Algebraische und analytische Theorie der Zetafunktion

Vorlesung SS 2002. Vers.2.1.2003

Inhaltsverzeichnis

Di	ie Ri	emannsche Zetafunktion: Motivation	V
1	Algebraische Grundlagen		1
	1.1	Freie Moduln	1
	1.2	Moduln über Hauptidealringen	
	1.3	Nöthersche Moduln	
	1.4	Lokalisierung	9
	1.5	Der Chinesische Restsatz	15
	1.6	Der ganze Abschluss	16
	1.7	Primideale	19
	1.8	Fortsetzung von Homomorphismen	21
2	Dedekind Ringe		27
	2.1	Dedekind Ringe	27
	2.2	Diskrete Bewertungsringe	
	2.3	Galois Erweiterungen	
	2.4	Verzweigung von Primidealen	
	2.5	Explizite Faktorisierung einer Primstelle	41
	$^{2.6}$	Die Diskriminante	44
	2.7	Quadratische Zahlkörper, Kreisteilungskörper	49
3	Die	Riemannsche Zetafunktion: Definition	61
	3.1	Die Riemannsche Zetafunktion	61
	3.2	Definition von ζ_k	
Literaturyerzeichnis			67

Die Riemannsche Zetafunktion: Motivation

Aus der Kenntnis des analytischen Verhaltens der Riemannschen Zetafunktion

$$\zeta_{\mathbb{Q}}(s) = \zeta(s) := \sum_{n \in \mathbb{N}} \frac{1}{n^s}, \operatorname{Re} s > 1,$$

gewinnt man Aussagen zahlentheoretischer Natur, z.B. über die Verteilung der Primzahlen:

Satz (Primzahlsatz). Sei $\pi(N)$ die Anzahl der Primzahlen $p \leq N$. Dann gilt für gewisse Konstanten $\alpha, \beta > 0$ (z.B. $\alpha = 0.1, \beta = 0.01$)

$$\pi(N) = \int_{2}^{N} \frac{dt}{\log t} + O\left(Ne^{-\beta(\log N)^{\alpha}}\right).$$

Insbesondere ist $\pi(N) \sim \frac{N}{\log N}$.

Einige, relativ einfache, analytische Eigenschaften von $\zeta_{\mathbb{R}}$ aus denen man mit Hilfe Tauberscher Sätze solche Aussagen erhalten kann sind:

Satz. (i) Eulersche Produktdarstellung: Für Re s > 1 gilt

$$\zeta_{\mathbb{Q}}(s) = \prod_{p \text{ PZ}} \frac{1}{1 - \frac{1}{p^s}}.$$

- (ii) $\zeta_{\mathbb{Q}}$ besitzt eine analytische Fortsetzung auf die gesamte rechte Halbebene $\{z\in\mathbb{C}:\operatorname{Re} z>0\}$ mit Ausnahme des Punktes s=1. An der Stelle 1 hat $\zeta_{\mathbb{Q}}$ einen Pol erster Ordnung mit Residuum 1.
- (iii) $\zeta_{\mathbb{Q}}$ besitzt eine analytische Fortsetzung auf $\mathbb{C}\setminus\{1\}$, nämlich vermöge der Funktionalgleichung

$$\pi^{-\frac{s}{2}}\Gamma\Big(\frac{s}{2}\Big)\zeta_{\mathbb{Q}}(s) = \pi^{-\frac{1-s}{2}}\Gamma\Big(\frac{1-s}{2}\Big)\zeta_{\mathbb{Q}}(1-s).$$

Weiters benötigt man für diese genaue Abschätzung des Restgliedes Kenntnis über nullstellenfreie Bereiche der ζ -Funktion. Kennt man große nullstellenfreie Bereiche, so kann man die Abschätzung besser machen.

Weiters studiert man auch die Häufigkeit von Primzahlen in arithmetischen Progressionen:

Satz (Page-Siegel-Walfisz). Sei $k \in \mathbb{N}$, (a, h) = 1, und bezeichne $\pi(N; k, a) = \#\{p \text{ prim} : p \leq N, p \equiv a \mod k\}$. Dann gilt

$$\pi(N; k, a) = \frac{1}{\varphi(k)} \int_{2}^{N} \frac{dt}{\log t} + O\left(Ne^{-\beta(\log N)^{\alpha}}\right)$$

wobei φ die Eulersche φ -Funktion bezeichnet.

Insbesondere erhält man so den

Satz (Dirichlet). Sei $m \in \mathbb{N}$, $M := m\mathbb{Z}$. Dann gilt

$$\lim_{N\to\infty}\frac{\#\{p \text{ prim}: p\in M,\ p\leq N\}}{\#\{p \text{ prim}: p\leq N\}}=\frac{1}{\varphi(m)}\,.$$

Insbesondere gibt es in jeder arithmetischen Folge unendlich viele Primzahlen.

Zum Beweis solcher Aussagen verwendet man nicht nur analytische Eigenschaften der ζ -Funktion, sondern allgemeiner jene sogenannter Dirichletscher L-Reihen: Sei $k \in \mathbb{N}$ und χ ein Charakter $\mod k$, d.h. ein Charakter der Gruppe $(\mathbb{Z}/k\mathbb{Z})^*$ in natürlicher Weise definiert auf \mathbb{Z} $((a,k) \neq 1 \Rightarrow \chi(a) = 0)$. Dann ist die L-Reihe definiert als

$$L_{\mathbb{Q}}(s,\chi) = \sum_{n \in \mathbb{N}} \frac{\chi(n)}{n^s}.$$

Für den trivialen Charakter $\chi=\chi_0$ erhält man genau $L_{\mathbb{Q}}(s,\chi_0)=\zeta_{\mathbb{Q}}(s)\cdot \Pi_{p|k}(1-\frac{1}{p^s}).$

Satz. Für $\chi \neq \chi_0$ ist $L_{\mathbb{Q}}(s,\chi)$ analytisch für $\operatorname{Re} s > 0$. Für $\chi = \chi_0$ ist $L_{\mathbb{Q}}(s,\chi_0)$ analytisch für $\operatorname{Re} s > 0$ mit Ausnahme eines einfachen Pols bei s = 1 mit Residuum $\frac{\varphi(k)}{k}$.

Tatsächlich ist $L_{\mathbb{Q}}(s,\chi)$ für $\chi \neq \chi_0$ ganz und genügt ebenfalls einer Funktionalgleichung.

Aussagen über Anzahl bzw. Verteilung o.ä. von "Primzahlen" sind auch in allgemeineren Fällen als $\mathbb Z$ von Interesse. Z.B. hat Kummer quadratische Erweiterungen $\mathbb Z[\sqrt{3}]$ o.ä. betrachtet in der Hoffnung beim Satz von Fermat weiterzukommen. Allgemein spricht man von algebraischen Zahlkörpern: Eine endliche Erweiterung K von $\mathbb Q$ heißt algebraischer Zahlkörper. Dann betrachtet man sogenannte ganze algebraische Zahlen A in K. Man hat also die Situation

$$\begin{array}{ccc} \mathbb{Q} & \to & K \\ \uparrow & & \uparrow \\ \mathbb{Z} & \to & A \end{array}$$

Zum Beispiel für $K=\mathbb{Q}(\sqrt{m})$ für $m\in\mathbb{N}$ quadratfrei wäre

$$A = \mathbb{Z} + \mathbb{Z} \begin{cases} \sqrt{m} &, m \equiv 2, 3 \mod 4 \\ \frac{1 + \sqrt{m}}{2} &, m \equiv 1 \mod 4 \end{cases}$$

Neben den quadratischen Zahlkörpern sind auch die Kreisteilungskörper $\mathbb{Q}(w)$ wobei W eine primitive m-te $(m \in \mathbb{N})$ Einheitswurzel ist, fundamentale Beispiele algebraischer Zahlkörper. In dieser Situation wäre

Um Aussagen über die Primelemente von A zu bekommen benützt man wieder die Zetafunktion des Zahlkörpers K, $\zeta_K(s)$, und ihre analytischen Eigenschaften.

Wir werden im wesentlichen immer nur algebraische Zahlkörper betrachten. Zetafunktionen spielen aber auch in anderen Kontexten eine wichtige Rolle.

Sei z.B. $k=\mathcal{G}F(q)$. Dann ist die Zetafunktion vom Funktionenkörper k(x)/k gegeben als

$$Z(z) = \frac{1}{1-t} \prod_{p} \frac{1}{1-t^{\deg p}}$$

wobei p alle irreduziblen (normierten) Polynome durchläuft.

Satz. Sei $\pi_q(n)$ die Anzahl der irreduziblen (normierten) Polynome vom Grad $\leq N.$ Dann gilt

$$\pi_q(N) \sim \frac{q}{q-1} \frac{q^N}{N}.$$

Eine weitere interessante Situation ist die der algebraischen Funktionenkörper. Sei K ein Körper, x transzendent über K. Ein algebraischer Funktionenkörper ist eine endliche Erweiterung F von K(x).

Betrachte z.B. $K = \mathcal{G}F(q)$, $char K \neq 2,3$, x transzendent über K, und ein Element y das über K(x) der Gleichung

$$y^2 = x^3 + ax + b$$

genügt wobei $a,b \in K$, $4a^3 + 27b^2 \neq 0$. Dann ist k(x,y) ein algebraischer Funktionenkörper über K.

Sei $n \in \mathbb{N}$. Man spricht von

$$C_n = \{(\alpha, \beta) \in \mathcal{GF}(q^n)^2 : \beta^2 = \alpha^3 + a\alpha + b\}$$

als einer elliptischen Kurve über $\mathcal{G}\!F(q^n).$ Sei

$$N_n := 1 + |\mathcal{C}_n|$$

Dann ist die Zetafunktion von K(x,y)/K gegeben als jene Potenzreihe Z(t) sodaß

$$\frac{Z'}{Z} = \sum_{n=1}^{\infty} N_n t^{n-1}$$

Mit Hilfe des Satzes von Hasse-Weil der besagt daß

$$Z(t) = \frac{(1 - \alpha t)(1 - \bar{\alpha}t)}{(1 - t)(1 - qt)}$$

wobei $|\alpha|=\sqrt{q}$ gilt, und der das genaue Analogon zur Riemannschen Vermutung darstellt, erhält man zum Beispiel

Satz (Hasse-Weil bound). Sei N(r) die Anzahl der Primstellen von $GF(q^r)(x,y)/GF(q^r)$ mit Grad 1. Dann gilt

$$\left|N(r) - (q^r + 1)\right| \le 2q^{\frac{r}{2}},$$

insbesondere also $N(r) \sim q^r$.

Man sieht daß die Approximationsgüte in $N(r) \sim q^r$ wie $\sqrt{q^r}$ ist. Analogon beim Primzahlsatz (mit Restglied)

$$\pi(N) = \int_{2}^{N} \frac{dt}{\log t} + O(N e^{-\beta(\log N)^{\alpha}})$$

wobe
i $\beta,\alpha>0$ klein sind, wäre " α beliebig klein".

Kennt man nullstellenfreie Bereiche der Riemannsche Zetafunktion, kann man daraus α,β konstuieren. Umgekehrt würde eine Nullstelle die nicht auf der kritischen Geraden liegt solcherart Abschätzung zumindest sehr unwahrscheinlich machen.

Kapitel 1

Algebraische Grundlagen

1.1 Freie Moduln

Im folgenden sei R immer ein kommutativer Ring mit Einselement.

Ist M ein R-Modul, so heißen $x_1,\dots,x_n\in M$ linear unabhängig, wenn gilt $(r_1,\dots,r_n\in R)$

$$\sum_{i=1}^{n} r_i x_i = 0 \Rightarrow r_1 = \ldots = r_n = 0.$$

Eine Teilmenge $X\subseteq M$ heißt linear unabhängig wenn jede endliche Teilmenge von X linear unabhängig ist. Eine Teilmenge $X\leq M$ heißt Basis wenn sie linear unabhängig ist und M (als R-Modul) erzeugt.

DEAI.1

1.1.1 Definition. Ein *R*-Modul *M* heißt *frei*, wenn er eine Basis besitzt (und $\neq \{0\}$ ist).

Ist zum Beispiel I irgend eine Menge, so ist

$$M = \bigoplus_{i \in I} R$$

frei mit der Basis

$$\left\{(0,\ldots,0,\underbrace{1}_{i\text{-te Stelle}},0,\ldots,\ldots):\,i\in I\right\}$$

Umgekehrt: Ist M frei mit Basis $\{x_i : i \in I\}$, so gilt

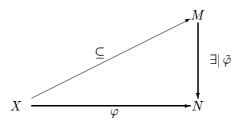
$$M \cong \bigoplus_{i \in I} R.$$

Denn ist $x \in M$, so existieren a_i , $i \in I$, fast alle gleich Null, sodaß $x = \sum a_i x_i$. Wegen der linearen Unabhängigkeit sind die a_i eindeutig bestimmt und offenbar gibt es zu jeder Wahl von a_i , fast alle = 0, ein x. Also ist

$$x \mapsto (a_i)_{i \in I}$$

eine Bijektion. Klarerweise respektiert sie die Moduloperationen.

1.1.2 Satz. Sei M ein R-Modul. Ist $X \leq M$ eine Basis von M so hat man die folgende Eigenschaft (N ist irgendein R-Modul)



Beweis. Sei $x \in M$. Da X Basis ist existieren eindeutige a_i sodaß

$$x = \sum a_i x_i.$$

Definiere $\tilde{\varphi}(x) := \sum a_i \varphi(x_i)$.

Jeder Modul M ist Faktor eines freien Moduls. Z.B. von

$$F = \bigoplus_{i \in M} R.$$

COAL3

1.1.3 Korollar. (i) Sei M frei mit Basis $X = (x_i)_{i \in I}$. Ist (mit der Notation wie im Satz) $(\varphi(x_i))_{i \in I}$ eine Basis von N, so ist $\tilde{\varphi}$ ein Isomorphismus.

 $(ii) \ \textit{Sind} \ M_1, \, M_2 \ \textit{frei mit Basis} \ X_1, \, X_2 \ \textit{und gilt} \ |X_1| = |X_2| \ \textit{so folgt} \ M_1 \cong M_2.$

Beweis.

 $\mathtt{ad}(i)$: $\tilde{\varphi}$ ist surjektiv da $(\varphi(x_i))_{i\in I}$ ein Erzeugendensystem von N ist. $\tilde{\varphi}$ ist injektiv da $(\varphi(x_i))_{i\in I}$ linear unabhängig ist.

ad(ii): Eine Bijektion $\varphi: X_1 \to X_2$ induziert einen Isomorphismus.

LEAI.4

1.1.4 Lemma. Sei M ein freier R-Modul mit Basis $(x_i)_{i \in I}$ und sei $\mathfrak{a} \triangleleft R$. Dann gilt

$$M = \bigoplus_{i \in I} Rx_i, \ M/\mathfrak{a}M \cong \bigoplus_{i \in I} Rx_i/\mathfrak{a}x_i.$$

Es ist $Rx_i/\mathfrak{a}x_i\cong R/\mathfrak{a}$, der Modul $M/\mathfrak{a}M$ ist freier R/\mathfrak{a} -Modul mit Basis $(x_i+\mathfrak{a}M)_{i\in I}$.

Beweis. Klar ist $M = \bigoplus_{i \in I} Rx_i$. Die kanonische Abbildung

$$\varphi: M \to \bigoplus_{i \in I} Rx_i/\mathfrak{a}x_i$$

hat Kern $\mathfrak{a}M$ denn: Sei $x = \sum a_i x_i$. Dann ist

$$0 = \varphi(x) = (a_i x_i + \mathfrak{a} x_i)_{i \in I}$$

genau dann, wenn $a_i \in \mathfrak{a}$ für alle $i \in I$. Weiters ist $Rx_i/\mathfrak{a}x_i \cong R/\mathfrak{a}$ vermöge

$$ax_i + \mathfrak{a}x_i \mapsto a$$
.

Also ist $M/\mathfrak{a}M$ frei mit Basis $(x_i + \mathfrak{a}M)_{i \in I}$.

COAL5

1.1.5 Korollar. Sei M frei und seien X, Y Basen von M. Dann gilt |X| = |Y|. Diese Kardinalität heißt die Dimension von M.

Beweis. Sei \mathfrak{m} ein maximales Ideal von R (existiert wegen R hat Einselement und ist kommutativ). Dann ist

$$M/\mathfrak{m}M$$

ein R/\mathfrak{m} - Vektorraum mit Basen $\{x+\mathfrak{m}M:x\in X\}$ und $\{y+\mathfrak{m}M:y\in Y\}$ also ist |X|=|Y|.

Ein R-Modul M heißt Hauptmodul, wenn er von einem Element erzeugt wird, d.h. $\exists x \in M : M = Rx$. In diesem Fall ist

$$M \cong R/\operatorname{Ann}_R\{x\}$$

wobei $Ann_R\{x\} := \{r \in R : rx = 0\}.$

LEAI.6

- **1.1.6 Lemma.** Sei $0 \to M' \xrightarrow{f} M'$ to $M'' \to 0$ eine exakte Sequenz von R-Moduln. Dann sind äquivalent:
 - (i) $\exists \varphi : M'' \to M : g \circ \varphi = \operatorname{id} M''$.
- (ii) $\exists \psi : M \to M' : \psi \circ f = \operatorname{id} M'$.

In diesem Fall ist

$$M = \operatorname{Im} f \oplus \ker \psi = \ker g \oplus \operatorname{Im} \varphi,$$

$$M \cong M' \oplus M''$$

und man sagt die exakte Sequenz ist split exakt.

Beweis. Es gelte (i): $M'' \stackrel{\varphi}{\leftarrow} M \stackrel{g}{\rightarrow} M'' \rightarrow 0$. Sei $x \in M$, dann ist

$$x - \varphi(g(x)) \in \ker g.$$

Also folgt $M = \ker g + \operatorname{Im} \varphi$. Diese Summe ist direkt, denn ist x = y + z mit $y \in \ker g$ und $z \in \operatorname{Im} \varphi$, $z = \varphi(w)$, so folgt

$$g(x) = g(y+z) = g(\varphi(w)) = w.$$

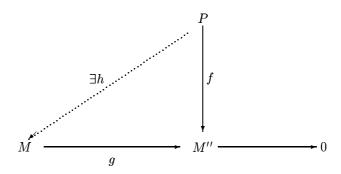
Also ist w und damit z und damit y eindeutig bestimmt durch x.

Wir haben also $M=\ker g\oplus\operatorname{Im}\varphi.$ Wegen der Exaktheit ist $\ker g=\operatorname{Im}f.$ Definiere ψ wie folgt: Ist $x=y+z\in M,\ y=f(u),$ so sei $\psi(x):=u.\ \psi$ ist wohldefiniert denn f ist injektiv und erfüllt offenbar $\psi\circ f=\operatorname{id}_{M'}.$ Weiters ist $\ker\psi=\operatorname{Im}\varphi,$ also $M=\operatorname{Im}f\oplus\ker\psi.$ Weiters ist $\operatorname{Im}f\cong M'$ und $g|\operatorname{Im}\varphi$ ein Isomorphismus von $\operatorname{Im}\varphi$ auf M''.

Gilt (ii), so schließt man analog.

DEAL.7

1.1.7 Definition. Ein R-Modul P heißt projektiv, wenn gilt (M,M'') irgendwelche R-Moduln)



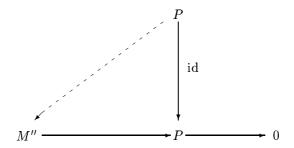
Zum Beispiel ist jeder freie Modul projektiv. Denn ist P frei mit Basis X so definiere h auf X sodaß $(g \circ h)(x) = f(x)$ (das ist möglich da g surjektiv) und setze h|X zu einem Homomorphismus fort.

1.1.8 Satz. Es sind äquivalent:

- (i) P ist projektiv.
- (ii) Jede exakte Sequenz $0 \to M' \to M'' \to P \to 0$ splits.
- (iii) P ist direkter Summand eines freien Moduls, $d.h. \exists M : F = P \oplus M$ frei.

Beweis.

 $(i) \Rightarrow (ii)$: Die Abbildung aus



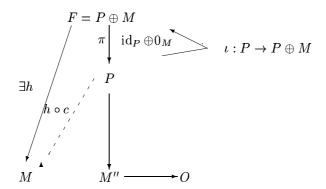
liefert das splitting der Sequenz.

 $(ii) \Rightarrow (iii)$: Sei F frei sodaß P ein Faktor von F ist:

$$0 \to M \to F \to P \to 0$$
.

Diese Sequenz ist split, also $F \cong P \oplus M$.

 $(iii) \Rightarrow (i)$: Sei $F = P \oplus M$ frei (und daher projektiv)



1.2 Moduln über Hauptidealringen

1.2.1 Satz. Sei F freier Modul über dem Hauptidealring R (nullteilerfrei) und M ein Untermodul von F. Dann ist M frei und die Dimension von M höchstens so groß wie die von F.

Beweis.

·) Ist $x \in F$, $x \neq 0$, so folgt $\operatorname{Ann}_R\{x\} = \{0\}$: Denn sei $(v_i)_{i \in I}$ Basis von F, $x = \sum a_i v_i$ und $a_{i_0} \neq = 0$. Sei φ der Homomorphismus $\varphi : F \to R$ mit $v_{i_0} \mapsto 1$, $v_i \mapsto 0$, $i \neq i_0$. Ist $r \in \operatorname{Ann}_R\{x\}$, so folgt

$$0 = \varphi(rx) = ra_{i_0}$$
.

Da R nullteilerfrei ist folgt r = 0.

·) Wir betrachten zuerst den Fall das I endlich ist, $I = \{1, \ldots, n\}$. Sei $M_r := M \cap \langle v_1, \ldots, v_r \rangle$. Es ist $M_1 = M \cap \langle v_1 \rangle \subseteq \langle v_i \rangle$ und daher von der Gestalt $M_1 = \langle a_1 v_1 \rangle$ für ein $a_1 \in R$, denn

$$\left\{a \in R : av_1 \in M_1\right\}$$

ist ein Ideal von R und daher gleich (a_1) . Also ist M_1 entweder $= \{0\}$ oder frei mit Dimension 1.

Sei nun induktiv angenommen, daß M_r frei von Dimension $\leq r$ ist. Sei

$$\mathfrak{a} := \left\{ a \in R : \exists \ b_1 v_1 + \ldots + b_r v_r + a v_{r+1} \in M \right\} \triangleleft R,$$

und sei $\mathfrak{a} = (a_{r+1})$. Ist $a_{r+1} = 0$, so folgt $M_{r+1} = M_r$. Andernfalls sei $w \in M_{r+1}$ sodaß $w = b_1 v_1 + \ldots + b_r v_r + a_{r+1} v_{r+1}$. Für jedes $x \in M$ gibt es dann $c \in R$ sodaß $x - cw \in M_r$, also folgt

$$M_{r+1} = M_r + \langle w \rangle.$$

Wegen $M_r \cap \langle w \rangle = \{0\}$ ist diese Summe direkt und da $\langle w \rangle$ frei ist folgt daß M_{r+1} frei ist und

$$\dim M_{r+1} = \dim M_r + 1 \le r + 1.$$

·) Wir kommen zum Fall $|I| = \infty$. Für $J \leq I$ bezeichne

$$F_J := \langle v_i : i \in J \rangle, \ M_J := F_J \cap M.$$

Sei S die Menge aller Paare (M_J, w) sodaß $w: J' \subseteq J \to M_J$ eine Basis von M_J ist. Die Menge S ist nicht leer. Denn sei J endlich so daß $M_J \neq \{0\}$. Dann ist M_J frei mit Dimension $\leq |J|$, d.h. $\exists J' \leq J$ und $w: J' \to M_J$ Basis, d.h. $(M_J, w) \in S$.

Wir definieren für $(M_J, w), (M_K, u) \in S$

$$(M_J, w) \le (M_K, u) : \iff J \subseteq K, \ J' \subseteq K', \ u|_{J'} = w.$$

Offenbar ist " \leq " eine Ordnung und jede Kette hat ein Supremum ($\bigcup J$).

Sei (M_J, w) ein maximales Element von S. Wir zeigen J = I, denn dann sind wir fertig. Angenommen $J \neq I$. Sei $k \in I$ J, $K = J \cup \{k\}$.

Gilt $M_K = M_J$ so ist $(M_K, w) \geq (M_J, w)$, ein WS!. Andernfalls ist

$$\{0\} \neq \{c \in R : \exists cv_k + y \in M, y \in M_J\} \triangleleft R,$$

also gleich (a). Sei $w_k := av_k + y \in M$ (mit einem $y \in M_J$). Genauso wie im "endlichen Fall" ist nun

$$\tilde{w}: \left\{ \begin{array}{ccc} K & \to & M_K \\ l & \to & \begin{cases} w(l) & , \ l \in J \\ w_k & , \ l = k \\ \end{array} \right.$$

eine Basis von M_K und es gilt

$$(M_K, \tilde{w}) \geq (M_J, w),$$

ein WS!

COAL10

1.2.2 Korollar. Sei R Hauptidealring. Dann gilt:

- (i) Sei E endlich erzeugt und $E' \leq E$. Dann ist E' endlich erzeugt.
- (ii) Jeder projektive Modul ist frei.

Beweis.

 $\operatorname{ad}(i)$: Sei F freier Modul mit endlicher Basis und $\varphi: F \to E$. Dann ist $\varphi^{-1}(E')$ freier Modul mit endlicher Basis und daher $E' = \varphi(\varphi^{-1}(E'))$ endlich erzeugt.

ad (ii): Ist P projektiv so existiert M sodaß $P \oplus M = F$ frei. Es ist also $P \leq F$ ebenfalls frei.

Sei E ein R-Modul, $x \in E$ heißt Torsionselement, wenn gilt $\operatorname{Ann}_R\{x\} \neq \{0\}$ $E_{tor} := \{x \in E : x \text{ Torsionselement}\}$. Ist $E_{tor} = E$, so heißt E Torsionsmodul, ist $E_{tor} = \{0\}$, so heißt E torsionsfrei.

1.2.3 Satz. Sei R Hauptidealring, E endlich erzeugter R-Modul. Dann ist E/E_{tor} frei. Es existiert $F \leq E$ frei, $soda\beta$

$$E = E_{tor} \oplus F$$

Die Dimension von F ist eindeutig.

LEAI.12

1.2.4 Lemma. Seien E, E' Moduln, E' frei, $f: E \to E'$ surjektiv. Dann existiert $F \leq E$ frei sodaß f|F ein Isomorphismus von F auf E' ist und es gilt $E = F \oplus \ker f$.

Beweis. E' ist frei, also auch projektiv. Die exakte Sequenz

$$0 \to \ker f \stackrel{\iota}{\to} E \stackrel{f}{\to} E' \to 0$$

ist daher split exakt und es existier
t $\varphi:E'\to E$ sodaß $f\circ\varphi=\mathrm{id}_{E'}$ und es gilt

$$E = \ker f \oplus \operatorname{Im} \varphi.$$

Wie in Lemma 1.1.6 gezeigt wurde, it $f|\operatorname{Im}\varphi$ ein Isomorphismus von $\operatorname{Im}\varphi$ auf E'.

Beweis. (Satz 1.2.3):

- ·) E/E_{tor} ist torsionsfrei: Sei $x \in E$, $b \in R \setminus \{0\}$, $b(x + E_{tor}) = 0$. Dann ist $bx \in E_{tor}$, also $\exists c \in R \setminus \{0\} : c(bx) = 0$. Wegen $cb \neq 0$ folgt $x \in E_{tor}$.
- ·) Wir zeigen: Jeder endlich erzeugte torsionsfreie Modul M ist frei: Sei $\{y_1,\ldots,y_m\}$ ein Erzeugendensystem von M und wähle eine maximale linear unabhängige Teilmenge $\{v_1,\ldots,v_n\}$ von $\{y_1,\ldots,y_m\}$. Hier ist $n\geq 1$, denn M ist torsionsfrei. Für jedes $j=1,\ldots,m$ gibt es $a_j\in R\setminus\{0\}$, sodaß

$$a_j y_j \in \langle v_1, \dots, v_n \rangle.$$

Setze $a := a_1 \cdot \ldots \cdot a_m$, dann gilt also $aM \leq \langle v_1, \ldots, v_m \rangle$ und daher aM frei. Nun ist da M torsionsfrei ist, $x \mapsto ax$ ein Isomorphismus von M auf aM.

·) Wir haben gezeigt E/E_{tor} ist frei. Die Zerlegung $E=E_{tor}\oplus F$ folgt wegen Lemma 1.2.4.

1.3 Nöthersche Moduln

- 1.3.1 Satz. Sei M ein A-Modul. Dann sind äquivalent.
 - (i) Jeder Untermodul von M ist endlich erzeugt.
- (ii) Jede aufsteigende Folge $M_1 \subsetneq M_2 \subsetneq \dots$ von Untermoduln von M ist endlich.
- (iii) Jede nichtleere Menge von Untermoduln von M hat ein maximales Element.

In diesem Fall nennt man M nötherschen A-Modul.

Beweis.

 $(i) \Rightarrow (ii)$: Sei $N = \bigcup_i M_i \leq M$ und daher endlich erzeugt, $N = \langle x_1, \dots, x_n \rangle$. Also existiert i mit $x_1, \dots, x_n \in M_i$ und daher $N = M_i$.

 $(ii) \Rightarrow (iii)$: Angenommen es gibt eine Menge von Untermodul
n ohne maximales Element. Dann erhält man induktiv

$$N_1 \subsetneq N_2 \subsetneq N_3 \subsetneq \dots$$

ein WS!.

 $(iii) \Rightarrow (i)$: Sei $N \leq M$ gegeben, $a_0 \in N$. Ist $N \neq \langle a_0 \rangle$ wähle $a_i \in N \setminus \langle a_0 \rangle$. Ist $N \neq \langle a_0, a_1 \rangle$ wähle $a_2 \in N \setminus \langle a_0, a_1 \rangle$, u.s.w. Wir erhalten

$$\langle a_0 \rangle \subsetneq \langle a_0, a_1 \rangle \subsetneq \dots$$

und diese Menge hat kein maximales Element.

LEAI.14

1.3.2 Lemma. Sei M nötherscher A-Modul. Dann ist jeder Untermodul und jeder Faktormodul von M auch nöthersch.

Beweis. Für Untermoduln klar wegen (i). Für Faktormoduln wegen (ii), denn ist $\pi: M \to N$ surjektiv, so ist mit einer echt aufsteigenden Kette

$$N_1 \subsetneq N_2 \subsetneq \ldots \leq N$$

auch

$$\pi^{-1}(N_1) \subsetneq \pi^{-1}(N_2) \subsetneq \ldots \leq M.$$

LEAI.15

1.3.3 Lemma. Sei $N \leq M$. Sind N und M/N nöthersch, so auch M.

Beweis. Mit $L \leq M$ assoziiere das Paar

$$L \mapsto (L \cap N, (L+N)/N).$$

Diese Zuordnung bildet echte Ketten auf echte Ketten ab: Sei $E \subseteq F$ und seien die assozierten Paare gleich. Sei $x \in F$, dann existieren wegen (E+N)/N = (F+N)/N Elemente $u,v \in N, y \in E$, sodaß

$$x + u = y + v.$$

Es folgt
$$x - y = u - v \in F \cap N = E \cap N$$
, also $x \in E$.

COAL16

1.3.4 Korollar. Endliche Summen nötherscher Moduln sind nöthersch.

Beweis. Mit N_1 , N_2 ist auch $N_1 \oplus N_2$ nöthersch, denn $\pi_1 : N_1 \oplus N_2 \to N_1$, hat Kern N_2 . Ist $M = N_1 + N_2$, so hat man $N_1 \oplus N_2 \to M$. Rest induktiv.

Ein Ring A heißt nöthersch, wenn er ein nötherscher Modul über sich selbst ist. D.h. jedes Ideal ist endlich erzeugt.

LEAI.17

- 1.3.5 Lemma. Sei A nöthersch. Es gilt:
 - (i) Ist M endlich erzeugter A-Modul, so ist auch M nöthersch.
- (ii) Ist $\varphi: A \to B$ surjektiver Ring (!) Homomorphismus, so ist B nöthersch.
- (iii) Sei $S \subseteq A$ multiplikativ. Dann ist $S^{-1}A$ nöthersch.

Beweis.

ad(i): Es gibt einen surjektiven Homomorphismus $A^n \to M$.

$$ad(ii)$$
: Sei $\mathfrak{b}_1 \subsetneq \ldots \subsetneq \mathfrak{b}_n \subsetneq \ldots \triangleleft B$, dann ist $\varphi^{-1}(\mathfrak{b}_1) \subsetneq \ldots \subsetneq \varphi^{-1}(\mathfrak{b}_n) \subsetneq \ldots \triangleleft A$.

 $\operatorname{ad}(iii)$: Ist $\mathfrak{b}_1 \subsetneq \ldots \subsetneq \mathfrak{b}_n \subsetneq \ldots \triangleleft S^{-1}A$ und schreibt man $\mathfrak{b}_i = S^{-1}\mathfrak{a}_i$ so ist $\mathfrak{a}_1 \subsetneq \ldots \subsetneq \mathfrak{a}_n \subsetneq \ldots \triangleleft A$ eine echte Kette.

1.4 Lokalisierung

Sei A ein Ring, $S \subseteq A$ eine multiplikative Teilmenge, d.h.

$$s_1, s_2 \in S \implies s_1 \cdot s_2 \in S$$

Wir definieren eine Relation \sim auf $A \times S$ durch

$$(a_1, s_1) \sim (a_2, s_2) : \iff \exists t \in S : ta_2 s_1 = ta_1 s_2$$

1.4.1 Satz. Die Relation \sim ist eine Äquivalenzrelation. Die Menge $S^{-1}A := (A \times S) / \sim$ ist mit den Operationen

$$(a_1, s_1) + (a_2, s_2) := (a_1s_2 + a_2s_1, s_1s_2),$$

$$(a_1, s_1) \cdot (a_2, s_2) := (a_1 a_2, s_1 s_2)$$

ein Ring, der sogenannte Quotientenring von A nach S. Das Element (a, s) wird oft mit $\frac{a}{s}$ bezeichnet.

Beweis. Klar durch nachrechnen.

Ein echtes Ideal $\mathfrak{p} \triangleleft A$ eines Ringes A heißt *Primideal*, wenn gilt:

$$x \cdot y \in \mathfrak{p} \implies (x \in \mathfrak{p} \lor y \in \mathfrak{p}),$$

oder, äquivalent, wenn $A \setminus \mathfrak{p}$ multiplikativ ist oder, ebenfalls äquivalent, wenn A/\mathfrak{p} nullteilerfrei ist. Die Menge aller Primideale von A heißt das Spektrum von A und wird bezeichnet mit SpecA.

Der Ring A habe ein Einselement, dann heißt ein Element $x \in A$ Einheit, wenn es ein $y \in A$ gibt mit xy = yx = 1. Die Menge A^* der Einheiten bildet eine Gruppe, die sogenannte Einheitengruppe des Ringes A.

REI.2

1.4.2 Bemerkung. (i) Enthält S keine Nullteiler, so gilt

$$(a_1, s_1) \sim (a_2, s_2) \iff a_1 s_2 = a_2 s_1$$

(ii) Habe A ein Einselement. Die Abbildung

$$\iota_{A,S}: \left\{ \begin{array}{ccc} A & \to & S^{-1}A \\ a & \mapsto & (a,1) \end{array} \right.$$

ist ein Ringhomomorphismus. Sie ist genau dann injektiv wenn S keine Nullteiler enthält. Ist insbesondere A nullteilerfrei, so ist $S^{-1}A$ ein Unterring des Quotientenkörpers Q(A) von A (vgl. Korollar 1.4.4).

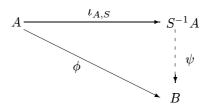
(iii) Beispiele:

- (a) A nullteilerfrei, $S = A \setminus \{0\}$. Dann ist $S^{-1}A = Q(A)$.
- (b) Ist $S \subseteq A^*$, dann ist $\iota_{A,S}$ ein Isomorphismus.
- (c) $0 \in S$. Dann ist $S^{-1}A \cong \{0\}$.
- (d) Sei $\mathfrak{p} \in Spec A$ und setze $S := A \setminus \mathfrak{p}$. Dann heißt

$$A_{\mathfrak{p}} := S^{-1}A = (A \setminus \mathfrak{p})^{-1}A$$

die Lokalisierung von A in \mathfrak{p} (oder an der Stelle \mathfrak{p}).

1.4.3 Satz. Sei $S \subseteq A$ multiplikativ, $\phi: A \to B$ ein Ringhomomorphismus mit $\phi(S) \subseteq B^*$. Dann gibt es einen eindeutigen Ringhomomorphismus $\psi: S^{-1}A \to B$ mit



d.h. $mit \ \phi = \psi \circ \iota_{A,S}$.

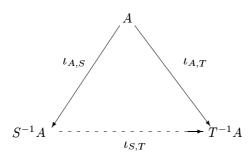
Beweis. Definiere

$$\psi(\frac{a}{s}) := \phi(a)\phi(s)^{-1}$$

Rest klar durch nachrechnen.

CO1.4

1.4.4 Korollar. Seien $S \subseteq T$ zwei multiplikative Teilmengen von A. Dann gibt es einen kanonischen Homomorphismus $\iota_{S,T}: S^{-1}A \to T^{-1}A$ soda β



Im folgenden sei immer A kommutativer Ring mit Einselement. Allgemein gilt bezüglich der Idealstruktur von $S^{-1}A$ der folgende Satz:

1.4.5 Satz. Bezeichne für ein Ideal $\mathfrak a$ mit $S^{-1}\mathfrak a$ die Menge

$$S^{-1}\mathfrak{a} := \left\{ \frac{a}{s} : a \in \mathfrak{a}, s \in S \right\}$$

Dann gilt

- (i) $S^{-1}\mathfrak{a}$ ist ein Ideal von $S^{-1}A$. Ist $\mathfrak{a} \cap S \neq \emptyset$, so gilt $S^{-1}\mathfrak{a} = S^{-1}A$.
- (ii) Ist \mathfrak{b} Ideal von $S^{-1}A$ und $\mathfrak{a} := \iota_{A,S}^{-1}(\mathfrak{b})$, so gilt

$$\mathfrak{b} = S^{-1}\mathfrak{a}.$$

Die in obigem Sinne definierte Abbildung Ψ die dem Ideal ${\mathfrak a}$ von A das Ideal $S^{-1}\mathfrak{a}$ von $S^{-1}A$ zuordnet induziert eine ordnungserhaltende Bijektion von $\{\mathfrak{p}\in$ Spec $A: \mathfrak{p} \cap S = \emptyset$ auf Spec $S^{-1}A$. Es gilt für $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \cap S = \emptyset$ stets

$$\iota_{AS}^{-1}(S^{-1}\mathfrak{p}) = \mathfrak{p}.$$

Beweis.

ad(i): klar.

ad(ii): Ist $a \in \mathfrak{a}$, so folgt $\frac{a}{1} \in \mathfrak{b}$ und damit $\frac{a}{s} \in \mathfrak{b}$ für jedes $s \in S$. Sei $\frac{b}{s} \in \mathfrak{b}$, dann folgt auch $\frac{b}{1} = \frac{s}{1} \cdot \frac{b}{s} \in \mathfrak{b}$ und daher $b \in \mathfrak{a}$. Klarerweise ist Ψ ordnungserhaltend.

Sei $\mathfrak{p} \in \operatorname{Spec} A$, $\mathfrak{p} \cap S = \emptyset$ und sei

$$\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} \in S^{-1} \mathfrak{p},$$

d.h. $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{p}{s}$. Dann existiert $t \in S$ mit $ta_1a_2s = tps_1s_2 \in \mathfrak{p}$. Es folgt das eines von a_1, a_2 in \mathfrak{p} sein muss.

Sei $\mathfrak{q} \in \operatorname{Spec} S^{-1}A$. Dann ist $\iota_{A,S}^{-1}(\mathfrak{q}) \in \operatorname{Spec} A$ da $\iota_{A,S}$ ein Ringhomomor-

Sei $\mathfrak{p} \in \operatorname{Spec} A$. Klar ist $\mathfrak{p} \subseteq \iota_{A,S}^{-1}(S^{-1}\mathfrak{p})$. Sei $x \in A$ mit $\frac{x}{1} \in S^{-1}\mathfrak{p}$, d.h. $\frac{x}{1} = \frac{p}{s}$. Dann folgt für ein gewisses $t \in S$ daß $txs = tp1 \in \mathfrak{p}$, also folgt $x \in \mathfrak{p}$.

CO1.6

1.4.6 Korollar. Es gilt: Ist A Hauptidealring, so auch $S^{-1}A$.

Beweis. Sei $\mathfrak b$ ein Ideal von $S^{-1}A$. Dann gilt $\mathfrak b = S^{-1}\mathfrak a$ mit $\mathfrak a = \iota_{A,S}^{-1}\mathfrak b$. Sei $\mathfrak a = (a)$, dann gilt $\mathfrak b = S^{-1}(a) = S^{-1}A \cdot \frac a 1$.

DEI.7

COI.8

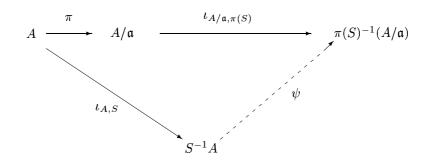
1.4.7 Definition. Ein Ring heißt *lokal* wenn er genau ein maximales Ideal besitzt.

1.4.8 Korollar. (i) Sei $\mathfrak{p} \in \operatorname{Spec} A$. Dann ist $A_{\mathfrak{p}}$ lokal mit maximalem Ideal $\mathfrak{p} A_{\mathfrak{p}} := \{ \frac{p}{s} : p \in \mathfrak{p}, s \in A \setminus \mathfrak{p} \} = \iota_{A,A \setminus \mathfrak{p}}(\mathfrak{p}) A_{\mathfrak{p}}.$

- (ii) Sei A Hauptidealring und $p \in A$ ein Primelement. Dann ist $A_{(p)}$ ein Hauptidealring mit im wesentlichen (d.h. bis auf Einheiten) genau einem Primelement.
- **1.4.9 Satz.** Sei $S \subseteq A$ multiplikativ, \mathfrak{a} ein Ideal von A und $\pi: A \to A/\mathfrak{a}$ die kanonische Projektion. Der kanonische Homomorphismus (vgl. Satz 1.4.3) $\psi: S^{-1}A \to \pi(S)^{-1}(A/a)$ ist surjektiv und hat Kern $S^{-1}\mathfrak{a}$. Insbesondere ist also

$$(S^{-1}A)/(S^{-1}\mathfrak{a}) \cong \pi(S)^{-1}(A/\mathfrak{a}).$$

Beweis. Betrachte die Homomorphismen.



Jedes Element von $\pi(S)^{-1}(A/\mathfrak{a})$ ist von der Gestalt $\frac{\pi(a)}{\pi(s)}$ für gewisse $a \in A$, $s \in S$. Es ist unter ψ also Bild von $\frac{a}{s}$. Ist $\frac{\pi(a)}{\pi(s)} = 0$, so existiert $t \in S$ mit $\pi(t) \cdot \pi(a) = 0$, also $ta \in \mathfrak{a}$. Damit ist $\frac{a}{s} = \frac{ta}{ts} \in S^{-1}\mathfrak{a}$.

COI.10

1.4.10 Korollar. Ist $\mathfrak{p} \in \operatorname{Spec} A$, so ist $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \cong Q(A/\mathfrak{p})$.

Beweis. Klar. \Box

Sei nun Mein A-Modul und $S\subseteq A$ multiplikativ. Definiere die Relation \sim auf $S\times M$ durch

$$(s_1, m_1) \sim (s_2, m_2) : \Leftrightarrow \exists t \in S : ts_1 m_2 = ts_2 m_1.$$

Dann ist $S^{-1}M := (S \times M)/\sim$ mit den kanonischen Operationen ein $S^{-1}A$ -Modul.

REI.11

1.4.11 Bemerkung. (i) Vermöge $\iota_{A,S}:A\to S^{-1}A$ ist $S^{-1}M$ auch ein A-Modul.

(ii) $\iota_{M,S}: \left\{ \begin{array}{ccc} M & \to & S^{-1}M \\ m & \mapsto & \frac{m}{1} \end{array} \right.$

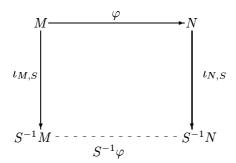
ist ein A-Modul Homomorphismus.

- (iii) $\iota_{A,S}$ ist genau dann injektiv, wenn S aus Nichtnullteilern für M besteht (d.h. $sm \neq 0$ für alle $s \in S$, $m \in M \setminus \{0\}$).
- (iv) Ist U ein Untermodul von M, so ist $S^{-1}U$ ein Untermodul von $S^{-1}M$. Jeder $S^{-1}A$ -Untermodul N von M ist von der Gestalt $N=S^{-1}U$ mit dem A-Untermodul $U:=\iota_{M,S}^{-1}(N)$.
- (v) Es gilt (Satz vom Hauptnenner)

$$S^{-1}\left(\sum_{i\in I}M_i\right)\cong\sum_{i\in I}S^{-1}M_i.$$

- (vi) Ist $\mathfrak{p} \in \operatorname{Spec} A$, so bezeichne $M_{\mathfrak{p}}$ den $A_{\mathfrak{p}}$ -Modul $(A \setminus \mathfrak{p})^{-1}M$.
- (vii) Ist \mathfrak{a} ein Ideal von A, so erhalten wir die bekannte Definition von $S^{-1}\mathfrak{a}$.

1.4.12 Satz. Seien M, N A-Moduln, $S \subseteq A$ multiplikativ, $\phi : M \to N$ A-linear. Dann gibt es genau eine $S^{-1}A$ -lineare Abbildung $(S^{-1}\phi) : S^{-1}M \to S^{-1}N$ soda β



Es gilt S^{-1} id $_M = id_{S^{-1}M}$ und

$$S^{-1}(\phi \circ \psi) = (S^{-1}\phi) \circ (S^{-1}\psi).$$

Beweis. Definiere $(S^{-1}\phi)(\frac{m}{s}):=\frac{\phi(m)}{s}.$ Rest durch nachrechnen.

1.4.13 Satz. Sei $S \subseteq A$ multiplikativ. Ist

$$M_1 \stackrel{\alpha}{\to} M_2 \stackrel{\beta}{\to} M_3$$

eine exakte Folge von A-Modul Homomorphismen, so ist auch

$$S^{-1}M_1 \xrightarrow{S^{-1}\alpha} S^{-1}M_2 \xrightarrow{S^{-1}\beta} S^{-1}M_3$$

exakt.

Beweis. $(S^{-1}\beta) \circ (S^{-1}\alpha) = S^{-1}(\beta \circ \alpha) = S^{-1}(0) = 0$. Sei $\frac{m}{s} \in \text{Kern } S^{-1}\beta$. Dann existiert also $t \in S$ mit $t\beta(m) = 0$, d.h. $\beta(tm) = 0$. Sei $n \in M_1$ mit $\alpha(n) = tm$, dann ist

$$(S^{-1}\alpha)(\frac{n}{ts}) = \frac{\alpha(n)}{st} = \frac{tm}{ts} = \frac{m}{s}.$$

COI.14

1.4.14 Korollar. Ist U ein Untermodul von M, so gilt

$$(S^{-1}M)/(S^{-1}U) \cong S^{-1}(M/U).$$

1.4.15 Satz (Lokal-Global-Prinzip). Es gilt:

- (i) $M = 0 \iff M_{\mathfrak{m}} = 0$ für alle maximalen Ideale \mathfrak{m} von A
- (ii) Die A-lineare Abbildung $\phi: M \to N$ ist genau dann injektiv (surjektiv, bijektiv, Null), wenn für jedes maximale Ideale \mathfrak{m} von A die $A_{\mathfrak{m}}$ -lineare Abbildung $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ diese Eigenschaft hat.
- (iii) Sei U ein Untermodul von M, $x \in M$. Dann ist $x \in U$ genau dann wenn $\iota_{M,A\setminus\mathfrak{m}}(x) \in U_\mathfrak{m}$ für alle maximalen Ideale \mathfrak{m} .
- (iv) Ist A nullteilerfrei und faßt man A_m auf als Unterring von Q(A), so gilt

$$A=\bigcap_{\mathfrak{m}}A_{\mathfrak{m}}.$$

Beweis.

 $\operatorname{ad}(i)$: \Rightarrow klar. Angenommen $M \neq 0, m \in M \setminus \{0\}$. Setze $N := A\mathfrak{m} \subseteq M$, dann ist $N_{\mathfrak{m}} \subseteq M_{\mathfrak{m}}$ für jedes \mathfrak{m} . Sei \mathfrak{a} jenes Ideal von A mit $N \cong A/\mathfrak{a}$ und wähle ein maximales Ideal $\mathfrak{m} \supseteq \mathfrak{a}, P := A/\mathfrak{m}$. Der kanonische Homomorphismus $N \to P$ ist surjektiv, also ist auch $N_{\mathfrak{m}} \to P_{\mathfrak{m}}$ surjektiv. Es genügt zu zeigen $P_{\mathfrak{m}} \neq 0$.

Alle Elemente von $A \setminus \mathfrak{m}$ sind Nichtnullteiler für P denn A/\mathfrak{m} ist ein Körper. Also ist $\iota_{P,A \setminus \mathfrak{m}} : P \to P_{\mathfrak{m}}$ injektiv. Da $P \neq 0$ folgt $P_{\mathfrak{m}} \neq 0$.

ad(ii): \Rightarrow : wegen Satz 1.4.13, denn ϕ injektiv $\iff 0 \to M \xrightarrow{\phi} N$, ϕ surjektiv $\iff M \xrightarrow{\phi} N \to 0$, $\phi = 0 \iff M \xrightarrow{\phi} N \xrightarrow{\mathrm{id}} N$.

 \Leftarrow : Injektiv: Setze $K = \ker \phi$, dann hat man $0 \to K \to M \xrightarrow{\phi} N$. Also auch $0 \to K_{\mathfrak{m}} \to M_{\mathfrak{m}} \xrightarrow{\phi_{\mathfrak{m}}} N_{\mathfrak{m}}$. Wegen $\phi_{\mathfrak{m}}$ injektiv folgt $K_{\mathfrak{m}} = 0$, also wegen (i) K = 0. Surjektiv: Setze $K = \operatorname{Coker} \phi$ und verwende genauso $M \xrightarrow{\phi} N \to K \to 0$.

Null: Sei wieder $K=\ker\phi$. Wegen $0\to K\to M\stackrel{\phi}{\to} N$ folgt $0\to K_{\mathfrak{m}}\to M_{\mathfrak{m}}\stackrel{\phi_{\mathfrak{m}}}{\to} N_{\mathfrak{m}}$ d.h. $K_{\mathfrak{m}}=M_{\mathfrak{m}}$. Wegen $(M/K)_{\mathfrak{m}}\cong M_{\mathfrak{m}}/K_{\mathfrak{m}}$ also $(M/K)_{\mathfrak{m}}=0$, also M/K=0.

ad(iii): Sei

$$\phi: \left\{ \begin{array}{ccc} A & \to & M/U \\ 1 & \mapsto & x+U. \end{array} \right.$$

Dann ist $\phi = 0 \iff x \in U$.

Nach (ii) genau dann wenn $\phi_{\mathfrak{m}}:A_{\mathfrak{m}}\to (M/U)_{\mathfrak{m}}\cong M_{\mathfrak{m}}/U_{\mathfrak{m}}$ gleich 0 für alle $\mathfrak{m}.$ Wegen $\phi_{\mathfrak{m}}(1)=\frac{x}{1}+U_{\mathfrak{m}}$ ist das das Gewünschte.

ad(iv): Faßt man $A_{\mathfrak{m}} \subseteq Q(A)$ auf, so ist $\frac{x}{1}$ gleich x.

1.5 Der Chinesische Restsatz

Sind $\mathfrak{a}_i \in I$, Ideale von A, so ist das kleinste Ideal das alle \mathfrak{a}_i umfaßt

$$\sum_{i \in I} \mathfrak{a}_i = \Big\{ \sum_{i \in I} x_i : x_i \in \mathfrak{a}_i, x_i = 0 \text{ für f.a. } i \Big\}$$

Sind \mathfrak{a} , \mathfrak{b} Ideale, so ist $\mathfrak{a} \cdot \mathfrak{b}$ das Ideal das von den Produkten $x \cdot y$, $x \in \mathfrak{a}$, $y \in \mathfrak{b}$, erzeugt wird. Es gilt $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$ aber i.a. nicht =. Gilt $\mathfrak{a} + \mathfrak{b} = A$, so heißen \mathfrak{a} , \mathfrak{b} coprim.

LEI.16

1.5.1 Lemma. Es gilt

- (i) Sind $\mathfrak{a}, \mathfrak{b}$ coprim so ist $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$.
- (ii) Sind a, b und a, c coprim, so auch a, bc.
- (iii) Gilt $\mathfrak{a}_1 + \cdots + \mathfrak{a}_n = A$, und sind $\nu_1, \ldots, \nu_n \in \mathbb{N}$, so ist auch $\mathfrak{a}_1^{\nu_1} + \cdots + \mathfrak{a}_n^{\nu_n} = A$.
- (iv) Sind $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ paarweise coprim so gilt $\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i$

Beweis.

 $\operatorname{ad}(i)\colon \operatorname{\mathfrak{a}}\cap\operatorname{\mathfrak{b}}=(\operatorname{\mathfrak{a}}+\operatorname{\mathfrak{b}})(\operatorname{\mathfrak{a}}\cap\operatorname{\mathfrak{b}})=\operatorname{\mathfrak{a}}(\operatorname{\mathfrak{a}}\cap\operatorname{\mathfrak{b}})+\operatorname{\mathfrak{b}}(\operatorname{\mathfrak{a}}\cap\operatorname{\mathfrak{b}})\subset\operatorname{\mathfrak{ab}}.$

ad (ii): Sei $a \in \mathfrak{a}, b \in \mathfrak{b}$ sodaß a+b=1 und $a' \in \mathfrak{a}, c \in \mathfrak{c}$ sodaß a'+c=1. Dann folgt

$$\mathfrak{bc} \ni bc = (1-a)(1-a') = 1 + [-a - a' + aa'] \in 1 + \mathfrak{a}.$$

 $\begin{array}{ll} \operatorname{ad}\left(iii\right)\colon \operatorname{Gilt}\,\mathfrak{a}_{1}^{v_{1}}+(\mathfrak{a}_{2}^{v_{2}}+\cdots+\mathfrak{a}_{n}^{v_{n}})=A, \operatorname{so}\operatorname{erst}\operatorname{recht}\mathfrak{a}_{1}+(\mathfrak{a}_{2}^{v_{2}}+\cdots+\mathfrak{a}_{n}^{v_{n}})=A. \\ \operatorname{Wegen}\left(ii\right)\operatorname{folgt} \end{array}$

$$\mathfrak{a}_1^{v_1+1} + \mathfrak{a}_2^{v_2} + \dots + \mathfrak{a}_n^{v_n} = A.$$

Die Behauptung folgt also mittels Induktion.

ad(iv): Induktion unter Verwendung von (i), (ii).

Für Ideale $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ sei ϕ der kanonische Homomorphismus

$$\phi: \left\{ \begin{array}{ccc} A & \to & \prod_{i=1}^{n} (A/\mathfrak{a}_i) \\ a & \mapsto & (a+\mathfrak{a}_1, \dots, a+\mathfrak{a}_n) \end{array} \right.$$

Offenbar gilt $\ker \phi = \bigcap_{i=1}^n \mathfrak{a}_i$

DEI.18

1.5.2 Satz (Chinesischer Restsatz). ϕ ist surjektiv genau dann, wenn die $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ paarweise coprim sind.

Beweis. \Rightarrow : Sei $a \in A$ sodaß $\phi(a) = (1,0,\ldots,0)$. Dann gilt $1 = (1-a) + a \in \mathfrak{a}_1 + \mathfrak{a}_k \ (k=2,\ldots,n)$.

 \Leftarrow : Seien $a_i \in \mathfrak{a}_1, b_i \in \mathfrak{a}_i, i = 2, ..., n$, sodaß $a_i + b_i = 1$. Setze $a = \prod_{i=2}^n b_i \in \mathfrak{a}_2 \cap ... \cap \mathfrak{a}_n$. Es gilt

$$a = \prod_{i=2}^{n} (1 - a_i) = 1 + a'$$

für ein gewisses $a' \in \mathfrak{a}_1$, also folgt $\phi(a) = (1, 0, \dots, 0)$.

Anders formuliert erhält man: Seien $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ paarweise coprim, und sind $b_1, \ldots, b_n \in A$, so existiert ein $x \in A$ mit

$$x \equiv b_i \mod \mathfrak{a}_i, i = 1, \dots, n.$$

1.6 Der ganze Abschluss

Ab jetzt : Ring = Integritätsbereich.

1.6.1 Definition. Sei A ein Ring, L ein Körper mit $L\supseteq A$, und $x\in L$. Dann heißt x ganz über A wenn x einer Gleichung der Gestalt

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0, a_{i} \in A,$$

genügt. Eine Ringerweiterung $A\subseteq B$ heißt ganz, wenn jedes Element von Bganz über Aist.

1.6.2 Satz. Es gilt:

- (i) Sei $A \subseteq L, x \in L$. Dann ist x ganz über A genau dann, wenn es einen endlich erzeugten A-Modul $M \subseteq L, M \neq \{0\}$, gibt, soda $\beta x M \subseteq M$.
- (ii) Sei K = Q(A), x algebraisch über K. Dann gibt es $c \in A$, $c \neq 0$, soda β cx ganz über A ist.
- (iii) Sei $B \supseteq A$ ganz. Ist B endlich erzeugt als A-Algebra, so ist B endlich erzeugt als A-Modul.
- (iv) Sei $A \subseteq B \subseteq C$. Ist B ganz "uber A" und C ganz "uber B", so ist C ganz "uber A".
- (v) Sei $A \subseteq B$ ganz, σ ein Homomorphismus von B. Dann ist $\sigma(B)$ ganz über $\sigma(A)$.
- (vi) Sei $A \subseteq B$ ganz, $S \subseteq A$ multiplikativ. Dann ist $S^{-1}A \subseteq S^{-1}B$ ganz.

Beweis.

 $\mathtt{ad}\,(i)\colon \Rightarrow \colon \text{Der von }\{1,\dots,x^{n-1}\}$ erzeugte A-Modul hat die gewünschten Eigenschaften.

$$xv_1 = a_1, v_1 + \dots + a_{1n}v_n$$

$$\vdots$$

$$xv_n = a_n, v_1 + \dots + a_{nn}v_n$$

Es folgt

$$\det \begin{pmatrix} x - a_n & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_m & \cdots & x - a_{nm} \end{pmatrix} = 0$$

und wir haben eine Ganzheitsgleichung.

ad (ii): Sei $a_n x^n + \cdots + a_0 = 0$ mit $a_i \in A, a_n \neq 0$. Dann folgt

$$(a_n x)^n + \dots + a_n^{n-2} a_1(a_n x) + a_n^{n-1} a_0 = 0,$$

also ist $a_n x$ ganz über A.

ad (iii): Induktion nach der Anzahl der Erzeugenden: Sei B = A[x]. Ist $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ eine Ganzheitsgleichung, so ist $\{1, \ldots, x^{n-1}\}$ ein A-Modul-Erzeugendensystem von B.

Sei $\mathfrak{B}=A[x_1,\ldots,x_{k+1}]$. Nach Induktionsvoraussetzung ist $A[x_1,\ldots,x_k]$ endlich erzeugter A-Modul. Klarerweise ist B ganz über $A[x_1,\ldots,x_k]$, also nach Induktionsanfang endlich erzeugter $A[x_1,\ldots,x_k]$ -Modul.

ad (iv): Sei $x \in C$, $x^n + b_{n-1}x^{n-1} + \cdots + b_0 = 0$ eine Ganzheitsgleichung über B. Sei $B_1 = A[b_0, \ldots, b_{n-1}]$, dann ist B_1 ein endlich erzeugter A-Modul wegen (iii). $B_1[x]$ ist ein endlich erzeugter B_1 -Modul also auch endlich erzeugter A-Modul und $xB_1[x] \subseteq B_1[x]$.

ad (v): Eine Ganzheitsgleichung geht bei Anwendung von σ wegen $\sigma(1)=1$ in eine Ganzheitsgleichung über.

ad (vi): Sei $x \in B, s \in S$. Sei M ein endlich erzeugter A-Modul mit $xM \subseteq M$. Dann ist $S^{-1}M$ ein endlich erzeugter $S^{-1}A$ -Modul und $\frac{x}{s}S^{-1}M \subseteq S^{-1}M$.

DE1.20

1.6.3 Definition. Sei $A \subseteq L$. Die Menge $B = \{x \in L : x \text{ ganz "uber } A\}$ heißt der ganze Abschluß von A in L.

A heißt ganz abgeschlossen in L falls B=A. A heißt ganz abgeschlossen, wenn A ganz abgeschlossen in Q(A).

1.6.4 Satz. Sei $A \subseteq L$, B der ganze Abschluss von A in L. Dann ist B ein Ring. B ist ganz abgeschlossen in L.

Beweis. Seien $x,y\in B,\ M,N\subseteq L$ zwei endlich erzeugte A-Moduln mit $xM\subseteq M,yN\subseteq N.$ Dann ist NM endlich erzeugter A-Modul und $(x\pm y)NM\subseteq NM,\ (xy)NM\subseteq NM.\ x$ ist ganz über $B\Rightarrow$ ganz über $A\Rightarrow x\in B.$

CO1.22

1.6.5 Korollar. Sei A ein Ring, K = Q(A) und L eine endliche separable Erweiterung von K. Ist $x \in L$ ganz über A, so ist L/K-Norm und L/K-Spur von x (sowie auch alle anderen Koeffizienten des Minimalpolynoms von x über K) ganz über A.

Beweis. Sei σ ein Homomorphismus von L über K. Dann ist $\sigma(x)$ ganz über $\sigma(A) = A$. Damit sind auch alle Polynome in den $\sigma(x)$, insbesondere also die elementarsymetrischen Funktionen ganz über A.

- **1.6.6 Satz.** (i) Sei A nöthersch, ganz abgeschlossen, und sei L eine endliche separable Erweiterung von K = Q(A). Dann ist der ganze Abschluss B von A in L endlich erzeugter A-Modul. Insbesondere ist B nöthersch.
- (ii) Sei A ZPE, dann ist A ganz abgeschlossen.
- (iii) Sei A Hauptidealring, L endliche separable Erweiterung von Q(A), B der ganze Abschluss von A in L. Dann ist B ein freier A-Modul von Rang [L:Q(A)].
- (iv) Ist A ganz abgeschlossen in L, so auch $S^{-1}A$.
- (v) Ist B der ganze Abschluss von A in L, dann ist $S^{-1}B$ der ganze Abschluss von $S^{-1}A$ in L.

Beweis.

 $\mathtt{ad}\,(i)\colon \ \mathrm{Da}\,A$ nöthersch
 ist genügt es zu zeigen, daß B in einem endlich erzeugte
n $A\text{-}\mathrm{Modul}$ enthalten ist.

Sei w_1, \ldots, w_n eine VR-Basis von L über K. Nach Multiplikation mit geeigneten Elementen aus A sei obdA $w_i \in B$. Die L/K-Spur $\mathrm{Tr}: L \to K$ ist K-linear und $\neq 0$. Ist $\alpha \in L$, $\alpha \neq 0$, so ist $\mathrm{Tr}(\alpha x) \in L^d$ und $\alpha \mapsto \mathrm{Tr}(\alpha x)$ ist ein K-Homomorphismus von L nach L^d . Sein Kern ist 0, also ist $L \cong L^d$ unter $\alpha \to \mathrm{Tr}(\alpha x)$. Sei w'_1, \ldots, w'_n die duale Basis bzgl $\mathrm{Tr}(xy)$, d.h.

$$\operatorname{Tr}(w_i w_i') = \delta_{ij},$$

und sei $c \in A$ sodaß $w_i'c \in B$.

Sei $z \in B$, dann ist $zw_j'c \in B$ und damit $\text{Tr}(zw_j'c) \in A$ da A ganz abgeschlossen ist. Sei

$$z = b_1 w_1 + \dots + b_n w_n, b_j \in K,$$

dann ist also $\text{Tr}(zw_i'c)=cb_i\in A.$ Also gilt

$$z \in Ac^{-1}w_1 + \dots + Ac^{-1}w_n.$$

 $\mathtt{ad}\,(ii)\colon \text{Sei}\,\,\frac{a}{b}\in Q(A)$ ganz und seipein Primelement, p|b. Es gilt für gewisse $a_j\in A$

$$\left(\frac{a}{b}\right)^n + a_{n-1} \left(\frac{a}{b}\right)^{n-1} + \dots + a_0 = 0,$$

also

$$a^n + a_{n-1}ba^{n-1} + \dots + a_0b^n = 0,$$

und es folgt p|a, d.h. $\frac{a}{h} \in A$.

ad (iii): Der A-Modul B ist torsionsfrei $(x \in B \setminus \{0\}, a \in R, ax = 0 \Rightarrow a = 0)$, also (Satz 1.2.3) frei. Sei $B = Aw_1 \dotplus \dots \dotplus Aw_n$, dann ist $L = Kw_1 + \dots + Kw_n$, und die w_j sind linear unabhängig auch über K. Eine solche Basis $\{w_1, \dots, w_n\}$ nennt man auch Ganzheitsbasis.

ad(iv): Sei $x \in L$ ganz über $S^{-1}A$, sei also

$$x^{n} + x^{n-1} \frac{b_{n-1}}{s_{n-1}} + \dots + \frac{b_0}{s_0} = 0, s_j \in S, b_j \in A.$$

Dann existiert $s \in S$, sodaß sx ganz über A und daher $sx \in A$. Damit ist $x \in S^{-1}A$.

ad(v): $B \supseteq A$ ist ganz, also auch $S^{-1}B \supseteq S^{-1}A$. Ist $x \in L$ ganz über $S^{-1}A$ so erst recht über $S^{-1}B$ und daher $x \in S^{-1}B$, da mit B auch $S^{-1}B$ ganz abgeschlossen in L.

DE1.24

1.6.7 Definition. Sei K eine endliche Erweiterung von $\mathfrak Q$ und O_K der ganze Abschluß von $\mathbb Z$ in K. Dann heißt K algebraischer Zahlkörper und O_K Ring der ganzen Zahlen in K.

Bemerke, daß $\mathbb Z$ ganz abgeschlossen ist und O_K ein freier $\mathbb Z\text{-Modul}$ vom Rang $[L:\mathfrak Q].$

1.7 Primideale

Sei $A \subseteq B$ eine Ringerweiterung.

DEI.25

1.7.1 Definition. Sei $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{P} \in \operatorname{Spec} B$. Wir sagen \mathfrak{P} liegt über \mathfrak{p} , $\mathfrak{P}|\mathfrak{p}$ wenn gilt $\mathfrak{P} \cap A = \mathfrak{p}$.

Sei $\mathfrak{P}|\mathfrak{p}$, dann induziert die Einbettung $A\subseteq B$ eine Einbettung $A/\mathfrak{p}\subseteq B/\mathfrak{P}$, man hat das Diagramm

$$\begin{array}{ccc} B & \to & B/\mathfrak{P} \\ \uparrow & & \uparrow \\ A & \to & A/\mathfrak{p} \end{array}$$

Ist $A\subseteq B$ ganz, so erhält man mit der kanonischen Projektion $\pi:B\to B/\mathfrak{P},$ daß B/\mathfrak{P} ganz über A/\mathfrak{p} ist.

LEI.26

1.7.2 Lemma (Nakayama Lemma). Sei A ein Ring, \mathfrak{a} Ideal von A das in allen maximalen Idealen enthalten ist, M ein endlich erzeugter A-Modul. Gilt $\mathfrak{a}M=M$, so folgt M=0.

Beweis. Sei Merzeugt von w_1,\dots,w_m wobei mminimal. Dann gibt es $a_i\in\mathfrak{a}$ sodaß

$$w_1 = a_1 w_1 + \dots + a_m w_m,$$

also

$$(1-a_1)w_1 = a_2w_2 + \cdots + a_mw_m$$
.

Da a_1 in allen maximalen Idealen liegt, ist $1-a_1\in A^*$, also wird M von w_2,\ldots,w_m erzeugt. \square

1.7.3 Satz. Sei $A \subseteq B$ ganz, $\mathfrak{p} \in \operatorname{Spec} A$. Dann gilt $\mathfrak{p}B \neq B$ und es existiert $\mathfrak{P} \in \operatorname{Spec} B$ mit $\mathfrak{P}|\mathfrak{p}$.

Beweis.

·) Sei $S = A \setminus \mathfrak{p}$. Dann ist $S^{-1}B \subseteq S^{-1}A$ ganz, und es gilt

$$\mathfrak{p}B_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}B = \mathfrak{p}A_{\mathfrak{p}}B_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{p}}B_{\mathfrak{p}}$$

wobei $\mathfrak{m}_{\mathfrak{p}}$ das maximale Ideal von $A_{\mathfrak{p}}$ ist. Es genügt also die erste Behauptung für den Fall A lokal zu zeigen.

·) Angenommen $\mathfrak{p}B = B$, dann ist

$$1 = a_1b_1 + \dots + a_nb_n,$$

mit gewissen $a_i \in \mathfrak{p}, b_i \in B$. Sei $B_0 = A[b_1, \ldots, b_n]$, dann ist $\mathfrak{p}B_0 = B_0$ und da alle b_i ganz sind, ist B_0 endlich erzeugter A-Modul. Wegen dem Nakayama Lemma folgt $B_0 = 0$, WS!.

·) Zur zweiten Aussage: Wir haben das Diagramm der Inklusionen

$$\begin{array}{ccc} B & \longrightarrow & B_{\mathfrak{p}} & = (A \setminus \mathfrak{p})^{-1}B \\ \uparrow & & \uparrow \\ A & \longrightarrow & A_{\mathfrak{p}} \end{array}$$

Wir haben schon gezeigt $\mathfrak{m}_{\mathfrak{p}}B_{\mathfrak{p}} \neq B_{\mathfrak{p}}$, also ist $\mathfrak{m}_{\mathfrak{p}}B_{\mathfrak{p}}$ enthalten in einem maximalen Ideal \mathfrak{M} von $B_{\mathfrak{p}}$. Dann ist $\mathfrak{M} \cap A_{\mathfrak{p}} \supseteq \mathfrak{m}_{\mathfrak{p}}$ und da $\mathfrak{m}_{\mathfrak{p}}$ maximal ist $\mathfrak{M} \cap A_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{p}}$ ($1 \notin \mathfrak{M} \cap A_{\mathfrak{p}}$). Setze

$$\mathfrak{P} = \mathfrak{M} \cap B$$
.

Dann ist $\mathfrak{P} \in \operatorname{Spec} B$ und nach obigem Diagramm ist $\mathfrak{M} \cap A = \mathfrak{p}$ also $\mathfrak{P} \cap A = \mathfrak{p}$.

CO1.28

1.7.4 Korollar. Sei $A \subseteq B$ ganz und sei $\mathfrak{P}|\mathfrak{p}$. Dann ist \mathfrak{P} maximal genau dann, wenn \mathfrak{p} maximal.

Beweis.

·) Sei \mathfrak{p} maximal, dann ist A/\mathfrak{p} ein Körper. Sei $x \in B/\mathfrak{P}, x \neq 0$, dann ist x ganz über A/\mathfrak{p} , also algebraisch. Damit ist

$$(A/\mathfrak{p})[x] \subseteq B/\mathfrak{P}$$

ein Körper, also $x \in (B/\mathfrak{P})^*$.

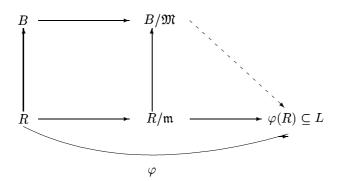
·) Ist \mathfrak{p} nicht maximal, so ist $\operatorname{Spec}(A/\mathfrak{p}) \neq \emptyset$, also auch $\operatorname{Spec}(B/\mathfrak{P}) \neq \emptyset$.

1.8 Fortsetzung von Homomorphismen

Sei A Ring (kommutativ mit 1) und $\mathfrak{p} \in \operatorname{Spec} A$. Wir haben gezeigt (Satz 1.4.3) daß sich ein Homomorphismus $\varphi: A \to L$ in einen Körper L mit $\ker \varphi = \mathfrak{p}$ fortsetzen läßt zu $\psi: A_{\mathfrak{p}} \to L$. Und zwar durch

$$\psi\left(\frac{x}{y}\right) := \frac{\varphi(x)}{\varphi(y)}.$$

Sei nun R ein lokaler Ring mit maximalem Ideal \mathfrak{m} , B ganz über R und $\varphi: R \to L$ ein Homomorphismus in einen algebraisch abgeschlossenen Körper L mit $\ker \varphi = \mathfrak{m}$. Wegen Satz 1.7.3 existiert ein maximales Ideal \mathfrak{M} von B das über \mathfrak{m} liegt. Dann ist B/\mathfrak{M} eine algebraische Erweiterung von R/\mathfrak{m} . φ induziert einen Isomorphismus von R/\mathfrak{m} und $\varphi(R) \subseteq L$. Diesen kann man auf die Erweiterung B/\mathfrak{M} fortsetzen. Man hat also

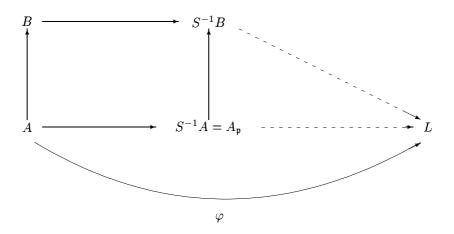


Insgesamt hat man φ auf B fortgesetzt.

LEAI.18

1.8.1 Lemma. Sei $A \subseteq B$ ganz, L algebraisch abgeschlossen, $\varphi : A \to L$. Dann hat φ eine Fortsetzung auf B.

Beweis. Sei $\mathfrak{p}=\ker\varphi\in\operatorname{Spec} A$ (da L Körper), $S=A\setminus\mathfrak{p}.$ Dann hat man das $S^{-1}B\supseteq A_{\mathfrak{p}}$ ganz ist.



1.8.2 Satz. Sei A Ring, K Körper, $A \subseteq K$, $x \in K \setminus \{0\}$. Weiters sei $\varphi : A \to L$ in einen algebraisch abgeschlossenen Körper L. Dann hat φ entweder eine Fortsetzung auf A[x] oder eine auf $A[x^{-1}]$.

Beweis.

- ·) Sei $\mathfrak{p}=\ker\varphi$, dann hat φ Fortsetzung auf $A_{\mathfrak{p}}$. Sei also oBdA A lokal mit maximalen Ideal \mathfrak{m} und $\ker\varphi=\mathfrak{m}$.
- ·) Fall $\mathfrak{m} A[x^{-1}] = A[x^{-1}] :$ Dann ist

$$1 = a_0 + a_1 x^{-1} + \ldots + a_n x^{-n}$$

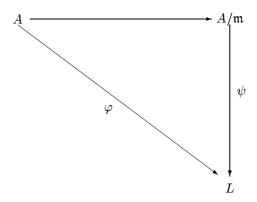
mit $a_j \in \mathfrak{m}$. Es folgt

$$(1-a_0)x^n - a_1x^{n-1} - \ldots - a_n = 0.$$

Wegen $a_0 \in \mathfrak{m}$ und A lokal, ist $1 - a_0 \in A^*$, also x ganz über A. Also hat wegen Lemma 1.8.1 φ eine Fortsetzung auf A[x].

·) Fall $\mathfrak{m}A[x^{-1}] \neq A[x^{-1}]$: Sei \mathfrak{P} maximales Ideal von $A[x^{-1}]$ mit $\mathfrak{m}A[x^{-1}] \subseteq \mathfrak{P}$. Dann ist $A \cap \mathfrak{P} \supseteq \mathfrak{m}$ und wegen \mathfrak{m} maximal sogar $A \cap \mathfrak{P} = \mathfrak{m}$.

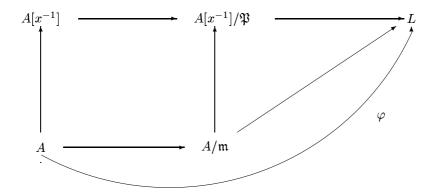
Sei ψ so daß



Nun ist $A/\mathfrak{m} \to A[x^{-1}]/\mathfrak{P}$ und ψ hat eine Fortsetzung auf $A[x^{-1}]/\mathfrak{P} = (A/\mathfrak{m})(x^{-1}+\mathfrak{P})$. Egal ob $x^{-1}+\mathfrak{P}$ algebraisch (L algebraisch abgeschlossen) oder transzendent (trivial) ist. Zusammensetzen mit der kanonischen Projektion

$$A[x^{-1}] \to A[x^{-1}]/\mathfrak{P}$$

liefert eine Fortsetzung auf $A[x^{-1}]$



COAL20

1.8.3 Korollar. Sei $A \subseteq K$, L algebraisch abgeschlossen, $\varphi : A \to L$. Sei B ein Unterring von K, maximal soda β φ eine Fortsetzung auf B hat. Dann ist B lokal und für jedes $x \in K$ gilt $x \in B$ oder $x^{-1} \in B$.

Beweis. Wegen dem Zornschen Lemma existieren solche maximale Unterringe und wegen dem letzten Satz haben sie die verlangte Eigenschaft.

Ein Unterring B von K mit $\forall x \in K : (x \in \mathfrak{B} \text{ oder } x^{-1} \in \mathfrak{B})$ heißt Bewertungsring. Jeder Bewertungsring ist lokal (vgl. Beweis von Satz 2.2.4). Sind R, Q lokale Ringe mit maximalen Idealen \mathfrak{m} , \mathfrak{M} so sagen wir Q liegt über R wenn $Q \supseteq R$, $\mathfrak{M} \cap R = \mathfrak{m}$.

1.8.4 Satz. Sei R lokal, $R \subseteq L$ Körper, $x \in L$. Dann ist x ganz über R genau dann wenn x in jedem Bewertungsring $Q \subseteq L$ ist der über R liegt.

Beweis.

·) Sei x nicht ganz über R (\mathfrak{m} ... maximale Ideal von R). Wir zeigen daß das Ideal (\mathfrak{m} , x^{-1}) von $R[x^{-1}]$ nicht ganz $R[x^{-1}]$ ist. Andernfalls hätte man

$$-1 = a_n \left(\frac{1}{x}\right)^n + \ldots + a_1 \left(\frac{1}{x}\right) + y$$

für gewisse $a_j \in R$, $y \in \mathfrak{m}$. Es folgt

$$(1+y)x^n + \ldots + a_n = 0.$$

Wegen $y \in \mathfrak{m}$ und R lokal ist $1 + y \in R^*$, also x ganz über R, ein WS!.

Sei \mathfrak{P} maximales Ideal von $A[x^{-1}]$ mit $\mathfrak{P}\supseteq (\mathfrak{m},x^{-1})$. Wegen $\mathfrak{P}\cap R\supseteq \mathfrak{m}$ folgt $\mathfrak{P}\cap R=\mathfrak{m}$. Der kanonische Homomorphismus

$$R[x^{-1}] \to R[x^{-1}]/\mathfrak{P} \subseteq \left(R[x^{-1}]/\mathfrak{P}\right)^a$$

läßt sich fortsetzen auf einen Bewertungsring Q von L. Wegen $x^{-1} \mapsto 0$ ist $x \notin Q$. Es ist insbesondere Q kein Körper und das maximale Ideal \mathfrak{M} von Q umfaßt \mathfrak{P} , denn $\mathfrak{P} \mapsto 0$. Also folgt $\mathfrak{P} \cap R = \mathfrak{m}$.

·) Sei x ganz über R, $x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0$ eine Ganzheitsgleichung, $a_j \in R$. Sei Q ein Bewertungsring von L der über R liegt. Angenommen $x \notin Q$, dann folgt $x^{-1} \in \mathfrak{M}$ (maximales Ideal von Q). Aus der Ganzheitsgleichung erhält man

$$1 = -a_{n-1}x^{-1} - \ldots - a_0x^{-n} \in \mathfrak{M}.$$

ein WS!.

1.8.5 Satz. Sei A Ring, $A \subseteq L$ Körper. Dann ist $x \in L$ ganz über A, genau dann wenn x in jedem Bewertungsring Q mit $A \subseteq Q \subseteq L$ liegt.

Beweis.

·) Sei x in jedem Bewertungsring. oBdA sei $x \neq 0$. Ist $x^{-1} \in A[x^{-1}]^*$, so hat man

$$x = c_0 + c_1 \frac{1}{x} + \ldots + c_n \left(\frac{1}{x}\right)^n$$

mit $c_j \in A$. Es folgt x ganz über A. Ist x^{-1} keine Einheit, so ist also $(x^{-1})_{A[x^{-1}]}$ ein echtes Ideal von $A[x^{-1}]$. Sei \mathfrak{M} maximales Ideal von $A[x^{-1}]$ mit $(\frac{1}{x}) \subseteq \mathfrak{M}$. Der Homomorphismus

$$A[x^{-1}] \to A[x^{-1}]/\mathfrak{M} \subseteq \left(A[x^{-1}]/\mathfrak{M}\right)^a$$

setzt sich auf einen Bewertungsring Q von L fort. Es gilt $x^{-1}\mapsto 0,$ also $x\not\in Q$ WS!

·) Ist x ganz, so erhält man genauso wie vorher einen WS!.

Kapitel 2

Dedekind Ringe

2.1 Dedekind Ringe

DEI.29

2.1.1 Definition. Ein nötherscher Ring der ganz abgeschlossen ist und in dem jedes Primideal maximal ist heißt Dedekind Ring.

DE1.30

2.1.2 Definition. Sei R ein Ring, K=Q(R). Eine Menge $\mathfrak{a}\subseteq K$ heißt gebrochenes Ideal von R in K, falls \mathfrak{a} ein R-Modul ist und es ein $c\in R\setminus\{0\}$ gibt, sodaß $c\mathfrak{a}\subseteq R$. (c... "Hauptnenner")

Ist R nöthersch, so ist $c\mathfrak{a}$ und damit auch \mathfrak{a} endlich erzeugt. Zwei gebrochene Ideale \mathfrak{a} , \mathfrak{b} können genauso wie Ideale multipliziert werden $\mathfrak{a} \cdot \mathfrak{b} = \langle x \cdot y : x \in \mathfrak{a}, y \in \mathfrak{b} \rangle_{R\text{-}Modul}$.

2.1.3 Satz. Sei R ein Dedekind Ring. Dann läßt sich jedes Ideal von R in eindeutiger Weise in ein Produkt von Primidealen zerlegen. Die (von Null verschiedenen) gebrochenen Ideale bilden eine Gruppe (mit der Multiplikation). I(R).

Beweis. Wir zeigen zuerst die zweite Behauptung.

- ·) Sei \mathfrak{a} ein Ideal von R. Dann existiert ein Produkt von Primidealen $\mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_r \subseteq \mathfrak{a}$: Angenommen es existiert ein Ideal das diese Eigenschaft nicht hat. Da R nöthersch ist, gibt es ein maximales solches \mathfrak{a} . Dieses kann nicht prim sein, also existiert $b_1, b_2 \in R$ mit $b_1, b_2 \notin \mathfrak{a}$, $b_i b_2 \in \mathfrak{a}$. Sei $\mathfrak{a}_1 = (\mathfrak{a}, b_1)$, $\mathfrak{a}_2 = (\mathfrak{a}, b_2)$, dann gilt $\mathfrak{a}_1 \mathfrak{a}_2 \subseteq \mathfrak{a}$ aber $\mathfrak{a}_1 \supsetneq \mathfrak{a}$, $\mathfrak{a}_2 \supsetneq \mathfrak{a}$. Also enthält \mathfrak{a}_1 , \mathfrak{a}_2 ein Produkt von Primidealen. Damit aber auch \mathfrak{a} , WS!.
- ·) Jedes maximale Ideal $\mathfrak p$ ist invertierbar: Sei $\mathfrak p^{-1}$ die Menge aller $x\in K$ sodaß $x\mathfrak p\subseteq R$. Dann ist $\mathfrak p^{-1}\supseteq R$. Wir zeigen daß $\mathfrak p^{-1}\ne R$: Sei $a\in \mathfrak p,\ a\ne 0$. Wähle r minimal sodaß

$$\mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_r \subseteq (a) \subseteq \mathfrak{p}.$$

Dann ist eines der \mathfrak{p}_i enthalten in \mathfrak{p} und da jedes Primideal maximal ist folgt $\mathfrak{p}_i = \mathfrak{p}$. ObdA sei i = 1. Es gilt $\mathfrak{p}_2 \cdot \ldots \cdot \mathfrak{p}_r \not\subseteq (a)$, wähle $b \in \mathfrak{p}_2 \cdot \ldots \cdot \mathfrak{p}_p \setminus (a)$. Dann ist $b\mathfrak{p} \subseteq (a)$ und daher $ba^{-1}\mathfrak{p} \subseteq R$, also ist $ba^{-1} \in \mathfrak{p}^{-1}$. Wegen $b \not\in (a)$ ist $ba^{-1} \not\in R$.

Es folgt $\mathfrak{p} \subseteq \mathfrak{pp}^{-1} \subseteq R$, also da \mathfrak{p} maximal ist $\mathfrak{p} = \mathfrak{pp}^{-1}$ oder $R = \mathfrak{pp}^{-1}$. Wäre $\mathfrak{pp}^{-1} = \mathfrak{p}$, so würde \mathfrak{p}^{-1} den endlich erzeugten R-Modul \mathfrak{p} invariant lassen und wäre daher ganz über R. Ein WS! da R ganz abgeschlossen ist. Also ist $\mathfrak{pp}^{-1} = R$.

·) Jedes Ideal $\neq \{0\}$ ist invertierbar: Angenommen nicht. Dann existiert ein Ideal $\mathfrak a$ das nicht inventierbar ist und maximal mit dieser Eigenschaft. $\mathfrak a$ kann nicht maximal sein. Sei $\mathfrak p$ maximal mit $\mathfrak a \subsetneq \mathfrak p$. Dann ist

$$\mathfrak{a}\subseteq\mathfrak{ap}^{-1}\subseteq\mathfrak{aa}^{-1}\subseteq R$$

wo $\mathfrak{a}^{-1} := \{x \in K : x\mathfrak{a} \subseteq R\}$. Da \mathfrak{a} endlich erzeugter R-Modul ist, ist $\mathfrak{ap}^{-1} \not\subseteq \mathfrak{a}$, da \mathfrak{p}^{-1} nicht ganz sein kann. Also hat \mathfrak{ap}^{-1} ein Inverses \mathfrak{b} und \mathfrak{bp} ist ein Inverses für \mathfrak{ap} WS!.

- ·) Sei \mathfrak{a} ein Ideal $\neq \{0\}$ und \mathfrak{c} ein gebrochenes Ideal sodaß $\mathfrak{a}\mathfrak{c} = R$. Dann gilt $\mathfrak{c} = \mathfrak{a}^{-1} := \{x \in K : x\mathfrak{a} \subseteq R\}$: Offenbar ist $\mathfrak{c} \subseteq \mathfrak{a}^{-1}$. Ist $x\mathfrak{a} \subseteq R$, so ist $x\mathfrak{a}\mathfrak{c} \subseteq \mathfrak{c}$ und wegen $\mathfrak{a}\mathfrak{c} = R$ also $x \in \mathfrak{c}$.
- ·) Jedes gebrochene Ideal $\neq \{0\}$ ist invertierbar: Sei \mathfrak{a} gebrochenes Ideal. Wähle $c \in R$ sodaß $c\mathfrak{a} \subseteq R$, und sei \mathfrak{b} Inverses für $c\mathfrak{a}$, d.h. $c\mathfrak{a}\mathfrak{b} = R$. Dann ist $c\mathfrak{b}$ Inverses für \mathfrak{a} .

Wir kommen zur ersten Behauptung:

- ·) Angenommen es gibt ein Ideal $\neq \{0\}$ daß nicht gleich einem Produkt von Primidealen ist. Sei \mathfrak{a} maximal mit dieser Eigenschaft und sei \mathfrak{p} maximales Ideal mit $\mathfrak{a} \subsetneq \mathfrak{p}$. Dann ist $\mathfrak{a}\mathfrak{p}^{-1} \subseteq R$ und $\mathfrak{a}\mathfrak{p}^{-1} \supsetneq \mathfrak{a}$. Also ist $\mathfrak{a}\mathfrak{p}^{-1}$ Produkt von Primidealen. Damit auch \mathfrak{a} . WS!.
- ·) Sind $\mathfrak{a}, \mathfrak{b}$ gebrochene Ideale, so sagen wir $\mathfrak{a}|\mathfrak{b}$ wenn gilt $\mathfrak{b} \subseteq \mathfrak{a}$ oder äquivalent wenn es ein Ideal \mathfrak{c} gibt mit $\mathfrak{b} = \mathfrak{ac}$. Sind $\mathfrak{p}_i, \mathfrak{q}_i$ prim und

$$\mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_r = \mathfrak{q}_1 \cdot \ldots \cdot \mathfrak{q}_s$$
,

so gilt also $\mathfrak{p}_1 \subseteq \mathfrak{q}_1 \cdot \ldots \cdot \mathfrak{q}_s$ und daher $\mathfrak{p}_1 \subseteq \mathfrak{q}_i$ für ein i, also $\mathfrak{p}_1 = \mathfrak{q}_i$. Induktiv weiter erhält man r = s und $\mathfrak{p}_i = \mathfrak{q}_i$ bis auf eine Permutation.

·) Ist $\mathfrak a$ gebrochenes Ideal wähle $c\in R$ mit $c\mathfrak a\in R$. Sei $(c)=\mathfrak p_1\cdot\ldots\cdot\mathfrak p_r,$ $c\mathfrak a=\mathfrak q_1\cdot\ldots\cdot\mathfrak q_s.$ Dann ist also

$$\mathfrak{a}=\frac{\mathfrak{q}_1\cdot\ldots\cdot\mathfrak{q}_s}{\mathfrak{p}_1\cdot\ldots\cdot\mathfrak{p}_r}.$$

Kürzt man alle oben und unten vorkommenden Ideale so ist die Darstellung eindeutig.

COI.31a

2.1.4 Korollar. Sei R Dedekind, $a \in R$. Dann existieren nur endlich viele Ideale $\mathfrak{b} \triangleleft R$ mit $a \in \mathfrak{b}$.

Beweis. Sei

$$(a) = \mathfrak{p}_1^{\alpha_1} \cdot \ldots \cdot \mathfrak{p}_r^{\alpha_r}.$$

Dann gilt

$$\mathfrak{b} \supset (a) \iff \mathfrak{b} = \mathfrak{p}_1^{\beta_1} \cdot \ldots \cdot \mathfrak{p}_r^{\beta_r} \text{ mit } \beta_i < \alpha_i.$$

LE1.32a

2.1.5 Lemma. Sei A Dedekind, B der ganze Abschluß von A in einer endlichen separablen Erweiterung von K = Q(A). Dann ist B Dedekind.

Beweis. B ist nöthersch wegen Satz 1.6.6, (i), ganz abgeschlossen wegen Satz 1.6.4, jedes Primideal ist maximal wegen Korollar 1.7.4.

 \mathbb{Z} ist Dedekind, also folgt

LF32

2.1.6 Lemma. Sei K ein algebraischer Zahlkörper, O_K der Ring der ganzen Zahlen in K. Dann ist O_K Dedekind Ring. Die multiplikative Gruppe der gebrochenen Ideale $\neq \{0\}$ bezeichnet man mit I_K .

Ein gebrochenes Hauptideal, ist ein gebrochener Ideal der Gestalt $\alpha \mathfrak{R}$ mit $\alpha \in K$. Die Menge P_K der gebrochenen Hauptideale ist eine Untergruppe von I_K .

DEI.33

2.1.7 Definition. $C_K := I_K/P_K$ heißt Idealklassengruppe von K.

 C_K mißt "wie weit O_K von der ZPE-Situation weg ist ".

Sei R ein Dedekind Ring. Dann ist $I_K \cong \Sigma_{\mathfrak{p} \in \operatorname{Spec} R} \mathbb{Z}$, die Divisorengruppe. Ist $\mathfrak{a} = \prod_{\mathfrak{p} \in \operatorname{Spec} R} \mathfrak{p}^{r_{\mathfrak{p}}}$, so sagen wir $r_{\mathfrak{p}} = \operatorname{ord}_{\mathfrak{p}} \mathfrak{a}$. Ist $\operatorname{ord}_{\mathfrak{p}} \mathfrak{a} > 0 \ (= 0, < 0)$, so hat \mathfrak{a} eine Nullstelle bei \mathfrak{p} (ist eine Einheit bei \mathfrak{p} , hat einen Pol bei \mathfrak{p}).

Offenbar gilt $\mathfrak{a}|\mathfrak{b} \iff \forall \mathfrak{p} : \operatorname{ord}_{\mathfrak{p}} \mathfrak{a} \leq \operatorname{ord}_{\mathfrak{p}} \mathfrak{b}$. Es ist $\operatorname{ord}_{\mathfrak{p}}(\alpha) = 0$ genau dann wenn α eine Einheit in $R_{\mathfrak{p}}$ ist.

LEI.34

2.1.8 Lemma. Sei R ein Dedekind Ring mit nur endlich vielen Primidealen. Dann ist R ein Hauptidealring.

 $Beweis. \ \, \text{Seien} \,\, \mathfrak{p}_1, \ldots, \mathfrak{p}_s$ die Primideale von R. Sei \mathfrak{a} ein Ideal,

$$\mathfrak{a} = \mathfrak{p}_1^{r_1} \cdot \ldots \cdot \mathfrak{p}_s^{r_s}.$$

Wähle $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ und $\alpha \in R$ mit $\alpha \equiv \pi_i^{r_i} \mod \mathfrak{p}_i^{r_i+1}$. Sei

$$(\alpha) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s},$$

dann folgt unmittelbar $e_i = r_i$ und daher $(\alpha) = \mathfrak{a}$.

LEI.35

2.1.9 Lemma. Sei A Dedekind Ring, $S \subseteq A$ multiplikativ. Dann ist $S^{-1}A$ ein Dedekind Ring. Die Abbildung

$$\mathfrak{a}\mapsto S^{-1}\mathfrak{a}=\{rac{a}{s}:a\in\mathfrak{a},s\in S\}$$

induziert einen Homomorphismus der Gruppe der gebrochenen Ideale von A auf die von $S^{-1}A$. Ein Ideal ist ein Kern $\iff \mathfrak{a}_{\cap}S \neq \emptyset$.

Beweis.

- ·) Wegen Lemma 1.3.5, (iii), ist $S^{-1}A$ nöthersch, wegen Satz 1.6.6, (iv), ganz abgeschlossen, und wegen Satz 1.4.5 ist jedes Primideal von $S^{-1}A$ maximal.
- ·) Wegen $S^{-1}(\mathfrak{a} \cdot \mathfrak{b}) = (S^{-1}\mathfrak{a}) \cdot (S^{-1}\mathfrak{b})$ gibt die Abbildung einen Homomorphismus von der Gruppe der gebrochenen Ideale von A in die von $S^{-1}A$. Wegen Satz 1.4.5, (ii), ist dieser surjektiv.

·) Ist $\mathfrak{a} \cap S \neq \emptyset$, so ist $S^{-1}\mathfrak{a} = S^{-1}A$. Ist umgekehrt $S^{-1}\mathfrak{a} = S^{-1}A$, so ist $1 = \frac{\alpha}{s}$ für gewisse $\alpha \in \mathfrak{a}, s \in S$, also $\mathfrak{a} \cap S \neq \emptyset$.

LEI.36

2.1.10 Lemma. Sei A Dedekind Ring und sei die Idealklassengruppe endlich. Sei $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$ ein vollständiges Repräsentantensystem der Idealklassen. Ist $b \in \bigcap \mathfrak{a}_i, b \neq 0, b \in A$, und ist $S = \{1, b, b^2, b^3, \ldots\}$, dann ist $S^{-1}A$ Hauptidealring.

Beweis. Bei Anwendung von S^{-1} werden die \mathfrak{a}_i auf $S^{-1}A$ abgebildet. Da Hauptideale auf Hauptideale gehen folgt die Behauptung da S^{-1} surjektiv ist.

Für den Ring der ganzen Zahlen in einem algebraischen Zahlkörper ist tatsächlich \mathcal{C}_K endlich.

LEI.36A

2.1.11 Lemma. Sei K ein algebraischer Zahlkörper. Dann existiert $M \in \mathbb{N}$ mit der folgenden Eigenschaft: Sind $\alpha, \beta \in O_K$, $\beta \neq 0$, dann existiert $t \in \mathbb{N}$, $1 \leq t \leq M$, und $w \in O_K$, soda β

$$|N_{\mathbb{O}}^K(t\alpha - w\beta)| < |N_{\mathbb{O}}^K(\beta)|.$$

Beweis.

- ·) Es genügt zu zeigen: $\exists M \in \mathbb{N} : \forall \gamma \in K \exists 1 \leq t \leq M, w \in O_K : |N(t\gamma w)| < 1.$
- ·) Betrachte $K\subseteq\mathbb{C}$. Sei w_1,\ldots,w_n eine Ganzheitsbasis von O_K . Für $\gamma\in K,\gamma=\sum\gamma_iw_i$, gilt (n=[K:R])

$$|N_{\mathbb{Q}}^K(\gamma)| = |\prod_{\sigma \text{ Einbettung}} \sum_{i} \gamma_i \sigma(w_i)| \leq (\max |\gamma_i|)^n \underbrace{(\prod_{\sigma} \sum_{i \in C} |\sigma(w_i)|)}_{=:c}$$

Wähle $m > \sqrt[n]{c}$ und setze $M := m^n$.

·) Ist $\gamma \in K, \gamma = \sum \gamma_i w_i \ (\gamma_i \in \mathbb{Q})$ schreibe

$$\gamma_i = a_i + b_i \text{ mit } a_i \in \mathbb{Z}, 0 < b_i < 1.$$

Setze $[\gamma] := \sum a_i w_i, \{\gamma\} := \sigma b_i w_i$. Dann ist $\gamma = [\gamma] + \{\gamma\}, [\gamma] \in O_K$, und $\{\gamma\}$ hat Koordinaten zwischen 0 und 1.

·) Betrachte die Abbildung $\phi:K\to\mathbb{R}^M$ mit

$$\phi(\sum \gamma_i w_i) := (\gamma_1, \dots, \gamma_n).$$

Stets liegt $\{\gamma\}$ im Einheitswürfel. Zerlege diesen in m^n Würfeln mit Seitenlänge $\frac{1}{m}$ und betrachte die Punkte $\phi(\{k\gamma\}), 1 \leq k \leq m^n + 1$. Mindestens zwei müssen im gleichen Teilwürfel liegen, z.B. $\phi(\{h\gamma\})$ und $\phi(\{l\gamma\}), h > l$. Es ist $(t = h - l \leq m^n)$.

$$t\gamma = h\gamma - l\gamma = \underbrace{[h\gamma] - [l\gamma])}_{=:w} + \underbrace{(\{h\gamma\} - \{l\gamma\})}_{\delta}$$

Dann ist $w \in O_K$ und die Beträge der Koordinaten von δ höchstens $\frac{1}{m}$. Es folgt

$$|N_{\mathbb{Q}}^K(\delta)| \le \left(\frac{1}{m}\right)^n C < 1.$$

2.1.12 Satz. Sei K ein algebraischer Zahlkörper. Dann ist $|C_K| =: h_K$ endlich.

Beweis. Sei $\mathfrak{a} \triangleleft O_K$. Für jedes $\alpha \in \mathfrak{a}$, $\alpha \neq 0$, ist $|N_{\mathbb{Q}}^K(\alpha)| \in \mathbb{N}$. Wähle $\beta \in \mathfrak{a}$, $\beta \neq 0$, sodaß $|N_{\mathbb{Q}}^K(\beta)|$ minimal ist. Für jedes $\alpha \in O_K$ existiert $t, 1 \leq t \leq M$, sodaß $(w \in O_K \text{ geeignet})$

$$|N_{\mathbb{O}}^{K}(t\alpha - w\beta)| < |N_{\mathbb{O}}^{K}(\beta)|.$$

Es folgt

$$t\alpha - w\beta = 0,$$

und damit also

$$M!\mathfrak{a}\subset (\beta)_{O_{K}}$$

Setze $\mathfrak{b} := \frac{1}{\beta} M! \mathfrak{a}$. Dann ist $\mathfrak{b} \triangleleft O_K$, und es gilt $M! \mathfrak{a} = (\beta) \mathfrak{b}$. Da $\beta \in \mathfrak{a}$ folgt $M! \beta \in (\beta) \mathfrak{b}$, also $M! \in \mathfrak{b}$. Damit gibt es für \mathfrak{b} nur endlich viele Möglichkeiten und wir haben $\mathfrak{a} \equiv \mathfrak{b}$ in I_K modulo P_K .

CO1.360

2.1.13 Korollar. Sei $\mathfrak a$ gebrochenes Ideal. Dann ist $\mathfrak a^{h_K}$ ein gebrochenes Hauptideal.

Beweis. $\mathfrak{a}^{h_K} = 1$ in C_K .

LEI.36d

2.1.14 Lemma. Sei A Dedekind, M, N zwei A-Moduln. Sei $\mathfrak p$ ein Primideal von A und $S_{\mathfrak p} = A \setminus \mathfrak p$. Gilt $S_{\mathfrak p}^{-1}M \subseteq S_{\mathfrak p}^{-1}N$ für alle $\mathfrak p$, so folgt $M \subseteq N$.

Beweis. Sei $a\in M$. Zu jedem $\mathfrak p$ existiert $x_{\mathfrak p}\in N, s_{\mathfrak p}\in S_{\mathfrak p}$, sodaß $s_{\mathfrak p}a=x_{\mathfrak p}$. Sei $\mathfrak b$ das von den $s_{\mathfrak p}$ erzeugte Ideal, dann gilt $\mathfrak b=A$, also

$$1 = \Sigma y_{\mathfrak{p}} s_{\mathfrak{p}}$$

für gewisse $y_{\mathfrak{p}} \in A$ die fast alle = 0 sind. Es folgt

$$a = \Sigma y_{\mathfrak{p}} s_{\mathfrak{p}} a = \Sigma y_{\mathfrak{p}} x_{\mathfrak{p}} \in N.$$

2.2 Diskrete Bewertungsringe

DE1.37

2.2.1 Definition. Ein lokaler Dedekind Ring heißt diskreter Bewertungsring.

R ist ein diskreter Bewertungsring genau dann wenn er ein Hauptidealring mit genau einem Primideal ist. Ist A Dedekind und $\mathfrak p$ ein Primideal, so ist also $A_{\mathfrak p}$ ein diskreter Bewertungsring. Sei R diskreter Bewertungsring und π das Primelement. Dann läßt sich also jedes $x \in R$ schreiben als $x = c\pi^{\nu}$ mit $c \in R^*$ und $\nu \in \mathbb{N} \cup \{0\}$.

DEI.39

DEI.38

2.2.2 Definition. Sei K ein Körper, Γ eine geordnete Gruppe $(0 \not\in \Gamma)$. Eine Abbildung

$$v: \left\{ \begin{array}{ccc} K & \to & \Gamma \cup \{0\} \\ x & \mapsto & |x| \end{array} \right.$$

heißt Bewertung von K (mit Wertegruppe $v(K \setminus \{0\}) \subseteq \Gamma$) falls gilt

- (i) $v(x) = 0 \iff x = 0$
- (ii) $v(xy) = v(x) \cdot v(y)$
- (iii) $v(x+y) \le \max\{v(x), v(y)\}.$

Die Bewertung heißt diskret, wenn die Wertegruppe zyklisch ist.

2.2.3 Definition. Sei K ein Körper, R ein Unterring von K. R heißt Bewertungsring, falls gilt

$$\forall x \in K : (x \in R \lor x^{-1} \in R).$$

Ist R diskreter Bewertungsring, so ist R Bewertungsring in K = Q(R).

2.2.4 Satz. Sei K ein Körper, v eine Bewertung von K. Dann ist

$$R_v := \{ x \in K : v(x) \le 1_{\Gamma} \}.$$

ein Bewertungsring. Ist umgekehrt $R \subseteq K$ (= Q(R)) ein Bewertungsring so existiert eine Bewertung v von K mit $R = R_v$. Es ist R_v lokal mit maximalen Ideal $\mathfrak{m} = \{x \in K : v(x) < 1\}$ und $R_v^* = \{x \in K : v(x) = 1\}$.

R ist ein diskreter Bewertungsring genau dann wenn er ein Bewertungsring ist der von einer diskreten Bewertung kommt.

Reweis

- ·) Ist v eine Bewertung, so ist $v(1) = v(x)v(x^{-1})$, also entweder $v(x) \leq v(1)$ oder $v(x^{-1}) \leq v(1)$, da v(1) = v(1)v(1) ist, ist $v(1) = I_{\Gamma}$ das Einselement von Γ .
- ·) Sei R ein Bewertungsring. Wir zeigen, daß R lokal ist: Sei $U=R^*$ die Einheitsgruppe. Es genügt zu zeigen, daß $R \setminus U$ ein Ideal von R ist. Seien $x,y \in R \setminus U$ und sei z.B. $\frac{x}{y} \in R$. Dann gilt

$$1 + \frac{x}{y} = (x+y)\frac{1}{y} \in R.$$

Wäre $x + y \in U$, so wäre auch $y \in U$ WS!. Sei $x \in R \setminus U$, $z \in R$. Wäre $zx \in U$, (zx)b = 1, für ein $b \in R$, so wäre auch $x \in U$, denn (zb)x = 1 WS!.

·) Sei \mathfrak{m} das maximale Ideal von R, dann ist $R = U \cup \mathfrak{m}$ und daher $(\mathfrak{m}^* = \mathfrak{m} \setminus \{0\})$

$$K^* = \mathfrak{m}^* \cup U \cup (\mathfrak{m}^*)^{-1},$$

als disjunkte Vereinigung. Da \mathfrak{m}^* multiplikativ ist, ist

$$\Gamma = K^*/U$$

eine geordnete Gruppe ($xU < U \iff x \in \mathfrak{m}^*$). Für $x \in K^*$ setze $v(x) := xU \in \Gamma$, für x = 0 setze v(x) = 0.

·) Seien $x, y \in K^*$, z.B. $\frac{x}{y} \in R$ also $v(x)v(y)^{-1} \leq U$. Dann ist $1 + \frac{x}{y} \in R$, also $v(1 + \frac{x}{y}) \leq U$. Es folgt wegen $1 + \frac{x}{y} = (x + y)\frac{1}{y}$ daß $v(x + y)v(y)^{-1} \leq U$ und daher $v(x + y) \leq v(y)$.

Also ist v Bewertung von K und klarerweise ist R = Rv.

·) Sei v eine diskrete Bewertung, $R=R_v$ der Bewertungsring zu v. Wähle einen Erzeuger γ von Γ und schreibe $\gamma=v(\pi)$. Da mit γ auch γ^{-1} die Gruppe Γ erzeugt sei oBdA $\pi\in R$. Da $\gamma\neq 1_\Gamma$ folgt $\pi\in\mathfrak{m}$. Jedes Element $x\in K^*$ läßt sich schreiben (eindeutig) als

$$x = u\pi^r$$

mit $r \in \mathbb{Z}$ und $u \in U$, denn $v(x) = \gamma^r$ für ein r. Es folgt daß $\mathfrak{m} = (\pi)$. Allgemein sind alle Ideale vom R gegeben durch

$$(\pi) \geqslant (\pi^2) \geqslant (\pi^3) \ge \dots$$

denn ist \mathfrak{a} Ideal von R, so folgt $\mathfrak{a}=(\pi^s)$ für $s=\min\{r: x=u\pi^r\in\mathfrak{a}\}$. Klarerweise ist (π^s) für s>1 nicht prim, also ist R ein Hauptidealring mit genau einem Primideal. So ein Element π heißt auch oft ein lokaler Parameter.

·) Sei R_v ein diskreter Bewertungsring. Sei $\mathfrak{m}=(\pi)$ dann hat die Primfaktorzerlegung von $x\in R$ die Gestalt $x=\cap\pi^r$, $r\mathbb{N}_0$, $u\in R^*$ weil es nur ein Primelement gibt (bis auf Konjugierte). Damit hat jedes Element x von K^* die Gestalt $x=u\pi^r$, $r\in\mathbb{Z}$, $u\in R^*$ und es folgt $\langle v(\pi)\rangle=\Gamma$.

2.3 Galois Erweiterungen

Ist A ganz abgeschlossen in K=Q(A), L wie endliche Galois-Erweiterung von K mit Gruppe G, und B der ganze Abschluß von A in L, dann gilt $\sigma B=B,$ $\sigma \in G$ (vgl. Satz 1.6.2, (v)).

2.3.1 Satz. Sei A ganz abgeschlossen, L eine endliche Galoische Erweiterung von K = Q(A) mit Gruppe G, B der ganze Abschluß vor A in L. Sei $\mathfrak{p} \in \operatorname{Spec} A$, $\mathfrak{P}, Q \in \operatorname{Spec} B$ die über \mathfrak{p} liegen. Dann existiert $\sigma \in G$ sodaß $\sigma \mathfrak{P} = \mathfrak{Q}$.

Beweis.

·) Betrachte zuerst den Fall daß $\mathfrak p$ maximal ist. Angenommen $\mathfrak P \neq \sigma \mathfrak Q$ für alle $\sigma \in G$. Dann existiert $x \in B$ mit (Chinesischer Restsatz).

$$x \equiv 0 \mod \mathfrak{P}, \ x \equiv 1 \mod \sigma Q, \ \sigma \in G.$$

Die Norm $N_K^L(x) = \prod_{\sigma \in G} \sigma x$ liegt in $B \cap K = A$ denn A ist ganz abgeschlossen und sogar in $\mathfrak{P} \cap K = \mathfrak{p}$. Jedoch ist stets $\sigma x \notin \mathfrak{Q}$, also $N_K^L(x) \notin \mathfrak{Q} \cap K = \mathfrak{p}$, WS!

·) Sei nun allgemein $\mathfrak{p} \in \operatorname{Spec} A$. Wir lokalisieren: Sei $S = A \setminus \mathfrak{p}$. Dann ist $S^{-1}B$ der ganze Abschluß von $S^{-1}A$ in L, $S^{-1}\mathfrak{p}$ maximales Ideal von $S^{-1}A$, $S^{-1}\mathfrak{P}$, $S^{-1}Q \in \operatorname{Spec} S^{-1}B$ und liegen über $S^{-1}\mathfrak{p}$. Es folgt daß es $\sigma \in G$ gibt mit $\sigma(S^{-1}\mathfrak{P}) = S^{-1}\mathfrak{Q}$. Da $S \subset K$ und daher bei σ fix bleibt folgt $\sigma\mathfrak{P} = \mathfrak{Q}$.

CO1.42

2.3.2 Korollar. Sei A ganz abgeschlossen, E endliche separable Erweiterung von K = Q(A), B der ganze Abschluß von A in E. Sei $\mathfrak{p} \in \operatorname{Spec} A$. Dann gibt es nur endliche Primideale von B die über A liegen.

Beweis. Sei L die kleinste Galois-Erweiterung von K die E enthält. Sind $\mathfrak{Q}_1, \mathfrak{Q}_2$ verschiedene Primideale von B über \mathfrak{p} , und $\mathfrak{P}_1, \mathfrak{P}_2$ Primideale vom ganzen Abschluß C von A in L die über \mathfrak{Q}_1 bzw. \mathfrak{Q}_2 liegen, dann ist $\mathfrak{P}_1 \neq \mathfrak{P}_2$ und $\mathfrak{P}_1, \mathfrak{P}_2$ liegen über \mathfrak{p} . Wegen dem Satz gibt es nur endlich viele solche \mathfrak{P} 's.

DE1.43

2.3.3 Definition. Sei $\mathfrak p$ maximales Ideal von $A, \mathfrak P$ maximales Ideal von B das über A liegt. Die Gruppe

$$G_{\mathfrak{P}} := \{ \sigma \in G : \sigma \mathfrak{P} = \mathfrak{P} \}$$

heißt Zerlegungsgruppe von $\mathfrak{P}.$ Ihr Fixpunktkörper L^d heißt Zerlegungskörper von $\mathfrak{P}.$

Sei A nöthersch, ganz abgeschlossen, L separable Erweiterung von K=Q(A), B der ganze Abschluß von A in L, $\mathfrak{p}\in\operatorname{Spec} A$ maximal, $\mathfrak{P}\in\operatorname{Spec} B$ über \mathfrak{p} . Dann heißt die Körpererweiterung

$$B/\mathfrak{P}:A/\mathfrak{p}$$

die Restklassenkörpererweiterung von $\mathfrak{P}/\mathfrak{p}$. Wegen Satz 1.6.6, (i, Beweis), gilt

$$[B/\mathfrak{P}:A/\mathfrak{p}]<[L:K].$$

Die Gruppe $G_{\mathfrak{P}}$ operiert in natürlicher Weise auf B/\mathfrak{P} und läßt A/\mathfrak{p} punktweise fest. Wir haben also einen Homomorphismus

$$G_{\mathfrak{P}} \to \operatorname{Aut}(B/\mathfrak{P}:A/\mathfrak{p}]).$$

Ist $G = \bigcup \sigma_j G_{\mathfrak{P}}$ eine Zerlegung von G in Nebenklassen, dann sind die $\sigma_j \mathfrak{P}$ genau die verschiedenen Primideale über \mathfrak{p} .

Die Zerlegungsgruppe von $\sigma \mathfrak{P}$ ist gleich $\sigma G_{\mathfrak{P}} \sigma^{-1}$.

LEI.44

2.3.4 Lemma. L^d ist der kleinste Zwischenkörper $E, K \subseteq E \subseteq L$, mit der Eigenschaft daß \mathfrak{P} das einzige Primideal von B ist das über dem Primideal $\mathfrak{P} \cap E$ von $B \cap E$ liegt.

Beweis.

- ·) Sei $E=L^d$. $B^d=B\cap L^d$ ist der ganze Abschluß von A in L^d , ist also ganz abgeschlossen. L ist eine endliche Galoiserweiterung von L^d mit Gruppe $G_{\mathfrak{P}}$. Wegen Satz 2.3.1 ist \mathfrak{P} das einzige Primideal über $\mathfrak{P}\cap B^d$.
- ·) Habe E die obige Eigenschaft und sei H die Gruppe von L über E. Setze $\mathfrak{q} = \mathfrak{P} \cap E$. Wegen Satz 2.3.1 sind die $\sigma \mathfrak{P}, \sigma \in H$, genau die Primideale über \mathfrak{q} . Es folgt $\sigma \mathfrak{P} = \mathfrak{P}$, d.h. $H \subset G_{\mathfrak{P}}$ und damit $E \supset L^d$.

2.3.5 Satz. Sei $\mathfrak{Q} = B^d \cap \mathfrak{P}$. Dann gilt (mittels der kanonischen Einbettung $A/\mathfrak{p} \to B^d/\mathfrak{Q}$) $A/\mathfrak{p} = B^d/\mathfrak{Q}$.

Beweis. Ist $\sigma \in G \setminus G_{\mathfrak{P}}$, so ist also $\sigma \mathfrak{P} \neq \mathfrak{P}$ bzw. $\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$. Setze $\mathfrak{Q}_{\sigma} = \sigma^{-1} \mathfrak{P} \cap B^d$. Dann ist $\mathfrak{Q}_{\sigma} \neq \mathfrak{Q}$, denn über \mathfrak{Q} liegt ja nur ein Primideal nämlich \mathfrak{P} .

Sei $x \in B^d$, dann existiert $y \in B^d$ mit

$$\begin{array}{ll} y \equiv x \qquad \text{mod} & \mathfrak{Q} \\ y \equiv 1 \qquad \text{mod} & \mathfrak{Q}_{\sigma}, \sigma \in G \setminus G_{\mathfrak{P}}. \end{array}$$

Speziell folgt

$$\begin{array}{ll} y \equiv x & \mod & \mathfrak{P} \\ y \equiv 1 & \mod & \sigma^{-1}\mathfrak{P}, \sigma \in G \setminus G_{\mathfrak{P}}, \end{array}$$

also

$$\sigma y \equiv 1 \mod \mathfrak{P}, \sigma \in G \setminus G_{\mathfrak{P}}.$$

Die Norm $N_K^{L^d}(y)$ ist das Produkt $\prod \sigma y$ wobei σ ein vollständiges Restsystem modulo $G_{\mathfrak{P}}$ durchläuft. Also folgt

$$N_K^{L^d}(y) \equiv x \mod \mathfrak{P}.$$

Die linke Seite liegt in A, die rechte in B^d . Also gilt die Kongruenz sogar modulo $\mathfrak Q$. \square

Ist $x \in B$, so bezeichne \bar{x} die Restklasse von x modulo \mathfrak{P} , $\bar{x} \in B/\mathfrak{P}$. Der Homomorphismus von $G_{\mathfrak{P}}$ nach $\operatorname{Aut}(B/\mathfrak{P}:A/\mathfrak{p})$ sei bezeichnet mit $\sigma \mapsto \bar{\sigma}$. Dann ist offenbar

$$\bar{\sigma}\bar{x} = \overline{\sigma x}$$
.

Ist f(X) ein Polynom mit Koeffizienten in $B, f(X) = b_n X^n + \cdots + b_0$, so bezeichne $\bar{f}(X)$ das Polynom über B/\mathfrak{P}

$$\bar{f}(X) = \bar{b}_n X^n + \ldots + \bar{b}_0.$$

2.3.6 Satz. Sei A ganz abgeschlossen, L eine endliche Galois Erweiterung von K = Q(A) mit Gruppe G, B der ganze Abschluß von A in L. Sei $\mathfrak p$ maximales Ideal von A und $\mathfrak P$ maximales Ideal von B das über $\mathfrak p$ liegt. Dann ist $B/\mathfrak P$ eine normale Erweiterung von $A/\mathfrak p$ und die Abbildung $\sigma \mapsto \bar{\sigma}$ ist ein Homomorphismus von $G_{\mathfrak P}$ auf die Galoisgruppe $\operatorname{Aut}(B/\mathfrak P:A/\mathfrak p)$.

Beweis

·) Setze $B = B/\mathfrak{P}$, $A = A/\mathfrak{p}$. Sei $\bar{x} \in B$, und sei f(X) das Minimalpolynom von x über K. Da x ganz über A ist sind alle Koeffizienten von f in A und damit auch alle anderen Wurzeln in L von f sogar in B. Es schreibt sich also f in B in Linearfaktoren denn L/K ist normal

$$f(X) = (X - x_1) \cdots (X - x_m).$$

Da \bar{x} eine Wurzel des Polynoms

$$\bar{f}(X) = (X - \bar{x}_1) \cdots (X - \bar{x}_m) \in \bar{B}[X]$$

zerfällt das Minimalpolynom von \bar{x} auch in Linearfaktoren. Also ist \bar{B}/\bar{A} normal.

·) Wegen obigem folgt daß

$$[\bar{A}(\bar{x}):\bar{A}] < [K(x):K] < [L:K].$$

Da die maximale separable Erweiterung E von \bar{A} in \bar{B} durch ein Element erzeugt wird folgt $[E:\bar{A}] \leq [L:K] < \infty$. Sie ist also eine endliche Galois Erweiterung von \bar{A} , denn \bar{B}/\bar{A} ist normal und daher auch $E:\bar{A}$.

·) OBdA liegt über $\mathfrak p$ nur ein Primideal: Wegen Satz 2.3.5 ist

$$\operatorname{Aut}(\bar{B}:\bar{A}) = \operatorname{Aut}(\bar{B}:B^d/\mathfrak{Q}),$$

um die Surjektivität von $\sigma \mapsto \bar{\sigma}$ zu zeigen, können wir also die Situation $K = L^d$ annehmen. D.h. $G = G_{\mathfrak{P}}$.

·) Sei also $G=G_{\mathfrak{P}}$. Sei $x\in B$ sodaß \bar{x} die maximale separable Erweiterung von \bar{A} in \bar{B} erzeugt und sei f das Minimalpolynom von x über K. Ein Automorphismus $\bar{\tau}$ von $\bar{B}:\bar{A}$ ist durch seine Wirkung auf \bar{x} eindeutig bestimmt. Offenbar ist $\bar{\tau}\bar{x}$ eine Wurzel von \bar{f} . Ist y irgend eine Wurzel von f so existiert $\sigma\in G=G_{\mathfrak{P}}$ sodaß $\sigma x=y$. Zu jedem $\bar{\tau}$ existiert daher ein $\sigma\in G_{\mathfrak{P}}$ sodaß $\bar{\sigma}=\bar{\tau}$.

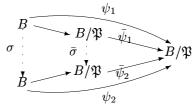
CO1.47

2.3.7 Korollar. Seien A, K, B, L, G wie im Satz, sei $\mathfrak p$ ein maximales Ideal von $A, \varphi: A \to A/\mathfrak p$ der kanonische Homomorphismus. Sind ψ_1, ψ_2 Homomorphismen von B in einen algebraischen Abschluß von $A/\mathfrak p$ die φ fortsetzen, so existiert $\sigma \in G$ sodaß

$$\psi_1 = \psi_2 \circ \sigma.$$

Beweis.

- ·) ker ψ_1 , ker ψ_2 sind Primideale von B die über $\mathfrak p$ liegen, also existiert wegen Satz 2.3.1 ein $\bar{\tau} \in G$ sodaß $\psi_1, \psi_2 \circ \bar{\tau}$ den selben Kern haben. ObdA haben also ψ_1, ψ_2 den gleichen Kern $\mathfrak P$.
- ·) Sei also $\ker \psi_1 = \ker \psi_2 = \mathfrak{P}$. Sei $B/\mathfrak{P} \subseteq (A/\mathfrak{p})^a$. $\psi_1 : B \to (A/\mathfrak{p})^a$ induziert eine Einbettung $\bar{\psi}_1 : B/\mathfrak{P} \to (A/\mathfrak{p})^a$. Da B/\mathfrak{P} normal über A/\mathfrak{p} ist folgt $\bar{\psi}_1 \in \operatorname{Aut}(B/\mathfrak{P} : A/\mathfrak{p})$. Genauso für ψ_2 . Also existiert $\sigma \in G_{\mathfrak{P}}$ so daß $\bar{\psi}_2^{-1} \circ \bar{\psi}_1 = \bar{\sigma}$. Man hat das Diagramm



2.4 Verzweigung von Primidealen

Sei A ein Dedekind Ring, L eine endliche separable Erweiterung von K=Q(A), B der ganze Abschluß von A in L.

Ist $\mathfrak{p} \in \operatorname{Spec} A$, so ist $\mathfrak{p} B$ ein Ideal von B. Daher gilt mit gewissen $\mathfrak{P}_i \in \operatorname{Spec} B, e_i \geq 1$,

$$\mathfrak{p}B=\mathfrak{P}_1^{e_1}\cdot\ldots\cdot\mathfrak{P}_r^{e_r}.$$

LEI.48

2.4.1 Lemma. Eine Primstelle $\mathfrak{P} \in \operatorname{Spec} B$ kommt in obiger Faktorisierung genau dann vor wenn sie über \mathfrak{p} liegt.

Beweis. Da jedes \mathfrak{P}_E Spec B maximal ist und die Faktoren paarweise coprim, gilt

$$\mathfrak{P}_1^{e_1} \cdot \ldots \cdot \mathfrak{P}_r^{e_r} = \mathfrak{P}_1^{e_1} \cap \ldots \cap \mathfrak{P}_r^{e_r}.$$

Ist $\mathfrak P$ eine Primstelle über $\mathfrak p$ die nicht vorkommt, so wäre $(\mathfrak P\supseteq \mathfrak p B)$

$$\mathfrak{p}B=\mathfrak{P}_1^{e_1}\cap\ldots\cap\mathfrak{P}_r^{e_r}=\mathfrak{P}_1^{e_1}\cap\ldots\cap\mathfrak{P}_r^{e_r}\cap\mathfrak{P},$$

ein WS! zur Eindeutigkeit der Faktorisierung. Umgekehrt ist klarerweise $\mathfrak{P}_i\supseteq\mathfrak{p}B\supseteq\mathfrak{p}$ und da \mathfrak{p} maximal ist und $1\not\in\mathfrak{P}_i$ folgt $\mathfrak{P}_i\cap A=\mathfrak{p}$.

DEI.49

2.4.2 Definition. Liegt $\mathfrak P$ über $\mathfrak p$, so heißt der Exponent $e(\mathfrak P/\mathfrak p)$ von $\mathfrak P$ in der Zerlegung von $\mathfrak P B$ der Verzweigungsindex von $\mathfrak P/\mathfrak p$, und $f(\mathfrak P/\mathfrak p) = [B/\mathfrak P : A/\mathfrak p]$ der Restklassengrad von $\mathfrak P/\mathfrak p$.

Für $\mathfrak{P} \in \operatorname{Spec} B$ definiert man

$$N_{\mathcal{K}}^{L}(\mathfrak{P}) := \mathfrak{p}^{f(\mathfrak{P}/\mathfrak{p})}$$

wobe
i $\mathfrak{p}:=\mathfrak{P}\cap A.$ Die Norm N_K^L gibt also einen Homomorphismus

$$N_K^L: I(B) \to I(A).$$

LEI.50

2.4.3 Lemma. Sei A Dedekind, $K = Q(A), K \subseteq E \subseteq L$ endliche separable Erweiterungen, $A \subseteq B \subseteq C$ die entsprechenden ganzen $Abschl\"{u}\beta e$ von A in an E bzw. L. Sei $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{q} \in \operatorname{Spec} B, \mathfrak{P} \in \operatorname{Spec} C, \mathfrak{q/p}, \mathfrak{P/q}$. Dann gilt

$$e(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{q})e(\mathfrak{q}/\mathfrak{p})$$

$$f(\mathfrak{P}/\mathfrak{p}) = f(\mathfrak{P}/\mathfrak{q})f(\mathfrak{q}/\mathfrak{p})$$

$$(ii) \\ N_K^E \circ N_E^L = N_K^L.$$

Beweis. Klar nach Definition.

LEI.51

2.4.4 Lemma. Sei A lokal, M freier A-Modul vom Rang n, $\mathfrak p$ das maximale Ideal von A. Dann ist $M/\mathfrak p M$ ein n-dimensionaler Vektorraum über $A/\mathfrak p$.

Beweis. Ist x_1, \ldots, x_n Basis von M über A, d.h.

$$M = \sum_{i=1}^{n} Ax_i \text{ (direkte Summe)},$$

so ist $M/\mathfrak{p}M=\sum_{i=1}^n (A/\mathfrak{p})\bar{x}_i$ (direkte Summe), wobei \bar{x}_i die Restklasse von x_i modulo $\mathfrak{p}M$. Denn ist

$$\sum \bar{\lambda}_i \bar{x}_i = 0 \text{ in } M/\mathfrak{p}M,$$

so ist $\sum \lambda_i x_i \in \mathfrak{p}M$. Es gilt $\mathfrak{p}M = \sum \mathfrak{p}x_i$ und wegen der Eindeutigkeit der Darstellung folgt $\bar{\lambda}_i = 0$.

2.4.5 Satz. Sei A Dedekind, K = Q(A), L endlich separable Erweiterung von K, B der ganze Abschluß von A in L. Ist $\mathfrak{p} \in \operatorname{Spec} A$, so gilt

$$[L:K] = \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) f(\mathfrak{P}/\mathfrak{p}).$$

Beweis.

·) ObdA sei A lokal: Wir lokalisieren bei \mathfrak{p} . Ist $S=A\setminus \mathfrak{p}$, betrachte also die Situation $S^{-1}A\subseteq K\subseteq L$. Es ist $S^{-1}B$ der ganze Abschluß von $S^{-1}A$ in L. Ist

$$\mathfrak{p}B=\mathfrak{P}_1^{e_1}\cdot\ldots\cdot\mathfrak{P}_r^{e_r},$$

so ist wegen Lemma 2.1.9

$$(S^{-1}\mathfrak{p})(S^{-1}B) = S^{-1}(\mathfrak{p}B) = (S^{-1}\mathfrak{P}_1)^{e_1} \cdot \dots \cdot (S^{-1}\mathfrak{P}_r)^{e_r}$$

Daher sind die $S^{-1}\mathfrak{P}_i$ sind alle Primideale über $S^{-1}\mathfrak{p}$ ($S^{-1}\mathfrak{P}_i \neq S^{-1}B$ da $S \cap \mathfrak{P}_i = \emptyset$) und $e(S^{-1}\mathfrak{P}/S^{-1}\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p})$. Wegen Satz 1.4.9 ist für jedes $\mathfrak{P}/\mathfrak{p}$

$$S^{-1}B/S^{-1}\mathfrak{P} \cong B/\mathfrak{P}, S^{-1}A/S^{-1}\mathfrak{p} \cong A/\mathfrak{p},$$

also $f(S^{-1}\mathfrak{P}/S^{-1}\mathfrak{p}) = f(\mathfrak{P}/\mathfrak{p}).$

·) Sei A ein lokaler Dedekind Ring. Dann ist A,B Hauptidealring, B ein freier A-Modul von Rang n=[L:K] und $B/\mathfrak{p}B$ ein n-dimensionaler A/\mathfrak{p} Vektorraum. Sei $\mathfrak{p}B=\mathfrak{P}_1^{e_r}\cdots\mathfrak{P}_r^{e_r}$. Der Homomorphismus

$$B \to \prod_{i=1}^r B/\mathfrak{P}_i^{e_i}$$

ist surjektiv und hat Kern $\mathfrak{p}B$. Wegen $\mathfrak{P}_i^{e_i}\supseteq \mathfrak{p}$ ist $B/\mathfrak{P}_i^{e_i}$ ein A/\mathfrak{p} - Vektorraum, also auch die direkte Summe auf der rechten Seite. Klarerweise ist der Homomophismus

$$B/\mathfrak{p}B \to \prod_{i=1}^r B/\mathfrak{P}_i^{e_i}$$

ein A/\mathfrak{p} -Homomorphismus.

·) Wir bestimmen die Dimension von B/\mathfrak{P}^e . Sei π ein Erzeuger von \mathfrak{P} und $j\geq 1$. Wegen $\mathfrak{pP}^j\subseteq \mathfrak{P}^{j+1}$ ist $\mathfrak{P}^j/\mathfrak{P}^{j+1}$ ein A/\mathfrak{p} -Vektorraum. Die Abbildung $x\mapsto x\pi^j$ induziert einen Homomorphismus

$$B/\mathfrak{P} \to \mathfrak{P}^j/\mathfrak{P}^{j+1}$$

Die Dimension von $\mathfrak{P}^j/\mathfrak{P}^{j+1}$ ist also stets gleich der von B/\mathfrak{P} über A/\mathfrak{p} , also gleich $f(\mathfrak{P}/\mathfrak{p})$. Mit der Kompositionsreihe

$$B > \mathfrak{P} > \mathfrak{P}^2 > \dots > \mathfrak{P}^e$$

erhält man dim $B/\mathfrak{P}^e = e \cdot f$. Also ist

$$[L:K] = \dim B/\mathfrak{p}B = \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) f(\mathfrak{P}/\mathfrak{p}).$$

CO1.53

П

2.4.6 Korollar. Sei $\mathfrak{a} \in I(A)$, dann gilt

$$N_K^L(\mathfrak{a}B) = \mathfrak{a}^{[L:K]}.$$

Beweis. Ist \mathfrak{p} prim, $\mathfrak{p}B = \mathfrak{P}_i^{e_1} \cdot \ldots \cdot \mathfrak{P}_r^{e_r}$, so gilt

$$N_K^L(\mathfrak{p}B) = N_K^L(\mathfrak{P}_1)^{e_1} \cdot \ldots \cdot N_K^L(\mathfrak{P}_r)^{e_r} = \mathfrak{p}^{\sum e_i f_i} = \mathfrak{p}^{[L:K]}.$$

CO1.54

2.4.7 Korollar. Sei L Galois über K und $\mathfrak{p} \in \operatorname{Spec} A$. Dann sind alle $e(\mathfrak{P}/\mathfrak{p})$ gleich (einer Zahl e) und alle $f(\mathfrak{P}/\mathfrak{p})$ gleich (einer Zahl e). Ist $r = \#\{\mathfrak{P} : \mathfrak{P}/\mathfrak{p}\}$, so gilt

$$efr = [L:K].$$

Beweis. Man erhält alle $\mathfrak{P}/\mathfrak{p}$ aus einem durch Anwendung von $\sigma \in G$. Es ist $B/\mathfrak{P} \cong B/\sigma \mathfrak{P}$ und wegen $\sigma(\mathfrak{p}B) = \mathfrak{p}B$ sind die Exponenten e_i auch alle gleich.

CO1.55

2.4.8 Korollar. Sei L Galois über K mit Gruppe G und sei $\mathfrak{P}/\mathfrak{p}$. Dann gilt $(\mathfrak{p}B = (\mathfrak{P}_1 \cdot \ldots \cdot \mathfrak{P}_r)^e)$

$$N_K^L(\mathfrak{P})B = \prod_{\sigma \in G} \sigma \mathfrak{P} = (\mathfrak{P}_1 \cdot \ldots \cdot \mathfrak{P}_r)^{ef}.$$

Es gilt $|G_{\mathfrak{P}}| = ef$.

Beweis. G operiert transitiv auf $\{\mathfrak{P}:\mathfrak{P}/\mathfrak{p}\}$ und $G_{\mathfrak{P}}$ ist die Isotropiegruppe.

CO1.56

2.4.9 Korollar. Sei A Dedekind, K = Q(A), E endliche separable Erweiterung von K, B der ganze Abschluß von A in E. Sei $\mathfrak{b} = (\beta)$ ein gebrochenes Hauptideal von B. Dann gilt

$$N_K^E(\mathfrak{b}) = (N_K^E(\beta))$$

wobei die Norm rechts die übliche Norm ist.

Beweis

·) Sei L die kleinste Galois Erweiterung von K die E enthält. C der ganze Abschluß von B in L. Es gilt, da L:E Galois ist

$$N_E^L(\mathfrak{b}C) = \mathfrak{b}^{[L:E]}, \ N_E^L(\beta) = \beta^{[L:E]}.$$

Haben wir die Aussage gezeigt für den Fall einer Galois Erweiterung, so haben wir

$$N_K^L(\mathfrak{b}C) = (N_K^L(\beta)),$$

und wegen

$$\begin{split} N_K^L &= N_K^E \circ N_E^L, \\ N_K^E(\mathfrak{b})^{[L:E]} &= (N_K^E(\beta))^{[L:E]}. \end{split}$$

Wegen der eindeutigen Primzerlegung in I(A) folgt dann auch

$$N_K^E(\mathfrak{b}) = (N_K^E(\beta)).$$

·) Sei also oBdA E Galois über K. Dann gilt $N_K^E(\beta) = \prod_{\sigma \in G} \sigma \beta$, also

$$(N_K^E(\beta))_A \cdot B = \prod_{\sigma \in G} \sigma(\beta)_B = \prod_{\sigma \in G} \sigma \mathfrak{b} = N_K^E \mathfrak{b} \cdot B$$

wegen Korollar 2.4.8. Es folgt

$$(N_K^E(\beta))_A^{[E:K]} = N_K^E[(N_K^E(\beta))_A B] = N_K^E[N_K^E \mathfrak{b} \cdot B] = (N_K^E \mathfrak{b})^{[E:K]}.$$

Wegen der eindeutigen Primzerlegung in I(A) folgt

$$(N_K^E(\beta))_A = N_K^E \mathfrak{b}$$

2.4.10 Satz. Sei A diskreter Bewertungsring, K = Q(A), L endliche separable Erweiterung von K, B ganze Abschluß von A in L. Weiters liege nur ein $\mathfrak{P} \in \operatorname{Spec} B$ über dem maximalen Ideal \mathfrak{p} von A, und sei der Körper B/\mathfrak{P} über A/\mathfrak{p} erzeugt von einem $\beta \mod \mathfrak{P}, \ \beta \in B$. Sei π ein Element von B mit Ordnung 1 bei \mathfrak{P} . Dann gilt $A[\beta, \pi] = B$.

Beweis. Sei $C=A[\beta,\pi]$. C ist ein A-Untermodul von B. Wegen dem Nakayama Lemma angewendet auf B/C genügt es zu zeigen daß

$$\mathfrak{p}B + C = B.$$

Sei $\mathfrak{p}B=\mathfrak{P}^e$. Dann erzeugen die Elemente $\beta^j\pi^i$ den Raum B/\mathfrak{P}^e als A/\mathfrak{p} -Vektorraum (vgl. Satz 2.4.5). Also kann man jedes $x\in B$ schreiben als

$$x = \sum c_{ij} \beta^j \pi^i \mod \mathfrak{p}B$$

mit gewissen $c_{ij} \in A$.

2.4.11 Satz. Sei A Dedekind und sei $|A/\mathfrak{p}| < \infty$ für alle $\mathfrak{p} \in \operatorname{Spec} A$. Ist \mathfrak{a} Ideal von A bezeichne mit $N\mathfrak{a} := |A/\mathfrak{a}|$. Dann gilt

$$N\mathfrak{a} = \prod_{\mathfrak{p}} [N\mathfrak{p}]^{\mathrm{ord}_{\mathfrak{p}} \ \mathfrak{a}}.$$

Beweis. Es ist $A/\mathfrak{a} \cong \prod_{\mathfrak{p}} A/\mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}} \mathfrak{a}}$, Es genügt also $|A/\mathfrak{p}^n|$ zu bestimmen. Dazu lokalisiere bei \mathfrak{p} , dann ist oBdA \mathfrak{p} Hauptideal. Dann ist offenbar $A/\mathfrak{p} \cong \mathfrak{p}/\mathfrak{p}^2 \cong, \ldots$, also $|A/\mathfrak{p}^n| = |A/\mathfrak{p}|^n$.

REI.58a

2.4.12 Bemerkung. Sei K ein algebraischer Zahlkörper O_K der Ring der ganzen Zahlen in K. Sei $\mathfrak{p} \in \operatorname{Spec} O_K$, $\mathfrak{p}/(p)$. Dann gilt

$$N\mathfrak{p} = p^{f(\mathfrak{p}/(p))}.$$

Ist $\alpha \in O_K$, so gilt $N_{\mathbb{Q}}^K(\alpha) = \pm N(\alpha)$. Es gibt für jedes M nur endlich viele Ideale \mathfrak{a} mit $N\mathfrak{a} < M$.

2.5 Explizite Faktorisierung einer Primstelle

Wir betrachten die folgende Situation: A Dedekind, K=Q(A), E endliche separable Erweiterung von K, B ganze Abschluß von A in E. Sei $\mathfrak{p}\in \operatorname{Spec}\ A$.

Sei vorausgesetzt daß $B = A[\alpha]$ für ein geeignetes $\alpha \in B$.

R.F.I. 59a

2.5.1 Bemerkung. Es gilt nicht immer $B=A[\alpha].$ Jedoch ist für alle bis auf endlich viele $\mathfrak{p}\in \operatorname{Spec}\ A$

$$B_{\mathfrak{p}} = A_{\mathfrak{p}}[\alpha_{\mathfrak{p}}].$$

Sei fdas Minimalpolynom von α (über $K). Beachte daß <math display="inline">f \in A[X].$ Die kanonische Projektion

$$\pi:A\to A/\mathfrak{p}=:\bar{A}$$

sei (koeffizientenweise) fortgesetzt zu $\tilde{\pi}:A[X]\to \bar{A}[X]$. Sei $\bar{f}:=\tilde{\pi}f$ und sei

$$\bar{f}(X) = \bar{P}_1(X)^{e_1} \cdot \ldots \cdot \bar{P}_1(X)^{e_r},$$

 $\bar{P}_i = \bar{A}[X], \ \bar{P}_i = \tilde{\pi}P_i, \ P_i$ normiert, die Zerlegung von \bar{f} in irreduzible (normierte) Faktoren. Sei L ein algebraischer Abschluß von \bar{A} . Sei Φ die Menge aller Fortsetzungen ϕ von π zu einem Homomorphismus $\phi: B \to L$.

 Φ steht in bijektiver Beziehung zu der Nullstellenmenge von $\bar f$ vermöge $\phi\mapsto\phi(\alpha).$ Denn wegen $f(\alpha)=0$ muß für $\phi\in\Phi$ gelten

$$0 = \phi(f(\alpha)) = \bar{f}(\phi(\alpha)).$$

Ist umgekehrt $\bar{f}(\beta) = 0$, so ist die Abbildung

$$\phi: \left\{ \begin{array}{ccc} B & \to & L \\ g(\alpha) & \mapsto & \bar{g}(\beta) \end{array} \right. \quad (g=A[x])$$

wohldefiniert: Ist $g(\alpha) = 0$, so folgt f|g also auch $\bar{f}|\bar{g}$, also $\bar{g}(\beta) = 0$. Offenbar setzt ϕ auch π fort. Wegen $B = A[\alpha]$ ist ϕ überall definiert. Weiters wegen $B = A[\alpha]$ ist ein $\phi \in \Phi$ durch $\phi(\alpha)$ eindeutig bestimmt.

2.5.2 Satz. Seien $\phi, \psi \in \Phi$, dann ist $\ker \phi = \ker \psi$ genau dann, wenn $\phi(\alpha)$ und $\psi(\alpha)$ Nullstellen des gleichen irreduziblen Faktors \bar{P}_i sind. Es gilt

$$\{\mathfrak{P} \in \operatorname{Spec} B : \mathfrak{P}/\mathfrak{p}\} = \{\ker \phi : \phi \in \Phi\},\$$

d.h. die über $\mathfrak p$ liegenden Primideale stehen in bijektiver Beziehung zu den irreduziblen Faktoren von $\bar f$. Gehört $\mathfrak P$ zu $\bar P_i$, so gilt

$$e(\mathfrak{P}/\mathfrak{p}) = e_i, \ f(\mathfrak{P}/\mathfrak{p}) = \deg \bar{P}_i, \ \mathfrak{P} = \mathfrak{p}B + P_i(\alpha)B.$$

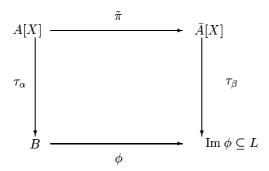
Beweis.

·) Es gilt $\ker \phi \cap A=\mathfrak{p}$: Da ϕ die Projektion π fortsetzt ist $\mathfrak{p}\subseteq\ker \phi$. Sei $\gamma\in A\cap\ker \phi$. Dann ist

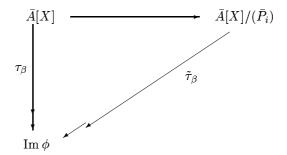
$$0 = \phi(\gamma) = \pi(\gamma),$$

d.h. $\gamma \in \mathfrak{p}$ (... \mathfrak{p} das maximale Ideal von A).

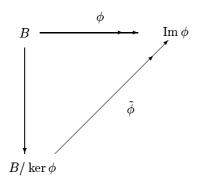
 \cdot) Betrachte das Diagramm



wobei τ_{α} bzw. τ_{β} die Punktauswertung an α bzw. β ist und $\beta = \phi(\alpha)$. Sei β Nullstelle von \bar{P}_i , dann faktorisiert sich τ_{β} als



und ϕ als



Es folgt $B/\ker\phi\cong \bar{A}[X]/(\bar{P}_i)$. Da \bar{P}_i irreduzibel ist, folgt $\ker\phi\in\operatorname{Spec} B$. Weiters ist

$$\ker \tau_{\beta} \circ \tilde{\pi} = \ker \phi \circ \tau_{\alpha}.$$

Die linke Seite ist gleich $\tilde{\pi}^{-1}((\bar{P}_i))$, die rechte gleich $\tau_{\alpha}^{-1}(\ker \phi)$. Da τ_{α} surjektiv ist, folgt

$$\ker \phi = \tau_{\alpha}(\tau_{\alpha}^{-1}(\ker \phi)) = \tau_{\alpha}(\tilde{\pi}^{-1}((\bar{P}_{i}))),$$

gehören also ϕ, ψ zu \bar{P}_i so ist $\ker \phi = \ker \psi$.

·) Ist umgekehrt $\ker \phi = \ker \psi$, und gehört ϕ zu \bar{P}_i und ψ zu \bar{P}_j , so folgt

$$(\bar{P}_i) = \tilde{\pi}(\tilde{\pi}^{-1}((\bar{P}_i))) = \tilde{\pi}(\tau_{\alpha}^{-1}(\ker\phi)) = \tilde{\pi}(\tau_{\alpha}^{-1}(\ker\psi)) = (\bar{P}_j),$$

also $\bar{P}_i = \bar{P}_j$.

·) Sei $\mathfrak{P} \in \operatorname{Spec} B$, $\mathfrak{P}/\mathfrak{p}$, und sei L' ein algebraischer Abschluß von A/\mathfrak{p} mit $L' \supseteq B/\mathfrak{P}$. $L' \cong L$ über \bar{A} vermöge ι , $\sigma : B \to B/\mathfrak{P}$ die kanonische Projektion. Dann ist

$$\phi := \iota \circ \sigma : B \to L$$

eine Fortsetzung von π und ker $\phi = \mathfrak{P}$.

·) Wie schon festgestellt, ist (wenn $\mathfrak{P}/\mathfrak{p}$ zu \bar{P}_i gehört)

$$B/\mathfrak{P} \cong \bar{A}[X]/(\bar{P}_i)$$

und dieser Isomorphismus ist ein \bar{A} -Vektorraum Isomorphismus denn eingeschränkt auf \bar{A} ist er id. Also folgt

$$f(\mathfrak{P}/\mathfrak{p}) = [B/\mathfrak{P} : \bar{A}] = \deg \bar{P}_i \ (= \deg P_i)$$

Es gilt $\mathfrak{p}B = \tau_{\alpha}(\mathfrak{p}[X])$. Denn ist $\gamma \in B$, so schreibt sich $\gamma = g(\alpha)$ und daher $p\gamma = (pg)(\alpha)$ und für $p \in \mathfrak{p}$ ist $pg \in \mathfrak{p}[X]$. Umgekehrt ist

$$\tau_{\alpha}(pX^k) = p\alpha^k \in \mathfrak{p}B.$$

Offenbar ist $\mathfrak{p}[X] = \ker \tilde{\pi}.$ Gehört nun \mathfrak{P} zu \bar{P}_i so ist

$$\mathfrak{P} = \ker \phi = \tau_{\alpha}(\tilde{\pi}^{-1}((\bar{P}_i))) = \tau_{\alpha}((P_i)_{A[X]} + \mathfrak{p}[X]) = P_i(\alpha)B + \mathfrak{p}B.$$

·) Es gilt
$$f - P_1^{e_1} \cdot \ldots \cdot P_r^{e_r} \in \ker \tilde{\pi} = \mathfrak{p}[X]$$
, also wegen $f(\alpha) = 0$
$$-P_1(\alpha)^{e_1} \cdot \ldots \cdot P_r(\alpha)^{e_r} = \tau_{\alpha}(f - P_1^{e_1} \cdot \ldots \cdot P_r^{e_r}) \in \mathfrak{p}B.$$

Nun gilt, wenn $\mathfrak{P}_i/\mathfrak{p}$ zu \bar{P}_i gehört,

$$\mathfrak{P}_{i}^{e_{i}} \subseteq \mathfrak{p}B + P_{i}^{e_{i}}(\alpha)B,$$

also folgt

$$\mathfrak{P}_1^{e_1} \cdot \ldots \cdot \mathfrak{P}_r^{e_r} \subseteq \mathfrak{p}B + P_i^{e_i}(\alpha) \cdot \ldots \cdot P_r^{e_r}(\alpha)B \subseteq \mathfrak{p}B.$$

Damit ist

$$e_i \ge e(\mathfrak{P}_i/\mathfrak{p}), i = 1, \dots, r.$$

Wegen

$$\sum e_i \deg P_i = \deg f = [E:K] = \sum e(\mathfrak{P}_i/\mathfrak{p})f(\mathfrak{P}_i/\mathfrak{p}) := \sum e(\mathfrak{P}_i/\mathfrak{p}) \deg P_i$$
folgt $e_i = e(\mathfrak{P}_i/\mathfrak{p})$.

2.6 Die Diskriminante

Sei im folgenden L/K endliche Erweiterung, [L:K]=n.

2.6.1 Definition. Seien $\alpha_1, \ldots, \alpha_n \in K$. Dann heißt

$$\Delta(\alpha_1,\ldots,\alpha_n) := \det(\operatorname{tr}(\alpha_i\alpha_j))_{i,j=1}^n$$

die Diskriminante von $\alpha_1, \ldots, \alpha_n$.

2.6.2 Satz. Ist $\Delta(\alpha_1, \ldots, \alpha_n) \neq 0$, dann ist $\{\alpha_1, \ldots, \alpha_n\}$ eine Basis von L/K. Ist L/K separabel auch umgekehrt.

Beweis.

DEI.61

·) Seien $\alpha_1, \ldots, \alpha_n$ linear abhängig. Dann existieren $a_1, \ldots, a_n \in K$, nicht alle gleich 0, sodaß $\sum a_i \alpha_i = 0$. Es folgt

$$\sum a_i \operatorname{tr}(\alpha_i \alpha_j) = 0, \ j = 1, \dots, \mathfrak{n},$$

also muß $det(tr(\alpha_i\alpha_j))_{i,j=1}^n = 0$ gelten.

·) Seinen α_1,\ldots,α_n linear unabhängig und sei $\Delta(\alpha_1,\ldots,\alpha_n)=0$. Dann gibt es eine nichttriviale Lösung x_1,\ldots,x_n von

$$\sum x_i \operatorname{tr}(\alpha_i \alpha_j) = 0, \ j = 1, \dots, n.$$

Setze $\alpha := \sum x_i \alpha_i$. Dann ist $\alpha \neq 0$. Es gilt $\operatorname{tr}(\alpha \alpha_j) = 0$ für alle $j = 1, \ldots, n$. Da $\alpha_1, \ldots, \alpha_n$ Basis folgt $\operatorname{tr}(\alpha \beta) = 0$, $\beta \in L$, also $\operatorname{tr} \gamma = 0$, $\gamma \in L$. WS! zu L/K separabel.

LEI.63

2.6.3 Lemma. Seien $\{\alpha_1, \ldots, \alpha_n\}$, $\{\beta_1, \ldots, \beta_n\}$ Basen von L/K. Seien $a_{ij} \in K$ soda $\beta \alpha_i = \sum a_{ij}\beta_j$. Dann gilt

$$\Delta(\alpha_1, \dots, \alpha_n) = \det(a_{ij})^2 \Delta(\beta_1, \dots, \beta_n).$$

Beweis. Es gilt

$$\alpha_i \alpha_k = \sum_{i,l} a_{ij} a_{kl} \beta_j \beta_l.$$

Setze $A = (\operatorname{tr}(\alpha_i \alpha_k)), B = (\operatorname{tr}(\beta_j \beta_l)), C = (a_{ij}), \text{ dann ist } A = C^T B C.$

LEI.64

2.6.4 Lemma. Sei L/K separabel, $\{\sigma_j : j = 1, ..., n\}$ die Einbettungen von L/K. Dann gilt

$$\Delta(\alpha_1,\ldots,\alpha_n) = \left[\det(\sigma_j(\alpha_i))_{i,j=1}^n\right]^2$$

Beweis. Es gilt

$$\operatorname{tr}(\alpha_i \alpha_j) = \sum_l \sigma_l(\alpha_i \alpha_j).$$

Setze $A = (\operatorname{tr}(\alpha_i \alpha_j)), B = (\sigma_l(\alpha_i)),$ dann gilt $A = BB^T$.

2.6.5 Satz. Sei L/K separabel und sei $\beta \in L$ soda $\beta \{1, \beta, \dots, \beta^{n-1}\}$ linear unabhängig ist. Sei $f \in K[X]$ das Minimalpolynom von β über K. Dann gilt

$$\Delta(1,\beta,\ldots,\beta^{n-1}) = (-1)^{\frac{n(n-1)}{2}} N(f'(\beta)).$$

Beweis. Die Determinante der Vandermonde Matrix $(\sigma_i(\beta^i))$ ist gleich

$$\prod_{i < j} (\sigma_j(\beta) - \sigma_i(\beta)),$$

und es folgt

$$\Delta(1,\beta,\ldots,\beta^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (\sigma_j(\beta) - \sigma_i(\beta)).$$

Es gilt $f(X) = \prod_{i} (X - \sigma_i(\beta))$ und daher

$$f'(\sigma_j(\beta)) = \prod_{i \neq j} (\sigma_j(\beta) - \sigma_i(\beta)), \ j = 1, \dots, n.$$

Nun ist $f'(\sigma_j(\beta)) = \sigma_j(f'(\beta))$ und

$$N(f'(\beta)) = \prod_{j} \sigma_{j}(f'(\beta)).$$

2.6.6 Satz. Sei K ein algebraischer Zahlkörper, $n = [K : \mathbb{Q}]$, $\mathfrak{a} \triangleleft O_K$. Sei $\alpha_1, \ldots, \alpha_n \in \mathfrak{a}$ eine Basis von K/\mathbb{Q} sodass $|\Delta(\alpha_1, \ldots, \alpha_n)|$ minimal ist (solche $\alpha_1, \ldots, \alpha_n$ existieren stets). Dann gilt

$$\mathfrak{a} = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_n.$$

Und umgekehrt.

Beweis.

- ·) Es gibt stets eine Basis in \mathfrak{a} , denn es gibt eine in O_K und multipliziert man diese mit einem $a \in \mathfrak{a} \setminus \{0\}$, so hat man das Gewünschte. Es gilt $\Delta(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z} \setminus \{0\}$ also $|\Delta(\alpha_1, \ldots, \alpha_n)| \in \mathbb{N}$, daher existiert eine Basis mit der geforderten Minimalitätseigenschaft.
- ·) Trivial ist $\mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_n \subseteq \mathfrak{a}$. Sei also $\alpha \in \mathfrak{a}$ und schreibe

$$\alpha = \gamma_1 \alpha_1 + \dots + \gamma_n \alpha_n, \ \gamma_i \in \mathbb{Q}.$$

Sind alle $\gamma_i \in \mathbb{Z}$ sind wir fertig. Sei angenommen ein $\gamma_i \notin \mathbb{Z}$, oBdA $\gamma_1 \notin \mathbb{Z}$. Schreibe $\gamma_1 = m + \vartheta$, $m \in \mathbb{Z}$, $0 < \vartheta < 1$, und setze

$$\beta_1 := \alpha - m\alpha_1, \ \beta_2 := \alpha_2, \dots, \beta_n := \alpha_n.$$

Dann ist $\{\beta_1,\ldots,\beta_n\}$ eine Basis und $\subseteq \mathfrak{a}$. Die Transformationsmatrix zwischen diesen Basen ist wegen $\beta_1 = \vartheta \alpha_1 + \gamma_2 \alpha_2 + \cdots + \gamma_n \alpha_n$ gleich

$$\begin{pmatrix} \vartheta & \gamma_2 & \gamma_3 & \dots & \gamma_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 1 \end{pmatrix}$$

Wir erhalten $|\Delta(\beta_1,\ldots,\beta_n)| = |\vartheta^2\Delta(\alpha_1,\ldots,\alpha_n)| < |\Delta(\alpha_1,\ldots,\alpha_n)|$ ein WS! zur Minimalitätseigenschaft.

·) Sind $\{\alpha_1, \ldots, \alpha_n\}$ und $\{\beta_1, \ldots, \beta_n\}$ Basen mit $\mathfrak{a} = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_n = \mathbb{Z}\beta_1 + \cdots + \mathbb{Z}\beta_n$, so ist die Transformationsmatrix ganzzahlig und invertierbar. Ihre Determinante also $= \pm 1$.

DEI.67

2.6.7 Definition. Der Wert $\Delta(\mathfrak{a}) = \min |\Delta(\alpha_1, \ldots, \alpha_n)|$ heißt die Diskriminante von \mathfrak{a} , $\delta_K := \Delta(O_K)$ kurz Diskriminante von K.

LEI.67a

2.6.8 Lemma. Sei F/\mathbb{Q} ein algebraischer Zahlkörper, $[F:\mathbb{Q}]=n$. Sei $\alpha_1,\ldots,\alpha_n\in O_F$ eine Basis von F/\mathbb{Q} . Dann gilt

$$\Delta(\alpha_1,\ldots,\alpha_n)O_F \subseteq \mathbb{Z}\alpha_1+\cdots+\mathbb{Z}\alpha_n$$
.

Beweis. Sei $w \in O_F$, $w = \sum a_i \alpha_i$, $a_i \in \mathbb{Q}$. Alle Elemente $\operatorname{tr}(w\alpha_j)$ und $\operatorname{tr}(\alpha_i \alpha_j)$ sind in \mathbb{Z} und es gilt

$$\operatorname{tr}(w\alpha_j) = \sum a_i \operatorname{tr}(\alpha_i \alpha_j), \ j = 1, \dots, n.$$

Wegen der Cramerschen Regel schreibt sich a_i als ganze Zahl dividiert durch $\Delta(\alpha_1, \ldots, \alpha_n)$.

Sei K ein algebraischer Zahlkörper, $[K:\mathbb{Q}]=n.$ Wir konstruieren eine Ganzheitsbasis.

2.6.9 Satz. Seien $a_1, \ldots, a_n \in O_K$ linear unabhängig (über \mathbb{Q}). Dann existiert eine Ganzheitsbasis w_1, \ldots, w_n soda β

$$a_j = c_{j1}w_1 + \dots + c_{jj}w_j, \ j = 1, \dots, n,$$

mit gewissen $c_{ii} \in \mathbb{Z}$.

Beweis.

·) Sei d_{ii} die kleinste natürliche Zahl sodaß für gewisse $d_{i1}, \ldots, d_{i,i-1} \in \mathbb{Z}$

$$w_i = \frac{1}{\Delta(a_1, \dots, a_n)} \sum_{j=1}^i d_{ij} a_j \in O_K.$$

Die w_i sind linear unabhängig über \mathbb{Q} , denn sie entstehen aus (a_1, \ldots, a_n) durch Multiplikation mit einer Dreiecksmatrix und $d_{ii} \neq 0$.

·) Sei $c \in O_K$ von der Form

$$c = \frac{1}{\Delta(a_1, \dots, a_n)} (c_1 a_1 + \dots + c_j a_j)$$

für gewisse $c_i \in \mathbb{Z}$ und ein gewisses $j \in \{1, \ldots, n\}$. Dann gilt $d_{jj}|c_j$: Schreibe $c_j = sd_{jj} + r$ mit $s, r \in \mathbb{Z}$, $0 \le r < d_{jj}$. Es ist

$$c - sw_i \in O_K$$

und es ist

$$c - sw_j = \frac{1}{\Delta(a_1, \dots, a_n)} \left((c_1 - sd_{j1})a_1 + (c_2 - sd_{j2})a_2 + \dots + ra_j \right),$$

ein WS! zur Minimalität von d_{jj} falls nicht r = 0.

·) Sei M_0 der von w_1,\ldots,w_n erzeugte $\mathbb Z$ -Modul. Wir zeigen mit Induktion nach j, daß jedes Element von O_K der Gestalt

$$x = \frac{1}{\Delta(a_1, \dots, a_n)} (x_1 a_1 + \dots + x_j a_j), \ x_i \in \mathbb{Z},$$

in M_0 liegt. Für j=n heißt dies wegen Lemma 2.6.8 daß $M_0=O_K$. j=1wegen dem letzten Punkt ist $d_{11}|x_1$ und daher $x=\frac{x_1}{d_11}w_1\in M_0$. $j-1\mapsto j$ Es gilt $d_{jj}|x_j$. Es ist

$$x - \frac{x_j}{d_{ij}} w_j \in O_K$$

und nach Induktionsvoraussetzung in M_0 . $\frac{x_j}{d_{jj}}w_j\in M_0$, also folgt $x\in M_0$.

2.6.10 Satz. Seien $a_1, \ldots, a_n \in O_K$ linear unabhängig über \mathbb{Q} und sei m der Index von $\mathbb{M} = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n$ in O_K . Dann gilt

$$\Delta(a_1,\ldots,a_n)=\pm m^2\delta_K.$$

Beweis. Sei w_1,\ldots,w_n eine Ganzheitsbasis von $O_K.$ Sei $b_1,\ldots,b_n\in M$ sodaß

$$b_i = \sum_{k=1}^i c_{ik} w_k, \ c_{ik} \in \mathbb{Z},$$

wobei $c_{ii} \in \mathbb{N}$ kleinstmöglich ist. Genauso wie in Satz 2.6.9 sieht man daß b_1, \ldots, b_n ein freies Erzeugendensystem von M ist und das $t_1w_1 + \cdots + t_iw_i$ $(t_j \in \mathbb{Z})$ nur in M liegen kann, wenn $c_{ii}|t_i$. Also sind die Zahlen

$$\alpha_1 w_1 + \dots + \alpha_n w_n, \ 0 \le a_j < c_{jj},$$

paarweise inkongruent modulo M. Offenbar sind es genau $c_{11}\cdot\ldots\cdot c_{nn}$ viele. Wir zeigen daß sie ein vollständiges Repräsentantensystem modulo M bilden: Sei

$$\xi = \sum_{k=1}^{n} \lambda_k w_k, \ \lambda_k \in \mathbb{Z},$$

ein Element von O_K . Sei $0 \le \mu_n < c_{nn}$ sodaß $\lambda_n \equiv \mu_n \mod c_{kn}$ und setze

$$A_n = \frac{\lambda_n - \mu_n}{c_{nn}}.$$

Dann gilt

$$\xi = A_n b_n + \mu_n w_n + \sum_{k=1}^{n-1} (\lambda_k - A_n c_{nk}) w_k.$$

Sei $0 \le \mu_{n-1} < c_{n-1,n-1}$, sodaß $\lambda_{n-1} - A_n c_{n,n-1} \equiv \mu_{n-1} \mod c_{n-1,n-1}$. Setze

$$A_{n-1} = \frac{\lambda_{n-1} - \mu_{n-1} - A_n c_{n,n-1}}{c_{n-1,n-1}}.$$

Dann gilt

$$\xi = A_n b_n + \mu_n w_n + A_{n-1} b_{n-1} + \mu_{n-1} w_{n-1} + \sum_{k=1}^{n-2} (\lambda_k - A_n c_{nk} - A_{n-1} c_{n-1,k}) w_k.$$

Verfährt man weiter, so erhält man schließlich

$$\xi = \sum_{k=1}^{n} \alpha_k b_n + \sum_{k=1}^{n} \mu_k w_k$$

wobei $\alpha_k, \mu_k \in \mathbb{Z}, 0 \leq \mu_k < c_{kk}$. Also ist der Index

$$m = [O_K : M] = c_{11} \cdot \ldots \cdot c_{nn},$$

und

$$\Delta(b_1,\ldots,b_n)=(\det(c_{ij}))^2\Delta(w_1,\ldots,w_n)=(c_n\cdot\ldots\cdot c_{nn})^2\delta_K.$$

Da sowohl $\{a_1, \ldots, a_n\}$ als auch $\{b_1, \ldots, b_n\}$ den Modul M erzeugen ist

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_n)(\gamma_{ij})$$

mit $(\gamma_{ij}) \in \mathbb{Z}^{n \times n}$ invertierbar, also

$$\Delta(a_1,\ldots,a_n)=\pm\Delta(b_1,\ldots,b_n).$$

2.6.11 Lemma. Ist $n \in \mathbb{Z}$, $a \in K$, b = a + n, so gilt $\Delta(1, a, ..., a^{n-1}) = \Delta(1, b, ..., b^{n-1})$.

Beweis. Wie in Satz 2.6.5 gilt

$$\Delta(1, a, \dots, a^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \cdot \prod_{i \neq j} (\sigma_j(a) - \sigma_i(a)).$$

Es ist

$$\sigma_j(b) - \sigma_i(b) = (\sigma_j(a) + n) - (\sigma_i(a) + n) = \sigma_j(a) - \sigma_i(a).$$

2.7 Quadratische Zahlkörper, Kreisteilungskörper

Ein algebraischer Zahlkörper F heißt quadratischer Zahlkörper, wenn $[F:\mathbb{Q}]=2.$

2.7.1 Satz. Sei F ein quadratischer Zahlkörper. Dann ist $F = \mathbb{Q}(\sqrt{d})$ für eine gewisse quadratfreie ganze Zahl d. F/\mathbb{Q} ist Galois mit Gruppe

$$G = \left\{ \operatorname{id}_F, \sqrt{d} \mapsto -\sqrt{d} \right\}.$$

Es gilt

$$O_F = \begin{cases} \mathbb{Z} + \mathbb{Z}\sqrt{d} &, d \equiv 2, 3 \mod 4 \\ \mathbb{Z} + \mathbb{Z}\frac{-1+\sqrt{d}}{2}, d \equiv 1 \mod 4 \end{cases}$$

Beweis.

·) Sei $\alpha \in F \setminus \mathbb{Q}$. Dann gilt $F = \mathbb{Q}(\alpha)$ und α muß einer Gleichung der Gestalt

$$aX^2 + bX + c = 0$$

mit gewissen $a, b, c \in \mathbb{Z}$ genügen. Es folgt

$$\alpha = \frac{1}{2a} \Big(-b \pm \sqrt{b^2 - 4ac} \, \Big).$$

Schreibe $b^2 - 4ac$ in der Form A^2d mit $A, d \in \mathbb{Z}, d$ quadratfrei. Dann gilt offenbar

$$\alpha = \frac{1}{2a} \Big(-b \pm A\sqrt{d} \Big),$$

also ist $F = \mathbb{Q}(\sqrt{d})$.

·) Die Abbildung

$$\sigma: \left\{ \begin{array}{l} F \longrightarrow F \\ a + b\sqrt{d} \mapsto a - b\sqrt{d}. \end{array} \right.$$

ist offenbar ein Automorphismus von F/\mathbb{Q} , denn \sqrt{d} , $-\sqrt{d}$ sind Nullstellen des irreduziblen Polynoms X^2-d . Der Fixpunktkörper von

$$G = \{ \mathrm{id}_F, \sigma \}$$

ist gleich $\mathbb Q$, also ist $F/\mathbb Q$ Galois mit Gruppe G. F ist der Zerfällungskörper des separablen Polynoms $X^2-d.$

·) Ist $\gamma \in O_F$, so ist $\operatorname{tr}_{\mathbb{Q}}^F \gamma$, $N_{\mathbb{Q}}^F (\gamma) \in \mathbb{Z}$. Da das Minimalpolynom von γ die Gestalt

$$X^2 - \operatorname{tr}_{\mathbb{Q}}^F(\gamma)X + N_{\mathbb{Q}}^F(\gamma)$$

hat gilt auch die Umkehrung. Man berechnet für $\gamma=r+s\sqrt{d},\,r,s\in\mathbb{Q},$

$$\operatorname{tr}_{\mathbb{O}}^{F}(\gamma) = 2r, \ N_{\mathbb{O}}^{F}(\gamma) = r^{2} - s^{2}d.$$

Es folgt

$$\gamma \in O_F \Leftrightarrow 2r \in \mathbb{Z} \wedge r^2 - s^2 d \in \mathbb{Z}.$$

Sei nun $\gamma \in O_F$. Dann folgt $4s^2d \in \mathbb{Z}$ und da d quadratfrei ist $2s \in \mathbb{Z}$. Bezeichne m := 2r, n = 2s. Dann gilt $m^2 - n^2d = 4(r^2 - s^2d) \equiv 0 \mod 4$.

Sei $d \equiv 2, 3 \mod 4$. Dann gilt

$$0 \equiv m^2 - dn^2 \equiv \begin{cases} m^2 + 2n^2 & , \ d \equiv 2 \\ m^2 + n^2 & , \ d \equiv 3 \end{cases}$$
 (mod 4)

Da

$$x^2 \equiv \begin{cases} 0 & , x \text{ gerade} \\ 1 & , x \text{ ungerade} \end{cases} \pmod{4}$$

ist dies nur möglich für m, n gerade. Es folgt $r,s\in\mathbb{Z}$. Umgekehrt ist trivialerweise $\mathbb{Z}+\mathbb{Z}\sqrt{d}\subseteq O_K$, denn $\sqrt{d}\in O_K$. Sei $d\equiv 1\mod 4$. Dann ist $m^2-dn^2\equiv m^2-n^2\mod 4$, also sind m und n

Sei $d \equiv 1 \mod 4$. Dann ist $m^2 - dn^2 \equiv m^2 - n^2 \mod 4$, also sind m und n entweder beide gerade oder beide ungerade. Es ist

$$\gamma = \frac{m}{2} + \frac{n}{2}\sqrt{d} = \frac{m+n}{2} + \frac{-1+\sqrt{d}}{2}n \in \mathbb{Z} + \mathbb{Z}\frac{-1+\sqrt{d}}{2}.$$

Umgekehrt ist $\mathrm{tr}_{\mathbb{Q}}^F(\frac{-1+\sqrt{d}}{2})=-1,\,N_{\mathbb{Q}}^F(\frac{-1+\sqrt{d}}{2}\;)=\frac{1-d}{4}\in\mathbb{Z}.$

LEI.68

2.7.2 Lemma. Es gilt

$$\delta_F = \begin{cases} 4d & , \ d \equiv 2, 3 \mod 4 \\ d & , \ d \equiv 1 \mod 4 \end{cases}$$

Beweis.

·) Sei $d \equiv 2,3 \mod 4$, $alpha_1 = 1$, $\alpha_2 = \sqrt{d}$. Dann ist

$$\delta_F = \det(\operatorname{tr}(\alpha_i \alpha_j)) = \det \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d.$$

·) Sei $d \equiv 1 \mod 4$, $\alpha_1 = 1$, $\alpha_2 = \frac{-1 + \sqrt{d}}{2}$. Dann ist

$$(\operatorname{tr}(\alpha_i \alpha_j)) = \begin{pmatrix} 2 & -1 \\ -1 & \frac{1+d}{2} \end{pmatrix},$$

also $\delta_F = d$.

Den durch $\sqrt{d} \mapsto -\sqrt{d}$ gegebenen Anhomorphismus von F/\mathbb{Q} bezeichne mit $x \mapsto x'$. Ist p eine Primzahl, und ist $\mathfrak{p} \in \operatorname{Spec} O_F$, $\mathfrak{p}/(p)$, so sind alle über (p) liegenden Primideale gegeben durch $\{\mathfrak{p},\mathfrak{p}'\}$ (es kann $\mathfrak{p} = \mathfrak{p}'$ sein).

2.7.3 Satz. Sei p Primzahl. Dann gilt: Fall p ungerade:

- (i) $p \nmid \delta_F$, d quadratischer Rest mod $p \Rightarrow (p) = \mathfrak{p}\mathfrak{p}'$, $\mathfrak{p} \neq \mathfrak{p}'$.
- (ii) $p \nmid \delta_F$, d quadratischer Nichtrest mod $p \Rightarrow (p) = \mathfrak{p}$.
- (iii) $p|\delta_F \Rightarrow (p) = \mathfrak{p}^2$.

Fall p = 2:

- (i) $2 \nmid \delta_F$, $d \equiv 1 \mod 8 \Rightarrow (2) = \mathfrak{p}\mathfrak{p}'$, $\mathfrak{p} \neq \mathfrak{p}'$
- (ii) $2 \nmid \delta_F$, $d \equiv 5 \mod 8 \Rightarrow (2) = \mathfrak{p}$
- (iii) $2|\delta_F \Rightarrow (2) = \mathfrak{p}^2$

Bemerke: Ist $d \equiv 2, 3 \mod 8$, so ist $\delta_F = 4d$ also $2|\delta_F$. Ist $d \equiv 0, 4 \mod 8$ so ist d nicht quadratfrei.

Beweis. Sei $r=\#\{\mathfrak{p}\in\operatorname{Spec} O_F:\mathfrak{p}/(p)\}$, e der (gemeinsame) Verzweigungsindex und f der (gemeinsame) Restklassengrad. Wegen $efr=[F:\mathbb{Q}]=2$ können nur drei Fälle eintreten:

Sei $p \neq 2$.

(i): Sei $a^2 \equiv d \mod p$. Wir zeigen

$$(p) = (p)\left(p, a + \sqrt{d}, a - \sqrt{d}, \frac{a^2 - d}{p}\right) = (p, a + \sqrt{d})(p, a - \sqrt{d}).$$

Zum ersten " =": Der zweite Faktor rechts enthält p und 2a. Da p, 2a relative prim sind ist er gleich O_F . Zum zweiten " =". Es gilt:

$$p \cdot p = p \cdot p, p \cdot (a + \sqrt{d}) = (a + \sqrt{d}) \cdot p, p(a - \sqrt{d}) = p \cdot (a - \sqrt{d}),$$
$$p \cdot \frac{a^2 - d}{p} = (a + \sqrt{d})(a - \sqrt{d}).$$

Es kann nicht gelten $(p, a + \sqrt{d}), (p, a - \sqrt{d}) \subseteq \mathfrak{p}$, denn dann würde \mathfrak{p} sowohl p als auch 2a enthalten. Also gibt es mehr als ein Primideal über (p).

(ii): Sei $\mathfrak{p}/(p)$. Wir zeigen $f(\mathfrak{p}/(p)) = 2$. Wäre $f(\mathfrak{p}/(p)) = 1$, so ist also $O_F/\mathfrak{p} = \mathbb{Z}/p\mathbb{Z}$. Sei $a \in \mathbb{Z}$, sodaß $a \equiv \sqrt{d} \mod \mathfrak{p}$, dann gilt $a^2 \equiv d \mod \mathfrak{p}$ und wegen $\mathfrak{p}/(p)$ auch $a^2 \equiv d \mod p$. WS!.

(iii): Wir zeigen

$$(p) = (p)(p, \sqrt{d}, \frac{d}{p}) = (p, \sqrt{d})^2.$$

Zum ersten "=": Der zweite Faktor ist gleich O_F denn er enthält p und $\frac{d}{p}$ und die beiden sind relativ prim denn d ist quadratfrei. Zum zweiten "=": Es gilt

$$p \cdot p = p \cdot p, \ p\sqrt{d} = p\sqrt{d}, \ p \cdot \frac{d}{p} = \sqrt{d} \cdot \sqrt{d}.$$

Es folgt dass jedes $\mathfrak P$ in der Darstellung von (p) mindestens quadratisch auftreten muß .

Sei p=2:

(i): Sei $d \equiv 1 \mod 8$ (dann ist $\delta_F = d$ also $2 \nmid \delta_F$). Es gilt

$$(2) = (2) \left(2, \frac{1+\sqrt{d}}{2}, \frac{1-\sqrt{d}}{2}, \frac{1-d}{8} \right) = \left(2, \frac{1+\sqrt{d}}{2} \right) \left(2, \frac{1-\sqrt{d}}{2} \right).$$

Zum ersten " = ". Der zweite Faktor ist gleich O_F . Zum zweiten " = ":

$$2 \cdot 2 = 2 \cdot 2, 2 \frac{1 + \sqrt{d}}{2} = \frac{1 + \sqrt{d}}{2} \cdot 2, 2 \cdot \frac{1 - \sqrt{d}}{2} = 2 \cdot \frac{1 - \sqrt{d}}{2},$$
$$2 \frac{1 - d}{8} = \frac{1 + \sqrt{d}}{2} \cdot \frac{1 - \sqrt{d}}{2}.$$

Weiters kann nicht $(2, \frac{1+\sqrt{d}}{2}), (2, \frac{1-\sqrt{d}}{2}) \subseteq \mathfrak{p}$, denn sonst $1 \in \mathfrak{P}$.

(ii): Sei $d \equiv 5 \mod 8$ (wieder ist $\delta_F = d$ also $2 \nmid \delta_F$). Sei $\mathfrak{p}|(2)$, und angenommen $f(\mathfrak{p}/(2)) = 1$. Dann existiert $a \in \mathbb{Z}$ mit $a \equiv \frac{1+\sqrt{d}}{2} \mod \mathfrak{p}$. Da $\frac{1+\sqrt{d}}{2}$ der Gleichung $X^2 - X + \frac{1-d}{4} = 0$ genügt folgt $a^2 - a + \frac{1-d}{4} \equiv 0 \mod \mathfrak{p}$ also auch

$$a^2 - a + \frac{1-d}{4} \equiv 0 \mod (2).$$

Da stets $a^2 - a \equiv 0 \mod 2$ folgt $2 | \frac{1-d}{4}$ d.h. $d \equiv 1 \mod 8$ WS!.

(iii): Sei $2|\delta_F$. Dann muß $d\equiv 2,3\mod 4$ sein. Für $d\equiv 2\mod 4$ gilt

$$(2) = \left(2, \sqrt{d}\right)^2,$$

für $d \equiv 3 \mod 4$ gilt

$$(2) = \left(2, 1 + \sqrt{d}\right)^2.$$

2.7.4 Satz. Sei d < 0. Dann gilt

(i)
$$d = -1 \Rightarrow O_F^* = \{1, i, -1, -i\}$$

(ii)
$$d = -3 \Rightarrow O_F^* = \{\pm 1, \pm w, \pm w^2\}$$
 mit $w = \frac{-1 + \sqrt{-3}}{2}$

(iii)
$$d < -3, d = -2 \Rightarrow O_F^* = \{\pm 1\}$$

Sei d > 0. Dann gibt es eine Einheit $u > 0, u \in O_F \subseteq \mathbb{R}$, soda β

$$O_F^* = \{ \pm u^m : m \in \mathbb{Z} \}.$$

Beweis. Sei d < 0.

·) $d \equiv 2,3 \mod 4$. Ist $u \in O_F^*$, schreibe $u = x + y\sqrt{d}, x, y \in \mathbb{Z}$. Dann ist

$$\pm 1 = N(u) = x^2 + |d|y^2.$$

Ist d = -1, folgt (i). Ist |d| > 1 folgt $u = \pm 1$.

·) $d \equiv 1 \mod 4$. Schreibe $u \in O_F^*$ als $u = \frac{x+\sqrt{d}}{2} \min x, y \in \mathbb{Z}, x \equiv y \mod 2$. Dann ist

$$\pm 1 = N(u) = \frac{x^2 + |d|y^2}{4},$$

also $x^2 + |d|y^2 = 4$. Im Fall d = -3 erhält man aus $x^2 + 3y^2 = 4$ die Möglichkeiten (ii). Ist |d| > 3, folgt $u = \pm 1$.

Sei d > 0:

·) Wähle $x,y\in\mathbb{N}$ eine Lösung der Pellschen Gleichung $x^2-dy^2=1$. Dann ist $u=x+\sqrt{d}\ y\in O_F^*$ denn

$$1 = N(u) = u \cdot u',$$

und u > 1. Wähle $\mathfrak{M} > u$.

·) Es gibt nur endlich viele $\alpha \in O_F$ mit $\max\{|\alpha|, |\alpha'|\} \leq M$: In jedem Fall läßt sich $\alpha \in O_F$ schreiben als $\alpha = \frac{x+y\sqrt{d}}{2}$ mit gewissen $x,y \in \mathbb{Z}$. Wegen $\alpha' = \frac{x-y\sqrt{d}}{2}$ folgt

$$\max\{|\alpha|, |\alpha'|\} = \frac{|x| + |y|\sqrt{d}}{2}.$$

- ·) Ist $v \in O_F^*, 1 < v < M$, so ist $v' = \pm \frac{1}{v}$, also -1 < v' < 1. Es kann daher nur endlich viele solche v geben.
- ·) Sei ϵ die kleinste Einheit $1 < \epsilon < M$. Ist $\tau \in O_F^*, \tau > 0$, sei $s \in \mathbb{Z}$ sodaß $\epsilon^s \le \tau \le \epsilon^{s+1}$. Dann ist also $1 \le \tau \epsilon^{-s} < \epsilon$ und da $\tau \epsilon^{-s} \in O_F^*$ folgt $\tau \epsilon^{-s} = 1$. Ist $\tau < 0, \tau \in O_F^*$, so folgt $-\tau = \epsilon^s$, also $\tau = -\epsilon^s$.

DEI.71

2.7.5 Definition. Sei $m \in \mathbb{N}, \zeta_m := e^{\frac{2\pi i}{m}}$. Der algebraische Zahlkörper F = $\mathbb{Q}(\zeta_m)$ heißt Kreisteilungskörper der Ordnung m.

Es ist ζ_m Nullstelle von $X^m - 1 = 0$ und es gilt

$$X^m - 1 = (X - 1)(X - \zeta_m) \cdot \ldots \cdot (X - \zeta_m^{m-1}),$$

also ist F der Zerfällungskörper des (separablen) Polynoms X^m-1 und daher ist F/\mathbb{Q} Galois.

2.7.6 Lemma. Sei $G = \operatorname{Gal}(F/\mathbb{Q})$ für $F = \mathfrak{Q}(\zeta_m)$. Dann ist $G \cong (\mathbb{Z}/m\mathbb{Z})^*$ via $\vartheta: G \to (\mathbb{Z}/m\mathbb{Z})^*$ wobei für $\sigma \in G$ gilt $\sigma \zeta_m = \zeta_m^{\vartheta(\sigma)}$. Also ist $[F:\mathbb{Q}] = \varphi(m)$, wobei φ die Eulersche φ -Funktion bezeichnet.

Beweis. Ist $\sigma \in G$ so folgt aus $\zeta_m^m = 1$ auch $(\sigma(\zeta_m))^m = 1$, also

$$\sigma\zeta_m = \zeta_m^{\vartheta(\sigma)}$$

für ein geeignetes $\vartheta(\sigma) \in \mathbb{Z}/m\mathbb{Z}$. Da σ^{-1} existiert und id : $\zeta_m = \zeta_m^1$ folgt $\vartheta(\sigma) \in (\mathbb{Z}/m\mathbb{Z})^*$. Wegen $F = \mathbb{Q}(\zeta_m)$ ist ϑ injektiv.

Sei f das Minimalpolynom von ζ_m , dann gilt $f \in \mathbb{Z}[X]$ und $X^m-1=f(X)\cdot h(X)$ für ein gewisses $h\in\mathbb{Z}[X].$ Sei p prim, $p\nmid m$. Angenommen $f(\zeta_m^p) \neq 0$. Dann folgt $h(\zeta_m^p) = 0$. Betrachte modulo p: Dann ist $h(X^p) \equiv h(X)^p$, also $h(\zeta_m) \equiv 0$ und damit haben f und h modulo p einen gemeinsamen Faktor. Aslo hat X^m-1 modulo p mehrfache Nullstellen, ein WS!, denn $(X^m - 1)' = mX^{m-1}$ hat nur die Nullstelle 0. Es folgt daß für jedes a mit (a, m) = 1 gilt $f(\zeta_m^p) = 0$. Damit ist ϑ surjektiv.

Sei $\phi_m(X):=\prod_{(a,m)=1}(X-\zeta_m^a).$ ϕ_m heißt m-tes Kreisteilungspolynom. Offenbar gilt $\prod_{d|m}\phi_d(X)=X^m-1.$

2.7.7 Lemma. Es gilt $\phi_m(X) \in \mathbb{Z}[X]$. ϕ_m ist irreduzibel.

Beweis. Es gilt $\phi_m(X) = \prod_{\sigma \in G} (X - \sigma \zeta_m)$, also ist ϕ_m das Minimalpolynom von ζ_m über \mathbb{Q} . Wegen ζ_m ganz und \mathbb{Z} ganz abgeschlossen gilt $\phi_m \in \mathbb{Z}[X]$.

2.7.8 Lemma. Sei p Primzahl, $p \nmid m, \mathfrak{P} \in \operatorname{Spec} O_F, \mathfrak{P}/(p), \zeta := \zeta_m$. Dann sind $1, \zeta, \ldots, \zeta^{m-1}$ verschiedene Elemente in O_F/\mathfrak{P} . Es gilt:

$$p^{f(\mathfrak{P}/(p))} \equiv 1 \mod m$$
.

Beweis. Es gilt $1+X+\ldots+X^{m-1}=\prod_{i=1}^{m-1}(X-\zeta^i)$, also folgt (X=1)

$$m = \prod_{i=1}^{m-1} (1 - \zeta^i).$$

Da $p \nmid m$ ist $m \not\equiv 0 \mod \mathfrak{P}$. Also folgt $\zeta^i \not\equiv 1 \mod \mathfrak{P}$ für alle $i = 1, \ldots, m-1$. Damit ist $\zeta^i \not\equiv \zeta^j \mod \mathfrak{P}$ für alle $0 \leq i, j \leq m-1, i \neq j$.

Die Elemente $\{1, \zeta, \dots, \zeta^{m-1}\}$ sind also eine Untergruppe von $(O_F/\mathfrak{P})^*$ mit Ordnung m. Es folgt $m|(p^{f(\mathfrak{P}/(p))}-1)$.

LEI.72

LEI.73

LEI.74

LEI.77

2.7.9 Lemma. Es gilt $\Delta(1, \zeta, \ldots, \zeta^{\varphi(m)-1})|m^{\varphi(m)}$.

Beweis. Es gilt $X^m-1=\phi_m(X)g(X)$ für ein gewisses $g\in\mathbb{Z}[X]$. Es folgt $mX^{m-1}=\phi_m'(X)g(X)+\phi_m(X)g'(X)$ und damit

$$m\zeta^{m-1} = \phi'_m(\zeta)g(\zeta).$$

Wegen $N(\zeta) = \pm 1$ folgt

$$\pm m^{\varphi(m)} = N\Big(\phi_m'(\zeta)\Big)N\Big(g(\zeta)\Big) = \pm \Delta\Big(1,\zeta,\ldots,\zeta^{\varphi(m)-1}\Big)N\Big(g(\zeta)\Big).$$

LEI.78

2.7.10 Lemma. Sei p Primzahl, $p \nmid m$. Dann gilt

- (i) $O_F \equiv \mathbb{Z}[\zeta] \mod (p)_{O_F}$.
- (ii) Ist $n \in \mathbb{N}$ mit $p^n \equiv 1 \mod m$, so gilt $w^{p^n} \equiv w \mod (p)_{O_F}$, $w \in O_F$.
- (iii) $\sigma_p w \equiv w^p \mod (p)_{O_F}, w \in O_F (\sigma_p(\zeta) = \zeta^p).$

Beweis.

·) Sei $\Delta = \Delta(1, \zeta, \dots, \zeta^{\varphi(m)-1})$, dann ist $p \nmid \Delta$. Sei $\Delta' \in \mathbb{Z}$ sodaß $\Delta' \Delta \equiv 1 \mod p$, dann folgt für $w \in O_F$

$$w \equiv \Delta' \Delta w \mod(p)_{O_F}$$

und es ist $\Delta w \in \mathbb{Z}[\zeta]$ nach Lemma 2.6.8.

·) Sei $w \in O_F$ und schreibe $w \equiv \sum a_i \zeta^i \mod(p)$ mit gewissen $a_i \in \mathbb{Z}$. Wegen $a_i^p \equiv a_i \mod p$ folgt

$$w^p \equiv \sum a_i \zeta^{ip} \mod(p)_{O_F}$$

und daher auch $w^{p^n} \equiv \sum a_i \zeta^{ip^n} = \sum a_i \zeta^i \equiv w \mod(p)_{O_F}$.

·) Wegen $\sigma((p)_{O_F}) = (p)_{O_F}$ für $\sigma \in G$ gilt $(\sigma_p(\zeta) = \zeta^p$

$$\sigma(w) \equiv \sum a_i \zeta^{ip} \equiv w^p \mod(p)_{O_F}.$$

2.7.11 Satz. Sei p Primzahl, $\mathfrak{P} \in \operatorname{Spec} O_F$, $\mathfrak{P}/(p)$. Dann gilt: Ist p ungerade so ist \mathfrak{P} verzweigt $(e(\mathfrak{P}/(p)) > 1) \iff p|m$. Ist p = 2 so ist \mathfrak{P} verzweigt $\iff 4|m$. Genauer gilt

(i) Sei $p \nmid m$ und sei $f \in \mathbb{N}$ die kleinste Zahl mit $p^f \equiv 1 \mod m$. Dann ist

$$pO_F = \mathfrak{P}_1 \cdot \ldots \cdot \mathfrak{P}_r$$

mit paarweise verschiedenen \mathfrak{P}_i . Es ist $f(\mathfrak{P}/(p)) = f$ und $r = \frac{\varphi(m)}{f}$.

(ii) Angenommen m ist prim. Sei p=m, dann ist (p) vollständig verzweigt, es gilt für $\mathfrak{P}:=(1-\zeta_p)_{O_F}\in\operatorname{Spec} O_F$ daß $f(\mathfrak{P}/(p))=1$ und

$$(p)_{O_F} = \mathfrak{P}^{p-1}$$

Beweis.

·) Sei $p \nmid m$, dann ist $\mathfrak P$ unverzweigt: Angenommen $pO_F \subseteq \mathfrak P^2$. Wähle $w \in \mathfrak P \setminus \mathfrak P^2$. Es gilt (für ein n mit $p^n \equiv 1 \mod m$)

$$w^{p^n} \equiv w \mod pO_F$$
 und daher $\mod \mathfrak{P}^2$.

Wegen $p^n \geq 2$ ist $w^{p^n} \in \mathfrak{P}^2$ und damit auch $w \in \mathfrak{P}^2$. WS!

(i): Klarerweise ist f die Ordnung von σ_p in G. Sei nun $f_1 = f(\mathfrak{P}/(p))$, dann gilt $|O_F/\mathfrak{P}| = p^{f_1}$ und daher ist für $w \in O_F$ stets

$$w^{p^{f_1}} \equiv w \mod \mathfrak{P}$$
,

und es ist f_1 die kleinste Zahl mit dieser Eigenschaft, denn $(O_F/\mathfrak{P})^*$ ist als EInheitengruppe eines endlichen Körpers zyklisch. Es folgt $f_1|f$. Wegen Lemma 2.7.8 gilt $p^{f_1} \equiv 1 \mod m$ und daher $f|f_1$.

Also ist stets $f = f(\mathfrak{P}/(p))$. Nach obigem ist $e(\mathfrak{P}/(p)) = 1$ und es folgt

$$r = \frac{[F : \mathbb{Q}]}{ef} = \frac{\varphi(m)}{f}.$$

(ii): Es gilt $p = \prod_{i=1}^{p-1} (1-\zeta^i)$. Setze $v_i = \frac{1-\zeta^i}{1-\zeta} = 1+\zeta+\ldots+\zeta^{i-1}$. Dann ist $v_i \in O_F^*$: Wegen $p \nmid i$ wähle $j \in \mathbb{Z}$ sodaß $ij \equiv 1 \mod p$, dann ist

$$v_i^{-1} = \frac{1-\zeta}{1-\zeta^i} = \frac{1-(\zeta^i)^j}{1-\zeta^i} = 1+\zeta^i+\ldots+(\zeta^i)^{j-1} \in O_F.$$

Es folgt daß $p = (1 - \zeta)^{p-1} \cdot \prod_{i=1}^{p-1} v_i$, und damit

$$(p)_{O_F} = (1 - \zeta)_{O_F}^{p-1} = \mathfrak{P}^{p-1}.$$

Wegen $efr=\varphi(p)=p-1$ muß $\mathfrak P$ schon prim sein und $e(\mathfrak P/(p))=p-1,$ $f(\mathfrak P/(p))=1$ gelten.

·) Sei p ungerade, p|m. Dann ist $\mathbb{Q}(\zeta_p)\subseteq\mathbb{Q}(\zeta_m)$. Seien O_p und O_m die entsprechenden Ringe ganzer Zahlen. Es gilt

$$pO_p = (1 - \zeta_p)_{O_p}^{p-1}.$$

Schreibe $(1-\zeta_p)_{O_m}=\mathfrak{P}_1^{\alpha_1}\cdot\ldots\cdot\mathfrak{P}_r^{\alpha_r}$ mit $\mathfrak{P}_i\in\operatorname{Spec} O_m,\alpha_i\geq 1$. Dann ist also

$$pO_m = (\mathfrak{P}_1^{\alpha_1} \cdot \ldots \cdot \mathfrak{P}_r^{\alpha_r})^{p-1}$$

und also $e(\mathfrak{P}_i/(p)) = \alpha_i(p-1) \ge p-1 > 1$. Da jedes Primideal das über p liegt auftreten muß ist also jedes verzweigt.

·) Sei $p=2,\,2|m,\,4\nmid m.$ Schreibe $m=2m_0$ mit m_0 ungerade. Dann ist $-\zeta_{m_0}$ eine primitive m_0 -te Einheitswurzel, also

$$\mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_{m_0}).$$

Da $2 \nmid m_0$ ist $\mathfrak{P}/(2)$ in O_{m_0} unverzweigt.

·) Sei $p=2,\ 4|m.$ Dann ist $i\in\mathfrak{Q}(\zeta_m)$ und klarerweise ist $i\in O_F^*.$ Wegen $(1-i)^2=(-i)2$ folgt

$$(2)_{O_F} = (1-i)_{O_F}^2$$

und es folgt wie oben das alle $\mathfrak{P}/(2)$ verzweigt sind.

CO1.80

2.7.12 Korollar. Sei $\mathfrak{P}/(p)$, $p \nmid m$. Dann ist $G_{\mathfrak{P}} = \langle \sigma_p \rangle$.

Beweis. Sei $w \in \mathfrak{P}$. Dann gilt $\sigma_p(w) \equiv w^p \equiv 0 \mod \mathfrak{P}$, also $\sigma_p \mathfrak{P} \subseteq \mathfrak{P}$. Da $\sigma_p \mathfrak{P}$ maximal ist folgt $\sigma_p \mathfrak{P} = \mathfrak{P}$. Es gilt $r \cdot |G_{\mathfrak{P}}| = \varphi(m)$, also muß $|G_{\mathfrak{P}}| = f$ sein. Nun ist f die Ordnung von σ_p also $f = |\langle \sigma_p \rangle|$.

2.7.13 Satz. Sei m prim. Dann gilt $O_F = \mathbb{Z}[\zeta]$.

Beweis.

- ·) Die Inklusion $O_F \supseteq \mathbb{Z}[\zeta]$ ist klar. Sei $\alpha \in O_F$, $\alpha = a_0 + a_1\zeta + \ldots + a_{m-2}\zeta^{m-2}$ mit gewissen $a_i \in \mathbb{Q}$ (beachte $[F : \mathbb{Q}] = \varphi(m) = m 1$).
- ·) Es gilt $ma_i \in \mathbb{Z}$: Da m prim ist, ist $\deg \phi_m = [F:\mathbb{Q}] = \varphi(m) = m-1$, also $\phi_m(X) = 1+X+\ldots+X^{m-1}$. Es folgt

$$\operatorname{tr} \zeta^j = -1, \ m \nmid j.$$

Also ist (s = 0, ..., m - 2)

$$\operatorname{tr}(\alpha \zeta^{-s}) = \operatorname{tr}(a_0 \zeta^{-s} + \dots + a_s + \dots + a_{m-2} \zeta^{m-2-s}) =$$

$$= -a_0 - \dots - a_{s-1} + (m-1)a_s - a_{s+1} - \dots - a_{m-2},$$

und daher

$$\operatorname{tr}(\alpha \zeta^{-s} - \alpha \zeta) = ma_s.$$

Wegen $\alpha \zeta^{-s} - \alpha \zeta \in O_F$ folgt $ma_s \in \mathbb{Z}$.

·) Sei $\lambda := 1 - \zeta$, dann gilt $(m)_{O_F} = (\lambda)_{O_F}^{m-1}$. Schreibe

$$m\alpha = b_0 + b_1\lambda + \ldots + b_{m-2}\lambda^{m-2}, b_i \in \mathbb{Z}.$$

Wegen $m\alpha \in (m)_{O_F} \subseteq (\lambda)_{O_F}$ folgt $\lambda|b_0$ in O_F . Wegen $m=\lambda^{m-1}u$ für ein $u\in O_F^*$ gilt

$$m^{m-1} = N(m) = \pm N(\lambda^{m-1}) = \pm N(\lambda)^{m-1}$$

und es folgt wegen $N(\lambda)|N(b_0)$ in \mathbb{Z} auch $m^{m-1}|(b_0^{m-1})^{m-1}$ in \mathbb{Z} . Da m prim folgt $m|b_0$. Also folgt $\lambda^{m-1}|b_0$ in O_F und wir erhalten wegen $m\alpha \in (m)_{O_F} \subseteq (\lambda^2)_{O_F}$ auch

$$\lambda^2 | b_1 \lambda \text{ in } O_F$$

also $\lambda|b_1$ in O_F . Nimmt man die Norm so folgt wieder $m|b_1$. Fährt man so fort erhält man $m|b_i$, $i=0,\ldots,m-2$, also

$$\alpha = \frac{b_0}{m} + \frac{b_1}{m}\lambda + \ldots + \frac{b_{m-2}}{m}\lambda^{m-2} \in \mathbb{Z}[\lambda] = \mathbb{Z}[\zeta].$$

Wir betrachten als weiteres Beispiel den algebraischen Zahlkörper $K=\mathbb{Q}(\sqrt[3]{2}).$ Dieser ist nicht Galois, die Homomorphismen von K/\mathbb{Q} sind gegeben durch

wobei $\zeta_3 = e^{\frac{2\pi i}{3}}$.

Wir wollen zunächst (für allg. $\mathbb{Q}(\sqrt[3]{m})$ siehe [N,narkiewicz]) O_K bestimmen. Dazu brauchen wir ein Lemma.

2.7.14 Lemma. Sei $K = \mathbb{Q}(a)$, $a \in O_K$ ein algebraischer Zahlkörper, f(X) das Minimalpolynom von a. Sei angenommen daß f Eisenstein ist bezüglich einer Primzahl p, d.h. mit $f(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_0$ gilt

$$p|a_i, i = 0, \dots, n-1, p^2 \nmid a_0.$$

Dann ist der Index $[O_K : (\mathbb{Z} + \mathbb{Z}a + \ldots + \mathbb{Z}a^{n-1})]$ nicht durch p teilbar.

Beweis. Wegen $a^n=-(a_{n-1}a^{n-1}+\ldots+a_0)$ und $p|a_i$ ist $\frac{a^n}{p}\in O_K$. Weiters ist $N_{\mathbb{O}}^K(a)=a_0$ nicht durch p^2 teilbar.

Setze $M=\mathbb{Z}+\mathbb{Z}a+\ldots+\mathbb{Z}a^{n-1},\, m=[O_K:M]$. Angenommen p|m. Dann existiert ein Element $\xi\in O_K$ sodaß

$$\xi \notin M, p\xi \in M.$$

Denn $O_{K/M}$ ist eine abelsche Gruppe der Ordnung m, und wegen p|m existiert ein Element mit Ordnung p. Dann ist also $\xi = (b_0 + b_1 a + \ldots + b_{n-1} a^{n-1}) \frac{1}{p}$ mit gewissen $b_i \in \mathbb{Z}$ sodaß nicht alle b_i durch p teilbar sind. Sei j minimal sodaß $p \nmid b_j$, und betrachte

$$\eta := (b_j a^j + \dots + b_{n-1} a^{n-1}) \frac{1}{p} =$$

$$= \xi - (\frac{b_0}{p} + \frac{b_1}{p} a + \dots + \frac{b_{j-1}}{p} a^{j-1}) \in O_K.$$

Es folgt

$$\zeta := b_j a^{n-1} \frac{1}{p} = \eta a^{n-j-1} - \frac{a^n}{p} \Big(b_{j+1} + b_{j+2} a + \ldots + b_{n-1} a^{n-j-2} \Big) \in O_K.$$

Es folgt

$$N(\zeta) = b_j^n N(a)^{n-1} \frac{1}{p^n} \in \mathbb{Z}.$$

Da $p^2 \nmid N(a)$ folgt $p|b_j^n$ und damit $p|b_j$ WS!.

2.7.15 Satz. Sei $K = \mathfrak{Q}(\sqrt[3]{2})$. Dann gilt

$$O_K = \mathbb{Z}[\sqrt[3]{2}]$$

LEI.85

П

Beweis. Setze $\alpha = \sqrt[3]{2}$. Das Minimalpolynom ist $f(X) = X^3 - 2$. Wegen Satz 2.6.5 gilt

$$\Delta(1, \alpha, \alpha^2) = (-1)^3 N(3\sqrt[3]{4}) = 3^3 \cdot 2^2.$$

Sei $m = \left[O_K : \mathbb{Z}[\alpha]\right]$. Dann gilt wegen Satz 2.6.10

$$\pm 3^3 \ 2^2 = m^2 \delta_K \tag{2.1,*}$$

fist Eisenstein bzgl. 2, also gilt 2 | m. Betrachte das Element $\beta=\alpha-2.$ Sein Minimalpolynom ist

$$g(X) = f(X + 2) = (X + 2)^3 - 2 =$$
$$= X^3 + 3 \cdot 2X^2 + 3 \cdot 4X + 6.$$

Es gilt $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$, also auch $m = [O_K : \mathbb{Z}[\alpha]] = [O_K : \mathbb{Z}[\beta]]$ und $\Delta(1, \alpha, \alpha^2) = \Delta(1, \beta, \beta^2)$. Da g Eisenstein bzgl. 3 ist folgt $3 \nmid m$.

Wegen (2.1, *) folgt m = 1.

Wir betrachten das Primideal (5). Es gilt

$$X^3 - 2 \equiv (X - 3)(X^2 + 3X - 1) \mod 5$$

und $X^2 + 3X - 1$ ist irreduzibel mod 5 denn es hat keine Nullstelle (ausprobieren).

Wegen Satz 2.5.2 erhält man

$$5O_K = \mathfrak{P}_1\mathfrak{P}_2$$

wobei $f(\mathfrak{P}_1/(5)) = 1$, $f(\mathfrak{P}_2/(5)) = 2$.

Kapitel 3

Die Riemannsche Zetafunktion: Definition

3.1 Die Riemannsche Zetafunktion

Zuerst einige Resultate über Dirichlet-Reihen.

Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen komplexer Zahlen. Sezte $A_n:=a_1+\ldots+a_n,\ B_n:=b_1+\ldots+b_n.$ Dann gilt

$$\sum_{n=1}^{N} a_n b_n = A_N b_N + \sum_{n=1}^{N-1} A_n \Big(b_n - b_{n+1} \Big)$$

Eine Dirichlet-Reihe ist eine Reihe der Gestalt

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}, \ s \in \mathbb{C},$$

wobei $(a_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen ist. Schreibe im folgenden $s=\sigma+it$ mit $\sigma_1 t\in\mathbb{R}$.

LEII.1

3.1.1 Lemma. Ist die Dirichlet-Reihe $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ konvergent für ein $s=s_0$, so auch für alle s mit $\operatorname{Re} s>\operatorname{Re} s_0$, und zwar gleichmäßig auf allen kompakten Teilmengen dieser offenen Halbebene.

Beweis. Schreibe $n^s=n^{s_0}n^{(s-s_0)}$ und wende partielle Summation an auf die Reihe

$$\sum \frac{a_n}{n^s} = \sum \frac{a_n}{n^{s_0}} \cdot \frac{1}{n^{(s-s_0)}}.$$

Ist $P_n(s_0) = \sum_{m=1}^n \frac{a_m}{m^s}$, so erhält man

$$\sum_{k=m+1}^{n} \frac{a_k}{n^{s_0}} = \frac{P_n(s_0)}{n^{s-s_0}} - \frac{P_m(s_0)}{m^{s-s_0}} +$$

$$+\sum_{k=m+1}^{n} P_k(s_0) \left[\frac{1}{k^{s-s_0}} - \frac{1}{(k+1)^{s-s_0}} \right] = (*)$$

Es gilt

$$\frac{1}{k^{s-s_0}} - \frac{1}{(k+1)^{s-s_0}} = (s-s_0) \int_{k}^{k+1} \frac{1}{x^{s-s_0+1}} dx.$$

Sei M so daß $|P_k(s_0)| \leq M$, $k \in \mathbb{N}$. Dann ist

$$\left| (*) \right| \le \frac{M}{n^{s-s_0}} + \frac{M}{m^{s-s_0}} + M(s-s_0) \int_{m+1}^{n+1} \frac{1}{x^{s-s_0+1}} dx \le \frac{M}{n^{s-s_0}} + \frac{1}{m^{s-s_0}} + \frac{s-s_0}{(m+1)^{s-s_0}} \right)$$

und dieser Ausdruck strebt für $m,n\to\infty$ gegen 0 und zwar gleichmäßig auf jedem Kompaktum in $\{\sigma>\sigma_0\}$.

Die Zahl

$$\sigma_0 := \inf \left\{ \sigma \in \mathbb{R} : \sum \frac{a_n}{n^s} \text{ konvergient} \right\}$$

heißt Konvergenzabzisse von $\sum \frac{a_n}{n^s}$.

Ist die Dirichlet-Reihe konvergent für $s_1 = \sigma_1 + it_1$, so muß gelten $a_n = o(n^{\sigma_1})$. Es folgt daß die Reihe in jeder Halbebene $\{\text{Re}(s) \geq \sigma_1 + 1 + \delta\}$ absolut und gleichmäßig konvergiert. Denn vergleiche mit $\sum_{n=1}^{\infty} \frac{1}{n^{1+\delta}}$.

3.1.2 Lemma. Sei $\sigma_1 \geq 0$ und sei $A_n = a_1 + \ldots + a_n = O(n^{\sigma_1})$. Dann ist die Konvergenzabszisse von $\sum \frac{a_n}{n^s}$ stets $\leq \sigma_1$.

Beweis. Sei $|A_n| \leq C n^{\sigma_1}$, sei $\delta > 0$ und $\sigma \geq \sigma_1 + \delta$, sei $P_n(s) = \sum_{k=1}^n \frac{a_k}{k^s}$. Dann gilt

$$P_n(s) - P_M(s) = \frac{A_n}{n^s} - \frac{A_m}{m^s} + \sum_{n=m+1}^{n-1} A_k \left[\frac{1}{k^s} - \frac{1}{(k+1)^s} \right] =$$

$$= \frac{A_n}{n^s} - \frac{A_m}{m^s} + \sum_{k=m+1}^{n-1} A_k s \int_{k}^{k+1} \frac{1}{x^{s+1}} dx.$$

Also folgt

$$\left| P_n(s) - P_m(s) \right| \le \frac{C}{n^{\sigma - \sigma_1}} + \frac{C}{m^{\sigma - \sigma_1}} + C|s| \int_{m+1}^{\infty} \frac{1}{x^{\sigma + 1}} dx \le$$

$$\le C \left(\frac{1}{n^{\delta}} + \frac{1}{m^{\delta}} + |s| \frac{1}{(m+1)^{\delta}} \right) \to 0, \ m, n \to \infty.$$

DEII.3

LEII.2

3.1.3 Definition. Die Riemannsche Zetafunktion ist definiert als die Reihe

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Die Funktion $\zeta(s)$ ist analytisch auf $\{\text{Re}\, s>1\}$, denn setze in Lemma 3.1.2 $\sigma_1=1$. Weiters gilt für $s\in\mathbb{R},\ s>1$,

$$\frac{1}{s-1} = \int_{1}^{\infty} \frac{1}{x^{s}} dx \le \zeta(s) \le 1 + \frac{1}{s-1}.$$

Also folgt

$$1 \le (s-1)\zeta(s) \le s, \ s > 1. \tag{3.1,+}$$

3.1.4 Satz. Die Funktion $\zeta(s)$ ist analytisch auf $\{Res > 0\}$ mit Ausnahme des Punktes s = 1 wo sie einen Pol erster Ordnung mit Residuum 1 hat.

Beweis.

·) Betrachte die Dirichlet-Reihe

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} =: \zeta_2(s).$$

Wegen Lemma 3.1.2 ist ζ_2 analytisch auf $\{\operatorname{Re} s>0\}$. Nun gilt

$$2 \cdot \frac{\zeta(s)}{2^s} + \zeta_2(s) = \zeta(s),$$

also $\zeta(s)(1-\frac{1}{2^{s-1}})=\zeta_2(s)$. Daher hat ζ eine analytische Fortsetzung auf $\{\operatorname{Re} s>0\}$ mit möglicher Ausnahme der Punkte s mit $2^{s-1}=1$, das sind

$$s = 1 + \frac{2\pi n}{\log 2} \ i, n \in \mathbb{Z}.$$

Dort liegen höchstens Pole. Bei s=1 ist also ein einfacher Pol mit Residuum 1 wegen (3.1,+).

·) Betrachte die Reihe

$$\zeta_r(s) := 1 + \frac{1}{2^s} + \ldots + \frac{1}{(r-1)^s} - \frac{r-1}{r^s} + \frac{1}{(r+1)^s} + \ldots$$

Die Partialsummen der Koeffizienten sind $\leq r$, also ist ζ_r analytisch für Re s>0. Es gilt

$$\zeta_r(s) = \left(1 - \frac{1}{r^{s-1}}\right)\zeta(s),$$

also ist ζ analytisch auf {Re s>0} mit möglicher Ausnahme von

$$s = 1 + \frac{2\pi n}{\log r} \ i, n \in \mathbb{Z}.$$

Es bleibt nur s=1 als Pol möglich, denn wäre z.B.

$$1 + \frac{2\pi m}{\log 3}i = 1 + \frac{2\pi n}{\log 2}i,$$

so wäre $3^n = 2^m$, ein WS!.

COII.5

3.1.5 Korollar. Sei $(a_n)_{n\in\mathbb{N}}$, $A_n=a_1+\ldots+a_n$, $0\leq\sigma_1<1$, $\rho\in\mathbb{C}$. Ist

$$A_n = n\rho + O(n^{\sigma_1}),$$

dann hat die Dirichlet-Reihe

$$f(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

eine analytische Fortsetzung auf $\{\text{Re }s>0\}$ mit Ausnahme von s=1 wo ein einfacher Pol mit Residuum ρ liegt.

Beweis. Wende Lemma 3.1.2 und Satz 3.1.4 an auf $f(s) - \rho \zeta(s)$.

3.2 Definition von ζ_k

Wir schreiben im folgenden $f \sim g$ wenn sich f und g nur um eine analytische Funktion unterscheiden.

LEII.6

3.2.1 Lemma. Es gilt

(i) (Eulersche Produktdarstellung)

$$\zeta(s) = \prod_{p \ PZ} \frac{1}{1 - \frac{1}{p^s}}, \ \operatorname{Re} s > 1.$$

(ii)
$$\log \zeta(s) = \sum_{p \ PZ, m \ge 1} \frac{1}{mp^{ms}}.$$

(iii)
$$\log \zeta(s) \sim \sum_{p \ PZ} \frac{1}{p^s} \sim \log \frac{1}{s-1}.$$

Beweis. Betrachte die Reihe

$$R = \sum_{p \text{ PZ}} \sum_{m > 1} \frac{1}{mp^{ms}}.$$

Es gilt für $\sigma > 1$

$$\sum_{p \text{ PZ}} \sum_{m \geq 1} \left| \frac{1}{mp^{ms}} \right| = \sum_{p \text{ PZ}} \sum_{m \geq 1} \frac{1}{mp^{m\sigma}} = -\sum_{p \text{ PZ}} \log \left(1 - \frac{1}{p^{\sigma}}\right)$$

Wegen $\lim_{p\to\infty}\frac{1}{p^\sigma}=0$ und $\lim_{x\to0}\frac{\log(1-x)}{x}=-1$. Ist diese Reihe mit $\sum_{p\ \mathrm{PZ}}\frac{1}{p^\sigma}$ konvergent $(\sigma>1)$. Man darf in R also die Summationsreihenfolge austauschen sowie beliebig anordnen. Wegen der absoluten Konvergenz von $\sum_p\log(1-\frac{1}{p^s})$

LEII.8

folgt das das Euler-Produkt absolut konvergiert. Damit ist die Anwendung des Distributivgesetzes erlaubt und man erhält wegen $\mathbb{Z}PE$ in \mathbb{Z} :

$$\prod_{p} \frac{1}{1 - \frac{1}{p^s}} = \prod_{p} \sum_{m > 1} \frac{1}{p^{ms}} = \sum_{n \in \mathbb{N}} \frac{1}{n^s} = \zeta(s).$$

Gleichzeitig folgt

$$\log \zeta(s) = -\sum_{p} \log \left(1 - \frac{1}{p^s}\right) = \sum_{p \text{ PZ}, m > 1} \frac{1}{mp^{ms}}.$$

Klarerweise ist $\log \zeta(s) \sim \log \frac{1}{s-1}$. Beachte, daß

$$\sum_{p \text{ PZ}, m \geq 2} \left| \frac{1}{mp^{sm}} \right| = \sum_{p \text{ PZ}} \sum_{m \geq 2} \frac{1}{mp^{\sigma m}} = -\sum_{p \text{ PZ}} \left(\log(1 - \frac{1}{p^{\sigma}}) + \frac{1}{p^{\sigma}} \right).$$

Wegen

$$\lim_{x \to 0} \frac{\log(1-x) + x}{x^2} = -\frac{1}{2}$$

ist diese Reihe vergleichbar mit $\sum_{p \text{ PZ}} \frac{1}{(p^{\sigma})^2}$ und daher konvergent für $\sigma > \frac{1}{2}$ und dort analytisch. Es ist

$$\log \zeta(s) = \sum_{p} \frac{1}{p^s} + \sum_{p,m \ge 2} \frac{1}{mp^{sm}}$$

Sei nun $k \neq \mathbb{Q}$ ein algebraischer Zahlkörper, $[k : \mathbb{R}] = N$. Es ist für ein $\mathfrak{p} \in \operatorname{Spec} O_k, \, \mathfrak{p}/(p),$

$$N_{\mathbb{Q}}^{k}(\mathfrak{p}) = \left(p^{f(\mathfrak{p}/(p))}\right)_{\mathbb{Z}} = \left(N\mathfrak{p}\right)_{\mathbb{Z}}$$

wo $N\mathfrak{p} = |O_k/\mathfrak{p}| = p^{f(\mathfrak{p}/(p))}$ ist.

3.2.2 Definition. Die Dedekindsche Zetafunktion des algebraischen Zahlkörpers k ist

 $\zeta_k(s) := \prod_{\mathfrak{p} \in \operatorname{Spec} O_k} \frac{1}{1 - \frac{1}{N\mathfrak{p}^s}}.$

3.2.3 Lemma. ζ_k ist analytisch für $\sigma > 1$. Es gilt

$$\zeta_k(s) = \sum_{\mathfrak{q} \triangle O_k} \frac{1}{N\mathfrak{q}^s}$$

(ii)
$$\log \zeta_k(s) = \sum_{\mathfrak{p}, m > 1} \frac{1}{m N \mathfrak{p}^{ms}}$$

(iii)
$$\log \zeta_k(s) \sim \sum_{\mathfrak{p}: f_{\mathfrak{p}} = 1} \frac{1}{N\mathfrak{p}^s}.$$

Beweis. Es gilt $\sum_{\mathfrak{p}/(p)} f_{\mathfrak{p}} \leq N$, also gibt es höchstens N viele $\mathfrak{p}/(p)$ und es folgt

$$\sum_{\mathfrak{p},m\geq 1} \left| \frac{1}{mN\mathfrak{p}^{ms}} \right| \geq \sum_{p \; \mathrm{PZ},m\geq 1} \frac{N}{mp^{m\sigma}} < \infty, \sigma > 1.$$

Es ist

$$\sum_{\mathfrak{p}} \log \left(1 - \frac{1}{N\mathfrak{p}^s} \right) \text{ vgl. } \sum_{\mathfrak{p}} \frac{1}{N\mathfrak{p}^{\sigma}} \le \sum_{p \in \mathbf{Z}} \frac{N}{p^{\sigma}}$$

absolut konvergent, und damit auch das Produkt in der Definition von ζ_k und stellt eine in $\{\operatorname{Re} s>1\}$ analytische Funktion dar. Weiters ist

$$\log \zeta_k(s) = -\sum_{\mathfrak{p}} \log \left(1 - \frac{1}{N\mathfrak{p}^s}\right) = \sum_{\mathfrak{p}, m > 1} \frac{1}{mN\mathfrak{p}^{ms}}.$$

Die Reihe

$$\sum_{(f_{\mathfrak{p}}>1)\vee(m\geq 2)}\frac{1}{mN\mathfrak{p}^{m\sigma}}=R$$

vergleicht man mit $\sum_{p \text{ PZ}, m \geq 2} \frac{N}{mp^{m\sigma}} + \sum_{f_{\mathfrak{p}} > 1} \frac{1}{N\mathfrak{p}^{\sigma}}$ und die zweite Reihe ist $\leq \sum_{p \text{ PZ}} \frac{N}{p^{2\sigma}}$. Also ist \mathfrak{R} konvergent für $\sigma > \frac{1}{2}$.

Literaturverzeichnis

- [BIV,brueske.etal] R.Brüske, F.Ischebeck, F.Vogel: Kommutative Algebra, BI, 1989.
- [IR,ireland.rosen] K.IRELAND, M.ROSEN: A Classical Introduction to Modern Number Theory, GTM 84, Springer Verlag, 1990.
- $\begin{array}{c} \hbox{[L1,lang] S.Lang: $Algebraic\ Number\ Theory,} \\ \hbox{GTM\ 110,\ Springer\ Verlag,\ 1986} \ . \end{array}$
- [L2,lang/algebra] S.LANG: Algebra, GTM 211, Springer Verlag, ???.
- [N,narkiewicz] W.Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers,
- [RV,ramakrishnan.valenza] D.Ramakrishnan, R.Valenza: Fourier Analysis on Number Fields, GTM 186, Springer Verlag, 1999.
- [S,stichtenoth] H.STICHTENOTH: Algebraic Function Fields and Codes, Springer Verlag, 1993.
- [vdW,vdw] B.L.van der Waerden: Algebra I/II, Heidelberger Taschenbücher 12/23, Springer Verlag, 1971/67.
- [W,weil] A.WEIL: Basic Number Theory, Springer Verlag, 1967.