K̃) → H(K) is well defined by

◦φ : F 7→ F ◦ φ, F ∈ H(K̃) .

It is easy to check that ◦φ is an algebra homomorphism.
The map φ−1 belongs to H(D̃,D), and clearly ◦φ−1 is inverse to ◦φ. Thus

we have mutually inverse algebra isomorphisms

H(K̃)

◦φ
,,
H(K)

◦φ−1

ll

�
8.1.3. The set H(K). II. Topologically: As we observed above, H(K) is as a linearNRJ8
space the direct (or ‘inductive’) limit of the linear spaces H(O) coming together
with the restriction maps ρO1

O2
. The spaces H(O) carry a locally convex vector

topology, namely the topology of locally uniform convergence. The restriction
maps are clearly continuous. Hence, the linear space H(K) can be topologized
naturally. Namely, there exists a finest locally convex vector topology on H(K)
such that all maps π ◦ ιO continuous. This topology has the property that a
linear map ϕ of H(K) into some locally convex vector space X is continuous if
and only if all compositions ϕ ◦ π ◦ ιO are continuous.

Let us remark that, if O1 � O2 but O1 6= O2, the initial topology on H(O1)
with respect to the map ρO1

O2
is strictly coarser than the topology of H(O1). In

the language of topological vector spaces this means that H(K) is not the strict
inductive limit of the spaces H(O). �

With the topology introduced above, H(K) is a locally convex vector space.

Hausdorff
Next, we show that multiplication with a fixed function and composition are

compatible with this topology:
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LEJ26 8.1.4 Lemma. Let K be a closed subset of C∞.

(i) For each fixed G ∈ H(K) the map

·G :

{
H(K) → H(K)

F 7→ F ·G

is continuous.

(ii) Let D ⊆ C∞ be open with K ⊆ D, and let φ ∈ H(D,C∞) be injective.
Then the map ◦φ : H(φ(K)) → H(K) is a homeomorphism.

Proof. Let G ∈ H(K) be fixed, and let an open set O ⊆ C∞ with K ⊆ O be
given. Then we have

H(O)
π◦ιO //

ρO
O∩OG

��

H(K)
·G // H(K)

H(O ∩OG) ·G
// H(O ∩OG)

π◦ιO∩OG

OO

Thus (·G) ◦ (π ◦ ιO) is a composition of continuous maps, and hence itself
continuous. This shows that ·G is continuous.

Let φ be given according to (ii), and let Õ be an open sert with K̃ ⊆ Õ. If
Fn → F in H(Õ), then also Fn ◦ φ→ F ◦ φ in H(φ−1(Õ)), and hence Fn ◦ φ→
F ◦ φ in H(K). This shows that (◦φ) ◦ (π ◦ ιÕ) is continuous. Since the same

argument applies with ◦φ−1, it follows that ◦φ is a homeomorphism. ❑

8.1.5. The set H(K). III. H(K) vs. C(K),C(z):NRJ10

(a) Relation with C(K): If F ∈ H(K), then the restriction F |K is a continuous
function on K. Moreover, if F1 ∼ F2, then F1|K = F2|K . Hence, the restriction
map of H(K) into C(K) induces a map ρK of H(K) into C(K).

It is clear that ρK is an algebra homomorphism. Moreover, it is continuous
when C(K) is endowed with the topology of uniform convergence. This follows
since locally uniform convergence in H(O), K ⊆ O, implies uniform convergence
on K, and hence each map ρK ◦ (π ◦ ιO) is continuous.

(b) Relation with C(z): Denote by C(z) the set of all rational functions with
complex coefficients. If p ∈ C(z), then p ∈ H(K) if and only if p has no poles
in K. Since the maximal domain of analyticity of a rational function is always
connected, we have p1 ∼ p2 if and only if p1(z) = p2(z), z ∈ C∞. Hence, we have
an injective embedding of {p ∈ C(z) : p no poles on K} into H(K), and will via
this embedding always consider this set as a subspace of H(K). Note that, using
this abuse of language, we can also write (π ◦ ιO)(C(z)∩H(O)) ⊆ C(z)∩H(K).

By Runge’s Theorem, C(z) ∩ H(O) is dense in H(O). This fact transfers to
H(K): C(z) ∩ H(K) is a dense subspace of H(K). To see this, let a nonempty
open subset W of H(K) be given. Then, for each open set O ⊆ C∞, K ⊆ O,
the set (π ◦ ιO)−1(W ) is open in H(O). Since H(K) =

⋃

O(π ◦ ιO)(H(O)), there
exists O with (π ◦ ιO)−1(W ) 6= ∅. Hence, also W ∩ (C(z) ∩ H(K)) 6= ∅.

Let us note that, ρK maps C(z) ∩ H(K) onto C(z) ∩ C(K), and that this
map is injective if and only if K is infinite. �
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8.1.6. The set H(K). IV. Symmetry: For any subset V of C∞, we defineNRJ29

V # := {z ∈ C∞ : z ∈ V } .

Clearly, V being open or closed implies that V # has the same property. For a
function F : V → C∞, we define a function F# : V # → C∞ as

F#(z) := F (z) .

If V is open, and F is analytic or meromorphic on V , then also F# is analytic
or meromorphic, respectively. Note that (V #)# = V and (F#)# = F .

Let K be a closed subset of C∞. Then the map F 7→ F# induces a conjugate
linear map of H(K) to H(K#). Clearly, F1 ∼ F2 implies that F#

1 ◦ F#
2 , and

hence we obtain a conjugate linear map .# : H(K) → H(K#). Using the explicit
description of a neighbourhood of 0 in an inductive limit, it is straightforward
to check that this map is continuous. Moreover, it is a homeomorphism; its
inverse being given by .# : H(K#) → H(K).

Denote the closed real line by R∞ := R ∪ {∞}. We will often meet the
situation that K is symmetric with respect to R∞, i.e. that K = K#. In this
case, the map .# becomes a homeomorphic conjugate linear involution of H(K)
onto itself.

Using fractional linear transformations, we can also speak of other kinds of
symmetry than with respect to R∞. Let M ∈ GL(2,C) be given. For a set
V ⊆ C∞ and a function F : V → C∞, we set

V 2 := {z ∈ C∞ : φM (z) ∈ V } = φ−1
M (V #), F2(z) := F# ◦ φM , z ∈ V 2 .

In this way we obtain a conjugate linear and homeomorphic map .2 of H(K)
onto H(K2). The inverse of the map .2 constructed with M is given by the

map .2 constructed with M
−1

. To see this, notice that φ#
M = φM , and compute

(
F# ◦ φM

)# ◦ φ
M

−1 = (F#)# ◦ φ#
M ◦ φ

M
−1 = F ◦ φM ◦ φ

M
−1 = F ,

and, moreover remembering that φ
M

−1 = φ
M−1 ,

(
F# ◦ φ

M
−1

)# ◦ φM = (F#)# ◦ φM−1 ◦ φM = F .

If K satisfies K2 = K, we say that K is M -symmetric. In this case .2 becomes
a map of H(K) onto itself. If M−1 = M , then this map is involutory. �

The following result is useful to define elements of H(K) by pasting single
parts.

PRJ9 8.1.7 Proposition. Let K be a closed subset of C∞, and assume that
K1, . . . ,Kn are pairwise disjoint, nonempty, and relatively open subsets of K
with K = K1 ∪ . . . ∪Kn. Then the map

ψ0 :

{
H(K) → H(K1) × . . .×H(Kn)

F 7→ (F, . . . , F )

induces an algebra isomorphism of H(K) onto H(K1) × . . . × H(Kn). This
isomorphism is also a homeomorphism.
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Proof (of Proposition 8.1.7; part 1). It is clear that every element of H(K) also
belongs to H(Ki), and that F1 ∼ F2 in H(K) implies that F1 ∼ F2 in H(Ki).
Hence, if πi denotes the projection of H(Ki) onto H(Ki), there exists an algebra
homomorphism ψ : H(K) → H(K1) × H(Kn) with

H(K)
ψ0 //

π

��

H(K1) × . . .×H(Kn)

π1×...×πn

��
H(K)

ψ
//___ H(K1) × . . .× H(Kn)

Let O ⊆ C∞ be open with K ⊆ O, and denote by ιi,O the set-theoretic inclusion
of H(O) into H(Ki). Moreover, let πi generically denote the projection of a direct
product onto its i-th component. Due to the definition of ψ0 and ψ, we have

H(O)
π◦ιO //

ιO
''PPPPPPPPPPPP

ιi,O

66

H(K)
ψ // H(K1) × . . .× H(Kn)

πi // H(Ki)

H(K)
ψ0

//

π

OO

H(K1) × . . .×H(Kn)
πi //

π1×...×πn

OO

H(Ki)

πi

OO

i.e. πi ◦ ψ ◦ (π ◦ ιO) = πi ◦ ιi,O. It follows that ψ is continuous. ❑

To complete the proof, we need to construct an inverse to ψ. This is based
on two general observations.

Observation 1: Let K be a closed subset of C∞, and K1, . . . ,Kn pairwise dis-
joint, nonempty, and relatively open subsets of K whose union covers K. Then,
for each i ∈ {1, . . . , n}, Ki is a closed subset of C∞. There exist pairwise disjoint
open sets Oi ⊆ C∞, i = 1, . . . , n, such that

Ki = K ∩Oi, i = 1, . . . , n .

To see this, choose open sets Õi ⊆ C∞ with Ki = Õi ∩K. We have

( n⋃

j=1
j 6=i

Oj

)c

∩K = Ki, i = 1, . . . , n , (8.1.2) J32

and hence the sets Ki are closed in C∞. Since C∞ is normal, we can therefore
choose pairwise disjoint open sets Oi with the required property.

Observation 2: Let V1, . . . , Vm be pairwise disjoint, nonempty, and open subsets
of C∞, and set V :=

⋃m
i=1 Vi. Then the map

{
H(V ) → H(V1) × . . .× H(Vm)

F 7→
(
F |V1 , . . . , F |Vm

)
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is invertible. Its inverse is namely given by assigning to a tuple (F1, . . . , Fm) ∈
H(V1) × . . .× H(Vm) the pasted function

F (z) :=







F1(z) , z ∈ V1

...

Fm(z) , z ∈ Vm

(8.1.3) J28

Proof (of Proposition 8.1.7; part 2). Let K and Ki be given according to the
statement, choose pairwise disjoint open sets Oi ⊆ C∞, i = 1, . . . , n, according
to Observation 1, and set O0 :=

⋃n
i=1Oi. It is straightforward to check that a

continuous algebra homomorphism λi : H(Ki) → H(K) is well-defined by the
requirement that for every open set O ⊆ C∞ with K ⊆ O

H(O)

��

F 7→F |O∩Oi // H(O ∩Oi)
F 7→(F,0,...,0) // H(O ∩Oi)×

n∏

j=1
j 6=i

H(Oj)

pasting map (8.1.3)

��

H(Ki)

πi

��

//_______ H(K)

π

��

H
(

(O ∩Oi) ∪
n⋃

j=1
j 6=i

Oj

)
oo

H(Ki)
λi

//_______ H(K)

This definition of λi ensures that the map λ defined as

λ :

{
H(K1) × . . .× H(Kn) → H(K)

(F 1, . . . , Fn) 7→ λ1(F 1) + . . .+ λn(F n)

satisfies λ ◦ ψ = id and ψ ◦ λ = id. ❑

Note that, due to compactness, each decomposition of K into disjoint rela-
tively open subsets is necessarily finite.

Clearly, in the situation of Proposition 8.1.7, each connected component of
K must be entirely contained in one of the subsets Ki. However, the connected
components of K themselves will in general not be suitable since they need not
be open. Also note here thatK may have infinitely many components. However,
the set K is connected if and only if it does not allow a decomposition of the
form used in Proposition 8.1.7.

Let us give some more facts which emphasize the interplay between algebraic
and topological structures.

PRJ5 8.1.8 Proposition. Let K be a closed subset of C∞.

(i) H(K) is an integral domain if and only if K is connected.

(ii) The restriction map ρK : H(K) → C(K) is injective if and only if K
contains no isolated points.
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Proof. If K is not connected, we can write K = K1 ∪ K2 with nonempty,
disjoint, and relatively open subsets K1,K2. By Proposition 8.1.7, we have
H(K) ∼= H(K1) × H(K2), and hence H(K) contains zero divisors. Conversely,
assume that F ,G ∈ H(K)\ {0} and F ·G = 0. Then there exists an open set O,
K ⊆ O, with O ⊆ OF ∩OG and F (z)G(z) = 0, z ∈ O. We may assume without
loss of generality that every connected component of O intersects K; simply by
removing from O all those components which do not intersect K. Let O1 be the
union of all those components where the function F vanishes identically, and
let O2 be the union of all other components. Clearly, O1 and O2 are disjoint
open sets and their union contains K. Since F 6= 0, the set O2 is not empty,
and hence O2 ∩K 6= ∅. On the other hand, on O2 the function G must vanish
identically. Since G 6= 0, O2 cannot cover all of K. Thus also O1 ∩K 6= ∅. It
follows that K is not connected.

Next, we turn to the proof of (ii). Assume first that w is an isolated point of
K. Then K is the disjoint union of the two relatively open sets {w} and K\{w}.
Thus H(K) ∼= H({w})×H(K \{w}). The set H({w}) contains nonzero elements
which vanish at w, e.g. take Fw(z) := z −w if w 6= ∞, or Fw(z) := 1

z if w = ∞.
The element (Fw, 0) ∈ H({w}) × H(K \ {w}) is nonzero, still, its restriction
to K is identically zero. For the converse, assume that K contains no isolated
points, and let F ∈ kerρK . Let Oi, I ∈ I, be those connected components of
OF which intersect K. Each component Oi must intersect K in infinitely many
points. Hence, Oi ∩K has an accumulation point in K. Since Oi ∩K is closed,
remember (8.1.2), each such point lies inside Oi. Since F vanishes on K, it
thus vanishes identically on Oi. The union of all Oi, i ∈ I, covers K, and we
conclude that F = 0. ❑

In view of our later needs, we will now investigate divisibility in H(K). Let
us recall the notion of the divisor df of a meromorphic function f . Let X be an
analytic manifold, f ∈ H(X,C∞), and w ∈ X . If f vanishes identically on some
neighbourhood of w, we set df (w) := +∞. Otherwise, choose a chart φ whose
domain contains w, and let df (w) be the unique integer such that the Laurent
expansion of f ◦ φ−1 at φ(w) is of the form

(f ◦ φ−1)(z) =

∞∑

n=df (w)

an(z − φ(w))n with adf (w) 6= 0 .

In this way, df is a well-defined function of X into Z ∪ {+∞}. Note that, for
each two functions f, g ∈ H(X,C∞) also f · g ∈ H(X,C∞) and df ·g = df + dg.

Now consider a closed subset K of C∞, and let F1, F2 ∈ H(K). If F1 ∼ F2,
then for each w ∈ K we have dF1(w) = dF2(w). Hence, for an element F ∈
H(K), a function dF : K → N0 ∪ {+∞} is well-defined by

dF (w) := dF (w), F ∈ H(K) .

We will call dF the divisor of F .

PRJ7 8.1.9 Proposition. Let K be a closed subset of C∞, K 6= C∞.

(i) Let F ,G ∈ H(K). Then F |G in H(K) if and only dF ≤ dG. An element
F ∈ H(K) is a unit if and only if dF = 0.
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(ii) For each function d : K → N0 with finite support there exists an element
F ∈ H(K) with d = dF . The function F can be chosen to be rational.

(iii) Let M be a nonempty subset of H(K), and assume that for each point
w ∈ K there exists an element F ∈ M with dF (w) < +∞. Set

dM := min
{
dF : F ∈ M

}
,

then dM maps K into N0 and supp dM is finite. There exist finitely many
elements F1, . . . , Fn ∈ M, such that

dM := min
{
dF1 , . . . , dFn

}
. (8.1.4) J31

An element D ∈ H(K) is a greatest common divisor of M in H(K) if and
only if dD = dM. In particular, M has a greatest common divisor.

(iv) Let F ,G ∈ H(K) and assume that

min{dF , dG} = 0 . (8.1.5) J30

Then there exist A,B ∈ H(K) such that A · F +B ·G = 1.

(v) Let M be a nonempty subset of H(K), and assume that for each point
w ∈ K there exists an element F ∈ M with dF (w) < +∞. Moreover, let
D ∈ H(K) be a greatest common divisor of M. Then there exist finitely
many elements F1, . . . , Fn ∈ M and B1, . . . , Bn ∈ H(K) such that

D =
n∑

i=1

Bi · Fi .

Proof. The statement (i) is easy to see. Assume that F |G in H(K), i.e. that
there exists an element H ∈ H(K) with G = H · F . Then, for each w ∈ K,

dG(w) = dH·F (w) = dHF |K(w) = dH |K(w) + dF |K(w) ≥ dF |K(w) = dF (w) .

Conversely, assume that dF ≤ dG. Denote by O1, . . . , On the connected compo-
nents of OF ∩OG which intersect K. Set

Hi(z) :=

{
G(z)
F (z) , z ∈ Oi, F does not vanish identically on Oi

0 , z ∈ Oi, F vanishes identically on Oi

then Hi ∈ H(Oi). If H denotes the element of H(K) obtained by pasting
H1, . . . , Hn by means of Proposition 8.1.7, then G = H · F . Note here that, if
F vanishes identically on Oi, also G does.

If F is a unit in H(K), then dF ≤ d1 = 0. Conversely, if dF = 0, then the
function 1

F is analytic on O := {z ∈ OF : F (z) 6= 0}, and hence belongs to
H(K). Clearly, ( 1

F ) · F = 1.

For the proof of (ii), let d : K → N0 with finite support be given. Since
K 6= C∞, we can choose M ∈ GL(2,C) with φ−1

M (∞) 6∈ K. Let p be the
polynomial

p(z) :=
∏

w∈K

(
z − φM (w)

)d(w)
,
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then p ◦ φM is analytic on C∞ \ {φ−1
M (∞)} and hence belongs to H(K). The

element F := p ◦ φM has the required property.

We come to the proof of (iii). By assumption, for each w ∈ K there exists
an element Fw ∈ M with dFw

(w) 6= 0. Let Ow be the connected component of
OFw

which contains w, then dFw
(z) < +∞ for all z ∈ Ow, and dFw

(z) 6= 0 for
at most finitely many values of z ∈ Ow ∩K. The open sets Ow, w ∈ K, cover K
and by compactness we can extract finitely many points w1, . . . , wm such that
Ow1 ∪ . . . ∪Owm

⊇ K. The function

d0 := min
{
dFw1

, . . . , dFwm

}

maps K into N0 and has finite support. Since dM ≤ d0, it already follows
that dM has finite support. Moreover, since each descending chain of functions
d : K → N0 with finite support must remain constant from some index on, it
follows that we can find elements Fm+1, . . . , Fn ∈ M such that (8.1.4) holds
with Fi := Fwi

, i = 1, . . . ,m, and Fm+1, . . . , Fn.

By (i), an element D ∈ H(K) is a common divisor of M if and only if
dD ≤ dM. We already see that each element D with dD = dM is a greatest
common divisor of M. Assume that dD ≤ dM and that there exists w ∈ K with
dD(w) < dM(w). Choose M ∈ GL(2,C) with φ−1

M (∞) 6∈ K, then the function

F :=
(
φM (z) − φM (w)

)
·D

is a common divisor of M. However, apparently, it is not a divisor of D. We
have shown that D is a greatest common divisor of M if and only if dD = dM.
It remains to note that, by (ii), such elements do exist.

For the proof of (iv), let F ,G ∈ H(K) with (8.1.5) be given. Let O1, . . . , On
be the connected components of OF ∩ OG which intersect K. We are going to
define, for each i ∈ {1, . . . , n}, an open set Õi with Oi ∩ K ⊆ Õi ⊆ Oi and
functions Ai, Bi ∈ H(Oi).

Case 1; F |Oi
= 0: Set Õi := Oi and Ai := 0. Due to (8.1.5), the function G|Oi

is zerofree. Hence, we may set Bi := (G|Oi
)−1. Then, trivially, Ai ·F+Bi ·G = 1

in H(Õi).

Case 2; G|Oi
= 0: Set Õi := Oi and Bi := 0. Due to (8.1.5), the function F |Oi

is zerofree, and we thus may set Ai := (F |Oi
)−1. Again, Ai · F + Bi ·G = 1 in

H(Õi).

Case 3; neither F |Oi
= 0 nor G|Oi

= 0: The function (F |Oi
·G|Oi

)−1 is mero-
morphic in Oi. From (8.1.5) it follows that the set of its poles in K is the
disjoint union of the sets of zeros in K of F and of G. In fact, we have

d(FG)−1(w) = −dF (w) − dG(w) =







−dF (w) , dF (w) > 0

−dG(w) , dG(w) > 0

0 , otherwise

Denote by Hw the principal part of the Laurent expansion of (FG)−1 at w ∈ K,
understanding Hw = 0 if w is not a pole of (FG)−1. Then

FHw ∈ H(Oi), dF (w) > 0 and GHw ∈ H(Oi), dG(w) > 0 .
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The function H := (FG)−1 −∑w∈K Hw is analytic on some open set Õi with

K ∩ Oi ⊆ Õi ⊆ Oi. Note here that in this sum only finitely many summands
are nonzero. Set

Ai := GH +
∑

w∈K
dG(w)>0

GHw, Bi :=
∑

w∈K
dF (w)>0

FHw ,

then Ai, Bi ∈ H(Õi) and Ai · F +Bi ·G = 1 in H(Õi).
As a consequence of (8.1.5), on no set Oi both F |Oi

and G|Oi
can van-

ish identically, and hence we have defined Õi, Ai, Bi, for all i ∈ {1, . . . , n}.
The required elements A,B ∈ H(K) are now obtained by pasting the elements
A1, . . . , An and B1, . . . , Bn, respectively, by means of Proposition 8.1.7.

Finally, we turn to the proof of (v). Due to (iii), it suffices to show that
some greatest common divisor of a finite set F1, . . . , Fn can be represented as a
sum

∑n
i=1 Bi · Fi. To show this, we use induction on n. If n = 1, then D = F1

is a greatest common divisor of {F1}, and the desired representation is trivially
present. Let n > 1, let D be a greatest common divisor of {F1, . . . , Fn}, and
D0 one of {F1, . . . , Fn−1}. By the inductive hypothesis, we find B1, . . . , Bn−1 ∈
H(K) with D0 =

∑n−1
i=1 Bi · Fi. We have

min
{
dD−1D0

, dD−1Fn

}
= 0 ,

and hence find A,B ∈ H(K) with A · (D−1D0) +B · (D−1Fn) = 1. This gives

D = A ·
n−1∑

i=1

Bi · Fi +B · Fn .

❑

8.2 Definition of the functional calculus

For a closed rectifiable path γ : [0, 1] → C and z ∈ C, we denote by n(γj , z) the
winding number of γ around z. Moreover, we agree that n(γ,∞) := 0.

Let γ1, . . . , γn : [0, 1] → C be closed and piecewise smooth paths, and let
K ⊆ C be compact and O ⊆ C open with K ⊆ O. Then we say that the
collection γ1, . . . , γn of paths satisfies (8.2.1) for O,K, if

γj
(
[0, 1]

)
⊆ O \K, j = 1, . . . , n

n∑

j=1

n(γj , z) =

{

0 , z 6∈ O

1 , z ∈ K

(8.2.1) J11

DEJ12 8.2.1 Definition. Let X be a Banach space and T ∈ CLR(X ) with ρ(T ) 6= ∅.
Then we define a map

ΦTRD : H(σ(T )) → B(X )

by the following procedure: If F ∈ H(σ(T )) is given, choose M ∈ GL(2,C)
such that φ−1

M (∞) 6∈ σ(T ), choose finitely many closed piecewise smooth paths
γ1, . . . , γn which satisfy (8.2.1) for φM (OF ) ∩ C, φM (σ(T )), and set

ΦTRD(F ) :=
1

2πi

n∑

j=1

∫

γj

(F ◦ φ−1
M )(ζ) · (ζ − φM (T ))−1 dζ . (8.2.2) J13
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The map ΦTRD is called the Riesz-Dunford functional calculus. �

First of all, we have to justify this definition.

PRJ14 8.2.2 Proposition. Let X be a Banach space, T ∈ CLR(X ) with ρ(T ) 6= ∅,
and F ∈ H(σ(T )). Then there exists M ∈ GL(2,C) such that φ−1

M (∞) 6∈ σ(T ),
and there exist closed piecewise smooth paths γ1, . . . , γn which satisfy (8.2.1)
for φM (OF ) ∩ C, φM (σ(T )). The operator on the right side of (8.2.2) neither
depends on the choice of M and γj subject to these properties, nor on the choice
of the representant F ∈ H(K) of the element F ∈ H(K).

The proof of this proposition is split into several lemmata. First an elemen-
tary but elaborate fact.

LEJ15 8.2.3 Lemma. Let δ > 0 and a paraxial grid of squares with edge length δ be
given. Moreover, let Q be a finite set of squares of this grid, and set

K =
⋃

Q∈Q
Q .

Then the set K is compact and its boundary ∂K is the union of all (closed)
edges with the property that exactly one of the two adjacent squares belongs to
Q.

There exist closed paths γ1, . . . , γn, each of which consists of a finite number
of edges of squares in Q, such that

(i) ∂K =
⋃n
k=1 γk,

(ii) each edge lying in γk is oriented such that the adjacent square in Q lies to
the left,

(iii) no edge appears more than once in one path γj, or appears in two different
paths,

(iv) we have
n∑

k=1

n(γk, z) =

{

0 , z ∈ Kc

1 , z ∈ K̊

Proof. Let w ∈ C. Assume first that w lies on some (closed) edge E with the
stated property. Then, clearly, w ∈ ∂K. Conversely, assume that w ∈ ∂K.
Then w cannot be an inner point of any square of the grid, since the interior
of each square either belongs entirely to K or entirely to Kc. Thus w must be
located on an edge of the grid. If w is not a vertex, then exactly one of the two
adjacent squares belongs to Q. If w is a vertex, then at least one of the four
adjacent squares must belong to Q and at least one of them must not belong to
Q.
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We see that in each case the point w lies on a closed edge E with the required
property that one adjacent square belongs to Q and the other does not. This
shows the required representation of ∂K.

In order to show the existence of paths γ1, . . . , γn with the properties (i) −
(iv), we use induction on the number of squares contained in Q. If Q consists
of only one square, then the assertion is obvious:

Q γ

Assume that a set Q which contains more than one square is given, and that
the assertion of the lemma has already been proved for all sets Q′ with less
elements than Q.

Let Q be the square in Q which has the maximal y-coordinate under all
squares with minimal x-coordinate. Then at least the left and the upper edge
of Q belongs to ∂K:

Case 1; all edges of Q belong to ∂K: Then we are in the situation

Set Q′ := Q \ {Q} and define K ′ correspondingly. Then ∂K = ∂K ′ ∪ ∂Q and
∂K ′ and ∂Q have no edge in common. Applying the inductive hypothesis to Q′

gives paths γ′1, . . . , γ
′
n. Let γ be the (positively oriented) boundary of Q. We

are going to show that {γ′1, . . . , γ′n, γ} are paths with the required properties
(i) − (iv) for the set Q. We already saw that (i) holds, the properties (ii) and
(iii) are obvious. In order to see (iv), it is enough to note that K̊ = K̊ ′∪̇Q̊ and
that the path γ satisfies

n(γ, z) =

{

0 , z 6∈ Q

1 , z ∈ Q̊

Case 2; three edges of Q belong to ∂K: Then we are in one of the two situations
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Again set Q′ := Q \ {Q}, denote by s the edge of Q which does not belong to
∂K liegt, and let σ1, σ2, σ3 be the other edges oriented as

σ1

σ2

σ3

s σ1

σ2

σ3

s

Removing the square Q from Q can change ∂K only in the edges of Q. It
follows that ∂K ′ = (∂K \ {σ1, σ2, σ3}) ∪ {s}. Let again γ′1, . . . , γ

′
n be the paths

the inductive hypothesis gives us for Q′. Then the edge s appears in exactly
one of γ′1, . . . , γ

′
n and oriented such that Q lies to the right. Without loss of

generality, assume that s ∈ γ′1, and write γ′1 as the sequence of the oriented line
segments s, s1, s2, . . . , sm.

Define γ as the sequence of the oriented line segments
σ1, σ2, σ3, s1, s2, . . . , sm. Remember that σ1, σ2, σ3 are oriented such that
Q lies to the left. We are going to show that γ, γ′2, . . . , γ

′
n are required paths

for Q. Again, (i), (ii), and (iii) is obvious. Moreover, we have

n(γ, z) =
1

2πi

∫

γ

1

ζ − z
dζ =

1

2πi

∫

γ1

1

ζ − z
dζ +

1

2πi

∮

∂Q

1

ζ − z
dζ =

=

{

0 , z 6∈ K ′ ∪Q = K

1 , z ∈ K̊ ′ ∪ Q̊

Due to continuity of winding numbers, this also implies that n(γ, z) = 1, z ∈ s.
Altogether, (iv) holds.

Case 3; two sides of Q belong to ∂K and the square right and below of Q belongs
to Q: We are thus in the situation

Let s1, s2, σ1, and σ2 be the right, lower, upper, and left, respectively, edge of
Q. Thereby let s1, s2 be oriented such that Q lies to the right, and let σ1, σ2 be
oriented such that Q lies to the left.
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σ1 s1

σ2

s2

Again let Q′ := Q \ {Q}, then ∂K ′ = (∂K \ {σ1, σ2}) ∪ {s1, s2}. Let γ′1, . . . , γ
′
n

paths for Q′, and assume that s1 appears in γ′1. Since the square right and
below of Q belongs to Q′, the edge which appears in γ′1 after s1 must be s2.
Thus we can write γ′1 as the sequence of oriented lie segments s1, s2, t1, . . . , tm.

Let γ be defined as the sequence of oriented line segments σ1, σ2, t1, . . . , tm.
Then one shows similar as in ‘Case 2’ that γ, γ′2, . . . , γ

′
n are appropriate paths

for Q.

Fall 4; two sides of Q belong to ∂K and the square right and below of Q does
not belong to Q: We are in the situation

σ1

σ2

s2
t1

s1

t2

Set Q′ := Q \ {Q}, then ∂K ′ = (∂K \ {σ1, σ2}) ∪ {s1, s2}. Again let γ′1, . . . , γ
′
n

be paths for Q′.
Assume that all four edges s1, s2, t1, t2 lie on one path, say on γ′1. Then

either

(a) γ′1 = s1, s2, u1, . . . , un, t1, t2, un+1, . . . , um,

or

(b) γ′1 = s1, t2, u1, . . . , un, t1, s2, un+1um.

In the first case, set

γ := σ1, σ2, u1, . . . , un, t1, t2un+1, . . . , um ,

in the second

γ := σ1, σ2, un+1, . . . , um, γ̃ := t2, u1, . . . , un, t1 .

Assume that the four edges s1, s2, t1, t2 are distributed over two different paths,
say s1 ∈ γ′1 and t1 ∈ γ′2. Then either

(c) γ′1 = s1, s2, u1, . . . , un, γ
′
2 = t1, t2, v1, . . . , vm,

or

(d) γ′1 = s1, t2, u1, . . . , un, γ
′
2 = t1, s2, v1, . . . , vm.

In the first case, set
γ := σ1, σ2, u1, . . . , un ,

in the second
γ := σ1, σ2, v1, . . . , vm, t1, t2, u1, . . . , um .

Corresponding to which case of (a), (b), (c) or (d) applies, consider the sets of
paths
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(a) γ, γ′2, . . . , γ
′
n,

(b) γ, γ̃, γ′2, . . . , γ
′
n,

(c) γ, γ′2, . . . , γ
′
n,

(d) γ, γ′3, . . . , γ
′
n.

These sets of paths satisfy (i)–(iii). In the cases (a) and (c) one shows in the
same way as above that also (iv) holds. In case (b) we have

n(γ1, z) = n(γ′, z) + n(γ, z) −
∮

∂Q

1

ζ − z
dζ, z ∈ K̊ ′ ∩ Q̊ ,

and hence

n(γ, z) + n(γ′, z) +

n∑

k=2

n(γk, z) =

n∑

k=1

n(γn, z) +

∮

∂Q

1

ζ − z
dζ, z ∈ K̊ ′ ∩ Q̊ ,

In case (d) we have

n(γ, z) = n(γ1, z) + n(γ2, z) +

∮

∂Q

1

ζ − z
dζ, z ∈ K̊ ′ ∩ Q̊ ,

and hence

n(γ, z) +
n∑

k=3

n(γk, z) =
n∑

k=1

+

∮

∂Q

1

ζ − z
dζ, z ∈ K̊ ′ ∩ Q̊ .

In both cases (iv) follows again:

γ′

γ

(b)

γ1

γ1

γ2

γ

(d)

❑

COJ16 8.2.4 Corollary. Let K ⊆ C be compact, and O ⊆ C open with K ⊆ O. Then
there exist closed piecewise smooth paths γ1, . . . , γn : [0, 1] → C which satisfy
(8.2.1) for O,K.
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Proof. We apply Lemma 8.2.3 with δ := 1
2d(O

c,K) and the set Q of all squares
whose closure intersects K. This furnishes us with paths γ1, . . . , γn. Since

K ⊆ Int
( ⋃

Q∈Q
Q
)

⊆
⋃

Q∈Q
Q ⊆ O ,

these paths satisfy (8.2.1). ❑

Proof (of Proposition 8.2.2; Part 1). In this part of the proof we show existence
of M , γj , and the integral in (8.2.2), and independence of this integral from the
choice of γj when M is fixed.

For each point w ∈ C∞, we can find a fractional linear transformation which
maps this point to ∞. Since ρ(T ) 6= ∅, we can thus choose φM with φ−1

M (∞) ∈
ρ(T ). Corollary 8.2.4 applied with the compact set φM (σ(T )) and the open set
φM (OF ) ∩ C gives paths with the required properties.

By the Spectral Mapping Theorem for φM , the integrand in (8.2.2) is an
analytic function on

O := (φM (OF ) ∩ C) \ φM (σ(T )) .

In particular, the integral exists.

Let M ∈ GL(2,C) with φ−1
M (∞) ∈ ρ(T ) be fixed, and assume that γ1, . . . , γn

and γ′1, . . . , γ
′
m are two collections of piecewise smooth paths which satisfy (8.2.1)

for φM (OF ) ∩ C, φM (σ(T )). Then

n∑

k=1

n(γk, z) −
m∑

k=1

n(γ′k, z) = 0, z 6∈ O ,

and we obtain from the Cauchy Integral Theorem that

n∑

k=1

∫

γk

(F ◦φ−1
M )(ζ)·(ζ−φM (T ))−1 dζ−

m∑

k=1

∫

γ′
k

(F ◦φ−1
M )(ζ)·(ζ−φM (T ))−1 dζ = 0 .

❑

The fact that the right side of (8.2.2) does not depend on the choice of the
chart φM will be deduced from its below, more explicit, representation.

LEJ17 8.2.5 Lemma. Let F ∈ H(σ(T )), and let M ∈ GL(2,C) be such that φ−1
M (∞) 6∈

σ(T ). Assume that α1, . . . , αn : [0, 1] → C∞ are closed piecewise smooth paths
with

αj
(
[0, 1]

)
⊆ OF \

(
σ(T ) ∪ {∞, φ−1

M (∞)}
)
, j = 1, . . . , n ,

and

n∑

j=1

n(φM ◦ αj , z) =







0 , z 6∈ φM (OF )

1 , z ∈ φM (σ(T ))

0 , z = φM (∞) and ∞ 6∈ σ(T )

(8.2.3) J18
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Then the paths φM ◦αj, j = 1, . . . , n, satisfy (8.2.1) for φM (OF )∩C, φM (σ(T )),
and

1

2πi

n∑

j=1

∫

φM◦αj

(F ◦ φ−1
M )(ζ) · (ζ − φM (T ))−1 dζ =

=







1
2πi

n∑

j=1

∫

αj

F (z) · (z − T )−1 dz , ∞ 6∈ σ(T )

F (∞)I + 1
2πi

n∑

j=1

∫

αj

F (z) · (z − T )−1 dz , ∞ ∈ σ(T )

(8.2.4) J19

Proof. As a preliminary observation, let us compute the derivative of a fractional
linear transformation:

φ′„α β
γ δ

«(z) =
d

dz

(αz + β

γz + δ

)

=
α(γz + δ) − (αz + β)γ

(γz + δ)2
=

detM

(γz + δ)2
.

Let now F , M , and αj be given according to the assumptions of the present
lemma. The fact that γj := φM ◦ αj , j = 1, . . . , n, are closed piecewise smooth
paths and satisfy (8.2.1) for φM (OF ) ∩ C, φM (σ(T )) is clear.

Consider a point z ∈ C∞ \ {∞, φ−1
M (∞)}. Then

z = φM−1(φM (z)) =
δφM (z) − β

−γφM (z) + α
,

and −γφM (z) + α 6= 0. Using Lemma 7.2.1, we can compute

(
φM (T ) − φM (z)

)−1
= φ„

0 1
1 −φM (z)

«

(
φM (T )

)
= φ„

0 1
1 −φM (z)

«

M
(T ) =

= φ„

γ δ
α−φM (z)γ β−φM(z)δ

«(T ) =

=
γ

α− φM (z)γ
+

detM

(α− φM (z)γ)2
·
(

T +
β − φM (z)δ

α− φM (z)γ
︸ ︷︷ ︸

=−φ
M−1(φM (z))=−z

)−1

=

=
γ

α− φM (z)γ
+

detM

(α − φM (z)γ)2
(T − z)−1 .

Since φ−1
M = φ„

δ −β
−γ α

«, we have

detM

(α− γφM (z))2
= (φ−1

M )′
(
φM (z)

)
,
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and obtain
∫

γj

(F◦φ−1
M )(ζ) · (ζ − φM (T ))−1 dζ =

=

∫ 1

0

F (αj(t)) ·
(
φM (αj(t)) − φM (T )

)−1 · φ′M (αj(t))α
′
j(t) dt =

=

∫ 1

0

F (αj(t)) ·
γ

γφM (αj(t)) − α
· φ′M (αj(t))α

′
j(t) dt+

+

∫ 1

0

F (αj(t)) · (φ−1
M )′(φM (αj(t)))(αj(t) − T )−1 · φ′M (αj(t))α

′
j(t) dt =

=

∫

γj

(F ◦ φ−1
M )(ζ) · γ

γζ − α
dζ +

∫

αj

F (z) · (z − T )−1 dz . (8.2.5) J25

The second summand in this relation leads to the sum on the right side of
(8.2.4). We need to have a closer look at the first summand in (8.2.5). If γ = 0,
it vanishes. However, in this case, we have φM (∞) = ∞ and hence ∞ 6∈ σ(T ).
Thus (8.2.4) holds.

Assume that γ 6= 0 and α
γ 6∈ φM (OF ). Then the integrand in the first sum-

mand in (8.2.5) is analytic in φM (OF )∩C. By (8.2.3) the Cauchy Integral The-
orem applies, and it follows that the integral vanishes. However, αγ 6∈ φM (OF )

just means that ∞ 6∈ OF , and hence in particular ∞ 6∈ σ(T ). Again (8.2.4)
follows.

Assume that γ 6= 0 and α
γ ∈ φM (OF ), i.e. ∞ ∈ OF . Then we use the Cauchy

Integral Formula and (8.2.3) to evaluate

n∑

j=1

1

2πi

∫

γj

(F ◦ φ−1
M )(ζ) · 1

ζ − α
γ

dζ =

n∑

j=1

n(γj ,
α

γ
) · F (φ−1

M (
α

γ
))

=

{

0 , ∞ 6∈ σ(T )

F (∞)I , ∞ ∈ σ(T )

The desired equality (8.2.4) follows also in this case. ❑

LEJ20 8.2.6 Lemma. Let F ∈ H(σ(T )) be given, and let M,N ∈ GL(2,C) be
such that φ−1

M (∞), φ−1
N (∞) 6∈ σ(T ). Then there exist piecewise smooth paths

α1, . . . , αn : [0, 1] → C∞ which have the properties required in Lemma 8.2.5 for
both matrices M and N in the same time.

Proof. First we show a preliminary observation on winding numbers, namely:
Let G1, G2 ⊆ C be open, ψ : G1 → G2 analytic and bijective, and γ1, . . . , γn :
[0, 1] → G1 closed piecewise smooth paths in G1 with

n∑

j=1

n(γj , z) = 0, z 6∈ G1 .

Then
∑n

j=1 n(ψ ◦ γj , ψ(z)) =
∑n

j=1 n(γj , z), z ∈ G1. To see this, compute

∫

ψ◦γj

1

ζ − ψ(z)
dζ =

∫ 1

0

1

ψ(γj(t)) − ψ(z)
ψ′(γj(t))γ

′
j(t) dt =

∫

γj

ψ′(ζ)
ψ(ζ) − ψ(z)

dζ .
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By the Theorem of Logarithmic Residues, thus

n∑

j=1

n(ψ ◦ γj , ψ(z)) =

n∑

j=1

1

2πi

∫

γj

ψ′(ζ)
ψ(ζ) − ψ(z)

dζ =

n∑

j=1

n(γj , z) .

Now we turn to the situation of the present lemma, i.e. assume that F , M , and
N , are given. We apply Corollary 8.2.4 with

O :=

{

φM (OF ) \ {∞, φM (∞), φM (φ−1
N (∞))} , ∞ 6∈ σ(T )

φM (OF ) \ {∞, φM (φ−1
N (∞))} , ∞ ∈ σ(T )

, K := φM (σ(T )) .

This gives paths γ1, . . . , γn. Set αj := φ−1
M ◦ γj , then

αj
(
[0, 1]

)
⊆ OF \

(
σ(T ) ∪ {φ−1

M (∞),∞, φ−1
N (∞)}

)
,

n∑

j=1

n(φM ◦ αj , z) =

n∑

j=1

n(γj , z) =







0 , z 6∈ φM (OF )

1 , z ∈ φM (σ(T ))

0 , z = φM (∞) and ∞ 6∈ σ(T )

0 , z = φM (φ−1
N (∞))

In particular, the paths αj satisfy all requirements of Lemma 8.2.5 for the matrix
M .

The map φN ◦ φ−1
M is an analytic bijection of C \ {φM (φ−1

N (∞))} onto C \
{φN (φ−1

M (∞))}, and we have φN ◦αj = (φN ◦φ−1
M ) ◦ γj . The above preliminary

observation gives

n∑

j=1

n
(
φN ◦ αj , φN (φ−1

M (z))
)

=

n∑

j=1

n(γj , z) ,

and in turn

n∑

j=1

n
(
φN ◦ αj , w) =







0 , w 6∈ φN (OF )

1 , w ∈ φN (σ(T ))

0 , w = φN (∞) and ∞ 6∈ σ(T )

0 , w = φN (φ−1
M (∞))

The last line thereby follows since
∑n

j=1 n
(
φN ◦ αj , w) is a continuous function

of w, and since n(γj , z) = 0 when z lies in the unbounded component of C \
⋃n
j=1 γj([0, 1]). We see that the paths αj also satisfy all requirements of Lemma

8.2.5 for the matrix N . ❑

Proof (of Proposition 8.2.2; Part 2). Next we show that the right side of (8.2.2)
does not depend on the choice of M . Let M and N be given with
φ−1
M (∞), φ−1

N (∞) 6∈ σ(T ). Choose paths αj according to Lemma 8.2.6. Then,
by Lemma 8.2.5, the right sides of (8.2.2) with M and φM ◦αj on the one hand,
and with N and φN ◦ αj on the other coincide.

In order to finish the proof of Proposition 8.2.2, it remains to show that the
right side of (8.2.2) does not depend on the choice of the representant. Assume
that F1 ∼ F2, i.e. F1|O = F2|O for some open set O with σ(T ) ⊆ O. Choose
M ∈ GL(2,C) with φ−1

M (∞) 6∈ σ(T ) and choose paths which satisfy (8.2.1) for
φM (O) ∩ C, φM (σ(T )). Then these paths may be used in (8.2.2) for both F1

and F2. It follows that the right sides of (8.2.2) are the same when buildt with
F1 or F2. ❑
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8.3 Properties of ΦT
RD

In the below theorem we collect the main properties of the Riesz-Dunford func-
tional calculus.

From now on we will often drop explicit distinction between functions F ∈
H(K) and equivalence classes F ∈ H(K). For example, we will often write
ΦTRD(F ) when F ∈ H(K).

THJ21 8.3.1 Theorem. Let X be a Banach space and T ∈ CLR(X ) with ρ(T ) 6= ∅.

(i) The map ΦTRD is a continuous algebra homomorphism of H(σ(T )) into
B(X ).

(ii) Let F ∈ C(z) ∩ H(σ(T )), and write

F (z) = a+

dF (∞)
∑

k=1

bkz
k +

∑

w∈C

dF (w)
∑

k=1

cw,k
(z − w)k

with a, bk, cw,k ∈ C. Then

ΦTRD(F ) = aI +

dF (∞)
∑

k=1

bkT
k +

∑

w∈C

dF (w)
∑

k=1

cw,k(T − w)−k .

(iii) Let M ∈ GL(2,C) and G ∈ H(σ(φM (T ))). Then G ◦ φM ∈ H(σ(T )) and
we have

ΦTRD(G ◦ φM ) = Φ
φM (T )
RD (G) .

In particular, if φ−1
M (∞) 6∈ σ(T ), then ΦTRD(φM ) = φM (T ).

(iv) The Spectral Mapping Theorem: Whenever F ∈ H(σ(T )), we have

σ(ΦTRD(F )) = F (σ(U)) .

(v) Let F ∈ H(σ(T )) and G ∈ H(σ(ΦTRD(F ))). Then G ◦ F ∈ H(σ(T )), and
we have

ΦTRD(G ◦ F ) = Φ
ΦT

RD(F )
RD (G) .

If G(z) =
∑∞

n=−∞ an(z − z0)
n is a Laurent series whose domain of con-

vergence contains σ(ΦTRD(F )), then the series
∑∞

n=−∞ an(Φ
T
RD(F ) − z0)

n

converges in the norm of B(X ), and its sum is equal to ΦTRD(G ◦ F ).

(vi) Let S ∈ B(X ), and let O ⊆ C∞ be open with σ(T ) ⊆ O. Then we have
S(T −w)−1 = (T −w)−1S, w ∈ O ∩ ρ(T ) ∩ C, if and only if SΦTRD(F ) =
ΦTRD(F )S, F ∈ H(σ(T )).

Before we start the proof of this theorem, let us note that the assertion in
item (iii) is not a particular case of item (v): in (iii) we do not require that
φM ∈ H(σ(T )).

Proof.
Step 1; Compatibility with ‘+’, ‘λ·’, ‘·’: Fix M ∈ GL(2,C) with φ−1

M (∞) 6∈ σ(T ).
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The fact that ΦTRD(λF ) = λΦTRD(F ) is obvious. Let F,G ∈ H(σ(T )) be given.
Choose paths which satisfy (8.2.1) for

φM (OF ) ∩ φM (OG) ∩ C, φM (σ(T )) ,

then these paths may be used in the definition of both ΦTRD(F ) and ΦTRD(G).
It follows that

ΦTRD(F +G) = ΦTRD(F ) + ΦTRD(G) .

Multiplicativity is not so straightforward. First choose paths γ1, . . . , γn which
satisfy (8.2.1) for φM (OF )∩ φM (OG)∩ C, φM (σ(T )). Once this is done, choose
paths γ′1, . . . , γ

′
m which satisfy (8.2.1) for

O′ :=
⋃
{

connected components of φM (OF ) ∩ φM (OG) ∩ C
which intersect φM (σ(T ))

}

, φM (σ(T )) .

We use γj to compute ΦTRD(F ), and γ′l to compute ΦTRD(G). Doing so, gives
(for abbreviation set f(z) := (F ◦ φ−1

M )(z) and g(z) := (G ◦ φ−1
M )(z))

ΦTRD(F ) · ΦTRD(G) =

=
1

2πi

n∑

j=1

∫

γj

f(ζ)(ζ − φM (T ))−1 dζ · 1

2πi

m∑

l=1

∫

γ′
l

g(λ)(λ − φM (T ))−1 dλ =

=
( 1

2πi

)2
n∑

j=1

m∑

l=1

∫

γj

∫

γ′
l

f(ζ)g(λ) · (ζ − φM (T ))−1(λ− φM (T ))−1 dλ dζ =

=
( 1

2πi

)2
n∑

j=1

m∑

l=1

∫

γj

∫

γ′
l

f(ζ)g(λ)
(ζ − φM (T ))−1 − (λ− φM (T ))−1

λ− ζ
dλ dζ =

=
1

2πi

n∑

j=1

∫

γj

f(ζ)(ζ − φM (T ))−1 ·
( 1

2πi

m∑

l=1

∫

γ′
l

g(λ)

λ− ζ
dλ
)

dζ+

+
1

2πi

m∑

l=1

∫

γ′
l

g(λ)(λ− φM (T ))−1 ·
( 1

2πi

n∑

j=1

∫

γj

f(ζ)

ζ − λ
dζ
)

dλ .

If ζ ∈ ⋃nj=1 γj([0, 1]), then ζ 6∈ O′. Thus, the inner integral in the first summand
evaluates as

1

2πi

m∑

l=1

∫

γ′
l

g(λ)

λ− ζ
dλ = g(ζ)

m∑

l=1

n(γ′l , ζ) = 0 .

If λ ∈ ⋃ml=1 γl([0, 1]), then λ lies in the same connected component of O′ as
some point of φM (σ(T )), and hence

∑n
j=1 n(γj , λ) = 1. The inner integral in

the second summand thus evaluates as

1

2πi

n∑

k=1

∫

γk

f(ζ)

ζ − λ
dζ = f(λ)

n∑

j=1

n(γj , λ) = f(λ) .

Together, we obtain ΦTRD(F ) · ΦTRD(G) = ΦTRD(FG).
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Step 2; Computation of ΦTRD(zn ◦ φM ): Let M ∈ GL(2,C) be such that
φ−1
M (∞) 6∈ σ(T ), and let n ∈ N0. In order to compute ΦTRD(zn ◦ φM ), we

use the chart φM and the path γ(t) := 2‖φM (T )‖eit, t ∈ [0, 2π]. This gives

ΦTRD(zn ◦ φM ) =
1

2πi

∫

γ

ζn · (ζ − φM (T ))−1 dζ .

The Neumann series (ζ − φM (T ))−1 =
∑∞

k=0
1

zk+1φM (T )k converges uniformly
on γ, and hence

1

2πi

∫

γ

ζn(ζ − φM (T ))−1 dζ =
1

2πi

∫

γ

∞∑

k=0

ζn−k−1φM (T )k dζ =

=
∞∑

k=0

( 1

2πi

∫

γ

ζn−k−1 dζ
)

φM (T )k = φM (T )n .

We see that ΦTRD(zn ◦ φM ) = φM (T )n. Note that, in particular, ΦTRD(1) = I.

Step 3; Rational functions: Let F ∈ C(z) ∩ H(σ(T )) be given, and write F as
in the statement of (ii). We already know that ΦTRD(a) = aI. If the first sum
appears, i.e. if dF (∞) > 0, we must have ∞ ∈ ρ(T ). Hence, we obtain from the
computation in Step 2 that

ΦTRD(zk) = ΦTRD(zk ◦ φI) = T k .

Consider a summand 1
(z−w)k . Again, occurance of such a term in the repre-

sentation of F implies that w ∈ ρ(T ), and hence we may apply Step 2 with

M :=
(

0 1
1 −w

)

. This gives

ΦTRD

( 1

(z − w)k

)

= ΦTRD

(

zk ◦ φ„

0 1
1 −w

«

)

= φ„

0 1
1 −w

«(T )k = (T − w)−k .

Step 4; Continuity: In order to see continuity of ΦTRD, let an open set O with
σ(T ) ⊆ O be given, and consider the map ΦTRD ◦ (π ◦ ιO) : H(O) → B(X ). Let
Fn, F ∈ H(O) with Fn → F locally uniformly. If M ∈ GL(2,C) and paths γj
are paths which satisfy (8.2.1) for φM (O) ∩ C, φM (σ(T )), then these paths are
suitable forcomputing all operators ΦTRD(Fn), n ∈ N, and ΦTRD(F ). However,
Fn ◦ φ−1

M converges to F ◦ φ−1
M uniformly on

⋃n
j=1 γj([0, 1]), and hence

(Fn ◦ φ−1
M )(ζ) · (ζ − φM (T ))−1 → (F ◦ φ−1

M )(ζ) · (ζ − φM (T ))−1

in B(X ) uniformly on
⋃n
j=1 γj([0, 1]). Thus, ΦTRD(Fn) → ΦTRD(F ) in B(X ).

Step 5; Proof of (iii): Assume that M and G are given according to (iii). We
have σ(φM (T )) = φM (σ(T )) and OG◦φM

= φ−1
M (OG). Hence indeed G ◦ φM ∈

H(σ(T )). Choose N ∈ GL(2,C) and paths γj with

φ−1
N (∞) 6∈ σ(T ), γj satisfy (8.2.1) for φN (OG◦φM

) ∩ C, φN (σ(T )) ,
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i.e. N and γj suitable for the computation of ΦTRD(G ◦ φM ). We have

φ−1
NM−1(∞) = φM (φ−1

N (∞)) 6∈ φM (σ(T )) = σ(φM (T )) ,

and
φNM−1(OG) = φN (φ−1

M (OG)) = φN (OG◦φM
) ,

φNM−1

(
σ(φM (T ))

)
= (φN ◦ φM−1 )

(
φMσ((T ))

)
= φN (σ(T )) .

Hence, the matrix NM−1 and the paths γj are suitable to compute Φ
φM (T )
RD (G).

Doing so gives

ΦTRD(G ◦ φM ) =
1

2πi

n∑

j=1

∫

γj

(
(G ◦ φM ) ◦ φ−1

N

)
(ζ) · (ζ − φN (T ))−1 dζ =

=
1

2πi

n∑

j=1

∫

γj

(G ◦ φNM−1)(ζ) ·
(
ζ − φNM−1(φM (T ))

)−1
dζ = Φ

φM (T )
RD (G) .

Step 6; The Spectral Mapping Theorem: We start with showing the inclusion
‘σ(ΦTRD(F )) ⊆ F (σ(T ))’. Since ∞ 6∈ σ(ΦTRD(F )), it suffices to show that

C \ F (σ(T )) ⊆ ρ(ΦTRD(F )) .

Let w ∈ C \ F (σ(T )), then the function G(z) := (F (z) − w)−1 belongs to
H(σ(T )), and we have

ΦTRD(G)
(
ΦTRD(F ) − w

)
= ΦTRD(G)ΦTRD(F − w) = ΦTRD(1) = I .

This shows that w ∈ ρ(ΦTRD(F )), in fact

(
ΦTRD(F ) − w

)−1
= ΦTRD

( 1

F (z) − w

)

, w 6∈ F (σ(T )) . (8.3.1) J24

For the reverse inclusion, assume first that ∞ 6∈ σ(T ). Let w ∈ σ(T ) be given,

then the function G(z) := F (z)−F (w)
z−w belongs to H(σ(T )), and we have

(T − w)ΦTRD(G) = ΦTRD(z − w)ΦTRD(G) = ΦTRD(F ) − F (w) .

If we had F (w) ∈ ρ(ΦTRD(F )), then also (T − w) had a bounded inverse. It
follows that F (w) ∈ σ(ΦTRD(F )).

The general case now follows easily. Choose M ∈ GL(2,C) with φ−1
M (∞) 6∈

σ(T ). Then, by the above paragraph, the already proved item (iii), and the
Spectral Mapping Theorem for fractional linear transformations, we obtain

σ
(
ΦTRD(F )

)
= σ

(
Φ
φM(T )
RD (F ◦ φ−1

M )
)

= (F ◦ φ−1
M )
(
σ(φM (T ))

)
= F

(
σ(T )

)
.

Step 7; Proof of (v): Let F and G be given as in the statement of (iv). By the
Spectral Mapping Theorem, indeed G ◦ F ∈ H(σ(T )).

The relation ΦTRD(F ) is a bounded operator, and hence we may compute

Φ
ΦT

RD(F )
RD (G) using the chart ΦI . Moreover, we choose paths γ1, . . . , γn which

satisfy (8.2.1) for OG ∩ C, σ(ΦTRD(F )). Then

Φ
ΦT

RD(F )
RD (G) =

1

2πi

n∑

j=1

∫

γj

G(ζ) ·
(
ζ − ΦTRD(F )

)−1
dζ . (8.3.2) J22



8.3. PROPERTIES OF ΦTRD 175

Next, we choose paths appropriate for the definition of ΦTRD(G ◦ F ). Set

O′ :=
⋃
{

connected components of (OG ∩ C) \⋃nj=1 γj([0, 1])

which intersect σ(ΦTRD(F )) = F (σ(T ))

}

and
O′′ := OG◦F ∩

(
F−1(O′) \ {φ−1

M (∞)}
)
.

Then O′′ is an open subset of C∞ which contains σ(T ), and the func-
tion G ◦ F is analytic on O′′. The set φM (O′′) is an open subset of C
which contains φM (σ(T )). Choose paths γ′1, . . . , γ

′
m which satisfy (8.2.1) for

φM (O′′), φM (σ(T )). Then

ΦTRD(G ◦ F ) =
1

2πi

m∑

l=1

∫

γ′
l

(G ◦ F ◦ φ−1
M )(λ) ·

(
λ− φM (T )

)−1
dλ . (8.3.3) J23

If z ∈ O′′ then F (z) ∈ O′, and hence F (z) 6∈ ⋃nj=1 γj([0, 1]). In other words, we
have

O(ζ−F (z))−1 ⊇ O′′, ζ ∈
n⋃

j=1

γj([0, 1]) .

The paths γ′l satisfy (8.2.1) for φM (O(ζ−F (z))−1), and hence

ΦTRD

( 1

ζ − F (z)

)

=
1

2πi

m∑

l=1

∫

γ′
l

1

ζ − (F ◦ φ−1
M )(λ)

·
(
λ− φM (T )

)−1
dλ .

However, as we saw in (8.3.1), ΦTRD

(
(ζ − F (z))−1) = (ζ − ΦTRD(F ))−1. Substi-

tuting this into (8.3.2) gives

Φ
ΦT

RD(F )
RD (G) =

=
( 1

2πi

)2 n∑

j=1

∫

γj

G(ζ)

( m∑

l=1

∫

γ′
l

1

ζ − (F ◦ φ−1
M )(λ)

(
λ− φM (T )

)−1
dλ

)

dζ =

=
1

2πi

m∑

l=1

∫

γ′
l

(
1

2πi

n∑

j=1

∫

γj

G(ζ)

ζ − (F ◦ φ−1
M )(λ)

dζ

)

·
(
λ− φM (T )

)−1
dλ .

The interchange of integrals is thereby justified since the integrand is analytic
on the compact domain of integration.

If λ ∈ ⋃ml=1 γ
′
l([0, 1]) then (F ◦ φ−1

M )(λ) ∈ O′, and hence belongs to the
same connected component of (OG ∩ C) \ ⋃nj=1 γj([0, 1]) as some point of

σ(ΦTRD(F )). Thus the inner integral evalutes as

1

2πi

n∑

j=1

∫

γj

G(ζ)

ζ − (F ◦ φ−1
M )(λ)

dζ = G
(
(F ◦ φ−1

M )(λ)
)

n∑

j=1

n
(
γj , (F ◦ φ−1

M )(λ)
)

︸ ︷︷ ︸

=1

.

Comparing with (8.3.3) shows that Φ
ΦT

RD(F )
RD (G) = ΦTRD(G ◦ F ).
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Assume now that G is a Laurent series as in the statement of (v). For each
N ∈ N we have

ΦTRD

( N∑

n=−N
an(z − z0)

n
)

=

N∑

n=−N
an(Φ

T
RD(F ) − z0)

n .

Continuity of ΦTRD implies the desired assertion.

Step 8; Proof of (vi): Assume first that S commutes with all operators ΦTRD(F ).
If w ∈ ρ(T )∩C, then 1

z−w ∈ H(σ(T )), and hence (T −w)−1 = ΦTRD( 1
z−w ). Thus

S commutes with all resolvents (T − w)−1, w ∈ ρ(T ) ∩ C.

For the converse, assume that S commutes with (T − w)−1 for all w ∈
O ∩ ρ(T ) ∩ C, and let F ∈ H(σ(T )) be given. Without loss of generality, we
may assume that OF ⊆ O. Choose M ∈ GL(2,C) with φ−1

M (∞) 6∈ σ(T ), and
choose paths αj which satisfy the hypothesis of Lemma 8.2.5. By Lemma 8.2.6
this choice of paths is certainly possible. Then the relation (8.2.4) proved in
Lemma 8.2.5 implies that S commutes with ΦTRD(F ). ❑

If the spectrum of T splits into a disjoint union of finitely many relatively
open subsets, the Riesz-Dunford functional calculus together with the algebraic
decomposition result Proposition 8.1.7 can be used to obtain a decomposition
of the space X into T -invariant subspaces.

DEJ2 8.3.2 Definition. Let X be a Banach space, T ∈ CLR(X ) with ρ(T ) 6= ∅, and
assume that σ(T ) is the disjoint union of nonempty and relatively open subsets
σ1, . . . , σn. Let λi : H(σi) → H(σ(T )) be the map constructed in the proof of
Proposition 8.1.7. Then we denote

ΦT,σi

RD := ΦTRD ◦ λi : H(σi) → B(X ) .

�

As a composition of continuous algebra homomorphisms, the maps ΦT,σi

RD are
themselves continuous algebra homomorphisms.

PRJ3 8.3.3 Proposition. Let X be a Banach space, T ∈ CLR(X ) with ρ(T ) 6= ∅,
and assume that σ(T ) splits into the disjoint union of relatively open subsets
σ1, . . . , σn. Set

Pi := ΦT,σi

RD (1), i = 1, . . . , n .

Then the operators Pi are continuous projections, PiPj = PjPi = 0, i 6= j, and
P1 + . . .+ Pn = I.

Set Xi := ranPi, i = 1, . . . , n. Then each space Xi is closed and X =
X1+̇ . . . +̇Xn. This decomposition of X reduces T , and we have

σ
(
T ∩ X 2

i

)
= σi . (8.3.4) J35

Proof. Consider the elements

xi := (0, . . . , 0,1
↑

i-th place

, 0, . . . , 0) ∈ H(σ1) × . . .× H(σn), i = 1, . . . , n .



8.3. PROPERTIES OF ΦTRD 177

Clearly,

xixj =

{

xi , i = j

0 , i 6= j
,

n∑

i=1

x1 = 1 .

Let λ : H(σ1) × . . . × H(σn) → H(σ(T )) be the algebra homomorphism con-
structed in Proposition 8.1.7. Applying ΦTRD ◦ λ, gives

(ΦTRD◦λ)(xi)(ΦTRD◦λ)(xj) =

{

(ΦTRD ◦ λ)(xi) , i = j

0 , i 6= j
,

n∑

i=1

(ΦTRD◦λ)(x1) = I .

However, by definition, (ΦTRD ◦λ)(xi) = ΦT,σi

RD (1). This shows that the operators
Pi are projections, that PiPj = PjPi = 0, i 6= j, and that P1 + . . .+ Pn = I.

It remains to show that each space ranPi is T -invariant. However,
ΦTRD(H(σ(T ))) is a commutative subalgebra of B(X ) which contains all resol-
vents (T − w)−1, w ∈ ρ(T ) ∩ C and T in case ∞ ∈ ρ(T ). Hence, Pi commutes
with all resolvents, and this just says that

(T − z)−1(ranPi) ⊆ ranPi, i = 1, . . . , n .

Proposition 7.3.8 implies that X = X1+̇ . . . +̇Xn reduces T .
By Proposition 7.3.8 we have σ(T ) =

⋃n
i=1 σ(T ∩ X 2

i ). Hence, in order to
show (8.3.4), it is enough to show that σ(T ∩ X 2

i ) ⊆ σi.
We consider first the case that ∞ ∈ ρ(T ). Let w ∈ C, then w ∈ ρ(T ∩ X 2

i )
if and only if there exists an operator S ∈ B(X ) with

S(T − w) = (T − w)S = Pi .

However, if w 6∈ σi, we have

ΦT,σi

RD

( 1

z − w

)

· (T − w) = ΦT,σi

RD

( 1

z − w

)

· ΦTRD(z − w) = ΦT,σi

RD (1) = Pi ,

and hence have found an operator with this property. Thus the required inclu-
sion σ(T ∩ X 2

i ) ⊆ σi holds.
Next, reduce the general case to the already treated on with help of frac-

tional linear transformations. Let M ∈ GL(2,C), and consider the relation
φM (T ). Then σ(φM (T )) = φM (σ(T )). Hence, σ(φM (T )) is the disjoint union
of the nonempty and relatively open subsets φM (σi), i = 1, . . . , n. We have the
diagram

H
(
φM (σi)

) λi //

◦φM

��

Φ
φM (T ),φM (σi)

RD

!!

H
(
φM (σ(T ))

)

◦φM

��

Φ
φM (T )

RD

++WWWWWWWWWWWW

B(X )

H(σi)
λi

//

Φ
T,σi
RD

==

H(σ(T )) ΦT
RD

33ffffffffffffff

(8.3.5) J33

It follows that Φ
φM (T ),φM (σi)
RD (1) = ΦT,σi

RD (1), i.e. the reducing decomposition
obtained for φM (T ) is the same as for T , namely X = X1+̇ . . . +̇Xn. It is
immediate from the definition of φM that φM (T ) ∩ X 2

i = φM (T ∩ X 2
i ).
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Making the choice of M ∈ GL(2,C) in the above paragraph such that
φ−1
M (∞) 6∈ σ(T ), we have φM (T ) ∈ B(X ). Applying the already proved case

to the bounded operator φM (T ) gives σ(φM (T ) ∩ X 2
i ) ⊆ φM (σi). Again using

the Spectral Mapping Theorem for φM , we see that

φM (σ(T ∩ X 2
i )) = σ(φM (T ) ∩ X 2

i ) ⊆ φM (σi) ,

and hence σ(T ∩ X 2
i ) ⊆ σi. ❑

If X is not only a Banach space but in fact a Krein space, we have an
additional operation on B(K), namely conjugation. Let us show that the Riesz-
Dunford functional calculus is compatible with conjugation in a most natural
sense.

PRJ1 8.3.4 Proposition. Let K be a Krein space, and T ∈ CLR(K) with ρ(T ) 6= ∅.
Since σ(T ∗) = σ(T )#, the map .# is a conjugate linear homeomorphism of
H(σ(T )) onto H(σ(T )#). We have

ΦTRD(F )∗ = ΦT
∗

RD(F#), F ∈ H(σ(T )) .

Proof. Let F ∈ H(σ(T )) be given. In order to compute ΦTRD(F ), choose M ∈
GL(2,C) with φ−1

M (∞) 6∈ σ(T ) and paths γj which satisfy (8.2.1) for φM (OF )∩
C, φM (σ(T )). Then we have

ΦTRD(F )∗ =
( 1

2πi

n∑

j=1

∫

γj

(F ◦ φ−1
M )(ζ) · (ζ − φM (T ))−1 dζ

)∗
=

=
1

2πi

n∑

j=1

∫

γj

(F ◦ φ−1
M )#(ζ) · (ζ − φM (T )∗)−1 dζ =

=
1

2πi

n∑

j=1

∫

γj

(F# ◦ φ−1

M
)(ζ) · (ζ − φM (T ∗))−1 dζ .

Since φ−1

M
(∞) = φ−1

M (∞), we have φ−1

M
(∞) 6∈ σ(T ∗). If we can show that the

paths γj satisfy (8.2.1) for φM (OF#) ∩ C, φM (σ(T ∗)), we are done, since then

the last sum of integrals in the above computation equals ΦT
∗

RD(F#). In order
to see this, however, it is enough to note that

φM (OF#) ∩ C = (φM (OF ) ∩ C)#, φM (σ(T ∗)) = (φM (σ(T )))# ,

and that n(γj , w) = n(γj , w). ❑

COJ34 8.3.5 Corollary. Let K be a Krein space, M ∈ GL(2,C), and T a closed
M -selfadjoint relation in K with ρ(T ) 6= ∅. Then the spectrum of T is M -
symmetric, cf. Proposition 7.6.3, and hence we have the conjugate linear home-
omorphism .2 of H(σ(T )) onto itself, cf. 8.1.6. With these notations it holds
that

ΦTRD(F )∗ = ΦTRD(F2), F ∈ H(σ(T )) .

Proof. Applying Proposition 8.3.4 and Theorem 8.3.1, (iii), gives

ΦTRD(F )∗ = ΦT
∗

RD(F#) = Φ
φM (T )
RD (F#) = ΦTRD(F# ◦ φM ) = ΦTRD(F2) .

❑



Chapter 9

The Langer-Jonas

functional calculus

If H is a Hilbert space, and A ∈ B(H) is selfadjoint, then the Riesz-Dunford
functional calculus can be extended to all bounded and measurable functions
defined on the spectrum of A. Existence of this extension can be shown in
different ways, for example

(a) via extending the polynomial functional calculus p 7→ p(A), p ∈ C[z], by
continuity.

(b) via the Gelfand-transform; an approach which works even for normal oper-
ators.

Both approaches are bound to the fact that {A,A∗} generates a commutative
B∗-algebra. If K is a Krein space, the algebra B(K) endowed with the operator
norm induced by some fundamental decomposition is not anymore a B∗-algebra;
the law ‖xx∗‖ = ‖x‖2 fails. Hence, neither of these approaches works if we move
to the indefinite situation. Also consideringA as an operator in the Hilbert space
〈K, (., .)J〉 does not help; A is in general not even normal in this Hilbert space,
remember that A(∗)J = JA[∗]J and hence A = A[∗] gives

A(∗)JA = JA[∗]JA = JAJA whereas AA(∗)J = AJA[∗]J = AJAJ .

However, if we restrict to a certain subclass of selfadjoint operators, then we
can mimic the above approach (a). Continuity will arise from another source
than in the Hilbert space case, namely from

(c) imposing and exploiting a positivity condition on A.

9.1 B(K)-valued measures

An object of major importance in spectral theory is the space of bounded mea-
sureable functions on the spectrum of an operator. We denote in general, for
a set Ω and a σ-algebra Σ of subsets of Ω, by BM(Ω,Σ) the linear space of all
complex-valued, bounded, and Σ-measureable functions on Ω. Moreover, we set

‖f‖∞ := sup
x∈Ω

|f(x)|, f ∈ BM(Ω,Σ) .

179
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The space 〈BM(Ω,Σ), ‖.‖∞〉 is a Banach space. On BM(Ω,Σ) we have the point-
wise defined operations of multiplication ((f ·g)(x) := f(x)g(x)) and conjugation
(f)(x) := f(x). Endowed with this additional algebraic structure BM(Ω,Σ) be-
comes a commutative B∗-algebra.

We will frequently make use of another notion of convergence on BM(Ω,Σ)
than norm-convergence. This notion is closely related to the Banach space
L∞(µ) when µ : Σ → [0,∞] is some (additionally given) measure on Ω. Let
(fn)n∈N be a sequence of functions in BM(Ω,Σ) and let f ∈ BM(Ω,Σ). Then
we say that (fn)n∈N converges µ-boundedly pointwise to f , if

sup
n∈N

‖fn‖∞ <∞ and lim
n→∞

fn(x) = f(x), µ-a.e.

REH16 9.1.1 Remark. The following facts are immediate from the definition of µ-
boundedly pointwise convergence.

(i) Let (fn)n∈N be a uniformly bounded sequence in BM(Ω,Σ) which con-
verges pointwise to a function f . Then f belongs to BM(Ω,Σ), and
(fn)n∈N converges to f µ-boundedly pointwise for each measure µ.

(ii) The above item applies in particular to every uniformly convergent se-
quence.

(iii) Provided µ is a finite measure, µ-boundedly pointwise convergence implies
convergence in the norm of L1(µ).

(iv) The algebraic operations of the ∗-algebra BM(Ω,Σ) are µ-boundedly point-
wise continuous . Explicitly, we mean by this that fn → f , gn → g, µ-
boundedly pointwise implies that fn+ gn → f + g µ-boundedly pointwise,
fngn → fg µ-boundedly pointwise, etc.

�
Thinking of spectral theory, we will be most interested in the case that

Ω = K is a compact subset of C∞ and Σ is the σ-algebra of all Borel sets on K.
More generally, ifK is a compact Hausdorff space and Bor(K) is the σ-algebra of
Borel sets on K, we will write abbreviatory BM(K) instead of BM(K,Bor(K)).

As usual we denote by C(K) the Banach space of all continuous functions
on K endowed with the maximum norm. Clearly, C(K) ⊆ BM(K). Moreover,
if µ is a Borel measure on K, then BM(K) ⊆ L1(µ). In this place we should
say explicitly that we understand the term Borel measure as including that the
measure of compact sets is finite. Thus, if µ is a Borel measure on a compact
space K, then µ is a finite measure.

The following density properties are often of good use.

REH17 9.1.2 Remark. Let Ω be a set and Σ a σ-algebra on Ω.

(i) For each function f ∈ BM(Ω,Σ) there exists a uniformly bounded sequence
(fn)n∈N of measureable simple functions with which converges pointwise
to f .

This is immediate if f is nonnegative, cf. [R2, Theorem 1.17], and transfers by
linearity to arbitrary complex valued functions f .

Let K be a compact Hausdorff space, and let µ be a regular Borel measure
on K.
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(ii) C(K) is dense in L1(µ) with respect to the L1-norm.

(iii) For each function f ∈ BM(K) there exists a sequence (fn)n∈N of continu-
ous functions which converges µ-boundedly pointwise to f .

These are classical facts. See e.g. [R2, Theorem 3.14] for (i), and the Corollary
to Lusin’s Theorem [R2, p.56] for (ii).

Assume in addition that K is a compact subset of C∞, where C∞ is the
one-point compactification of the complex numbers.

(iv) For each f ∈ BM(K) there exists a sequence (fn)n∈N of rational functions
being continuous on K which converges µ-boundedly pointwise to f .

This follows by combining the above item (iii) with the Stone-Weierstraß Theo-
rem, and remembering that uniform convergence implies µ-boundedly pointwise
convergence. �

DEH1 9.1.3 Definition. Let Ω be a set, Σ a σ-algebra on Ω, and 〈K, [., .]〉 a Krein
space. We call a map E : Σ → B(K) a weak B(K)-valued measure, if for each
countable family ∆n, n ∈ N, of disjoint elements of Σ the series

∑∞
n=1E(∆n)

converges in the weak operator topology and its sum is equal to E(
⋃∞
n=1 ∆n).

�
If E is a weak B(K)-valued measure, then for each fixed x, y ∈ K the function

Ex,y :

{
Σ → C
∆ 7→ [E(∆)x, y]

is a complex measure.
For any complex measure µ defined on some σ-algebra of subsets of a set Ω,

we denote by |µ| the total variation measure of µ, and by ‖µ‖ the total variation
of µ, that is ‖µ‖ = |µ|(Ω).

DEH2 9.1.4 Definition. Let 〈K, [., .]〉 be a Krein space, and choose a norm ‖.‖K on
K which induces the Krein space topology of K. We call a weak B(K)-valued
measure E uniformly bounded , if

sup
‖x‖K≤1

‖Ex,x‖ <∞ . (9.1.1) H3

�
Note that finiteness of the supremum in (9.1.1) does not depend on the choice

of the norm ‖.‖K; the actual value of the supremum of course does. Moreover,
by the parallelogram rule for the inner product [., .], validity of (9.1.1) implies
that

‖E‖ := sup
‖x‖K,‖y‖K≤1

‖Ex,y‖ <∞ .

In turn, by linearity, this gives

‖Ex,y‖ ≤ ‖E‖ · ‖x‖K‖y‖K, x, y ∈ K . (9.1.2) H5

If Ω is a set, and ∆ ⊆ Ω, we denote by χ∆ the characteristic function of the set
∆. That is

χ∆(x) :=

{

1 , x ∈ ∆

0 , x ∈ Ω \ ∆
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PRH4 9.1.5 Proposition. Let 〈K, [., .]〉 be a Krein space, and fix a norm ‖.‖K on K
which induces the Krein space topology of K. Let Ω be a set, Σ a σ-algebra on
Ω, and E a uniformly bounded weak B(K)-valued measure defined on Σ. Then
there exists a linear operator ΨE : BM(Ω,Σ) → B(K) such that

(i) ΨE(χ∆) = E(∆) for all ∆ ∈ Σ.

(ii) ΨE is bounded. In fact the ‖.‖K-to-‖.‖K–operator norm ‖ΨE‖ of ΨE is
equal to ‖E‖ defined using the norm ‖.‖K.

(iii) ΨE has the following additional continuity property:

∀x, y ∈ K ∃µ finite positive measure :

fn → f µ-boundedly pointwise ⇒ [ΨE(fn)x, y] → [ΨE(f)x, y]

(iv) Let T ∈ B(K). Then T commutes with all operators E(∆), ∆ ∈ Σ, if and
only if T commutes with all operators ΨE(f), f ∈ BM(Ω,Σ).

Proof. Let f ∈ BM(Ω,Σ) be given. Consider the map

[., .]f :

{ K ×K → C
(x, y) 7→

∫

Ω

f dEx,y

We have

Ex1+x2,y(∆) = [E(∆)(x1 + x2), y] = [E(∆)x1, y] + [E(∆)x2, y] =

= Ex1,y(∆) + Ex2,y(∆), ∆ ∈ Σ ,

and similarly

Ex,y1+y2(∆) = Ex,y1(∆) + Ex,y2(∆) ,

Eλx,y(∆) = λEx,y(∆), Ex,λy(∆) = λEx,y(∆) .

Hence [., .]f is a sesquilinear form on K. Using (9.1.2), we obtain

|[x, y]f | ≤ ‖f‖∞‖E‖ · ‖x‖K‖y‖K, x, y ∈ K ,

i.e. [., .]f is a bounded sesquilinear form.
By ?? there exists an operator Bf ∈ B(K) with ‖Bf‖ ≤ ‖E‖ · ‖f‖∞ such

that

[x, y]f = [Bfx, y], x, y ∈ K .

Define ΨE : BM(Ω,Σ) → B(K) as ΨE(f) := Bf . By linearity of the integral
∫

Ω f dEx,y in the argument f , the map ΨE is linear. As we have noted above
‖ΨE(f)‖ ≤ ‖E‖ · ‖f‖∞, i.e. ΨE is bounded and ‖ΨE‖ ≤ ‖E‖. Moreover, by its
definition,

[ΨE(χ∆)x, y] =

∫

Ω

χ∆ dEx,y = Ex,y(∆) = [E(∆)x, y], x, y ∈ K ,

and this says that ΨE(χ∆) = E(∆).
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To show the continuity property (iii), let x, y ∈ K be given, and consider
the positive and finite measure µ := |Ex,y|. If (fn)n∈N converges µ-boundedly
pointwise to f , then by the dominated convergence theorem

∣
∣[ΨE(fn)x, y] − [ΨE(f)x, y]

∣
∣ =

∣
∣
∣

∫

Ω

(fn − f) dEx,y

∣
∣
∣ ≤

∫

Ω

|fn − f | dµ→ 0 .

Next, we show the inequality ‖E‖ ≤ ‖ΨE‖. Let x, y ∈ K, and let ∆n, n ∈ N, be
a disjoint family of elements of Σ with

⋃∞
n=1 ∆n = Ω. Choose ǫn ∈ C, |ǫn| = 1,

such that ǫn[ΨE(χ∆n
)x, y] ≥ 0, then

∞∑

n=1

|Ex,y(∆n)| =

∞∑

n=1

∣
∣[ΨE(χ∆n

)x, y]
∣
∣ =

∞∑

n=1

[ΨE(χǫn∆n
)x, y] .

Since the sets ∆n are disjoint, we have

∥
∥
∥

N∑

n=1

ǫnχ∆n

∥
∥
∥
∞

≤ 1, N ∈ N ,

and, for each ζ ∈ Ω, the series
∑∞

n=1 ǫnχ∆n
(ζ) converges. Thus, by the already

proved continuity property (iii), we obtain that

∞∑

n=1

[ΨE(χǫn∆n
)x, y] =

[
ΨE

( ∞∑

n=1

χǫn∆n

)

x, y
]
≤ ‖ΨE‖ · ‖x‖K‖y‖K .

It follows that ‖Ex,y‖ ≤ ‖ΨE‖ · ‖x‖K‖y‖K.
Finally, let T ∈ B(K) be given. If T commutes with all operators ΨE(f),

f ∈ BM(Ω,Σ), then it commutes in particular with ΨE(χ∆) = E(∆), ∆ ∈ Σ.
Conversely, assume that TE(∆) = E(∆)T , ∆ ∈ Σ. Then, for x, y ∈ K,

ETx,y(∆) = [E(∆)Tx, y] = [TE(∆)x, y] = [E(∆)x, T ∗y] = Ex,T∗y(∆), ∆ ∈ Σ ,

i.e. ETx,y = Ex,T∗y. It follows that

[ΨE(f)Tx, y] =

∫

Ω

f dETx,y =

∫

Ω

f dEx,T∗y = [ΨE(f)x, T ∗y] = [TΨE(f)x, y] .

❑

The continuity property which appeared in Proposition 9.1.5, (iii), plays an
important role.

DEH46 9.1.6 Definition. Let Ω be a set, Σ a σ-algebra on Ω, and K a Krein space.
We will say that a map Ψ defined on a subset of BM(Ω,Σ) and taking values in
B(K) is (9.1.3)-continuous , if

∀ x, y ∈ K ∃µ finite positive measure :

fn → f µ-boundedly pointwise ⇒ [Ψ(fn)x, y] → [Ψ(f)x, y]
(9.1.3) H7

�
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The following notices are sometimes practical.

LEH15 9.1.7 Lemma. Let D ⊆ BM(Ω,Σ).

(i) Let Ψj : D → B(K), j = 1, . . . , n, be (9.1.3)-continuous, let λj ∈ C,
j = 1, . . . , n, and consider the map

∑n
j=1 λjΨj given by

(

n∑

j=1

λjΨj)(f) :=

n∑

j=1

λjΨj(f), f ∈ D .

Then
∑n
j=1 λjΨj is (9.1.3)-continuous.

(ii) Let Ψ : D → B(K) be (9.1.3)-continuous, and let T ∈ B(K). Consider the
maps TΨ,ΨT : D → B(K) given by

(TΨ)(f) := TΨ(f), (ΨT )(f) := Ψ(f)T, f ∈ D .

Then TΨ and ΨT are (9.1.3)-continuous.

(iii) Let Ψ : D → B(K) be (9.1.3)-continuous, and consider the map Ψ∗ : D →
B(K) given by

Ψ∗ : f 7→ Ψ(f)∗, f ∈ D .

Then Ψ∗ is (9.1.3)-continuous.

Proof. Throughout the proof let x, y ∈ K be fixed.

Let Ψj and λj , j = 1, . . . , n, be given. Then, for each j ∈ {1, . . . , n}, there
exists a positive finite measure µj such that fn → f µj-boundedly pointwise
implies [Ψj(fn)(λjx), y] → [Ψj(f)(λjx), y]. Set µ :=

∑n
j=1 µj . Then, clearly, µ-

boundedly pointwise convergence implies µj-boundedly pointwise for all j. We
conclude that fn → f µ-boundedly pointwise implies [

∑n
j=1 λjΨj(fn)x, y] →

[
∑n

j=1 λjΨj(f)x, y].

Next, let Ψ and T be given. Then there exists a positive finite measure µ such
that fn → f µ-boundedly pointwise implies [Ψ(fn)(Tx), y] → [Ψ(f)(Tx), y], i.e.
[(ΨT )(fn)x, y] → [(ΨT )(f)x, y]. Also there exists a positive finite measure µ
such that fn → f µ-boundedly pointwise implies [Ψ(fn)x, T

∗y] → [Ψ(f)x, T ∗y],
and this gives [(TΨ)(fn)x, y] → [(TΨ)(f)x, y].

Finally, for (iii), choose a positive finite measure µ such that fn → f µ-
boundedly pointwise implies that [Ψ(fn)y, x] → [Ψ(f)y, x]. It follows that fn →
f µ-boundedly pointwise implies that [Ψ∗(fn)x, y] → [Ψ∗(f)x, y]. ❑

Also a converse to Proposition 9.1.5 holds.

PRH8 9.1.8 Proposition. Let Ψ : BM(Ω,Σ) → B(K) be a bounded and (9.1.3)-
continuous linear map. Then there exists a uniformly bounded weak B(K)-valued
measure EΨ such that Ψ = ΨEΨ . The assignments E 7→ ΨE and Ψ 7→ EΨ are
mutually inverse.

Proof. Define EΨ : Σ → B(K) as

EΨ(∆) := Ψ(χ∆), ∆ ∈ Σ .
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Let ∆n, n ∈ N, be a family of disjoint elements of Σ, and set ∆ :=
⋃∞
n=1 ∆n.

Then the sequence
(∑N

n=1 χ∆n

)

N∈N

is uniformly bounded and pointwise con-

vergent to χ∆. Let x, y ∈ K be given, and choose µ as in (9.1.3). Since
∑N

n=1 χ∆n
→ χ∆ µ-boundedly pointwise, it follows that

[
Ψ
( N∑

n=1

χ∆n

)

x, y
]
→ [Ψ(χ∆)x, y] .

The elements x, y ∈ K were arbitrary, and thus Ψ
(∑N

n=1 χ∆n

)
→ Ψ(χ∆) weakly.

However, Ψ
(∑N

n=1 χ∆n

)
=
∑N

n=1EΨ(∆n) and Ψ(χ∆) = EΨ(∆). We conclude
that EΨ is a weak B(K)-valued measure.

To show that EΨ is uniformly bounded, we use the same argument as in
the proof of Proposition 9.1.5. Let x, y ∈ K, ∆n ∈ Σ, n ∈ N, be disjoint with
⋃∞
n=1 ∆n = Ω, and |ǫn| = 1 with ǫn[Ψ(∆n)x, y] ≥ 0. Then

(∑N
n=1 ǫnχ∆n

)

n∈N

is uniformly bounded by 1 and converges pointwise. Thus, using again (9.1.3)-
continuity of Ψ, we obtain

∞∑

n=1

|(EΨ)x,y(∆n)| =

∞∑

n=1

[Ψ(ǫnχ∆n
)x, y] =

[
Ψ
( ∞∑

n=1

ǫnχ∆n

)

x, y
]
≤ ‖Ψ‖ · ‖x‖K‖y‖K .

It follows that ‖(EΨ)x,y‖ ≤ ‖Ψ‖ · ‖x‖K‖y‖K, and thus that EΨ is uniformly
bounded; in fact ‖EΨ‖ ≤ ‖Ψ‖.

Let us consider the operator ΨEΨ . Then we have

ΨEΨ(χ∆) = EΨ(χ∆) = Ψ(χ∆), ∆ ∈ Σ ,

and hence ΨEΨ(f) = Ψ(f) for all measurable simple functions. Let x, y ∈ K,
and choose µ1 according to (9.1.3)-continuity of Ψ and µ2 according to (9.1.3)-
continuity of ΨEΨ . If f ∈ BM(Ω,Σ), we can find a sequence (fn)n∈N of simple
functions which is uniformly bounded and converges pointwise to f , cf. Remark
9.1.2. This sequence thus also converges µj-boundedly pointwise to f , j = 1, 2,
and we obtain

[ΨEΨ(f)x, y] = lim
n→∞

[ΨEΨ(fn)x, y] = lim
n→∞

[Ψ(fn)x, y] = [Ψ(f)x, y] .

Finally, if E is any weak B(K)-valued measure, then by the respective definitions
we have

EΨE
(∆) = ΨE(∆) = E(∆), ∆ ∈ Σ .

❑

The next statement is a variant of the Riesz Representation Theorem. Let
K be a Krein space. An operator T ∈ B(K) is called positive, if

[Tx, x] ≥ 0, x ∈ K .

In this case, we write T ≥ 0.
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PRH6 9.1.9 Proposition. Let K be a compact Hausdorff space, K a Krein space, and
Ψ : C(K) → B(K) a bounded linear map. Then there exists a uniformly bounded
weak B(K)-valued measure E defined on Bor(K), such that

(i) Ψ(f) = ΨE(f) for all f ∈ C(K).

(ii) For each x, y ∈ K, the complex Borel measure Ex,y is regular.

(iii) ‖E‖ = ‖Ψ‖ where these norms understand with respect to a norm on K
which is induced by some fundamental decomposition.

(iv) Let T ∈ B(K). Then T commutes with all operators E(∆), ∆ ∈ Bor(K),
if and only if T commutes with all operators Ψ(f), f ∈ C(K).

(v) If Ψ has the property that

Ψ(f) ≥ 0 for all f ∈ C(K) with f ≥ 0 , (9.1.4) H44

so does ΨE.

The measure E is uniquely determined by its properties (i) and (ii).

Proof. Let ‖.‖K be a norm on K which is induced by some fundamental decom-
position. For x, y ∈ K consider the linear functional

ψx,y :

{
C(K) → C

f 7→ [Ψ(f)x, y]

We have
|ψx,y(f)| ≤ ‖Ψ‖ · ‖f‖∞ · ‖x‖K‖y‖K ,

i.e. ψx,y is bounded and ‖ψx,y‖ ≤ ‖Ψ‖ · ‖x‖K‖y‖K. By the Riesz Repre-
sentation Theorem there exists a regular complex Borel measure µx,y with
‖µx,y‖ = ‖ψx,y‖, such that

ψx,y(f) =

∫

K

f dµx,y, f ∈ C(K) .

For ∆ ∈ Bor(K) set

[., .]∆ :

{
K ×K → C
(x, y) 7→ µx,y(∆)

We have
∫

K

f dµx1+x2,y = [Ψ(f)(x1 + x2), y] = [Ψ(f)x1, y] + [Ψ(f)x2, y] =

=

∫

K

f dµx1,y +

∫

K

f dµx2,y, f ∈ C(K) ,

and hence µx1+x2,y = µx1,y + µx2,y. Similarly, µx,y1+y2 = µx,y1 + µx2,y, µλx,y =
λµx,y, and µx,λy = λµx,y. Thus [., .]∆ is a sesquilinear form. Moreover,

|[x, y]∆| = |µx,y(∆)| ≤ ‖µx,y‖ = ‖ψx,y‖ ≤ ‖Ψ‖ · ‖x‖K‖y‖K .
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By ?? there exists B∆ ∈ B(K) with ‖B∆‖ ≤ ‖Ψ‖ such that

[x, y]∆ = [B∆x, y], x, y ∈ K .

Define a function E : Bor(K) → B(K) by

E(∆) := B∆, ∆ ∈ Bor(K) .

Let ∆n ∈ Bor(K), n ∈ N, be disjoint, and set ∆ :=
⋃∞
n=1 ∆n. Then

[B∆x, y] = µx,y(∆) =

∞∑

n=1

µx,y(∆n) =

∞∑

n=1

[B∆n
x, y] ,

i.e.
∑∞

n=1E(∆n) = E(∆) where the series converges weakly. This says that E
is a weak B(K)-valued measure. By the definition of E we have

Ex,y(∆) = [E(∆)x, y] = [x, y]∆ = µx,y(∆), ∆ ∈ Bor(K) ,

i.e. Ex,y = µx,y. We see that

‖Ex,y‖ = ‖µx,y‖ ≤ ‖Ψ‖ · ‖x‖K‖y‖K ,

and hence E is uniformly bounded; in fact ‖E‖ ≤ ‖Ψ‖.
For f ∈ C(K) we compute

[ΨE(f)x, y] = [x, y]f =

∫

K

f dEx,y =

∫

K

f dµx,y = ψx,y(f) = [Ψ(f)x, y] .

This shows that ΨE(f) = Ψ(f) for all f ∈ C(K). It also follows that ‖E‖ =
‖ΨE‖ ≥ ‖Ψ‖. We have thus established existence of a uniformly bounded weak
B(K)-value measure with (i)–(iii).

To show (iv), let T ∈ B(K) be given. If TE(∆) = E(∆)T , ∆ ∈ Bor(K), then
TΨE(f) = ΨE(f)T , f ∈ BM(K). In particular, T commutes with all operators
Ψ(f), f ∈ C(K). Conversely, assume that TΨ(f) = Ψ(f)T , f ∈ C(K). Then

ψTx,y(f) = [Ψ(f)Tx, y] = [TΨ(f)x, y] = [Ψ(f)x, T ∗y] = ψx,T∗y(f) ,

and hence µTx,y = µx,T∗y. This implies that [B∆Tx, y] = [B∆x, T
∗y], ∆ ∈

Bor(K), and hence that

E(∆)T = B∆T = TB∆ = TE(∆) .

Next, assume that Ψ has the positivity property (9.1.4). Then, for each x ∈ K,
the functional ψx,x maps nonnegative functions to nonnegative numbers. The
Riesz Representations Theorem thus tells us that the measure µx,x is positive.
Since [ΨE(f)x, x] =

∫

K
f dµx,x, this implies that ΨE satisfies (9.1.4).

In order to show the desired uniqueness assertion, assume that E1 and E2

are uniformly bounded weak B(K)-valued measures which satisfy (i) and (ii).
Then ΨE1(f) = Ψ(f) = ΨE2(f), f ∈ C(K), and hence
∫

K

f d(E1)x,y = [ΨE1(f)x, y] = [ΨE2(f)x, y] =

∫

K

f d(E2)x,y, f ∈ C(K) .

By the uniqueness part of the Riesz Representation Theorem, this implies that
(E1)x,y = (E2)x,y. Since x, y ∈ K were arbitrary, it follows that E1 = E2. ❑
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Let us explicitly state the following consequence of Proposition 9.1.9.

COH9 9.1.10 Corollary. Let K be a compact Hausdorff space, K a Krein space, and
Ψ a bounded linear map of C(K) into B(K). Then there exists a continuation
Ψ̃ : BM(K) → B(K) of Ψ which has the same norm as Ψ, and is (9.1.3)-
continuous. In particular, Ψ itself is (9.1.3)-continuous. Moreover, we have

(i) If Ψ satisfies (9.1.4), then Ψ̃ has the corresponding property, i.e.

Ψ̃(f) ≥ 0 for all f ∈ BM(K) with f ≥ 0 .

(ii) Let T ∈ B(K). Then T commutes with all operators Ψ(f), f ∈ C(K), if
and only if T commutes with all operators Ψ̃(f), f ∈ BM(K).

❑
REH10 9.1.11 Remark. The continuation Ψ̃ of Ψ to BM(K) with the properties stated

in Corollary 9.1.10 need not be unique. However, among all such continuations
there is exactly one with the property that for each x, y ∈ K the function
∆ 7→ [Ψ̃(χ∆)x, y] is a regular complex Borel measure. Hence, if K has the
property that all Borel measures are regular, then the continuation in Corollary
9.1.10 is unique. This applies, in particular, if K is metrizable. �

9.2 An algebra of functions

Denote by GL(2,R) the subgroup of GL(2,C) of all matrices with real entries.

DEH18 9.2.1 Definition. Let d : R∞ → N0 be a function with finite support. Then
we denote by A(d) the set of all functions f ∈ BM(R∞) with the following
property: For each w ∈ supp d and M ∈ GL(2,R) with φM (w) = 0, there exist
a0(w), . . . , ad(w)−1(w) ∈ C, ǫw > 0, and fw ∈ BM([−ǫw, ǫw]), such that

(f ◦ φ−1
M )(x) =

d(w)−1
∑

j=0

aj(w)xj + xd(w)fw(z), x ∈ [−ǫw, ǫw] . (9.2.1) H42

�

Obviously, A(d) is a ∗-subalgebra of BM(R∞). However, it is not closed with
respect to ‖.‖∞ unless d = 0 in which case A(d) = BM(R∞). Moreover, clearly,
d1 ≤ d2 implies that A(d1) ⊇ A(d2).

REH11 9.2.2 Remark. Let d : R∞ → N0 be a function with finite support, and f ∈ A(d).
Then f ∈ A(d) if and only if for each w ∈ supp d there exist M ∈ GL(2,R) with
φM (w) = 0, a0(w), . . . , ad(w)−1(w) ∈ C, ǫw > 0, and fw ∈ BM([−ǫw, ǫw]), such
that (9.2.1) holds.

For example, it is enough to check (9.2.1) with the matrices Mw, w ∈ C∞,
defined as

Mw :=







(
1 −w
0 1

)

, w ∈ C
(

0 1

1 0

)

, w = ∞

�
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We start with showing a basic representation of A(d). For δ ∈ N denote by
C[z]δ the set of all polynomials with degree at most δ−1. Note that dim C[z]δ =
δ.

PRH19 9.2.3 Proposition. Let d : R∞ → N0 be a function with finite support, and set
δ :=

∑

w∈R∞
d(w). Choose d ∈ H(R∞) with dd = d. Then

A(d) = H(R∞) + d · BM(R∞) =
1

(z + i)δ−1
C[z]δ +̇ d · BM(R∞) , (9.2.2) H23

where we consider H(R∞) as a subspace of BM(R∞) via the map ρR∞
, cf. 8.1.5.

Proof. Let p ∈ H(R∞), g ∈ BM(R∞), w ∈ supp d, and M ∈ GL(2,R) with
φM (w) = 0. Then p◦φM ∈ H(R∞), and hence on some neighbourhood [−ǫw, ǫw]
of 0 we have the expansion

(p◦φ−1
M )(x) =

d(w)−1
∑

j=0

1

j!
[p◦φ−1

M ](j)(0)xj+xd(w)
∞∑

j=0

1

j!
[p◦φ−1

M ](j)(0)xj−d(w), x ∈ [−ǫw, ǫw] .

Moreover, since dd◦φM
(0) = dd(w) = d(w),

[
(dg) ◦ φM

]
(x) = xd(w) ·

( d(x)

xd(w)
g(x)

)

.

We see that p+ dg ∈ A(d). The second inclusion ‘⊇’ in (9.2.2) is trivial.
For the converse, we start with a preliminary observation. Denote R :=

(z+ i)−(δ−1)C[z]δ, then R is a linear subspace of H(R∞) with dimension δ. The
map

ν :







R → ∏

w∈suppd Cd(w)

r 7→
(
([r ◦ Φ−1

Mw
](j))

d(w)−1
j=0

)

w∈suppd

(9.2.3) H63

is linear. If r ∈ ker ν, then (z + i)δ−1r(z) is a polynomial whose degree does
not exceed δ − 1 − d(∞), and which has zeros on R of total multiplicity at
least

∑

w∈suppd∩R
d(w). Since d(∞) +

∑

w∈suppd∩R
d(w) = δ, this implies that

(z + i)δ−1r(z) = 0, and hence that r = 0. Thus ν is injective, and by equality
of dimensions hence bijective.

We show that A(d) is contained in the rightmost sum. Let f ∈ A(d) be
given, and let aj(w) be as in (9.2.1). Define

p := ν−1
(
(aj(w))

d(w)−1
j=0

)

w∈suppd
,

and a function g0 : R∞ \ supp d → C as

g0(x) :=
f(x) − p(x)

d(x)
, x ∈ R∞ \ supp d .

The certainly g0 is measurable. Our aim is to show that g0 is bounded. On
each compact set which does not intersect supp d this is clear. Hence, it suffices
to find neighbourhoods of each point w ∈ supp d such that g0 is bounded on
the respective neighbourhood. To this end, let ǫw and fw be as in (9.2.1), and
choose ǫ′w ∈ (0, ǫw) such that the functions p ◦ φ−1

Mw
and d ◦ φ−1

Mw
are analytic
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on some open neighbourhood of the closed disk {|z| ≤ ǫ′w} and d ◦ φ−1
Mw

has no
other zero than 0 in this disk. Then we have, for x ∈ [−ǫ′w, ǫ′w] \ {0},

(d ◦ φ−1
Mw

)(x) · (g0 ◦ φ−1
Mw

)(x) = (f ◦ φ−1
Mw

)(x) − (p ◦ φ−1
Mw

)(x) =

= xd(w)
[

fw(x) −
∞∑

j=d(w)

1

j!
[p ◦ φ−1

Mw
](j)(0)xj−d(w)

]

,

and hence

(g0 ◦ φ−1
Mw

)(x) =
[ (d ◦ φ−1

Mw
)(x)

xd(w)

]−1[

fw(x) −
∞∑

j=d(w)

1

j!
[p ◦ φ−1

Mw
](j)(0)xj−d(w)

]

.

(9.2.4) H64

Since φ−1
Mw

is a bijective analytic map of C∞ onto itself, composition with φ−1
Mw

preserves zero-order. Thus the first factor is an analytic function on some neigh-
bourhood of [−ǫ′w, ǫ′w]. The second factor is, as the sum of a bounded function
and an analytic function, certainly bounded on this interval. Altogether, we see
that g0 is bounded on φ−1

Mw
([−ǫ′w, ǫ′w] \ {0}).

Extending g0 arbitrarily to all of R∞, e.g. by setting g(w) := 0, w ∈
supp d(w), yields a bounded and measureable function g : R∞ → C. By
construction, the equality f = p + dg holds. We have established that
A(d) ⊆ R + d · BM(R∞). To show that this sum is indeed direct, assume
that r ∈ R ∩ d · BM(R∞). Then dr(w) ≥ d(w), w ∈ R∞, and hence
r ∈ ker ν = {0}. ❑

Let d : R∞ → N0 be a function with finite support, and choose d ∈ H(R∞)
with dd = d. By means of (9.2.2) we have a surjective map

πd :

{
H(R∞) × BM(R∞) → A(d)

(p, g) 7→ p+ dg
(9.2.5) H53

This map can be used to transfer properties of H(R∞) × BM(R∞) to A(d).
First let us introduce more algebraic operations on H(R∞) × BM(R∞).

9.2.4. H(R∞) × BM(R∞) as an algebra: Let d ∈ H(R∞) be fixed. Then weNRH21
define a multiplication ‘⋄d’ on H(R∞) × BM(R∞) as

(p1, g1) ⋄d (p2, g2) := (p1p2, p1g2 + p2g1 + dg1g2) ,

and a conjugation

.# :

{
H(R∞) × BM(R∞) → H(R∞) × BM(R∞)

(p, g) 7→ (p#, g)

One can show by elementary computation that H(R∞) × BM(R∞) becomes a
commutative algebra if endowed with the usual vector space operations and the
multiplication ‘⋄d’. For example, let us check distributivity and associativity:

(
(p1, g1) + (p2, g2)

)
⋄d (p3, g3) = (p1 + p2, g1 + g2) ⋄d (p3, g3) =

=
(
(p1 + p2)p3, (p1 + p2)g3 + p3(g1 + g2) + d(g1 + g2)g3

)
=

= (p1p3, p1g3 + p3g1 + dg1g3) + (p2p3, p2g3 + p3g2 + dg2g3) =

= (p1, g1) ⋄d (p3, g3) + (p2, g2) ⋄d (p3, g3)
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(
(p1, g1) ⋄d (p2, g2)

)
⋄d (p3, g3) = (p1p2, p1g2 + p2g1 + dg1g2) ⋄d (p3, g3) =

=
(
(p1p2)p3, (p1p2)g3+p3(p1g2+p2g1+dg1g2)+

+d(p1g2+p2g1+dg1g2)g3
)

=

=
(
p1p2p3, p1p2g3+p1g2p3+g1p2p3+

+d(g1g2p3+g1p2g3+p1g2g3)+d
2g1g2g3

)
=

= (p1, g1) ⋄d
(
(p2, g2) ⋄d (p3, g3)

)

The conjugation ‘.#’ is obviously a conjugate linear involution. However, it is
compatible with ⋄d only if d = d#; in general we have

(
(p1, g1) ⋄d (p2, g2)

)#
= (p1, g1)

# ⋄(d#) (p2, g2)
# .

The maps ⋄d : [H(R∞) × BM(R∞)]2 → H(R∞) × BM(R∞) and .# : H(R∞) ×
BM(R∞) → H(R∞) × BM(R∞) are continuous with respect to this topology.
For .# this is immediate, for ⋄d remember that convergence in H(R∞) implies
uniform convergence on R∞.

The space H(R∞) × BM(R∞) is naturally topologized with the product
topology of the inverse limit topology on H(K) and the norm topology on
BM(R∞). �
9.2.5. A(d) as a quotient: Let d : R∞ → N0 be a function with finite support,NRH39
and d ∈ H(R∞) with dd = d. Then the map πd : H(R∞) × BM(R∞) → A(d) is
homomorphic with respect to multiplication. With the obvious modification, it
is also compatible with conjugation. To be precise, we have

[H(R∞)×BM(R∞)]2
πd×πd //

⋄d

��

A(d)2

·
��

H(R∞)×BM(R∞) πd

// A(d)

H(R∞)×BM(R∞)
πd //

.#

��

A(d)

.
��

H(R∞)×BM(R∞) π
d#

// A(d)

Let us remark that πd(p, g) ∈ H(R∞) if and only if there exists g̃ ∈ H(R∞) with
g|R∞\suppd = g̃|R∞\supp d.

In view of (9.2.5), A(d) is naturally topologized, namely with the quotient
topology with respect to the map πd. We will denote this topology on A(d) by
TA. Let us show that TA does not depend on the choice of d. If d′ ∈ H(R∞) is
another element with dd′ = d, then d

d′ is a unit in H(R∞). In particular, d
d′ is

bounded above and away from zero on R∞. Hence, multiplication with d
d′ is a

homeomorphism of BM(R∞) onto itself. We have the diagram

H(R∞) × BM(R∞)
πd //

id×(· d
d′ )

��

A(d)

H(R∞) × BM(R∞)

πd′

77oooooooooooo

and this shows that the quotient topologies induced on A(d) by πd and πd′ ,
respectively, coincide.

Let us remark that the topology TA is finer than the topology which A(d)
carries as a subspace of BM(R∞), i.e. the norm topology induced by ‖.‖∞. This
follows since the map

πd : H(R∞) × BM(R∞) → 〈A(d), ‖.‖∞〉
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is continuous.
Unless the contrary is explicitly stated, all topological terms refer to the

topology TA. �

LEH27 9.2.6 Lemma. For each fixed f0 ∈ A(d) the map

·f0 :

{
A(d) → A(d)

f 7→ f · f0

is continuous. Moreover, the map . : A(d) → A(d) is continuous.

Proof. Choose d as in Proposition 9.2.3, and write f0 = πd(p0, g0). Then we
have the diagram

H(R∞) × BM(R∞)

⋄d(p0,g0)

��

πd // A(d)

·f0
��

H(R∞) × BM(R∞) πd

// A(d)

It follows that ‘·f0’ is continuous. The (conjugate linear) map ‘.’ is treated
similarly. ❑

9.2.7. A(d) as a Banach space: In the quotient construction 9.2.5 we have usedNRH40
the first equality in (9.2.2). The second equality in this relation can be used to
endow A(d) with a Banach space topology.

Let d : R∞ → N0 be a function with finite support. Choose d ∈ H(R∞) and
a finite-dimensional subspace R of H(R∞), such that

dd = d, πd
(
R× BM(R∞)

)
= A(d) . (9.2.6) H54

The space R× BM(R∞) is a Banach space, when endowed with the sum norm
(‖p‖∞ := supx∈R∞

|p(x)|)

‖(p, g)‖+ := ‖p‖∞ + ‖g‖∞, (p, g) ∈ R× BM(R∞) ,

Clearly, kerπd is ‖.‖+-closed, and hence A(d) becomes a Banach space when
endowed with the quotient norm of ‖.‖+ with respect to πd. We will denote this
norm as ‖.‖R,d and the topology it induces on A(d) by TA,‖.‖.

Let us show that two norms obtained in this way are equivalent. The same
argument as in 9.2.5 shows that always ‖.‖R,d is equivalent to ‖.‖R,d′ when
R, d, d′ are subject to (9.2.6). It remains to check equivalence of norms when d
is fixed. Since each two finite-dimensional subspaces of H(R∞) satisfying (9.2.6)
are contained in one common finite-dimensional subspace with (9.2.6), namely
in their linear span, it is enough to prove that ‖.‖R,d is equivalent to ‖.‖R′,d

whenever R ⊆ R′. However, if R ⊆ R′, we have the diagram

R× BM(R∞)
πd //

⊆
��

〈A(d), ‖.‖R,d〉

id

��
R′ × BM(R∞)

πd // 〈A(d), ‖.‖R′,d〉

and hence the identity map is ‖.‖R,d-to-‖.‖R′,d–continuous. By the Open Map-
ping Theorem, it is thus bicontinuous.
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Note that the topology TA,‖.‖ is finer than TA. This follows from continuity
of the inclusion map ⊆: R× BM(R∞) → H(R∞) × BM(R∞) and the diagram

R× BM(R∞)
πd //

⊆
��

A(d)

H(R∞) × BM(R∞)

πd

77oooooooooooo

�
It turns out that algebraic operations are continuous with respect to TA(d),‖.‖.

LEH22 9.2.8 Lemma. The maps

· : 〈A(d), TA,‖.‖〉2 → 〈A(d), TA,‖.‖〉 and . : 〈A(d), TA,‖.‖〉 → 〈A(d), TA,‖.‖〉

are continuous. In other words, whenever R and d are chosen with (9.2.6),
there exist constants C1, C2 > 0 such that

‖f1f2‖R,d ≤ C1‖f1‖R,d‖f2‖R,d, ‖f‖R,d ≤ C2‖f‖R,d, f1, f2, f ∈ A(d) .

Proof. It is obvious from the definition that

‖(p1, g1) ⋄d (p2, g2)‖+ ≤ (3 + ‖d‖∞) · ‖(p1, g1)‖+ · ‖(p2, g2)‖+ ,

‖(p, g)#‖+ = ‖(p, g)‖+ ,

whenever all occuring elements belong to R× BM(R∞).
Set R1 := (z+ i)δ−1C[z]δ and R2 := (z+ i)2δ−2C[z]2δ−1 Using distributivity

and conjugate-linearity, respectively, it follows that

⋄d : [R1 × BM(R∞)]2 → R2 × BM(R∞)

.# : R1 × BM(R∞) → R1 × BM(R∞)

are ‖.‖+-continuous. The assertion of the lemma now follows from the diagrams

〈R1×BM(R∞), ‖.‖+〉2
⋄d // 〈R2×BM(R∞), ‖.‖+〉

πd

��
〈A(d), ‖.‖R2,d〉

id

��
〈A(d), ‖.‖R1,d〉2 ·

//

(πd×πd)−1

OO

〈A(d), ‖.‖R1,d〉

〈R1×BM(R∞), ‖.‖+〉 .# // 〈R1×BM(R∞), ‖.‖+〉
π

d#

��
〈A(d), ‖.‖R1,d#〉

id

��
〈A(d), ‖.‖R1,d〉

.

//

π−1
d

OO

〈A(d), ‖.‖R1,d〉

❑

REH62 9.2.9 Remark. For later reference let us remark that, for each positive Borel
measure µ and fixed p1, p2, p ∈ H(R∞), the maps

(g1, g2) 7→ (p1, g1) ⋄d (p2, g2) and g 7→ (p, g)#

are µ-boundedly pointwise continuous. �
Finally, let us show how the algebras A(d) transform when performing a

fractional linear transformation.
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LEH66 9.2.10 Lemma. Let d : R∞ → N0 be a function with finite support, let N ∈
GL(2,R), and set d̃ := d ◦ φN . Then composition with φN is a homeomorphic
and TA,‖.‖-homeomorphic ∗-algebra isomorphism of A(d) onto A(d̃).

Proof. Choose d ∈ H(R∞) with dd = d, and set d̃ := d ◦ φN . Then dd̃ =
dd ◦ φN = d̃. We have the diagram

H(R∞) × BM(R∞)
πd //

◦φN×◦φN

��

BM(R∞)

◦φN

��
H(R∞) × BM(R∞) πd̃

//

◦φ−1
N

×◦φ−1
N

[[

BM(R∞)

◦φ−1
N

[[

The maps ◦φN × ◦φN and ◦φ−1
N × ◦φ−1

N are mutually inverse bijections, and
hence it follows that ◦φN maps A(d) bijectively onto A(d̃).

By Lemma 8.1.4, (ii), ◦φN : H(R∞) → H(R∞) is homeomorphic. Clearly,
◦φN : BM(R∞) → BM(R∞) is isometric. We conclude that ◦φN : A(d) → A(d̃)
is a homeomorphism. Using the same argument, only restricting the left sides
of the above diagram to R × BM(R∞) where R satisfies (9.2.6), shows that
◦φN is also homeomorphic with respect to the topologies TA,‖.‖. The fact that
composition with φN is homomorphic with respect to algebraic operations is
immediate. ❑

9.3 The algebra C∞(R∞)

The set R∞ endowed with the restriction of the topology of C∞ is nothing else
but the one-point compactification of R. Let V be an open subset of R∞. Then
V becomes a C∞-manifold when endowed with the collection of charts

{

φM : V \ {φ−1
M (∞)} → C with M ∈ GL(2,R)

}

. (9.3.1) H55

The linear space of all arbitrarily differentiable functions f : V → C is denoted
by C∞(V ). With the pointwise defined algebraic operations and conjugation
C∞(V ) becomes a commutative ∗-algebra.

With help of the charts (9.3.1) we can also define a locally convex vector
topology on C∞(V ). Namely, for M ∈ GL(2,R), ǫ > 0 with [−ǫ, ǫ] ⊆ φM (V ),
and k ∈ N0, we consider the seminorms

pkM,ǫ(f) := sup
x∈[−ǫ,ǫ]

∣
∣(f ◦ φ−1

M )(k)(x)
∣
∣, f ∈ C∞(V ) .

Then the family
{

pkM,ǫ : M ∈ GL(2,R), ǫ > 0 with [−ǫ, ǫ] ⊆ φM (V ), k ∈ N0

}

is a separating family of seminorms, and hence defines a Hausdorff and locally
convex topology on C∞(V ). We will refer to this topology as T∞.

REH41 9.3.1 Remark.

(i) Let Mi ∈ GL(2,R), ǫi > 0 with [−ǫi, ǫi] ⊆ φMi
(V ), i ∈ I, be such that

⋃

i∈I
φ−1
Mi

(
(−ǫi, ǫi)

)
= V .
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Then the family {pkMi,ǫi
: i ∈ I, k ∈ N0} is a separating family of semi-

norms on C∞(V ), and induces the topology T∞.

(ii) Let O ⊆ C∞ be open, and set V := O∩R∞. Then we have the restriction
map ρO,V : F 7→ F |V . Clearly, ρO,V maps H(O) into C∞(V ). Since
the seminorms pkM,ǫ evaluate derivatives on compact intervals, ρO,V is
continuous.

�
It is an important fact that C∞(R∞) is contained in A(d).

PRH13 9.3.2 Proposition. Let d : R∞ → N0 be a function with finite support.
Then C∞(R∞) ⊆ A(d) and the set-theoretic inclusion map is T∞-to-TA,‖.‖–
continuous.

Proof.
Step 1; C∞(R∞) ⊆ A(d): Let f ∈ C∞(R∞) be given. Then, for each w ∈ R∞,
the function f ◦ φ−1

Mw
also belongs to C∞(R∞). Let fw : R \ {0} → C be the

function which is uniquely defined by the relation

(f ◦ φ−1
Mw

)(x) =

d(w)−1
∑

j=0

1

j!
[f ◦ φ−1

Mw
](j)(0)xj + xd(w)fw(x), x ∈ R \ {0} .

Then, by Taylor’s Theorem, for each x ∈ R \ {0} there exists a point ξx on the
line segment connecting x with 0 such that fw(x) = 1

d(w)! [f ◦ φ−1
Mw

](d(w))(ξx).

We see that, for each ǫ > 0,

sup
x∈[−ǫ,ǫ]

|fw(x)| ≤ 1

d(w)!
sup

x∈[−ǫ,ǫ]

∣
∣[f ◦ φ−1

Mw
](d(w))(x)

∣
∣ . (9.3.2) H65

We see that f ◦ φ−1
Mw

possesses a representation as required in (9.2.2), and con-
clude that f ∈ A(d).

Step 2; Continuity of g: Let d ∈ H(R∞) be such that dd = d, and set δ :=
∑

w∈suppd d(w). Let f ∈ C∞(R∞), then by means of Proposition 9.2.3 we find

p ∈ (z + i)−(δ−1)C[z]δ and g ∈ BM(R∞) such that f = p + dg. Then the
function g can be chosen to be continuous. Continuity at a point w 6∈ supp d

readily follows from the fact that f = p + dg. If w ∈ supp d, then g ◦ φ−1
Mw

coincides on some neighbourhood of 0 with the function fw constructed above.
However, if x→ 0 then also ξx → 0, and hence fw(x) → 1

d(w)! [f ◦φ−1
Mw

](d(w))(0).

Thus redefining g on supp d as g(w) := 1
d(w)! [f ◦φ−1

Mw
](d(w))(0) gives a continuous

function.

Step 3; Continuity of the map f 7→ (p, g): By means of the previous steps a
map of C∞(R∞) → R×C(R∞) is well-defined by mapping a function f to the
pair (p, g) with f = p + dg. Let ν be the map defined in (9.2.3), and let ǫ′w,
w ∈ supp d, be chosen as in the proof of Proposition 9.2.3. Let βw ∈ (0, ǫ′w) be
such that the distance of the closed set φ−1

Mw
({|z| ≤ βw}) to the point −i is at

least 1
2 .

We consider the space R endowed with the supremum norm ‖r‖ :=
sup|z+i|≥ 1

2
|r(z)|, and the space

∏

w∈suppd Cd(w) endowed with the maximum
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norm ‖((αj,w)
d(w)−1
j=0 )w∈suppd‖ := maxw,j |aj,w|. Since ν is a bijection between

these finite dimensional spaces, it is bicontinuous. Let ‖ν−1‖ be the operator
norm of ν−1 corresponding to these norms.

Choose finitely many points w1, . . . , wn ∈ R∞ and numbers ǫ1, . . . , ǫn > 0,
such that

supp d ∩
n⋃

i=1

φ−1
Mwi

(
[−ǫi, ǫi]

)
= ∅ ,

and
⋃

w∈suppd

φ−1
Mw

(
(−βw, βw)

)
∪

n⋃

i=1

φ−1
Mwi

(
(−ǫi, ǫi)

)
= R∞ .

Since x−d(w)[(dg) ◦ φ−1
Mw

](x) remains bounded when x tends to 0, we must have

ν(p) =
(
(
1

j!
[f ◦ φ−1

Mw
](j)(0))

d(w)−1
j=0

)

w∈suppd

and it follows that

‖p‖ ≤ ‖ν−1‖ · max
w∈supp d
0≤j<d(w)

1

j!
pjMw,βw

(f) .

Set Di := (minx∈φ−1
Mwi

([−ǫi,ǫi]) |d(x)|)
−1. Then we have

|g(x)| =
∣
∣
∣
f(x) − p(x)

d(x)

∣
∣
∣ ≤

(

p0
Mwi

,ǫi(f) + ‖ν−1‖ · max
w∈supp d
0≤j<d(w)

1

j!
pjMw,βw

(f)
)

· Di,

x ∈ φ−1
Mwi

(
[−ǫi, ǫi]

)
.

To estimate |g(x)| on the sets φ−1
Mw

(
(−βw, βw)

)
, we use (9.2.4). Set Dw :=

(
minx∈[−βw,βw]

(d◦φ−1
Mw

)(x)

xd(w)

)−1
, and remember that (9.3.2) says

sup
x∈[−βw,βw]

|fw(x)| ≤ 1

d(w)!
p

d(w)
Mw ,βw

(f) .

To estimate the series in (9.2.4), we use the Maximum Principle. It gives

∣
∣
∣

∞∑

j=d(w)

1

j!
[p ◦ φ−1

Mw
](j)(0)xj−d(w)

∣
∣
∣ =

=
∣
∣
∣x−d(w)

(

[p ◦ φ−1
Mw

](x) −
d(w)−1
∑

j=0

1

j!
[p ◦ φ−1

Mw
](j)(0)xj

)∣
∣
∣ ≤

≤
( 1

βw

)d(w)(

‖p‖ +

d(w)−1
∑

j=0

1

j!
pjMw,βw

(f)βjw

)

.

Putting together these estimates gives

|g(x)| ≤ Dw ·
( 1

d(w)!
p

d(w)
Mw ,βw

(f) +
( 1

βw

)d(w)

‖p‖+

+
( 1

βw

)d(w)
d(w)−1
∑

j=0

1

j!
pjMw ,βw

(f)βjw

)

, x ∈ φ−1
Mw

(
(−βw, βw)

)
.
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We see that

‖p‖∞ = sup
x∈R∞

|p(x)| and ‖g‖∞ = sup
x∈R∞

|g(x)|

are bounded by expressions which involve constants not depending on f and
the seminorms

p0
Mwi

,ǫi , i = 1, . . . , n, pjMw,βw
, w ∈ supp d, 0 ≤ j ≤ d(w) .

Step 4; Finish of proof: We have

R× C(R∞)
πd // 〈A(d), TA,‖.‖〉

C∞(R∞)

f 7→(p,g)

OO

⊆

77n
n

n
n

n
n

and hence the inclusion map is the composition of two continuous maps. ❑

Let f be a function defined on an analytic manifold X and taking values in a
locally convex vector space X . Then we say that f is strongly analytic if for each
chart ϕ : U → C of X , then map f ◦ ϕ−1 : ϕ(U) → X is complex differentiable
with respect to the topology of X . We say that f is weakly analytic, if for each
continuous linear functional λ ∈ X ′ the complex valued function λ ◦ f belongs
to H(X).

Clearly, f being norm analytic implies that f is weakly analytic. If X is a
Banach space, also the converse holds, and we will shortly speak of an analytic
map.

In our later considerations, the following construction appears.

PRH56 9.3.3 Proposition. Let d : R∞ → N0 be a function with finite support, and let
f ∈ A(d). For each fixed value of the parameter z ∈ C consider the function

ξf : (C∞ \ supp f) × R∞ → C

defined as

ξf (w, x) :=







w−z
w−xf(x) , w ∈ C \ supp f, x ∈ R, w 6= x

0 , w ∈ C \ supp f, x ∈ R, w = x

0 , w ∈ C \ supp f, x = ∞
f(x) , w ∈ {∞} \ supp f, x ∈ R∞

(9.3.3) H58

Then, for each fixed w ∈ C∞ \ supp f , the function x 7→ ξf (w, x) belongs to
A(d). The function w 7→ ξf (w, .) is an analytic map of C∞ \ supp f into the
Banach space 〈A(d), TA,‖.‖〉.

The main argument is the following ‘H(O) version’.

LEH57 9.3.4 Lemma. Let O ⊆ C∞ be open, nonempty, with O 6= C∞, and consider
the function

gO : (C∞ \O) ×O → C
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which is defined as

gO(w, x) :=







w−z
w−x , w ∈ C \O, x ∈ O \ {∞}
0 , w ∈ C \O, x ∈ O ∩ {∞}
1 , w ∈ {∞} \O, x ∈ O

Then, for each fixed w ∈ C∞ \ O, the function x 7→ gO(w, x) belongs to H(O).
The function w 7→ gO(w, .) is an analytic map of C∞ \O into H(O).

Proof. We will use the charts

ϕ1 := φI : [C∞ \O] \ {∞} → C, ϕ2 := φ„

0 1
1 0

« : [C∞ \O] \ {0} → C

to describe the analytic manifold C∞ \O, and the charts

ψ1 := φI : O \ {∞} → C, ψ2 := φ„

0 1
1 0

« : O \ {0} → C

to describe the analytic manifold O. Moreover, we compute

g◦
(
ϕ−1

1 (u)×ψ−1
1 (t)

)
= u−z

u−t , u ∈ ϕ1([C∞ \O] \ {∞}), t ∈ ψ1(O \ {∞})
g◦
(
ϕ−1

1 (u)×ψ−1
2 (t)

)
= t(u−z)

tu−1 , u ∈ ϕ1([C∞ \O] \ {∞}), t ∈ ψ2(O \ {0})
g◦
(
ϕ−1

2 (u)×ψ−1
1 (t)

)
= 1−zu

1−tu , u ∈ ϕ2([C∞ \O] \ {0}), t ∈ ψ1(O \ {∞})
g◦
(
ϕ−1

2 (u)×ψ−1
2 (t)

)
= t(1−zu)

t−u , u ∈ ϕ2([C∞ \O] \ {0}), t ∈ ψ2(O \ {0})
(9.3.4) H59

Each of these functions depends, for u fixed, analytically on t. This already
shows that gO(w, .) ∈ H(O).

The function w 7→ gO(w, .) being an analytic map of C∞ \ O into H(O),
means that for both charts ϕj , j = 1, 2, and each u0 ∈ ϕ1([C∞ \O] \ {∞}) and
u0 ∈ ϕ2([C∞ \O] \ {0}), respectively, the limit

lim
u→u0

gO(ϕ−1
j (u), x) − gO(ϕ−1

j (u0), x)

u− u0

exists locally uniformly for x ∈ O. Since the sets O \ {∞} and O \ {0} are an
open cover of O, it is enough to show that, for each j ∈ {1, 2}, the limits

gji(u0, x) := lim
u→u0

gO(ϕ−1
j (u), x) − gO(ϕ−1

j (u0), x)

u− u0
, i = 1, 2 ,

exist locally uniformly on O \ {∞} and O \ {0}, respectively, and coincide on
the intersection of these sets. This, however, follows from (9.3.4). It is straight-
forward that

g11(u0, ψ
−1
1 (t)) = lim

u→u0

gO(ϕ−1
1 (u), ψ−1

1 (t)) − gO(ϕ−1
1 (u0), ψ

−1
1 (t))

u− u0
=

z − t

(u0 − t)2

g12(u0, ψ
−1
2 (t)) = lim

u→u0

gO(ϕ−1
1 (u), ψ−1

2 (t)) − gO(ϕ−1
1 (u0), ψ

−1
2 (t))

u− u0
=

zt− 1

(tu0 − 1)2
t

locally uniformly for t ∈ φ1(O\{∞}) and t ∈ φ1(O\{0}), respectively, and that

g11(u0, x) =
z − x

(u0 − x)2
=

z 1
x − 1

( 1
xu0 − 1)2

1

x
= g12(u0, x), x ∈ O \ {0,∞} .



9.4. THE FUNCTIONAL CALCULUS. I. DEFINITIZABILITY ALONG R∞199

Next,

g21(u0, ψ
−1
1 (t)) = lim

u→u0

gO(ϕ−1
2 (u), ψ−1

1 (t)) − gO(ϕ−1
2 (u0), ψ

−1
1 (t))

u− u0
=

z − t

(1 − tu0)2

g22(u0, ψ
−1
2 (t)) = lim

u→u0

gO(ϕ−1
2 (u), ψ−1

2 (t)) − gO(ϕ−1
2 (u0), ψ

−1
2 (t))

u− u0
= t

1 − zt

(t− u0)2

locally uniformly for t ∈ φ1(O \ {∞}) and t ∈ φ1(O \ {0}), respectively, and

g21(u0, x) =
z − x

(1 − xu0)2
=

1

x

1 − z 1
x

( 1
x − u0)2

= g22(u0, x), x ∈ O \ {0,∞} .

❑

Proof (of Proposition 9.3.3).
Step 1: Let χ ∈ C∞(R∞), O ⊆ C∞ open, and define a function

hχ,O : (C∞ \O) × R∞ → C

as

hχ,O(w, x) :

{

gO(w, x)χ(x) , x ∈ O

0 , x ∈ R∞ \ suppχ

Note that, since suppχ ⊆ O, this function is well-defined on all of R∞. More-
over, for each fixed w ∈ C∞\O, we have hχ,O(w, .) ∈ C∞(R∞). Since multiplica-
tion with a fixed function is a continuous map of C∞(O) into itself, the function
w 7→ gO(w, .)χ(.) is analytic. The zero function of C∞\O into C∞(C∞\suppχ)
is trivially analytic. Again, since suppχ ⊆ O, the function w 7→ hχ,O(w, .) is
thus an analytic map of C∞ \O into C∞(R∞).

Step 2: Let f ∈ A(d) be given. Choose O ⊆ C∞ open with supp f ⊆ O, and
choose a partition of unity χ1, χ2 ∈ C∞(R∞) subordinate to the open cover
{O ∩ R∞,R∞ \ supp f}. Then f = χ1f , and

ξf (w, x) = hχ1,O(w, x)f(x), w ∈ C∞ \O, x ∈ R∞ .

By Proposition 9.3.2, and since multiplication with a fixed function in A(d) is
continuous, it follows that ξf (w, .)|C∞\O is an analytic map of C∞ \O into the

Banach space A(d).
Since O was arbitrary, it follows that ξf is in fact analytic on all of C∞ \

supp f . ❑

9.4 The functional calculus. I. Definitizability

along R∞

DEH52 9.4.1 Definition. Let K be a Krein space, and A be a selfadjoint linear relation
in K. Then we say that A is definitizable along R∞, if

(i) The sets σ(A) ∩ R∞ and σ(A) \ R∞ are relatively open in σ(A).

(ii) Denote σ0 := σ(A) ∩ R∞. There exists an element d ∈ H(R∞) \ {0} such

that ΦA,σ0

RD (d) ≥ 0.
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If d ∈ H(σ(A) ∩ R∞) is an element with the properties required in (ii), we call
d R∞-definitizing for A. �

In the next theorem we comprehensively formulate the properties of the
functional calculus for selfadjoint relations which are definitizable along R∞.
Recall that ρR∞

denotes the canonical map of H(R∞) into C(R∞).

THH24 9.4.2 Theorem. Let K be a Krein space, and A a selfadjoint relation in K
which is definitizable along R∞. Denote

dAcrt := min
{
dd : d R∞-definitizing for A

}
,

and let AA be the commutative ∗-algebra AA := A(dAcrt). Then there exists a
continuous ∗-algebra homomorphism ΦA : AA → B(K) which extends the Riesz-
Dunford functional calculus in the sense that (σ0 := σ(A) ∩ R∞)

H(R∞)
Φ

A,σ0
RD //

ρR∞

��

B(K)

AA

ΦA

66mmmmmmmmmmmmmm

The map ΦA has the following additional properties:

(i) Set K1 := ranΦA,σ0

RD (1) and K2 := kerΦA,σ0

RD (1). Then for all f ∈ AA the
decomposition K = K1[+̇]K2 reduces ΦA(f). Moreover, ΦA(f)|K2 = 0.

Let T ∈ B(K1). Then we have T · (A − w)−1|K1 = (A − w)−1|K1 · T ,
w ∈ ρ(A) ∩ C, if and only if TΦA(f) = ΦA(f)T , f ∈ AA.

(ii) Let d be R∞-definitizing for A and f ∈ AA. If f
d is bounded and nonneg-

ative, then ΦA(f) ≥ 0.

(iii) The Spectral Mapping Theorem: Let f ∈ AA, and assume that each func-
tion fw in (9.2.1) is continuous at 0. Then

σ
(
ΦA(f)|K1

)
= f

(
σ(A) ∩ R∞

)
.

(iv) The set σ(A)∩R∞ is the smallest closed subset C of R∞ with the property
that

∀ f ∈ AA : C ∩ supp f = ∅ ⇒ ΦA(f) = 0 (9.4.1) H38

We refer to ΦA as the Langer-Jonas functional calculus for A.

The rest of this section is devoted to the proof of this result. It is quite elab-
orate and will be carried out in several steps according to the following schedule:

Step 1: Positivity ensures continuity and therefore existence of continuous ex-
tensions.

Step 2: For each R∞-definitizing element d a map Ψd : BM(R∞) → B(K) is
constructed.

Step 3: The maps Ψd give rise to continuous algebra homomorphisms Λ
dj

bj
of

H(R∞) × BM(R∞) into B(K).

Step 4: We define the desired functional calculus ΦA.
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Step 5: We show properties (i) and (ii).

Step 6: We deduce the Spectral Mapping Theorem with help of a perturbation
argument.

Step 7: We show that the support of the functional calculus is equal to the
spectrum of A.

Step 1; Consequences of positivity

PRH20 9.4.3 Proposition. Let K be a Krein space, and K a compact Hausdorff space.
Moreover, let D be a dense linear subspace of C(K) which contains the constant
function 1 and is closed with respect to complex conjugation, and let Ψ : D →
B(K) be a linear map which fullfills the positivity property

Ψ(f) ≥ 0 for all f ∈ D with f ≥ 0 . (9.4.2) H48

Then there exist a linear ‖.‖∞-to-‖.‖–bounded and (9.1.3)-continuous extension
Ψ̃ of Ψ to BM(K) with

Ψ̃(f) ≥ 0 for all f ∈ BM(K) with f ≥ 0 . (9.4.3) H49

Moreover, an operator T ∈ B(K) commutes with all operators Ψ(f), f ∈ D, if
and only if it commutes with all operators Ψ̃(f), f ∈ BM(K).

In the proof we use the following two statements which ensure norm-
boundedness.

LEH25 9.4.4 Lemma. Let K be a compact Hausdorff space. Moreover, let D be a
linear subspace of C(K) which contains the constant function 1 and is closed
with respect to complex conjugation, and let ϕ : D → C be a linear functional.
If

ϕ(f) ≥ 0 for all f ∈ D with f ≥ 0 ,

then ϕ is bounded.

Proof. First we consider a real-valued function f ∈ D. Then ‖f‖∞ − f ≥ 0,
and hence ϕ(‖f‖∞ − f) ≥ 0. The value ϕ(‖f‖∞) is nonnegative. Since ϕ(f) =
ϕ(f −‖f‖∞) +ϕ(‖f‖∞), it follows that ϕ(f) is real and satisfies the inequality

ϕ(f) ≤ ϕ(‖f‖∞) = ‖f‖∞ · ϕ(1) .

Since with f also −f belongs to D and is real-valued, we find that also −ϕ(f) =
ϕ(−f) ≤ ‖f‖∞ · ϕ(1). In total, thus |ϕ(f)| ≤ ‖f‖∞ · ϕ(1).

Let f ∈ D be arbitrary, and write f = f1 + if2 with f1 = 1
2 (f + f) and

f2 = 1
2i (f − f). Since with f also f belongs to D, the functions f1 and f2

belong to D. Moreover, they are real-valued and ‖fj‖∞ ≤ ‖f‖∞, j = 1, 2.
From what we showed above, it follows that

|ϕ(f)| ≤ |ϕ(f1)| + |ϕ(f2)| ≤ 2ϕ(1) · ‖f‖∞ .

❑
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LEH26 9.4.5 Lemma. Let K be a Krein space, and Tj ∈ B(K), j ∈ J , a family of
bounded linear operators. If

sup
j∈J

|[Tjx, x]| <∞, x ∈ K ,

then supj∈J ‖Tj‖ <∞.

Proof. By the parallelogram rule we have

4[Tjx, y] = [Tj(x+ y), (x+ y)] − [Tj(x− y), (x− y)] + i[Tj(x+ iy), (x+ iy)]−

−i[Tj(x− iy), (x− iy)], x, y ∈ K .

Hence, the present hypothesis implies that

sup
j∈I

|[Tjx, y]| <∞, x, y ∈ K .

Let J be a fundamental decomposition of K, and denote by J the corresponding
fundamental symmetry. Then, for each x ∈ K, the family

{
(., JTjx)J : j ∈ J

}
⊆ 〈K, (., .)J〉′

is pointwise bounded. Using the Banach-Steinhaus Theorem twice, this implies
that supj∈J ‖JTjx‖ <∞, x ∈ K, and in turn supj∈J ‖JTj‖ <∞. Since ‖J−1‖ =
1, thus also supj∈J ‖Tj‖ <∞. ❑

Proof (of Proposition 9.4.3). For each x ∈ K, the map

ϕx :

{
D → C
f 7→ [Ψ(f)x, x]

is a linear functional. By the assumption (9.4.2) of the proposition, it satisfies
the hypothesis of Lemma 9.4.4, and hence is bounded. This means that

sup
f∈D

‖f‖∞≤1

|ϕx(f)| <∞, x ∈ K .

Lemma 9.4.5, applied with the family {Ψ(f) : f ∈ D, ‖f‖∞ ≤ 1}, gives

sup
f∈D

‖f‖∞≤1

‖Ψ(f)‖ <∞ .

This just says that Ψ : D → B(K) is ‖.‖∞-to-‖.‖–bounded.
Since Ψ is bounded, there exists a bounded linear continuation of Ψ to

C(K), say Ψc : C(K) → B(K). By Corollary 9.1.10 Ψc possesses a ‖.‖∞-to-‖.‖–
bounded and (9.1.3)-continuous continuation

Ψ̃ : BM(D) → B(K) .

In order to show that Ψ̃ satisfies (9.4.3), it suffices to show that Ψc has the
corresponding positivity property, cf. Corollary 9.1.10. Let f ∈ C(K), f ≥ 0,
be given. Choose a sequence fn ∈ D, n ∈ N, with fn → f in C(K). Set

gn := fn − min
x∈K

fn(x) + min
x∈K

f(x) ,
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then gn ∈ D, gn ≥ 0, and gn → f in C(K). Therefore

[Ψc(f)x, x] = lim
n→∞

[Ψc(gn)x, x] = lim
n→∞

[Ψ(gn)x, x] ≥ 0 .

In order to show the last assertion, assume that T ∈ B(K) and commutes with
all operators Ψ(f), f ∈ D. Since Ψc is the continuation of Ψ by continuity,
it follows that T commutes with all operators Ψc(f), f ∈ C(K). Once again
referring to Corollary 9.1.10, yields that T commutes with all operators Ψ̃(f),
f ∈ BM(K). ❑

Step 2; Construction of Ψd, d R∞-definitizing

Let d ∈ H(R∞) be R∞-definitizing for A, and set σ0 := σ(A) ∩ R∞. Since ρR∞

maps C(z) ∩ H(R∞) bijectively onto C(z) ∩C(R∞), we may define

Ψd
rat :

{
C(z) ∩ C(R∞) → B(K)

g 7→ ΦA,σ0

RD

(
d · ρ−1

R∞
(g)
)

Our aim is to apply Proposition 9.4.3 with K = R∞. Clearly, Ψd
rat is linear. The

set C(z)∩C(R∞) is a subalgebra of C(R∞) which contains the constant function
1. It is point separating since it contains the function (z− i)−1, and it is closed
with respect to complex conjugation since it contains with a function q also
the function q#. By the Stone-Weierstraß Theorem, therefore, C(z)∩C(R∞) is
dense in C(R∞).

The required positivity property (9.4.2) can be deduced from d being defini-
tizing with help of the following lemma.

LEH14 9.4.6 Lemma. Let g ∈ C(z) ∩ C(R∞), and assume that g(z) ≥ 0, z ∈ R∞.
Then there exists q ∈ C(z) ∩ C(R∞) such that g = q#q.

Proof. Since g takes real values along the real axis, we must have g# = g. In
particular,

dg(z) = dg#(z) = dg(z), z ∈ C ,

i.e. the zeros and poles of g are located symmetrically with respect to the real
line. Moreover, since g takes only nonnegative values along the R, each real zero
must have even order. Set

s(z) :=
∏

Imw>0

(z − w)dg(w) ·
∏

w∈R

(z − w)
dg(w)

2 ,

then the function g · (s#s)−1 is a rational function which has no poles and zeros
in C. Thus it is constant, say g · (s#s)−1 = γ. Evaluating at a point w ∈ R
which is no zero of g shows that γ ≥ 0. We see that the function q :=

√
γ · s

satisfies the required identity g = q#q. ❑

Let g ∈ C(z) ∩ C(R∞) and assume that g(z) ≥ 0, z ∈ R∞. According to
Lemma 9.4.6 we can choose q ∈ C(z) ∩C(R∞) with g = q#q. It follows that

[
Φdrat(g)x, x

]
=
[
ΦA,σ0

RD

(
d · ρ−1

R∞
(q#q)

)
x, x
]

=

=
[
ΦA,σ0

RD

(
ρ−1

R∞
(q#)

)
· ΦA,σ0

RD (d) · ΦA,σ0

RD

(
ρ−1

R∞
(q)
)
x, x
]

=

=
[
ΦA,σ0

RD (d) · ΦA,σ0

RD

(
ρ−1

R∞
(q)
)
x,ΦA,σ0

RD

(
ρ−1

R∞
(q)
)
x
]
≥ 0 .
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All hypothesis of Proposition 9.4.3 are verfied, and we obtain a linear extension
Ψd of Ψd

rat to BM(R∞) which is ‖.‖∞-to-‖.‖–bounded, (9.1.3)-continuous, and
maps nonnegative functions to nonnegative operators.

LEH50 9.4.7 Lemma. We have

Ψd
(
ρR∞

(g)
)

= ΦA,σ0

RD (dg), g ∈ H(R∞) .

Proof. By the definition of Ψd, we have

Ψd ◦ ρR∞

∣
∣
C(z)∩H(R∞)

= ΦA,σ0

RD ◦ (d·)
∣
∣
C(z)∩H(R∞)

.

Both functions Ψd◦ρR∞
: H(R∞) → B(K) and ΦA,σ0

RD ◦(d·) : H(R∞) → B(K) are
continuous. Since C(z) ∩ H(R∞) is dense in H(R∞), cf. 8.1.5, these functions
coincide on all of H(R∞). ❑

Step 3; The maps Λ
dj

bj

From now on we will suppress explicit notation of ρR∞
, and consider H(K) as

a ‘subset’ of C(K). Note that, in places, this abuse of language has to handled
with care since ρR∞

need not be injective.
Let d1, . . . , dn ∈ H(R∞) be R∞-definitizing for A, and let b1, . . . , bn ∈

H(R∞). Then we define a map

Λ
dj

bj
:







H(R∞) × BM(R∞) → B(K)

(p, g) 7→ ΦA,σ0

RD (p) +
n∑

j=1

Ψdj(bjg)

LEH31 9.4.8 Lemma. The map Λ
dj

bj
is linear and continuous. Set d :=

∑n
j=1 bjdj ,

then

H(R∞) × H(R∞)
Λ

dj

bj //

πd

��

B(K)

H(R∞)
Φ

A,σ0
RD

77ooooooooooo

(9.4.4) H51

For each fixed p ∈ H(R∞) the function g 7→ Λ
dj

bj
(p, g) is (9.1.3)-continuous.

Proof. The map Λ
dj

bj
is a composition of linear and continuous maps, namely of

the projections, the maps g 7→ bjg, and the maps ΦA,σ0

RD , Ψdj . Thus it is itself
linear and continuous. In order to show (9.4.4), let (p, g) ∈ H(R∞)×H(R∞) be
given. Using Lemma 9.4.7, we obtain

Λ
dj

bj
(p, g) = ΦA,σ0

RD (p) +

n∑

j=1

Ψdj (bjg) = ΦA,σ0

RD (p) +

n∑

j=1

ΦA,σ0

RD (djbjg) =

= ΦA,σ0

RD

(
p+

n∑

j=1

djbjg
)

= ΦA,σ0

RD (p+ dg) =
(
ΦA,σ0

RD ◦ πd
)
(p, g) .
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Finally, let p ∈ H(R∞) be fixed. For each measure µ, multiplication by bj
maps µ-boundedly pointwise convergent sequences to µ-boundedly pointwise
convergent sequences. Hence, (9.1.3)-continuity of Ψdj implies that the map g 7→
Ψdj (bjg) has the same property. Thus also g 7→ Λ

dj

bj
(p, g) is (9.1.3)-continuous.

❑

We can now deduce the main properties of Λ
dj

bj
.

PRH30 9.4.9 Proposition. Let d1, . . . , dn ∈ H(R∞) be definitizing functions for A,
b1, . . . , bn ∈ H(R∞), and set d :=

∑n
j=1 bjdj .

(i) The map Λ
dj

bj
: H(R∞) × BM(R∞) → B(K) is a continuous algebra ho-

momorphism, when H(R∞)×BM(R∞) is endowed with the multiplication
‘⋄d’.

(ii) We have

Λ
dj

bj

(
p#, g

)
=
[
Λ
d#j

b#j
(p, g)

]∗
, (p, g) ∈ H(R∞) × BM(R∞) .

(iii) We have kerπd ⊆ kerΛ
dj

bj
.

(iv) Let in addition to dj , bj some R∞-definitizing elements d′1, . . . , d
′
m ∈

H(R∞) and elements b′1, . . . , b
′
n ∈ H(R∞) be given, and set d′ :=

∑m
j=1 b

′
jd

′
j. If d′|d in H(R∞), then

Λ
dj

bj
(p, g) = Λ

d′j
b′j

(

p,
d

d′
g
)

, (p, g) ∈ H(R∞) × BM(R∞) .

Proof. For (i) it remains to check compatibility with multiplication. To do so,
we use (9.1.3)-continuity. For p1, p2 ∈ H(R∞) and g1, g2 ∈ C(z) ∩ H(R∞), we
can compute

Λ
dj

bj

(
(p1, g1) ⋄d (p2, g2)

)
= ΦA,σ0

RD

(
πd
(
(p1, g1) ⋄d (p2, g2)

))
=

= ΦA,σ0

RD

(
πd(p1, g1)

)
ΦA,σ0

RD

(
πd(p2, g2)

)
= Λ

dj

bj
(p1, g1)Λ

dj

bj
(p2, g2) ,

(9.4.5) H28

Let p1, p2 ∈ H(R∞) and g2 ∈ C(z) ∩ H(R∞) be fixed. Both functions

g1 7→ Λ
dj

bj

(
(p1, g1) ⋄d (p2, g2)

)
and g1 7→ Λ

dj

bj
(p1, g1)Λ

dj

bj
(p2, g2)

are (9.1.3)-continuous. Thus (9.4.5) implies that

Λ
dj

bj

(
(p1, g1) ⋄d (p2, g2)

)
= Λ

dj

bj
(p1, g1)Λ

dj

bj
(p2, g2), p1, p2 ∈ H(R∞),

g2 ∈ C(z) ∩ H(R∞), g1 ∈ BM(R∞) .
(9.4.6) H32

Next keep, besides p1, p2 ∈ H(R∞), a function g1 ∈ BM(R∞) fixed. Both
functions

g2 7→ Λ
dj

bj

(
(p1, g1) ⋄d (p2, g2)

)
and g2 7→ Λ

dj

bj
(p1, g1)Λ

dj

bj
(p2, g2)
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are (9.1.3)-continuous. Thus (9.4.6) implies that

Λ
dj

bj

(
(p1, g1) ⋄d (p2, g2)

)
= Λ

dj

bj
(p1, g1)Λ

dj

bj
(p2, g2), p1, p2 ∈ H(R∞),

g1, g2 ∈ BM(R∞) .

We come to the proof of (ii). We know that with dj also d#
j is R∞-definitizing for

A. Hence, the map Λ
d#j

b#j
is well-defined. Let p ∈ H(R∞) and g ∈ C(z)∩H(R∞).

Then

Λ
dj

bj

(
p#, g

)
= ΦA,σ0

RD

(
πd(p

#, g)
)

= ΦA,σ0

RD

(
[π(d#)(p, g)]

#
)

=

= ΦA,σ0

RD

(
π(d#)(p, g)

)∗
=
(

Λ
d#j

b#j
(p, g)

)∗
.

Again (9.1.3)-continuity yields that Λ
dj

bj
(p#, g) = (Λ

d#j

b#j
(p, g))∗ for all p ∈ H(R∞),

g ∈ BM(R∞).
For (iii), assume that (p, g) ∈ kerπd, i.e. p + dg = 0. Then g = −d−1p,

and hence g is the restriction to R∞ of a meromorphic function defined in some
neighbourhood of R∞. However, since g ∈ BM(R∞), actually −d−1p ∈ H(R∞).
Thus

Λ
dj

bj
(p, g) = ΦA,σ0

RD

(
πd(p, g)

)
= 0 .

Finally, assume that additionally d′j and b′j are given. For p ∈ H(R∞) and
g ∈ C(z) ∩ H(R∞) we can compute

Λ
d′j
b′j

(
p,
d

d′
g
)

= ΦA,σ0

RD

(
p+ d′

d

d′
g
)

= ΦA,σ0

RD (p+ dg) = Λ
dj

bj
(p, g) .

Both functions

g 7→ Λ
d′j
b′j

(
p,
d

d′
g
)

and g 7→ Λ
dj

bj
(p, g)

are (9.1.3)-continuous. It follows that they coincide on all of H(R∞)×BM(R∞).

❑

Step 4; Definition of ΦA

Let d be a greatest common divisor of the set of all R∞-definitizing elements ofA,
and choose R∞-definitizing elements d1, . . . , dnH(R∞) and elements b1, . . . , bn ∈
H(R∞) such that d =

∑n
i=1 bidi. Since dd = dAcrt, we have AA = A(dd).

Due to Proposition 9.4.9, (iii), there exists a continuous algebra homomor-
phism ΦA with

H(R∞) × BM(R∞)
Λ

dj
bj //

πd

��

B(K)

AA

ΦA

55jjjjjjjjjj

LEH29 9.4.10 Lemma.

(i) The map ΦA does not depend on the choice of d.
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(ii) We have ΦA(f) = Φ∗
A, f ∈ AA.

(iii) Whenever F ∈ H(R∞), then ΦA(F ) = ΦA,σ0

RD (F ).

Proof. Write d =
∑n
i=1 bidi. Assume that d′ is another greatest common divisor

of the set of all R∞-definitizing elements of A, write d′ =
∑m

i=1 b
′
id

′
i, and let Φ′

A

be the correspondingly defined map. We have

AA

Φ′
A

Z Z Z Y Y X W V
S

M

qq

q
k

hgfeeddd

ΦA

dddeefgh
k

q

--

M
S

V W X Y Y Z Z Z

H(R∞)×BM(R∞)
id×
(

d
d′ ·
)

//

Λ
dj
bj

OOOO

''OOOOO

πdnnnnn

77nnnnnn

H(R∞)×BM(R∞)

Λ
d′

j

b′
j

oooo

wwooooo

πd′PPPPP

ggPPPPPP

B(K)

and hence ΦA and Φ′
A coincide. This proves (i).

To show (ii), note that with d also the element d# is a greatest common

divisor of the set of all R∞-definitizing elements of A. We have d# =
∑n

i=1 b
#
i d

#
i

and, due to the already proved item (i), the diagram

AA

ΦA

i
k

m
q

�

**

<

M
Q

S
U

. // AA

ΦA

U
S

Q
M

<

tt

�
q

m
k

i

H(R∞)×BM(R∞)
.# //

Λ
dj

bj

��

πd

OO

H(R∞)×BM(R∞)

Λ
d
#
j

b
#
j��

π
d#

OO

B(K)
.∗

// B(K)

Finally, we turn to (iii). Let F ∈ H(R∞) be given. The definitions of ΦA and

Λ
dj

Bj
give

ΦA(F ) = Λ
dj

bj
(F, 0) = ΦA,σ0

RD (F ) .

❑

Step 5; The properties (i) and (ii)

Let f ∈ AA be given. We have ΦA,σ0

RD (1) = ΦA(1), and

ΦA(f)ΦA(1) = ΦA(1)ΦA(f) = ΦA(f) .

This already shows that the decomposition K = K1[+̇]K2 reduces ΦA(f) and
that ΦA(f)|K2 = 0.

Next, let T ∈ B(K1) be given, and assume that T commutes with all op-
erators (A − w)−1|K1 . Set A1 := A ∩ K2

1, then σ(A1) = σ(A) ∩ R∞ and
(A1−w)−1 = (A−w)−1|K1 , w ∈ ρ(A)∩C. The set O := C∞ \ (σ(A)\R∞) is an
open subset of C∞ and contains σ(A1). Moreover, O ∩ ρ(A1) = O ∩ ρ(A). The-
orem 8.3.1 implies that T commutes with all operators ΦA1

RD(F ), F ∈ H(σ(A1)).

However, if f ∈ H(R∞), then ΦA,σ0

RD (f) = ΦA1

RD(f), and we conclude that

TΦA,σ0

RD (f) = ΦA,σ0

RD (f)T, f ∈ H(R∞) .
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Let d ∈ H(R∞) be R∞-definitizing for A. By the above relation T commutes
with all operators Ψd

rat(f), f ∈ C(z) ∩ C(R∞), and by Proposition 9.4.3 hence

with all operators Ψd(f), f ∈ BM(R∞). The definition of Λ
dj

bj
shows imme-

diately that T commutes with all Λ
dj

bj
(p, g), (p, g) ∈ H(R∞) × BM(R∞). This

gives, by the definition of ΦA, that T commutes with all ΦA(f), f ∈ AA.
Conversely, assume that TΦA(f) = ΦA(f)T , f ∈ AA. Let w ∈ ρ(A) \ R∞,

then the function f(z) := 1
z−w belongs to H(R∞), and we have

ΦA(f) = ΦA,σ0

RD (f) = (A− w)−1ΦA(1) .

Hence, T commutes with (A−w)−1|K1 . Since the resolvent (A−w)−1 depends
continuously on w, and ρ(A)\R∞ is dense in ρ(A)∩C, the operator T commutes
also with all operators (A− w)−1, w ∈ ρ(A) ∩ R.

We turn to the proof of (ii). Let d be R∞-definitizing for A, and let f ∈ AA
be such that f

d ∈ BM(R∞) and takes nonnegative values. According to the
definition of ΦA choose d′j , b

′
j ∈ H(R∞), d′ :=

∑n
j=1 b

′
jd

′
j , such that ΦA ◦ πd′ =

Λ
d′j
b′j

. Then d′|d in H(R∞), and hence using Proposition 9.4.9, (iv),

ΦA(f) = Λ
d′j
b′j

(
0,
d

d′
f

d

)
= Λd1

(
0,
f

d

)
= Ψd

(f

d

)
.

However, Ψd has the property to map nonnegative functions to nonnegative
operators.

Step 6; The Spectral Mapping Theorem

Let f be given according to Theorem 9.4.2, (iii). According to the definition of
ΦA choose dj , bj ∈ H(R∞) such that (d :=

∑n
i=1 bjdj)

ΦA ◦ πd = Λ
dj

bj
.

Moreover, write f = p + dg with p ∈ H(R∞) and g ∈ BM(R∞). Due to
the continuity assumptions put on f , the function g is continuous at each point

w ∈ supp dd. If w ∈ R∞\supp dd, then g(z) = f(z)−p(z)
d(z) in a neighbourhood of w

with d(z) being nonzero, and hence is continuous at w. Altogether, g ∈ C(R∞).
Choose a sequence gn ∈ C(z) ∩ C(R∞) which converges to g uniformly on

R∞. We can write

ΦA(f) = ΦA(p+ dgn) + ΦA(d(g − gn)) .

Continuity of Λ
dj

bj
gives

lim
n→∞

ΦA(d(g − gn)) = lim
n→∞

Λ
dj

bj
(g − gn) = 0 ,

and hence we have

ΦA(f) = lim
n→∞

[
ΦA(f) − ΦA(d(g − gn))

]
= lim
n→∞

ΦA(p+ dgn) .

However, since gn ∈ H(R∞), we have ΦA(p+ dgn) = ΦA,σ0

RD (p+ dgn).
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By the Spectral Mapping Theorem for the Riesz-Dunford calculus we thus
have σ(ΦA(p+dgn)) = (p+dgn)(σ(A)). Since p+dgn converges to f uniformly,
(p+dgn)(σ(A)) converges to f(σ(A)) in the Hausdorff metric. Since ΦA(p+dgn)
converges to ΦA(f) in the norm of B(K), and the perturbation ΦA(p+ dgn) −
ΦA(f) commutes with ΦA(f), [K, IV.Theorem 3.6] implies that σ(ΦA(p+dgn))
converges to σ(ΦA(f)) with respect to the Hausdorff metric. Putting together
these pieces, we obtain σ(ΦA(f)) = f(σ(A)).

Step 7; The support of ΦA

The crucial construction is to assign to each function f ∈ AA an analytic func-
tion Ξf : ρ(A) ∪ (C∞ \ supp f) → B(K). To this end, fix a point z ∈ ρ(A) ∩ C,
and consider the functions

Ξ1(w) :=

{

−(w − z)(A− w)−1ΦA(f) , w ∈ ρ(A) ∩ C

ΦA(f) , w ∈ ρ(A) ∩ {∞}

Ξ2(w) := ΦA
(
ξf (w, .)

)
, w ∈ C∞ \ supp f

Both functions are analytic on their domains. For Ξ2 this follows from Propo-
sition 9.3.3, for Ξ1 we only have to remember that limw→∞w(A − w)−1 = −I
in case ∞ ∈ ρ(A).

Next, we show that Ξ1 and Ξ2 coincide on the intersection of their domains.
First we consider a point w ∈ C \ R which belongs to ρ(A) ∩ (C∞ \ supp f).
Then the function 1

x−w belongs to H(R∞) as a function of x, and

ΦA

( 1

x− w

)

= ΦA,σ0

RD

( 1

x− w

)

= (A− w)−1ΦA,σ0

RD (1) = (A− w)−1ΦA(1) .

Since ξf (w, x) = w−z
w−xf(x), we find

Ξ2(w) = ΦA
(
ξf (w, .)

)
= −(w − z) · (A− w)−1ΦA(1) · ΦA(f) = Ξ1(w) .

The set [C \ R] ∩ [ρ(A) ∩ (C∞ \ supp f)] is dense in ρ(A) ∩ (C∞ \ supp f), and
hence by continuity Ξ1(w) = Ξ2(w) for all w ∈ ρ(A) ∩ (C∞ \ supp f).

Due to what we just showed a function Ξf : ρ(A) ∪ (C∞ \ supp f) → B(K)
is well-defined by

Ξf (w) :=

{

Ξ1(w) , w ∈ ρ(A)

Ξ2(w) , w ∈ C∞ \ supp f

and is analytic.
After this preparation, we come to the actual proof of Theorem 9.4.2, (iv).

First, we show that the set σ(A)∩R∞ indeed has the property (9.4.1). Let f ∈
AA with supp f ∩ (σ(A)∩R∞) = ∅ be given. Since, by definition, supp f ⊆ R∞,
this means that supp f ⊆ ρ(A). Hence ρ(A) ∪ (C∞ \ supp f) = C∞, and thus
Ξf is an analytic map defined on all of C∞. By Liouville’s Theorem it is thus
constant. The actual value of this constant can be computed by taking limits:

Ξf (w) = Ξf (∞) = lim
u→∞

Ξf (u) =

{

limu→∞ Ξ1(u) , ∞ ∈ ρ(A)

limu→∞ Ξ2(u) , ∞ 6∈ supp f
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If ∞ ∈ ρ(A), then limu→∞[−(w− z)(A−w)−1] = I and hence limu→∞ Ξ1(u) =
ΦA(f). If ∞ 6∈ supp f , then limu→∞ ξf (u, .) = f(.) and again limu→∞ Ξ2(u) =
ΦA(f). Thus

Ξf (w) = ΦA(f), w ∈ C∞ .

However, we have Ξf (z) = Ξ1(z) = 0, and it follows that ΦA(f) = 0.
To show that σ(A)∩R∞ is the smallest set with (9.4.1), let some closed subset

C of R∞ with this property be given. We have to show that C ⊇ σ(A)∩R∞, in
other words, R∞ \C ⊆ ρ(A). To this end, we first separate the real and nonreal
parts of the spectrum of A. Set

X1 := ranΦA,σ0

RD (1), X2 := kerΦA,σ0

RD (1), A1 := A ∩ X 2
1 , A2 := A ∩ X 2

2 .

Then A = A1+̇A2 and σ(A1) = σ(A) ∩ R∞, σ(A2) = σ(A) \ R∞. Moreover,

(A1 − w)−1 = (A− w)−1ΦA,σ0

RD (1)
∣
∣
X1

= (A− w)−1ΦA(1)
∣
∣
X1
, w ∈ ρ(A) .

Next, for each open subset O of C∞ with C ⊆ O, choose a partition of unity
χO, χ2 ∈ C∞(R∞) subordinate to the open cover {O ∩ R∞,R∞ \ C} of R∞.
Since C satisfies (9.4.1), we then have

ΦA(f) = ΦA(χOf) + ΦA(χ2f) = ΦA(χOf), f ∈ AA . (9.4.7) H60

In particular, ΦA(1) = ΦA(χO). Set

D := C ∩
[
ρ(A) ∪ (C∞ \ suppχO)

]
,

and consider the analytic function R̃(w) :=
ΞχO

(w)

z−w |X1 , w ∈ D. If w ∈ ρ(A)∩C,

then R̃(w) = (A − w)−1ΦA(1)|X1 = (A1 − w)−1. For u,w ∈ ρ(A) ∩ C, thus the
resolvent identity

R̃(u) − R̃(w) = (u − w)R̃(u)R̃(w)

holds. The set D contains C\R, and hence is connected. Keeping w ∈ ρ(A)∩C
fixed, and applying the Identity Theorem, we obtain that the resolvent identity
holds in fact for all u ∈ D and w ∈ ρ(A) ∩ C. Keeping u ∈ D fixed and again
applying the Identity Theorem, yields that R̃ satisfies the resolvent identity
for all u,w ∈ D. By Corollary 7.3.3, this implies that ρ(A1) ⊇ D. Since
suppχO ⊆ O, thus

C \O ⊆ ρ(A1) ∩ R∞ = ρ(A) ∩ R∞ ⊆ ρ(A) .

Consider the point ∞ and assume that ∞ 6∈ O. We are going to show that A1

is a bounded operator, i.e. that ∞ ∈ ρ(A). Fix z ∈ ρ(A) \ R∞. For w ∈ C \ R,
w 6= z, define a function gw : R∞ → C as

gw(x) :=

{
w−x
w−zχO(x) , x ∈ R

0 , x = ∞

Then gw ∈ C∞(R∞), and gw(x) · ξχ0 (w, x) = χO(x), x ∈ R∞. Remembering
(9.4.7), thus

ΦA(gw) · ΦA
(
ξχO

(w, .)
)

= ΦA(χO) = ΦA(1) . (9.4.8) H61

Let R > ‖φA(zg0)‖, and choose w ∈ ρ(A) \ R∞ with |w| > R. Note here that
this choice of w is possible, since σ(A) ∩ R∞ and σ(A) \ R∞ are disjoint and
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relatively open subsets of σ(A) and hence ∞ is not an accumulation point of
σ(A) \ R∞. We have

ΦA(gw) = − 1

w − z

(
ΦA(zg0) − wΦA(1)

)
= − 1

w − z

(
ΦA(zg0) − w

)
ΦA(1) ,

and hence ΦA(gw)|K1 is boundedly invertible. Moreover, by (9.4.8), we have

(
ΦA(zg0)|K1 − w

)−1
= − 1

w − z

(

ΦA(gw)|K1

)−1

= − 1

w − z
ΦA
(
ξχO

(w, .)
)∣
∣
K1

=

=
Ξ2(w)

z − w

∣
∣
∣
K1

=
Ξ1(w)

z − w

∣
∣
∣
K1

= (A− w)−1ΦA(χO)|K1 = (A1 − w)−1 .

We conclude that A1 = ΦA(zg0)|K1 , and in particular that thus A1 ∈ B(K1).
We have so far established that C∞ \ O ⊆ ρ(A), in other words that O ⊇

σ(A). However, since C is closed, we have

C =
⋂{

O : O ⊆ C∞ open, C ⊆ O
}

,

and hence C ⊇ σ(A).
The proof of Theorem 9.4.2 is finished. ✌

REH33 9.4.11 Remark. The Langer-Jonas functional calculus can be extended imme-
diately so to include the nonreal spectrum. Simply, by mapping an element

(f, r) ∈ AA × H(σ(A) \ R∞) to ΦA(f) + Φ
A,σ(A)\R∞

RD (r). This again gives a
continuous ∗-algebra homomorphism with properties corresponding to the re-

spective properties of ΦA and Φ
A,σ(A)\R∞

RD . �
Let us use the Langer-Jonas functional calculus to obtain more knowledge

on the set of R∞-definitizing functions.

PRH36 9.4.12 Proposition. Let K be a Krein space, and A a selfadjoint relation in
K such that σ(A) ∩ R∞ and σ(A) \ R∞ are relatively open subsets of σ(A).
Then A is definitizable along R∞ if and only if there exists a rational function
d ∈ C(z) ∩ C(R∞) with d = d# which is R∞-definitizing for A.

Proof.
Step 1: Our first aim is to show that there exists a R∞-definitizing function d1

with d#
1 = d1. Let d0 be any R∞-definitizing function. If d0 = d#

0 , we set d1 :=

d0 and are done. Otherwise, consider d1 := i(d0 − d#
0 ). Then d1 ∈ H(R∞) \ {0}

and d1 = d#
1 . We have

0 ≤
[
ΦA,σ0

RD (d0)x, x
]

=
[
x,ΦA,σ0

RD (d#
0 )x

]
=
[
ΦA,σ0

RD (d#
0 )x, x

]
, x ∈ K ,

and hence
[
ΦA,σ0

RD

(
i(d0 − d#

0 )
)
x, x
]

= 0, x ∈ K .

We see that d1 is R∞-definitizing for A.

Step 2: Choose a R∞-definitizing function d with d# = d,and M ∈ GL(2,R)
with φM (∞) 6∈ supp dd. Set d̃ := d ◦φM , then d̃ ∈ H(R∞) and supp dd̃ ⊆ R. Set

g̃(z) :=
∏

w∈suppdd̃

(z − w)dd̃(w) ,
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and g := g̃ ◦ φ−1
M . Then g ∈ C(z) ∩ H(R∞), satisfies dg = dd, and g# = g. The

function g
d is therefore analytic in H(R∞), has no zeros, and takes real values.

Thus it is either positive on all of R∞ or negative on all of R∞. Set

d1 :=

{

g , g
d positive

−g , g
d negative

then by Theorem 9.4.2, (ii), it follows that

ΦA,σ0

RD (d1) = ΦA(d1) ≥ 0 .

❑

It is apparent from the definition of the algebra AA that the points ofsupp dAcrt
play a particular role.

DEH12 9.4.13 Definition. Let K be a Krein space, and A a selfadjoint relation in K
which is definitizable along R∞. A point x ∈ R∞ is called a critical point , if
x ∈ supp dAcrt, and we will use the notation crt(A) := supp dAcrt. �

PRH35 9.4.14 Proposition. Let K be a Krein space, and A a selfadjoint relation in
K which is definitizable along R∞.

(i) If x0 ∈ ρ(A) ∩ R∞, then there exists a R∞-definitizing element d with
dd(x0) ∈ {0, 1}.

(ii) We have crt(A) ⊆ σ(A).

Proof. Choose a R∞-definitizing element d0 ∈ H(R∞). Let us first consider the

case that x0 ∈ R. Set α := [
dd0

(x0)

2 ], and

d(z) :=
d0(z)

(z − x0)2α
.

Then d ∈ H(R∞), and dd(x0) ∈ {0, 1}. Choose a partition of unity χ1, χ2 ∈
C∞(R∞) subordinate to the open cover {R∞ \ {x0},R∞ \ σ(A)}. Then χ1d ∈
C∞(R∞), and the function

χ1(x)d(x)

d0(x)
=

χ1(x)

(x− x0)2α

belongs to C∞(R∞) and takes nonnegative values. Thus, by Theorem 9.4.2,
(ii), we have ΦA(χ1d) ≥ 0. However, by Theorem 9.4.2, (iv),

ΦA(χ1d) = ΦA(d) = ΦA,σ0

RD (d) .

This shows that d is R∞-definitizing. The case that x0 = ∞ is treated in the
same way using d(x) := x2αd0(x). This finishes the proof of (i).

We come to the proof of (ii). Assume that x0 ∈ ρ(A)∩R∞, then we already
know that there exists a R∞-definitizing d with dd(x0) ∈ {0, 1}. If dd(x0) = 0,
it already follows that x0 6∈ crt(A). Assume that dd(x0) = 1, and consider first
the case that x0 ∈ R. Let χ1, χ2 be as in the above part of this proof, and
choose x1 > x0 such that [x0, x1] ∩ suppχ1 = ∅. Set

d̃(z) :=
z − x1

z − x0
d(z) ,
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then d̃ ∈ H(R∞) and dd̃(x0) = 0. The function

χ1(x)d̃(x)

d(x)
= χ1(x)

x − x1

x− x0

belongs to C∞(R∞) and takes nonnegative values. Hence,

ΦA,σ0

RD (d̃) = ΦA(χ1d̃) ≥ 0 ,

i.e. d̃ is R∞-definitizing. The case that x0 = ∞ is treated in the same way
choosing x1 < min suppχ1 and using d̃(x) := (x − x1)d(x). This finishes the
proof of (ii). ❑

Let us conclude this chapter with a remark on fractional linear transforma-
tions.

PRH67 9.4.15 Proposition. Let K be a Krein space and A a R∞-definitizing selfad-
joint relation in K. Moreover, let N ∈ GL(2,R). Then Ã := φN (A) is self-

adjoint and R∞-definitizing. We have dÃcrt = dAcrt ◦ φ−1
N . The composition map

◦φN is an homeomorphic ∗-algebra isomorphism of AÃ onto AA, and we have

ΦÃ(f̃) = ΦA(f̃ ◦ φN ), f̃ ∈ AÃ . (9.4.9) H68

Proof. First of all, by Lemma 7.4.6, certainly Ã is selfadjoint. Moreover, by the
Spectral Mapping Theorem, σ(Ã) = φN (σ(A)). Since φN is a homeomorphism
of C∞ onto itself, thus σ(Ã) is the disjoint union of its relatively open subsets
φN (σ(A) ∩ R∞) and φN (σ(A) \ R∞). However, since φN maps R∞ onto itself,
we have

φN (σ(A) \ R∞) = φN (σ(A)) \ R∞ = σ(Ã) \ R∞ ,

φN (σ(A) ∩ R∞) = φN (σ(A)) ∩ R∞ = σ(Ã) ∩ R∞ .

This shows that the requirement (i) of Definition 9.4.1 is satisfied by Ã.
Set σ̃0 := σ(Ã) ∩ R∞, the we know from (8.3.5) that

ΦÃ,σ̃0

RD (f̃) = ΦA,σ0

RD (f ◦ φN ), f ∈ H(R∞) . (9.4.10) H69

Remember here that composition with φN is a homeomorphic ∗-algebra iso-
morphism of H(R∞) onto itself. The above relation shows that d ∈ H(R∞) is
R∞-definitizing for A if and only if d̃ := d ◦ φ−1

N is R∞-definitizing for Ã. It

follows that Ã is R∞-definitizable and

dÃcrt = dAcrt ◦ φ−1
N .

By Lemma 9.2.10, thus, composition with φ−1
N is a homeomorphic ∗-algebra

isomorphism of AA onto AÃ.
For the proof of (9.4.9) we need some preparation. Choose d ∈ H(R∞) with

dd = dAcrt and let dj ∈ H(R∞) be R∞-definitizing for A and bj ∈ H(R∞) such

that d =
∑n

j=1 bjdj . Set d̃j := dj ◦φ−1
N , b̃j := bj ◦φ−1

N , d̃ := d ◦φ−1
N , then d̃j are

R∞-definitizing for Ã, d̃ =
∑n

j=1 b̃j d̃j , and dd̃ = dÃcrt.
Let x, y ∈ K be fixed, and choose measures µ1, µ2 such that

hn → h µ1-boundedly pointwise ⇒ [Λ
dj

bj
(p, hn)x, y] → [Λ

dj

bj
(p, h)x, y] ,
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hn → h µ2-boundedly pointwise ⇒ [Λ
d̃j

b̃j
(p̃, hn)x, y] → [Λ

d̃j

b̃j
(p̃, h)x, y] ,

and set µ := µ1 + µ2 + [µ1 ◦ φN ] + [µ2 ◦ φN ].
Now we come to the actual proof of (9.4.9). Let f̃ ∈ AÃ be given, and set

f := f̃ ◦ φN . Let (p̃, g̃) ∈ H(R∞) × BM(R∞) be such that f̃ = πd̃(p̃, g̃), and
set p := p̃ ◦ φN and g := g̃ ◦ φN . Then f = πd(p, g). Choose g̃n ∈ H(R∞) such
that g̃n → g̃ µ-boundedly pointwise, and set gn := g̃n ◦ φN . Then, due to the
definition of µ, also gn → g µ-boundedly pointwise. It follows that

[ΦA(f)x, y] = [Λ
dj

bj
(p, g)x, y] = lim

n→∞
[Λ
dj

bj
(p, gn)x, y] = lim

n→∞
[Λ
d̃j

b̃j
(p̃, g̃n)x, y] =

= [Λ
d̃j

b̃j
(p̃, g̃)x, y] = [ΦÃ(f̃)x, y] .

Thereby the third equality sign holds because of (9.4.4) and (9.4.10). Since x, y
were arbitrary, we conclude that ΦA(f) = ΦÃ(f̃). ❑
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