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Abstract. For a two-dimensional canonical system y′(t) = zJH(t)y(t) on some interval (a, b) whose
Hamiltonian H is a.e. positive semi-definite and which is regular at a and in the limit point case at
b, denote by qH its Weyl coefficient. De Branges’ inverse spectral theorem states that the assignment
H 7→ qH is a bijection between Hamiltonians (suitably normalised) and Nevanlinna functions.

We give upper and lower bounds for |qH(z)| and Im qH(z) when z tends to i∞ non-tangentially.
These bounds depend on the Hamiltonian H near the left endpoint a and determine |qH(z)| up to uni-
versal multiplicative constants. We obtain that the growth of |qH(z)| is independent of the off-diagonal
entries of H and depends monotonically on the diagonal entries in a natural way. The imaginary part
is, in general, not fully determined by our bounds (in forthcoming work we shall prove that for “most”
Hamiltonians also Im qH(z) is fully determined).

We translate the asymptotic behaviour of qH to the behaviour of the spectral measure µH of H by

means of Abelian–Tauberian results and obtain conditions for membership of growth classes defined

by weighted integrability condition (Kac classes) or by boundedness of tails at ±∞ w.r.t. a weight

function. Moreover, we apply our results to Krein strings and Sturm–Liouville equations.
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1 Introduction

We study two-dimensional canonical systems

y′(t) = zJH(t)y(t), t ∈ [a, b), (1.1)

where −∞ < a < b ≤ ∞, J :=
(
0 −1

1 0

)
, z ∈ C, and where the Hamiltonian H is assumed to

satisfy

▷ H ∈ L1
loc

(
[a, b),R2×2

)
and {t ∈ [a, b) : H(t) = 0} has measure 0;

▷ H(t) ≥ 0, t ∈ [a, b) a.e. (in the sense of positive semi-definiteness);

▷ H is in the limit point case at b, i.e.∫ b

a

trH(t) dt = ∞. (1.2)

Differential equations of this form appear frequently in theory and applications. They can
be shown to be a unifying framework for classical equations like Schrödinger equations, Krein
strings, Dirac systems, and others; see, e.g. [34, 23, 37, 36]. For the relevance (and origins) of
canonical systems in natural sciences we refer to [1, 8, 10, 33, 38].
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In the spectral theory of equation (1.1) the notion of the Weyl coefficient qH associated with
a Hamiltonian H plays a crucial role. The construction of qH goes back to H. Weyl [40] and is
based on a nested discs argument; see (2.2) below for the definition. The Weyl coefficient is a
Nevanlinna function, i.e. it is analytic in the open upper and lower half-planes C+ and C−, it is
symmetric in the sense that qH(z) = qH(z), and Im qH(z) ≥ 0 for z ∈ C+. Being a Nevanlinna
function, qH admits the Herglotz integral representation

qH(z) = αH + βHz +

∫
R

( 1

t− z
− t

1 + t2

)
dµH(t), z ∈ C \ R, (1.3)

where αH ∈ R, βH ≥ 0 and µH is a Borel measure on R that satisfies
∫
R

dµH(t)
1+t2 < ∞. The

differential operator corresponding to (1.1) is unitarily equivalent to the multiplication operator
with the independent variable in the space L2(µH), and the unitary equivalence is established
by a natural integral operator (if βH > 0, then the differential operator is multi-valued and a
point mass at infinity has to be added). For this reason µH is called the spectral measure of
H. The famous inverse spectral theorem of L. de Branges [5] states that for every Nevanlinna
function q there exists an essentially unique Hamiltonian H such that q = qH . Up-to-date
references for the spectral theory of canonical systems are [13, 35, 36].

Having the — essentially one-to-one — correspondence between Hamiltonians on the one
side and their Weyl coefficients or spectral measures on the other side, it is a natural task
to relate properties of the one to properties of the other. Both directions in the de Branges
correspondence involve limiting processes. This makes the correspondence difficult to handle,
but also intriguing to investigate.

There are indeed several properties which can— fully or partially — be translated. Some of
them instantiate the following principle.

The behaviour of the distribution function of the spectral measure towards ±∞ cor-
responds to the behaviour of the Hamiltonian locally at the left endpoint a.

Usually it is not difficult to find Abelian–Tauberian theorems which allow to translate the
behaviour of tails of µH at ±∞ to the behaviour of its Herglotz integral qH at i∞ (also called
the high-energy behaviour of qH). Thus, when seeking theorems which instantiate the quoted
principle, the essence is to translate properties of qH locally at i∞ to properties of H locally
at a. In the present paper we contribute to this family of results. Namely, we prove upper
and lower estimates for the modulus and the imaginary part of qH locally at i∞ in terms of
integrals of the Hamiltonian in a neighbourhood of the left endpoint a.

For Sturm–Liouville equations such estimates go back to, at least, [15], [2] and [3]; for Krein
strings estimates for the principal Titchmarsh–Weyl coefficient were proved in [24] and [25]; for
Jacobi operators in [16]; for canonical systems some results were obtained in [44]. Estimates of
the distribution function of the spectral measure are studied in, e.g. [30] for Sturm–Liouville
equations and [20] for strings. A detailed discussion of related work is given in Section 6.

The following theorem is our main result. We establish an explicit quantitative relation
between qH and H.

1.1 Theorem. Let H be a Hamiltonian defined on some interval [a, b) as at the beginning of
the introduction, and write

H(t) =

(
h1(t) h3(t)
h3(t) h2(t)

)
, M(t) =

(
m1(t) m3(t)
m3(t) m2(t)

)
:=

∫ t

a

H(s) ds. (1.4)

Assume that neither h1 = 0 a.e. nor h2 = 0 a.e. Fix a parameter η ∈
(
0, 1 − 1√

2

)
and set

σ := 1
(1−η)2 − 1 ∈ (0, 1). For r > 0, let t̊(r) ∈ (a, b) be the unique number that satisfies

(m1m2)
(̊
t(r)

)
=

η2

4r2
. (1.5)

Further, set

A(r) :=

√
m1(̊t(r))

m2(̊t(r))
, L(r) := A(r) · detM (̊t(r))

(m1m2)(̊t(r))
.
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Then the Weyl coefficient qH associated with the Hamiltonian H satisfies, for each ϑ ∈ (0, π)
and r > 0, (

1 + σ + 2
η sinϑ

1− σ

)−1

·A(r) ≤
∣∣qH(reiϑ)∣∣ ≤ 1 + σ + 2

η sinϑ

1− σ
·A(r), (1.6)

∣∣Re qH(reiϑ)∣∣ ≤ 1 + σ + 1
η sinϑ

1− σ
·A(r), (1.7)

η sinϑ
2

1 + | cosϑ|
· 1− σ

1 + σ
· L(r) ≤ Im qH

(
reiϑ

)
≤
σ + 2

η sinϑ

1− σ
·A(r). (1.8)

Let us add some comments.

1.2 Remark.

(i) Let us note that the inequalities in (1.6) can also be derived from [12, Theorem 3.2], which
is based on a completely different proof. However, the most involved part of our proof is
the proof of the first inequality in (1.8), which cannot be deduced from [12].

(ii) By the assumption that neither h1 nor h2 vanishes a.e., the equation (1.5) indeed has a
unique solution for every r > 0. To see this, set

å := sup
{
t ∈ [a, b) : m1(t)m2(t) = 0

}
, (1.9)

which is equal to the right endpoint of a maximal interval of the form (a, c) where h1 = 0
a.e. or h2 = 0 a.e. if such an interval exists and equal to a otherwise. Then (m1m2)

′ =
h1m2 + h2m1 > 0 a.e. on (̊a, b), and

lim
t→b

(
m1(t) +m2(t)

)
=

∫ b

a

trH(s) ds = ∞.

This implies that m1m2 is a strictly increasing bijection from [̊a, b) onto [0,∞). It follows
then from (1.5) that t̊ is a strictly decreasing bijection from (0,∞) onto (̊a, b). Since
limr→∞ t̊(r) = å, the inequalities in (1.6)–(1.8) relate the behaviour of qH(reiϑ) as r → ∞
to the behaviour of H(t) when t ↘ å. This shows that the theorem is a perfect instance
of the above quoted principle at the level of the Weyl coefficient, in particular, in the case
when å = a. Note that å > a if and only if one of h1 and h2 vanishes locally at a; this
case is discussed in more detail in §5.2.

(iii) The constants in (1.6)–(1.8) are symmetric about π
2 and depend monotonically on ϑ on

(0, π2 ] and [π2 , π) respectively. Hence the estimates are valid in a sector around the positive
imaginary axis.

(iv) Alternative forms of A(r) and L(r) are given in Section 2.4. Examples to show how
Theorem 1.1 can be applied are discussed in Example 5.8 and Section 5.4.

(v) Solving equation (1.5) may not be possible explicitly or computationally difficult. Using
monotonicity properties we can show weaker estimates for qH already from an estimate
of the solution. Details are given in Section 5.1.

(vi) Some properties of A(r) and L(r) and hence of qH(reiϑ) can be seen directly from prop-
erties of the functions mj without finding t̊(r), e.g. limr→∞A(r) = 0 if and only if

limt→å
m1(t)
m2(t)

= 0; similar characterisations hold for lim infr→∞A(r) = 0 or A being

bounded.

(vii) Some results about the spectral measure µH (see (1.3)) are deduced in Theorems 4.10
and 4.17. There we deal with Kac classes, i.e. weighted integrability of µH , and bounded-
ness of tails of µH relative to a weight function.

(viii) Since the estimates in (1.6)–(1.8) are valid for all r ∈ (0,∞), one can also obtain informa-
tion about the asymptotic behaviour of qH(reiϑ) as r → 0. For this one needs information
about mi(t) as t→ b. This relates to the considerations in [44, §5].
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(ix) The two cases that are excluded in the theorem are trivial: if h1 = 0 a.e., then qH ≡ 0; if
h2 = 0 a.e., then qH ≡ ∞.

♢

Using Theorem 1.1 we can prove an independence result and a comparison result for the absolute
value of qH . The first one is an immediate corollary, while the second one requires some
arguments; the proof is given in Section 3.3.

1.3 Corollary. Let H be a Hamiltonian defined on some interval [a, b). Then the absolute value
|qH(ir)| is, up to universal multiplicative constants, independent of the off-diagonal entries of
H.

1.4 Proposition. Let H and H̃ be two Hamiltonians defined on some interval [a, b) such that
none of the respective diagonal entries h1, h2, h̃1, h̃2 vanishes a.e., let å and ˚̃a be as in (1.9)

corresponding to H and H̃ respectively, and define m̃j and M̃ analogously to (1.4).

Assume that there exist constants c1, c2, γ1, γ2 > 0 and a point a′ ∈ (max{̊a,˚̃a}, b] such that,
for all t ∈ (max{̊a,˚̃a}, a′),

1

c1
trM(t) ≤ trM̃(t) ≤ c2 trM(t), (1.10)

m1(t) ≤ γ1m̃1(t), m̃2(t) ≤ γ2m2(t). (1.11)

Then there exist C > 0 and r0 ≥ 0, such that for all r > r0,

|qH(ir)| ≤ C|qH̃(ir)|.

The constant C depends on c1, c2, γ1, γ2, but not on a
′, H, H̃. Moreover, r0 = 0 when a′ = b.

Let us point out that some assumption on the absolute sizes of M and M̃ has to be made in
order to have a chance for any kind of comparison result because otherwise, one could rescale
the independent variable without changing the Weyl coefficient. We use (1.10) since this is

sufficiently flexible in applications; note that it is clearly satisfied if both H and H̃ are trace-
normed. Also note that none of the conditions in (1.11) can be removed as simple examples
show.

As a corollary of Proposition 1.4 we obtain a stability result.

1.5 Corollary. Let H and H̃ be Hamiltonians defined on some interval [a, b) such that none
of the respective diagonal entries h1, h2, h̃1, h̃2 vanishes a.e. Further, let a′ ∈ (max{̊a,˚̃a}, b] and
assume that m1 ≍ m̃1 and m2 ≍ m̃2 on (max{̊a,˚̃a}, a′). Then there exists r0 ≥ 0, with r0 = 0
when a′ = b, such that |qH(ir)| ≍ |qH̃(ir)| on (r0,∞).

Notation. In Corollary 1.5 and for the rest of the paper we use the following notation. We
write f ≲ g if there exists c > 0 such that f(r) ≤ cg(r) for all r, and we write f ≍ g if
f ≲ g ∧ g ≲ f . Moreover, we use the notation f ≪ g for f

g → 0. We deliberately do not always
specify the range of values of r; one can think of r belonging to a certain portion of the ray
(0,∞), or to some sequence tending to ∞, or similar.

About the method of proof

The proof of Theorem 1.1 is based on the geometric idea to directly estimate Weyl discs. It
follows the approach of H. Winkler in [44].

Recall Weyl’s nested discs construction: from the fundamental solution of the system (1.1)
a family of discs Ωt,z is built; see §2.1 for details. Here the parameter t ranges over [a, b), and
the spectral parameter z lies in the open upper half-plane. For each fixed z ∈ C+, the discs

Ωt,z form a nested family, and, due to our assumption that
∫ b
a
trH(s) ds = ∞, they shrink to a

single point when t approaches b. The function qH is then defined by
⋂
t∈(a,b) Ωt,z = {qH(z)}.

The radius of the Weyl disc Ωt,ir built at a point in t and a point ir in the plane decays to
0 not only for each fixed r when t increases to b, but also for each fixed t when r increases to
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∞. Hence, when looking at large r one can afford to use t close to a and still have a relatively
small Weyl disc1.

To produce estimates for qH , we start from the fact that centres and radii of Weyl discs
Ωt,ir can be expressed explicitly in terms of the fundamental solution. Then we

▷ prove estimates for the power series coefficients of the fundamental solution;

▷ use these estimates to determine the leading terms of centres and radii of Weyl discs;

▷ deduce estimates for qH .

The first step is the technical core of the proof. It can be carried out only when (t, r) lies in
the region indicated in the following picture, and this explains the role of equation (1.5): it
describes the border of our method to prove coefficient estimates.

0

a t

r

Ωt,ir

border of the method: 4r2(m1m2)(t) = η2

shrink

shrink

Figure 1: admissible region for coefficient estimates

Since A(r) always correctly describes the absolute value of qH(ir), and— as we shall see later —
the lower bound L(r) is in many situations correct, it seems that this border occurs not “just
because of the method”, but for intrinsic reasons.

Further perspective

The present work is part of a series of papers where we investigate the high-energy behaviour
of the Weyl coefficient. The other parts which are already— or will very soon be— available,
are [32, 26, 28]. In [32] limit points of qH(ir) for r → ∞ are investigated. The contents of the
other two papers is discussed below.

Let us first make three observations about Theorem 1.1.

① The absolute value of qH is fully determined by (1.6) up to some universal constants, while
(1.8) gives only estimates for the imaginary part of the Weyl coefficient:

L(r) ≲ Im qH(ir) ≤ |qH(ir)| ≍ A(r).

② The lower bound L(r) becomes smaller when the relative size of the off-diagonal entries of
H becomes larger.

1This can be seen as a mathematical reason behind the principle that high-energy behaviour of qH corresponds
to behaviour of H locally at the left endpoint, which we quoted at the very beginning. Another, maybe even
more striking, reason is established by a certain group action on the set of Hamiltonians, namely, by the group
of rescaling operators. This “rescaling trick” goes probably back to Y. Kasahara in [24].
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③ The bounds given in Theorem 1.1 involve universal constants which depend on the parameter
η. Consider, for example, the constant on the right-hand side of (1.6). Its value can be
minimised by making an appropriate choice of η, but this minimum is larger than 1.

Each of these observations gives rise to a natural question.

Question concerning observation ①.
If L(r) ≍ A(r), then clearly Im qH(ir) ≍ |qH(ir)|. What happens if L(r) ≪ A(r)?

Investigating the relation between the gaps L(r)
A(r) and Im qH(ir)

|qH(ir)| more closely, requires very

different methods from the presently developed ones, namely, a refined variant of Kasahara’s
rescaling trick. We settle the above question on a qualitative level in [26], where we prove
that the lower bound L(r) is sharp in the sense that L(r) ≪ A(r) if and only if Im qH(ir) ≪
|qH(ir)|. Moreover, we characterise this situation explicitly in terms of H and see that for
“most” Hamiltonians L(r) ≍ A(r) holds. This confirms the intuition familiar from complex
analysis that “usually” Im qH(ir) ≍ |qH(ir)|.
Question concerning observation ②.
Does Im qH(ir) show the same behaviour as L(r), namely that it becomes smaller when the
relative size of the off-diagonal entries of H becomes larger?

There are indications that this is the case; see, for example, the main theorem in the
forthcoming [28]. However, we have no general result confirming this, and it seems that the
question is very much related to what is stated as an open problem below.

Question concerning observation ③.
When does qH have an asymptotic expansion at i∞?

With the present Theorem 1.1 we cannot possibly exclude that |qH(ir)| oscillates between
the bounds given by (1.6); cf. Example 5.11. Dealing with asymptotic expansions requires
different methods. We answer this question in [28], where we characterise the presence of a
regularly varying asymptotic explicitly in terms of H. The idea will again be to apply a variant
of Kasahara’s trick already mentioned above.

An open problem. Is it possible to quantitatively compare the gaps L(r)
A(r) and Im qH(ir)

|qH(ir)| ? In

particular, we do not know whether there exist a Hamiltonian with L(r) ≍ Im qH(ir) ≪ |qH(ir)|.
It seems that none of the presently available methods is suitable to attack this problem.

Let us give an overview of the contents of the paper. In Section 2 we present some prelimin-
ary material that is used in the proof of the main theorem, in particular a discussion about Weyl
discs, a power series expansion of the fundamental solution of (1.1) and some matrix algebra
that is useful for estimates of the coefficients of the power series. Section 3 contains the proofs
of Theorem 1.1 and Proposition 1.4. In Section 4 our estimates for the Weyl coefficient are
related to estimates of the spectral measure. In particular, we prove characterisations for µH
belonging to some Kac classes and for the distribution function of µH satisfying certain growth
estimates. Section 5 contains further results, which complement Theorem 1.1. In particular,
we prove a monotonicity property; we discuss the situation when h1 or h2 vanishes on neigh-
bourhood of a; we study a rotation transformation that improves the bounds in (1.6)–(1.8)
in certain situations; we discuss some examples; and we express A(r) in terms of the mass
function of a related Krein string. Finally, in Section 6 we apply our theorems to Krein strings
and Sturm–Liouville equations, and relate our results to previous work in the literature. Two
appendices collect some facts about regularly varying functions and generalised inverses.

Acknowledgements. The second and third authors were supported by the project P 30715-
N35 of the Austrian Science Fund (FWF). The third author was supported by the joint project
I 4600 of the Austrian Science Fund (FWF) and the Russian foundation of basic research
(RFBR).

2 Weyl discs and matrix algebra

In this section we collect some preliminary information.
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2.1 Centre and radius of a Weyl disc

We recall the definition of the Weyl discs Ωt,z and a basic formula for their centres and radii.
Let W (t, z) be the (transpose of) the fundamental solution of the system (1.1), i.e. the unique
2× 2-matrix-valued solution of the initial value problem

∂

∂t
W (t, z)J = zW (t, z)H(t), t ∈ [a, b),

W (a, z) = I.

Equivalently, W (t, z) is the solution of the integral equation

W (t, z)J − J = z

∫ t

a

W (s, z)H(s) ds, t ∈ [a, b). (2.1)

Note that the transposes of the rows of W are solutions of (1.1). Writing W (t, z) =(
w11(t,z) w12(t,z)

w21(t,z) w22(t,z)

)
, the Weyl disc Ωt,z is defined as the image of the closed upper half-plane

under the fractional linear transformation

ζ 7→ w11(t, z)ζ + w12(t, z)

w21(t, z)ζ + w22(t, z)
.

The Weyl discs are nested: Ωt1,z ⊇ Ωt2,z when a ≤ t1 ≤ t2 < b. Since we assume that H is
in the limit point case at b, i.e. (1.2) holds, the Weyl discs Ωt,z shrink to a point as t → b for
z ∈ C \ R. This point is denoted by qH(z), i.e.

qH(z) := lim
t→b

w11(t, z)ζ + w12(t, z)

w21(t, z)ζ + w22(t, z)
, z ∈ C \ R, (2.2)

independent of ζ, and qH is called the Weyl coefficient associated with the Hamiltonian H.
The centre and the radius of Ωt,z can be expressed in a neat way using the function

∇(t, z) :=

∫ t

a

W (s, z)H(s)W (s, z)∗ ds =
W (t, z)JW (t, z)∗ − J

2i(Im z)
; (2.3)

the second equality in (2.3) follows from, e.g. [13, (2.5)].

2.1 Lemma. Let z ∈ C+ and let t ∈ (a, b) be such that h2|(a,t) ̸= 0. Then the Weyl disc Ωt,z
is the closed disc with

centre:
b(t, z)

a(t, z)
+ i

1

2(Im z)a(t, z)

∣∣∣ radius:
1

2(Im z)a(t, z)
(2.4)

where a(t, z) and b(t, z) respectively denote the (2, 2) and the (1, 2) entries of ∇(t, z).

This is folklore and can be found, for instance, implicitly in [44, §3]. For the convenience of the
reader, we recall the argument.

Proof of Lemma 2.1. Let
(
a11 a12
a21 a22

)
∈ C2×2 be an invertible matrix such that Im(a22a21) > 0,

and consider the fractional linear transformation w 7→ a11w+a12
a21w+a22

. The image of the closed upper
half-plane under this map is the disc with

centre:
a12a21 − a11a22
a22a21 − a21a22

∣∣∣ radius:

∣∣∣∣a11a22 − a12a21
a22a21 − a21a22

∣∣∣∣ . (2.5)

Note that the condition Im(a22a21) > 0 is equivalent to the fact that the image of the closed
upper half-plane is a disc.
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For each t ∈ (a, b) and z ∈ C+, the Weyl disc Ωt,z is the image of the closed upper half-
plane (considered on the Riemann sphere) under the fractional linear transformation ζ 7→
w11(t,z)ζ+w12(t,z)
w21(t,z)ζ+w22(t,z)

. From (2.3) we obtain

w22(t, z)w21(t, z)− w21(t, z)w22(t, z) =

(
0

1

)∗[
W (t, z)JW (t, z)∗ − J

](0
1

)
= 2i(Im z)

(
0

1

)∗

∇(t, z)

(
0

1

)
= 2i(Im z)a(t, z) (2.6)

and

w12(t, z)w21(t, z)− w11(t, z)w22(t, z) + 1 =

(
1

0

)∗[
W (t, z)JW (t, z)∗ − J

](0
1

)
= 2i(Im z)

(
1

0

)∗

∇(t, z)

(
0

1

)
= 2i(Im z)b(t, z). (2.7)

With v(t, z) =
(
w21(t,z)
w22(t,z)

)
, which satisfies (1.1), we have

a(t, z) =

∫ t

a

v(s, z)∗H(s)v(s, z) ds ≥ 0.

Assume that a(t, z) = 0. ThenH(s)v(s, z) = 0 a.e. and hence v is constant. by (1.1). The initial
condition W (a, z) = I yields v(t, z) ≡

(
0
1

)
. This, in turn, implies that h2(t) = 0 a.e. on (a, t),

which is a contradiction to the assumption. Therefore Im(w22(t, z)w21(t, z)) = (Im z)a(t, z) > 0
for z ∈ C+. Hence we can apply (2.5), which, together with (2.6) and (2.7), yields that the
centre of the disc is

w12(t, z)w21(t, z)− w11(t, z)w22(t, z)

w22(t, z)w21(t, z)− w21(t, z)w22(t, z)
=

2i(Im z)b(t, z)− 1

2i(Im z)a(t, z)
=
b(t, z)

a(t, z)
+ i

1

2(Im z)a(t, z)
,

and its radius is

1∣∣w22(t, z)w21(t, z)− w21(t, z)w22(t, z)
∣∣ = 1

2(Im z)a(t, z)
;

this proves (2.4). ❑

2.2 The power series expansion of ∇(t, z)

For t ∈ [a, b) let Wn(t) be the coefficients in the power series expansion of W (t, z), i.e.

W (t, z) =

∞∑
n=0

Wn(t)z
n. (2.8)

This series converges uniformly on every compact subset of [a, b) × C. The integral equation
(2.1) for W (t, z) shows that the coefficient sequence (Wn(t))

∞
n=0 is given by the recurrence

relation 
W0(t) = I,

Wn+1(t) =

∫ t

a

Wn(s)H(s) ds · (−J), n ≥ 0.
(2.9)

The latter implies that

Wn(a) = 0, n ≥ 1; (2.10)

Wn(t) ∈ R2×2, n ≥ 0, t ∈ [a, b).

Plugging the power series expansion of W (t, z) into the definition of ∇(t, z) in (2.3) we obtain

∇(t, z) =

∞∑
n,m=0

(∫ t

a

Wn(s)H(s)Wm(s)∗ ds

)
znzm.
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Setting

αn,m(t) :=

∫ t

a

Wn(s)H(s)Wm(s)∗ ds

we have, for z = reiϑ,

∇
(
t, reiϑ

)
=

∞∑
l=0

( l∑
n=0

αn,l−n(t)e
iϑ(2n−l)

)
rl. (2.11)

Note that the coefficients αn,m satisfy the symmetry property αm,n = α∗
n,m.

Let us list a couple of properties of the function M defined in (1.4).

▷ The recurrence relation (2.9) implies that W1J =M , which, together with the symmetry of
M shows that

−JW ∗
1 =W1J. (2.12)

▷ The symmetry of M also implies that MJM = (detM)J , and consequently,

W1W1 = −(detM)I, W1JW
∗
1 = (detM)J. (2.13)

▷ Since M is the primitive of a pointwise positive semi-definite matrix function, M is itself
positive semi-definite and M(t) ≤M(s) whenever t ≤ s.

2.3 Some matrix algebra

We frequently use certain algebraic manipulations with matrices. In order to present arguments
in a clean way, it is practical to introduce the following operations and relations for matrices.

2.2 Definition. For U = (uij)
2
i,j=1 ∈ C2×2 set

|U | :=
(
|uij |

)2
i,j=1

.

For U = (uij)
2
i,j=1, Ũ = (ũij)

2
i,j=1 ∈ R2×2 define

U ⪯ Ũ :⇔ uij ≤ ũij , i, j ∈ {1, 2}.

♢

We will use without further notice a couple of simple properties and rules for these operations
and relations. A list of these rules can be found in [27, Lemma 2.3].

2.4 Alternative forms for the bounds A(r) and L(r)

In this short subsection we consider some reformulations of t̊, A(r) and L(r), which are used in
the proofs of Theorem 1.1 and other results in later sections. Let us set

r̊(t) :=
η

2

(
m1(t)m2(t)

)− 1
2 , t ∈ (̊a, b), (2.14)

which is the solution for r of the equation (1.5). It follows that t̊ and r̊ are inverses of each

other. In particular, r = η
2 (m1m2)

− 1
2 (̊t(r)), which implies the representations

A(r) =
2r

η
·m1(̊t(r)) =

η

2r
· 1

m2(̊t(r))
, (2.15)

L(r) =
2

η
· r detM (̊t(r))

m2(̊t(r))
=

4

η2
· r2 detM (̊t(r)) ·A(r). (2.16)

Let us also note that the function detM
m2

is non-decreasing since

d

dt

(
detM(t)

m2(t)

)
=

1

m2(t)2

[
m2(t)

2h1(t) +m3(t)
2h2(t)− 2m2(t)m3(t)h3(t)

]
=

1

m2(t)2

(
m2(t)

−m3(t)

)∗
(
h1(t) h3(t)

h3(t) h2(t)

)(
m2(t)

−m3(t)

)
≥ 0. (2.17)

This is also used in later sections.

9



3 Proof of Weyl coefficient estimates

In this section we prove Theorem 1.1 and Proposition 1.4. This is done by establishing bounds
for the coefficients αn,m(t) of the expansion (2.11) and some related quantities in terms of

M+(t) :=

(
m1(t)

√
m1(t)m2(t)√

m1(t)m2(t) m2(t)

)
,

and
m+(t) := 2 ·

√
m1(t)m2(t).

Observe the following properties of M+(t) and m+(t).

3.1 Lemma. With the notation introduced in Definition 2.2 we have

(i) |M(t)| ⪯
∫ t

a

|H(s)| ds ⪯M+(t);

(ii)
(
M+(t)|J |

)n
M+(t) = m+(t)nM+(t), n ≥ 0;

(iii) ∀s ≤ t. M+(s) ⪯M+(t) ∧ m+(s) ≤ m+(t).

Proof. The first inequality in (i) is clear. Consider the second inequality. The diagonal entries
of the left-hand and right-hand sides actually coincide. Since H(t) ≥ 0, also |H(t)| ≥ 0, and

hence
∫ t
a
|H(s)| ds ≥ 0. Thus m1(t)m2(t)−

(∫ t
a
|h3(s)| ds

)2 ≥ 0.
Item (ii) follows from a general observation. Consider a matrix U = (uij)

2
i,j=1 ∈ R2×2 that

is of the form U = αξϕξ
∗
ϕ with some α, ϕ ∈ R where ξϕ := (cosϕ, sinϕ)∗. Then

(U |J |)U = αξϕξ
∗
ϕ|J | · αξϕξ∗ϕ = αξϕ · αξ∗ϕ|J |ξϕ · ξ∗ϕ

= αξϕ · α2 cosϕ sinϕ · ξ∗ϕ = 2u12 · αξϕξ∗ϕ = 2u12U.

Thus, inductively,
(U |J |)nU = (2u12)

nU, n ≥ 0.

The matrix M+(t) is symmetric with determinant zero, and hence of the considered form.
Item (iii) is clear since m1 and m2 are non-decreasing. ❑

3.1 Bounds involving A(r)

In order to obtain the bounds (1.6), (1.7), and the estimate from above in (1.8), it is enough
to have the following crude estimate.

3.2 Lemma. We have

|Wn(t)| ⪯ m+(t)n−1M+(t)|J |, n ≥ 1, (3.1)

and
|αn,m(t)| ⪯ m+(t)n+mM+(t), n,m ≥ 0.

This statement has been extracted from the personal communication [43] by H. Winkler2. Since
this communication remained unpublished, we provide a complete proof.

Proof. To see (3.1), we use induction on n. First, observe that

|W1(t)| =
∣∣∣ ∫ t

a

H(s) ds · (−J)
∣∣∣ ⪯ ∫ t

a

|H(s)| ds · |J | ⪯M+(t)|J |

2The proofs of the main results of [44] use the estimate [44, Lemma 3.2] of power series coefficients whose
proof contains a mistake (and whose assertion is most probably wrong). However, the theorems stated in the
paper are still correct. They can be proved using a weaker form of [44, Lemma 3.2], which does hold. This is
shown in [43], and Lemma 3.2 is nothing but a clean formulation of the relevant argument.
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by Lemma 3.1(i). Second, with Lemma 3.1(ii) we obtain

|Wn+1(t)| =
∣∣∣ ∫ t

a

Wn(s)H(s) ds · (−J)
∣∣∣ ⪯ ∫ t

a

|Wn(s)||H(s)| ds · |J |

⪯
∫ t

a

m+(s)n−1M+(s)|J ||H(s)| ds · |J | ⪯ m+(t)n−1M+(t)|J |
∫ t

a

|H(s)| ds · |J |

⪯ m+(t)n−1 ·M+(t)|J |M+(t) · |J | = m+(t)nM+(t)|J |,

which proves (3.1).
Now we use (3.1) to estimate αn,m(t). For n,m ≥ 1 we have

|αn,m(t)| ⪯
∫ t

a

|Wn(s)| · |H(s)| · |Wm(s)|∗ ds

⪯
∫ t

a

m+(s)n+m−2M+(s)|J | · |H(s)| · |J |M+(s) ds

⪯ m+(t)n+m−2M+(t)|J | ·
∫ t

a

|H(s)| ds · |J |M+(t)

⪯ m+(t)n+m−2M+(t)|J | ·M+(t) · |J |M+(t) ⪯ m+(t)n+mM+(t).

For the case when n or m is equal to zero, the asserted estimate is obtained in an analogous
way. The necessary computation can be found in [27]. ❑

Proof of Theorem 1.1 (upper bounds). Let H, η, σ, t̊(r) and ϑ ∈ (0, π) be as in the formulation
of the theorem. Note that (1.5) is equivalent to rm+(̊t(r)) = η. Using (2.11) and Lemma 3.2
we obtain∣∣∇(̊t(r), reiϑ)−M (̊t(r))

∣∣ = ∣∣∣∣ ∞∑
l=1

( l∑
n=0

αn,l−n(̊t(r))e
iϑ(2n−l)

)
rl
∣∣∣∣ ⪯ ∞∑

l=1

( l∑
n=0

|αn,l−n(̊t(r))|
)
rl

⪯
( ∞∑
l=1

(l + 1)m+(̊t(r))lrl
)
M+(̊t(r)) =

( ∞∑
l=1

(l + 1)ηl
)
M+(̊t(r)).

We have
∞∑
l=1

(l + 1)ηl =

∞∑
k=1

kηk−1 − 1 =
1

(1− η)2
− 1 = σ, (3.2)

and this implies that ∣∣a(̊t(r), reiϑ)−m2(̊t(r))
∣∣ ≤ σm2(̊t(r)),∣∣b(̊t(r), reiϑ)−m3(̊t(r))
∣∣ ≤ σ

√
(m1m2)(̊t(r)) =

ση

2r
.

Remembering that m3(t)
2 ≤ (m1m2)(t), we therefore obtain

(1− σ)m2(̊t(r)) ≤ a
(̊
t(r), reiϑ

)
≤ (1 + σ)m2(̊t(r)), (3.3)∣∣b(̊t(r), reiϑ)∣∣ ≤ (1 + σ)η

2r
, Im b

(̊
t(r), reiϑ

)
≤ ση

2r
.

Note that the assumption η ∈ (0, 1− 1√
2
) implies that σ ∈ (0, 1). Now it follows from Lemma 2.1

that (recall from (2.15) that A(r) = η
2

1
rm2 (̊t(r)

)

∣∣qH(reiϑ)
∣∣ ≤ |b(̊t(r), reiϑ)|

a(̊t(r), reiϑ)
+ 2 · 1

2(r sinϑ)a(̊t(r), reiϑ)

≤
(1+σ)η

2r

(1− σ)m2(̊t(r))
+

1

(r sinϑ)(1− σ)m2(̊t(r))

=
(1 + σ)η + 2

sinϑ

2(1− σ)
· 1

rm2(̊t(r))
=

1 + σ + 2
η·sinϑ

1− σ
·A(r),
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∣∣Re ηH(reiϑ)
∣∣ ≤ Re b(̊t(r), reiϑ)

a(̊t(r), reiϑ)
+

1

2(r sinϑ)a(̊t(r), reiϑ)

≤
(1+σ)η

2r

(1− σ)m2(̊t(r))
+

1

2(r sinϑ)(1− σ)m2(̊t(r))

=
(1 + σ)η + 1

sinϑ

2(1− σ)
· 1

rm2(̊t(r))
=

1 + σ + 1
η·sinϑ

1− σ
·A(r),

Im qH(reiϑ) ≤ Im b(̊t(r), reiϑ)

a(̊t(r), reiϑ)
+ 2 · 1

2(r sinϑ)a(̊t(r), reiϑ)

≤
ση
2r

(1− σ)m2(̊t(r))
+

1

(r sinϑ)(1− σ)m2(̊t(r))

=
ση + 2

sinϑ

2(1− σ)
· 1

rm2(̊t(r))
=
σ + 2

η·sinϑ

1− σ
·A(r). ❑

Proof of Theorem 1.1 (lower bound for the absolute value). Let the data be given as in the for-
mulation of the theorem. We use the already established upper bound for the Hamiltonian

H̃ := −JHJ =

(
h2 −h3
−h3 h1

)
.

With the obvious notation we have

qH̃ = − 1

qH
, m̃1 = m2, m̃2 = m1,

˚̃t(r) = t̊(r).

Hence

Ã(r) =

√√√√m̃1

(̊
t̃(r)

)
m̃2

(̊
t̃(r)

) =

√
m2

(̊
t(r)

)
m1

(̊
t(r)

) =
1

A(r)
,

and the upper bound from (1.6) gives

∣∣qH(reiϑ)∣∣ = 1

|qH̃(reiϑ)|
≥
(1 + σ + 2

η sinϑ

1− σ

)−1

A(r). ❑

3.2 The lower bound for Im qH

The bound for αn,m(t) given in Lemma 3.2 puts absolute values everywhere and does not take
care of possible cancellations. Proving the lower bound of Im qH asserted in (1.8) requires more
delicate coefficient estimates.

We start with some preliminary computations.

3.3 Lemma. We have∫ t

a

Wn(s)H(s)Wm(s)∗ ds =Wn(t)W1(t)JWm(t)∗ +

∫ t

a

Wn(s)W1(s)H(s)Wm−1(s)
∗ ds

+

∫ t

a

Wn−1(s)H(s)W1(s)
∗Wm(s)∗ ds, n,m ≥ 1,

(3.4)

and

Wn(t) =Wn−1(t)W1(t) +
(
detM(t)

)
Wn−2(t) +

∫ t

a

(
detM(s)

)
Wn−3(s)H(s)J ds

−
∫ t

a

Wn−2(s)JW1(s)
∗ · JH(s)J ds, n ≥ 3.

(3.5)
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Proof. The equality (3.4) follows from the definition of Wn by straightforward differentiation
which is omitted; the necessary computation can be found in [27].

To show (3.5), we use again integration by parts, (3.4) with (n,m) replaced by (n − 2, 1),
and also (2.13) and (2.12):

Wn(t) =

∫ t

a

Wn−1(s)
(
−H(s)J

)
ds

=Wn−1(t)W1(t)−
∫ t

a

(
−Wn−2(s)H(s)J

)
W1(s) ds

=Wn−1(t)W1(t)−
∫ t

a

Wn−2(s)H(s)W ∗
1 (s)J ds

=Wn−1(t)W1(t)−Wn−2(t)W1(t)JW
∗
1 (t)J

−
∫ t

a

Wn−2(s)W1(s)H(s)J ds−
∫ t

a

Wn−3(s)H(s)
(
W1(s)W1(s)

)∗
J ds

=Wn−1(t)W1(t)−Wn−2(t) · (detM(t))J · J

−
∫ t

a

Wn−2(s)JW
∗
1 (s) · JH(s)J ds−

∫ t

a

Wn−3(s)H(s)
(
− detM(s)

)
I · J ds. ❑

Set
βn,m(t) :=Wn(t)JWm(t)∗, n,m ≥ 0,

and note that the symmetry relation βm,n(t) = −βn,m(t)∗ holds.

3.4 Proposition.3 For k, l ≥ 0, (k, l) ̸= (0, 0) we have

|β2k+1,2l+1(t)| ⪯ (detM(t)) ·
(
1 + 3(k + l)

)
·m+(t)2(k+l)−1M+(t). (3.6)

Proof. We divide the proof into three steps.

① Since the matrix on the right-hand side of (3.6) is symmetric, the stated assertion is sym-
metric in k and l. This means, it holds for a pair (k, l) if and only if it holds for (l, k).

② We proceed by induction on k + l. First, assume that k + l = 1, i.e. (k, l) ∈ {(1, 0), (0, 1)}.
By symmetry, it is enough to consider the case (k, l) = (1, 0). Using (3.5), (2.13), (3.1) and
Lemma 3.1 we compute

|β3,1(t)| = |W3(t) · JW1(t)
∗|

=
∣∣∣(W2(t)W1(t) + (detM(t))W1(t) +

∫ t

a

(detM(s))H(s)J ds

−
∫ t

a

W1(s)JW1(s)
∗ · JH(s)J ds

)
JW1(t)

∗
∣∣∣

⪯ |W2(t)| · |W1(t)JW1(t)
∗︸ ︷︷ ︸

=(detM(t))J

|+ (detM(t))|W1(t)| · |J | · |W1(t)|∗

+

∫ t

a

(detM(s))|H(s)| ds · |W1(t)|∗

+

∫ t

a

|W1(s)JW1(s)
∗︸ ︷︷ ︸

=(detM(s))J

| · |J | · |H(s)| ds · |W1(t)|∗

⪯ (detM(t))|W2(t)||J |+ (detM(t))|W1(t)||J ||W1(t)|∗

+ (detM(t)) ·
∫ t

a

|H(s)| ds · |W1(t)|∗

+ (detM(t)) ·
∫ t

a

|H(s)| ds · |W1(t)|∗

3Seeking a finer estimate of the form (3.6) was already suggested in [43] as a potential way to progress.

13



⪯ (detM(t))
(
m+(t)M+(t)|J | · |J |+M+(t)|J | · |J | · |J |M+(t)

+ 2M+(t) · |J | ·M+(t)
)

= 4(detM(t))m+(t)M+(t),

which is (3.6) for (k, l) = (1, 0).

③ Let (k, l) with k+l ≥ 2 be given, and assume that (3.6) holds for all (k′, l′) with k′+l′ < k+l.
By symmetry, we can assume, w.l.o.g., that k ≥ l. Then, certainly, k ≥ 1. It follows from (3.5)
that

β2k+1,2l+1(t) =W2k+1(t)JW
∗
2l+1(t)

=W2k(t) ·W1(t)JW
∗
2l+1(t) + (detM(t))W2k−1(t)JW

∗
2l+1(t)

−
∫ t

a

(detM(s))W2k−2(s)H(s) ds ·W ∗
2l+1(t)

+

∫ t

a

W2k−1(s)JW
∗
1 (s) · JH(s) ds ·W ∗

2l+1(t).

Let us estimate each term on the right-hand side separately. Using (3.1), the induction hypo-
thesis, (2.13) and Lemma 3.1(ii) we obtain

|W2k(t) ·W1(t)JW2l+1(t)
∗| ⪯ |W2k(t)| · |W1(t)JW2l+1(t)

∗|

⪯ m+(t)2k−1M+(t)|J | ·

{
(detM(t))(1 + 3l)m+(t)2l−1M+(t), l > 0

(detM(t))|J |, l = 0

= (detM(t))(1 + 3l) ·

{
m+(t)2(k+l)−2M+(t)|J |M+(t), l > 0

m+(t)2k−1M+(t)|J ||J |, l = 0

= (detM(t))(1 + 3l)m+(t)2(k+l)−1M+(t).

Moreover, (3.1) and Lemma 3.1 imply that∣∣(detM(t))W2k−1(t)JW2l+1(t)
∗∣∣

⪯ (detM(t))m+(t)2k−2M+(t)|J | · |J | ·m+(t)2l|J |M+(t)

= (detM(t))m+(t)2(k+l)−2M+(t)|J |M+(t)

= (detM(t))m+(t)2(k+l)−1M+(t)

and ∣∣∣∣ ∫ t

a

(detM(s))W2k−2(s)H(s) ds ·W2l+1(t)
∗
∣∣∣∣

⪯
∫ t

a

(detM(s))|W2k−2(s)| · |H(s)| ds · |W2l+1(t)|∗

⪯
∫ t

a

(detM(s)) ·
{
m+(s)2k−3M+(s)|J |, k > 1

I, k = 1

}
· |H(s)| ds

·m+(t)2l|J |M+(t)

⪯ (detM(t)) ·
{
m+(t)2k−3M+(t)|J |, k > 1

I, k = 1

}
·
∫ t

a

|H(s)| ds︸ ︷︷ ︸
⪯M+(t)

·m+(t)2l|J |M+(t)
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⪯ (detM(t)) ·

{
m+(t)2(k+l)−3(M+(t)|J |)2M+(t), k > 1

m+(t)2lM+(t)|J |M+(t), k = 1

= (detM(t))m+(t)2(k+l)−1M+(t).

Finally, we use again the induction hypothesis to show∣∣∣∣ ∫ t

a

W2k−1(s)JW1(s)
∗ · JH(s) ds ·W2l+1(t)

∗
∣∣∣∣

⪯
∫ t

a

|W2k−1(s)JW1(s)
∗| · |J | · |H(s)| ds · |W2l+1(t)|∗

⪯
∫ t

a

{
(detM(s))(1 + 3(k − 1))m+(s)2(k−1)−1M+(s), k > 1

(detM(s))|J |, k = 1

}
· |J | · |H(s)| ds ·m+(t)2l|J |M+(t)

⪯ (detM(t)) ·
{
(1 + 3(k − 1))m+(t)2(k−1)−1M+(t), k > 1

|J |, k = 1

}
· |J | ·

∫ t

a

|H(s)| ds︸ ︷︷ ︸
⪯M+(t)

·m+(t)2l|J |M+(t)

⪯ (detM(t))(1 + 3(k − 1))

·

{
m+(t)2(k−1+l)−1(M+(t)|J |)2M+(t), k > 1

m+(t)2lM+(t)|J |M+(t), k = 1

= (detM(t))(1 + 3(k − 1))m+(t)2(k+l)−1M+(t).

Combining all estimates we obtain

|β2k+1,2l+1(t)| = |W2k+1(t)JW2l+1(t)
∗|

⪯ (detM(t))m+(t)2(k+l)−1M+(t) ·
[
(1 + 3l) + 1 + 1 + (1 + 3(k − 1))︸ ︷︷ ︸

=1+3(k+l)

]
,

which finishes the proof. ❑

We also need the following formulae that relate αn,m to βk,l.

3.5 Lemma. We have

αn,m+1(t)− αn+1,m(t) = βn+1,m+1(t), n,m ≥ 0,

αn,0(t) = βn+1,0(t), α0,n(t) = −β0,n+1(t), n ≥ 0.

Proof. The first line follows since

d

dt

(
Wn+1(t)JWm+1(t)

∗) =Wn(t)H(t)Wm+1(t)
∗ −Wn+1(t)H(t)Wm(t)∗

and Wn(a) = 0, n ≥ 1. The second line is just the recurrence relation (2.9). ❑

Proof of Theorem 1.1 (lower bound for the imaginary part). Let the data be given as in the
formulation of the theorem. We first estimate Im qH(z) along the imaginary axis. Let t ∈ [a, b)
and r > 0 and consider (2.11), which, for ϑ = π/2, becomes

∇(t, ir) =

∞∑
l=0

( l∑
n=0

αn,l−n(t)(−1)n
)
(−i)lrl.
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The coefficient of r1 is

α0,1(t)i
−1 + α1,0(t)i

1 = −iβ1,1(t) = −iW1(t)JW1(t)
∗ = −i(detM(t))J

by (2.13), and hence

∇(t, ir)−M(t) + i(detM(t))J · r =
∞∑
l=2
l even

( l∑
n=0

αn,l−n(t)(−1)n
)
(−1)

l
2 rl

+ i

∞∑
l=3
l odd

( l∑
n=0

αn,l−n(t)(−1)n
)
(−1)

l+1
2 rl.

The imaginary part of the right-hand side can be estimated with the help of Proposition 3.4;
namely, using Lemma 3.5 to join consecutive summands we obtain∣∣∣∣ ∞∑

l=3
l odd

( l∑
n=0

αn,l−n(t)(−1)n
)
(−1)

l+1
2 rl

∣∣∣∣
=

∣∣∣∣ ∞∑
l=3
l odd

( l−1
2∑

k=0

[
α2k,l−2k(t)− α2k+1,l−2k−1(t)

])
(−1)

l+1
2 rl

∣∣∣∣
⪯

∞∑
l=3
l odd

( l−1
2∑

k=0

∣∣β2k+1,l−2k(t)
∣∣)rl = ∞∑

l=3
l odd

( l−1
2∑

k=0

∣∣β2k+1, 2( l−1
2 −k)+1(t)

∣∣)rl

⪯
∞∑
l=3
l odd

( l−1
2∑

k=0

(detM(t))
[
1 + 3

(
k +

l − 1

2
− k
)]

·m+(t)2(k+
l−1
2 −k)−1M+(t)rl

= detM(t) ·
( ∞∑
l=3
l odd

l + 1

2
· 3l − 1

2
m+(t)l−2rl

)
M+(t).

Using the definition of a(t, z) and b(t, z) in Lemma 2.1 we obtain∣∣ Im b(t, ir)− (detM(t))r
∣∣ = ∣∣∣∣ Im((10

)∗

∇(t, ir)

(
0

1

))
− (detM(t))r

∣∣∣∣
=

∣∣∣∣ Im(10
)∗(

∇(t, ir)−M(t) + i(detM(t))J · r
)(0

1

)∣∣∣∣
≤
(
1

0

)∗

detM(t) ·
( ∞∑
l=3
l odd

l + 1

2
· 3l − 1

2
m+(t)l−2rl

)
M+(t)

(
0

1

)

≤ (detM(t))r ·
∞∑
l=3
l odd

(l + 1)(3l − 1)

8

(
m+(t)r

)l−1

≤ (detM(t))r ·
∞∑
k=1

(2k + 2)
(
3(2k + 1)− 1

)
8

(
m+(t)r

)2k
= (detM(t))r ·

∞∑
k=1

(k + 1)
3k + 1

2

(
m+(t)r

)2k
.

Recall that m+(̊t(r))r = η. Moreover, it is easy to check that η ≤ 1
2 implies

3k + 1

2
ηk ≤ 1, k ∈ N. (3.7)
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Continuing the above chain of inequalities with t = t̊(r) and using (3.7) and (3.2) we obtain

∣∣ Im b(̊t(r), ir)− (detM (̊t(r)))r
∣∣ ≤ (detM (̊t(r)))r ·

∞∑
k=1

(k + 1)
3k + 1

2
η2k

≤ (detM (̊t(r)))r ·
∞∑
k=1

(k + 1)ηk = σ(detM (̊t(r)))r,

and hence Im b(̊t(r), ir) ≥ (1 − σ)(detM (̊t(r)))r. This, together with (3.3) and Lemma 2.1,
implies that

Im qH(ir) ≥ Im b(̊t(r), ir)

a(̊t(r), ir)
≥ (1− σ) detM (̊t(r))r

(1 + σ)m2(̊t(r))
=

1− σ

1 + σ
· η
2
L(r),

which is the lower bound in (1.8) for ϑ = π/2. Having an estimate along the imaginary axis,
(1.8) for general ϑ follows using a standard property of the Poisson kernel. Using the Herglotz
integral representation (1.3) of qH we obtain, for each ϑ ∈ (0, π), that

Im qH(reiϑ) = βHr sinϑ+

∫
R

r sinϑ

|t− reiϑ|2
dµH(t)

≥ βHr sinϑ+

∫
R

r sinϑ

(t2 + r2)(1 + | cosϑ|)
dµH(t)

≥ sinϑ

1 + | cosϑ|

(
βHr +

∫
R

r

t2 + r2
dµH(t)︸ ︷︷ ︸

=Im qH(ir)

)
,

which finishes the proof of Theorem 1.1. ❑

3.3 The comparison result

Let H and H̃ be Hamiltonians on [a, b) such that none of their diagonal entries vanishes a.e.
We use the freedom in the choice of the parameter η in Theorem 1.1, and therefore also make
a notational distinction: set

r̊(η)(t) :=
η

2

(
m1(t)m2(t)

)− 1
2 , t̊(η)(r) := r−1

(η)(r), A(η)(r) :=

√
m1(̊t(η)(r))

m2(̊t(η)(r))
.

for t ∈ (̊a, b) and r > 0, where å is defined in (1.9). Moreover, recall that A(η)(r) can be written
as

A(η)(r) =
2r

η
·m1

(̊
t(η)(r)

)
=

η

2r
· 1

m2(̊t(η)(r))
. (3.8)

Analogous notation applies to H̃.

3.6 Lemma. Let c, γ > 0 and let t ∈ (̊a, b). Assume that t ≤ ˚̃a or that

trM̃(t) ≤ c trM(t), m̃2(t) ≤ γm2(t), m1(t) ≥
1

2
trM(t). (3.9)

Further, let η ∈ (0, 1√
2cγ

[1− 1√
2
]), and set

η̃ := η ·
√
2cγ, σ̃ :=

1

(1− η̃)2
− 1, δ̃ :=

(
1 + σ̃ + 2

η̃

1− σ̃

)−1
2

η̃
.

Then
1

r̊(η)(t)

∣∣qH̃(i̊r(η)(t))∣∣ ≥ δ̃ · m̃1(t).
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Proof. First assume that t > ˚̃a. Then, by assumption, (3.9) holds, from which we obtain

m̃1(t) ≤ trM̃(t) ≤ c · trM(t) ≤ 2c ·m1(t),

m̃1(t)m̃2(t) ≤ 2cγ ·m1(t)m2(t),

and hence

r̊(η)(t) =
η

2

(
m1(t)m2(t)

)− 1
2 ≤ η

√
2cγ

2

(
m̃1(t)m̃2(t)

)− 1
2 = ˚̃r(η̃)(t).

Since ˚̃t(η̃) is decreasing, it follows that

˚̃t(η̃)
(̊
r(η)(t)

)
≥ ˚̃t(η̃)

(̊
r̃(η)(t)

)
= t.

In the case when t ≤ ˚̃a we have
˚̃t(η̃)

(̊
r(η)(t)

)
> ˚̃a ≥ t.

In both cases we can apply Theorem 1.1 to estimate

1

r̊(η)(t)

∣∣qH̃(i̊r(η)(t))∣∣ ≥ (1 + σ̃ + 2
η̃

1− σ̃

)−1
1

r̊(η)(t)
Ã(η̃)

(̊
r(η)(t)

)
=

(
1 + σ̃ + 2

η̃

1− σ̃

)−1
2

η̃
· m̃1

(̊
t̃(η̃)
(̊
r(η)(t)

))
≥
(
1 + σ̃ + 2

η̃

1− σ̃

)−1
2

η̃
· m̃1(t).

❑

Proof of Proposition 1.4. Let the data be given as in the statement of the proposition and
assume first that a′ < b. Choose η > 0 such that

max
{
η, η

√
2c1γ1, η

√
2c2γ2

}
< 1− 1√

2
,

and set
r0 := max

{
r̊(η)(a

′),˚̃r(η)(a
′)
}
. (3.10)

Further, let r > r0. We distinguish three cases.

① Assume that A(η)(r) ≥ 1.

Set t := t̊(η)(r); then t ∈ (̊a, a′). Since A(η)(r) ≥ 1, we have m1(t) ≥ m2(t), and hence

m1(t) ≥ 1
2 trM(t). Set

η2 := η ·
√
2c2γ2, σ2 :=

1

(1− η2)2
− 1, δ2 :=

(
1 + σ2 +

2
η2

1− σ2

)−1
2

η2
.

The assumptions of Lemma 3.6 are satisfied with c = c2, γ = γ2, and hence

1

r
|qH̃(ir)| ≥ δ2 · m̃1(t) ≥

δ2
γ1

·m1(t) =
δ2
γ1

· η
2r
A(η)(r)

≥ δ2
γ1

· η
2r

·
(
1 + σ + 2

η

1− σ

)−1

· |qH(ir)|. (3.11)

② Assume that Ã(η)(r) ≤ 1.

We proceed similarly. Set t := ˚̃t(η)(r); then t ∈ (̊ã, a′). Moreover, we have m̃1(t) ≤ m̃2(t), and

hence m̃2(t) ≥ 1
2 trM̃(t). We apply Lemma 3.6 with −JH̃J in place of H and −JHJ in place

of H̃. The assumptions of the lemma are now satisfied with c = c1, γ = γ1. Set

η1 := η ·
√
2c1γ1, σ1 :=

1

(1− η1)2
− 1, δ1 :=

(
1 + σ1 +

2
η1

1− σ1

)−1
2

η1
;
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then

1

r

∣∣∣ −1

qH(ir)

∣∣∣ = 1

r

∣∣q−JHJ(ir)∣∣ ≥ δ1 ·m2(t) ≥
δ1
γ2

· m̃2(t) =
δ1
γ2

· η
2r

[
Ã(η)(r)

]−1

≥ δ1
γ2

· η
2r

·
[(

1 + σ + 2
η

1− σ

)
· |qH̃(ir)|

]−1

. (3.12)

③ Assume that A(η)(r) < 1 and Ã(η)(r) > 1.

Then

|qH(ir)| <
1 + σ + 2

η

1− σ
, |qH̃(ir)| >

(
1 + σ + 2

η

1− σ

)−1

,

and we see that

|qH(ir)| ≤
(
1 + σ + 2

η

1− σ

)2

· |qH̃(ir)|. (3.13)

The above cases together cover the whole ray (r0,∞). From (3.11), (3.12) and (3.13) we obtain
that, for all r on this ray, |qH(ir)| ≤ C|qH̃(ir)| where C is the maximum of the three terms

γ1
δ2

· 2
η

(
1 + σ + 2

η

1− σ

)
,

γ2
δ1

· 2
η

(
1 + σ + 2

η

1− σ

)
,

(
1 + σ + 2

η

1− σ

)2

.

Observe that C is independent of H, H̃ and a′. Finally, the statement that we can choose r0 = 0
when a′ = b follows from the fact that C is independent of a′ and from (3.10), which shows
that r0 → 0 as a′ → b. ❑

4 Asymptotic behaviour of the spectral measure

Having available the estimates of the Weyl coefficient qH from Theorem 1.1, we employ Abelian–
Tauberian-type theorems to translate knowledge about the growth of Im qH(ir) for r → ∞ to
knowledge about the growth of the distribution function of the spectral measure µH towards
infinity. This enables us to give conditions for weighted integrability and boundedness of tails
of µH relative to suitable comparison functions. Thereby we use functions of regular variation
(see Appendix A) to compare with. This class of regularly varying functions provides a much
finer scale than just the class of power functions; see, e.g. Examples 4.13 and 4.21.

In this section we assume that neither h1 nor h2 vanishes in a neighbourhood of the left
endpoint a, i.e. we assume that å = a, where å is defined in (1.9). The reason is the following.
If h1 = 0 in a neighbourhood of a, then the measure µH is finite and therefore the growth of the
distribution function of µH trivial. If h2 = 0 in a neighbourhood of a, then the linear term βHz
in (1.3) dominates the integral when z → ∞ non-tangentially. Hence the growth of Im qH(ir)
does not determine the growth of the distribution function of the spectral measure µH . These
two special cases are considered in more detail in §5.2.

Throughout this section we use the following notation.

4.1 Definition. If µ is a positive Borel measure on the real line, then we denote by µ̃ the
push-forward measure of µ under the map t 7→ |t|, and by

↔
µ the distribution function of µ̃.

Explicitly, this means

µ̃([0, r)) = µ((−r, r)) = ↔
µ(r), r ≥ 0, µ̃((−∞, 0)) = 0. (4.1)

♢

4.1 Membership of Kac classes

Recall that a Nevanlinna function q is said to belong to the Kac class with index α ∈ (0, 2) if
the measure µ in its Herglotz integral representation (cf. (1.3)) satisfies∫

R

dµ(r)

1 + |r|α
<∞
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and no linear term is present. These classes have been investigated for a long time because of
their role in the spectral theory of the string; see [21, 11.6◦], [22, 18]. They are also known
to play a role in a broader operator-theoretic context [45, 14]. More general classes occur
in [20] where weighted integrability conditions for the spectral measure of a Krein string are
characterised in terms of the mass distribution function of the string. Kac’s result is formulated
in a way to allow arbitrary non-decreasing comparison functions, while we prefer to give more
explicit conditions on the cost of restricting the class of comparison functions to regularly
varying functions. See Appendix A for the definition and some properties of regularly varying
functions.

4.2 Definition. Let g be a continuous, regularly varying function with index α ≤ 2 and
limr→∞ g(r) = ∞. We denote by Mg the set of all positive Borel measures µ on R such that∫

[1,∞)

dµ̃(r)

g(r)
<∞.

♢

4.3 Remark. The assumption that α ≤ 2 is natural. Namely, our aim is to relate the spectral
measure of a canonical system with the Hamiltonian of the system. Such measures are always
Poisson integrable, i.e.

∫
[1,∞)

r−2 dµ̃(r) <∞.

Contrasting this, the assumption that limr→∞ g(r) = ∞ is a restriction. The necessity to
impose this assumption comes from the fact that finite measures µ correspond to Hamiltonians
which start with an interval where h1 = 0. Some cases of finite measures µ can be reduced to
the case of an infinite measure. Explicit formulae that relate the Hamiltonians with spectral
measures µ and t2 dµ(t) are known; see [41, Rule 6]. Iterating these formulae and combining
them with our results below one can obtain corresponding results for a class of finite measures;
however, these formulae will be very lengthy (and presumably hard to apply in practice). Hence,
we do not go into further details in this respect. ♢

Theorem 4.10 below is a generalisation of [20, Theorem] to the case of a non-diagonal Hamilto-
nian; the connection is worked out in detail in Section 6.1. In the formulation of the theorem
we use the following notation: for a regularly varying function g with index α ≤ 2 set

g⋆(r) :=

∫ r

1

t

g(t)
dt, r ≥ 1. (4.2)

By Karamata’s theorem (see Theorem A.4 (i)) the function g⋆ is regularly varying with index
2− α, and

g⋆(r)

 ≍ r2

g(r) , α < 2,

≫ r2

g(r) , α = 2.
(4.3)

For the following, it turns out to be more convenient to use a slight modification of the class
Mg.

4.4 Definition. Let g be a regularly varying function with index α ≤ 2 and limr→∞ g(r) = ∞.
We denote by M̂g the set of all positive Borel measures µ on R such that∫ ∞

1

↔
µ(r)

g⋆(r)

r3
dr <∞,

where
↔
µ and g⋆ are defined in (4.1) and (4.2) respectively. ♢

For α ∈ (0, 2) the classes Mg and M̂g coincide as the following proposition shows.

4.5 Proposition. Let g be a regularly varying function with index α ≤ 2 and limr→∞ g(r) =
∞.

(i) If α ∈ (0, 2), then M̂g = Mg.

(ii) If α = 0 or α = 2, then M̂g ⊆ Mg.
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(iii) If α ∈ [0, 2), then

µ ∈ M̂g ⇔
∫ ∞

1

↔
µ(r)

dr

rg(r)
<∞.

(iv) If α ∈ (0, 2], then

µ ∈ Mg ⇔
∫ ∞

1

↔
µ(r)

dr

rg(r)
<∞.

Before we prove Proposition 4.5 we formulate a lemma about integration by parts in a measure-
theoretic form; see, e.g. [19, Lemma 2]. An explicit proof can be found in [27].

4.6 Lemma. Let −∞ < a < b ≤ ∞ and let µ and ν be positive Borel measures on [a, b). Then∫
[a,b)

µ([a, t)) dν(t) =

∫
[a,b)

ν((t, b)) dµ(t). (4.4)

If these integrals are finite, then lim
t→b

µ([a, t))ν([t, b)) = 0.

Proof of Proposition 4.5. If
∫∞
1

dt
tg(t) <∞, then

∫ ∞

r

dt

tg(t)

 ≍ 1
g(r) , α > 0,

≫ 1
g(r) , α = 0,

(4.5)

by Theorem A.4 (ii). Using (4.3), Lemma 4.6 and (4.5) we then obtain the following implica-
tions:

µ ∈ M̂g ⇔
∫ ∞

1

↔
µ(r)

r3
g⋆(r) dr <∞

{
if α < 2⇐⇒
=⇒
if α = 2

} ∫ ∞

1

↔
µ(r)

rg(r)
dr <∞ ⇔

∫
[1,∞)

(∫ ∞

r

1

tg(t)
dt

)
dµ̃(r) <∞

{
if α > 0⇐⇒
=⇒
if α = 0

} ∫
[1,∞)

dµ̃(r)

g(r)
<∞ ⇔ µ ∈ Mg,

which shows all assertions. ❑

The following proposition contains the core of the argument in the proof of Theorem 4.10 below.
However, it is more flexible and is also used in Section 6.1.

4.7 Proposition. Let H be a Hamiltonian defined on some interval [a, b), and assume that
neither h1 nor h2 vanishes on a neighbourhood of the left endpoint a. Let f be a continuous,
non-decreasing, regularly varying function, and denote by µH the spectral measure of H.

Then the statements

(i) ∃a′ ∈ (a, b) such that ∫ a′

a

h1(x) ·f
(
(m1m2)(t)

− 1
2

)
dt <∞;

(ii) ∫ ∞

1

↔
µH(r)

f(r)

r3
dr <∞; (4.6)

(iii) ∃a′ ∈ (a, b) such that∫ a′

a

1

m2(t)2

(
m2(t)

−m3(t)

)∗

H(t)

(
m2(t)

−m3(t)

)
·f
(
(m1m2)(t)

− 1
2

)
dt <∞.
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satisfy (i)⇒ (ii)⇒ (iii).
If, in addition, f is differentiable and f′ is regularly varying, then

(i) ⇔ ∃a′ ∈ (a, b).

∫ a′

a

m1(t)f
′((m1m2)(t)

− 1
2

) (m1m2)
′(t)

(m1m2)(t)
3
2

dt <∞,

(iii) ⇔ ∃a′ ∈ (a, b).

∫ a′

a

detM(t)

m2(t)
f′((m1m2)(t)

− 1
2

) (m1m2)
′(t)

(m1m2)(t)
3
2

dt <∞.

4.8 Remark. It can be seen from the proof below that, in the first part, instead of assuming
that f is regularly varying, it is sufficient to assume that f ∈ OR, i.e. for every λ > 0 there

exist c1, c2 > 0 such that c1 ≤ f(λr)
f(r) ≤ c2, r ∈ [1,∞); for the latter definition see, e.g. [4, §2.0.2].

♢

For the proof of Proposition 4.7 we use a simple Abelian–Tauberian-type theorem for the
Poisson integral of a positive measure. This is folklore; an explicit proof can be found in, e.g.
[20, Lemma 4]4.

4.9 Lemma. Let µ be a positive Borel measure on R with
∫
R

dµ(t)
1+t2 < ∞, let r0 > 0, and let ξ

be a positive Borel measure on [r0,∞). Define
↔
µ as in (4.1), set

ξ⃗(r) := ξ([r0, r)), r ≥ r0,

and let P[µ](z) be the Poisson integral

P[µ](z) :=

∫
R
Im

1

t− z
dµ(t), z ∈ C+, (4.7)

of µ. Then ∫
[r0,∞)

1

r
P[µ](ir) dξ(r) <∞ ⇔

∫
[r0,∞)

↔
µ(r)ξ⃗(r)

r3
dr <∞.

Proof of Proposition 4.7. First note that finiteness of the integrals in the proposition clearly
does not depend on a′ ∈ (a, b).

Let ξ be the measure on [1,∞) such that f(r) = ξ([1, r)), r ≥ 1. It follows from Lemma 4.9
that ∫

[1,∞)

P[µH ](ir)

r
dξ(r) <∞ ⇔

∫ ∞

1

↔
µH(r)f(r)

r3
dr <∞.

Fix η ∈ (0, 1− 1√
2
) and let r̊ be as in (2.14). By Theorem 1.1 with A(r) and L(r) in the form

of (2.15) and (2.16), we have

detM (̊t(r))

m2(̊t(r))
≲

P[µH ](ir)

r
≲ m1(̊t(r)).

Hence ∫
[1,∞)

m1

(̊
t(r)

)
dξ(r) <∞ ⇒ (4.6) ⇒

∫ ∞

1

detM
(̊
t(r)

)
m2

(̊
t(r)

) dξ(r) <∞. (4.8)

Let ν be the measure on (0,∞) such that ν((r,∞)) = m1(̊t(r)), r > 0, and let t̊∗ν be the push-
forward measure of ν under the mapping t̊. For t ∈ (a, b) we have t̊∗ν((a, t)) = ν((̊t−1(t),∞)) =
m1(t). Moreover, recall that r̊, defined in (2.14), is the inverse function of t̊. Hence, with
Lemma 4.6 we can rewrite the first integral in (4.8) as follows:∫

[1,∞)

m1

(̊
t(r)

)
dξ(r) =

∫
[1,∞)

ν
(
(r,∞)

)
dξ(r) =

∫
[1,∞)

ξ⃗(r) dν(r) =

∫
[1,∞)

f(r) dν(r)

=

∫
(a,̊t(1)]

f
(̊
r(t)

)
d(̊t∗ν)(t) =

∫
(a,̊t(1)]

f
(̊
r(t)

)
dm1(t) =

∫ t̊(1)

a

f
(̊
r(t)

)
h1(t) dt.

4For the case when g(r) = rα it goes back at least to [17, Theorema 1].
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Since f is regularly varying, the last integral is finite if and only the integral in (i) is finite.
In a similar way one can rewrite the last integral in (4.8) by using a measure ν such that

ν((r,∞)) = detM (̊t(r))

m2 (̊t(r))
, r > 0, which is possible since t 7→ detM(t)

m2(t)
is non-decreasing by (2.17).

For the last part let us assume that f is differentiable and that f′ is regularly varying. Using
a substitution we can rewrite the first integral in (4.8) differently:∫

[1,∞)

m1

(̊
t(r)

)
dξ(r) =

∫ ∞

1

m1

(̊
t(r)

)
f′(r) dr =

∫ a

t̊(1)

m1(t)f
′(̊r(t))̊r′(t) dt

=
η

4

∫ t̊(1)

a

m1(t)f
′(̊r(t)) (m1m2)

′(t)

(m1m2)(t)
3
2

dt.

Since f′ is assumed to be regularly varying, the last integral is finite if and only if it is finite
with f′(̊r(t)) replaced by f′((m1m2)(t)

− 1
2 ). In exactly the same way one can rewrite the last

integral in (4.8). ❑

The following theorem is the main result of this subsection. It provides, in particular, inform-
ation when the spectral measure µH belongs to the class M̂g.

4.10 Theorem. Let H be a Hamiltonian defined on some interval [a, b), and assume that
neither h1 nor h2 vanishes on a neighbourhood of the left endpoint a. Let g be a continuous,
regularly varying function with index α ≤ 2 and limr→∞ g(r) = ∞, let g⋆ be as in (4.2),
and denote by µH the spectral measure of H as in (1.3). For every a′ ∈ (a, b) the following
statements

(i)

∫ a′

a

h1(t) · g⋆
(
(m1m2)(t)

− 1
2

)
dt <∞,

(i)′
∫ a′

a

m1(t) ·
(m1m2)

′(t)

(m1m2)(t)2g
(
(m1m2)(t)−

1
2

) dt <∞,

(i)′′
∫ a′

a

h1(t) ·
dt

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) <∞,

(ii) µH ∈ M̂g,

(ii)′ µH ∈ Mg,

(iii)

∫ a′

a

1

m2(t)2

(
m2(t)

−m3(t)

)∗

H(t)

(
m2(t)

−m3(t)

)
· g⋆

(
(m1m2)(t)

− 1
2

)
dt <∞,

(iii)′
∫ a′

a

detM(t)

m2(t)
· (m1m2)

′(t)

(m1m2)(t)2g
(
(m1m2)(t)−

1
2

) dt <∞,

(iii)′′
∫ a′

a

1

m2(t)2

(
m2(t)

−m3(t)

)∗

H(t)

(
m2(t)

−m3(t)

)
dt

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) <∞

satisfy the relations:

(i) ⇐⇒ (i)′
if α < 2
⇐⇒
=⇒
if α = 2

(i)′′

⇓

(ii)
if α ∈ (0, 2)
⇐⇒
=⇒

if α ∈ {0, 2}
(ii)′

⇓

(iii) ⇐⇒ (iii)′
if α < 2
⇐⇒
=⇒
if α = 2

(iii)′′.
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Proof. The implications (i)⇒ (ii)⇒ (iii) and the equivalences (i)⇔ (i)′ and (iii)⇔ (iii)′ follow
directly from Proposition 4.7 with f = g⋆. The relations between (i) and (i)′′ and between
(iii) and (iii)′′ follow from (4.3). Finally, Proposition 4.5 implies the relations between (ii) and
(ii)′. ❑

4.11 Remark. Let us consider the case of the regularly varying function g(r) = rα(log r)β with
α ∈ [0, 2] and β ∈ R. It is easy to check that (i)′′ is equivalent to∫ a′

a

h1(t) dt[
(m1m2)(t)

]1−α
2
∣∣ log((m1m2)(t)

)∣∣β <∞.

♢

The following corollary shows that for diagonally-dominant Hamiltonians we obtain a charac-
terisation when µH belongs to M̂g.

4.12 Corollary. Consider the situation from Theorem 4.10, and assume, in addition, that

lim supt→a
m3(t)

2

(m1m2)(t)
< 1 (this holds in particular if H is diagonal). Then, for every a′ ∈ (a, b),

also (i)⇔ (ii)⇔ (iii).

Proof. The additional hypothesis just means that detM(t)
m2(t)

≍ m1(t), which implies that (i)′ ⇔
(iii)′. ❑

4.13 Example. Let ρ1, ρ2 > 0 and let H be a Hamiltonian on [0, b) with 0 < b ≤ ∞ such

that h1(t) ≍ tρ1−1 and m2(t) ≍ tρ2 as t→ 0 and lim supt→0
m3(t)

2

(m1m2)(t)
< 1. Let us consider the

regularly function g(r) = rα(log r)β with α ∈ (0, 2) and β ∈ R. It follows from Theorem 4.10
and Remark 4.11 that µH ∈ Mg if and only if∫ a′

0

tρ1−1

t(ρ1+ρ2)(1−
α
2 )| log t|β

dt <∞,

which, in turn, is equivalent to

α >
2ρ2

ρ1 + ρ2
or

(
α =

2ρ2
ρ1 + ρ2

and β > 1

)
.

♢

4.2 Limit superior conditions

In this section we investigate lim sup-conditions for the quotient
↔
µH(r)
g(r) instead of integrability

conditions. Let us introduce the corresponding classes of measures.

4.14 Definition. Let g(r) be a regularly varying function with index α ≤ 2 and limr→∞ g(r) =
∞. Then we set

Fg :=
{
µ :

↔
µ(r) = O(g(r))

}
, F0

g :=
{
µ :

↔
µ(r) = o(g(r))

}
,

where again
↔
µ(r) := µ((−r, r)). ♢

Clearly, we have F0
g ⊆ Fg. In the next proposition relations among Fg, F0

g and the classes

Mg and M̂g from Section 4.1 are discussed.

4.15 Proposition. Let g, g1 and g2 be continuous, regularly varying functions with indices
α, α1, α2 ≤ 2 respectively, such that g(r),g1(r),g2(r) → ∞ as r → ∞.

(i) If g is non-decreasing, then Mg ⊆ F0
g.
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(ii) Assume that

α2 < 2 and

∫ ∞

1

g1(r)

rg2(r)
dr <∞ (4.9)

or that α1 < α2. Then Fg1
⊆M̂g2

.

Proof.
(i) Let µ ∈ Mg, i.e.

∫∞
1

1
g(t) dµ̃(t) <∞, where µ̃ is as in (4.1). Lemma 4.6 (with a measure

ν such that ν((t,∞)) = 1/g(t)) yields

lim
r→∞

↔
µ(r)

g(r)
= lim
r→∞

ν
(
(r,∞)

)
µ̃
(
[0, r)

)
= 0.

(ii) Let µ ∈ Fg1 . Then
↔
µ(r)

(g2)⋆(r)

r3
≲ g1(r)

(g2)⋆(r)

r3
. (4.10)

First, we consider the case when (4.9) is satisfied. It follows from (4.3) that

g1(r)
(g2)⋆(r)

r3
≍ g1(r)

r2

g2(r)
· 1

r3
.

This, together with (4.10) and the second relation in (4.9), implies that
∫∞
1

↔
µ(r) (g2)⋆(r)

r3 dr <∞
and hence µ ∈ M̂g2

. Let us now assume that α1 < α2. It follows from the sentence around
(4.3) that (g2)⋆ is regularly varying with index 2− α2. Hence the right-hand side of (4.10) is
regularly varying with index α1 + 2 − α2 − 3 < −1 and therefore integrable by Theorem A.2.
It follows again that µ ∈ M̂g2

. ❑

4.16 Remark.

(i) If α > 0 in Proposition 4.15 (i), then the assumption that g is non-decreasing is not neces-
sary because, by Theorem A.3, there exists a non-decreasing, regularly varying function
ḡ such that ḡ(r) ∼ g(r) as r → ∞.

(ii) The inclusion in Proposition 4.15 (i) is the analogue on the level of measures to the fact
that an entire function of convergence class is necessarily of minimal type.

(iii) Let g1,g2 be non-decreasing functions as in Proposition 4.15 (ii). We can combine items
(i) and (ii) of Proposition 4.15 with Proposition 4.5 to obtain the following chain of
inclusions:

Mg1 ⊆ F0
g1

⊆ Fg1 ⊆M̂g2 ⊆ Mg2 . (4.11)

This is satisfied, in particular, when gi(r) = rαi , i = 1, 2, with α1 < α2, or when
gi(r) = rα(log r)βi with β2 > β1 + 1.

♢

The next theorem can be viewed as a generalisation of [24, Theorem 4] to the case of a non-
diagonal Hamiltonian; the connection is worked out in detail in Section 6.2.

4.17 Theorem. Let H be a Hamiltonian defined on some interval [a, b), and assume that
neither h1 nor h2 vanishes on a neighbourhood of the left endpoint a. Let g(r) be a regularly
varying function with index α ≤ 2 and limr→∞ g(r) = ∞, and denote by µH the spectral
measure of H. Then the following implications hold:

(i) lim sup
t→a

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) <∞ ⇒ µH ∈ Fg;

(ii) lim
t→a

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) = 0 ⇒ µH ∈ F0
g.

If, in addition, α < 2, then

(iii) µH ∈ Fg ⇒ lim sup
t→a

detM(t)
/
m2(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) <∞;
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(iv) µH ∈ F0
g ⇒ lim

t→a

detM(t)
/
m2(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) = 0.

The proof of Theorem 4.17 relies on the following Abelian–Tauberian-type result. Most prob-
ably this fact is folklore, but we do not know an explicit reference and therefore provide the
proof.

4.18 Lemma. Let µ be a positive Borel measure on R with
∫
R

dµ(t)
1+t2 < ∞, define

↔
µ(r) as in

(4.1), denote by P[µ](z) the Poisson integral of µ as in (4.7), and let g(r) be regularly varying
with index α ∈ [0, 2].

(i) We have

lim sup
r→∞

(
r

g(r)
P[µ](ir)

)
≥
(
1− α

2

)1−α
2
(α
2

)α
2 · lim sup

r→∞

↔
µ(r)

g(r)
, (4.12)

where the constant in front of lim sup on the right-hand side is interpreted as 1 if α equals
0 or 2.

(ii) If α < 2 and limr→∞ g(r) = ∞, then

lim sup
r→∞

(
r

g(r)
P[µ](ir)

)
≤ B

(
1 +

α

2
, 1− α

2

)
· lim sup
r→∞

↔
µ(r)

g(r)
, (4.13)

where B denotes Euler’s beta function.

Proof. For the proof of (i) observe that, for every x > 0 and r > 0,

r

g(r)
P[µ](ir) =

r

g(r)

∫
R

r

t2 + r2
dµ(t) ≥ r

g(r)

∫
(−xr,xr)

r

t2 + r2
dµ(t)

≥ r

g(r)

∫
(−xr,xr)

r

(1 + x2)r2
dµ(t) =

1

1 + x2
· g(xr)
g(r)︸ ︷︷ ︸
→xα

·
µ
(
(−xr, xr)

)
g(xr)

.

If α ∈ (0, 2), then the function x 7→ xα

1+x2 attains the maximum at x0 =
√
α/(2− α); with this

x0 the above inequality yields (4.12). For α = 0 we use arbitrarily small x, and for α = 2 we
use x that are arbitrarily close to 2.

We come to the proof of (ii). Let µ̃ be the measure defined in (4.1). For every r0 > 0 we
estimate as follows (where we use Lemma 4.6):

P[µ](ir) =

∫
R

r

t2 + r2
dµ(t) =

∫
[0,∞)

r

t2 + r2
dµ̃(t)

= r

∫ ∞

0

µ̃
(
[0, t)

)︸ ︷︷ ︸
=

↔
µ (t)

· 2t

(t2 + r2)2
dt

= r

∫ r0

0

↔
µ(t) · 2t

(t2 + r2)2
dt+ r

∫ ∞

r0

↔
µ(t)

g(t)
· 2tg(t)

(t2 + r2)2
dt

≤ 2r0
r3

∫ r0

0

↔
µ(t) dt+ 2r

(
sup
t≥r0

↔
µ(t)

g(t)

)
·
∫ ∞

r0

tg(t)

(t2 + r2)2
dt.

The first summand tends to 0 when multiplied by r
g(r) and hence does not contribute to the

limit superior on the left-hand side of (4.13). The integral in the second summand is estimated
by ∫ ∞

r0

tg(t)

(t2 + r2)2
dt ≤

∫ ∞

0

tg(t)

(t2 + r2)2
dt = rα−2

∫ ∞

0

x1+α

(x2 + 1)2
· g(rx)
(rx)α

dx.

Since α < 2, we can apply [39, Theorems 2.6, 2.7] and obtain

lim
r→∞

(∫ ∞

0

x1+α

(x2 + 1)2
· g(rx)
(rx)α

dx
/

g(r)

rα

)
=

∫ ∞

0

x1+α

(x2 + 1)2
dx =

1

2
B
(
1 +

α

2
, 1− α

2

)
.
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Putting these estimates together we obtain

lim sup
r→∞

(
r

g(r)
P[µ](ir)

)
≤
(
sup
t≥r0

↔
µ(t)

g(t)

)
lim sup
r→∞

[
2r2

g(r)

∫ ∞

r0

tg(t)

(t2 + r2)2
dt

]

≤
(
sup
t≥r0

↔
µ(t)

g(t)

)
lim sup
r→∞

[
2rα

g(r)

∫ ∞

0

x1+α

(x2 + 1)2
· g(rx)
(rx)α

dx

]

=
(
sup
t≥r0

↔
µ(t)

g(t)

)
B
(
1 +

α

2
, 1− α

2

)
;

since r0 can be chosen arbitrarily large, (4.13) follows. ❑

Note that for α > 2 both lim sup appearing in Lemma 4.18 are equal to 0, and for α < 0 both
are equal to +∞ (unless µ = 0).

Proof of Theorem 4.17. Theorem 1.1 with A(r) in the form (2.15), together with (4.12), implies
that there exist c1, c2 > 0 such that

lim sup
r→∞

↔
µH(r)

g(r)
≤ c1 lim sup

r→∞

(
r

g(r)
Im qH(ir)

)
≤ c2 lim sup

r→∞

(
r2

g(r)
m1

(̊
t(r)

))
.

With the substitution t = t̊(r) the last lim sup can be rewritten as

lim sup
r→∞

(
r2

g(r)
m1

(̊
t(r)

))
= lim sup

t→a

(
η
2 (m1m2)(t)

− 1
2

)2
g
(
η
2 (m1m2)(t)−

1
2

)m1(t)

=
(η2 )

2

(η2 )
α
lim sup
t→a

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) .
Items (iii) and (iv) are shown in a similar way, when Theorem 1.1 with L(r) in the form (2.16)
and (4.13) are used. ❑

Analogously to Corollary 4.12, we obtain the obvious corollary.

4.19 Corollary. Consider the situation from Theorem 4.17, and assume in addition that

lim supt→a
m3(t)

2

(m1m2)(t)
< 1 (this holds in particular if H is diagonal). Moreover, let α ∈ [0, 2).

Then

µH ∈ Fg ⇔ lim sup
t→a

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) <∞,

µH ∈ F0
g ⇔ lim

t→a

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) = 0.

We finish this section with two examples, the first of which is also used in Section 6.4.

4.20 Example. Let ρ1, ρ2 > 0 and let H be a Hamiltonian on [0, b) with 0 < b ≤ ∞ such that

mj(t) ≍ tρj , j = 1, 2, as t→ 0 and lim supt→0
m3(t)

2

(m1m2)(t)
< 1. Let us consider gα(r) := rα with

α ∈ (0, 2). Then

m1(t)

(m1m2)(t)gα
(
(m1m2)(t)−

1
2

) = m1(t)
α
2 m2(t)

α
2 −1 ≍ tρ1

α
2 +ρ2(

α
2 −1).

It follows from Corollary 4.19 that

µH ∈ Fgα
\ F0

gα
⇔ 0 < lim sup

t→0

m1(t)

(m1m2)(t)gα
(
(m1m2)(t)−

1
2

) <∞

⇔ ρ1
α

2
+ ρ2

(α
2
− 1
)
= 0 ⇔ α =

2ρ2
ρ1 + ρ2

.
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Now (4.11) implies that

µH ∈ Mgα
⇔ α >

2ρ2
ρ1 + ρ2

.

Moreover, we have µH ∈ F0
gα

if α > 2ρ2
ρ1+ρ2

, and µH /∈ Fgα if α < 2ρ2
ρ1+ρ2

. ♢

4.21 Example. Let ρ > 0 and let H be a Hamiltonian on [0, b) with 0 < b ≤ ∞ such that

m1(t) ≍ e−
1
t and m2(t) ≍ tρ as t → 0 and lim supt→0

m3(t)
2

(m1m2)(t)
< 1. We choose the slowly

varying function g(r) = (log r)β with β ∈ R. Since

m1(t)

(m1m2)(t)g
(
(m1m2)(t)−

1
2

) ≍ e−
1
t

e−
1
t tρ
∣∣ log(e− 1

t tρ
)∣∣β ∼ tβ−ρ

as t→ 0, it follows from Corollary 4.19 that µH ∈ Fg \ F0
g if and only if β = ρ. ♢

5 Further discussion of the main theorem

5.1 A monotonicity property

In many situations one cannot determine the solution t̊(r) of (1.5) exactly. Having a lower
bound can often be sufficient to obtain estimates for A(r) and L(r). With the following lemma
we can easily prove Corollary 5.2 below.

5.1 Lemma. Let H be as in Theorem 1.1, and let r > 0. If t̂ ∈ (̊a, t̊(r)), then

2

η
· rm1(t̂) ≤ A(r) ≤ η

2
· 1

rm2(t̂)
,

2

η
· r detM(t̂)

m2(t̂)
≤ L(r).

If ť ∈ (̊t(r), b), then

η

2
· 1

rm2(ť)
≤ A(r) ≤ 2

η
· rm1(ť), L(r) ≤ 2

η
· r detM(ť)

m2(ť)
.

Proof. Since m1 and m2 are non-decreasing functions, the assertions involving A(r) are obvious
from (2.15). To show the assertion involving L(r), we use the middle term in (2.16) and the
monotonicity of detM

m2
, shown in (2.17). ❑

The following statement is now obvious.

5.2 Corollary. Let H be a Hamiltonian defined on some interval [a, b), and assume that neither
h1 = 0 a.e. nor h2 = 0 a.e.

Let t̂ : (0,∞) → (̊a, b) be a function such that for all r > 0

η

2
(m1m2)

− 1
2

(
t̂(r)

)
≥ r. (5.1)

Then, for each ϑ ∈ (0, π),

rm1(t̂(r)) ≲
∣∣qH(reiϑ)∣∣ ≲ 1

rm2(t̂(r))
,

∣∣Re qH(reiϑ)∣∣ ≲ 1

rm2(t̂(r))
,

r detM(t̂(r))

m2(t̂(r))
≲ Im qH

(
reiϑ

)
≲

1

rm2(t̂(r))
.

The various constants in “≲” depend on ϑ but not on H.

Note that the validity of (5.1) just means that the points (r, t̂(r)) belong to the dotted region
in Figure 1.
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5.2 Hamiltonians starting with an indivisible interval of type 0 or π/2

For ϕ ∈ R we set

ξϕ :=

(
cosϕ

sinϕ

)
.

5.3 Definition. Let H be a Hamiltonian defined on some interval [a, b). An interval (c, d) ⊆
(a, b) is called H-indivisible if there exists ϕ ∈ R such that

H(t) = trH(t) · ξϕξ∗ϕ, t ∈ (c, d) a.e.

Equivalently, one may say that Jξϕ = (− sinϕ, cosϕ)∗ ∈ kerH(t) for t ∈ (c, d) a.e.
The number ϕ is uniquely determined up to integer multiples of π; it will always be under-

stood modulo π, and is called the type of the indivisible interval (c, d). ♢

The property that å > a can now be formulated as: H does not start with an indivisible interval
of type 0 or π

2 .
Although we can apply Theorem 1.1 in the situation when å > a, we can also split off an

interval of type 0 or π
2 adjacent to a to get an asymptotic expansion with a leading-order term,

which is a power of z with exponent 1 or −1, and an estimate for the remainder term.

5.4 Remark. Assume that H starts with an indivisible interval of type 0, i.e. let (a, å) with
å > a be the maximal interval such that the Hamiltonian H is of the form

H(t) =

(
h1(t) 0
0 0

)
, t ∈ (a, å) a.e.

Then

lim
r→∞

1

ir
qH(ir) = m1(̊a) =

∫ å

a

h1(t) dt = βH , (5.2)

where βH is as in (1.3); see, e.g. [21, 42]. Nevertheless, Theorem 1.1 provides additional
information as it yields explicit bounds. Clearly, (5.2) implies that A(r) ≍ 1, r → ∞, which
can also be seen directly from the behaviour of the functions mi. Further, we also obtain a
good lower bound for the imaginary part, which is seen as follows. For t > å we have

m3(t)
2 =

∣∣∣∣ ∫ t

å

h3(s) ds

∣∣∣∣2 ≤
[∫ t

å

|h3(s)| ds
]2

≤
[∫ t

å

√
h1(s)h2(s) ds

]2
≤
∫ t

å

h1(s) ds ·
∫ t

å

h2(s) ds =
(
m1(t)−m1(̊a)

)
m2(t),

which implies

1 ≥ lim sup
t↘å

detM(t)

m1(t)m2(t)
≥ lim inf

t↘å

detM(t)

m1(t)m2(t)

≥ lim inf
t↘å

m1(t)m2(t)−
(
m1(t)−m1(̊a)

)
m2(t)

m1(t)m2(t)
= lim inf

t↘å

m1(̊a)

m1(t)
= 1.

From this we obtain L(r) ∼ A(r), r → ∞.
On the other hand, we can also split off the indivisible interval; namely, one can show that

qH(z) = m1(̊a)z + qĤ(z)

where Ĥ = H|(̊a,b), and then apply Theorem 1.1 to obtain an estimate for the remainder term.
Note that the case when h2 = 0 a.e. on (a, å) with å > a corresponds to µH including a

“point mass at infinity”. ♢

5.5 Remark. Assume now that H starts with an indivisible interval of type π
2 , i.e. let (a, å)

with å > a be the maximal interval such that the Hamiltonian H is of the form

H(t) =

(
0 0
0 h2(t)

)
, t ∈ (a, å) a.e.
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Then the representation in (1.3) can be rewritten as qH(z) =
∫
R

1
t−z dµH(t) with the finite

measure µH , and

lim
r→∞

(
−irqH(ir)

)
=

1

m2(̊a)
= µH(R).

Again Theorem 1.1 can be applied to obtain explicit bounds, and as in Remark 5.4, we have
L(r) ∼ A(r). One can also split off the indivisible interval, namely, qH can be rewritten as

qH(z) = − 1

m2(̊a)z − 1
qȞ(z)

,

where Ȟ = H|(̊a,b), and one can apply Theorem 1.1 to Ȟ in order to obtain an estimate for the
remainder term. ♢

Assume we are given a Hamiltonian H which starts with a finite number of consecutive indi-
visible intervals whose types alternate between 0 and π

2 . Iterating the splitting-off procedure
from Remarks 5.4 and 5.5 we obtain a representation of qH as a continued fraction of finite
length and a certain remainder term to which Theorem 1.1 can be applied. Thus, we obtain
information about the size of the remainder.

5.3 A rotation transformation

Sometimes it is possible to improve the bounds (1.8) by applying a transformation to H. In
this subsection we consider the situation when qH has a real, non-zero limit. More specifically,
let us assume that

lim
r→∞

qH(ir) = cotϕ (5.3)

with some ϕ ∈ (0, π2 ) ∪ (π2 , π). Obviously we have

A(r) ≍ |qH(ir)| ≍ 1, L(r) ≲ Im qH(ir) ≪ 1,

and hence (1.8) is certainly not strong enough to fully (i.e. up to universal constants) determine
Im qH(ir). The following lemma shows that in this situation a transformation, where the
dependent variable in (1.1) is rotated in the two-dimensional space C2, strictly improves the
upper bound for the imaginary part of qH and that the lower bound does not get worse. In
Proposition 5.7 below the transformation is made more explicit in terms of the Hamiltonian H.

5.6 Lemma. Let H be a Hamiltonian such that (5.3) with ϕ ∈ (0, π2 ) ∪ (π2 , π) is satisfied. Set

Q :=

(
sinϕ − cosϕ

cosϕ sinϕ

)
, H̃ := QHQT . (5.4)

Then
Im qH̃(ir) ≍ Im qH(ir), Ã(r) ≪ A(r), L̃(r) ≳ L(r) (5.5)

as r → ∞.

Proof. The Weyl coefficients of H and H̃ are related via

qH̃(z) =
sinϕ · qH(z)− cosϕ

cosϕ · qH(z) + sinϕ
, Im qH̃(z) =

Im qH(z)

| cosϕ · qH(z) + sinϕ|2
;

see, e.g. [11, (3.20)]. Thus we have

lim
r→∞

qH̃(ir) = 0, lim
r→∞

Im qH̃(ir)

Im qH(ir)
= sin2 ϕ > 0,

and therefore, in particular,

Im qH̃(ir) ≍ Im qH(ir), Ã(r) ≍ |qH̃(ir)| ≪ |qH(ir)| ≍ A(r),

which proves the first two relations in (5.5).
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The proof of the third relation in (5.5) requires slightly more effort. Let us first consider
the case when H starts with an indivisible interval, say (a, c), which must be of type ϕ. Since
ϕ /∈ {0, π/2}, we have å = a, where å is as in (1.9). Clearly, detM(t) = 0 for t ∈ [a, c], which
shows that L(r) = 0 for large enough r; so the third relation in (5.5) is trivially satisfied in this
case.

Now let us assume that H does not start with an indivisible interval. Then H̃ does not
start with an indivisible interval either, and hence ˚̃a = a, where ˚̃a is as in (1.9) for H replaced

by H̃. First, note that

detM̃(t) = detM(t), trM̃(t) = trM(t),

and, since A(r) ≍ 1 and Ã(r) ≪ 1, we have

m1(t) ≍ m2(t), m̃1(t) ≪ m̃2(t).

Together, it follows that

m1(t) ≍ m2(t) ≍ trM(t) ≍ m̃2(t) ≫ m̃1(t),

and hence
r̊(t) =

η

2

(
m1(t)m2(t)

)− 1
2 ≪ η

2

(
m̃1(t)m̃2(t)

)− 1
2 = ˚̃r(t),

where r̊ and ˚̃r are as in (2.14). In particular, r̊(t) ≤ ˚̃r(t) for small enough t, and therefore

t̊(r) ≤ ˚̃t(r) for large enough r, say, r ≥ r0.
Now we use the monotonicity property in (2.17) and the representation (2.16) of L(r) and

L̃(r) to obtain

L(r) =
2r

η
· detM (̊t(r))

m2(̊t(r))
≤ 2r

η
· detM (̊t̃(r))

m2(̊t̃(r))
≍ 2r

η
· detM̃ (̊t̃(r))

m̃2(̊t̃(r))
= L̃(r)

for r ≥ r0. ❑

According to [6, Corollary 3.2], relation (5.3) holds if and only if

lim
t→a

1

m1(t) +m2(t)

(
m1(t) m3(t)

m3(t) m2(t)

)
=

(
c1 c3

c3 c2

)
(5.6)

with c1, c2 > 0, c3 ∈ R such that c1c2 − c23 = 0 and c3
c2

= cotϕ (note that the Weyl coefficient
is defined slightly differently in [6]). We can use this fact to obtain the following proposition,
which provides a transformation that is in terms of the asymptotic behaviour of M at a.

5.7 Proposition. Let H be a Hamiltonian defined on some interval [a, b), let M be as in (1.4),
and assume that (5.6) holds with c1, c2 > 0, c3 ∈ R such that c1c2 − c23 = 0. Then there exist Q

and H̃ as in (5.4) such that M̃(t) :=
∫ t
a
H̃(s) ds satisfies

M̃ =

(
c2m1 + c1m2 − 2c3m3 c3(m1 −m2) + (c2 − c1)m3

c3(m1 −m2) + (c2 − c1)m3 c1m1 + c2m2 + 2c3m3

)
. (5.7)

Hence
L(r) ≲ L̃(r) ≲ Im qH(ir) ≍ Im qH̃(ir) ≲ Ã(r) ≪ A(r). (5.8)

Proof. Let ϕ ∈ (0, π2 )∪(π2 , π) such that c3
c2

= cotϕ. It follows from (5.6) that c1+c2 = 1. Hence

c22(1− sin2 ϕ) = c22 cos
2 ϕ = c23 sin

2 ϕ = c2(1− c2) sin
2 ϕ,

which yields c2 = sin2 ϕ. Since sinϕ > 0, we arrive at sinϕ =
√
c2 and cosϕ = c3√

c2
. Applying

the transformation (5.4) to H we obtain H̃, whose primitive M̃ satisfies

M̃ = QMQT =

(√
c2 − c3√

c2
c3√
c2

√
c2

)(
m1 m3

m3 m2

)( √
c2

c3√
c2

− c3√
c2

√
c2

)

=

 c2m1 − 2c3m3 +
c23
c2
m2 c3m1 − c23

c2
m3 + c2m3 − c3m2

c3m1 + c2m3 − c23
c2
m3 − c3m2

c23
c2
m1 + 2c3m3 + c2m2

 .

31



Using again c1c2 = c23 we see that this is equal to the right-hand side of (5.7). ❑

Let us consider an example where this transformation trick is beneficial.

5.8 Example. Let H be a Hamiltonian on [0,∞) whose primitive is

M(t) =

(
4t+ tγ 2t+ tγ

2t+ tγ t+ tγ

)

with some γ > 1. Let us first determine the bounds we obtain when we apply Theorem 1.1
directly. Since (m1m2)(t) ∼ 4t2, we have t̊(r) ≍ 1

r . Further,√
m1(t)

m2(t)
→ 2,

detM(t)

(m1m2)(t)
=

tγ+1

4t2 + 5tγ+1 + t2γ
∼ 1

4
tγ−1,

and hence

A(r) ≍ 1, L(r) ≍ detM (̊t(r))

(m1m2)(̊t(r))
≍ r−(γ−1).

Let us now apply the transformation in Proposition 5.7. Since m1(t) +m2(t) ∼ 5t, we obtain
c1 = 4

5 , c2 = 1
5 and c3 = 2

5 . According to (5.7) the primitive of the transformed Hamiltonian

H̃ is

M̃ =

( 1
5 (4t+ tγ) + 4

5 (t+ tγ)− 4
5 (2t+ tγ) 2

5×3t− 3
5 (2t+ tγ)

2
5×3t− 3

5 (2t+ tγ) 4
5 (4t+ tγ) + 1

5 (t+ tγ) + 4
5 (2t+ tγ)

)

=

( 1
5 t
γ − 3

5 t
γ

− 3
5 t
γ 5t+ 9

5 t
γ

)
.

Since (m̃1m̃2) ∼ tγ+1, we have ˚̃t(r) ≍ r−
2

γ+1 . Further, the relations√
m̃1(t)

m̃2(t)
∼ 1

5
t
γ−1
2 ,

detM̃(t)

(m̃1m̃2)(t)
=

tγ+1

tγ+1 + 9
25 t

2γ
→ 1

and (5.8) yield

Im qH(ir) ≍ Ã(r) ≍ L̃(r) ≍ r−
γ−1
γ+1 .

Hence, in this example the actual asymptotic behaviour of Im qH(ir) lies strictly between L(r)
and A(r):

L(r)

≍

r−(γ−1)

≪ Im qH(ir)

≍

r
− γ−1

γ+1

≪ A(r)

≍

1

.

♢

5.9 Remark. Example 5.8 also shows that the lower bound for Im qH(ir) from (1.8) may be
far too small. However, this particular example is in a sense not proper since it occurred only
because the Hamiltonian is “turned in the wrong direction” (thinking of matrices Q as above
as rotation matrices). It indicates that the crux for finding out whether or not we may have
L(r) ≪ Im qH(ir) in an intrinsic and essential manner, is to understand the situation when
qH(ir) tends to 0.

So far we have no example of a Hamiltonian H such that limr→∞ qH(ir) = 0 and
L(r) ≪ Im qH(ir) ≪ A(r). We expect that there exist large classes of Hamiltonians with
these properties. ♢
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5.4 Examples

Let us consider more examples, in particular, such where the Hamiltonian oscillates in a neigh-
bourhood of the left endpoint.

5.10 Example. Let ϕ ∈ (0, π2 ), let (0,∞) = I+∪I− be a partition into two disjoint measurable
sets, and consider on (0,∞) the Hamiltonian (recall the notation ξϕ := (cosϕ, sinϕ)∗)

H(t) :=

ξϕξ
∗
ϕ, t ∈ I+,

ξ−ϕξ
∗
−ϕ, t ∈ I−.

(5.9)

Let λ denote the Lebesgue measure, and set

l+(t) := λ
(
I+ ∩ (0, t)

)
, l−(t) := λ

(
I− ∩ (0, t)

)
for t > 0. Note that l+(t) + l−(t) = t. It follows easily that

m1(t) = t cos2 ϕ, m2(t) = t sin2 ϕ, m3(t) =
(
l+(t)− l−(t)

)
cosϕ sinϕ.

Let η ∈ (0, 1− 1√
2
). Then

A(r) =

√
m1(̊t(r))

m2(̊t(r))
= cotϕ ∈ (0,∞).

Further, we have

r̊(t) =
η

2
(t cosϕ sinϕ)−1 =

α

t
,

with
α :=

η

2 cosϕ sinϕ
. (5.10)

and hence
t̊(r) =

α

r
.

From this and

detM(t)

m1(t)m2(t)
= 1− m3(t)

2

m1(t)m2(t)
= 1−

(
l+(t)

t
− l−(t)

t

)2

=

(
1 +

l+(t)

t
− l−(t)

t

)(
1− l+(t)

t
+
l−(t)

t

)
= 4

l+(t)

t
· l−(t)

t

we obtain

L(r) = 4 cotϕ · l+(̊t(r))
t̊(r)

· l−(̊t(r))
t̊(r)

=
4 cotϕ

α2
· r2l+

(α
r

)
l−

(α
r

)
. (5.11)

Hence, if the sets I+ and I− both have positive density at 0 in the sense that

lim inf
t→0

l+(t)

t
> 0 and lim inf

t→0

l−(t)

t
> 0,

then L(r) ≍ A(r) ≍ 1 as r → ∞. ♢

Specialising the sets I+, I− in Example 5.10 we obtain an example where |qH | and Im qH oscillate
between the bounds given by Theorem 1.1.

5.11 Example. Let ϕ ∈ (0, π2 ), set

I+ :=

∞⋃
n=−∞

(
22n−1, 22n

]
, I− :=

∞⋃
n=−∞

(
22n, 22n+1

]
,
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and let H be as in (5.9). We have 2 · (I+ ∩ (0, t)) = I− ∩ (0, 2t), and hence 1
2t l−(2t) =

1
t l+(t).

Analogously, we find 1
2t l+(2t) =

1
t l−(t). Putting this together we obtain

L(2r) = L(r), r > 0.

Let r ∈ [α, 2α] where α is as in (5.10); then t̊(r) = α
r ∈ [ 12 , 1]. Since l−(t) =

1
3 for t ∈ [ 12 , 1], it

follows from (5.11) that

L(r) = 4 cotϕ ·
(
1− l−(̊t(r))

t̊(r)

)
· l−(̊t(r))

t̊(r)
= 4 cotϕ ·

(
1− r

3α

)
· r

3α
, r ∈ [α, 2α],

which is quadratic in r and satisfies L(α) = L(2α) = 8 cotϕ
9 and L( 3α2 ) = cotϕ. The Hamiltonian

H satisfies

H
(1
2
x
)
=

(
1 0
0 −1

)
H(x)

(
1 0
0 −1

)
.

Since the Weyl coefficient for the Hamiltonian on the left-hand side of the latter equation is
qH(2z) and the Weyl coefficient for the Hamiltonian on the right-hand side is −qH(−z), we
obtain that qH(2z) = −qH(−z). From this we see that

|qH(i · 2r)| = |qH(ir)|, Im qH(i · 2r) = Im qH(ir), Re qH(i · 2r) = −Re qH(ir),

for r > 0. Of course, qH is not constant since H is not constant. Hence the limit limr→∞ qH(ir)
does not exist.

Let us collect what we have computed. First, the absolute value |qH(ir)| is a non-constant
function which oscillates between the constant bounds (1.6) and is 2-periodic on a logarithmic
scale. Second, the imaginary part Im qH(ir) is a non-constant “2-periodic” function which lies
in between the constant upper bound and the “2-periodic” lower bound from (1.8). ♢

In the above example it seems that the lower bound L(r) mimics the behaviour of |qH | and
Im qH better than the upper bound A(r) in the sense that it oscillates with the same period.
For |qH | this is not always the case as the following example shows in a striking way. For the
imaginary part it is not so clear how well L(r) describes its behaviour.

5.12 Example. Choose a sequence (ϕn)
∞
n=1 which oscillates between +1 and −1 with decaying

step width so that {ϕn : n ∈ N} is dense in [−1, 1]. For example, let

(ϕn)
∞
n=1 :=

(
1,

1

2
, 0,−1

2
,−1,−2

3
,−1

3
, 0,

1

3
,
2

3
, 1,

3

4
, . . .

)
.

Further, set tn := 21−n
2

and consider the Hamiltonian

H(t) :=


1

2

(
1 sin(π2ϕn)

sin(π2ϕn) 1

)
, t ∈ (tn+1, tn],(

0 0

0 1

)
, t ∈ (1,∞).

This definition is made so that [32, Theorem 4.1] is applicable. It follows that

lim
r→∞

|qH(ir)| = 1

∀α ∈ [0, 1] ∃rn > 0. lim
n→∞

rn = ∞ and lim
n→∞

Im qH(irn) = α.

Loosely speaking we may say that Im qH(ir) oscillates between 0 and |qH(ir)|. On the other
hand, m1(t) = m2(t), and hence A(r) = 1. Let us consider L(r). For n ∈ N we have

m3(tn) =
1

2

[
tn sin

(π
2
ϕn

)
− tn+1 sin

(π
2
ϕn

)
+

∞∑
k=n+1

(
tk − tk+1

)
sin
(π
2
ϕk

)]

=
1

2
tn sin

(π
2
ϕn

)
+ ρn
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where |ρn| ≤ 1
2 (tn+1 + tn+1) = tn+1. Since (m1m2)(t) =

1
4r

2, the relation t̊(r) = η
r holds with

η as in Theorem 1.1. With rn := r̊(tn) =
η
tn

→ ∞ we obtain

L(rn) =
detM(tn)

(m1m2)(tn)
=

1
4 t

2
n −

(
1
2 tn sin(

π
2ϕn) + ρn

)2
1
4 t

2
n

= cos2
(π
2
ϕn

)
− 4

ρn
tn

sin
(π
2
ϕn

)
− 4
(ρn
tn

)2
= cos2

(π
2
ϕn

)
+O

( tn+1

tn

)
= cos2

(π
2
ϕn

)
+O

(
4−n

)
,

which oscillates between 0 and 1. ♢

5.5 A(r) in terms of the associated string

A Krein string is a pair S[L,m] where

▷ L is a number in [0,∞];

▷ m is a non-decreasing, left-continuous, [0,∞)-valued function on [0, L) with m(0) = 0.

The number L is called the length of the string, and the function m its mass distribution
function. The string equation can be written as an integro-differential equation,

y′+(x) + z

∫
[0,x]

y(t) dm(t) = 0,

where z ∈ C is the spectral parameter and y′+ denotes the right-hand derivative of y; see, e.g.
[22]. Further, set m(L−) := limx↗L m(x) and ℓ := sup{x ∈ [0, L) : m(x) < m(L−)}; then a
string is called regular if both ℓ and m(L−) are finite.

Given a string, one can construct a function qS, the principal Titchmarsh–Weyl coefficient
of the string; see [22]. This function belongs to the Stieltjes class, i.e. it is analytic on C\ [0,∞),
has non-negative imaginary part in the upper half-plane, and takes positive values on (−∞, 0).
It is a fundamental theorem proved by M.G. Krein that the assignment

S[L,m] 7→ qS

sets up a bijection between the set of all strings and the Stieltjes class.
Given a Hamiltonian H on some interval [a, b), we can define a string by setting

L := lim
t→b

m1(t), m(x) := (m2 ◦m−
1 )(x), x ∈ [0, L), (5.12)

wherem−
1 denotes the generalised inverse ofm1; see Definition B.1. Note that m is well defined

and satisfies the properties above by Lemma B.2 (i)–(iii). Further, this string does not depend
on the off-diagonal entry h3.

The correspondence between strings and canonical systems is studied in detail in [23]. In our
present context, we need two additions, which are given in the following lemma, namely, that the
definition of the string associated with H as above does not depend on the parameterisation of
H, and a characterisation when the string is regular. Recall from Definition 5.3 that an interval
(c, d) is H-indivisible of type 0 (respectively type π

2 ) if and only if h2(t) = 0 (respectively
h1(t) = 0) for a.e. t ∈ (c, d). Further, set

åi := sup
{
t ∈ [a, b) : mi(t) = 0

}
, i ∈ {1, 2}. (5.13)

Then H starts with an indivisible interval of type 0 (respectively type π
2 ) at the left endpoint

a if and only if å2 > a (respectively å1 > a).

5.13 Lemma. Let H be a Hamiltonian defined on [a, b), let S[L,m] be the string associated
with H via (5.12) and let åi be as in (5.13).
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(i) The following relations hold:

m1(̊a2) = x0 := sup{x ∈ [0, L) : m(x) = 0}, (5.14)

m2(̊a1) = m(0+) := lim
x↘0

m(x). (5.15)

In particular, the following equivalences are true:

å2 > a ⇔ x0 > 0, (5.16)

å1 > a ⇔ m(0+) > 0. (5.17)

(ii) The string associated with H via (5.12) is regular if and only if there exists c ∈ [a, b) such
that (c, b) is H-indivisible of type 0 or of type π

2 .

(iii) Let H̃ be a second Hamiltonian defined on [ã, b̃) and assume that H and H̃ are related via

H̃ = (H ◦ φ) · φ′ a.e.

where φ : [ã, b̃) → [a, b) is an increasing bijection such that φ and φ−1 are absolutely

continuous. Then the strings associated with H and H̃ coincide.

Proof. (i) Since m1 is continuous, it follows from Lemma B.2 (vi) that, for x ∈ [0, L),

m(x) = 0 ⇔ m−
1 (x) ≤ å2 ⇔ x ≤ m1(̊a2),

which proves (5.14) and the equivalence in (5.16).
Next let us prove (5.15). Sincem1 is continuous, Lemma B.2 (iv) implies that, for x ∈ (0, L),

we havem1(m
−
1 (x)) = x > 0 and hencem−

1 (x) > å1, which shows limx↘0m
−
1 (x) ≥ å1. Further,

there exist tn ∈ (̊a1, b), n ∈ N, such that tn ↘ å1 and tn is not right endpoint of an interval
where m1 is constant. Now Lemma 3.3 (iii) yields m−

1 (m1(tn)) = tn. Since limt→∞m1(tn) = 0,
we obtain limx↘0m

−
1 (x) = å1. Together with the continuity of m2, this yields (5.15), and the

equivalence in (5.17) follows.
(ii) If m1 ≡ 0, then L = 0 and the string is regular. From now on assume that m1 ̸≡ 0

and let ℓ be defined as above. We have ℓ < L if and only if m2 is constant on an interval
of the form [c, b) with c ∈ [a, b), i.e. (c, b) is an indivisible interval of type 0. If ℓ < L, then
m(L−) = m(x) <∞ for x ∈ (ℓ, L) and hence the string is regular.

Now assume that ℓ = L and set t0 := sup{t ∈ [a, b) : m1(t) < L}. By Lemma B.2 (vii) we
have limx↗Lm

−
1 (x) = t0. Hence it follows from the continuity of m1 and Lemma B.2 (iv) that

L+ m(L−) = lim
x↗L

(
x+ m(x)

)
= lim
x↗L

[
m1(m

−
1 (x)) +m2(m

−
1 (x))

]
= lim
x↗L

∫ m−
1 (x)

a

trH(t) dt =

∫ t0

a

trH(t) dt.

Since we assumed that H is in the limit point case at b, the right-hand side is finite if and only
if t0 < b, which, in turn, is equivalent to the fact that h1(t) = 0 for a.e. t ∈ (c, b) for some
c ∈ [a, b).

(iii) Let the notation m̃j correspond to H̃. Then we have

m̃j(u) =

∫ u

a′
hj
(
φ(v)

)
φ′(v) dv = mj(φ(u)).

By Lemma B.2 (ix) we therefore have

m̃2 ◦ m̃−
1 = (m2 ◦ φ) ◦ (φ− ◦m−

1 ) = m2 ◦m−
1 . ❑

The next lemma contains the relation between the Weyl coefficient qH of the Hamiltonian and
the principal Titchmarsh–Weyl coefficient qS of the string. We also state a relation between the
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corresponding spectral measures, which is used in §6.1. Since qS belongs to the Stieltjes class,
it has the following representation:

qS(z) = αS +

∫
[0,∞)

1

t− z
dµS(t), z ∈ C \ [0,∞) (5.18)

with αS ≥ 0 and µS a measure supported on [0,∞) satisfying
∫
[0,∞)

dµS(t)
1+t < ∞. According to

M.G. Krein the measure µS is called principal spectral measure of the string S[L,m].

5.14 Lemma. Let H be a Hamiltonian defined on some interval [a, b), and assume that H is
diagonal, i.e. h3 = 0. Moreover, let S[L,m] be its associated string. Let qH , qS, µH and µS be
the Weyl coefficients and spectral measures of H and S[L,m] respectively, and let αH , βH and
αS be the constants in (1.3) and (5.18) respectively. Define the mapping τ : R → R, t 7→ t2 and
let τ∗µH be the push-forward measure of µH . Then

qH(z) = zqS(z
2), µS = τ∗µH , αS = βH and αH = 0. (5.19)

Proof. The first relation in (5.19) is shown in [23, Theorem 4.2] for trace-normed Hamiltonians
(i.e. trH = 1 a.e.). Every Hamiltonian can be reparameterised to a trace-normed Hamiltonian,
and this changes neither its Weyl coefficient nor the associated string by Lemma 5.13. The
second relation in (5.19) can either be deduced from [23, Theorem 2.1] or follows from the
following considerations. Since H is diagonal, qH is an odd function and hence αH = 0 in the
representation (1.3) of qH , and µH is a symmetric measure; see [23, Lemma 2.2]. Hence

qH(z) = βHz +

∫
R

( 1

t− z
− t

1 + t2

)
dµH(t)

= βHz +
1

2

[∫
R

( 1

t− z
− t

1 + t2

)
dµH(t) +

∫
R

( 1

−t− z
+

t

1 + t2

)
dµH(t)

]
= z

[
βH +

∫
R

1

t2 − z2
dµH(t)

]
= z

[
βH +

∫
[0,∞)

1

s− z2
d(τ∗µH)(s)

]
.

Now the first relation in (5.19) and the uniqueness of the integral representation imply that
µS = τ∗µH . The relations among the constants αH , βH and αS are clear. ❑

We can now give a formula which represents A(r) in term of the associated string.

5.15 Proposition. Let H be a Hamiltonian defined on some interval [a, b) and assume that
neither h1 = 0 a.e. nor h2 = 0 a.e. Let S[L,m] be the string associated with H, and set

f(x) :=


xm(x) if x ∈ [0, L),

Lm(L−) if L <∞ and x = L,

∞ if L <∞ and x ∈ (L,∞).

(5.20)

Moreover, let η ∈ (0, 1− 1√
2
). Then

A(r) =
2r

η
f−
( η2
4r2

)
, r > 0. (5.21)

Proof. We divide the proof into three steps.

① Let å and åi be as in (1.9) and (5.13) respectively. It follows from Lemma 5.13 (i) that, for
x ∈ [0, L),

m(x) = 0 ⇔ f(x) = 0 ⇔ x ≤ m1(̊a2).

Hence f is strictly increasing on [m1(̊a), L).

Let us consider the continuity of f−. Let y ∈ (0, Lm(L−)); then

f−(y) = inf
{
x ∈ [0, L) : f(x) ≥ y

}
≥ m1(̊a2), (5.22)
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and it follows from Lemma B.2 (v) that f− is continuous at y. The definition of f− shows that

f−(y) = L, y ∈
[
Lm(L−),∞

)
. (5.23)

Since f− is left-continuous at Lm(L−) by Lemma B.2 (ii), f− is continuous on (0,∞).

② Our aim is to show
m1(t) = f−(m1(t)m2(t)

)
(5.24)

for t ∈ (̊a, b). Set t0 := sup{t ∈ [a, b) : m1(t) < L}, which is the left endpoint of the maximal
interval of the form (c, b) on which h1 vanishes if such an interval exists, and is equal to b
otherwise.

First, let t ∈ (̊a, t0] ∩ (̊a, b) be such that t is not right endpoint of an interval where m1 is
constant. Then Lemma B.2 (iii) implies that

f(m1(t)) = m1(t)m2

(
m−

1 (m1(t))
)
= m1(t)m2(t). (5.25)

Since t > å and t is not right endpoint of an interval where m1 is constant, we have m1(t) >
m1(̊a) ≥ m1(̊a2), and hence m1(t) is not right endpoint of an interval where f is constant. Now
Lemma B.2 (iii), together with (5.25), implies that

m1(t) = f−(f(m1(t))
)
= f−(m1(t)m2(t)

)
.

Next, let [c, d] ⊆ [̊a, t0) with c < d be a maximal interval where m1 is constant. There exist
dn ∈ (d, t0), n ∈ N, such that dn ↘ d and dn is not right endpoint of an interval where m1

is constant. Hence (5.24) holds for t = dn. Since m1 and m2 are continuous at d and f− is
continuous at m1(d)m2(d) > 0, we can take the limit as n→ ∞, and therefore (5.24) holds also
for t = d. Now let s ∈ (c, d]. If c > å, then (5.24) holds also for t = c, which yields

m1(s) = m1(c) = f−(m1(c)m2(c)
)
≤ f−(m1(s)m2(s)

)
.

If c = å, then we must have å = å2 > a, and (5.22) implies

m1(s) = m1(c) = m1(̊a2) ≤ f−(m1(s)m2(s)
)
.

In both cases we obtain

m1(s) ≤ f−(m1(s)m2(s)
)
≤ f−(m1(d)m2(d)

)
= m1(d) = m1(s).

Since we must have equality everywhere, it follows that (5.24) holds for s ∈ [c, d] ∩ (̊a, t0).

Finally, let t ∈ [t0, b). It follows from (5.25) that

m1(t)m2(t) ≥ m1(t0)m2(t0) = f
(
m1(t0)

)
= f(L) = Lm(L−).

From (5.23) we obtain m1(t) = L = f−(m1(t)m2(t)). This finishes the proof of (5.24) for all
t ∈ (̊a, b).

③ Now (2.15) and (5.24) yield

A(r) =
2r

η
m1

(̊
t(r)

)
=

2r

η
f−
(
m1

(̊
t(r)

)
m2

(̊
t(r)

))
=

2r

η
f−
(
η2

4r2

)
for r > 0.

❑
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6 Relation to previous work

6.1 Strings and I. S. Kac’s theorem

Let S[L,m] be a Krein string where the length L and the mass distribution function m are
as at the beginning of §5.5. The aim of the current section is to establish a relation between
the asymptotic behaviour of the spectral measure of the string at infinity and the asymptotic
behaviour of the mass distribution function at 0. To this end, let H be a diagonal Hamiltonian
that is related to the string as in [23, §4], and that, in particular, (5.12) is satisfied. For a given
string, such a Hamiltonian can be constructed as follows. Set

m̃(x) :=


x+ m(x) if x ∈ [0, L),

L+ m(L−) if L <∞ and x = L,

∞ if L <∞ and x ∈ (L,∞).

The generalised inverse m̃− of m̃ is defined on [0,∞) (it is even defined on [0,∞] if L < ∞)
and absolutely continuous; see Appendix B for the definition of the generalised inverse. A
trace-normed Hamiltonian H on [0,∞) that satisfies (5.12) is then given by

H(t) :=

dm̃−(t)
dt 0

0 1− dm̃−(t)
dt

 , t ∈ [0,∞); (6.1)

see [23, §4] and [6, §5].
Using this diagonal Hamiltonian we can now prove the following characterisation of the

asymptotic behaviour of the spectral measure in the sense of an integrability condition. This
essentially reproves the main theorem in [20] by I. S. Kac for the case when no potential is
present. The theorem in [20] is stated only for regular strings although it is stated that it can
be carried over to singular strings. In order to apply the results from §4, we have to assume
that the corresponding Hamiltonian H does not start with an indivisible interval of type 0 or
π
2 , which, by Lemma 5.13 (i), is equivalent to the fact that m(0+) = 0 and m(x) > 0 for
x ∈ (0, L).

6.1 Corollary. Let S[L,m] be a Krein string such that m(0+) = 0 and m(x) > 0 for every
x ∈ (0, L). Further, let µS the principal spectral measure of the string as in (5.18), set µ⃗S(r) :=
µS([0, r)), r > 0, and let g be a continuous, non-decreasing, regularly varying function. Then∫ ∞

1

µ⃗S(s)
g(s)

s2
ds <∞ ⇔ ∃x0 ∈ (0, L).

∫ x0

0

g

(
1∫ x

0
m(t) dt

)
dx <∞. (6.2)

Before we prove this corollary, we need the following lemma.

6.2 Lemma. Let F : (0,∞) → (0,∞) be a non-increasing function and let c ∈ (0, b). Then

1

2

∫ 2m1(c)

0

F

(∫ x

0

m(ξ) dξ

)
dx ≤

∫ c

0

F
(
(m1m2)(t)

)
h1(t) dt

≤
∫ m1(c)

0

F

(∫ x

0

m(ξ) dξ

)
dx.

Proof. To show the second inequality, we apply [9, Proposition 1] to obtain∫ c

0

F
(
(m1m2)(t)

)
h1(t) dt =

∫ c

0

F
(
m1(t)m2(t)

)
dm1(t)

=

∫ m1(c)

0

F
[
m2

(
m−

1 (x)
)
m1

(
m−

1 (x)
)︸ ︷︷ ︸

=x

]
dx

=

∫ m1(x)

0

F

[
m(x)

∫ x

0

dξ

]
dx ≤

∫ m1(c)

0

F

[∫ x

0

m(ξ) dξ

]
dx,
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where in the last step the monotonicity of m and F was used.
For the first inequality we use [9, Proposition 1] again∫ c

0

F
(
(m1m2)(t)

)
h1(t) dt =

1

2

∫ c

0

F
(
m1(t)m2(t)

)
d(2m1)(t)

=
1

2

∫ 2m1(c)

0

F

[
m2

(
m−

1

(x
2

))
m1

(
m−

1

(x
2

))
︸ ︷︷ ︸

= x
2

]
dx

=
1

2

∫ 2m1(c)

0

F

[
m
(x
2

)∫ x

x/2

dξ

]
dx ≥ 1

2

∫ 2m1(c)

0

F

[∫ x

x/2

m(ξ) dξ

]
dx

≥ 1

2

∫ 2m1(c)

0

F

[∫ x

0

m(ξ) dξ

]
dx,

where in the penultimate step the monotonicity of m and F was used. ❑

Proof of Corollary 6.1. Let H be the Hamiltonian in (6.1), and let τ and τ∗µH be as in
Lemma 5.14. From Lemma 5.14 we obtain that

µ⃗S(r
2) = µS

(
[0, r2)

)
= τ∗µH

(
[0, r2)

)
= µH

(
(−r, r)

)
=

↔
µH(r).

Define f(r) := g(r2), r > 0, which is also a continuous, non-decreasing, regularly varying
function. A substitution yields∫ ∞

1

µ⃗S(s)
g(s)

s2
ds = 2

∫ ∞

1

µ⃗S(r
2)

g(r2)

r3
dr = 2

∫ ∞

1

↔
µH(r)

f(r)

r3
dr.

The assumptions on m imply that neither h1 nor h2 vanish in a neighbourhood of 0; see
Lemma 5.13 (i). Hence we can apply Proposition 4.7, which, for the diagonal Hamiltonian H,
gives the second equivalence in the following chain:∫ ∞

1

µ⃗S(s)
g(s)

s2
ds <∞ ⇔

∫ ∞

1

↔
µH(r)

f(r)

r3
dr <∞

⇔ ∃c > 0.

∫ c

0

h1(t)f
(
(m1m2)(t)

− 1
2

)
dt <∞

⇔ ∃c > 0.

∫ c

0

h1(t)g
( 1

(m1m2)(t)

)
dt <∞.

It follows from Lemma 6.2 with F (u) = g( 1u ) that the last condition in the above chain is
equivalent to the condition on the right-hand side of (6.2). ❑

6.2 The work of Y. Kasahara

Y. Kasahara’s paper [24] deals with Krein strings as discussed in §5.5. It was a milestone in
the study of high-energy asymptotics of the principal Titchmarsh–Weyl coefficient5. Its recent
successor [25] extends the results to so-called Kotani strings. In these papers also some theorems
about pointwise relations between the mass distribution function of the string and its principal
Titchmarsh–Weyl coefficient are proved; see [24, Theorem 4], [25, Section 3].

Since Krein strings can be considered as diagonal canonical systems, we can use our present
theorems to obtain quite precise information about the principal Titchmarsh–Weyl coefficient;
see Proposition 6.3 below. Concerning its content, our proposition is a variant of Kasahara’s
Theorem 4. It is weaker than [24, Theorem 4] in the sense that we have worse universal
constants in the estimates, but stronger in the sense that we do not restrict ourselves to invertible
comparison functions6. This allows us to give a formulation which is similar to [25, Theorem 3.4].

5Kasahara works with the function qS(−z) and calls it the “characteristic function of the string”.
6This assumption is not explicitly stated in [24, Theorem 4]. However, it is needed in the proof.
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That result, however, is not comparable with ours since on the one hand it deals with a more
general type of strings (for which it is not clear how we could treat them) but on the other hand
restricts to the particular situation when qS oscillates around a regularly varying function.

6.3 Proposition. Let S[L,m] be a string with L > 0 and m ̸≡ 0. Denote by qS its principal
Titchmarsh–Weyl coefficient, and define f as in (5.20). Then

qS(−y) ≍ f−
(1
y

)
, y ∈ (0,∞).

The constants in “≍” are independent of the string.

Proof. Let H be a diagonal Hamiltonian associated with the string S[L,m], e.g. as in (6.1). By
assumption, neither h1 = 0 a.e. nor h2 = 0 a.e. Moreover, fix η ∈ (0, 1− 1√

2
). By Theorem 1.1

and Proposition 5.15 we have

|qH(ir)| ≍ A(r) =
2r

η
f−
( η2
4r2

)
.

The values qH(ir) are purely imaginary since H is diagonal, and Lemma 5.14 gives qH(ir) =
(ir)qS(−r2). Setting r =

√
y we obtain

qS(−y) =
|qH(i

√
y)|

√
y

≍ f−
(η2
4y

)
≍ f−

(1
y

)
,

where in the last step we used Lemma B.3. ❑

6.3 Sturm–Liouville equations

In this subsection we consider Sturm–Liouville equations of the form

−(py′)′ + qy = λwy (6.3)

on an interval (a, b), where p(x), w(x) > 0, q(x) ∈ R for a.e. x ∈ (a, b), 1
p , q, w ∈ L1

loc([a, b)), and
λ is the spectral parameter. Further, we assume that the equation is in the limit-point case at
the right endpoint b. The Titchmarsh–Weyl coefficient corresponding to a Dirichlet boundary
condition at a is defined as follows. Let θ(·;λ), ϕ(·;λ) be solutions of (6.3) that satisfy the
initial conditions

θ(a;λ) = 1, (pθ′)(a;λ) = 0,

ϕ(a;λ) = 0, (pϕ′)(a;λ) = 1.

Then qD(λ), λ ∈ C \ R, is the unique number such that θ(· ;λ) + qD(λ)ϕ(· ;λ) ∈ L2
w(a, b) where

L2
w(a, b) denotes the weighted L2-space with inner product (f, g) =

∫ b
a
fgw. Denote by AD

and AN the operators y 7→ 1
w

(
−(py′)′ + qy

)
in L2

w(a, b) associated with (6.3) and Dirichlet
(y(a) = 0) or Neumann boundary condition ((py′)(a) = 0) at a respectively. The Titchmarsh–
Weyl coefficient can be analytically continued to C \ [minσ(AD),∞).

Let us first consider the case when q ≡ 0. In this situation we can apply our main result,
Theorem 1.1, directly. Note that qD is defined at least on C \ [0,∞) in this case.

6.4 Corollary. Let κ ∈ (0, 12 − 1
2
√
2
), set σ := 1

(1−2κ)2 − 1, and, for r > 0, let x̂(r) ∈ (a, b) be

the unique solution of the equation∫ x̂(r)

a

w(t) dt ·
∫ x̂(r)

a

1

p(t)
dt =

κ2

r
. (6.4)

Then the Titchmarsh–Weyl coefficient qD for (6.3) with q ≡ 0 satisfies

C1,ϑB(r) ≤ |qD(reiϑ)| ≤ C2,ϑB(r), r > 0, ϑ ∈ (0, 2π), (6.5)
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where

B(r) =
r

κ

∫ x̂(r)

a

w(t) dt =
κ∫ x̂(r)

a
1
p(t) dt

(6.6)

and

C2,ϑ =
1 + σ + 1

κ sin(ϑ/2)

1− σ
, C1,ϑ =

1

C2,ϑ
.

Proof. With the given p, w we consider the Hamiltonian

H =

(
w 0

0 1
p

)
.

Comparing (6.4) and (1.5) (with η = 2κ) we see that x̂(r) = t̊(r
1
2 ). It follows from [29, (3.1)]

that qD(z
2) = zqH(z) for z ∈ C \ R. Now (1.6) and (2.15) imply

|qD(reiϑ)| = r
1
2

∣∣qH(r 1
2 ei

ϑ
2

)∣∣ ≤ r
1
2

1 + σ + 1
κ sin(ϑ/2)

1− σ
A(r

1
2 )

= C2,ϑr
1
2
r

1
2

κ
m1

(̊
t(r

1
2 )
)
= C2,ϑ

r

κ

∫ x̂(r)

a

w(t) dt = C2,ϑ
κ∫ x̂(r)

a
1
p(t) dt

,

which is the second inequality in (6.5); the lower bound follows similarly. ❑

Let us now consider the case where also the potential q is present. We use a transformation to
reduce this situation to the previous case with no potential. Asymptotic estimates have been
proved in, e.g. [15, Theorem 3], [2, Theorems 1 and 2] and [3, Theorem 3.3]. The following
corollary is similar to the latter two references although in those theorems also sign-changing
p is allowed. On the other hand, in the following corollary the bounds and the range of
validity depend—apart from an a priori lower bound of the corresponding Neumann operator—
explicitly and uniformly on certain integrals over the coefficients in a neighbourhood of the left
endpoint a, in contrast to the results in the literature we know of. Note that in some of the
papers the Neumann Titchmarsh–Weyl coefficient qN = − 1

qD
is considered.

6.5 Corollary. Let p, q, w be as at the beginning of this subsection and let κ, σ, C1,ϑ, C2,ϑ,
x̂(r) and B be as in Corollary 6.4. Further, assume that the Neumann operator AN is bounded
below, let λ0 < minσ(AN), choose x0 ∈ (a, b) such that∫ x0

a

1

p(t)
dt ≤ 1

3
,

∫ x0

a

∣∣q(t)− λ0w(t)
∣∣ dt ≤ 1

3
(6.7)

and set

r0 := 9κ2
[∫ x0

a

w(t) dt ·
∫ x0

a

1

p(t)
dt

]−1

.

Then
C1,ϑ

36
B(9r) ≤

∣∣qD(λ0 + reiϑ
)∣∣ ≤ 9C2,ϑ

4
B(9r), r ≥ r0, ϑ ∈ (0, 2π). (6.8)

Proof. Let v be the solution of the initial value problem

−(pv′)′ + qv = λ0wv, v(a) = 1, (pv′)(a) = 0. (6.9)

It follows in exactly the same way as in [31, Lemma 2.3] that v(x) > 0 for all x ∈ [a, b).
In order to obtain an explicit estimate for v, we rewrite the initial value problem (6.9) in a

standard way: with u =
(
v
pv′

)
, (6.9) is equivalent to

u(x) = u0 +

∫ x

a

(
0 1

p(t)

q(t)− λ0w(t) 0

)
u(t) dt

42



where u0 =
(
1
0

)
. Let T be the operator in the space C([a, x0])

2 (with norm
∥∥(f1
f2

)∥∥ = ∥f1∥∞ +

∥f2∥∞) that maps u onto the integral on the right-hand side. It follows from (6.7) that ∥T∥ ≤ 1
3 .

Hence

∥u− u0∥ =
∥∥(I − T )−1u0 − u0

∥∥ ≤
∞∑
n=1

∥T∥n∥u0∥ ≤ 1

2
,

and, in particular,
1

2
≤ v(x) ≤ 3

2
, x ∈ [a, x0]. (6.10)

We use the following transformation: set P := v2p, W := v2w and define the unitary
mapping

U : L2
w(a, b) → L2

W (a, b), y 7→ y

v
.

Let λ ∈ C \ R and let ψ be a non-trivial solution of −(pψ′)′ + qψ − λ0wψ = λwψ which

is in L2
w(a, b). Then qD(λ0 + λ) = (pψ′)(a)

ψ(a) . Set ψ̃ := Uψ, which belongs to L2
W (a, b). It

follows from [31, Lemma 3.2] that −(Pψ̃′)′ = λWψ̃. Let q̃D be the Titchmarsh–Weyl coefficient

corresponding to the equation −(Py′)′ = λWy; then q̃D(λ) =
(Pψ̃′)(a)

ψ̃(a)
. The two Titchmarsh–

Weyl coefficients are related as follows:

qD(λ0 + λ) =
(pψ′)(a)

ψ(a)
=

(
p(vψ̃)′

)
(a)

(vψ̃)(a)
=
v(a) limx→a

(
p(x)ψ̃′(x)

)
+ (pv′)(a)ψ̃(a)

v(a)ψ̃(a)

=
1

v(a)2
· (Pψ̃

′)(a)

ψ̃(a)
+

(pv′)(a)

v(a)
= q̃D(λ)

since v satisfies the initial conditions in (6.9).
We want to apply Corollary 6.4 with P and W instead of p and w respectively. Let x̃(r) be

the unique solution of ∫ x̃(r)

a

W (t) dt ·
∫ x̃(r)

a

1

P (t)
dt =

κ2

r

for r > 0. It follows from (6.10) that, for r such that x̃(r) ≤ x0, we have∫ x̃(r)

a

w(t) dt ·
∫ x̃(r)

a

1

p(t)
dt =

∫ x̃(r)

a

W (t)

v(t)2
dt ·

∫ x̃(r)

a

v(t)2

P (t)
dt

≥
(
1
2

)2(
3
2

)2 ∫ x̃(r)

a

W (t) dt ·
∫ x̃(r)

a

1

P (t)
dt =

1

9
· κ

2

r
=

∫ x̂(9r)

a

w(t) dt ·
∫ x̂(9r)

a

1

p(t)
dt

and hence x̃(r) ≥ x̂(9r). In a similar way one proves x̃(r) ≤ x̂( r9 ). In particular, x̃(r) ≤ x0 is
satisfied if x̂( r9 ) ≤ x0, which, in turn, is equivalent to r ≥ r0.

Now Corollary 6.4 applied to −(Py′)′ = λWy yields

|qD(λ0 + reiϑ)| = |q̃D(reiϑ)| ≤ C2,ϑ κ

[∫ x̃(r)

a

1

P (t)
dt

]−1

≤ C2,ϑ κ
(3
2

)2[∫ x̃(r)

a

1

p(t)
dt

]−1

≤ 9C2,ϑ

4
· κ
[∫ x̂(9r)

a

1

p(t)
dt

]−1

=
9C2,ϑ

4
B(9r)

and

|qD(λ0 + reiϑ)| = |q̃D(reiϑ)| ≥ C1,ϑ
r

κ

∫ x̃(r)

a

W (t) dt ≥ C1,ϑ
r

κ
·
(1
2

)2 ∫ x̃(r)

a

w(t) dt

≥ C1,ϑ

4
· r
κ

∫ x̂(9r)

a

w(t) dt =
C1,ϑ

36
· 9r
κ

∫ x̂(9r)

a

w(t) dt =
C1,ϑ

36
B(9r)

for r ≥ r0, which proves (6.8). ❑

6.6 Remark. It follows from Corollary 6.5 and the second form of B(r) in (6.6) that |qD(λ0 +
reiϑ)| is bounded above and below by constants times the function B, which is monotonic
increasing and tends to ∞ as r → ∞. ♢
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6.4 The work of H. Winkler

Let us now discuss [44, 43]. These papers were of utmost importance for us since the method to
estimate Weyl discs is taken from there. H. Winkler proves three theorems about membership
of Kac classes; in our notation, these are the classes Mgα with gα(r) := rα, α ∈ (0, 2), where
the classes Mg are defined in Definition 4.2.

We start with a slightly more general situation that covers Theorems 4.2 and 4.4 in [44].
Let ρ1, ρ2 > 0, c1, c2 > 0 and assume that the primitive M of a Hamiltonian H, defined on
[0,∞), satisfies

mi(t) = cit
ρi + o(tρi), t→ 0, i = 1, 2.

Further, assume that one of the following conditions is satisfied:

(i) ρ1 ̸= ρ2;

(ii) ρ1 = ρ2, m3(t) = c3t
ρ1 + o(tρ1), c23 < c1c2.

(6.11)

It follows from [44, Lemma 4.3] in the case when H is trace normed (or from the much more
general Theorem 6.1 in [26]) that if (i) is satisfied, then

lim sup
t→0

m3(t)
2

m1(t)m2(t)
≤
( √

ρ1ρ2
1
2 (ρ1 + ρ2)

)2

< 1.

In the case when (ii) is satisfied, we obtain lim supt→0
m3(t)

2

m1(t)m2(t)
=

c23
c1c2

< 1. It now follows

from Example 4.20 that

µH ∈ Fgα0
\ F0

gα0
where α0 :=

2ρ2
ρ1 + ρ2

(6.12)

and hence
µH ∈ Mgα ⇔ α > α0. (6.13)

The two special cases considered in [44] are the following. In that paper the Hamiltonian is
always trace normed, which implies min{ρ1, ρ2} = 1.

① Theorem 4.2 in [44].

In that theorem the situation (ii) with ρ1 = ρ2 = 1 is considered, i.e. mi(t) = cit + o(t),
i = 1, 2, 3, with c23 < c1c2. In this case we have α0 = 1. One should note that this situation is
actually more specific: by [6, Theorem 3.1] one has

lim
r→∞

qH(ir) = ζ with some ζ ∈ C+;

in particular, Im qH(ir) ≍ 1, and this also implies the result.

② Theorem 4.4 in [44].

In that theorem the situation (i) is considered, i.e. either ρ1 = 1, ρ2 > 1 or ρ1 > 1, ρ2 = 1,
which leads to α0 = 2ρ2

ρ2+1 and α0 = 2
ρ1+1 respectively. We should note that in [44] only the

classes Mg are studied and hence only (6.13) is proved but not the statement in (6.12).

Finally, let us consider a situation that is slightly more complicated.

③ Theorem 4.5 in [44].

Consider a Hamiltonian H defined on [0,∞) such that M satisfies

mi(t) = cit+ dit
γ + o(tγ), i = 1, 2,

m3(t) = c3t+ d3t
δ + o(tδ),

(6.14)

as t→ 0, where
c1, c2 > 0, c23 = c1c2, γ, δ > 1, di ∈ R.
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We cannot argue in the same way as in ① and ② since detM(t)
(m1m2)(t)

→ 0 and hence L(r) ≪ A(r).

However, we can apply the transformation from §5.3. In particular, (5.7) yields the primitive

M̃ of a new Hamiltonian H̃ such that

m̃1(t) = c2m1(t) + c1m2(t)− 2c3m2(t) = (c2d1 + c1d2)t
γ − 2c2d3t

δ + o(tκ),

m̃2(t) = c1m1(t) + c2m2(t) + 2c3m3(t) = (c21 + c22 + 2c23)t+ o(t),

m̃3(t) = c3
(
m1(t)−m2(t)

)
+ (c2 − c1)m3(t)

= c3(d1 − d2)t
γ + (c2 − c1)d3t

δ + o(tκ),

where κ := min{γ, δ}. Let us assume that m̃1(t) ∼ ctκ with some c > 0, i.e. that one of the
following three conditions is satisfied:

• γ < δ, c2d1 + c1d2 > 0;

• δ < γ, d3 < 0;

• γ = δ, c2d1 + c1d2 − 2c2d3 > 0.

(If m̃1(t) = o(tκ), then one needs more information on the small o terms in the representations
of mi.) The Hamiltonian M̃ satisfies (i) in (6.11) with ρ1 = κ, ρ2 = 1. Hence (6.12) holds

with H replaced by H̃ and α0 = 2
κ+1 . By Proposition 5.7 we have Im qH(ir) ≍ Im qH̃(ir) and

therefore also
↔
µH(r) ≍ ↔

µH̃(r); see Lemma 4.18. This implies that (6.12) holds also for H and
that

µH ∈ Mgα
⇔ α >

2

κ+ 1
.

This covers most cases in [44, Theorem 4.5]; some cases where m̃1(t) = o(tκ) and more inform-
ation on mi is known are also treated there.

Let us note that, as in ①, the situation in (6.14) is more specific. By the main theorem of
the forthcoming paper [28], qH(ir) has a power asymptotic for r → ∞. However, contrasting
①, this does not lead to a proof of the assertion concerning Kac classes since the leading term
of this asymptotic expansion is real.

Appendix A. Regularly varying functions

To quantify speed of growth, we use comparison functions which behave roughly like a power
in Karamata’s sense of regular variation. In this appendix we recall the definition and some
facts about such functions. A very good source for the theory of regular variation is [4]; and
this is our standard reference.

A.1 Definition. A function g: (0,∞) → (0,∞) is called regularly varying with index α ∈ R if
it is measurable and

∀λ > 0. lim
r→∞

g(λr)

g(r)
= λα. (A.1)

♢

Examples of regularly varying functions include functions g behaving, for large r, like

rα ·
(
log r

)β1 ·
(
log log r

)β2 · . . . ·
(
log · · · log︸ ︷︷ ︸
mth iterate

r
)βm

,

where α, β1, . . . , βm ∈ R, which were studied already in the context of entire functions. Other

examples are g(r) = rαe(log r)
β

with β ∈ (0, 1), or g(r) = rαe
log r

log log r ; see [4, §1.3].
The following theorem shows that regularly varying functions with index α are asymptotic-

ally strictly between powers with exponents strictly larger than α and powers with exponents
strictly smaller than α. It follows, e.g. from the Potter bounds; see [4, Theorem 1.5.6 (iii)].
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A.2 Theorem. Let g : (0,∞) → (0,∞) be a regularly varying function with index α ∈ R. For
every ρ ∈ R, ρ ̸= α, there exist r0 > 0 and C > 0 such that

g(r) ≤ Crρ if ρ > α,

g(r) ≥ Crρ if ρ < α,

for r ≥ r0.

A regularly varying function with a strictly positive index is asymptotically equivalent to a
monotonic increasing, regularly varying function with the same index, as the following theorem
shows; see [4, Theorems 1.5.3 and 1.3.1].

A.3 Theorem. Let g : (0,∞) → (0,∞) be a locally bounded, regularly varying function with
index α > 0. Then

ḡ(r) := sup{g(t) : 0 ≤ t ≤ r} ∼ g(r)

as r → ∞, and ḡ is regularly varying with index α.

Another fundamental result, due to J. Karamata, determines what happens when a regularly
varying function is integrated against a power. We recall this theorem in a comprehensive
formulation collecting what is proved in [4, Section 1.5.6].

A.4 Theorem (Karamata). Let g be regularly varying at ∞ with index α ∈ R and assume
that g is locally bounded.

(i) Let δ ∈ R and assume that δ+α+1 ≥ 0. Then the function x 7→
∫ x
1
tδg(t) dt is regularly

varying with index δ + α+ 1, and

lim
x→∞

(
xδ+1g(x)

/∫ x

1

tδg(t) dt

)
= δ + α+ 1.

(ii) Let δ ∈ R and assume that
∫∞
1
tδg(t) dt < ∞. Then δ + α + 1 ≤ 0, the function

x 7→
∫∞
x
tδg(t) dt is regularly varying with index δ + α+ 1, and

lim
x→∞

(
xδ+1g(x)

/∫ ∞

x

tδg(t) dt

)
= −(δ + α+ 1).

Appendix B. The generalised inverse of a non-decreasing
function

Let us recall the notion of a generalised inverse; see, e.g. [7, Definition 2.1]. We slightly adapt
the definition and, in particular, allow that the given function may attain the value +∞; this is
convenient when we apply our results to Krein strings. On the set (−∞,∞] we use the obvious
order structure.

B.1 Definition. Let −∞ < a < b ≤ ∞, let f : [a, b) → (−∞,∞] be a non-decreasing function
and set Rf := conv(ran f), the convex hull of the range of f . The function f−, defined by

f−(y) := inf
{
x ∈ [a, b) : f(x) ≥ y

}
, y ∈ Rf , (B.1)

is called the generalised inverse of f . ♢

Note that in this definition the function f is neither assumed to be strictly increasing nor to
be continuous. Further, note that, with b′ := limx→b f(x), we have Rf = [f(a), b′] if b′ ∈ ran f
and Rf = [f(a), b′) otherwise.

In the next two lemmata we state some facts about generalised inverses which we use in the
present paper. They are folklore; some can be found in [7], some in [23], and most probably in
many other references. For the sake of completeness and because the setting is slightly different,
we give proofs.
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B.2 Lemma. Let f be as in Definition B.1 and set b′ := limx→b f(x). Then the following
statements hold.

(i) f−(y) ∈ [a, b) for all y ∈ Rf .

(ii) f− is non-decreasing and left-continuous.

(iii) Let x ∈ [a, b). Then

f−
(
f(x)

)
= inf{ξ ∈ [a, x] : f(ξ) = f(x)} ≤ x

with equality if and only if x is not right endpoint of an interval where f is constant. In
particular, f−(f(a)) = a.

(iv) Let y ∈ Rf . Then

f
(
f−(y)

)
≤ y if f is left-continuous at f−(y),

f
(
f−(y)

)
≥ y if f is right-continuous at f−(y).

In particular, if f is continuous on [a, b), then f(f−(y)) = y.

(v) Let y0 ∈ Rf with y0 < b′ and assume that f is strictly increasing on the interval
[f−(y0), f

−(y0) + ε] for some ε > 0. Then f− is continuous at y0.

(vi) Assume hat f is continuous and let x ∈ [a, b) and y ∈ Rf . Then

f−(y) ≤ x ⇔ y ≤ f(x).

(vii) Set x0 := sup{ξ ∈ [a, b) : f(ξ) < b′}. Then lim
y↗b′

f−(y) = x0.

(viii) Let g be another function as in Definition B.1 defined on the same interval [a, b). If
f(x) ≤ g(x) for all x ∈ [a, b), then

f−(y) ≥ g−(y), y ∈ Rf ∩Rg.

(ix) Let −∞ < c < d ≤ ∞, let I ′ ⊆ (−∞,∞] be an interval, and let φ : [c, d) → [a, b) and
ψ : Rf → I ′ be increasing bijections. Then(

ψ ◦ f ◦ φ
)−

(v) =
(
φ−1 ◦ f− ◦ ψ−1

)
(v), v ∈ I ′.

(x) Let f̃ be another function as in Definition B.1 defined on [a, b̃) such that b̃ ≥ b and
f(x) = f̃(x) for x ∈ [a, b). Then f̃−(y) = f−(y) for y ∈ Rf .

Proof.
(i) For y ∈ Rf the set in (B.1), of which the infimum is taken, is non-empty and contained

in [a, b).
(ii) To show that f− is non-decreasing, let y1 ≤ y2. Then{

x ∈ [a, b) : f(x) ≥ y1
}
⊇
{
x ∈ [a, b) : f(x) ≥ y2

}
,

and hence f−(y1) ≤ f−(y2). In order to prove the left-continuity of f−, we first show the
following implications

x < f−(y) ⇒ f(x) < y,

x > f−(y) ⇒ f(x) ≥ y.
(B.2)

Indeed, if x < f−(y), then x /∈ {ξ ∈ [a, b) : f(ξ) ≥ y} and hence f(x) < y; if x > f−(y), then
there exists ξ ∈ [a, x) such that f(ξ) ≥ y and therefore f(x) ≥ f(ξ) ≥ y.

Now let y0 ∈ Rf with y0 > f(a) and assume that

x− := lim
y↗y0

f−(y) < f−(y0).
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Choose an arbitrary number x′ ∈ (x−, f
−(x0)). For every y ∈ (f(a), y0) we have f

−(y) ≤ x− <
x′ < f−(y0). Hence, two applications of (B.2) yield y ≤ f(x′) < y0, which is a contradiction to
the arbitrariness of y in (f(a), y0).

(iii) For x ∈ [a, b) we have

f−
(
f(x)

)
= inf{ξ ∈ [a, b) : f(ξ) ≥ f(x)} = inf{ξ ∈ [a, x] : f(ξ) ≥ f(x)}
= inf{ξ ∈ [a, x] : f(ξ) = f(x)}.

The remaining assertions are now clear.
(iv) The implications follow from (B.2), e.g. if f is left-continuous at f−(y), then f(f−(y)) =

limx↗f−(y) f(x) ≤ y. The last statement clearly follows from this when f−(y) ∈ (a, b); when
f−(y) = a, then f(f−(y)) = f(a) ≤ y since y ∈ Rf , and the other inequality follows since f is
right-continuous at f−(y).

(v) In light of (ii) it is sufficient to show right-continuity. Suppose that

f−(y0) < lim
y↘y0

f−(y)

and set
x+ := min

{
lim
y↘y0

f−(y), f−(y0) + ε
}
.

Further, choose x1, x2 ∈ (f−(y0), x+) with x1 < x2. For every y ∈ (y0, b
′) we have f−(y0) <

x1 < x2 < x+ ≤ f−(y). Hence, applying (B.2) twice and using the strict monotonicity of f on
[f−(y0), x+] we obtain

y0 ≤ f(x1) < f(x2) < y,

which is a contradiction to the arbitrariness of y in (y0, b
′).

(vi) Assume that f−(y) ≤ x. Since f is continuous, it follows from (iv) that y = f(f−(y)) ≤
f(x). Now assume that f−(y) > x; then y > f(x) by (B.2).

(vii) We distinguish two cases. When x0 < b, then b′ ∈ Rf and f−(b′) = x0. Hence the
left-continuity of f−, shown in (ii), implies the assertion.

Now assume that x0 = b. It is clear from (i) that f−(y) < b for every y < b′; therefore
limy↗b′ f

−(y) ≤ x0. To show equality in the latter relation, let x ∈ [a, x0) be arbitrary. By the
definition of x0 we have f(x) < b′. Hence there exists y ∈ (f(x), b′), which, by (B.2), implies
that f−(y) ≥ x.

(viii) For y ∈ Rf ∩Rg we have{
x ∈ [a, b) : f(x) ≥ y

}
⊆
{
x ∈ [a, b) : g(x) ≥ y

}
and hence f−(y) ≥ g−(y).

(ix) Let v ∈ I ′. Then{
t ∈ [c, d) : (ψ ◦ f ◦ φ)(t) ≥ v

}
=
{
t ∈ [c, d) : f(φ(t)) ≥ ψ−1(v)

}
= φ−1

({
x ∈ [a, b) : f(x) ≥ ψ−1(v)

})
,

from which the desired relation follows.
(x) For y ∈ Rf we have

f̃−(y) = inf{x ∈ [a, b̃) : f̃(x) ≥ y} = inf{x ∈ [a, b) : f̃(x) ≥ y},

which implies the assertion. ❑

The following lemma is used in §6.2. To avoid distinction of cases, we use the relation ∞
x = ∞

for x ∈ (0,∞).

B.3 Lemma. Let b ∈ (0,∞], and let f : [0, b) → [0,∞] be a non-decreasing function such that

f(0) = 0, limx→b f(x) = ∞ and x 7→ f(x)
xρ is non-decreasing on (0, b) for some ρ > 0. Then for

all c > 0 we have f−(cy) ≍ f−(y), y ∈ [0,∞).
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Proof. First note that we have either Rf = [0,∞) or Rf = [0,∞].
It is sufficient to consider the case when c > 1. From the monotonicity of f− it follows that

f−(y) ≤ f−(cy), y ∈ [0,∞). (B.3)

Our aim is to show a reverse inequality with a multiplicative constant. If b <∞, we extend
f as follows:

f̃(x) :=

{
f(x), x ∈ [0, b),

+∞, x ∈ [b,∞).

In the case when b = ∞, we set f̃ := f . It follows from Lemma B.2 (x) that f̃−(y) = f−(y) for

y ∈ Rf . For x ∈ (0, c−
1
ρ b) we have

f(x) = xρ
f(x)

xρ
≤ xρ

f
(
c

1
ρx
)(

c
1
ρx
)ρ =

f
(
c

1
ρx
)

c
.

We can extend this inequality to

f̃(x) ≤ 1

c
f̃
(
c

1
ρx
)
, x ∈ [0,∞). (B.4)

Define the functions φ : [0,∞) → [0,∞), φ(x) = c
1
ρx and ψ : Rf̃ → Rf̃ , ψ(y) = 1

cy. Then

(B.4) can be written as f̃(x) ≤ (ψ ◦ f̃ ◦ φ)(x), x ∈ [0,∞). Hence Lemma B.2 (viii), (ix) imply
that, for y ∈ Rf ,

f−(y) = f̃−(y) ≥
(
ψ ◦ f̃ ◦ φ

)−
(y) =

(
φ−1 ◦ f̃− ◦ ψ−1

)
(y)

= c−
1
ρ f̃−(cy) = c−

1
ρ f−(cy).

In particular, this inequality is true for y ∈ [0,∞), which, together with (B.3), proves the
assertion. ❑

Note that Lemma B.3 says that under the given assumptions the function f− belongs to the
class OR defined in [4, §2.0.2]; see also Remark 4.8.
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