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Abstract. We derive necessary and sufficient conditions for universality lim-
its for orthogonal polynomials on the real line and related systems. One of our
results is that the Christoffel–Darboux kernel has sine kernel asymptotics at a
point ξ, with regularly varying scaling, if and only if the orthogonality measure
(spectral measure) has a unique tangent measure at ξ and that tangent mea-
sure is the Lebesgue measure. This includes all prior results with absolutely
continuous or singular measures.

Our work is not limited to bulk universality; we show that the Christoffel–
Darboux kernel has a regularly varying scaling limit with a nontrivial limit
kernel if and only if the orthogonality measure has a unique tangent measure
at ξ and that tangent measure is not a point mass. The possible limit kernels
correspond to homogeneous de Branges spaces; in particular, this equivalence
completely characterizes several prominent universality classes such as hard
edge universality, Fisher–Hartwig singularities, and jump discontinuities in
the weights.

The main part of the proof is the derivation of a new homeomorphism.
In order to directly apply to the Christoffel–Darboux kernel, this homeomor-
phism is between measures and chains of de Branges spaces, not between Weyl
functions and Hamiltonians. In order to handle limits with power law weights,
this homeomorphism goes beyond the more common setting of Poisson-finite
measures, and allows arbitrary power bounded measures.

1. Introduction

In this paper, we derive necessary and sufficient conditions for universality limits.
Our main result is Theorem 1.11, which is formulated and proved in a very general
setting. We will initially present the results in the setting of orthogonal polynomials
on the real line (OPRL), although this is only a particular case. In this setting
the topic has a long history. In course of the presentation we gradually increase
generality, and Theorem 1.6 is the most general result in the OPRL setting.

Stage 1: Bulk universality.
We start our journey with discussing universality for OPRL in the sine kernel
regime. Consider orthogonal polynomials ppnpzqq8

n“0 with respect to a measure
µ on R, obtained by the Gram–Schmidt process in L2pR, dµq from the sequence
pznq8

n“0. By general principles, the polynomial pn has n real simple zeros. Their
local distribution/spacing on the real line is a question of classical interest; in the
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setting of Jacobi polynomials, it was long known [79] that zeros of Jacobi poly-
nomials are locally asymptotically uniformly spaced, and this was generalized by
Erdös–Turán [23] to a class of smooth weights on an interval. In modern literature,
this phenomenon is known as clock behavior, and it is stated as follows. Zeros of pn

can be indexed by counting to the left and right from a fixed point ξ P R, denoting
them by ξpnq

j so that

¨ ¨ ¨ ă ξ
pnq

´1 ă ξ
pnq

0 ď ξ ă ξ
pnq

1 ă ξ
pnq

2 ă . . .

(of course, only n of these are well-defined for fixed n). The measure can be said to
have clock behavior at ξ if for every j P Z, ξpnq

j is well-defined for all large enough
n and if for some scaling sequence τn Ñ 8 as n Ñ 8,

lim
nÑ8

τnpξ
pnq

j`1 ´ ξ
pnq

j q “ 1 (1.1)

for every j P Z (it is common to impose additional assumptions on τn).
A theorem of Freud [27], rediscovered by Levin in [51], states that clock behavior

follows from a local scaling limit of the Christoffel–Darboux (CD) kernel: namely,
the CD kernel for the measure µ is defined as

Kpn, z, wq “

n´1
ÿ

j“0
pjpzqpjpwq (1.2)

and clock behavior (1.1) follows from the local scaling limit

lim
nÑ8

1
Kpn, ξ, ξq

K

ˆ

n, ξ `
z

τn
, ξ `

w

τn

˙

“
sinpπpz ´ wqq

πpz ´ wq
. (1.3)

The phenomenon (1.3) is called bulk universality, and sufficient conditions for bulk
universality have been greatly studied in the literature.

We digress to say that similar scaling limits of CD kernels are motivated by
random matrix theory; the eigenvalues of random matrix ensembles with a uni-
tary conjugation invariance are a determinantal point process whose correlation
kernel is precisely the CD kernel [17, 64], so certain limits of CD kernels encode
local eigenvalue statistics of the random matrices. In that setting, an explicit n-
dependence is naturally placed in the measure, so this is often referred to as a
varying measure limit, with pioneering work by Bleher–Its [6], Pastur–Shcherbina
[65], and Deift–Kriecherbauer–McLaughlin–Venakides–Zhou [14, 15, 16], see also
[17] and the survey of Lubinsky [58].

Returning to the "fixed measure" bulk universality limit (1.3), many different
methods were developed to prove it under different sufficient conditions. Riemann–
Hilbert techniques were used by Kuijlaars–Vanlessen [44] for Jacobi-like analytic
weights on r´1, 1s. Another method was found by Lubinsky [56], with further
developments by [24, 77, 82, 83], which instead requires Stahl–Totik regularity [78]
of the measure and Lebesgue point and local Szegő conditions at the point ξ. A
second approach of Lubinsky [55] is conditional on the behavior of the CD kernel
on the diagonal; this was used by Avila–Last–Simon [2] to prove bulk universality
for ergodic Jacobi matrices on an essential support of the a.c. spectrum. Breuer
[7] found the first examples of bulk universality with singular measures, within the
class of sparse decaying discrete Schrödinger operators. Lubinsky first explored the
connection with de Branges spaces [55, 57]. Using the theory of canonical systems,
a local sufficient condition was proved by Eichinger–Lukić–Simanek [21]: a strictly
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positive, finite nontangential limit of the Poisson transform of the measure at a point
implies bulk universality at that point. This approach works with the continuous
family of kernels tKpt, z, wq | t P r0,8qu obtained by piecewise linear interpolation,

Kpt, z, wq “ Kpttu, z, wq ` pt´ ttuqpKpttu ` 1, z, wq ´Kpttu, z, wqq, (1.4)
which naturally appears through the reduction of a Jacobi matrix to a canonical
system.

As a consequence of our main result we obtain necessary and sufficient conditions
for bulk universality:

Theorem 1.1. Let µ be a measure on R with a determinate moment problem. For
any ξ P R and any η P p0,8q, the following are equivalent:
(i)

η “ lim
ϵÓ0

µppξ ´ ϵ, ξqq

ϵ
“ lim

ϵÓ0

µprξ, ξ ` ϵqq

ϵ
(1.5)

(ii) Uniformly on compact subsets of pz, wq P C ˆ C,

lim
tÑ8

K
´

t, ξ ` z
ηKpt,ξ,ξq

, ξ ` w
ηKpt,ξ,ξq

¯

Kpt, ξ, ξq
“

sinpπpz ´ wqq

πpz ´ wq
. (1.6)

(iii) Uniformly on compact subsets of pz, wq P C ˆ C,

lim
nÑ8

K
´

n, ξ ` z
ηKpn,ξ,ξq

, ξ ` w
ηKpn,ξ,ξq

¯

Kpn, ξ, ξq
“

sinpπpz ´ wqq

πpz ´ wq
(1.7)

and
lim

nÑ8

Kpn` 1, ξ, ξq

Kpn, ξ, ξq
“ 1. (1.8)

Note that we consistently use n P N as a discrete parameter and t P r0,8q as a
continuous parameter; in particular, the equivalence of (ii) and (iii) above relates
the sine kernel asymptotics for the continuous family of linearly interpolated kernels
(1.4) to that for the original sequence of CD kernels (1.2).

Remark 1.2. (i) The determinate moment problem condition means that µ is
uniquely determined by its moments

ş

ξn dµpξq, n “ 0, 1, 2, . . . . A sufficient
condition is exponential decay of the tails,

ş

eϵ|ξ| dµpξq ă 8 for some ϵ ą 0.
(ii) Theorem 1.1 describes bulk universality at the scale τn “ ηKpn, ξ, ξq. The

inverse of Kpn, ξ, ξq is known as the Christoffel function and its asymptotic
behavior is widely studied. By work of Máté–Nevai–Totik [61] and Totik [81],
Stahl–Totik regularity and local Lebesgue point/local Szegő conditions at the
point imply that Kpn, ξ, ξq grows linearly with n. This contains previous bulk
universality results for compactly supported measures with an a.c. part; thus,
although those results were formulated at the explicit scale τn “ cn, this is
equivalent to the scaling limit (1.6).

(iii) The condition (1.8) is equivalent to

lim
nÑ8

pnpξq2
řn´1

j“0 pjpξq2
“ 0

and sometimes described as subexponential growth of orthogonal polynomials
pnpξq. It is closely related to the Nevai condition [8, 9].
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(iv) Prior results were based on a mix of global and local assumptions of the mea-
sure, and the local assumptions included Lebesgue point conditions on the
measure; in particular, they required presence of an a.c. part of the measure.
Theorem 1.1 is completely local, and the local condition (1.5) is weaker than
a Lebesgue point condition; in particular, it makes it obvious that bulk uni-
versality at a single point can even be achieved for a pure point measure (see
Lemma 9.1).

(v) It was proved in [21, Theorem 1.2] that if for some α P p0, π{2q,

lim
zÑξ

αďargpz´ξqďπ´α

1
π

Im
ż 1
λ´ z

dµpλq “ η (1.9)

then (1.6) holds. This sufficient condition (1.9) is equivalent to (1.5) for
any η P p0,8q and any α P p0, π{2q, by a general result of Loomis [52] for
positive harmonic functions (see also [70] which gives a proof related to our
rescaled Weyl functions). Thus, Theorem 1.1 shows that the implication in
[21] is optimal; however, the opposite implication (ii) ùñ (i) of Theorem 1.1
is outside the scope of the method in [21].

The approach in [21] is based on a homeomorphism between trace-normalized
limit circle-limit point Hamiltonians and Nevanlinna functions (analytic maps C` Ñ

C`, where C` “ tz P C | Im z ą 0u). In particular, the implication (1.9) ùñ (1.6)
was proved by a shifted rescaling trick which does not give the converse implication
and does not easily generalize to other situations. The approach in this paper is
different, and at its core is a homeomorphism between certain measures and certain
chains of de Branges spaces. This homeomorphism is better suited for the study
of convergence of kernels, and necessary for statements such as the implication
(ii) ùñ (i) of Theorem 1.1. We will be more precise below.

Stage 2: Bulk universality with regularly varying scaling.
We turn to more general sine kernel asymptotics. In the equivalence of Theorem 1.3,
the derivative condition on the measure is replaced by a tangent measure condition.
We provide the required definitions before stating the result.

For a locally finite measure µ in C, ξ P C and r ą 0, consider the affine push-
forwards of µ defined by µξ,rpAq “ µpξ ` A{rq for Borel sets A. A measure ν is a
tangent measure of µ at ξ if ν is locally finite, νpCq ą 0, and there exist positive
sequences cn, rn with rn Ñ 8 and cnµξ,rn

Ñ ν weakly in CcpCq˚ as n Ñ 8. The
set of tangent measures of µ at ξ is denoted Tanpµ, ξq. This notion was introduced
in geometric measure theory by Preiss [67], see also [62].

The set Tanpµ, ξq is closed under multiplication by a positive scalar. It is said
that µ has a unique tangent measure at ξ if there exists ν such that Tanpµ, ξq “

tcν | c P p0,8qu.
A function g : p0,8q Ñ p0,8q is said to be regularly varying (at 8) with index

β if for all c P p0,8q, gpcrq{gprq Ñ cβ as r Ñ 8. Regularly varying functions
were introduced by Karamata [39, 40] and play an important role in Abelian and
Tauberian theorems; see also [5], and applications to spectral theory [20, 49, 69].
Another regularly varying function h is said to be an asymptotic inverse of g if
hpgprqq{r Ñ 1 and gphprqq{r Ñ 1 as r Ñ 8. Every regularly varying function g of
order β ą 0 has an asymptotic inverse h of order 1{β.
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Theorem 1.3. Let µ be a measure on R with a determinate moment problem. For
any ξ P R, the following are equivalent:
(i) There exists g regularly varying with index 1 such that

1 “ lim
rÑ8

gprqµ
``

ξ ´ 1
r , ξ

˘˘

“ lim
rÑ8

gprqµ
`“

ξ, ξ ` 1
r

˘˘

(ii) Tanpµ, ξq “ tcm | c P p0,8qu where m denotes Lebesgue measure on R
(iii) There exists h regularly varying with index 1 such that uniformly on compact

subsets of pz, wq P C ˆ C,

lim
tÑ8

K
´

t, ξ ` z
hpKpt,ξ,ξqq

, ξ ` w
hpKpt,ξ,ξqq

¯

Kpt, ξ, ξq
“

sinpπpz ´ wqq

πpz ´ wq
. (1.10)

(iv) There exists h regularly varying with index 1 such that uniformly on compact
subsets of pz, wq P C ˆ C,

lim
nÑ8

K
´

n, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“

sinpπpz ´ wqq

πpz ´ wq

and (1.8) holds.
In this case, h is an asymptotic inverse of g.

Remark 1.4 (Scaling functions and spectral type). (i) Scaling by regularly vary-
ing functions is significantly more general than power law scaling; it allows,
e.g., additional logarithmic factors, and scaling functions such as gprq “

r logκ r, κ P R. Thus, a sine kernel limit can exist even where µ has zero
or infinite derivative w.r.t. Lebesgue measure.

(ii) Bulk universality with regularly varying scaling on a set implies 1-dimensionality
of the measure µ on this set (see Theorem 9.2).

(iii) Breuer’s class of examples is chosen from the class of sparse decaying discrete
Schrödinger operators, and the bulk universality limit is formulated with an
explicit n in place of hpKpn, ξ, ξqq in (1.10). For sparse decaying perturbations
of the free Jacobi matrix, Kpn, ξ, ξq is a regularly varying function of n (see
Lemma 9.3). Thus, Breuer’s examples are within the setting of Theorem 1.3;
in particular, in the regime of [7], we conclude that for every ξ P p´2, 2q,

lim
nÑ8

gξpnqµ
``

ξ ´ 1
n , ξ

˘˘

“ lim
nÑ8

gξpnqµ
`“

ξ, ξ ` 1
n

˘˘

“ 1,

with an explicit function gξpnq (see Corollary 9.4 and surrounding discussion).
(iv) There exist finite measures µ on r0, 1s which are singular with respect to

Lebesgue measure, but have Lebesgue measure as the unique tangent mea-
sure at every ξ P p0, 1q (see [67, Example 5.9], [26]). By Theorem 1.3, for
these measures, bulk universality holds at every ξ P p0, 1q. This is a slight
improvement over the examples in [7] in the sense that no discrete spectrum
is needed.

Stage 3: Moving away from the sine kernel.
The most prominent example of a universality class other than bulk universality
is hard edge universality, which has traditionally been studied at the edge of the
support of µ and is characterized by a limiting Bessel kernel. In particular, for
Jacobi-type measures with analytic weights on r´1, 1s, at the endpoint ξ “ 1,
Kuijlaars–Vanlessen [43, 44] proved hard edge universality by Riemann–Hilbert
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methods; Lubinsky [53] generalized this to a class of Stahl–Totik regular measures
on r´1, 1s, and proved in [54] a conditional statement at a gap edge of the support.

Other limit kernels have been found for other power-law behaviors of the weight
dµpλq{dλ. For Fisher–Hartwig singularities, Vanlessen [84] proved strong asymp-
totics and Danka [11] proved a universality limit for a class of Stahl–Totik regu-
lar measures (see also Kuijlaars–Vanlessen [45]). For a class of step-like analytic
weights, Foulquié Moreno–Martínez-Finkelstein–Sousa [25] proved a hypergeomet-
ric kernel scaling limit.

We characterize the limiting behavior of the kernel when the measure has a local
behavior of the form

lim
rÑ8

gprqµ
``

ξ ´ 1
r , ξ

˘˘

“ σ´, lim
rÑ8

gprqµ
`“

ξ, ξ ` 1
r

˘˘

“ σ`. (1.11)

for some regularly varying function g with index β ą 0 and some pσ´, σ`q P

r0,8q ˆ r0,8qztp0, 0qu. The limit kernel will be a function of σ˘ and β, as follows:

Definition 1.5. Let pσ´, σ`q P r0,8q2ztp0, 0qu and β ą 0. Recall:

Mpα, β, zq :“
8
ÿ

n“0

pαqn

pβqn
¨
zn

n! , 0F 1pβ, zq :“
8
ÿ

n“0

1
pβqn

¨
zn

n! ,

where α, z P C and β P Czp´N0q. The symbol p␣qn denotes the rising factorial, i.e.,
pαq0 “ 1, pαqn`1 “ pαqnpα ` nq for n P N0.

We define functions A,B by distinguishing two cases.
(i) Assume that σ`, σ´ ą 0. Define

α :“ i

2π log σ´

σ`

`
β ´ 1

2 , κ :“ 1
2

´2Γpβ ` 1q2?
σ`σ´

|Γpα ` 1q|2

¯
1
β

,

Apzq :“ eiκzMpα, β,´2iκzq `Mpα ` 1, β,´2iκzq

2 ,

Bpzq :“ zeiκzMpα ` 1, β ` 1,´2iκzq.

(ii) Assume that σ` “ 0 or σ´ “ 0. Define

σ :“
#

`σ`

π Γpβ ` 1q2˘
1
β if σ` ą 0,

´
`σ´

π Γpβ ` 1q2˘
1
β if σ´ ą 0,

Apzq :“ 0F 1pβ,´σzq, Bpzq :“ z ¨ 0F 1pβ ` 1,´σzq.

Now set
Kσ´,σ`,βpz, wq :“ BpzqApwq ´ApzqBpwq

z ´ w
.

This kernel is expressed in terms of entire functions. When σ` “ 0 or σ´ “ 0,
the kernel can be rewritten in terms of Bessel functions, as is customary in the hard
edge literature (see [22, Remark 4.2]); likewise, when σ` “ σ´, it can be rewritten
in terms of Bessel functions (see Lemma 10.2).

Theorem 1.6. Let µ be a measure on R with a determinate moment problem. For
any ξ P R, the following are equivalent:
(i) There exists a regularly varying function g with index β ą 0 and pσ´, σ`q P

r0,8q ˆ r0,8qztp0, 0qu such that (1.11) holds.
(ii) µ has a unique tangent measure at ξ, which is not the Dirac measure δ0
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(iii) There exists h regularly varying with index ρ ą 0 such that uniformly on
compact subsets of C ˆ C

lim
tÑ8

K
´

t, ξ ` z
hpKpt,ξ,ξqq

, ξ ` w
hpKpt,ξ,ξqq

¯

Kpt, ξ, ξq
“ K8pz, wq, (1.12)

and K8 ı 1.
(iv) There exists h regularly varying at 8 with index ρ ą 0 such that uniformly

on compact subsets of C ˆ C

lim
nÑ8

K
´

n, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“ K8pz, wq (1.13)

with K8 ı 1 and (1.8) holds.
In this case ρ “ 1{β, h is the asymptotic inverse of g, and K8 “ Kσ´,σ`,β.

The assumption pσ´, σ`q ‰ p0, 0q is used to rule out a trivial limit obtained by
a scaling function g which is too small, since such a trivial limit would carry no
information; likewise for the assumption K8 ı 1.

We compare Theorem 1.6 with prior literature:
Remark 1.7. (i) Theorem 1.6 contains as special cases several universality classes

studied separately in the literature. Most notably, σ´ “ σ` and β “ 1 is bulk
universality, σ` “ 0 is hard edge universality, σ´ “ σ` and β ‰ 1 is a
Fisher–Hartwig singularity, and σ´ ‰ σ` with β “ 1 is a jump discontinuity.

(ii) For any of those limit kernels except the sine kernel, prior literature required
analyticity of the weight or Stahl–Totik regularity of the measure, and Theo-
rem 1.6 is the first completely local sufficient condition for a scaling limit.

(iii) Even if Theorem 1.6 is specialized to the power law case gprq “ rβ , the local
condition is still weaker than the local assumptions in the prior literature;
prior literature always assumed power law scaling of the weight dµpλq{dλ

For the study of bulk universality as in Theorems 1.1 and 1.3, an important
realization was that although one starts from a probability measure µ, convergence
should be viewed in the larger space of Poisson-finite measures/Nevanlinna func-
tions. This is motivated by the fact that bulk universality corresponds to having
Lebesgue measure as the tangent measure. For the setting of Theorem 1.6, extend-
ing to an even larger class of measures/functions is necessary. Namely, the local
behavior (1.11) corresponds to a tangent measure with a power law scaling; this
measure need not be Poisson-finite, but it has power law growth at 8 (see [63]
and Lemma A.2). Accordingly, the core of our approach is a homeomorphism be-
tween power-bounded measures on R (measures µ such that

ş

p1`λ2q´N dµpλq ă 8

for some N) and a certain class of chains of de Branges spaces. On the function
theoretic side, going beyond Poisson-finite measures, is reflected in passing to re-
producing kernels with a finite number of negative eigenvalues. The Weyl functions
are no longer Nevanlinna functions, but are in the larger class of generalized Nevan-
linna functions suitable for the indefinite setting and introduced by Krein–Langer
[42].

It has been observed before [4, 58] that the proof of the Freud–Levin theorem
extends to other limiting kernels (see Theorem 10.1). Combining that proof with
Theorem 1.6 gives the following description of the local configuration of zeros of
orthogonal polynomials:
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Corollary 1.8. Let µ be a measure on R with a determinate moment problem.
Let ξ P R. If there exists a regularly varying function g with index β ą 0 and
σ´ P r0,8q, σ` P p0,8q such that (1.11) holds, then:

(i) For every k ě 0, for all large enough n, pn has at least k zeros larger than ξ;
in other words the k-th zero to the right of ξ, denoted ξpnq

k , is well-defined for
all large enough n.

(ii) The function Kσ´,σ`,βp¨, 0q has infinitely many positive zeros. Denoting by θ
its smallest positive zero,

lim sup
nÑ8

hpKnpξ, ξqqpξ
pnq

1 ´ ξq ď θ.

(iii) Fix a sequence nj such that the limit

lim
jÑ8

hpKnj pξ, ξqqpξ
pnj q

1 ´ ξq

exists. Denote its value by κ1 and denote by κ2 ă κ3 ă . . . all the zeros of
Kσ´,σ`,βp¨, κ1q in pκ1,8q. Then for every k P N,

lim
kÑ8

hpKnj pξ, ξqqpξ
pnj q

k ´ ξq “ κk.

In the special case of the sine kernel limit, the differences κk`1 ´ κk are inde-
pendent of κ1 or k, which is why clock behavior has a more elegant formulation.
However, the conclusions are of the same strength: they describe the local zero
configuration up to one free parameter (location of the nearest zero to the right of
ξ).

Convergent subsequences as in Corollary 1.8(iii) exist by compactness of r0, θs,
but in general one cannot expect convergence of the sequence hpKnpξ, ξqqpξ

pnq

1 ´ξq.
Such convergence, however, holds in the hard edge case; to state this, we denote
positive zeros of the Bessel function Jν of the first kind and order ν by jν,1, jν,2,
. . . , so that

0 ă jν,1 ă jν,2 ă . . . (1.14)

Theorem 1.9. Let µ be a probability measure on r0,8q with a determinate Stieltjes
moment problem. Denote by ξpnq

1 ă ¨ ¨ ¨ ă ξ
pnq
n the zeros of pn. If the function

gprq “ 1{µpr0, 1{rqq

is a regularly varying function with index β ą 0, then for every k P N,

lim
nÑ8

hpKpn, 0, 0qq2ξ
pnq

k “
π1{β

4Γpβ ` 1q1{β
j2

β´1,k, (1.15)

where h denotes an asymptotic inverse of g.

This was previously proved by Levin–Lubinsky [51, Theorem 1.2] in the special
case of Stahl–Totik regular measures whose essential spectrum is a compact interval,
and for which µ is purely a.c. on some subinterval r0, ρs, with weight dµpλq{dλ „

λβ´1 as λ Ñ 0. We note that determinacy of the Stieltjes moment problem follows,
e.g., from

ş

eϵ
?

λ dµpλq ă 8 for some ϵ ą 0.
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Final stage: Natural environment for universality with regularly varying scale.
The natural environment for our results is the setting of J-decreasing transfer ma-
trices. To explain this, we must set the following notation. To denote the ac-
tion of a fractional linear transformation on the Riemann sphere, for a matrix
M “ pmijqi,j“1,2 with detM ‰ 0 and a point τ P C Y t8u we set, with the usual
conventions concerning algebra in C Y t8u,

M ‹ τ :“ m11τ `m12

m21τ `m22
. (1.16)

For an entire function f we denote

f 7pzq “ fpzq

and say f is real if f “ f 7. We denote

J “

ˆ

0 ´1
1 0

˙

.

Definition 1.10. An entire matrix function W : C Ñ C2ˆ2 with real entries and
detW “ 1 is J-inner if

W pzqJW pwq˚ ´ J

z ´ w

is a positive kernel on C. A family tW pt, zq | a ď t ă bu of such functions is
J-decreasing if W pt1, zq´1W pt2, zq is J-inner whenever t1 ă t2.

Such a family is in the limit point case if for every z P C` and every τ P C` “

C` Y R Y t8u the limit

qpzq :“ lim
tÑb

”

W pt, zq ‹ τ
ı

(1.17)

exists, and its value is independent of τ . The function q is an analytic map from
C` to C`. Thus, if q ı 8, there exists α P R, β ě 0, and a positive Borel measure
µ with

ż

R

dµpξq

1 ` ξ2 ă 8, (1.18)

such that

qpzq “ α ` βz `

ż

R

ˆ

1
ξ ´ z

´
ξ

1 ` ξ2

˙

dµpξq. (1.19)

The J-decreasing family W pt, zq also generates the reproducing kernels

Kpt, z, wq :“ w22pt, zqw21pt, wq ´ w21pt, zqw22pt, wq

z ´ w
. (1.20)

Theorem 1.11. For any continuous J-decreasing family of transfer matrices tW pt, zq |

a ď t ă bu in the limit point case with W pa, zq “ I and with q ı 8, and the mea-
sure µ and kernels tKpt, ¨, ¨q | a ď t ă bu determined by (1.19), (1.20), for any
ξ P R, the following are equivalent:
(i) There exist pσ´, σ`q P r0,8qˆr0,8qztp0, 0qu and a regularly varying function

g with index β ą 0 such that (1.11) holds.
(ii) µ has a unique tangent measure, which is not the Dirac measure δ0
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(iii) There exists h regularly varying at 8 with index ρ ą 0 such that uniformly
on compact subsets of C ˆ C

lim
tÑb

K
´

t, ξ ` z
hpKpt,ξ,ξqq

, ξ ` w
hpKpt,ξ,ξqq

¯

Kpt, ξ, ξq
“ K8pz, wq, (1.21)

and K8 ı 1.
In this case ρ “ 1{β, h is the asymptotic inverse of g, and K8 “ Kσ´,σ`,β.

The results for orthogonal polynomials described above are applications of this
result. Theorem 1.11 can also be applied to other models in spectral theory.

One are "half-line" Schrödinger operators ´ d2

dx2 `V with V P L1
locpra, bqq, with a

regular endpoint at a and in the limit point case at b. Fixing a boundary condition
cosβupaq ` sin βu1paq “ 0 gives a self-adjoint operator, with a standard way of
associating a canonical spectral measure µ [80]. Consider the eigensolution upx, zq

given by
´B2

xu` V u “ zu, upaq “ sin β, u1paq “ ´ cosβ
and the reproducing kernels

Kpx, z, wq “

ż x

a

upy, zqupy, wq dy “
upx, zqBxupx,wq ´ Bxupx, zqupx,wq

z ´ w
. (1.22)

The class of potentials can also be generalized to V P H´1
loc , with the replacement

of u1 by a quasiderivative throughout [29, 60].

Theorem 1.12. For any half-line Schrödinger operator H in the limit point case,
its canonical spectral measure µ, and the reproducing kernels (1.22), for any ξ P R,
the following are equivalent:
(i) There exist pσ´, σ`q P r0,8qˆr0,8qztp0, 0qu and a regularly varying function

g with index β ą 0 such that (1.11) holds.
(ii) µ has a unique tangent measure, which is not the Dirac measure δ0
(iii) There exists h regularly varying at 8 with index ρ ą 0 such that (1.21)

uniformly on compact subsets of C ˆ C and K8 ı 1.
In this case ρ “ 1{β, h is the asymptotic inverse of g, and K8 “ Kσ´,σ`,β.

Completely analogously, Theorem 1.11 applies to some other settings such as
Sturm–Liouville and Dirac operators.

With some additional arguments, Theorem 1.11 also applies to universality limits
for orthogonal polynomials on the unit circle. To state this, let ν be a probabil-
ity measure on BD such that supp ν is not a finite set. Orthogonal polynomials
tφnu8

n“0 are obtained from the sequence tζnu8
n“0 by the Gram–Schmidt process in

L2pBD, dνq, and they obey
ż

BD
φmpζqφnpζq dνpζq “ δm,n.

The corresponding CD kernels are defined by

knpζ, ωq “

n´1
ÿ

j“0
φjpζqφjpωq. (1.23)

Theorem 1.13. Let ν be a probability measure on BD such that supp ν is not finite.
For any ξ P R, the following are equivalent:
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(i) There exists a regularly varying function g with index β ą 0 and pσ´, σ`q P

r0,8q ˆ r0,8qztp0, 0qu such that
lim

rÑ8
gprqν

`␣

eit | t P
`

ξ ´ 1
r , ξ

˘(˘

“ σ´, lim
rÑ8

gprqν
`␣

eit | t P
“

ξ, ξ ` 1
r

˘(˘

“ σ`.

(ii) ν has a unique tangent measure at eiξ, which is not the Dirac measure δ0
(iii) There exists h regularly varying with index ρ ą 0 such that uniformly on

compact subsets of C ˆ C

lim
nÑ8

e
´in z´w

2hpknpeiξ,eiξqq

kn

´

e
iξ` iz

hpknpeiξ,eiξqq , e
iξ` iw

hpknpeiξ,eiξqq

¯

knpeiξ, eiξq
“ K8pz, wq (1.24)

with K8 ı 1 and

lim
nÑ8

kn`1peiξ, eiξq

knpeiξ, eiξq
“ 1.

In this case ρ “ 1{β, h is the asymptotic inverse of g, and K8 “ Kσ´,σ`,β.

A very brief outline of the subsequent sections.
In Section 2, we recall aspects of de Branges’ theory of Hilbert spaces of entire
functions and its relation to canonical systems. In Section 3, we study structure
Hamiltonians. In Section 4, we axiomatize the notion of a chain of de Branges
spaces, and develop a notion of convergence of chains of de Branges spaces. In
Section 5, we relate this to the measures associated to unbounded chains. In Sec-
tion 6, we apply this to study rescaling limits of reproducing kernels, culminating
in the proof of Theorem 1.11. In Section 7, we address different conventions in
the literature and prove the application to Schrödinger operators (Theorem 1.12).
In Section 8, we address applications to orthogonal polynomials and prove The-
orems 1.1, 1.3, 1.6, 1.13. In Section 9, we discuss the connections between bulk
universality and spectral type. In Section 10, we describe a generalization of the
Freud–Levin theorem to reproducing kernels of de Branges spaces and prove Corol-
lary 1.8 and Theorem 1.9.
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2. De Branges spaces and canonical systems; a reminder

This section is of preliminary nature. We recall facts of de Branges’ theory
of Hilbert spaces of entire functions and its relation to two-dimensional canonical
systems. Standard references are [13, 19, 71, 74]. The underlying basis for the
theory of de Branges spaces is the notion of reproducing kernel Hilbert spaces. Our
standard reference in this context is the seminal paper [1].

All content of this section is extracted from the named references.

2.1. Reproducing kernel Hilbert spaces of entire functions.

Definition 2.1. Let Ω be a nonempty set. A Hilbert space pH, x¨, ¨yq of complex
valued functions on Ω is called a reproducing kernel Hilbert space, if for each w P Ω
the point evaluation functional F ÞÑ F pwq, F P H is continuous.

If H is a reproducing kernel Hilbert space of functions on Ω, there exists a unique
function KH : Ω ˆ Ω Ñ C which satisfies:
(i) For each w P Ω, KHp¨, wq P H;
(ii) For each F P H and w P Ω we have

F pwq “ xF,KHp¨, wqy.

This function is called the reproducing kernel of H.
It directly follows that

xKHp¨, wq,KHp¨, zqy “ KHpz, wq. (2.1)

In particular, the norm ∆Hpwq of the point evaluation functional at a point w is
given by

∆Hpwq “
a

KHpw,wq.

A function K : Ω ˆ Ω Ñ C is called a positive kernel, if Kpz, wq “ Kpw, zq for all
z, w P Ω, and for any finite collection pzjqN

j“1 P ΩN the matrix pKHpzi, zjqqN
i,j“1 is

positive semidefinite. The reproducing kernel of some reproducing kernel Hilbert
space always is a positive kernel, and conversely, for every positive kernel K there
exists a unique reproducing kernel Hilbert space H so that K is its reproducing
kernel. We denote this space as HpKq.

Definition 2.2. Let Ω be a nonempty set, and H, H̃ reproducing kernel Hilbert
spaces on Ω.
(i) We say that H is isometrically contained in H̃ and write H Ďi H̃, if

@F P H : F P H̃ ^ }F }H̃ “ }F }H.

(ii) We say that H is contractively contained in H̃ and write H Ďc H̃, if

@F P H : F P H̃ ^ }F }H̃ ď }F }H.

Note that

H Ďc H̃ ùñ @w P C : ∆Hpwq ď ∆H̃pwq. (2.2)

Contractive inclusion is equivalent to a property of reproducing kernels: For two
positive kernels K, K̃ defined on the same set Ω write

K ď K̃ (2.3)
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if K̃ ´K is a positive kernel. Then

H Ďc H̃ ðñ KH ď KH̃. (2.4)

If Ω Ď C and H is a reproducing kernel Hilbert space of functions on Ω, we have
the operator of multiplication by the independent variable defined on its natural
maximal domain tF P H | zF pzq P Hu. We denote the closure of this domain as

H5 :“ clos
`

tF P H | zF pzq P Hu
˘

. (2.5)

The following partial order, which lies in between contractive and isometric inclu-
sion, is crucial.

Definition 2.3. Let Ω Ď C be a nonempty set andH, H̃ reproducing kernel Hilbert
spaces on Ω. We say thatH is almost isometrically contained in H̃ and writeH Ď H̃,
if

H Ďc H̃ ^ H5 Ďi H̃.

Now we turn our attention to reproducing kernel Hilbert spaces whose elements
are analytic functions. For an open and nonempty subset Ω Ď Cn we denote

HolpΩq :“ tF : Ω Ñ C | F is analytic in Ωu,

and endow HolpΩq with the topology of locally uniform convergence. Recall that
this topology is metrizable: Let Sn Ď Ω, n P N0, be compact such that Sn Ď

IntSn`1 and
Ť

nPN0
Sn “ Ω. Then HolpΩq becomes a Fréchet space with the metric

dpf, gq :“
8
ÿ

n“1
2´n min

␣

1, sup
zPSn

|fpzq ´ gpzq|
(

, (2.6)

and this metric induces locally uniform convergence.

Definition 2.4. If H is a reproducing kernel Hilbert space on Ω and H Ď HolpΩq,
then we call H a reproducing kernel Hilbert space of analytic functions on Ω. We
denote the set of all reproducing kernel Hilbert spaces of analytic functions on Ω by
RKpΩq. If Ω “ C we speak of a reproducing kernel Hilbert space of entire functions
and write RK for the set of all such spaces.

Analyticity of the elements of a reproducing kernel Hilbert space H can be char-
acterized in terms of its reproducing kernel KH: we have H P RKpΩq if and only if
KHpz, wq P Holptpz, wq | z, w P Ωuq. In particular, for H P RKpΩq, the norm of the
point evaluation functional is locally bounded, and hence convergence in the norm
of H implies convergence in HolpΩq.

The map

I :
#

RKpΩq Ñ Holptpz, wq | z, w P Ωuq

H ÞÑ ppz, wq ÞÑ KHpz, wqq

is injective, and we topologize RKpΩq by pulling back the metric from (2.6) from
Holptpz, wq | z, w P Ωuq to RKpΩq via the map I. Thus convergence of spaces
means locally uniform convergence of their reproducing kernels. Obviously, the set
of positive kernels is closed under locally uniform (even pointwise) limits, and thus
RKpΩq is a complete metric space.
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Lemma 2.5. Let Ω Ď C be open and nonempty and H̃ P RKpΩq. Then

tH P RKpΩq | H Ďc H̃u (2.7)

is compact.

Proof. Consider the set

M :“ tK | K is a positive kernel on Ω,K ď KH̃u.

By (2.4) it follows that

IptH P RKpΩq | H Ďc H̃uq “ M.

Since I is a homeomorphism, it suffices to show that M is compact.
For K P M the Cauchy-Schwarz inequality gives

|Kpz, wq|2 ď Kpz, zqKpw,wq ď KH̃pz, zqKH̃pw,wq,

and Montel’s theorem implies thatM is a normal family. Since the inequality in the
definition ofM is preserved by taking limits,M is also closed and thus compact. □

Example 2.6. Two classical examples of reproducing kernel Hilbert spaces of entire
functions are the following.
(i) Let a ą 0. The Paley-Wiener space PWa is the space of all entire functions of

exponential type at most a which are square integrable on R endowed with the
L2pRq-scalar product. It follows by direct verification using the Paley-Wiener
theorem and properties of the Fourier transform that PWa P RK. Moreover,
pPWaq5 “ PWa.

(ii) For m P N0 we denote by Pm the set of polynomials of degree at most m, and
formally set P´1 :“ t0u. Let n P N0 and µ a positive Borel measure on R
which has at least n finite moments and whose support contains at least n` 1
points. For each m ď n the space Pm endowed with the L2pµq-scalar product
belongs to RK. Moreover, pPnq5 “ Pn´1.

2.2. De Branges spaces. De Branges spaces are reproducing kernel Hilbert spaces
of entire functions that satisfy certain additional axioms.

Throughout the following, we denote for an entire function F

F#pzq :“ F pzq, (2.8)

and say that F is a real entire function if F “ F#.

Definition 2.7. A de Branges space H (dB-space, for short) is a Hilbert space
which satisfies:
(i) H P RKzt0u;
(ii) For each F P H, also F# P H and }F }H “ }F#}H;
(iii) If w P CzR and F P H with F pwq “ 0, then

F pzq

z ´ w
P H, and

›

›

›

›

z ´ w

z ´ w
F pzq

›

›

›

›

H
“ }F }H.

Note here that z´w
z´wF pzq “ F pzq ` w´w

z´w F pzq P H.
We denote the set of all dB-spaces by DB. The set of all those dB-spaces which
satisfy in addition:
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(iv) If w P R and F P H with F pwq “ 0, then
F pzq

z ´ w
P H;

is denoted as DB˚.

Those subspaces of a dB-space which are with the inner product inherited from
H themselves dB-spaces play an outstanding role and are discussed in detail in
Section 3. We call such a subspace a dB-subspace of H.

In this place we only observe the following property: if L is a linear subspace of
H which is closed under the operations in Definition 2.7(ii),(iii), then the closure
of L in H is a dB-subspace of H. This has two consequences, which we also state
explicitly:
(i) For every dB-space H, the space H5 is a dB-subspace of H.
(ii) If pH, x¨, ¨yHq is a dB-space, L is a closed linear subspace of H, and x¨, ¨yL is a

scalar product on L such that pL, x¨, ¨yLq is a dB-space, then pL, x¨, ¨yHq is a
dB-space.

In this context, let us also recall that
dim

`

H{H5
˘

ď 1. (2.9)
A dB-space can be generated from one single entire function. This follows since

the reproducing kernel of a dB-space is of a particular form. To explain the con-
nection, recall the notion of Hermite-Biehler functions.

Definition 2.8. A Hermite-Biehler function is an entire function E which satisfies
@z P C` : |Epzq| ă |Epzq|. (2.10)

We denote the set of all Hermite-Biehler functions by HB. The set of all those
Hermite-Biehler functions which have no real zeros is denoted by HB˚.

For an entire function E we denote its real and imaginary part in the sense of
the involution (2.8) by

A :“ E ` E#

2 , B :“ i
E ´ E#

2 .

Then A “ A#, B “ B#, and E “ A´iB. In particular, the assignment E ÞÑ pA, Bq

is injective. We freely apply the convention that E,A,B are related in this way,
if the meaning is clear from the context. Another useful notation in this context
is the following: if E is entire and M is a 2 ˆ 2-matrix function with real entire
entries, we set

E ˙M :“ Ã´ iB̃ where pÃ, B̃q :“ pA, BqM.

Given E P HB we define

KEpz, wq :“ i

2π
EpzqE#pwq ´ EpwqE#pzq

z ´ w
, (2.11)

which should be appropriately interpreted in terms of derivatives if z “ w. Using
the functions A,B, the kernel KE writes as

KEpz, wq “

pApzq, BpzqqJ

ˆ

Apwq

Bpwq

˙

z ´ w
“
BpzqApwq ´ApzqBpwq

z ´ w
, (2.12)
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where J “
` 0 ´1

1 0
˘

.
In the following theorem we summarize the connection between dB-spaces and

Hermite-Biehler functions. Here we endow HB with the subspace topology of
HolpCq, and DB with the subspace topology of RK.
Theorem 2.9. For any E P HB the function KE is a positive kernel and the
reproducing kernel space HpKEq generated by KE is a dB-space.

Let B : HB Ñ DB be the map E ÞÑ HpKEq. Then
(i) B is surjective;
(ii) BpE1q “ BpE2q if and only if there exists M P SLp2,Rq such that E2 “ E1˙M ;
(iii) BpHB˚

q “ DB˚;
(iv) B is continuous and has a continuous right inverse.
In this context note the formula

Epzq :“ ´i

c

π

Kpi, iq
pz ` iqKpz, iq,

which determines one possible choice of E given the kernel Kp., .q of the space. This
formula also implies that the closure of DB in RK is equal to DBY tt0uu. Also note
the formula for the norm of point evaluation at a nonreal point w:

∆BpEqpwq “ KEpw,wq “

´

|Epwq|2 ´ |Epwq|2

4π Imw

¯
1
2
.

The real zero divisor of an entire function F which does not vanish identically is
the function ϑF : R Ñ N0 defined by

ϑF pxq :“ mintn P N0 | F pnqpxq ‰ 0u.

For H P DB we set
ϑH :“ ϑE ,

where E P HB is such that BpEq “ H. It follows from Theorem 2.9(ii) that this
definition does not depend on the choice of E. It holds that

ϑHpxq “ min
␣

ϑF pxq | F P Hzt0u
(

.

For many purposes, it suffices to study Hermite-Biehler functions without real zeros,
due to the following simple fact.
Lemma 2.10. Let E P HB and C a real entire function without nonreal zeros such
that ϑC ď ϑE (here “ď” is understood pointwise). Then, E

C P HB and the map
#

BpEq Ñ B
`

E
C

˘

F ÞÑ F
C

is an isometric isomorphism. We have

B
`

E
C

˘

“ 1
CBpEq, 1

C

`

BpEq5
˘

“
`

B
`

E
C

˘˘5
.

Proof. That E
C P HB is clear. The other assertions follow directly from

KEpz, wq “ CpzqKE{Cpz, wqCpwq.

□

Similar to the scalar case, a functionK : ΩˆΩ Ñ Cnˆn is called a positive kernel,
if Kpz, wq “ Kpw, zq˚ for all z, w P Ω, and for any finite collections pzjqN

j“1 P ΩN

and pajqN
j“1 P pCnqN , the matrix pa˚

jKHpzi, zjqaiq
N
i,j“1 is positive semidefinite.
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Definition 2.11. We say that a matrix function W : C Ñ C2ˆ2 is J-inner, if its
entries are real entire functions, detW “ 1, and

W pzqJW pwq˚ ´ J

z ´ w

is a positive kernel on C (for z “ w this formula has to be interpreted as derivative).
Theorem 2.12. The following statements hold.
(i) Let E P HB, W be J-inner, and set Ẽ :“ E ˙W . Then

Ẽ P HB, ϑẼ “ ϑE , BpEq Ďc BpẼq.

(ii) If E, Ẽ P HB, ϑẼ “ ϑE, and BpEq Ďi BpẼq, then there exists a unique J-inner
matrix function W such that Ẽ “ E ˙W .

Example 2.13. The simplest example for nonconstant J-inner matrix functions are
linear polynomials of a specific form. For α P R we denote

eα “

ˆ

cosα
sinα

˙

. (2.13)

Then, for α P R and ℓ ě 0, the matrix function W :“ I ´ ℓzeαe
˚
αJ is J-inner.

Assume that E P HB. Then by a direct computation
KE˙W pz, wq “ KEpz, wq ` ℓ ¨

“

pApzq, Bpzqqeα

‰“

pApwq, Bpwqqeα

‰˚
. (2.14)

Provided that Gpzq :“ Apzq cosα `Bpzq sinα R BpEq, we have

BpE ˙W q “ BpEq ‘ spantGu and }G}BpE˙W q “
1

?
ℓ
,

BpE ˙W q5 “ BpEq.

(2.15)

If G P BpEq, then the inclusion map of BpEq into BpE ˙ W q is bijective and a
nonisometric contraction.
J-inner matrix functions are related to de Branges spaces also in another way.

Assume we have W “ pwijqi,j“1,2 with these properties, then the function
E :“ w22 ` iw21 (2.16)

is a Hermite-Biehler function. In fact, a J-inner matrix function generates a whole
family of Hermite-Biehler functions, but (2.16) is the one we work with.

2.3. Canonical systems. In this subsection we recall some facts and basic defi-
nitions about canonical systems.
Definition 2.14. Let ´8 ď a ă b ď 8, and let H : pa, bq Ñ R2ˆ2 be a function
with

H P L1
locppa, bqq, Hptq ě 0 for a.a. t P pa, bq. (2.17)

(i) We say that H is in limit circle case at the endpoint a (lc at a, for short), if
for one (and hence for all) c P pa, bq

ż c

a

trHptqdt ă 8.

Otherwise, H is in limit point case at a (lp at a, for short). Analogous defini-
tions apply to the endpoint b.

(ii) We say that H is a Hamiltonian, if Hptq ‰ 0 for a.a. t P pa, bq. The set of all
Hamiltonians defined on the interval pa, bq is denoted as Ha,b.
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(iii) We call H trace normalized, if trHptq “ 1 for a.a. t P pa, bq, and denote the
set of all such functions as H1

a,b.
(iv) We denote the set of all functions H which satisfy trHptq ď 1 for a.a. t P pa, bq

as Hď1
a,b.

The set Hď1
a,b can be topologized in a natural way, see for example the exposition

in [68]. This topology is compact and metrizable, for example in the following way:
choose sequences panqnPN and pbnqnPN such that a ă an ă bn ă b for all n P N and
limnÑ8 an “ a, limnÑ8 bn “ b, and use the metric

dpH1, H2q :“
8
ÿ

n“1
2´n min

#

1, sup
anďcďdďbn

›

›

›

›

ż d

c

`

H1ptq ´H2ptq
˘

dt

›

›

›

›

+

, (2.18)

for H1, H2 P Hď1
a,b.

With a function H subject to (2.17) we associate a differential equation for a
2-vector valued function y, namely

JBxypxq “ ´zHpxqypxq, x P pa, bq a.e., (2.19)
which is called a canonical system. For a ă c ď x ă b, we define the transfer matrix
at c as the matrix solution of the initial value problem

BxWHpc, x, zqJ “ zWHpc, x, zqHpxq, WHpc, c, zq “ I. (2.20)
Observe that (2.20) is transposed compared to (2.19). We use (2.20) since this is
practical in many respects and was the convention that de Branges used in [13] on
which we heavily rely in this paper. Note that, by uniqueness of solutions of the
above differential equation, transfer matrices are multiplicative in the sense that

W pc, x, .q “ W pc, d, .qW pd, x, .q, d P rc, xs. (2.21)
Assume that a is a lc endpoint. Then the solutions of (2.19) can be continuously
extended to a and we define the fundamental solution associated to H by

WHpx, zq :“ WHpa, x, zq. (2.22)
Based on (2.16) we obtain a family of Hermite-Biehler functions with no real zeros.
Namely, writing WHpt, zq “ pwijpt, zqqi,j“1,2, we have

Ept, zq :“ w22pt, zq ` iw21pt, zq P HB˚. (2.23)
Moreover, we introduce the notation

KHpt, z, wq :“ KEpt,¨qpz, wq “
w22pt, zqw21pt, wq ´ w21pt, zqw22pt, wq

z ´ w
, (2.24)

cf. (2.12). Note that the kernels KHpt, ., .q depend continuously on t. Moreover, if
H is lp at b, then

@z P CzR : lim
tÑb

KHpt, z, zq “ 8, (2.25)

cf. [13]. Since KHpt, z, zq is nondecreasing in t for each fixed z, Dini’s theorem
implies that this limit is attained uniformly on every compact subset of CzR.

Definition 2.15. Let TM denote the set of all matrix functions W which are J-
inner and satisfy the normalization condition W p0q “ I. Moreover, we define a
function t : TM Ñ r0,8q as

tpW q :“ tr
`

BzW p0qJ
˘

.
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We equip TM with the product topology of HolpCq in every component. Note
that TM is closed in the space of all entire matrix functions. For all W P TM
we have detW “ 1 since detW is real, entire, pdetW pzqq2 “ 1 for z P R and
detW p0q “ 1.

Lemma 2.16. For any c ą 0, the set

TMc :“ tW P TM | tpW q ď cu

is compact.

Proof. A calculation shows that t}W pzq} | W P TMcu is uniformly bounded on
compact subsets, and thus TMc is a normal family by Montel’s theorem. It is
closed because TM is closed and t is continuous. □

Let H : pa, bq Ñ R2ˆ2 be a function subject to (2.17). Differentiating the form
WHpc, x, zqJWHpc, x;wq˚, which is possible a.e., yields

WHpc, d, zqJWHpc, d, wq˚ ´ J “ pz ´ wq

ż d

c

WHpc, s, zqHpsqWHpc, s, wq˚ds.

(2.26)

Since H ě 0, this shows that WHpc, d, zq is J-inner whenever c ď d. Clearly, all
entries of a transfer matrix are real and entire functions in the variable z, and
WHpc, d, 0q “ I. Hence WHpc, d, zq P TM. The meaning of the function t in this
context is that

t
`

WHpc, d, .q
˘

“

ż d

c

trHpxqdx (2.27)

which follows from (2.20) and the fact that W pc, x, 0q “ I.
The following is a fundamental result.

Theorem 2.17. For each c ą 0 the map
#

H1
0,c Ñ TMc

H ÞÑ WHpc, ¨q

is a homeomorphism.

Making a change of variable in the time-parameter will not affect essential prop-
erties of the solution of a canonical system. To formalize this, the following notion
is used.

Definition 2.18. LetH1 P Ha1,b1 andH2 P Ha2,b2 . We say thatH2 is a reparametriza-
tion of H1 and write H2 „ H1, if there exists an increasing bijection γ : pa2, b2q Ñ

pa1, b1q such that γ and γ´1 are absolutely continuous and

H2ptq “ H1pγptqqγ1ptq. (2.28)

Fundamental solutions behave well when performing a reparameterization: a
direct computation shows that (2.28) implies

WH2 pc, d, zq “ WH1 pγpcq, γpdq, zq (2.29)

for a2 ă c ď d ă b2.
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Clearly, the relation „ is an equivalence relation on the set
Ť

´8ďaăbď8 Ha,b of
all Hamiltonians. Each equivalence class contains a trace normalized element. In
fact, pick c P pa, bq and use

γptq “

ż t

c

trHpsqds (2.30)

in (2.28) (with the convention
şt

c
“ ´

ş

rt,cq
if t ă c).

Definition 2.19. Let H : pa, bq Ñ R2ˆ2 be subject to (2.17). A nonempty interval
pc, dq Ď pa, bq is called indivisible for H, if for some angle α P R (recall (2.13))

Hptq “ trHptq ¨ eαe
˚
α, t P pc, dq.

The number ℓ :“
şd

c
trHptqdt is called the length of the indivisible interval. Unless

Hptq “ 0 a.e. on pc, dq, i.e. l “ 0, the angle α is determined up to integer multiples
of π and is called the type of the indivisible interval.

A point t P pa, bq is called regular, if it is not an interior point of an indivisible
interval. A point which is not regular is called singular. We denote the set of all
regular points of H as Ireg.

Transfer matrices of indivisible intervals are linear polynomials: if pc, dq is indi-
visible with length ℓ ą 0 and of type α, then

WHpc, d, zq “ I ´ ℓzeαe
˚
αJ “

ˆ

1 ´ ℓz cosα sinα ℓzpcosαq2

´ℓzpsinαq2 1 ` ℓz cosα sinα

˙

. (2.31)

Recall that we have already met matrices of this form in Example 2.13.
The following simple transformation rule for canonical systems is often practical.

Lemma 2.20. Let H : pa, bq Ñ R2ˆ2 be subject to (2.17), let M P SLp2,Rq, and
set

pTMHqptq :“ MHptqM˚.

Then, for any a ă c ď t ă b and z P C,
WTM Hpc, t, zq “ MWHpc, t, zqM´1.

2.4. Canonical systems and Nevanlinna functions. We say that a function
q is a Nevanlinna function (in the literature also called Herglotz function), if it is
defined and analytic in the open upper half-plane C` and maps this half-plane into
C` Y R. The set of all Nevanlinna functions is denoted by N0. Often the class
of Nevanlinna functions is augmented by the function which is identically equal
to infinity, and considered as a subclass of the analytic functions of C` into the
Riemann sphere. We equipN0Yt8u with the topology of local uniform convergence
which is metrizable.

For q P N0 there exists α P R, β ě 0, and a positive Borel measure µ with (1.18)
such that (1.19) holds. Conversely, every function of this form belongs to N0. Note
that the integral representation (1.19) can be rewritten as

qpzq “ α ` βz `

ż

R

1 ` ξz

ξ ´ z

dµpξq

1 ` ξ2 .

The data α, β, µ in this integral representation is uniquely determined by q. First,
the Stieltjes inversion formula says that

@a, b P R, a ă b : µppa, bqq “ lim
δÑ0

lim
εÑ0

1
π

ż b´δ

a`δ

Im qpt` iεqdt,
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and hence µ is determined by q. Now α, β can be computed as

α “ Re qpiq, β “ Im qpiq ´

ż

R

dµpξq

1 ` ξ2 ă 8.

Convergence of Nevanlinna functions translates to convergence of the data in their
integral representation. This result is known as the Grommer-Hamburger theo-
rem. Let qn, q P N0 with data αn, βn, µn and α, β, µ in the respective integral
representations. Then

lim
nÑ8

qn “ q ðñ (2.32)

lim
nÑ8

αn “ α,

lim
nÑ8

´

βn `

ż

R

dµnpξq

1 ` ξ2

¯

“ β `

ż

R

dµpξq

1 ` ξ2 ,

lim
nÑ8

µn “ µ,

where the limit of measures is understood in the w˚-topology of CcpRq˚.
Let us now explain the relation of Nevanlinna functions and canonical systems.

Recall the notation (1.16) for fractional linear transformations. Let H P Ha,b such
that a is lc and b is lp. Then for every family pτtqtPpa,bq with τt P N0 Y t8u the
limit

qHpzq :“ lim
tÑb

”

WHpt, zq ‹ τtpzq

ı

(2.33)

exists, and its value is independent of the parameter family pτtqtPpa,bq. The function
qH either is a Nevanlinna function or identically equal to 8.

Definition 2.21. Let H P Ha,b such that a is lc and b is lp. The function qH

defined by (2.33) is called the Weyl coefficient of H. The measure in the integral
representation of qH is called the spectral measure of H, and we denote it by µH .

The relation (2.29) shows that H1 „ H2 implies qH1 “ qH2 , and hence also
µH1 “ µH2 . Therefore, one can for many purposes restrict attention to H1

0,8.
The relation (2.33) establishes a map from Hamiltonians to functions. The fol-

lowing is a fundamental result known as de Branges’ inverse spectral theorem.

Theorem 2.22. The map
#

H1
0,8 Ñ N0 Y t8u

H ÞÑ qH

is a homeomorphism.

By the Grommer-Hamburger theorem convergence of Hamiltonians also implies
convergence of spectral measures.

2.5. Power bounded measures and generalized Nevanlinna functions. We
already discussed the connection between Nevanlinna functions and Poisson inte-
grable measures in Section 2.4: the formula (1.19) establishes a bijection between
the set N0 and the set of all pairs pµ, pq where µ is a positive measure on the real
line with (1.18) and ppzq “ α` βz with α P R and β ě 0. This correspondence has
an analogy for a class of functions larger than N0 and a class of measures being not
anymore Poisson integrable.
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To define this class of functions, we have to move away from positive definiteness,
and consider sign-indefinite kernel functions. Recall that a function K : ΩˆΩ Ñ C
is called a kernel with κ negative squares, if Kpz, wq “ Kpw, zq for all z, w P Ω,
for any finite collection pzjqN

j“1 P ΩN the matrix pKHpzi, zjqqN
i,j“1 has at most κ

negative eigenvalues (counted according to their multiplicities), and for at least one
choice of pzjqN

j“1 P ΩN this bound is attained.
Proofs of what we state below and more details can be found in [46, 49].

Definition 2.23. Let κ P N0. We denote by N p8q
κ the set of all functions q which

are analytic in C`, for which
qpziq ´ qpzjq

zi ´ zj
(2.34)

is a kernel with κ negative squares, and which satisfy

lim
yÑ`8

ˇ

ˇ

ˇ

ˇ

qpiyq

y2κ´1

ˇ

ˇ

ˇ

ˇ

“ 8 or lim
yÑ`8

qpiyq

piyq2κ´1 P p´8, 0q. (2.35)

Moreover, we set N p8q

ďκ :“
κ
Ť

κ1“0
N p8q

κ1 and N p8q
ă8 :“

8
Ť

κ1“0
N p8q

κ1 .

It follows from known properties of the asymptotic behaviour of Nevanlinna func-
tions (e.g. [32]) that N p8q

0 “ N0. One should view N p8q
ă8 as a sign-indefinite gen-

eralization of N0 still retaining analyticity in C` and sign-definite behaviour along
R. This is ensured by the condition (2.35) which means that the sign-indefinite
contribution to q is concentrated at 8 (for details see [47]).

Definition 2.24. Let κ P N0. For a positive Borel measure µ on R we set

}µ}κ :“
ż

R

dµptq

p1 ` t2qκ`1 P r0,8s. (2.36)

Moreover, let
Mďκ “

␣

µ
ˇ

ˇµ positive Borel measure on R, }µ}κ ă 8
(

,

Mă8 :“
ď

κPN0

Mďκ.

We call elements of Mă8 power bounded measures.

Definition 2.25. Let κ P N0. We denote by Eďκ the set of all pairs pµ, pq where
µ P Mďκ, p is a polynomial with real coefficients whose degree does not exceed
2κ` 1, and

1
p2κ` 1q!p

p2κ`1qp0q ě }µ}κ. (2.37)

Definition 2.26. Let κ P N0. The κ-regularized Cauchy transform is the map
Cκ : Eďκ Ñ HolpC`q defined by

Cκrµ, pspzq :“ ppzq ` p1 ` z2qκ`1
ż

R

1
t´ z

dµptq

p1 ` t2qκ`1 , z P C`. (2.38)

The name “regularized Cauchy transform” is explained by the identity

p1 ` z2qκ`1 1
t´ z

1
p1 ` t2qκ`1 “

1
t´ z

´ pt` zq

κ
ÿ

j“0

p1 ` z2qj

p1 ` t2qj`1 .
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Let µ P Mď0, α P R and β ě 0, and set ppzq :“ α `
`

β `
ş

R
dµptq

1`t2

˘

z. Then, by the
above formula,

C0rµ, pspzq “ ppzq `

ż

R

ˆ

1
t´ z

´
t` z

1 ` t2

˙

dµptq

“α ` βz `

ż

R

ˆ

1
t´ z

´
t

1 ` t2

˙

dµptq.

This shows that the operators Cκ constitute an extension (1.19) to power bounded
measures, and also explains the role of (2.37) in the definition of Eďκ.

The next theorem says that power boundedness in the context of measures cor-
responds to sign indefiniteness in the context of their Cauchy-transforms. These
facts are shown in [49].
Theorem 2.27. Let κ P N0.
(i) The map Cκ is a bijection from Eκ onto N p8q

ďκ . If pµ, pq P Eďκ and q :“
Cκrµ, ps, then µ can be recovered by

@a, b P R, a ă b : µppa, bqq “ lim
δÑ0

lim
εÑ0

1
π

ż b´δ

a`δ

Im qpt` iεqdt. (2.39)

The polynomial p can be recovered from the 2κ ` 2 equations obtained by
splitting real- and imaginary parts of qpkqpiq “ ppkqpiq, k “ 0, . . . , κ.

(ii) Let ppµn, pnqqnPN be a sequence in Eďκ and pµ, pq P Eďκ. Then we have
limnÑ8 Cκrµn, pns “ Cκrµ, ps if and only if

lim
nÑ8

pn “ p,

lim
nÑ8

µn “ µ in the w˚-topology of CcpRq˚.

The relation (2.39) is a variant of the Stieltjes inversion formula, and the state-
ment in item (ii) is an analogue of the Grommer-Hamburger theorem about con-
vergence of Cauchy transforms. Note here that due to (2.37) and the Portmanteau
theorem [3, Theorem 1] the kind of convergence of measures in item (ii) can be
reformulated more explicitly as

@a, b P R, a ă b, µptauq “ µptbuq “ 0 : lim
nÑ8

µnppa, bqq “ µppa, bqq.

In fact, a more general variant of (2.39) holds, the Stieltjes-Livshits inversion for-
mula (see e.g. [28, Theorem 1.2.4]). In the present context it can be formulated
as follows: if q :“ Cκrµ, ps and f is a function which is analytic on some open set
containing the real axis and takes real values on R, then

@a, b P R, a ă b :
ż

pa,bq

fptqdµptq “ lim
δÑ0

lim
εÑ0

1
π

ż b´δ

a`δ

Im
“

fptqqpt` iεq
‰

dt. (2.40)

One can think of the formula (2.38) as an additive decomposition of a function
q P N p8q

ă8 . There is also a multiplicative decomposition of such functions. The
following result is shown in [18].

Theorem 2.28. Let κ P N, and q P HolpC`q. Then q P N p8q
κ , if and only if there

exists a function q0 P N0 and points (not necessarily different) β1, . . . , βκ P C` YR,
such that

qpzq “ q0pzq

κ
ź

j“1
pz ´ βjqpz ´ βjq.
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2.6. Generalized Nevanlinna functions and matrix families. Recall again
Section 2.4 where we saw that functions q P N0 Y t8u correspond to Hamiltonians
H P Ha,b which are in limit circle case at a and in limit point case at b. This cor-
respondence is established via the fundamental solution WHpt, zq of a Hamiltonian
H and Weyl’s limit formula (τt P N0 Y t8u)

lim
tÑ8

WHpt, .q ‹ τt “ q.

A sign-indefinite analogue of the theory of canonical systems, dealing with functions
q for which the kernel (2.34) has a finite number of negative squares, is developed
in the series of papers [33]–[37]. A refined investigation of the class N p8q

ă8 in this
context, and the connection with Hamiltonians with two limit point endpoints, is
undertaken in [46] and [48]. We restate comprehensively what is needed from those
papers for our present work.

Recall here that an analytic function is called of bounded type in some domain,
if it can be written as a quotient of two bounded analytic functions in this domain.

Theorem 2.29. Let q P N p8q
ă8 . Then there exist functions

W : pa, bq ˆ C Ñ C2ˆ2, H : pa, bq Ñ R2ˆ2,

defined on some interval with ´8 ď a ă b ď 8, which possess the following
properties (here we write W pt, zq “ pwijpt, zqq2

i,j“1).
(i) For each t P pa, bq the functions z ÞÑ wijpt, zq are real entire and of bounded

type in C` and C´. We have W pt, 0q “ I and detW pt, zq “ 1.
(ii) For each t P pa, bq the function

Ept, .q :“ w22pt, .q ` iw21pt, .q

belongs to HB˚.
(iii) The function H belongs to Ha,b and is in limit point case at b. For each z P C

the function t ÞÑ W pt, zq is absolutely continuous, and

BtW pt, zqJ “ zW pt, zqHptq, t P pa, bq a.e. (2.41)

(iv) We have
lim
tÑa

p0, 1qW pt, zq “ p0, 1q

locally uniformly for z P C.
(v) For every family pτtqtPpa,bq with τt P N0 Y t8u we have

lim
tÑb

“

W pt, zq ‹ τtpzq
‰

“ qpzq

locally uniformly for z P C`.

If q,W,H are as in the theorem, we say that W is a matrix family for q with
Hamiltonian H.

The connection between q,W,H is known to have several additional properties,
and we state some of them.

Proposition 2.30. Let q P N p8q
ă8 , and let W be a matrix family for q with Hamil-

tonian H (defined on and interval pa, bq). Then the following statements hold.
(i) The Hamiltonian H is in limit circle case at a, if and only if q “ p` q0 with

some q0 P N0 and a polynomial p with real coefficients.
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(ii) If H is in limit circle case at a, then

W pt, zq “

ˆ

1 ppzq

0 1

˙

WHpt, zq, t P pa, bq, z P C,

with some polynomial p with real coefficients.
(iii) If q is not a polynomial with real coefficients, then there exist s, t P pa, bq,

s ă t, such that BpEps, .qq “ BpEpt, .qq5.

For later reference, let us make the following simple formula explicit.

Lemma 2.31. Let q P N p8q
ă8 , and let W be a matrix family for q with Hamiltonian

H (defined on pa, bq). Then, for each c P pa, bq, we have
W pc, .q ‹ qH|pc,bq

“ q. (2.42)

Proof. The function W pt, .q solves (2.41), and therefore for all t P rc, bq

W pt, .q “ W pc, .qWH|pc,bq
pt, .q.

This implies
q “ lim

tÑb

“

W pt, .q ‹ 0
‰

“ W pc, .q ‹ lim
tÑb

“

WH|pc,bq
pt, .q ‹ 0

‰

“ W pc, .q ‹ qH|pc,bq
.

□
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3. The structure Hamiltonian

The connection between dB-spaces on the one hand and canonical systems on
the other is a core feature in de Branges’ work. Our aim in this section is to present
it in a language adapted to our present needs and to prove some additions to [13].

The link between the two objects is the set of subspaces of a given dB-space
which are themselves dB-spaces.
Definition 3.1. Let H P DB. Then we denote

CpHq :“
␣

t0u
(

Y
␣

L P DB | L Ď H, ϑL “ ϑH
(

.

The comprehensive result now reads as follows.
Theorem 3.2. Let E P HB. Then there exists H P H1

´8,0 with Ireg ‰ H, such
that the solution of

BtpApt, zq, Bpt, zqqJ “ zpApt, zq, Bpt, zqqHptq, t ď 0 a.e.,
pAp0, zq, Bp0, zqq “ pApzq, Bpzqq,

(3.1)

has the following properties.
(i) Set T´ :“ inf Ireg P r´8, 0q. For t P pT´, 0s we have Ept, ¨q P HB, and for

t P p´8, T´s the function Ept, ¨q is a scalar multiple of a real entire function.
We have lim

tÑT´

KEpt,¨q “ 0.

(ii) It holds that
CpBpEqq “

␣

t0u
(

Y
␣

BpEpt, ¨qq | t P pT´, 0s
(

, (3.2)
␣

L P DB | L Ďi BpEq, ϑL “ ϑE

(

“
␣

BpEpt, ¨qq | t P pT´, 0s X Ireg
(

. (3.3)
(iii) Denote

Ht :“
#

BpEpt, ¨qq if t P pT´, 0s,

t0u if t P r´8, T´s,
χ :

#

rT´, 0s Ñ CpBpEqq,

t ÞÑ Ht.

Then χ is an order isomorphism and homeomorphism. In particular, CpBpEqq

is totally ordered w.r.t. Ď and compact as a subset of RK.
The Hamiltonian H is uniquely determined by the property that the solution of (3.1)
satisfies (3.3).

The following additional properties are satisfied.
(iv) Let pt0, t1q be an indivisible interval with t0 P rT´, 0s X Ireg. Then Ht0 “ H5

t1
.

For G P Ht1 zt0u with G K Ht0 the map t ÞÑ }G}Ht
is a decreasing bijection

from pt0, t1q onto p}G}Ht1
,8q.

(v) Set α :“ ´ argEp0q, then
ş0

´8
e˚

αHptqeαdt ă 8.

This theorem is only a slight extension of what was shown by de Branges. In [13]
all assertions of the theorem are shown with exception of the topological properties
in (iii), the inclusion “Ď” in (3.2), and it was always assumed that E has no real
zeros. While removing the restriction on real zeros is simple, showing equality in
(3.2) requires an argument which we provide now. First note the following geometric
fact.
Lemma 3.3. Let pH, x¨, ¨yHq be a Hilbert space, and let L0 and L be linear subspaces
of H with L0 Ď L. Assume that x¨, ¨yL is a scalar product on L such that

pL0, x¨, ¨yLq Ďi pH, x¨, ¨yHq and pL, x¨, ¨yLq Ďc pH, x¨, ¨yHq (3.4)
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Then
@y P L : y KH L0 ñ y KL L0.

Proof. Let x P L0. For each α P C we have
xx, xyL “ xx, xyH ď xαy ` x, αy ` xyH ď xαy ` x, αy ` xyL.

Since α was arbitrary, it follows that xx, yyL “ 0. □

Proof of Theorem 3.2. We proceed in two steps. First we assume that E P HB˚

and prove the missing parts, where we use that all other assertions in the theorem
are readily known from [13]. After having completed this step, we remove the
assumption on real zeros.
① To show the inclusion “Ď” in (3.2) let E P HB˚ and L P DB˚ with L Ď BpEq. In
view of (3.3) we may assume furthermore that L Ęi BpEq, and hence that L ‰ L5.
Since dimL{L5 “ 1 the set L is a closed linear subspace of BpEq, and since L is
invariant under the operations in Definition 2.7(ii),(iii) the space pL, x¨, ¨yBpEqq is a
dB-space which is isometrically contained in BpEq. The same holds, clearly, for L5,
and (3.3) furnishes us with t0, t1 P pT´, 0s such that

pL5, x¨, ¨yBpEqq “ Ht0 , pL, x¨, ¨yBpEqq “ Ht1 .

Since dimL{L5 “ 1, we have t0 ă t1 and the interval pt0, t1q is indivisible.
Choose G P L such that pL, x¨, ¨yBpEqq “ L5 ‘BpEq spantGu. By Lemma 3.3,

also pL, x¨, ¨yLq “ L5 ‘L spantGu. Since pL, x¨, ¨yLq is contractively contained in
pBpEq, x¨, ¨yBpEqq, we have }G}L ě }G}BpEq. Item (iv) of the theorem provides us
with t P pt0, t1s with pL, x¨, ¨yLq “ Ht.

We come to item (iii). We know from Theorem 3.2 that χ is order preserving and
injective. Moreover, t ÞÑ Ept, ¨q is continuous for t P p´8, 0s and lim

tÑT´

KEpt,¨q “ 0,

and this yields that χ maps rT´, 0s continuously into DBY tt0uu Ď RK. It remains
to note that rT´, 0s is compact.
② Assume now we have E P HB with ϑE ‰ 0. Choose a real entire function C with
only real zeros such that ϑE “ ϑC . Set E0 “ E

C , then E0 P HB˚ and we may define
HE :“ HE0 .

The solution of (3.1) is nothing but Ept, ¨q “ CE0pt, ¨q, and Lemma 2.10 shows
that all properties of the family Ept0, ¨q transfer to the corresponding properties of
Ept, ¨q.

□

Based on the above theorem we may introduce the following notation.
Definition 3.4. Let E P HB. The Hamiltonian whose existence and uniqueness
is granted by Theorem 3.2 is called the structure Hamiltonian of E. If we wish to
emphasize the dependence on E, we denote the structure Hamiltonian as HE and
write T´pEq and HtpEq.
Example 3.5. Assume we haveH P H1

a,b which is in lc at both endpoints, letW px, zq,
x P ra, bs, be its fundamental solution and Epx, zq be the associated Hermite-Biehler
functions (2.23). Then the structure Hamiltonian of Epb, zq is given as

HEpb,¨qptq “

#

´JHpt´ pb´ aqqJ if ´ pb´ aq ă t ă 0,
`

0 0
0 1

˘

if t ă ´pb´ aq.
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Moreover, T´pEpb, ¨qq “ ´pb´ aq.

This example is universal in the following sense: If E P HB with Ep0q “ 1, then
T´pEq ą ´8 if and only if E occurs from a limit circle Hamiltonian in the above
way.

Let us state two immediate consequences of uniqueness in Theorem 3.2. The
first is obvious and the second relies on the transformation rule Lemma 2.20.

Corollary 3.6. Let E P HB and HE its structure Hamiltonian. Let t0 P pT´, 0q

and Ẽ :“ Ept0, ¨q, where Ept, ¨q is the solution of (3.1). Then we have

HẼptq “ HEpt` t0q, Ẽpt, ¨q “ Ept` t0, ¨q.

Corollary 3.7. Let E P HB and HE its structure Hamiltonian. Let M P SLp2,Rq,
then

HE˙M „ TM´1HE .

Proof. We have
pApt, zq, Bpt, zqqWHE

pt, 0, zq “ pApzq, Bpzqq,

and hence
pApt, zq, Bpt, zqqMM´1WHE

pt, 0, zqM “ pApzq, BpzqqM.

By Lemma 2.20 it holds that M´1WHE
pt, 0, zqM “ WTM´1 HE

pt, 0, zq, and the
assertion follows by uniqueness of the structure Hamiltonian. □

There is a close connection between structure Hamiltonians andWeyl coefficients.
This is based on use of an involution on the set of Hamiltonians: for H P Ha,b, let
H: P H´b,´a be the Hamiltonian defined on p´b,´aq by

H:ptq “ UHp´tqU,

where U :“
` 1 0

0 ´1
˘

. The mentioned connection is established by the following result
which can be found e.g. in [31]. For the convenience of the reader, we provide a
direct deduction from Theorem 3.2.

Proposition 3.8. Let E P HB and let HE be the corresponding structure Hamil-
tonian. Then we have

qH:

E
“
B

A
.

Remember here the definition (2.33) of the Weyl coefficient.

Proof. Let W pt, 0, zq denote the transfer matrix for HE . Then we have
pApt, zq, Bpt, zqqW pt, 0, zq “ pApzq, Bpzqq. (3.5)

As short computation shows that the fundamental solution W :pt, zq for H: is given
as

W :pt, zq “ UW p´t, 0, zq´1U.

Since detW pt, 0, zq “ 1, we have JW pt, 0, zq⊺J´1 “ W pt, 0, zq´1. Transposing (3.5)
and rewriting for W :, we get for t ě 0

ˆ

Bp´t, zq

Ap´t, zq

˙

“ W :pt, zq´1
ˆ

Bpzq

Apzq

˙

.
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For the parameter family pτtqtPp´b,´aq defined as τtpzq “
Bp´t,zq

Ap´t,zq
, we have

W :pt, zq ‹ τtpzq “
Bpzq

Apzq
.

Since Ep´t, ¨q P HB we have τt P N0, and sending t Ñ 8 proves the assertion. □

As a first consequence we obtain a kind of converse to Corollary 3.6.

Corollary 3.9. Let E P HB and HE its structure Hamiltonian. Let T P p0,8q and
H P H1

0,T , and set
Ẽ :“ E ˙WHpT, ¨q.

Then the structure Hamiltonian of Ẽ is given (a.e.) as

HẼptq “

#

Hpt` T q if ´ T ă t ď 0,
HEpt` T q if t ď ´T,

(3.6)

and the corresponding chain of Hermite-Biehler functions as

Ẽpt, ¨q “

#

E ˙WHpt` T q if ´ T ă t ă 0,
Ept` T q if t ď ´T.

Proof. Write

WHp0, T, ¨q “

ˆ

w11 w12
w21 w22

˙

,

then we have
WH: p´T, 0, ¨q “

ˆ

w22 w12
w21 w11

˙

.

Let H̃ be the Hamiltonian defined by the right side of (3.6). Then

H̃:ptq “

#

H:pt´ T q if 0 ă t ă T,

H:

Ept´ T q if T ă t.

Further, note that

pÃ, B̃q “ pA,Bq

ˆ

w11 w12
w21 w22

˙

“
`

w11A` w21B,w12A` w22B
˘

.

Multiplicativity of transfer matrices (2.21) implies

qH̃: “ WH: p´T, 0, ¨q ‹ qH:

E
“

ˆ

w22 w12
w21 w11

˙

‹
B

A
“
w22B ` w12A

w21B ` w11A
“
B̃

Ã
.

Finally, it is clear that the written family Ẽpt, ¨q is a solution of the correct equation.
□

By our choice of a metric topologizing H1
0,8 and H1

´8,0, cf. (2.18), the map
H ÞÑ H: is an isometry between those two sets of Hamiltonians.

We can now show a continuity result.

Proposition 3.10. The maps
"

HB Ñ H1
´8,0

E ÞÑ HE

"

HB ˆ r´8, 0s Ñ DB Y tt0uu

pE, tq ÞÑ HtpEq

are continuous.
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Proof. Continuity of the first map comes from Theorem 2.22. Let pEiqiPI be a net
in HB, E P HB, and assume that lim

iPI
Ei “ E. Then lim

iPI
Ai “ A and lim

iPI
Bi “ B.

Proposition 3.8 yields lim
iPI

qH:

Ei

“ qH:

E
, and it follows that lim

iPI
HEi

“ HE .
Consider now the second map. Since all involved topologies are metrizable, it

is enough to show sequential continuity. Let pEj , tjq P HB ˆ r´8, 0s for j P N0,
pE, tq P HB ˆ r´8, 0s, and assume that limjÑ8 Ej “ E and limjÑ8 tj “ t. We
distinguish two cases.
Case 1, t ą ´8: We know that limjÑ8 HEj

“ HE , and this implies that
lim

jÑ8
WHEj

pt, 0, zq “ WHE
pt, 0, zq.

Since all HEj
are trace normalized, we have limjÑ8 WHEj

ptj , t, zq “ I, and to-
gether therefore limjÑ8 WHEj

ptj , 0, zq “ WHE
pt, 0, zq. Since transfer matrices al-

ways have determinant 1, also inverse matrices converge, and (3.5) implies that
limjÑ8 Ejptj , ¨q “ Ept, ¨q. In turn, it follows that limjÑ8 KEj ptj ,¨q “ KEpt,¨q, i.e.,
limjÑ8 Htj

pEjq “ HtpEq.
Preparation for Case 2: We show that

␣

pw, zq ÞÑ KEj pt,¨qpw, zq | j P N0, t P r´8, 0s
(

(3.7)
is a normal family in HolpC ˆ Cq.

Since the sequence pKEj qjPN0 converges in HolpCˆCq, it is bounded in the metric
of HolpC ˆ Cq, i.e., locally bounded as a family of complex valued functions. We
have HtpEjq Ď BpEjq, and hence KEj pt,¨qpw,wq ď KEj

pw,wq for all t P r´8, 0s.
The Cauchy-Schwarz inequality now yields that (3.7) is locally bounded and, by
Montel’s theorem, therefore a normal family in HolpC ˆ Cq.
Case 2, t “ ´8: To show that limjÑ8 Htj

pEjq “ t0u, it is sufficient to prove that
every convergent subsequence has limit t0u. Assume we have jn Ñ 8, such that the
limit K :“ limnÑ8 KEjn ptjn ,¨q exists. Let s P p´8, 0s, then Htjn

pEjn q Ď HspEjn q,
and hence KEjn ptjn ,¨qpw,wq ď KEjn ps,¨qpw,wq for all sufficiently large n. Using
what we have shown in Case 1, we find

Kpw,wq “ lim
nÑ8

KEjn ptjn ,¨qpw,wq ď lim
nÑ8

KEjn ps,¨qpw,wq “ KEps,¨qpw,wq.

Since s was arbitrary, it follows that Kpw,wq “ 0. This holds for all w P C, and
therefore K “ 0. □

The family Ept, ¨q of Theorem 3.2 can be viewed as one possible parametrization
of the family CpBpEqq. All possible parameterizations can be described.

Proposition 3.11. Let E P HB. For M P SLp2,Rq denote by TM,´ and EM pt, ¨q
the corresponding number and family of functions given by Theorem 3.2 when ap-
plied with the function E ˙ M P HB. Then (the dot indicates that the sets in the
union are pairwise disjoint)

tF P HB | BpF q Ď BpEq, ϑF “ ϑEu “
ď̈

MPSLp2,Rq

tEM pt, ¨q | t P pTM,´, 0su. (3.8)

Proof. Due to Corollary 3.7 and its proof, HE˙M „ TM´1HE and
tEM pt, ¨q | t P pTM,´, 0su “ tEpt, ¨q ˙M | t P pT´, 0su.



NECESSARY AND SUFFICIENT CONDITIONS FOR UNIVERSALITY LIMITS 31

Note that TM preserves indivisible intervals. We first show that the union in (3.8)
is disjoint. Let M, M̃ P SLp2,Rq and t, t̃ ď 0 and assume that

Ept, ¨q ˙M “ Ept̃, ¨q ˙ M̃. (3.9)
Then

BpEpt, ¨qq “ BpEpt, ¨q ˙Mq “ BpEpt̃, ¨q ˙ M̃q “ BpEpt̃, ¨qq,

and it follows that t “ t̃. Since the functions Apt, ¨q and Bpt, ¨q are linearly inde-
pendent, (3.9) implies M “ M̃ .

The inclusion “Ě” in (3.8) is clear. To prove the reverse inclusion, let F P HB
with BpF q Ď BpEq and ϑF “ ϑE be given. Then there exists t P pT´, 0s such that
BpF q “ BpEpt, ¨qq, and hence we find M P SLp2,Rq with F “ Ept, ¨q ˙M . □

Corollary 3.12. Let F P HB and H P DB be such that BpF q Ď H and ϑF “ ϑH.
Then there exists a unique function E P HB such that H “ BpEq and F “ Ept, ¨q
for some t ď 0. The number t is uniquely determined by F and H.

Proof. Choose Ẽ with H “ BpẼq. Then there exists a unique matrix M P SLp2,Rq

with
F P tEM pt, ¨q | t P pTM,´, 0su.

Set E :“ Ẽ ˙M . □
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4. Chains of de Branges Spaces

We have seen in the previous section that a single Hermite-Biehler function gives
rise to a whole chain of dB-spaces parameterized by a canonical system. Our aim
in this section is to axiomatize the notion of a chain. This is a core concept, and
in particular the convergence result Theorem 4.17 is a key tool.

4.1. Bounded and unbounded chains axiomatically.

Definition 4.1. Let CĎ DBY tt0uu. We call C a chain if it satisfies the following
properties.
(i) t0u P C and C‰ tt0uu;
(ii) C is totally ordered with respect to Ď;
(iii) C is closed (in the topology of RK);
(iv) for each element H P Czt0u we have

H “ suptL P C | L Ď H,L ‰ Hu;
(v) for each two elements H1,H2 P Czt0u we have ϑH1 “ ϑH2 .

We call a chain bounded if it contains a largest element and unbounded otherwise.
We denote the set of chains, bounded chains, and unbounded chains as Ch,b-Ch
and ub-Ch, respectively. For a chain C, we denote by ϑC the common real zero
divisor of its nonzero elements, i.e., ϑC :“ ϑH for all H P Cztt0uu.

Example 4.2. For a space H P DB we consider the set CpHq from Definition 3.1,
and show that it is a bounded chain. By its definition CpHq satisfies (i) and (v) of
Definition 4.1, and H is the largest element of CpHq. We know from Theorem 3.2
that CpHq is compact and hence closed. Moreover, CpHq is order isomorphic to
an interval rT´, 0s with some T´ P r´8, 0q, and this implies that (ii) and (iv) of
Definition 4.1 hold.

Example 4.3. Let H P Ha,b be a Hamiltonian which is lc at a and lp at b, and
let WHpt, zq be its fundamental solution and KHpt, z, wq the corresponding kernel
(2.24). We show that

CpHq :“
␣

HpKHpt, ., .qq | t P ra, bq
(

is an unbounded chain. By Theorem 3.2 and Example 3.5 we have CpHpKHpc, ..qqq “

tL P CpHq | t P ra, csu. The properties (i), (ii), (iv), (v) readily follow. To see (iii),
it suffices to note that for a sequence tn Ñ b we have KHptn, w, wq Ñ 8 whenever
w is nonreal, and hence the limit limnÑ8 HpKHptn, ., .qq cannot exist.

The next result explains a lot about the nature of chains: each beginning section
is of the form described in Example 4.2.

Proposition 4.4. Let C be a chain. If H P C, then
␣

L P C | L Ď H
(

“ CpHq. (4.1)
In particular, each beginning section of C is a bounded chain.

Proof. Choose E P HB such that H “ BpEq, and let χ : t ÞÑ Ht be the map from
Theorem 3.2 (iii). Then the set on the right side of (4.1) equals tHt | t P rT´, 0su.
The inclusion “Ď” in (4.1) is clear, hence we have to show that χ´1pCq “ rT´, 0s.

The inverse image χ´1pCq is closed and contains the points T´ and 0. Assume
towards a contradiction that χ´1pCq ‰ rT´, 0s. Then we find t1, t2 P χ´1pCq with
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t1 ă t2 and pt1, t2q X χ´1pCq “ H. It follows that suptt P χ´1pCq | t ă t2u “ t1,
and we obtain

Ht2 “ suptL P C | L Ď Ht2 ,L ‰ Ht2 u “ Ht1 .

This contradicts injectivity of χ. □

We have the obvious corollary that bounded chains can be seen as nothing but
a different encoding of dB-spaces.

Corollary 4.5.
(i) The maps H ÞÑ CpHq and C ÞÑ max C establish mutually inverse bijections

between DB and b-Ch.
(ii) Let C Ď DB Y tt0uu. Then C is a bounded chain if and only if there exist

´8 ď a ă b ď 8 and χ : ra, bs Ñ C, such that χ is a homeomorphism and
preserves order.

We also obtain a structural property of the set of chains.

Proposition 4.6. The following statements hold.
(i) Let C Ď Ch with |C| ě 2. Then either

Ş

C “ tt0uu or
Ş

C P b-Ch.
(ii) The set of maximal elements of Ch is equal to ub-Ch.

Proof. For the proof of (i) consider C Ď Ch with
Ş

C ‰ tt0uu. Then ϑH1 “ ϑH2

for each two elements H1,H2 P p
Ť

Cqztt0uu. Choose C1 P C with C1 Ę
Ş

C, and
choose H1 P C1 and C2 P C with H1 P C1zC2. Furthermore, choose E1 P HB with
H1 “ BpE1q.

Let L P
Ş

C. Then H1 Ę L since L P C2, and since L P C1 it follows that
L Ď H1. We obtain

č

C Ď CpH1q – rT´pE1q, 0s.

The set
Ş

C is closed, and therefore contains a largest element, say H :“ max
Ş

C.
Proposition 4.4, applied to each element of C, yields

Ş

C “ CpHq and this is a
bounded chain.

We come to the proof of (ii). Assume C P Ch is not maximal, and choose C1 P Ch
with CĹ C1. Applying the already proved statement (i) with C :“ tC, C1u yields
that C is a bounded chain. Conversely, assume that C P b-Ch. Choose E P HB
with BpEq “ max C, and set

E1 :“ E ˙

ˆ

1 z
0 1

˙

.

Then BpEq Ĺ BpE1q and hence CĹ CpBpE1qq. □

4.2. Concrete realization of chains. We come to a description of chains (bounded
or unbounded) which resembles Theorem 3.2. The idea is to pin one element of
the chain at “t “ 0” and describe the evolution to “t ą 0” by a canonical system
similar as in Example 4.3, and the part for “t ă 0” by the structure Hamiltonian
from Theorem 3.2. In particular, we will see that every unbounded chain is order
isomorphic and homeomorphic to an interval rT´,8q with some T´ P r´8, 0q. To
formulate this description in a unified manner for bounded and unbounded chains,
we introduce the following notation.
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Definition 4.7. We denote by H1{0 the set of all locally integrable functions H :
p0,8q Ñ R2ˆ2 such that Hptq ě 0 for a.a. t P p0,8q, and that there exists T`pHq P

r0,8s with

trHptq “

#

1 if t P p0, T`pHqq a.e.,
0 if t P rT`pHq,8q a.e.,

We call the interval pT`pHq,8q indivisible (of course without assigning a type to
it), and let Ireg be the set of all points t P p0,8q which are not inner point of an
indivisible interval.

Lemma 4.8. The map

T` :
#

H1{0 Ñ r0,8s

H ÞÑ T`pHq

is continuous, and H1{0 is compact.

Proof. We show that H1{0 is closed in Hď1
0,8. To this end, let H P Hď1

0,8 and pHnqnPN

a sequence in H1{0 with limnPNHn “ H. Then, in particular, for all 0 ď x ă y ă 8

we have
lim

nÑ8

ż y

x

trHnptqdt “

ż y

x

trHptqdt.

Choose a subsequence pT`pHnk
qqkPN which converges to some number τ P r0,8s.

Then
ż y

0
trHptqdt “ y, y ă τ,

ż y

x

trHptqdt “ 0, τ ă x ă y.

Since trHptq P r0, 1s a.e., it follows that trH “ 1p0,τq a.e. Thus H P H1{0 and
T`pHq “ τ . We also see that the number τ is independent of the chosen subse-
quence, and therefore limnÑ8 T`pHnq “ T`pHq. This shows that T` is continu-
ous. □

Definition 4.9. We define a map1 Φ : HB ˆ H1{0 Ñ P
`

DB Y tt0uu
˘

as

ΦpE,Hq :“ CpBpEqq Y
␣

BpE ˙WHpt, ¨qq | t ą 0
(

.

The description of chains announced above now reads as follows.

Theorem 4.10. The following statements hold.
(i) Let pE,Hq P HB ˆ H1{0. Then ΦpE,Hq P Ch, and ΦpE,Hq is bounded if and

only if T`pHq ă 8.
(ii) If E P HB and H1, H2 P H1{0 are such that ΦpE,H1q Ď ΦpE,H2q, then

T`pH1q ď T`pH2q and H1 “ H2 ¨1p0,T`pH1qq a.e. In particular, if ΦpE,H1q “

ΦpE,H2q, then H1 “ H2 a.e.
(iii) If C P Ch and E P HB with BpEq P C, then there exists H P H1{0 such that

C“ ΦpE,Hq.
(iv) Assume that C P b-Ch and E P HB with BpEq P C. Then BpEq “ max C if

and only if C“ ΦpE, 0q.

For later reference we state the essence for the proof of item (i) as a separate
lemma.

1Here Pp¨q denotes the power set.
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Lemma 4.11. Let pE,Hq P HB ˆ H1{0. Define

H̃ptq :“
#

Hptq if 0 ą t,

HEptq if t ă 0,

and let Ẽpt, zq be the solution of

BtpÃpt, zq, B̃pt, zqqJ “ zpÃpt, zq, B̃pt, zqqH̃ptq, t P R a.e.,
pÃp0, zq, B̃p0, zqq “ pApzq, Bpzqq.

Moreover, set

H̃t :“
#

BpẼpt, ¨qq if t ą T´pEq,

t0u if t ď T´pEq,

and let χ be the map

χ :
#

rT´pEq, T`pHqs z t8u Ñ RK
t ÞÑ H̃t

Then ranχ “ ΦpE,Hq, and χ is an order isomorphism and homeomorphism onto
its range. Moreover, ΦpE,Hq is closed in RK.

Proof. By Theorem 3.2 and the definition of Φ we have ranχ “ ΦpE,Hq. Consider
T P pT´pEq, T`pHqszt8u, then the restriction χ|rT´pEq,T s is an order isomorphism
and homeomorphism onto its image by Theorem 3.2. If T`pHq ă 8, we can use
T :“ T`pHq and are done.

Assume that T`pHq “ 8. Then the above shows that χ is an order isomorphism
and continuous. It remains to show that χ´1 is continuous and that ΦpE,Hq

is closed. Let ptnqnPN0 be a sequence in rT´pEq,8q such that the limit H :“
limnÑ8 H̃tn exists in RK. Since T`pHq “ 8, we have limtÑ8 ∆H̃t

pzq “ 8 for all
z P CzR, and therefore ptnqnPN must be bounded. Now the already settled case
applies, and we obtain that the limit t :“ limnÑ8 tn exists and H “ H̃t. We see
that χ´1 is continuous and that ranχ is closed. □

Proof of Theorem 4.10.
① Item (i) of the theorem is immediate from Lemma 4.11. Since ΦpE,Hq is order
isomorphic to the interval rT´pEq, T`pHqszt8u, the properties (ii), (iv) in Defi-
nition 4.1 hold, and ΦpE,Hq has a maximal element if and only if T`pHq ă 8.
Property (iii) in Definition 4.1 is directly from the lemma, and property (v) from
the definition of Φ. To see Definition 4.1(i), note that χpT´pEqq “ t0u and
χp0q “ BpEq ‰ t0u.

Also item (iv) of the theorem is easy to see. First note that the definition of Φ
ensures that ΦpE, 0q has a largest element, namely BpEq. On the other hand, if
BpEq is the largest element of C, then C“ ΦpE, 0q by Proposition 4.4.
② In this step we establish the uniqueness statement (ii). Assume we are given E P

HB and H1, H2 P H1{0 such that ΦpE,H1q Ď ΦpE,H2q. Let t1 P r0, T`pH1qszt8u,
t2 P r0, T`pH2qszt8u, and denote Ej :“ E ˙WHj

ptj , .q for j P t1, 2u. Assume that
BpE1q “ BpE2q, then Corollary 3.9 implies that, for j P t1, 2u,

HEj ptq “

#

Hjpt` tjq if ´ tj ď t ď 0 a.e.,
HEpt` tjq if t ă ´tj a.e.,
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Ejpt, ¨q “

#

E ˙WHj
pt` tj , ¨q if ´ tj ď t ď 0,

Ept` tj , ¨q if t ă ´tj .

The uniqueness part of Corollary 3.12 implies that E1 “ E2 and t1 “ t2. Uniqueness
of the structure Hamiltonian now implies that H1|p0,t1q “ H2|p0,t1q a.e.

We choose an increasing sequence t1,n P r0, T`pH1qszt8u with limnÑ8 t1,n “

T`pH1q, and apply what we showed above. This yieldsH1|r0,T`pH1qs “ H2|r0,T`pH1qs

a.e., and in turn T`pH1q ď T`pH2q and H1 “ H2 ¨ 1r0,T`pH1qs.
③ The last step is to prove the existence result (iii). Assume we are given C P Ch
and E P HB with BpEq P C.

Let H P C with BpEq Ď H. Corollary 3.12 provides us with EH P HB and
tH ě 0 such that

H “ BpEHq, E “ EHp´tH, ¨q.

Define (a.e.)

HHptq :“
#

HEHpt´ tHq if 0 ă t ď tH,

0 if t ą tH,

then HH P H1{0 and T`pHHq “ tH.
For each s P r´tH, 0s we have

EHps, ¨q “ E ˙WHEH
p´tH, s, ¨q “ E ˙WHHps` tH, ¨q.

This relation, together with Proposition 4.4 applied with BpEq and H and Theo-
rem 3.2 with EH, yields that
ΦpE,HHq “ CpBpEqq Y

␣

BpE ˙WHHpt, ¨qq | t ą 0
(

“ CpBpEqq Y
␣

BpEHps, ¨qq | ´tH ă s ď 0
(

“
␣

L P C | L Ď BpEq
(

Y
␣

L P C | BpEq Ď L Ď H
(

“
␣

L P C | L Ď H
(

.

If C is bounded, we can use H “ max C and are done. If C is unbounded, we have
to make a limit construction.

We start with observing a monotonicity property. Assume that H,H1 P C with
BpEq Ď H Ĺ H1. Then ΦpE,HHq Ĺ ΦpE,HH1 q, and by the already established
item (ii) thus

T`pHHq ă T`pHH1 q, HH “ HH1 ¨ 1r0,T`pHHqs. (4.2)
Set

T :“ sup
␣

T`pHHq | H P C,BpEq Ď H
(

P r0,8s.

This supremum is not attained since C has no largest element. Choose a sequence
pHnqnPN of spaces Hn P C such that

BpEq Ď H1 Ĺ H2 Ĺ ¨ ¨ ¨ , lim
nÑ8

T`pHnq “ T.

Due to (4.2) an element H in H1{0 is (a.e.) well-defined by

Hptq :“
#

HHn
ptq if 0 ď t ď T`pHnq, n P N,

0 if t ě T.

Let H P C with BpEq Ď H, and choose n P N with T`pHHq ď T`pHnq. Then
H Ď Hn, and we find s P r0, T`pHnqs such that

H “ BpE ˙WHHn
ps, ¨qq “ BpE ˙WHps, ¨qq P ΦpE,Hq.
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We see that CĎ ΦpE,Hq. Proposition 4.6 implies that equality holds.
□

Based on the above theorem we may introduce the following notation.
Definition 4.12. Let C P Ch and E P HB such that BpEq P C. Let H P H1{0 be
the (a.e.) unique element such that C“ ΦpE,Hq. Then we denote

HE,Cptq :“
#

HEptq if t ă 0,
Hptq if t ą 0.

We have the analogue to Corollary 4.5(ii).
Corollary 4.13. Let CĎ DBYtt0uu. Then C is an unbounded chain if and only if
there exist ´8 ď a ă b ď 8 and χ : ra, bq Ñ C, such that χ is a homeomorphism,
preserves order, and the limit limtÑb χptq does not exist in RK.
4.3. Convergence of chains. We introduce a notion of convergence of chains.
Definition 4.14. Let pCjqjPJ be a net in Ch and C P Ch. Then we say that
pCjqjPJ converges to C, and write Cj ù C, if
(i) for every H P C there exists a net pHjqjPJ of spaces Hj P Cj , such that

limjPJ Hj “ H;
(ii) for every subnet h : K Ñ J , pHhpkqqkPK of spaces Hhpkq P Chpkq which

converges in RK, the limit belongs to C.
We intentionally do not use the notation “lim” since we do not know if this

notion of convergence comes from a topology. However, convergence does transfer
to subnets and limits are unique.
Lemma 4.15. Let pCjqjPJ be a net in Ch.
(i) Let C P Ch. If Cj ù C and h : K Ñ J is a subnet, then also Chpkq ù C.
(ii) Let C1, C2 P Ch. If Cj ù C1 and Cj ù C2, then C1 “ C2.

Proof. The assertion in (i) is clear. We come to the proof of (ii). Let H P C1. Since
Cj ù C1 we find a net pHjqjPJ with Hj P Cj and limjPJ Hj “ H in RK. Since
Cj ù C2, it follows that H P C2. This shows that C1 Ď C2. Exchanging the roles
of C1 and C2 yields the reverse inclusion. □

Example 4.16. Let C P Ch. Then C endowed with Ď is (in particular) a directed
set. The net pCpHqqHPC converges to C. This follows easily: in item (i) of Def-
inition 4.14 we can take a net which is constant from some index, and (ii) holds
because C is closed.

In the following theorem we make the connection between the abstract notion
of convergence introduced above, and the concrete realization of chains from The-
orem 4.10.
Theorem 4.17. Let pCjqjPJ be a net in Ch and C P Ch. Then the following
statements are equivalent.
(i) Cj ù C

(ii) There exist E P HB and Ej P HB, j P J , such that
BpEq P C, BpEjq P Cj , j P J, lim

jPJ
Ej “ E, (4.3)

lim
jPJ

HEj ,Cj
“ HE,C. (4.4)
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(iii) There exist E P HB and Ej P HB, j P J , with (4.3). For every choice of E
and Ej with (4.3) the limit relation (4.4) holds.

Proof. The implication “(iii)ñ(ii)” is trivial.
① We show that “(ii)ñ(i)”. Assume that we have E,Ej P HB with (4.3) and (4.4).
Let notation H̃j , H̃ and H̃j,t, H̃t and χj , χ be as in Lemma 4.11 for pEj , HEj ,Cj q

and pE,HE,Cq, respectively. By Proposition 3.10 the relation (4.3) implies that
also limjPJ HEj

“ HE , and it follows that
lim
jPJ

WH̃j
pt, 0, ¨q “ WH̃pt, 0, ¨q, t ă 0, lim

jPJ
WH̃j

p0, t, ¨q “ WH̃p0, t, ¨q, t ą 0.

Combining this with limjPJ Ej “ E yields

@t P R : lim
jPJ

H̃j,t “ H̃t.

In particular, Definition 4.14 (i) is satisfied.
Now assume we have a subnet h : K Ñ J and Hhpkq P Chpkq, H P RK, such that

H “ limkPK Hhpkq in RK. Our aim is to show that H P C. Let

tpkq P
“

T´pEhpkqq, T`pHEhpkq,Chpkq
q
‰

zt8u

be such that Hhpkq “ H̃hpkq,tpkq. By passing to a further subnet if necessary, we
may assume that the limit t :“ limkPK tpkq exists in r´8,8s. First consider the
case that t P p´8,8q. Using the convergence given by (4.3) and (4.4) in the same
way as in the previous paragraph leads to

H “ lim
kPK

H̃hpkq,tpkq “ H̃t P C.

Second, assume that t “ ´8. For each s P R we find k0 P K such that H̃hpkq,tpkq Ď

H̃hpkq,s for all k ě k0 . Passing to the limit yields H Ďc H̃s, and hence ∆Hpwq ď

∆H̃s
pwq for all w P C. We have limsÑ´8 ∆H̃s

pwq “ 0, and obtain
H “ t0u P C.

Finally, we are going to rule out the case that t “ 8. If we had t “ 8, then we
find for each s P R an index k0 P K such that H̃hpkq,s Ď H̃hpkq,tpkq for all k ě k0.
Passing to the limit yields H̃s Ďc H, and hence ∆H̃s

pwq ď ∆Hpwq for all w P C.
By continuity of T`, we have T`pHE,Cq “ 8, i.e., C is an unbounded chain. This
implies that limsÑ8 ∆H̃s

pwq “ 8 whenever w is nonreal, and we have reached a
contradiction.
② We show that “(i)ñ(iii)”. Assume that Cj ù C and pick E P HB with BpEq P

C. By Definition 4.14 (i) and Theorem 2.9 (iv) we find Ej P HB such that BpEjq P

Cj and limjPJ Ej “ E. Our aim is to show that, for each such choice of E,Ej ,
it holds that limjPj HEj ,Cj “ HE,C in H1{0. Since H1{0 is compact, it suffices to
evaluate limits of convergent subnets. Hence, assume we have h : K Ñ J and
H P H1{0 such that limkPK HEhpkq,Chpkq

“ H. Set C1 :“ ΦpE,Hq, then Chpkq ù C1

by what we aready proved in the first step. Remembering Lemma 4.15 (i), we find
Chpkq ù C, and now Lemma 4.15 (ii) implies

ΦpE,Hq “ C1 “ C“ ΦpE,HE,Cq.

Theorem 4.10(ii) yields H “ HE,C.
□
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As a corollary we obtain that on the set of bounded chains convergence can be
characterized in a simple (in particular metrizable) way.

Corollary 4.18. Let pCjqjPJ be a net in b-Ch, and C P b-Ch. Then Cj ù C if
and only if limjPJ pmax Cjq “ max C.

Proof. Assume first that limjPJ pmax Cjq “ max C. Choose Ej , E P HB such that
max Cj “ BpEjq, max C“ BpEq, lim

jPJ
Ej “ E,

Since HEj ,Cj
“ HE,C “ 0, it follows that Cj ù C.

Conversely, assume that Cj ù C. Choose E P HB with BpEq “ max C and
Ej P HB such that BpEjq P Cj and limjPJ Ej “ E. Then limjPJ HEj ,Cj “ HE,C “

0. It follows that T`pHEj ,Cj
q Ñ 0, and hence

lim
jPJ

`

Ej ˙WHEj ,Cj
pT`pHEj ,Cj

q, ¨q
˘

“ E ˙ I “ E.

It remains to note that BpEj ˙WHEj ,Cj
pT`pHEj ,Cj q, ¨qq “ max Cj . □

The next result allows us to conclude convergence of arbitrary (also unbounded)
chains when a candidate for the limit is guessed. We state variant which is sufficient
for our later needs.

Proposition 4.19. Let pCjqjPJ be a net in Ch, and let χ : r0,8q Ñ RK. Assume
that χ is continuous with χp0q “ t0u, that a ÞÑ Kχpaqp0, 0q is strictly increasing
with limaÑ8 Kχpaqp0, 0q “ 8, and that there exists Ha,j P Cj for a ą 0 and j P J ,
such that

@a ą 0 : lim
jPJ

Ha,j “ χpaq.

Then C :“ χpr0,8qq P ub-Ch and Cj ù C.

Proof. First of all note that all spaces χpaq with a ą 0 are ‰ t0u and, being limits
of dB-spaces, belong to DB.

Let b P p0,8q. For a P p0, bq we have
lim
jPJ

KHa,j
p0, 0q “ Kχpaqp0, 0q ă Kχpbqp0, 0q “ lim

jPJ
KHb,j

p0, 0q,

and hence find j0 P J such that
@j P J, j ě j0 : KHa,j

p0, 0q ă KHb,j
p0, 0q.

The function
"

Cj Ñ r0,8q

H ÞÑ KHp0, 0q

is nondecreasing, and we conclude that Ha,j Ď Hb,j for all j ě j0. In other words,
it holds that Ha,j P CpHb,jq for such j. By Corollary 4.18 we have

CpHb,jq ù Cpχpbqq.

Since χpaq is the limit of the subnet pHa,jq jPJ
jěj0

, it follows that χpaq P Cpχpbqq. We

see that
␣

χpaq | a P r0, bs
(

Ď Cpχpbqq.

Let H P Cpχpbqq. Then KHp0, 0q ď Kχpbqp0, 0q, and thus we find a P r0, bs such
that KHp0, 0q “ Kχpaqp0, 0q. If a1 P r0, aq, then Kχpa1qp0, 0q ă KHp0, 0q. Since
χpa1q P Cpχpbqq it follows that χpa1q Ď H. Similarly, we obtain that H Ď χpa1q for
all a1 P pa, bs.
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Consider the case that 0 ă KHp0, 0q ă Kχpbqp0, 0q. Then a P p0, bq, and continu-
ity of χ yields

χpaq “ lim
a1Òa

χpa1q Ďc H Ďc lim
a1Óa

χpa1q “ χpaq,

i.e., H “ χpaq. If KHp0, 0q “ 0, we have
t0u Ďc H Ďc lim

a1Ó0
χpa1q “ t0u,

and if KHp0, 0q “ Kχpbqp0, 0q, then
χpbq “ lim

a1Òb
χpa1q Ďc H Ďc χpbq.

Thus, in every case, H “ χpaq. We conclude that
@b P p0,8q : Cpχpbqq “

␣

χpaq | a P r0, bs
(

. (4.5)
We can now check that C P ub-Ch. The properties (i), (ii), (iv), (v) of Defi-
nition 4.1 are clear from (4.5). To show that C is closed, it is enough to note
that for any convergent net pχpaiqqiPI the net paiqiPI is eventually bounded since
limaÑ8 Kχpaqp0, 0q “ 8, and that χ is continuous.

It remains to show that Cj ù C. Property (i) of Definition 4.14 holds directly
by the present assumption. Assume we have a convergent subnet as in (ii) of this
definition, say, limkPK Hhpkq “: H where Hhpkq P Chpkq. We argue in the same way
as above. Let a P r0,8q be such that Kχpaqp0, 0q “ KHp0, 0q. For a1 P r0, aq we
have

lim
jPJ

KHa1j
p0, 0q “ Kχpa1qp0, 0q ă KHp0, 0q “ lim

kPK
Khpkqp0, 0q,

and hence there exists k0 P K such that Ha1,hpkq Ď Hhpkq for all k ě k0. We obtain
χpa1q “ lim

kPK
kěk0

Ha1,hpkq Ďc lim
kPK
kěk0

Hhpkq “ H.

Similarly, H Ďc χpa1q for all a1 P pa,8q. Continuity of χ yields H “ χpaq. □
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5. Measures associated to unbounded chains

In the previous section we saw that bounded chains correspond to de Branges
spaces: by Corollary 4.5 and Corollary 4.18 the maps

"

b-Ch Ñ DB
C ÞÑ max C

,

"

DB Ñ b-Ch
H ÞÑ CpHq

are mutually inverse bijections and both preserve convergence.
For unbounded chains the situation is much more complex. The substitute for

the set DB above is
M :“

␣

µ | µ positive Borel measure on R
(

,

and a map ub-Ch Ñ M can be constructed, cf. Theorem 5.2 below. This map is
surjective and preserves convergence, but it is not anymore injective.

In order to simplify the presentation we restrict all considerations to chains with
ϑC “ 0; treating the general case is not necessary for our purposes, and would
involve some technical complications.

5.1. The direct problem. Inclusions of a space of entire functions in a space
L2pµq are understood via the restriction map F ÞÑ F |R µ-a.e. (which is often, but
not always, injective).
Definition 5.1. Let C P ub-Ch with ϑC “ 0. A measure µ P M is called a spectral
measure for C, if

@H P C : H Ď L2pµq.

The following theorem is again a slight addition to the results shown by de Branges.
Theorem 5.2.
(i) Let C P ub-Ch with ϑC “ 0. Then there exists a unique spectral measure for

C, and we denote this measure as µC.
(ii) Let pE,Hq P HB˚

ˆ H1
0,8. Then

qE,H :“ J

ˆ

A B
´B A

˙

‹ qH P N0

and the measure in the integral representation of qE,H is |Epxq|2dµΦpE,Hqpxq.

Proof. Let C P ub-Ch and choose pE,Hq P HB˚
ˆ H1

0,8 with C “ ΦpE,Hq. Let
HE,C be the Hamiltonian from Definition 4.12, let Ireg refer to HE,C, and denote
by Et “ At ´ iBt the solution of

BtpAtpzq, BtpzqqJ “ zpAtpzq, BtpzqqHE,Cptq, t P R,
pA0pzq, B0pzqq “ pApzq, Bpzqq.

For t ą T´pEq let Ht P H1
0,8 be the Hamiltonian

Htpsq :“ HE,Cps` tq, s P p0,8q.

Then C“ ΦpEt, Htq for all t ą T´pEq. By [13, Problem 158] there exists a measure
ν such that for all t ą T´pEq the measure in the integral representation of qEt,Ht

is |Et|
2dν.

At this point we split the argument distinguishing the cases whether Ireg is
bounded from above or not. If sup Ireg ă 8 we use t :“ sup Ireg to show that ν is
the unique spectral measure for C, and if sup Ireg “ 8 we refer to [13, Problem 163]
to obtain a unique spectral measure and then show that this measure equals ν.
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① Assume that t :“ sup Ireg ă 8. Let α P R be such that Ht “ eαe
˚
α a.e., set

G :“ pAt, Btqeα “ At cosα`Bt sinα, L :“ pAt, Btqeα` π
2

“ ´At sinα`Bt cosα.

Since ϑE “ 0, the functions G and L have no common zeros, and since B
A P N0 also

L
G P N0. In particular, this implies that both functions L and G have only real and
simple zeros. Write

H :“
#

BpEsq if s ą T´pEq,

t0u if s “ T´pEq,

then we have for all s ą t

BpEsq “ H ‘ spantGu with }G}2
BpEsq “

1
s´ t

, BpEsq5 “ H,

cf. (2.15). A direct computation shows that we have qEt,Ht “ L
G . Hence, ν is

discrete and supported on the zero set of G with point mass Lpxq

G1pxq
for x P R with

Gpxq “ 0. If t ą T´pEq we have H Ďi L
2pνq by [13, Theorem 22], if t “ T´pEq

the same relation holds trivially. Moreover, obviously,
ş

R |G|2dν “ 0. Thus ν is a
spectral measure for C. Conversely, if ν̃ is a spectral measure for C, then we must
have

ż

R
|G|2dν̃ ď }G}2

BpEsq, s ą t,

and hence
ş

R |G|2dν̃ “ 0. Thus ν̃ is discrete with support contained in the zero set
of G. If x P R with Gpxq “ 0, we have Gpzq

z´x P H, and hence may evaluate

ν̃ptxuq “
1

G1pxq2

ż

R

ˇ

ˇ

ˇ

Gpyq

y ´ x

ˇ

ˇ

ˇ

2
dν̃pyq

“
1

G1pxq2

›

›

›

Gpzq

z ´ x

›

›

›

2
“

1
G1pxq2

ż

R

ˇ

ˇ

ˇ

Gpyq

y ´ x

ˇ

ˇ

ˇ

2
dνpyq “ νptxuq.

② We invoke [13, Problem 163] which tells us that there exists an unique measure
µ such that

@t P Ireg : BpEtq Ďi L
2pµq.

We observe that µ is the unique spectral measure for C. Given s P R, we can
choose t P Ireg with t ě s, and it follows that

BpEsq Ď BpEtq Ďi L
2pµq.

On the other hand, if µ̃ is a spectral measure for C, and t P Ireg, choose s P Ireg
with s ą t. Then

BpEtq Ď BpEsq5 Ďi L
2pµ̃q,

and it follows that µ̃ “ µ.
In order to identify µ, we provide an auxiliary argument. Let t ě 0. Since

BpEq Ď BpEtq, [13, Theorem 27] provides us with a matrix function Mtpzq such
that
(i) Mt has real and entire entries,
(ii) p1, 0qMt “ pAt, Btq and the kernel MtpzqJMtpwq

˚
´EpzqJEpwq

z´w is positive definite,
(iii) limyÑ8

1
yJMtpiyq ‹ i “ 0.



NECESSARY AND SUFFICIENT CONDITIONS FOR UNIVERSALITY LIMITS 43

Set
M̃tpzq :“

ˆ

A B
´B A

˙

WHE,C
pt, .q,

then M̃t also has the properties (i), (ii). The functions JMt ‹ i and JM̃t ‹ i belong
to N0, are continuous along R, and a computation shows that

ImpJMt ‹ iqpxq “ ImpJM̃t ‹ iqpxq “

ˇ

ˇ

ˇ

Epxq

Ept, xq

ˇ

ˇ

ˇ

2
, x P R.

Thus, we find αt, βt P R such that pJM̃t ‹ iqpzq “ αt ` βtz ` pJMt ‹ iqpzq, and in
turn

M̃tpzq “

ˆ

1 0
´pαt ` βtzq 1

˙

Mtpzq.

It follows that for all q P N0

pJM̃t ‹ qqpzq “ αt ` βtz ` pJMt ‹ qqpzq,

and hence that the measures in the integral representations of JM̃t ‹ q and JMt ‹ q
coincide.

Now fix t P Ireg X p0,8q. Then [13, Problem 90] provides us with a function
qt P N0 Y t8u such that the measure in the Herglotz integral representation of

J

ˆ

Apt, .q Bpt, .q
´Bpt, .q Apt, .q

˙

‹ qt

is |Ept, xq|2dµpxq. We obtain from [13, Theorem 32] that the measure in the integral
representation of JMt ‹ qt, and hence in the one of JM̃t ‹ qt, is |Epxq|2dµpxq.

We have limtÑ8rJM̃t ‹ qts “ qE,H , and since we can let t Ñ 8 inside Ireg it
follows that the measure in the integral representation of qE,H is |Epxq|2dµpxq.

□

By means of Theorem 5.2 we have a map

ub-Ch Ñ M, C ÞÑ µC.

We show that this map is surjective but not injective, and that it preserves conver-
gence.

Proposition 5.3. The following statements hold.
(i) For each µ P M the set

ub-Chµ :“
␣

C P ub-Ch | ϑC “ 0, µC “ µ
(

has infinitely many elements.
(ii) Let pCjqjPJ be a net in ub-Ch, and C P ub-Ch. If Cj ù C, then limjPJ µCj “

µC in the w˚-topology of CcpRq˚.

Proof. For the proof of item (i) we observe that the construction from Lemma 2.10
lifts to chains. If C P Ch, ϑC “ 0, and C is a real and zerofree entire function, then

1
C

¨ C :“
␣␣

F
C | F P H

(

| H P C
(

P Ch.

The chains C and 1
C ¨ C are together bounded or unbounded. If C “ ΦpE,Hq for

some E P HB˚, H P H1{0, then 1
C ¨ C“ Φp E

C , Hq.
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① We show that ub-Chµ ‰ H whenever
ş

R e
|t|dµptq ă 8. Assuming this decay of µ

ensures that L2pµq contains the set Crzs of all polynomials with complex coefficients
as a dense linear subspace (e.g. [27, Satz 5.2]).

Let m P N and assume that suppµ contains at least m points. Then the space
Hm :“

␣

F P Crzs | degF ă m
(

becomes a dB-space when endowed with the L2pµq-scalar product. We are going to
fill up this sequence of spaces in order to obtain an unbounded chain. To this end
denote by pn, n P N0, the orthonormal polynomials in L2pµq, i.e., pn P Crzs with
deg pn “ n and

ppn, pn1 qL2pµq “

#

1 if n “ n1,

0 if n ‰ n1.

Then (here we set H0 :“ t0u)

Hm “ spantpn | n P N0, n ă mu, H5
m “ spantpn | n P N0, n ă m´ 1u.

For t P pm´ 1,mq set
Ht :“ spantpn | n P N0, n ă mu,

and, for F P H5
m and α P C,

}F ` αpm´1}2
Ht

:“ }F }2
H5

m
`

|α|2

t´ pm´ 1q
.

Then Ht is a dB-space, and Hm´1 Ďi Ht Ďc Hm. Clearly, for all m P N,
CpHmq “

␣

Ht | t P r0,ms
(

.

If | suppµ| “ 8, then C :“ tHt | t P r0,8qu is an unbounded chain and
@t P r0,8q : Ht Ď L2pµq.

Assume that N :“ | suppµ| ă 8. Then we choose a polynomial p with degree
N such that pptq “ 0 for all t P suppµ, and define for t ą N the space Ht as
Ht :“ span

`

HN Y tpu
˘

endowed with the norm (F P HN , α P C)

}F ` αP }2
Ht

:“ }F }2
HN

`
|α|2

t´N
.

Then C :“ tHt | t P r0,8qu is an unbounded chain and again µC “ µ.
② Let µ P M be given. Choose a continuous function ω : r0,8q Ñ r1,8q such that

ż

R

dµptq

ωp|t|q
ă 8,

and choose an entire function f such that
@r ě 0 : max

|z|“r
|fpzq| ě ωp

?
rq.

This is possible, e.g., by [75, Theorem 10.3]. We may assume w.l.o.g. that all power
series coefficients of f are nonnegative, so that

@r ě 0 : max
|z|“r

|fpzq| “ fprq.

For m P N let νm be the measure
dνmptq :“ exp

“

´ t2m`2 ´ fpt2q
‰

dµptq.
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Then
ż

Rzr´1,1s

et2
dνmptq ď

ż

Rzr´1,1s

e´fpt2
qdµptq ď

ż

R
e´ωp|t|qdµptq ď

ż

R

dµptq

ωp|t|q
ă 8.

By the first part of the proof there exists Cm P ub-Ch with ϑCm
“ 0 and µCm

“ νm.
Let Gm be the entire function

Gmpzq :“ exp
“

´
1
2
`

z2m`2 ` fpz2q
˘‰

.

This function is real and zerofree. We have Gm ¨ Cm P ub-Ch, and for each H P Cm,
F P H, it holds that

}GmF }2
Gm¨H “ }F }2

H ě

ż

R
|F ptq|2dνmptq

“

ż

R
|F ptq|2 ¨ |Gmptq|2dµptq “

ż

R
|pGmF qptq|2dµptq,

where equality holds when GmF P pGm ¨ Hq5; recall again Lemma 2.10. We see
that µGm¨Cm

“ µ.
Each chain Cm contains the space spant1u, and hence the chain Gm ¨ Cm contains

spantGmu. For m ‰ m1 we have
Gm1 R spantGmu, Gm R spantGm1 u,

and therefore Gm ¨ Cm ‰ Gm1 ¨ Cm1 .
③ We come to the proof of (ii). Assume we have Cj ù C. According to Theo-
rem 4.17 we find Ej , E P HB and Hj , H P H1

0,8 such that
Cj “ ΦpEj , Hjq, C“ ΦpE,Hq, lim

jPJ
Ej “ E, lim

jPJ
Hj “ H.

It follows that
lim
jPJ

”

J
´

Aj Bj

´Bj Aj

¯

‹ qHj

ı

“ J
`

A B
´B A

˘

‹ qH ,

and, remembering (2.32), therefore limjPJ µCj “ µC.
□

Remark 5.4. Let µ P M. By [13, Theorem 40] we have
ď

ub-Chµ “
␣

H P DB˚
| H Ď L2pµq

(

Y
␣

t0u
(

.

By the ordering theorem [13, Theorem 35] two elements C1, C2 of ub-Chµ are
either equal or C1 X C2 “ tt0uu. We have C1 “ C2 if and only if there exist
functions F1 P p

Ť

C1qzt0u and F2 P p
Ť

C2qzt0u, such that their quotient F1{F2
is a meromorphic function of bounded characteristic in C` and C´ (and further
equivalent that this holds for all such F1, F2).

5.2. The inverse problem. We do not know any natural way to construct a
right-inverse of the surjective map

ub-Ch Ñ M, CÑ µC.

For the subclass Mă8 of power bounded measures, an inverse construction can be
made. This is based on the fact that for such measures an element of ub-Chµ with
a particular additional function theoretic property can be singled out.

Theorem 5.5.
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(i) For each µ P Mă8 there exists a unique element C P ub-Chµ such that

@F P
ď

C : F is of bounded type in C` and C´

We denote this chain as Cpµq.
(ii) Let pµjqjPJ be a net in Mă8 and µ8 P Mă8, and assume that

Dκ P N0 : sup
jPJ

}µj}κ ă 8.

If limjPJ µj “ µ8 in the w˚-topology of CcpRq˚, then Cpµjq ù Cpµ8q.

The proof of this theorem proceeds via a detour through the sign-indefinite world:
it relies on the results recalled in the preliminaries, in particular on Theorem 2.27
and Theorem 2.29.

Proof of Theorem 5.5(i), existence. Let µ P Mă8 be given. The case that µ “ 0 is
trivial. In fact, set

Ept, zq :“ 1 ´ itz, t ą 0.
Then

BpEpt, .qq “ spant1u, }1}2
BpEpt,.qq “

1
t
,

and we see that
C :“

␣

t0u
(

Y
␣

BpEpt, .qq | t ą 0
(

P ub-Ch
and H Ď L2pµq for all H P C.

Assume throughout the following that µ is not the zero measure. Choose κ P N
such that }µ}κ ă 8, and a polynomial p with real coefficients of degree 2κ ` 1
whose leading coefficient is not smaller than }µ}κ. Then the function q :“ Cκrµ, ps

belongs to the class N p8q
ă8 . Let W : pa, bq ˆ C Ñ C2ˆ2 be a matrix family for q

with Hamiltonian H : pa, bq Ñ R2ˆ2 (recall Theorem 2.29). Our candidate for the
required unbounded chain is

C :“
␣

t0u
(

Y
␣

BpEpt, .qq | t P pa, bq
(

,

where Ept, .q is as in item (ii) of Theorem 2.29. Note that Ept, .q is of bounded type
in C` and C´. Fix c P pa, bq. The map χ : ra, cs Ñ DB Y tt0uu defined as

χptq :“
#

BpEpt, .qq if t P pa, cs,

t0u if t “ a,

is continuous, injective, and preserves order. Thus, by Corollary 4.5(ii), we have
␣

t0u
(

Y
␣

BpEpt, .qq | t P pa, cs
(

“ C
`

BpEpc, .qq
˘

.

Let Hc P H1
0,8 be a reparameterization of ´JH|pc,bqJ , i.e., Hcpsq “ ´JHpτpsqqJ

with an appropriate increasing bijection τ : p0,8q Ñ pc, bq. Then
␣

BpEpt, .qq | t P rc, bq
(

“
␣

BpEpc, .qq ˙WHc
ps, .q | s ě 0

(

,

and hence
C“ Φ

`

Epc, .q, Hc

˘

. (5.1)
We use the construction from Theorem 5.2 to compute µC. It holds that

WHc ps, .q “ ´JW pc, .q´1W pτpsq, .qJ,

and hence
qHc

“ lim
sÑ8

“

WHc
ps, .q ‹ 0

‰
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“ ´ JW pc, .q´1 ‹

´

lim
sÑ8

“

W pτpsq, .q ‹ 8
‰

¯

“ ´JW pc, .q´1 ‹ q.

We denote p1, 0qW pc, zq “: pDpzq,´Cpzqq, then

W pc, zq “

ˆ

Dpzq ´Cpzq

´Bpc, zq Apc, zq

˙

, W pc, zq´1 “

ˆ

Apc, zq Cpzq

Bpc, zq Dpzq

˙

.

This leads to

J

ˆ

Apc, zq Bpc, zq

´Bpc, zq Apc, zq

˙

‹ qHc
pzq

“ ´ J

ˆ

Apc, zq Bpc, zq

´Bpc, zq Apc, zq

˙

J

ˆ

Apc, .q Cpzq

Bpc, .q Dpzq

˙

‹ qpzq

“

ˆ

Apc, zq2 `Bpc, zq2 Apc, zqCpzq `Bpc, zqDpzq

0 1

˙

‹ qpzq

“
`

Apc, zq2 `Bpc, zq2˘qpzq `
`

Apc, zqCpzq `Bpc, zqDpzq
˘

“
`

Apc, zq2 `Bpc, zq2˘ ¨ p1 ` z2qκ`1
ż

R

1
t´ z

dµptq

p1 ` t2qκ`1

`

”

`

Apc, zq2 `Bpc, zq2˘ppzq `
`

Apc, zqCpzq `Bpc, zqDpzq
˘

ı

.

Since Apc, .q, Bpc, .q, C,D, p are all real entire functions, and
Apc, tq2 `Bpc, tq2 “ |Epc, tq|2, t P R,

the Stieltjes-Livshits inversion (2.40) formula yields that for α ă β with µCptαuq “

µCptβuq “ 0
ż β

α

|Epc, tq|2 dµCptq “ lim
εÑ0

1
π

ż β

α

Im
„

J
´

Apc,t`iεq Bpc,t`iεq

´Bpc,t`iεq Apc,t`iεq

¯

‹ qHc
pt` iεq

ȷ

dt

“ lim
εÑ0

1
π

ż β

α

Im
„

`

Apc, t` iεq2 `Bpc, t` iεq2˘`1 ` pt` iεq2˘κ`1

¨

ż

R

1
x´ pt` iεq

dµpxq

p1 ` x2qκ`1

ȷ

dt

“

ż β

α

|Epc, tq|2p1 ` t2qκ`1 ¨
dµptq

p1 ` t2qκ`1 “

ż β

α

|Epc, tq|2dµptq.

Since |Epc, tq| ą 0 for all t P R, we conclude that µC “ µ. □

Proof of Theorem 5.5(i), uniqueness. By Remark 5.4 each set ub-Chµ can contain
at most one element C such that all elements of

Ť

C are of bounded type in C`

and C´. □

Our next aim is to prove a continuity property on the level of functions q P N p8q
ă8 .

The assertion stated in Theorem 5.5(ii) will then follow easily.
We use the following notation: Let q P N p8q

ă8 and W : pa, bq ˆ C Ñ C2ˆ2 be a
matrix family for q with Hamiltonian H P Ha,b. For c P pa, bq denote by Hc P H1

0,8

the trace-normalized reparameterization of H|pc,bq. Note here that H|pc,bq is in limit
circle case at c and limit point case at b.

Proposition 5.6. Let κ P N0, pqjqjPJ a net in N p8q

ďκ , and q8 P N p8q

ďκ . Then the
following statements are equivalent.
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(i) limjPJ qj “ q8 locally uniformly on C`.
(ii) There exist matrix families

Wj : paj , bjq ˆ C Ñ C2ˆ2, j P J Y t8u,

for qj with respective Hamiltonians Hj P Haj ,bj , and points cj P paj , bjq, such
that limjPJ Wjpcj , .q “ W8pc8, .q locally uniformly on C and limjPJ Hj,cj

“

H8,c8
in H1

0,8.

Proof.
① The implication “(ii)ñ(i)” is the easy one, and we settle it first. Since Wjpt, zq

and W pt, zq are solutions of the respective equations (2.20), we have

q8 “W8pc8, .q ‹ qH8,c8
“

”

lim
jPJ

Wjpcj , .q
ı

‹

”

lim
jPJ

qHj,cj

ı

“ lim
jPJ

”

Wjpcj , .q ‹ qHj,cj

ı

“ lim
jPJ

qj .

② The essence in the proof of “(i)ñ(ii)” is the following statement, which we are
going to prove in this step.

Let κ P N0, µj P Mďκ, πj P R for j P J Y t8u, assume that πj ě }µj}κ,
limjPJ µj “ µ8 in the w˚-topology in CcpRq˚, and limjPJ πj “ π8. Then there
exist matrix families

Wj : paj , bjq ˆ C Ñ C2ˆ2, j P J Y t8u,

for the functions
qj :“ Cκ

“

µj , πjzp1 ` z2qκ
‰

,

respectively, and cj P paj , bjq, j P J Y t8u, such that
lim
jPJ

Wjpcj , .q “ W8pc8, .q.

Note here that the assumptions on µj , πj ensure that µ8 P Mďκ and π8 ě }µ8}κ,
and hence that q8 is well-defined.

We use induction on κ. Consider the case that κ “ 0. For j P J Y t8u let
Hj P H1

0,8 be the Hamiltonian with qj “ qHj
. Then the fundamental solution

WHj
pt, .q, t ą 0, of Hj is a matrix family for qj with Hamiltonian Hj . By the

Grommer-Hamburger theorem we have limjPJ qj “ q8, and hence limjPJ Hj “ H8.
In particular, limjPJ WHj p1, .q “ WH8

p1, .q.
Assume now that the assertion holds for some κ, and let µj , πj be given as in

the assertion for κ` 1. Then we define µ̃j , π̃j as

dµ̃j :“ dµj

1 ` t2
, π̃j :“ πj ,

and this is data to which our inductive hypothesis applies. We thus obtain matrix
families W̃j : pãj , b̃jq ˆ C Ñ C2ˆ2 for q̃j :“ Cκrµ̃j , π̃jzp1 ` z2qκs, and c̃j P pãj , b̃jq,
such that

lim
jPJ

W̃jpc̃j , .q “ W̃8pc̃8, .q. (5.2)

W.l.o.g. we may thereby assume that b̃j ă 8 (this can always be achieved by a
reparameterization).

We have
qjpzq “ Cκ`1

“

µj , πjzp1 ` z2qκ`1‰pzq
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“ p1 ` z2qCκ

” dµj

1 ` t2
, πjzp1 ` z2qκ

ı

pzq “ p1 ` z2qq̃jpzq,

and invoke [46, Lemma 4.16]. This provides us with a matrix family Wj : paj , bjq ˆ

C Ñ C2ˆ2 for qj . The formulae in the proof of this lemma are explicit, and say
that aj “ ãj , bj ě b̃j , and

Wjpt, zq “

ˆ

1 0
0 1

1`z2

˙

W̃jpt, zq

¨

˝

1 ` z
R̃j ptq

J̃j ptq
´z 1

J̃j ptq

zJ̃jptq
`

1 `
R̃j ptq

2

J̃j ptq2

˘

1 ´ z
R̃j ptq

J̃j ptq

˛

‚, t P paj , b̃jq,

where
R̃jptq “ ´ Re w̃j,21pt, iq

w̃j,22pt, iq
, J̃jptq “ ´ Im w̃j,21pt, iq

w̃j,22pt, iq
.

Note here that J̃jptq ą 0 for all t P pãj , b̃jq since w̃j,21pt, .q ` iw̃j,21pt, .q P HB. The
values of Wjpt, .q on the possible remainder pb̃j , bjq of the domain of definition of
Wj are also determined in [46] but are irrelevant for our purposes.

We see that (5.2) implies that

lim
jPJ

Wjpcj , .q “ W8pc8, .q

where cj :“ c̃j , j P J Y t8u.
③ We deduce the implication “(i)ñ(ii)”. Assume that limjPJ qj “ q8. Write

qj “ Cκrµj , pjs, π0
j :“ pjp0q, πj :“

p2κ`1
j p0q

p2κ` 1q! ,

then
lim
jPJ

µj “ µ8 and lim
jPJ

pj “ p8, lim
jPJ

π0
j “ π0

8, lim
jPJ

πj “ π8.

By what we showed in the previous step, there exist matrix familiesWj for Cκrµj , πjzp1`

z2qκs defined on certain intervals paj , bjq, and corresponding points cj P paj , bjq,
such that

lim
jPJ

Wjpcj , .q “ W8pc8, .q.

We have

qjpzq “ Cκ

“

µj , πjzp1 ` z2qκ
‰

` π0
j `

`

pjpzq ´ π0
j ´ πjzp1 ` z2qκ

˘

,

and by [34, Lemma 10.2] and the computation in the proof of [46, Corollary 5.9]
matrix families for qj can be obtained as

W̃jpt, zq :“
ˆ

1 pjpzq ´ πjzp1 ` z2qκ

0 1

˙

Wjpt, zq

ˆ

1 ´π0
j

0 1

˙

, t P paj , bjq.

We see that
lim
jPJ

W̃jpcj , .q “ W̃8pc8, .q.

By Lemma 2.31 we have

qHj,cj
“ W̃jpcj , .q

´1 ‹ qj ,

and hence limjPJ qHj,cj
“ qH8,c8

. This implies that limjPJ Hj,cj “ H8,c8
.

□
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Proof of Theorem 5.5(ii). We have µj P Mďκ and

π :“ sup
jPJ

}µj}κ ă 8.

Since limjPJ µj “ µ8, it follows that µ8 P Mďκ and }µ8}κ ď π. Set

qjpzq “ Cκ

“

µj , πzp1 ` z2qκ
‰

, j P J Y t8u,

then qj P N p8q
ă8 and limjPJ qj “ q8. According to Proposition 5.6 we find matrix

families Wj : paj , bjq ˆ C Ñ C2ˆ2 for qj with Hamiltonians Hj and corresponding
points cj P paj , bjq, such that

lim
jPJ

Wjpcj , .q “ W8pc8, .q, lim
jPJ

Hj,cj “ H8,c8
.

By the construction of Cpµjq, cf. (5.1), we have

Cpµjq “ ΦpEjpcj , .q, Hj,cj q

where Ejpt, .q :“ wj,22pt, .q ` iwj,21pt, .q. Clearly, limjPJ Ejpcj , .q “ E8pc8, .q, and
Theorem 4.17 implies that Cpµjq ù Cpµ8q. □

There are only few cases where the chain Cpµq corresponding to a measure µ can
be determined explicitly. One of them are measures with power density. For such
measures Cpµq can be described in terms of confluent hypergeometric functions.
Recall:

Mpα, β, zq :“
8
ÿ

n“0

pαqn

pβqn
¨
zn

n! , 0F 1pβ, zq :“
8
ÿ

n“0

1
pβqn

¨
zn

n! ,

where α, z P C and β P Czp´N0q. The symbol p␣qn denotes the rising factorial, i.e.,

pαq0 “ 1, pαqn`1 “ pαqnpα ` nq for n P N0.

The following fact is shown in [22, Corollary 7.6].

Example 5.7. Let β ą 0, pσ`, σ´q P r0,8q2ztp0, 0qu, and let µ be the measure which
is absolutely continuous w.r.t. the Lebesgue measure and has derivative

dµpξq

dξ
“

#

σ`β ¨ ξβ´1 if ξ ą 0,
σ´β ¨ |ξ|β´1 if ξ ă 0.

We define functions A,B by distinguishing two cases.
(i) Assume that σ`, σ´ ą 0. Define

α :“ i

2π log σ´

σ`

`
β ´ 1

2 , κ :“ 1
2

´2Γpβ ` 1q2?
σ`σ´

|Γpα ` 1q|2

¯
1
β

,

Apzq :“ eiκzMpα, β,´2iκzq `Mpα ` 1, β,´2iκzq

2 ,

Bpzq :“ z ¨ eiκzMpα ` 1, β ` 1,´2iκzq.

(ii) Assume that σ` “ 0 or σ´ “ 0. Define

σ :“
#

`σ`

π Γpβ ` 1q2˘
1
β if σ` ą 0,

´
`σ´

π Γpβ ` 1q2˘
1
β if σ´ ą 0,

Apzq :“ 0F 1pβ,´σzq, Bpzq :“ z ¨ 0F 1pβ ` 1,´σzq.
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Now set
Kσpz, wq :“ BpzqApwq ´ApzqBpwq

z ´ w
,

and Kσpa, z, wq :“ aβKσpaz, awq for a ě 0. Then
Cpµq “

␣

HpKσpa, ., .qq | a ě 0
(

.

Remark 5.8. It is an open problem to characterize those measures µ P M for which
there exists a chain C P ub-Chµ, such that all elements of

Ť

C are entire functions
of bounded type in C` and C´. We do not expect an easy answer.
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6. Rescaling limits for measures with regularly varying distribution
function

We apply the theory developed in the previous sections to investigate rescaling
limits of reproducing kernels. Recall the notion of regular variation from [5]. We
will say that h is locally — 1 if for every T ą 0 it holds that inftPp0,T s hptq ą 0 and
suptPp0,T s hptq ă 8.

Definition 6.1. Let H P H0,8 be in lc at 0 and in lp at 8. Recall the kernel
KHpt, z, wq from (2.24), and denote

κptq :“ KHpt, 0, 0q, t ě 0.
Let h : p0,8q Ñ p0,8q be a regularly varying function with positive index, and
assume that h is locally — 1. We say that H has a rescaling limit with rate h, if
the limit

Kpz, wq :“ lim
tÑ8

1
κptq

KH

´

t,
z

hpκptqq
,

w

hpκptqq

¯

(6.1)

exists locally uniformly for pz, wq P C ˆ C and is not constant.

Note that the factor 1
κptq

is chosen such that Kp0, 0q “ 1.
A Hamiltonian H P H0,8 which is in lc at 0 and lp at 8 gives rise to a spectral

measure µH . In the below theorem we relate existence of a rescaling limit of H
with the local behaviour of µH at zero.

Theorem 6.2. Let H P H0,8 be in limit circle case at 0 and in limit point case at
8, and let µH be its spectral measure. Then the following statements are equivalent.
(i) There exists a regularly varying function h with positive index which is locally

— 1, such that H has a rescaling limit with rate h.
(ii) There exists a regularly varying function g with positive index and numbers

σ`, σ´ ě 0 with pσ`, σ´q ‰ p0, 0q, such that
lim

rÑ8
gprqµH

`

p0, 1
r q
˘

“ σ`, lim
rÑ8

gprqµH

`

p´ 1
r , 0q

˘

“ σ´, (6.2)

and µHpt0uq “ 0.
Assume that (i) and (ii) hold. Then the functions h and g are asymptotic inverses
of each other, and the limit kernel in (i) is equal to the kernel Kσp1, z, wq from
Example 5.7 built with the data from (ii), namely σ`, σ´ and β, where β is the
index of g.

To prove this theorem we have to relate the reproducing kernels KHpt, z, wq for
large t and small z, w with the concentration of mass of the spectral measure µH

around zero. This is achieved by relating both with a third object, and this man
in the middle is a family of transforms of the Hamiltonian H.

Definition 6.3. LetH P H0,8 be lc at 0 and lp at 8, and let g : p0,8q Ñ p0,8q be
a function. The we define, for each r ą 0, a weighted rescalingArH : p0,8q Ñ R2ˆ2

of H as follows: write H “
`

h1 h3
h3 h2

˘

and set

pArHqptq :“
˜

gprq

r h1prtq h3prtq

h3prtq r
gprq

h2prtq

¸

, t ą 0.

In the next lemma we provide the properties of this transform which we will use
in the sequel.
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Lemma 6.4. Let H P H0,8 be lc at 0 and lp at 8, and let g : p0,8q Ñ p0,8q.
Moreover, let r ą 0. Then ArH P H0,8, and is lc at 0 and lp at 8. We have

KArHpt, z, wq “
1

gprq
KH

`

rt, z
r ,

w
r

˘

, t P r0,8q,

µArH “ gprqΣr
˚µH

where Σr : R Ñ R is the map ξ ÞÑ rξ and Σr
˚µH is the pushforward of the measure

µH under Σr.

Proof. It is clear that ArH P H0,8 for each r ą 0 and, since

trArHptq ě min
!gprq

r
,

r

gprq

)

¨ trHprtq,

that ArH is lc at 0 and lp at 8. Plugging in the differential equation shows that
the fundamental solution of ArH is

WArHpt, zq “

´

b

gprq

r 0
0

?
r

gprq

¯

WH

`

rt, z
r

˘

´

?
r

gprq
0

0
b

gprq

r

¯

, t ě 0.

A computation yields the asserted formula for the kernel KArHpt, z, wq. Moreover,
we see that

qArHpzq “
gprq

r ¨ qH

`

z
r

˘

,

and the Stieltjes inversion formula implies the assertion about the spectral measure.
□

Combining the above lemma with Example 4.3 we have the following immediate
corollary.

Corollary 6.5. Assume we are in the situation of Lemma 6.4. Then

@r ą 0 : CpµArHq “

!

H
´

1
gprq

KH

`

rt, z
r ,

w
r

˘

¯
ˇ

ˇ

ˇ
t P r0,8q

)

.

We can already establish one implication from Theorem 6.2.

Proof of Theorem 6.2, “(i)ñ(ii)”. Assume that H has the rescaling limit Kpz, wq

with rate h. We proceed in four steps.
① The first step is to show that

lim
tÑ8

κptq “ 8.

Assume towards a contradiction that C :“ suptě0 κptq ă 8; note here that κptq is
nondecreasing. Since h is locally — 1, we have

c´ :“ inf
tą0

hpκptqq ą 0, c` :“ sup
tą0

hpκptqq ă 8.

Choose a sequence ptnqnPN with tn Ñ 8, such that the limit α :“ limnÑ8 hpκptnqq

exists. Let w P C`, then by (2.25) we have
lim
tÑ8

KHpt, z, zq “ 8

uniformly for z P w ¨ r 1
c`
, 1

c´
s. We obtain that

8 “ lim
nÑ8

1
C
KH

´

tn,
w

hpκptnqq
,

w

hpκptnqq

¯

ď lim
nÑ8

1
κptnq

KH

´

tn,
w

hpκptnqq
,

w

hpκptnqq

¯

“ Kp w
α ,

w
α q ă 8,
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and have reached a contradiction.
Since κptq tends to infinity, it holds for every function h̃ : p0,8q Ñ p0,8q with

h̃ „ h that
lim
tÑ8

1
κptq

KH

´

t,
z

h̃pκptqq
,

w

h̃pκptqq

¯

“ Kpz, wq.

By the smooth variation theorem [5, Theorem 1.8.2] we may thus switch to a rate
which is possibly better behaved than h. We use this freedom and assume for the
rest of the proof that h is continuous and has a finite positive limit at 0.
② In this step we pass to the man in the middle. Choose an asymptotic inverse g

of h, and use g to build the transforms ArH. Moreover, denote by β the index of
g. We consider the chains CpµArHq and the function

χ :
"

r0,8q Ñ RK
a ÞÑ H

`

aβKpaz, awq
˘

Note here that Kpz, wq is a positive kernel as limit of positive kernels, and thus
aβKpaz, awq also is a positive kernel.

Our aim is to apply Proposition 4.19. It is clear that χp0q “ t0u and that χ is
continuous. We have aβKpa ¨ 0, a ¨ 0q “ aβ , and since β ą 0 this function is strictly
increasing and tends to 8. We have to produce elements Ha,r P CpµArHq, a, r ą 0,
such that limrÑ8 Ha,r “ χpaq for all a ą 0. Set

rpa, tq :“ h
´κptq

aβ

¯

, T pa, tq :“ t

rpa, tq
,

then

KArpa,tqH

`

T pa, tq, z, w
˘

“
1

gprpa, tqq
KH

´

t ,
z

rpa, tq
,

w

rpa, tq

¯

„
aβ

κptq
KH

ˆ

t,
1

hpκptqq
¨ z

hpκptqq

h
`κptq

aβ

˘

l jh n

Ñza

,
1

hpκptqq
¨ w

hpκptqq

h
`κptq

aβ

˘

l jh n

Ñwa

˙

and we see that

lim
tÑ8

KArpa,tqH

`

T pa, tq, z, w
˘

“ aβKpaz, awq.

It remains to note that t ÞÑ rpa, tq is continuous and limtÑ8 rpa, tq “ 8.
Now Proposition 4.19 implies that

C :“
␣

HpaβKpaz, awqq | a ě 0
(

P ub-Ch, CpµArHq ù C.

We show that ϑC “ 0. Let ξ P R, and assume towards a contradiction that
Kpξ, ξq “ 0. Since χpaq Ďc χp1q for all a P p0, 1q, it follows that

@a P p0, 1s : aβKpaξ, aξq “ Kχpaqpξ, ξq “ 0.

Passing to the limit a Ó 0 yields that Kp0, 0q “ 0, and this is a contradiction.
③ Let σ be the spectral measure of C. In this step we show that σ is absolutely
continuous w.r.t. the Lebesgue measure and that its derivative has the form

dσpξq

dξ
“

#

σ`β ¨ ξβ´1 if ξ ą 0,
σ´β ¨ |ξ|β´1 if ξ ă 0,

(6.3)
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with some σ`, σ´ ě 0 and pσ`, σ´q ‰ p0, 0q. The argument relies on the theory of
homogeneous de Branges spaces developed in [12, 22].

To start with, we show that dimχp1q ą 1. Assume the contrary, then χpaq “

χp1q “ spantKp., 0qu for all a P p0, 1s. In particular, the function Kp z
2 , 0q is a scalar

multiple of Kpz, 0q, say Kp z
2 , 0q “ α ¨ Kpz, 0q. Writing the power series expansion

of Kpz, 0q as

Kpz, 0q “ 1 `

8
ÿ

n“1
γnz

n,

and comparing coefficients of Kpz, 0q and Kp z
2 , 0q yields that α “ 1 and γn “ 0 for

all n. Thus Kpz, 0q is constant equal to 1, and hence all elements of the space χp1q

are constant. We obtain that for all z, w P C
Kpz, wq “ Kp0, wq “ Kpw, 0q “ 1,

i.e., Kpz, wq is constant. This is a contradiction.
Since dimχp1q{χp1q5 ď 1, we have χp1q5 ‰ t0u, and hence there exists a P p0, 1s

such that χp1q5 “ χpaq. We obtain
@b ě 1 : χpaq Ďi χpbq.

By [22, Lemma 2.3], for each b ě 1, the map

F pzq ÞÑ

´1
b

¯

β
2
F
´z

b

¯

restricts to an isometric isomorphism of χpbq onto χp1q and to one of χpaq onto
χp a

b q. It follows that
@b ě 1 : χp a

b q Ďi χp1q.

Now [22, Proposition 5.4] implies that χp1q is homogeneous of order β
2 ´ 1, and by

[22, Theorem 7.2] (together with [22, Theorem 6.2]) the measure σ is of the form
(6.3).
④ It is easy to pass on to the measure µH . By Proposition 5.3(ii), we have
limrÑ8 µArH “ σ in the w˚-topology of CcpRq˚. By the Portmanteau theorem
[3, Theorem 1] this means that

@a, b P R, a ă b : lim
rÑ8

µArHppa, bqq “ σppa, bqq.

Note here that σ has no point masses. By Lemma 6.4 we have
µArHppa, bqq “ gprqµH

``

a
r ,

b
r

˘˘

,

and it follows that
lim

rÑ8
gprqµH

``

0, 1
r

˘˘

“ σ
`

p0, 1q
˘

, lim
rÑ8

gprqµH

``

´ 1
r , 0

˘˘

“ σ
`

p´1, 0q
˘

.

Moreover,
lim sup

rÑ8

gprqµHpt0uq ď lim
rÑ8

gprqµH

``

´ 1
r ,

1
r

˘˘

“ σ
`

p´1, 1q
˘

ă 8,

and since gprq Ñ 8 this implies that µHpt0uq “ 0.
□

The proof of the converse implication “(ii)ñ(i)” in Theorem 6.2 works in essence
by reversing the steps in the above argument.

The first step is to exploit the conditions on µH stated in (ii). We do this by
means of the following lemma (recall here the notation (2.36)).
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Lemma 6.6. Let µ be a positive measure on R with µpt0uq “ 0, let g be regularly
varying with positive index β, and assume the limits (6.2) exist with pσ`, σ´q ‰

p0, 0q. Denote by σ the measure which is absolutely continuous w.r.t. the Lebesgue
measure and has derivative (6.3). Moreover, denote µr :“ gprqΣr

˚µ for r ą 0.
Then

@a, b P R, a ă b : lim
rÑ8

µr

`

pa, bq
˘

“ σ
`

pa, bq
˘

, (6.4)

@κ P N0, κ` 1 ą
β

2 : lim
rÑ8

}µr}κ “ }σ}κ. (6.5)

Proof. The relation (6.4) is easy to see. Let b ą 0 and compute

lim
rÑ8

µr

`

p0, bq
˘

“ lim
rÑ8

gprqµ
``

0, b
r

˘˘

“ lim
rÑ8

„

g
`

r
b

˘

µ
``

0, b
r

˘˘

¨
gprq

gp r
b q

ȷ

“ σ`b
β “ σ

`

p0, bq
˘

.

In the same way we obtain
lim

rÑ8
µr

`

p´b, 0q
˘

“ σ
`

p´b, 0q
˘

.

Since µrpt0uq “ 0, the relation (6.4) follows.
The proof of (6.5) is more involved; it relies on Karamata’s theorems about

asymptotics of integrals and Stieltjes transforms of regularly varying functions.
First, we rewrite the norms }µr}κ to a more convenient form. To this end let
Θ : Rzt0u Ñ p0,8q be the function Θpξq :“ 1

ξ2 , and let ν be the pushforward
ν :“ Θ˚µ. Then

}µr}κ “

ż

R

dµrpξq

p1 ` ξ2qκ`1 “ gprq

ż

Rzt0u

dµpξq

p1 ` r2ξ2qκ`1

“ gprq

ż

p0,8q

dνpξq

p1 ` r2

ξ qκ`1
“ gprq

ż

p0,8q

ξκ`1dνpξq

pξ ` r2qκ`1 .

In order to understand the behaviour of }µr}κ, we thus have to analyze the measure
ξκ`1dνpξq. Note first that

ż

p0,1q

ξκ`1dνpξq “

ż

p1,8q

dµpξq

ξ2pκ`1q
ă 8, ν

`

p1,8q
˘

“ µ
`

p0, 1q
˘

ă 8.

Now consider the function V : r1,8q Ñ R defined as V ptq :“ νppt,8qq. This
function is nonincreasing and nonnegative, in particular of bounded variation. We
have

V ptq “ µ
´´

´
1

?
t
,

1
?
t

¯¯

„
σ` ` σ´

gp
?
tq

,

and see that V is regularly varying with index ´
β
2 . We apply [5, Theorem 1.6.4]

to obtain (this integral is understood in Riemann-Stieltjes sense)
ż t

1
sκ`1dV psq „

´
β
2

κ` 1 ´
β
2

¨ tκ`1V ptq „
´

β
2 pσ` ` σ´q

κ` 1 ´
β
2

¨
tκ`1

gp
?
tq
.

Consider the function U : r0,8q Ñ R defined as

Uptq :“
ż

p0,tq

ξκ`1dνpξq.
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Then

Uptq “

ż

p0,1q

ξκ`1dνpξq ´

ż t

1
sκ`1dV psq „

β
2 pσ` ` σ´q

κ` 1 ´
β
2

¨
tκ`1

gp
?
tq
.

We apply [5, Theorem 1.7.4] to obtain
ż

p0,8q

ξκ`1dνpξq

pξ ` r2qκ`1 „
Γp

β
2 qΓpκ` 2 ´ σq

Γpκ` 1q
¨

1
pr2qκ`1Upr2q

„
Γp

β
2 qΓpκ` 2 ´ σq

Γpκ` 1q

β
2 pσ` ` σ´q

κ` 1 ´
β
2

¨
1

gprq
,

and thus (here B is Euler’s Beta-function)

lim
rÑ8

}µr}κ “ B
`

β
2 , κ` 1 ´

β
2
˘

¨
β

2 pσ` ` σ´q.

Making a change of variable, we evaluate
ż 8

0

ξβ´1dξ

p1 ` ξ2qκ`1 “
1
2B

`

β
2 , κ` 1 ´

β
2
˘

,

and this establishes (6.5). □

Proof of Theorem 6.2, “(ii)ñ(i)”. Assume that µHpt0uq “ 0 and that the limits
(6.2) exist where g is regularly varying with positive index. We proceed in three
steps.
① The above lemma applied with g and µH justifies an application of Theo-
rem 5.5(ii), from which we obtain that Cpµrq ù Cpσq. The chain Cpσq is known
explicitly from Example 5.7, and we use the notationKσpa, z, wq from this example.
Moreover, recall that the chains CpµArHq are known from Corollary 6.5.

The definition of convergence of chains yields that there exists t : p0,8q ˆ

r1,8q Ñ p0,8q such that

@a ą 0 : lim
rÑ8

1
gprq

KH

`

T pa, rqr, z
r ,

w
r

˘

“ Kσpa, z, wq. (6.6)

② In this step we show that
lim
tÑ8

κptq “ 8.

Assume towards a contradiction that C :“ suptě0 κptq ă 8. Since gprq Ñ 8, we
obtain

1 “ Kσp1, 0, 0q “ lim
rÑ8

1
gprq

KHpT p1, rqr, 0, 0q “ 0,

a contradiction.
③ Let h be an asymptotic inverse of g. Our aim is to show that

lim
tÑ8

1
κptq

KH

´

t,
z

hpκptqq
,

w

hpκptqq

¯

“ Kσp1, z, wq. (6.7)

Set rptq :“ hpκptqq. Then limtÑ8 rptq “ 8, and hence gprptqq „ κptq and

@a ą 0 : lim
tÑ8

1
κptq

KH

´

T pa, rptqqrptq, z
rptq

, w
rptq

¯

“ Kσpa, z, wq.
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The function κptq is nondecreasing and the function a ÞÑ Kσpa, 0, 0q is strictly
increasing. Hence, the above limit relation implies that

@a` ą 1 : lim inf
tÑ8

T pa, rptqqrptq ą t,

@a´ P p0, 1q : lim sup
tÑ8

T pa, rptqqrptq ă t.

From the first relation it follows that (here “ď” refers to the order of positive
kernels, cf. (2.3))

1
κptq

KH

`

t,
z

rptq
,
w

rptq

˘

ď
1
κptq

KH

`

T p2, rptqqrptq, z
rptq

, w
rptq

˘

for all sufficiently large t, and this shows that
! 1
κptq

KH

´

t,
z

rptq
,
w

rptq

¯
ˇ

ˇ

ˇ
t ě 1

)

is a normal family. In order to show (6.7) it is thus enough to evaluate the limit of
convergent subsequences.

Assume that ptnqnPN is a sequence with tn Ñ 8 such that the limit

Kpz, wq :“ lim
nÑ8

1
κptnq

KH

´

tn,
z

rptnq
,
w

rptnq

¯

exists. Let a` ą 1, a´ P p0, 1q, then for all sufficiently large n we have
1

κptnq
KH

´

T pa´, rptnqqrptnq,
z

rptnq
,
w

rptnq

¯

ď
1

κptnq
KH

´

tn,
z

rptnq
,
w

rptnq

¯

ď
1

κptnq
KH

´

T pa`, rptnqqrptnq,
z

rptnq
,
w

rptnq

¯

Passing to the limit n Ñ 8 yields
Kσpa´, z, wq ď Kpz, wq ď Kσpa`, z, wq,

and letting a´ Ò 1 and a` Ó 1 in this relation gives Kpz, wq “ Kσp1, z, wq.
□

Proof of Theorem 1.11. Since W pt, ξq P SLp2,Rq, the family W pt, ξq´1W pt, ξ ` zq

is also a J-decreasing family and it corresponds to shifted kernels K1pt, z, wq “

Kpt, ξ ` z, ξ ` wq. Thus, we can assume without loss of generality that ξ “ 0 and
that W pt, ξq “ I for all t.

Since W is J-decreasing, the corresponding family of de Branges spaces Hptq “

Bpw22pt, ¨q ` iw21pt, ¨qq is contained in a chain C, and the map H : ra, bq Ñ C is
monotone increasing. Denote by H the corresponding trace-normalized Hamilton-
ian so that

W pt, zq “ WHpγptq, 0, zq.

If W pt1, ¨q “ W pt2, ¨q for some t1 ă t2, then γpt1q “ γpt2q. Since W is continuous,
so is γ. Since W is limit point at 8, H P H0,8 and γptq Ñ 8 as t Ñ 8. Thus, the
rescaling limit

lim
tÑb

1
KHpγptq, 0, 0q

KH

ˆ

γptq,
z

hpKHpγptq, 0, 0qq
,

w

hpKHpγptq, 0, 0qq

˙

exists if and only if the rescaling limit (6.1) exists, and in this case their values are
equal. Now the result follows directly from Theorem 6.2. □
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7. Two conventions and Schrödinger operators

7.1. Two conventions. In this text, we used the convention prevalent in canonical
systems [13], that for a J-decreasing family of transfer matricesW px, zq in the limit
point case, its Weyl function is described by

qpzq “ lim
xÑ8

W px, zq ‹ τ

(independent of τ P C`). One way to obtain such transfer matrices is as solutions
of

BxW px, zqJ “ zW px, zqHpxq, (7.1)
withH a Hamiltonian. Another convention, more common in mathematical physics,
is to work with a J-increasing family of transfer matrices T px, zq and associate with
it a Weyl function by

mpzq “ lim
xÑ8

T px, zq´1 ‹ τ.

To switch between the two conventions while preserving the Weyl function and the
measure, we will use

W px, zq “ T px, zq´1. (7.2)

Remark 7.1. One way to obtain a J-increasing family is as a solution of
JBxT px, zq “ ´zHpxqT px, zq (7.3)

with a Hamiltonian H, but we warn the reader that this is not compatible with
(7.1), (7.2). Instead, if T is defined by (7.1), (7.2), we have T´1 “ JTJJ´1 since
detT “ 1; therefore T satisfies

JBxT px, zq “ ´zJHpxqJJT px, zq.

Thus, to switch from one convention to the other while preserving theWeyl function,
the Hamiltonian H should be replaced by JHJJ. This also explains differences
between Hamiltonians written in this paper and those in [21].

7.2. Schrödinger operators. Consider Schrödinger operators ´d2{dx2 ` V pxq.
We allow the general setting of a locally H´1 potential V “ σ1 ` τ , where σ P

L2
locpra, bqq, τ P L1

locpra, bqq [29, 30, 60]; the most often studied case V P L1
loc corre-

sponds to σ “ 0 [59, 80]. Note that we impose the local integrability assumptions
also at the endpoint a, i.e., it is a regular endpoint. The corresponding transfer
matrices are

BxT px, zq “ Rβ

ˆ

´σpxq τpxq ´ σpxq2 ´ z
1 σpxq

˙

R˚
βT px, zq, T pa, zq “ I,

where
Rβ “

ˆ

cosβ ´ sin β
sin β cosβ

˙

.

Proof of Theorem 1.12. This is a direct consequence of Theorem 1.11 applied to
the family W px, zq “ T px, zq´1. □
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8. Orthogonal polynomials and subexponential growth

In this section, we explain the specializations of our work to orthogonal poly-
nomials on the real line and on the unit circle. We recall how the study of these
systems is reduced to the canonical system setting, and how the sequence of CD
kernels associated to orthogonal polynomials is embedded in a continuous family
of kernels. Beyond this, we study the distinction between the scaling limit of the
sequence of kernels and the scaling limit of the continuous family, and the role of
the subexponential growth of orthogonal polynomials.

8.1. Orthogonal polynomials on the real line. Let µ be a measure on R such
that suppµ has infinite cardinality, and µ has finite moments corresponding to a
determinate moment problem. Since shifting µ by ξ merely shifts the CD kernels by
ξ, there is no loss of generality in discussing the canonical system correspondence
in its usual notation, normalized at ξ “ 0. The Weyl function

mpzq “

ż 1
λ´ z

dµpλq (8.1)

of the measure µ corresponds to the canonical system with Hamiltonian

HpLq “

ˆ

qnp0q2 ´pnp0qqnp0q

´pnp0qqnp0q pnp0q2

˙

, n ď L ă n` 1.

Since pjHq2 “ 0 and H is constant on rn, n`1q, the family of kernels corresponding
to this canonical system is known to be piecewise linear (1.4), and rn, n ` 1s are
indivisible intervals. Thus, most of Theorem 1.6 will be an immediate consequence
of Theorem 1.11, and it remains to explain how the scaling limit of the continuous
family of kernels is related to the scaling limit of the sequence of CD kernels. We
start with a preliminary lemma:

Lemma 8.1. Let h be regularly varying at 8 with index ρ ą 0 and assume that
an, bn are sequences tending to 8 with lim an

bn
“ c P r0,8q. Then

lim
nÑ8

hpaκ
nb

1´κ
n q

hpbnq
“ cρκ

uniformly in κ P r0, 1s.

Proof. Define cn “ an{bn and note that cn Ñ c. For n sufficiently large, cn P

p0, c` 1s. Fix ε ą 0. Then by the uniform convergence theorem [5, Theorem 1.5.2],
there exists n0 so that for n ě n0

ˇ

ˇ

ˇ

ˇ

hpbnc
κ
nq

hpbnq
´ cρκ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

hpbnc
κ
nq

hpbnq
´ cρκ

n

ˇ

ˇ

ˇ

ˇ

` |cρκ
n ´ cρκ| ă 2ε. □

Lemma 8.2. Let Kpn, z, wq be the CD kernels corresponding to a sequence of
orthogonal polynomials on the real line and Kpt, z, wq the corresponding linear in-
terpolation (1.4). Assume that (1.12) holds, and h is regularly varying of index
ρ ą 0 and K8 ı 1. Then (1.8) holds.

Proof. Without loss of generality we assume ξ “ 0 and abbreviate

Kpn, 0, 0q “ an.
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The proof is by contradiction. If (1.8) fails, there exists a subsequence nl Ñ 8 as
l Ñ 8, along which

anl

a1`nl

Ñ c

for some c P r0, 1q. By linear interpolation, for 0 ď s ď 1,

Kpn` s, z, wq “ sKpn` 1, z, wq ` p1 ´ sqKpn, z, wq. (8.2)

Let 0 ă s ă 1 and denote x “ ps` cp1 ´ sqqρ. For the sequence tl “ nl ` s, we get
a1`nl

Kptl, 0, 0q
“

a1`nl

a1`nl
s` anl

p1 ´ sq
Ñ

1
s` cp1 ´ sq

“ x´1{ρ

and
anl

Kptl, 0, 0q
“

anl

a1`nl

a1`nl

Kptl, 0, 0q
Ñ

c

s` cp1 ´ sq
“ cx´1{ρ.

We write the linear interpolation (8.2) as
Kptl,

z
hpKptl,0,0qq

, w
hpKptl,0,0qq

q

Kptl, 0, 0q

“
Kp1 ` nl,

z
hpa1`nl

q

hpa1`nl
q

hpKptl,0,0qq
, w
hpa1`nl

q

hpa1`nl
q

hpKptl,0,0qq
q

a1`nl

a1`nl

Kptl, 0, 0q
s

`
Kpnl,

z
hpanl

q

hpanl
q

hpKptl,0,0qq
, w
hpanl

q

hpanl
q

hpKptl,0,0qq
q

anl

anl

Kptl, 0, 0q
p1 ´ sq.

By Lemma 8.1 and the assumption (1.12), taking l Ñ 8 gives

K8pz, wq “ K8

`

zx´1, wx´1˘x´1{ρs`K8

`

zcρx´1, wcρx´1˘x´1{ρcp1 ´ sq.

To see the consequences of such a relation, we first rescale pz, wq by a factor of x
to rewrite as

K8pxz, xwq “ K8 pz, wqx´1{ρs`K8 pcρz, cρwqx´1{ρcp1 ´ sq.

Expressing s in terms of x P pcρ, 1q, we rewrite this relation as

K8pxz, xwq “
1 ´ cx´1{ρ

1 ´ c
K8pz, wq `

cx´1{ρ ´ c

1 ´ c
K8pcρz, cρwq.

Viewing this as a function of x with fixed z, w P C, the function K8pxz, xwq is of
the form A`Bx´1{ρ on the part tpxz, xwq | x P pcρ, 1qu of the ray tprz, rwq | r ą 0u.
Replacing pz, wq by px0z, x0wq with arbitrary x0 ą 0 we cover the whole ray. On
overlapping intervals the constants must match. Since K8p0, 0q “ 1 and ρ ą 0,
by taking x Ñ 0 we see that K8pxz, xwq ” 1 on any ray, so K8 ” 1, which is a
contradiction. □

Proof of Theorem 1.6. (i) ðñ (ii) ðñ (iii) follows immediately from Theorem 1.11.
(iii) ùñ (iv): this follows from the previous lemma.
(iv) ùñ (iii): The assumption (1.8) implies by Lemma 8.1 that

lim
nÑ8

hpKpn` s, ξ, ξqq

hpKpn, ξ, ξqq
“ 1, (8.3)

uniformly in s P r0, 1s.
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The condition (1.13) with index shifted by 1 reads

lim
nÑ8

K
´

n` 1, ξ ` z
hpKpn`1,ξ,ξqq

, ξ ` w
hpKpn`1,ξ,ξqq

¯

Kpn` 1, ξ, ξq
“ K8pz, wq. (8.4)

Since convergence in (8.4) is uniform on compacts, we can combine it inside the
parentheses with hpKpn`1, ξ, ξqq{hpKpn, ξ, ξqq Ñ 1 and finally multiply by Kpn`

1, ξ, ξq{Kpn, ξ, ξq Ñ 1 to conclude

lim
nÑ8

K
´

n` 1, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“ K8pz, wq. (8.5)

For t “ n ` s with 0 ď s ď 1, using (1.4) and computing a convex combination of
limits (1.13) and (8.5), it follows that

lim
nÑ8

K
´

n` s, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“ K8pz, wq

uniformly in s P r0, 1s. Combining this with (8.3) inside the parentheses and mul-
tiplying by Kpn` s, ξ, ξq{Kpn, ξ, ξq Ñ 1 shows

lim
nÑ8

K
´

n` s, ξ ` z
hpKpn`s,ξ,ξqq

, ξ ` w
hpKpn`s,ξ,ξqq

¯

Kpn` s, ξ, ξq
“ K8pz, wq

uniformly in s P r0, 1s, which is equivalent to (1.12). □

Proof of Theorem 1.3. This is merely the specialization of Theorem 1.6 to the spe-
cial case σ´ “ σ` “ β “ 1. □

Proof of Theorem 1.1. This is the specialization of Theorem 1.6 to the special case
gprq “ ηr, β “ 1. □

8.2. Orthogonal polynomials on the unit circle. Let ν be a probability mea-
sure on BD such that supp ν is not a finite set, φn its orthogonal polynomials, and
kn the CD kernels (1.23). In terms of reflected polynomials φ˚

npζq “ ζnφnp1{ζq,
they satisfy the CD formula

knpζ, ωq “
φ˚

npζqφ˚
npωq ´ φnpζqφnpωq

1 ´ ζω
.

A way to relate orthogonal polynomials on the unit circle to an energy-periodic
canonical system was described in [21, Section 6]. At the level of functions, it
relates OPUC with Carathéodory function

F pζq “

ż

BD

eiθ ` ζ

eiθ ´ ζ
dνpeiθq, ζ P D (8.6)

to the canonical system with the 2π-periodic Weyl m-function
mpzq “ iF peizq, z P C`. (8.7)

We provide further information about this correspondence in the following lemma.
Since rotating the measure by ξ as

ż

BD
fpζq dν̃pζq “

ż

BD
fpe´iξζq dνpζq, @f P CpBDq
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replaces orthogonal polynomials φn by e´inξφnpeiξζq, it replaces kernels knpζ, ωq by
knpeiξζ, eiξωq; thus writing down the canonical system normalized at ξ “ 0 suffices
to study scaling limits at any point eiξ P BD.

Lemma 8.3. Let ν be a probability measure on BD such that supp ν is not a finite
set, and let F be its Carathéodory function (8.6). Then, the canonical system with
Weyl function (8.7) has the following properties:
(i) It corresponds to the measure µ on R which is 2π-periodic in the sense that

µpBq “ µp2π `Bq for every Borel set B Ă R, and
µpBq “ νpteix | x P Buq

for all Borel sets B Ă r0, 2πq.
(ii) It corresponds to the piecewise constant Hamiltonian

Hpxq “

ˆ

|ψnp1q|2 Impψnp1qφnp1qq

Impψnp1qφnp1qq |φnp1q|2

˙

, n ď x ă n` 1,

where ψn denote the second kind polynomials. Note that pjHq2 ‰ 0.
(iii) It has the family of reproducing kernels given for n P N, s P r0, 1s by

Kpn`s, z, wq “
e´inpz´wq{2

2ipz ´ wq

”

e´ispz´wq{2φ˚
npeizqφ˚

npeiwq ´ eispz´wq{2φnpeizqφnpeiwq

ı

.

(8.8)

Proof. (i) follows by Stieltjes inversion from (8.7).
(ii) Orthogonal polynomials satisfy the Szegő recursion, expressed by the Szegő

transfer matrices

Sn`1pζq “ Apαn, ζqSnpζq, S0pζq “ I, Apα, ζq “
1

a

1 ´ |α|2

ˆ

ζ ´α
´αζ 1

˙

.

The derivation in [21, Section 6], expressed in the conventions of this paper, shows
that this corresponds to the monotonic family of transfer matrices

W pn, zq “ e´inz{2C´1j1Snpeizq´1j1C

where C “ 1
1`i

ˆ

1 ´i
1 i

˙

and j1 “

ˆ

0 1
1 0

˙

, and that after the gauge change

W pn, zq “ Mpn, zqMpn, 0q´1, it obeys
W pn` 1, zq “ W pn, zqMpn, 0qezJ{2Mpn, 0q´1

and therefore is the transfer matrix associated with the Hamiltonian

Hpxq “
1
2J

´1pMpn, 0q˚q´1Mpn, 0q´1J “
1
2Mpn, 0qMpn, 0q˚.

(iii) Let s P r0, 1s. Since H is constant on rn, n` ss, solving (7.1) gives
W pn` s, zq “ W pn, zqe´szHJ “ W pn, zqMpn, 0qeszJ{2Mpn, 0q´1

from which a direct calculation gives (8.8). □

Note that the formula (8.8) can be used in two ways to evaluate the kernel with
an integer index, by using s “ 1 or by using s “ 0 with n shifted by 1; compatibility
of the two answers can be verified by the property of Szegő transfer matrices

Apα, ωq˚

ˆ

´1 0
0 1

˙

Apα, ζq “

ˆ

ω 0
0 1

˙˚ ˆ

´1 0
0 1

˙ˆ

ζ 0
0 1

˙

.
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The intervals rn, n` 1s have constant Hamiltonians, but they are not indivisible
intervals; this is a qualitative difference compared to OPRL, and it affects the next
step. When the kernel at n ` s is expressed as a linear combination the kernels at
n, n` 1, the formula is different from the OPRL case:

Corollary 8.4. The canonical system kernels (8.8) associated to OPUC satisfy

Kpn` s, z, wq “
sinpp1 ´ sqpz ´ wq{2q

sinppz ´ wq{2q
Kpn, z, wq `

sinpspz ´ wq{2q

sinppz ´ wq{2q
Kpn` 1, z, wq

(8.9)
for s P r0, 1s.

Proof. The equation (8.8) expresses the three kernels at n ` s, n, n ` 1 as linear
combinations of the two functions φnpeizqφnpeiwq, φ˚

npeizqφ˚
npeiwq, so the proof of

(8.9) is a linear algebra calculation. □

Lemma 8.5. Assume that the canonical system kernels (8.8) associated to OPUC
satisfy

lim
tÑ8

K
´

t, ξ ` z
hpKpt,ξ,ξqq

, ξ ` w
hpKpt,ξ,ξqq

¯

Kpt, ξ, ξq
“ K8pz, wq, (8.10)

for some h regularly varying of index ρ ą 0 and K8 ı 1. Then

lim
nÑ8

Kpn` 1, ξ, ξq

Kpn, ξ, ξq
“ 1.

Proof. Without loss of generality we take ξ “ 0. Imitating the proof of Lemma 8.2,
we get to

Kptl,
z

hpkptl,0,0qq
, w
hpKptl,0,0qq

q

Kptl, 0, 0q

“
Kp1 ` nl,

z
hpa1`nl

q

hpa1`nl
q

hpKptl,0,0qq
, w
hpa1`nl

q

hpa1`nl
q

hpKptl,0,0qq
q

a1`nl

a1`nl

Kptl, 0, 0q

sin
´

spz´wq

2hpKptl,0,0qq

¯

sin
´

z´w
2hpKptl,0,0qq

¯

`
Kpnl,

z
hpanl

q

hpanl
q

hpKptl,0,0qq
, w
hpanl

q

hpanl
q

hpKptl,0,0qq
q

anl

anl

Kptl, 0, 0q

sin
´

p1´sqpz´wq

2hpKptl,0,0qq

¯

sin
´

z´w
2hpKptl,0,0qq

¯ .

Since hpxq Ñ 8 as x Ñ 8 (see [5, Prop. 1.5.1]), taking l Ñ 8 gives

K8pz, wq “ K8

`

zx´1, wx´1˘x´1{ρs`K8

`

zcρx´1, wcρx´1˘x´1{ρcp1 ´ sq.

Remarkably, the different interpolation of kernels leads to the same functional
equation for the limit kernel as in OPRL, so the rest of the proof follows as in
Lemma 8.2. □

Proof of Theorem 1.13. After rotating the measure so that ξ “ 0 and passing to
the canonical system, Theorem 1.11 implies the equivalence of (i), (ii), and (8.10),
with K8 ı 1 and h regularly varying with index ρ ą 0.

By applying Lemma 8.5, we conclude that (8.10) implies (iii); note the connection
between the reproducing kernels and CD kernels given by (8.8).
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Conversely, if (iii) holds, reformulating it in terms of reproducing kernels gives
Kpn` 1, ξ, ξq{Kpn, ξ, ξq Ñ 1 as n Ñ 8 and

lim
nÑ8

K
´

n, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“ K8pz, wq.

As in the proof of Theorem 1.6, this implies

lim
nÑ8

K
´

n` 1, ξ ` z
hpKpn,ξ,ξqq

, ξ ` w
hpKpn,ξ,ξqq

¯

Kpn, ξ, ξq
“ K8pz, wq.

Using the interpolation formula (8.9) and

lim
nÑ8

sin
´

s z´w
2hpKpn,ξ,ξqq

¯

sin
´

z´w
2hpKpn,ξ,ξqq

¯ “ s,

this shows

lim
nÑ8

K
´

n` s, ξ ` z
hpKpn`s,ξ,ξqq

, ξ ` w
hpKpn`s,ξ,ξqq

¯

Kpn` s, ξ, ξq
“ K8pz, wq

uniformly in s P r0, 1s, which is equivalent to (8.10). □
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9. Bulk universality and spectral type

In this section, we explore the interplay of bulk universality and spectral type of
µ through a few brief remarks.

Historically, bulk universality (sine kernel asymptotics) was proved under con-
ditions which included a continuity or Lebesgue point condition for the Radon–
Nikodym derivative dµpξq{dξ at the point, with a positive value at ξ. For this
reason, bulk universality was closely associated with the absolutely continuous part
of µ. Our local condition (1.5) on µ makes it apparent that bulk universality at a
single point can occur even for a pure point measure:

Lemma 9.1. Let

µ “

8
ÿ

j“1

1
jpj ` 1q

pδ1{j ` δ´1{jq.

Then µpr0,˘ϵqq{ϵ Ñ 1 as ϵ Ñ 0. In particular, the sine kernel asymptotics (1.6)
holds at ξ “ 0 with η “ 1.

Proof. For 1
n`1 ă ϵ ď 1

n , µpr0, ϵqq “
ř8

j“n`1
1

jpj`1q
“ 1

n`1 so

ϵ´1

ϵ´1 ` 1 ď
µpr0, ϵqq

ϵ
ă 1

and therefore µpr0, ϵqq{ϵ Ñ 1 as ϵ Ñ 0. Analogously, µpp´ϵ, 0qq{ϵ Ñ 1 as ϵ Ñ 0. By
Theorem 1.1, (1.6) holds at ξ “ 0 with η “ 1. □

Nonetheless, bulk universality on some set of energies implies that the measure
is 1-dimensional there:

Theorem 9.2. If bulk universality holds on some set A in the sense that for every
ξ P A, the kernels have scaling limit (1.10) with regularly varying scaling, then µ is
1-dimensional on A in the sense that χA dµ is hα-continuous for every α ă 1; hα

denotes the α-dimensional Hausdorff measure.

Proof. By Theorem 1.3, for every ξ P A, the limit
lim

rÑ8
gprqµ

``

ξ ´ 1
r , ξ ` 1

r

˘˘

is nonzero, and g is regularly varying with index 1. In particular, for every α ă 1,
gprqr´α Ñ 8, so

lim
rÑ8

rαµ
``

ξ ´ 1
r , ξ ` 1

r

˘˘

“ 8.

This is interpreted as an upper α-derivative with respect to Hausdorff measure hα.
By Rogers–Taylor [72, 73] (see also [50], [59, Section 6.3]), on the set Sα Ą A where

lim sup
rÑ8

rαµ
``

ξ ´ 1
r , ξ ` 1

r

˘˘

“ 8,

χSα
dµ is continuous with respect to hα. □

In the remainder of this section, we discuss sparse decaying Jacobi matrices. We
call a Jacobi matrix sparse if there exists a sequence Nj with Nj`1{Nj Ñ 8 such
that an “ 1, bn “ 0 for all n R tNj | j P N0u. We call it decaying if an Ñ 1, bn Ñ 0
as n Ñ 8, since it is then a decaying perturbation of the free Jacobi matrix. The
spectral type of a sparse decaying Jacobi matrix on its essential spectrum r´2, 2s

is completely understood [41, 66]: it has pure a.c. spectrum on r´2, 2s if it is a
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Hilbert–Schmidt perturbation of the free Jacobi matrix, and pure singular spectrum
on r´2, 2s otherwise.

The first examples of bulk universality without a.c. spectrum were found within
this class: for a fixed decaying sequence pvjq8

j“1 R ℓ2, Breuer [7] proved that
there exist functions ÑkpN1, . . . , Nkq such that with the recursive choice Nk`1 “

ÑkpN1, . . . , Nkq and with an ” 1, bNj
“ vj for all j and bn “ 0 otherwise, the sine

kernel asymptotics

lim
nÑ8

Kpn, ξ ` z
n , ξ ` w

n q

Kpn, ξ, ξq
“

sinpp4 ´ ξ2q´1{2pz ´ wqq

p4 ´ ξ2q´1{2pz ´ wq
(9.1)

hold for every ξ P p´2, 2q. Note the explicit factor of n in the scaling limit (9.1), as
opposed to a regularly varying function of Kpn, ξ, ξq.

Our first remark is that Breuer’s examples are within the scope of this paper:

Lemma 9.3. For every sparse decaying Jacobi matrix and every ξ P p´2, 2q, the
function Kpt, ξ, ξq is a regularly varying function of t with index 1 and

Kpt, ξ, ξq „ 2tpnpξq2 ´ ξanpnpξqpn´1pξq ` a2
npn´1pξq2

4 ´ ξ2 , n “ ttu, t Ñ 8.

Proof. Denote θ “ arccospξ{2q and diagonalize
ˆ

2 cos θ ´1
1 0

˙

“ U

ˆ

eiθ 0
0 e´iθ

˙

U´1, U “

ˆ

eiθ e´iθ

1 1

˙

.

Introduce vectors An by

U´1
ˆ

pnpξq

anpn´1pξq

˙

“

ˆ

eipn´1qθ 0
0 e´ipn´1qθ

˙

An.

Then the Jacobi recursion rewrites as

An “

ˆ

e´ipn´1qθ 0
0 eipn´1qθ

˙

U´1
ˆ

ξ´bn

an
´ 1

an

an 0

˙

U

ˆ

eipn´2qθ 0
0 e´ipn´2qθ

˙

An´1.

In particular, An is constant on Nj ď n ă Nj`1. This implies constancy of

∥An∥2 “ 2pnpξq2 ´ ξanpnpξqpn´1pξq ` a2
npn´1pξq2

4 ´ ξ2

on the same intervals. Moreover, since an Ñ 1 and bn Ñ 0, ∥An∥{∥An´1∥ Ñ 1 as
n Ñ 8.

Consider the function f defined by fptq “ ∥An∥2 for n ď t ă n ` 1. For every
λ ą 1, for large enough n, there is at most one jump in the value of ∥An∥2 between
t and λt, so fpλtq{fptq Ñ 1 as x Ñ `8. By Karamata’s theorem [39, 40] (see also
[5, Thm 1.5.11]), the function gptq “

şt

0 fpsq ds is regularly varying with index 1
and gptq „ tfptq. Meanwhile,

pnpξq2 “ ∥An∥2 ´ 2 Re
´

e2inθpAnq1pAnq2

¯

and partial sums of the oscillatory part are bounded by∣∣∣∣∣ t
ÿ

n“s`1
e2inθ

∣∣∣∣∣ ď
2

|1 ´ e2iθ|
“

2
a

4 ´ ξ2
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so for integers s, t with Nj ď s ă t ď Nj`1,∣∣Kpt, ξ, ξq ´Kps, ξ, ξq ´ pt´ sq∥ANj ∥2∣∣ ď
2

a

4 ´ ξ2
∥Aj∥2.

Since the expression in the absolute value is piecewise linear in s, t P rNj , Nj`1s and
the inequality holds at endpoints of the linear parts, it holds for all s, t P rNj , Nj`1s.
By telescoping,

|Kpt, ξ, ξq ´ gptq| ď
2

a

4 ´ ξ2

ÿ

j:Nj ďt

∥Aj∥2. (9.2)

The limit
lim

jÑ8

∥Aj`1∥2

∥Aj∥2pNj ´Nj´1q
“ 0

implies by the Stolz–Cesàro theorem that
řn

j“1∥Aj∥2{gpNnq Ñ 0 as n Ñ 8, and
by monotonicity of g that

ř

j:Nj ďt∥Aj∥2{gptq Ñ 0 as t Ñ 8. Thus, (9.2) implies
Kpt, ξ, ξq „ gptq. □

Combining this with our Theorem 1.3 gives very precise asymptotic behavior of
the spectral measure on intervals, for Jacobi matrices in Breuer’s class:

Corollary 9.4. For every ξ P p´2, 2q, for any decaying sparse Jacobi matrix for
which (9.1) holds,

lim
nÑ8

gξpnqµ
``

ξ ´ 1
n , ξ

˘˘

“ lim
nÑ8

gξpnqµ
`“

ξ, ξ ` 1
n

˘˘

“ 1

where
gξpnq “

2πn
a

4 ´ ξ2

`

pnpξq2 ´ ξanpnpξqpn´1pξq ` a2
npn´1pξq2˘ .

Proof. The function g from the previous proof is continuous and strictly increas-
ing, so Lemma 9.3 can be restated in the form t „ g´1pKpt, ξ, ξqq. Thus, Theo-
rem 1.3(iii) holds with h “ g´1, and this implies Theorem 1.3(i), that is,

lim
tÑ8

Kpt, ξ, ξqµ

ˆˆ

ξ ´
π
?

4´ξ2

t , ξ

˙˙

“ lim
tÑ8

Kpt, ξ, ξqµ

ˆ„

ξ, ξ `
π
?

4´ξ2

t

˙˙

“ 1.

Applying this to the sequence t “ n
a

4 ´ ξ2 and combining with

Kpn
a

4 ´ ξ2, ξ, ξq „
a

4 ´ ξ2Kpn, ξ, ξq „ gξpnq, n Ñ 8

(by Lemma 9.3 and regular variation with index 1) concludes the proof. □

By a result of Zlatoš [85], sparse decaying Jacobi matrices always obey

lim
ϵÑ0

logµppξ ´ ϵ, ξqq

log ϵ “ lim
ϵÑ0

logµprξ, ξ ` ϵqq

log ϵ “ 1

and therefore have 1-dimensional spectral measures on p´2, 2q; note that Corol-
lary 9.4 gives a more precise statement about the local behavior of the spectral
measure, but within the narrower class of [7]. It is natural to conjecture:

Conjecture 9.5. For every sparse decaying Jacobi matrix J , its spectral measure µ
has a unique tangent measure at every ξ P p´2, 2q, and this tangent measure is the
Lebesgue measure.
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10. The local distribution of zeros

In this section, we consider applications to local zero distributions. We will
begin with a generalization of the Freud–Levin theorem, formulated in the general
context of Hermite–Biehler functions.

We will repeatedly use the following observations. For E P HB˚, the function
E7{E maps C` into D, and maps R into BD. For fixed x P R, KEpz, xq “ 0 if and
only if z P R, z ‰ x, and pE7{Eqpzq “ pE7{Eqpxq; this follows from (2.11), and
in particular, non-real zeros are ruled out by (2.10). Moreover, by the Cauchy–
Riemann relations and local properties of analytic functions, there is a strictly
increasing continuous choice of argument φ : R Ñ R such that

pE7{Eqpxq “ eiφpxq. (10.1)
This representation implies that for a, b P BD with a ‰ b, the solutions of E7{E “ a
and E7{E “ b strictly interlace. Moreover, by the strict interlacing property, the
following are equivalent:
(i) A has infinitely many positive zeros (these are solutions of E7{E “ ´1)
(ii) B has infinitely many positive zeros (these are solutions of E7{E “ 1)
(iii) KEp¨, 0q has infinitely many positive zeros (these are solutions of E7{E “

pE7{Eqp0q)
(iv) φpxq Ñ 8 as x Ñ 8

Theorem 10.1. Consider a sequence of Hermite-Biehler functions En “ An ´

iBn P HB˚, a point ξ P R and scaling sequence pτnq8
n“1 such that

lim
nÑ8

KEn

ˆ

ξ `
z

τn
, ξ `

w

τn

˙

“ KEpz, wq

uniformly on compacts, for some Hermite–Biehler function E “ A´ iB P HB˚. If
B has infinitely many positive zeros, then:

(i) For every k ě 0, for all large enough n, An has at least k zeros greater than
ξ; in other words its k-th zero to the right of ξ, denoted ξ

pnq

k , is well-defined
for all large enough n.

(ii) Denoting by θ the smallest positive zero of KEp¨, 0q,

lim sup
nÑ8

τnpξ
pnq

1 ´ ξq ď θ.

(iii) If the limit
lim

nÑ8
τnpξ

pnq

1 ´ ξq

exists, denote its value by κ1 and denote by κ2 ă κ3 ă . . . all the zeros of
KEp¨, κ1q in pκ1,8q. Then for every k P N,

lim
nÑ8

τnpξ
pnq

k ´ ξq “ κk. (10.2)

If, in addition, KEp¨, κ1q has at least m zeros in p´8, κ1q for some m P N,
then An has at least m zeros in p´8, ξq for all large enough n, and (10.2)
holds also for k “ 0,´1, . . . ,´m` 1.

Proof. Since the shift by ξ and scaling by τn can be composed with En, there is no
loss of generality in assuming ξ “ 0 and τn “ 1.

(i) Fix k P N. Since KEn
p¨, 0q Ñ KEp¨, 0q, by the Hurwitz theorem, for all large

enough n, KEn
p¨, 0q has at least k zeros with Re z ą 0. Thus, there are at least
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k strictly positive solutions z of pE7
n{Enqpzq “ pE7

n{Enqp0q. Including z “ 0, this
means at least k ` 1 zeros in r0,8q. By the strictly interlacing property, there are
at least k positive zeros of An.

(ii) Denote by θn the smallest positive zero ofKEn
p¨, 0q. By the Hurwitz theorem,

θn Ñ θ, and by the strictly interlacing property, since pE7
n{Enqpθnq “ pE7

n{Enqp0q,
ξ

pnq

1 P r0, θnq. Thus, lim supnÑ8 ξ
pnq

1 ď lim supnÑ8 θn “ θ.
(iii) By the Hurwitz theorem, solutions of KEn p¨, κ1q converge to solutions of

KEp¨, κ1q. The claims for eigenvalues below ξ follow analogously. □

Proof of Corollary 1.8. (i), (ii) follow by applying Theorem 10.1(i),(ii) to the se-
quence En “ pn ` ipn´1.

(iii) follows by applying Theorem 10.1(iii) to the subsequence Enk
“ pnk

`

ipnk´1. □

For further applications, we need a rewriting of the limit kernel in the case
σ´ “ σ`. Let us factor Bessel functions as

Jνpzq “

´z

2

¯ν

Fνpzq, Fνpzq “

8
ÿ

n“0

p´1qn

n!Γpn` ν ` 1q

´z

2

¯2n

.

In particular, we note that Fν is entire, even, and F 7
ν “ Fν . A rewritting of a kernel

in terms of functions Fν is essentially a rewriting in terms of Bessel functions,
without branch ambiguities.

Lemma 10.2. In the case σ´ “ σ` “ 1, the limit kernel Kσ´,σ`,β is of the form

K1,1,βpz, wq “ Γp
β
2 `1qΓp

β
2 q
zFβ{2´1pκzqFβ{2pκwq ´ Fβ{2pκzqwFβ{2´1pκwq

z ´ w
(10.3)

where

κ “ 2
ˆ

2
π

Γp
β
2 ` 1q

˙1{β

. (10.4)

Proof. Specializing the formulas from Definition 1.5, in the case σ´ “ σ` “ 1 we
obtain α “ pβ ´ 1q{2, and (10.4) follows from the Legendre duplication formula.

For any n, the identity
pαqn ` pα ` 1qn

2p2α ` 1qn
“

p2α ` nqpα ` 1qn´1

2p2α ` 1qn´1p2α ` nq
“

pαqn

p2αqn

implies that
Mpα, 2α ` 1, zq `Mpα ` 1, 2α ` 1, zq

2 “ Mpα, 2α, zq

and therefore
Apzq “ eiκzM

ˆ

β ´ 1
2 , β ´ 1,´2iκz

˙

.

This is similar to the form of B,

Bpzq “ zeiκzM

ˆ

β ` 1
2 , β ` 1,´2iκz

˙

.

We use a connection between the Kummer hypergeometric function and modified
Bessel function [22, Remark 4.2],

eizMpν ` 1
2 , 2ν ` 1,´2izq “ Γpν ` 1q

Iνp´izq

p´iz{2qν
“ Γpν ` 1qFνpzq.
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This identity implies that

Apzq “ Γp
β
2 qFβ{2´1pκzq

Bpzq “ zΓp
β
2 ` 1qFβ{2pκzq

from which (10.3) follows. □

This allows us to describe precisely the local distribution of zeros of even mea-
sures around 0 with a Fisher–Hartwig singularity at 0, in terms of zeros of Bessel
functions (1.14). Whereas the Freud–Levin theorem describes the asymptotic dis-
tribution up to one free parameter, in this special case, the asymptotic distribution
is described exactly, distinguishing between polynomials of even/odd degree:

Lemma 10.3. If ν is an even measure on R corresponding to a determinate mo-
ment problem, and the function

gprq “ 1{νpr0, 1
r qq

is regularly varying of index β ą 0, then the following holds at ξ “ 0:
(i) Polynomials of odd degree p2n`1 have zeros

ξ
p2n`1q

´n ă ¨ ¨ ¨ ă ξp2n`1q
n

with the symmetry ξp2n`1q

´k “ ´ξ
p2n`1q

k and limits

lim
nÑ8

κhpKp2n` 1, 0, 0qqξ
p2n`1q

k “ jβ{2,k (10.5)

with κ given by (10.4).
(ii) Polynomials of even degree p2n have zeros

ξ
p2nq

´n`1 ă ¨ ¨ ¨ ă ξp2nq
n

with the symmetry ξp2nq

´k`1 “ ξ
p2nq

k and limits

lim
nÑ8

κhpKp2n, 0, 0qqξ
p2nq

k “ jβ{2´1,k (10.6)

Proof. (i) Denote by K8 the limit kernel (10.3) and by E “ A´iB the correspond-
ing Hermite–Biehler function. Since Bp0q “ 0, the positive zeros of K8p¨, 0q are
precisely the positive zeros of B. Since the function Bpzq is a multiple of Fβ{2pκzq,
those zeros are precisely jβ{2,1{κ ă jβ{2,2{κ ă . . . .

By symmetry, p2n`1 is odd, so it has a zero at zero: thus, in our notation,
ξ

p2n`1q

0 “ 0 for all n, so by Theorem 10.1, (10.5) follows.
(ii) By (i) and Theorem 10.1,

lim sup
nÑ8

κhpKp2n, 0, 0qqξ
p2nq

1 ď jβ{2,1.

Moreover, fix some sequence nl Ñ 8 such that the limit exists,

lim
lÑ8

κhpKp2nl, 0, 0qqξ
p2nlq

1 “ γ

for some γ P r0, jβ{2,1s. Going one zero to the left, by Theorem 10.1, the limit

lim
lÑ8

κhpKp2nl, 0, 0qqξ
p2nlq

0
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is the largest zero ofK8p¨, γq in p´8, γq. However, by the symmetry ξp2nq

0 “ ´ξ
p2nq

1 ,
this limit is ´γ. In particular, ´γ ă γ so γ ‰ 0 and γ is characterized as the smallest
positive number with the property

K8p´γ, γq “ 0.
By Lemma 10.2, and since functions Fν are even,

K8p´x, xq “ Γp
β
2 ` 1qΓp

β
2 qFβ{2´1pκxqFβ{2pκxq

so this is zero if and only if x ‰ 0 and Fβ{2pκxq “ 0 or Fβ{2´1pκxq “ 0. In other
words, κγ is the smallest positive zero of Fβ{2Fβ{2´1, i.e., the smallest positive zero
of AB. Since Bp0q “ 0, by the strict interlacing property, κγ must be the smallest
positive zero of A, and we have proved

κγ “ jβ{2´1,1.

Finally, since the limit γ is independent of subsequence, by compactness,
lim

nÑ8
κhpKp2n, 0, 0qqξ

p2nq

1 “ jβ{2´1,1{κ,

so (10.6) holds for k “ 1. By Theorem 10.1, rescalings of other zeros converge to
other zeros of A, i.e., (10.6) holds for all k. □

Proof of Theorem 1.9. Denote by ν the even measure on R whose pushforward by
the map x Ñ x2 is the measure µ. Since µ corresponds to a determinate Stieltjes
moment problem, ν corresponds to a determinate (Hamburger) moment problem
(see [10, Theorem 1] or [76, Prop. 3.19]).

Since g is regularly varying with positive index, gprq Ñ 8 as r Ñ 8, so
νpt0uq “ µpt0uq “ 0. This further implies that

lim
rÑ8

2gpr2qνpr0, 1
r qq “ lim

rÑ8
gpr2qµpr0, 1

r2 qq “ 1.

Thus, ν is in the setting of Lemma 10.3, with scaling function gνprq “ 2gpr2q of
index 2β. Thus, its asymptotic inverse can be taken to be hνptq “

a

hpt{2q.
Moreover, since ν is even and its pushforward is µ, the orthogonal polynomials

for the measure µ are linked with those for ν by
pnpz2, µq “ p2npz, νq.

This gives an immediate relation between the Christoffel functions at 0; moreover,
denoting the zeros of pnp¨, µq by ξpnq

1 ă ¨ ¨ ¨ ă ξ
pnq
n , the zeros of p2np¨, νq are

´

b

ξ
pnq
n ă ¨ ¨ ¨ ă ´

b

ξ
pnq

1 ă

b

ξ
pnq

1 ă ¨ ¨ ¨ ă

b

ξ
pnq
n

so by Lemma 10.3(ii) written in our current notation,

lim
nÑ8

2
ˆ

2
π

Γpβ ` 1q

˙1{p2βq
a

hpKpn, 0, 0q{2q

b

ξ
pnq

k “ jβ´1,k

for every k P N. Squaring and using regular variation of h with index 1{β gives
(1.15). □
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Appendix A. Tangent measures

Definition A.1. Let µ be a measure on Rd. Let Σr : R Ñ R be the map ξ ÞÑ rξ
and Σr

˚µ be the pushforward of µ under Σr. A measure ν on Rd is a tangent
measure of µ at 0 if ν is locally finite, νpRdq ą 0, and there exist positive sequences
cn, rn with rn Ñ 8 and cnΣrn

˚ µ Ñ ν weakly as n Ñ 8.
The set of tangent measures of µ at 0 is denoted Tanpµ, 0q.
It is said that µ has a unique tangent measure at 0 if there exists ν such that

Tanpµ, 0q “ tcν | c P p0,8qu.
Analogous definitions hold at ξ P Rd, by shifting µ by ξ.

We note that existence of a tangent measure is not automatic. On the other
hand, uniqueness of a tangent measure is sufficient to pass from sequential limits
to a limit over r Ñ 8 and to conclude a scaling property of the unique tangent
measure:

Lemma A.2. For a measure µ on R, the following are equivalent:
(a) Tanpµ, ξq “ tcν | c P p0,8qu and δξ R Tanpµ, ξq

(b) Tanpµ, ξq “ tcν | c P p0,8qu where ν is of the form

dνptq “

#

σ´β|t|β´1 dt if t ă 0,
σ`β|t|β´1 dt if t ą 0,

(A.1)

for some σ´, σ` P r0,8q with σ´ ` σ` ą 0 and β ą 0
(c) There exist σ´, σ` P r0,8q with σ´ ` σ` ą 0 and g : p0,8q Ñ p0,8q which is

regularly varying with index β ą 0 such that
lim

rÑ8
gprqµ

``

ξ ´ 1
r , ξ

˘˘

“ σ´, lim
rÑ8

gprqµ
`“

ξ, ξ ` 1
r

˘˘

“ σ`.

Proof. For notational simplicity, let ξ “ 0 in this proof.
(b) ùñ (a) is trivial.
(c) ùñ (b): for any t ą 0, since g is regularly varying with index β ą 0,

lim
rÑ8

gprqµ
``

´ t
r , 0

˘˘

“ lim
rÑ8

gprq

gpr{tq
gpr{tqµ

``

´ t
r , 0

˘˘

“ σ´t
β

and analogously
lim

rÑ8
gprqµ

`“

0, t
r

˘˘

“ σ`t
β

so by the Portmanteau theorem, gprqΣr
˚µ Ñ ν as r Ñ 8, with ν given by (A.1).

Moreover, for any cn, rn Ñ 8, if cnΣrn
˚ µ converges to a nonzero locally finite

measure, the ratio cn{gprnq must converge in p0,8q, and the limit must be a
multiple of ν.

(a) ùñ (c): By [63, Lemma 2.5] and its proof, there exists β ě 0 such that
Σr

˚ν “ r´βν. Moreover, νpp´t, tqq “ tβνpp´1, 1qq for all t ą 0, so β “ 0 implies
that ν is a point mass at 0; thus, by our assumption, β ą 0. Now Σr

˚ν “ r´βν
implies that ν is of the form (A.1).

By [63, Lemma 2.5(3)], the function gprq “ 1{µpp´1{r, 1{rqq is regularly vary-
ing with index β, and by [63, Lemma 2.5(2)], gprqΣr

˚µ Ñ ν. By the Portman-
teau theorem, this implies gprqµppξ ´ 1{r, ξqq Ñ νpp´1, 0qq “ σ´ and similarly
gprqµprξ, ξ ` 1{rqq Ñ νpr0, 1qq “ σ`. □
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