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Abstract: The solutions of an indeterminate Hamburger moment problem can be
parameterised using the Nevanlinna matrix of the problem. The entries of this
matrix are entire functions of minimal exponential type, and any growth less than
that can occur.
An indeterminate moment problem can be considered as a canonical system in limit
circle case by rewriting the three-term recurrence of the problem to a first order
vector-valued recurrence. We give a bound for the growth of the Nevanlinna matrix
in terms of the parameters of this canonical system. In most situations this bound
can be evaluated explicitly. It is sharp in the sense that for well-behaved parameters
it coincides with the actual growth of the Nevanlinna matrix up to multiplicative
constants.
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1 Introduction

Let (sn)∞n=0 be a sequence of real numbers. The Hamburger moment problem is
the task of describing the set

M
(
(sn)∞n=0

)
:=

{
µ
∣∣∣ µ positive Borel measure on R
sn =

∫
R t
n dµ(t) for n = 0, 1, 2, . . .

}
.

This is a classical problem of analysis and was treated extensively in work of
H. Hamburger, M. Riesz, R. Nevanlinna, and many others. Standard references
are, e.g., [ST43; Akh61; Sch17]. It is known that one of the following alternatives
takes place for the set M((sn)∞n=0): it is either empty, or contains exactly one
element, or contains infinitely many elements. In the last case (sn)∞n=0 is called
an indeterminate moment sequence, and this is the case we are concerned with
in the present paper.

For an indeterminate moment sequence (sn)∞n=0 the set M
(
(sn)∞n=0

)
can

be parameterised: There exist four entire functions A,B,C,D, such that the
formula∫

R

1

t− z
dµ(t) =

A(z)τ(z) +B(z)

C(z)τ(z) +D(z)
(1.1)

establishes a bijection between M((sn)∞n=0) and the set of all functions τ that
are analytic in the open upper half-plane C+ and have nonnegative imaginary
part (formally including the function constant equal to ∞). The matrix

W (z) :=

(
A(z) B(z)
C(z) D(z)

)
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is called the Nevanlinna matrix of the sequence (sn)∞n=0.
The Nevanlinna matrix admits an operator theoretic interpretation (and this

viewpoint could be used to prove (1.1)). To the moment sequence there is an
associated sequence (pn)∞n=0 of orthogonal polynomials that satisfies a three-
term recurrence of the form

zpn(z) = bnpn+1(z) + anpn(z) + bn−1pn−1(z), n = 0, 1, 2, . . . (1.2)

with certain parameters an ∈ R and bn > 0 for n = 0, 1, 2, . . . (and formally
b−1 = 0). The Jacobi operator is the closure of the operator

(Ju)n =

{
b0u1 + a0u0 if n = 0,

bnun+1 + anun + bn−1un−1 if n ≥ 1

defined on D := {u ∈ `2 | un = 0 for almost all n}, and (1.2) is the formal
eigenvalue equation for J . The Jacobi operator is closed and symmetric, and
has deficiency index (1, 1). Hence, the self-adjoint extensions of the Jacobi op-
erator (we write again J for simplicity) are described by M.G. Krein’s resolvent
formula. The Nevanlinna matrix of (sn)∞n=0 is precisely the u-resolvent matrix
of J for a certain generating element u.

The entries A,B,C,D of the Nevanlinna matrix all have the same growth
[BP94], and a classical theorem of M. Riesz in [Rie23] states that they are of
minimal exponential type. Moreover, it is known that any growth smaller than
that may occur, e.g. [BS98]. Revealing more refined information about the
growth of the Nevanlinna matrix is an intricate problem. It is of great interest
also for spectral theoretic reasons: due to the above interpretation of W as a
resolvent matrix, the set of zeros of D coincides with the spectrum of a particular
self-adjoint extension of J . Hence, if the growth of W is known, information
about the distribution of eigenvalues can be obtained using standard tools from
complex analysis.

In the present paper we give an upper bound for

M(r) := max
|z|=r

‖W (z)‖

of which there are two versions: First, a general formulation where any (possibly
rough) data is admitted, and second, a much more explicit bound for data
satisfying mild regularity conditions. If, in addition, the data decays sufficiently
fast, then the upper bound coincides with M(r) up to multiplicative constants.

So far, we talked about two different (equivalent) objects, i.e., the moment
sequence and the Jacobi operator. Our method actually relies on a third object
– a canonical system of differential equations. It is obtained from rewriting the
three-term recurrence (1.2) as a first order vector difference equation and inter-
preting this as a discrete differential equation. From the fundamental solution
of the canonical system, we obtain its monodromy matrix which again coincides
with the Nevanlinna matrix W .

The canonical systems occurring in the context of moment problems are
represented by a Hamiltonian which reflects the discrete nature of the difference
equation. It is determined by two sequences, its lengths lj > 0 and angles
φj ∈ R, which we call the Hamiltonian parameters (details are given below,
cf. Definition 1.1). This model for an indeterminate moment sequence is well
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suited for the study of various properties. For example, the moment sequence
is indeterminate if and only if (lj)

∞
j=1 is summable. Our results will almost

exclusively be formulated in terms of the Hamiltonian parameters.
Let us briefly review some earlier results on the growth of Nevanlinna ma-

trices. The history of the subject starts probably with a theorem of M.S. Livšic
in [Liv39] that gives a lower bound for M(r) in terms of the moment sequence
itself. This bound is easy to handle, but will usually not give the correct size.
In recent work of C. Berg and R. Szwarc [BS14] it is shown that the order and
type of W

ρ := lim sup
r→∞

log logM(r)

log r
, τ := lim sup

r→∞

logM(r)

rρ
,

coincide with those of a certain entire function built in a complicated way from
the coefficients of the orthonormal polynomials. A theorem which takes the
Jacobi parameters as input is due to Yu.M. Berezanskii [Ber56] and was gener-
alised in [BS14]. It states that the order of W coincides with the convergence
exponent of the sequence (bn)∞n=0, but the assumptions are very restrictive, in-
volving regularity of bn and smallness of an. Bounds for the order of W in terms
of the Hamiltonian parameters, which under certain conditions give the correct
value, are obtained in [PRW17].

In our present theorems we start with the Hamiltonian parameters, and give
bounds for the type of W with respect to a general comparison function (e.g.,
a proximate order in the sense of Valiron). This improves significantly upon
[PRW17] in several ways: we work on a much more refined scale of measuring
growth, we obtain type estimates, and in some situations our bound improves
the earlier results even on the rough scale of order. Several cases occur, which
are presented in Theorem 4.6. The path that leads to this result is divided into
two main sections: First, we prove a very general, albeit complicated, upper
bound in Theorem 2.2. Second, in Theorem 4.1 we use J. Karamata’s theory of
regularly varying functions to evaluate this general bound. For the convenience
of the reader, the significantly simpler case of usual order and type is covered
separately in Corollary 2.5. We show in Theorem 5.3 that the upper bound is
attained if the lengths and angle differences are themselves close to regularly
varying and decay sufficiently fast (corresponding to order less than 1

2 ). In this
case the growth of logM(r) is fully determined up to multiplicative constants.

The proof of our foundational theorem is based on a somewhat tricky ap-
plication of a recent result from [PW22], approximating the target Hamiltonian
with a finite dimensional one. Building upon that, a detailed (and partly te-
dious) analysis of functions follows. We recommend the reader to get an overall
picture before diving into the actual estimates.

Canonical systems with Hamburger Hamiltonian

A two-dimensional canonical system is an equation of the form

y′(t) = zJH(t)y(t), t ∈ (a, b) a.e.,

where

. −∞ ≤ a < b ≤ ∞,

3



. H ∈ L1
loc

(
(a, b),R2×2), and H(t) ≥ 0 and H(t) 6= 0 for t ∈ (a, b) a.e.,

. J :=
(
0 −1
1 0

)
and z ∈ C,

and the solution y : (a, b)→ C2 is required to be locally absolutely continuous.
The function H is called the Hamiltonian of the system.

Canonical systems that occur from indeterminate moment sequences are
those whose Hamiltonian has the following particular – discrete – form. Here
we denote

ξφ :=

(
cosφ

sinφ

)
, φ ∈ R.

1.1 Definition. Let (lj)
∞
j=1 be a summable sequence of positive numbers and

(φj)
∞
j=1 be a sequence of real numbers. Set x0 := 0, xj :=

∑j
i=1 li for j ≥ 1, and

L :=
∑∞
j=1 lj <∞. The Hamburger Hamiltonian with lengths lj and angles φj

is the function H defined on the interval (0, L) as

H(t) := ξφjξ
T
φj for j ∈ N and xj−1 ≤ t < xj .

A Hamburger Hamiltonian H thus can be pictured as

ξφ1
ξTφ1

ξφ2
ξTφ2

ξφ3
ξTφ3

· · ·

H :
x0 l1 x1 l2 x2 l3 x3 · · · L

Since a Hamburger Hamiltonian in the sense of the above definition is even
integrable on the whole interval (0, L), there exists a unique 2×2 matrix-valued
solution W : [0, L]× C→ C2×2 of the initial value problem{

∂
∂tW (t; z)J = zW (t; z)H(t), t ∈ (0, L) a.e.,

W (0; z) = I.

We refer to W as the fundamental solution of H, and to the matrix WH(z) :=
W (L; z) as its monodromy matrix.

A notational convention

We frequently compare functions up to multiplicative constants or asymptoti-
cally, and throughout the paper use the following notation.

1.2 Notation. Let X be a set and f, g : X → (0,∞).

(i) We write “f . g” (or “f(x) . g(x)”) to say that there exists a constant
C > 0 such that f(x) ≤ C · g(x) for all x ∈ X. We write “f & g” if g . f ,
and “f � g” if f . g and f & g.

(ii) Assume that X is directed. We say that “f . g for sufficiently large x”,
if there exists x0 ∈ X such that f |Y . g|Y where Y := {x ∈ X | x � x0}.
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(iii) Assume again that X is directed. We write “f ∼ g” if limx∈X
f(x)
g(x) = 1,

and “f � g” if limx∈X
f(x)
g(x) = 0, and “f ≈ g” if limx∈X

f(x)
g(x) exists in

(0,∞).

(iv) Assume that X is a subset of a topological space. We say that “f . g
locally”, if f |K . g|K for every compact subset K of X. Analogous
wording applies to “�”.

For the convenience of the reader, we include an appendix where the definition
and some basic results about regularly varying functions in Karamata sense are
recalled.

2 An upper bound for the monodromy matrix

In this section we give a generic upper bound for log ‖WH(z)‖. The functions
dl,dφ used below play the role of well-behaved comparison functions for the
lengths and for the differences of consecutive angles of the Hamiltonian.

2.1 Definition. Let dl : [1,∞) → (0,∞) and dφ : [1,∞) → (0, 1] be measur-
able with dl � 1 � dφ locally. Then we denote

k(R) := sup
{
t ∈ [1,∞) | sup

1≤s≤t

2

R(dldφ)(s)
≤ 1
}
, (2.1)

h(R) := sup
{
t ∈ [1,∞) | sup

1≤s≤t

dφ(s)

Rdl(s)
≤ 1
}
, (2.2)

where R ∈ [ 2
(dldφ)(1)

,∞) and R ∈ [
dφ(1)
dl(1)

,∞), respectively. Further, we set

g(t, R) :=


log
(
R(dldφ)(t)

)
if 1 ≤ t < k(R),

R
1
2 (dldφ)

1
2 (t) if k(R) ≤ t < h(R),

Rdl(t) if h(R) ≤ t,

where (t, R) ∈ [1,∞)× [ 2
(dldφ)(1)

,∞), and

g(t, R) =

∫ t

1

g(s,R) ds. (2.3)

Note here that dφ(t) ≤ 1, and hence k(R) ≤ h(R) for all R ≥ 2
(dldφ)(1)

.

2.2 Theorem. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and

(φj)
∞
j=1 a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles, and let WH be its monodromy matrix.
Let ψ ∈ R and let dl,dφ, cl, cφ : [1,∞)→ (0,∞) be measurable and nonin-

creasing, with dφ ≤ 1 and cφ ≤ cl. Assume that

∀j ∈ N: lj ≤ dl(j) ∧ | sin(φj+1 − φj)| ≤ dφ(j), (2.4)
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∀N ∈ N:
∞∑

j=N+1

lj ≤ cl(N) ∧
∞∑

j=N+1

lj sin2(φj − ψ) ≤ cφ(N). (2.5)

Let g(t, R) be as in (2.3), and set

L(t, R) := 1 + log+R+ log+ cl(dte)
cφ(dte)

+ log+ dl(1)

dφ(1)
(2.6)

+ log+ dl(min{dte, bh(R)c})
dφ(min{dte, bh(R)c})

+

min{dte,bh(R)c}−1∑
j=1

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣.
Then we have, for all R ≥ 2

(dldφ)(1)
,

log
(

max
|z|=R

‖WH(z)‖
)
≤ 9 · inf

t≥1

(
max

{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
+L(t, R)

)
. (2.7)

2.3 Remark. The terms appearing in the upper bound in (2.7) have the following
meaning:

(i) g(t, R) estimates the contribution of the first dte intervals of H;

(ii) R(clcφ)
1
2 (t) estimates the contribution of the remaining intervals of H;

(iii) L(t, R) is usually a remainder term.

We mention two possible scenarios. If lengths and angle differences are non-
increasing but decay slowly, choosing dl(j),dφ(j) such that equality holds in
(2.4) makes g(t, R) a rather precise bound for the contribution of the first dte
intervals. On the other hand, if lengths and angle differences behave irregu-
larly, then g(t, R) likely overestimates the contribution of the first dte intervals.
However, choosing cl, cφ such that equality holds in (2.5), the bound (2.7) is
still a good estimate for log ‖WH(z)‖ as long as the decay is sufficiently fast.

If limt→∞(clcφ)(t) > 0, the bound (2.7) is & R and thus trivial: we know
that WH is of minimal exponential type by the classical Krein-de Branges for-
mula. Hence we may safely assume that limt→∞(clcφ)(t) = 0 whenever this is
convenient.

The following lemma hints at a way to evaluate the upper bound in Theo-
rem 2.2.

2.4 Lemma. Let dl : [1,∞) → (0,∞) and dφ : [1,∞) → (0, 1] be measurable
with dl � 1 � dφ locally, and let cl, cφ be continuous and nonincreasing with
lim
t→∞

(clcφ)(t) = 0. Then the equation

g(t, R) = R(clcφ)
1
2 (t), (2.8)

has a unique solution T (R), and

min
t≥1

max
{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
= g(T (R), R) = R(clcφ)

1
2 (T (R)).

In addition, limR→∞ T (R) =∞.
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Proof. For each fixed R the function t 7→ g(t, R) is continuous and increasing

while t 7→ R(clcφ)
1
2 (t) is continuous and nonincreasing. Moreover, g(1, R) =

0 < R(clcφ)
1
2 (1) and limt→∞R(clcφ)

1
2 (t) = 0. By the intermediate value

theorem, (2.8) has a unique solution T (R).
If lim infR→∞ T (R) <∞, choose a sequence (Rn)n∈N such that (T (Rn))n∈N

is bounded. Using the crude estimate

g(t, R) ≤ t log
(
R(dldφ)(1)

)
+
√

2 t+ t . t logR,

this leads to the contradiction

R(clcφ)
1
2 (T (Rn)) = g(T (Rn), R) . T (Rn) · logR� R � R(clcφ)

1
2 (T (Rn)).

In many situations, we are going to first determine T (R), and then show
that L(T (R), R) is small. The bound (2.7) is then asymptotically equal to

R(clcφ)
1
2 (T (R)).

Before we go into the proof of Theorem 2.2, let us discuss a particular situ-
ation.

2.5 Corollary. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and

(φj)
∞
j=1 a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles, and let WH be its monodromy matrix.
Assume that we have δl, δφ, γl, γφ ≥ 0, such that

∀j ∈ N: lj . j−δl ∧ | sin(φj+1 − φj)| . j−δφ ,

∀N ∈ N:
∞∑

j=N+1

lj . N−γl ∧
∞∑

j=N+1

lj sin2(φj − ψ) . N−γφ ,

i.e., we are in the situation of Theorem 2.2 with

dl(t) = ct−δl , dφ(t) = ct−δφ , cl(t) = ct−γl , cφ(t) = ct−γφ ,

where c is some positive constant. Set δ := δl+ δφ, γ := 1
2 (γl+γφ), and assume

that δ > 0 and γ > 0. Then we have, for sufficiently large R, the following
bounds for T (R) (cf. Lemma 2.4), log max|z|=R ‖WH(z)‖ and the order ρH of
WH .

Data satisfies T (R) � log max
|z|=R

‖WH(z)‖ . ρH ≤

δ < 1 + γ
(

R
logR

) 1
1+γ R

1
1+γ (logR)

γ
1+γ 1

1+γ

δ = 1 + γ R
1
δ R

1
δ

1
δ

1 + γ < δ, δ > 2, R
δ−1
γδ R

1
δ

1
δ

δ = 2,
(
R

1
2

logR

) 1
γ R

1
2 logR 1

2

δ < 2, δl ≤ 1 + γ R
1

2−δ+2γ R
2−δ+γ
2−δ+2γ 2−δ+γ

2−δ+2γ

1 + γ < δl R
δl−1

γ(δl−δφ) R
1−δφ
δl−δφ 1−δφ

δl−δφ
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All these formulae are checked by elementary calculations which we do not
elaborate here; the necessary computations can be found in the preprint version
of this article [PRW23].

Corollary 2.5 already shows that our present results may improve drastically
upon our previous work [PRW17]. The main feature that enables this is the use
of cφ: the present results exploit convergence of angles more efficiently.

2.6 Example. Let α > 1 and β ≥ 0, and let H be the Hamburger Hamiltonian
with lengths and angles

lj := j−α, φj := (−1)jj−β .

Considering the expressions (2.4) and (2.5), we see that Corollary 2.5 can be
applied with

δl := α, δφ := β, γl := α− 1, γφ := α+ 2β − 1.

Since δ = α+ β and γ = α+ β − 1, this yields

log
(

max |z| = R‖WH(z)‖
)
. R

1
α+β ,

and hence ρH ≤ 1
α+β . Now recall [PRW17, Example 2.23], where we saw that

the order ρH is at least 1
α+β . Thus, ρH = 1

α+β .

Let us compare this with what we can obtain from [PRW17]. For α+β ≥ 2,
the formula ρH = 1

α+β was already established in [PRW17, Example 2.23]. For

α+ β < 2, we had obtained the upper bound 1−β
α−β in that place. However, this

did not take into account that angles converge. If we want to take convergence
into account, we should use [PRW17, Corollary 2.9]. The quantities used there
identify as

∆+
l = α, ∆∗φ = Λ∗ = β,

and the bound for order so obtained thus is
1− β2
α . If β > 0, this lies strictly

between 1
α+β and 1−β

α−β , since

1− β
α− β

−
1− β

2

α
=

β
2 (2− α− β)

(α− β)α
> 0,

1− β
2

α
− 1

α+ β
=

β
2 (2− α− β)

α(α+ β)
> 0.

2.1 Proof of Theorem 2.2

Denote by W (s, t; z) the unique solution of the initial value problem{
∂
∂tW (s, t; z)J = zW (s, t; z)H(t), t ∈ (0, L) a.e.,

W (s, s; z) = I.

and observe the multiplicativity property

W (s, t; z)W (t, u; z) = W (s, u; z).
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Our method for the proof of Theorem 2.2 is to fix t ≥ 1 and estimate
‖W (0, xdte; z)‖ and ‖W (xdte, L; z)‖ separately. The contribution of the first
dte intervals is estimated using the explicit form of the fundamental solution on
indivisible intervals. On the remaining part, we use Grönwall’s Lemma. This
method is a refined version of an idea from [Rom17] and its improved variant
from [PW22].

Set Wj(z) := W (xj−1, xj ; z), then by a direct computation

Wj(z) = I + zljξφjξ
T
φjJ.

Moreover, multiplicativity yields

W (0, xN ; z) = W1(z) · . . . ·WN (z), N ∈ N. (2.9)

We often use the matrices introduced in [PW22, Definition 4.4]: for a > 0 and
ψ ∈ R, denote

Ω(a, ψ) :=

(
a 0
0 a−1

)
exp(−ψJ) =

(
a 0
0 a−1

)(
cosψ − sinψ
sinψ cosψ

)
.

Recall the following properties from [PW22, Lemma 4.6].

2.7 Lemma. Let a, b > 0 and φ, ψ ∈ R.

(i) ‖Ω(a, ψ)‖ = ‖Ω(a, ψ)−1‖ = max{a, a−1};

(ii) ‖Ω(a, ψ)ξφξ
T
φ JΩ(a, ψ)−1‖ = a2 cos2(φ− ψ) + 1

a2 sin2(φ− ψ);

(iii) ‖Ω(a, ψ)Ω(b, φ)−1‖ ≤ max
{
a
b ,

b
a

}
| cos(φ−ψ)|+ max

{
ab, 1

ab

}
| sin(φ−ψ)|.

We use Ω(aj , ψj) to rotate and dilate Wj(z) such that the norm becomes small.
In the following lemma, we make the obvious choice ψj = φj , but retain the
freedom of choosing suitable parameters aj .

2.8 Lemma. Let N ∈ N and let numbers aj ∈ (0, 1], j = 1, . . . , N , be given.
Then, for each z ∈ C, we have the estimate

‖W (0, xN ; z)‖ ≤ 1

a1aN
·
N∏
j=1

(
1 + |z|lja2j

)
(2.10)

·
N−1∏
j=1

(
max

{ aj
aj+1

,
aj+1

aj

}
·
∣∣ cos

(
φj − φj+1

)∣∣+
| sin(φj − φj+1)|

ajaj+1

)
.

Proof. With Ωj := Ω(aj , φj) we have

ΩjWj(z)Ω
−1
j = I + zljΩjξφjξ

T
φjJΩ−1j ,

and we can use Lemma 2.7, (ii), to estimate

‖ΩjWj(z)Ω
−1
j ‖ ≤ 1 + |z|lja2j .

Expanding on (2.9),

W (0, xN ; z) = Ω−11 · (Ω1W1(z)Ω−11 ) · Ω1Ω−12 · . . . · (ΩNWN (z)Ω−1N ) · ΩN .

Using submultiplicativity of the norm and Lemma 2.7, (i), (iii), we arrive at the
desired estimate.
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The next lemma is the ingredient of Theorem 2.2 that accounts for the term
g(t, R) in (2.7).

2.9 Lemma. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and

(φj)
∞
j=1 a sequence of real numbers. Let H be the Hamburger Hamiltonian with

these lengths and angles. Let dl : [1,∞) → (0,∞) and dφ : [1,∞) → (0, 1] be
measurable and nonincreasing, and assume that

∀j ∈ N: lj ≤ dl(j) ∧ | sin(φj+1 − φj)| ≤ dφ(j).

Then, for every (N,R) ∈ N×
[

2
(dldφ)(1)

,∞
)
,

log
(

max
|z|=R

‖W (0, xN ; z)‖
)
≤ 7

2 ·
[
g(N,R) + λ

(
min{N,h(R)}, R

)]
where

λ(t, R) := 1+log+R+log+ dl(1)

dφ(1)
+log+ dl(btc)

dφ(btc)
+

btc−1∑
j=1

∣∣∣∣ log
dφ(j)dl(j + 1)

dl(j)dφ(j + 1)

∣∣∣∣.
Proof. Fix z with |z| = R. In the first step we estimate log ‖W (0, xN ; z)‖ when
N ≤ h(R). This is done by an application of Lemma 2.8 with

aj :=
( dφ(j)

Rdl(j)

) 1
4

, j = 1, . . . , N.

Since N ≤ h(R) we have aj ∈ (0, 1]. The factors in (2.10) are treated separately:

1

a1aN
= R

1
2 ·
( dl(1)

dφ(1)

) 1
4 ·
( dl(N)

dφ(N)

) 1
4

,

1 + |z|lja2j ≤ 1 +Rdl(j)a
2
j = 1 +

(
R(dldφ)(j)

) 1
2 ,

max
{ aj
aj+1

,
aj+1

aj

}∣∣ cos
(
ψj − ψj+1

)∣∣+
| sin(ψj − ψj+1)|

ajaj+1

= max
{ aj
aj+1

,
aj+1

aj

}
·
(
| cos(φj+1 − φj)|+

| sin(φj+1 − φj)|
max{a2j , a2j+1}

)
≤ max

{ aj
aj+1

,
aj+1

aj

}
·
(

1 +
dφ(j)

a2j

)
=
[

max
{dφ(j)dl(j + 1)

dl(j)dφ(j + 1)
,
dl(j)dφ(j + 1)

dφ(j)dl(j + 1)

}] 1
4 ·
(

1 +
(
R(dldφ)(j)

) 1
2

)
.

Now (2.10) yields

log ‖W (0, xN ; z)‖ ≤ 1

2
log+R+

1

4
log+ dl(1)

dφ(1)
+

1

4
log+ dl(N)

dφ(N)

+

N∑
j=1

log
(

1 +
(
R(dldφ)(j)

) 1
2

)

10



+
1

4

N−1∑
j=1

∣∣∣∣ log
dφ(j)dl(j + 1)

dl(j)dφ(j + 1)

∣∣∣∣+

N−1∑
j=1

log
(

1 +
(
R(dldφ)(j)

) 1
2

)
.

Since dl,dφ are nonincreasing, we can estimate sums by integrals as

N∑
j=2

log

(
1 +

(
R(dldφ)(j)

) 1
2

)
≤

N∫
1

log
(

1 +
(
R(dldφ)(s)

) 1
2

)
ds

≤ 3
2 ·
min{N,k(R)}∫

1

log
(
R(dldφ)(s)

)
ds +

N∫
min{N,k(R)}

(
R(dldφ)(s)

) 1
2 ds.

Noting that

log
(

1 +
(
R(dldφ)(1)

) 1
2

)
≤ 3

2

(
log+R+ log+(dldφ)(1)

)
≤ 3

2

(
log+R+ log+ dl(1)

dφ(1)

)
,

leads to

log ‖W (0, xN ; z)‖ ≤ 7

2
log+R+

13

4
log+ dl(1)

dφ(1)
+

1

4
log+ dl(N)

dφ(N)

+
1

4

N−1∑
j=1

∣∣∣∣ log
dφ(j)dl(j + 1)

dl(j)dφ(j + 1)

∣∣∣∣
+ 3 ·

min{N,k(R)}∫
1

log
(
R(dldφ)(s)

)
ds + 2 ·

N∫
min{N,k(R)}

(
R(dldφ)(s)

) 1
2 ds. (2.11)

We see that

log ‖W (0, xN ; z)‖ ≤ 7
2 ·
[
g(N,R) + λ(N,R)

]
.

Consider now the case that N > h(R). Since ‖ξφjξTφjJ‖ = 1, we see that

‖W (xbh(R)c, xN ; z)‖ =

∥∥∥∥ N∏
j=bh(R)c+1

W (xj−1, xj ; z)

∥∥∥∥
≤

N∏
j=bh(R)c+1

∥∥∥I + zljξφjξ
T
φjJ
∥∥∥ ≤ N∏

j=bh(R)c+1

(
1 +Rdl(j)

)
.

Noting that

Rdl
(
bh(R)c+ 1

)
< 1,

and estimating the sum by an integral we arrive at

log ‖W (xbh(R)c, xN ; z)‖ ≤
N∑

j=bh(R)c+1

log
(

1 +Rdl(j)
)

11



< log 2 +

N∫
bh(R)c+1

Rdl(s) ds.

We combine this with (2.11) to obtain

log ‖W (0, xN ; z)‖ ≤ log ‖W (0, xbh(R)c; z)‖+ log ‖W (xbh(R)c, xN ; z)‖
≤ 7

2 ·
[
g(N,R) + λ(h(R), R)

]
.

The second lemma accounts for the contribution of the remaining intervals.

2.10 Lemma. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and

(φj)
∞
j=1 a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles, and let WH be its monodromy matrix.
Let cl, cφ : [1,∞) → (0,∞) be two functions with cφ ≤ cl. Choose ψ ∈ R

and assume that

∀N ∈ N:
∞∑

j=N+1

lj ≤ cl(N) ∧
∞∑

j=N+1

lj sin2(φj − ψ) ≤ cφ(N).

Then, for any N ∈ N and z ∈ C,

‖W (xN , L; z)‖ ≤
( cl(N)

cφ(N)

) 1
2

exp

(
2|z|
(
clcφ

) 1
2 (N)

)
.

Proof. Let Ω ∈ GL(2,R) and consider the function W̃ (t) := ΩW (xN , t; z)Ω
−1

defined on [xN , L]. This function satisfies W̃ (xN ) = I and

W̃ ′(t) = −zW̃ (t)ΩH(t)JΩ−1, t ∈ [xN , L].

By Grönwall’s Lemma,

‖W̃ (t)‖ ≤ exp

(
|z|
∫ t

xN

‖ΩH(s)JΩ−1‖ ds

)
.

Set a :=
(

cφ(N)
cl(N)

) 1
4

and Ω = Ω(a, ψ). Using Lemma 2.7, (i), (ii), we obtain

‖W (xN , L; z)‖ ≤ ‖Ω−1‖‖W̃ (L)‖‖Ω‖ ≤ 1

a2
exp

(
|z|
∫ L

xN

‖ΩH(s)JΩ−1‖ ds

)
=
( cl(N)

cφ(N)

) 1
2

exp

(
|z|

∞∑
j=N+1

lj · ‖ΩξφjξTφjJΩ−1‖
)

=
( cl(N)

cφ(N)

) 1
2

exp

(
|z|

∞∑
j=N+1

lj
[
a2 cos2(φj − ψ) +

1

a2
sin2(φj − ψ)

])

≤
( cl(N)

cφ(N)

) 1
2

exp

(
|z|
[
a2

∞∑
j=N+1

lj +
1

a2

∞∑
j=N+1

lj sin2(φj − ψ)

])

≤
( cl(N)

cφ(N)

) 1
2

exp

(
2|z|
(
clcφ

) 1
2 (N)

)

12



The proof of Theorem 2.2 is now easily completed.

Proof of Theorem 2.2. Let (t, R) ∈ [1,∞) ×
[

2
(dldφ)(1)

)
and set N := dte. We

use Lemma 2.9 and Lemma 2.10 to estimate, for |z| = R,

log ‖WH(z)‖ ≤ log ‖W (0, xN ; z)‖+ log ‖W (xN , L; z)‖

≤ 7
2 ·
[
g(N,R) + λ

(
min{N,h(R)}, R

)]
+
[
1
2 log

cl(N)

cφ(N)
+ 2R

(
clcφ

) 1
2 (N)

]
≤ 7

2 ·
[
g(t, R) +R

(
clcφ

) 1
2 (t)

]
+ 7

2 ·
∣∣g(N,R)− g(t, R)

∣∣
+ 7

2 · λ
(

min{N,h(R)}, R
)

+ 1
2 log

cl(N)

cφ(N)
.

Since 0 ≤ N − t ≤ 1 and

g(s,R) ≤


3
2

(
log+R+ log+ dl(1)

dφ(1)

)
if 1 ≤ s < k(R),

√
2 if k(R) ≤ s < h(R),

1 if h(R) ≤ s,

≤ 3

2
· λ
(

min{N,h(R)}, R
)
,

we have∣∣g(N,R)− g(t, R)
∣∣ ≤ 3

2
· λ
(

min{N,h(R)}, R
)
,

and obtain

log ‖WH(z)‖ ≤ 9 ·
[

max
{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
+ L(t, R)

]
.

Since t was arbitrary, we can pass to the infimum on the right side.

3 Properties of the upper bound

In this section we study the expression on the right side of (2.7) independently
of its meaning in the context of Theorem 2.2.

3.1 Definition. Let dl : [1,∞) → (0,∞) and dφ : [1,∞) → (0, 1] be measur-
able with dl � 1 � dφ locally. Then we denote

B(R) := inf
t≥1

(
max

{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
+ L(t, R)

)
. (3.1)

We consider the questions

. Is L(t, R) small compared to max
{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
?

. Does inft≥1 max
{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
depend monotonically on the data

dl,dφ, cl, cφ ?
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It turns out that already very weak assumptions on the data, concerning mono-
tonicity, continuity, variation, and power boundedness, are sufficient to ensure
that the answers are affirmative. This tells us that usually L(t, R) can be
dropped from (3.1), and hence B(R) can be evaluated much more easily, and
that usually the natural intuition which stems from the context of Theorem 2.2,
that faster decay means smaller growth, is indeed reflected in B(R).

3.1 About monotonicity in the data

The essence is the following result.

3.2 Proposition. Let dl, d̂l : [1,∞) → (0,∞) and dφ, d̂φ : [1,∞) → (0, 1] be

measurable with dl � dφ � d̂l � d̂φ � 1 locally, and assume that d̂ld̂φ is

� to some nonincreasing function. If d̂l . dl and d̂φ . dφ on [1,∞), then

(quantities ĝ(t, R) etc. are defined correspondingly for d̂l, d̂φ)

ĝ(t, R) . g(t, R) (3.2)

for R ≥ 2
(dldφ)(1)

and a.e. (t, R) with t < ĥ(R) or t > h(R). If additionally
d̂φ

d̂l

is bounded or � on [1,∞) to a nondecreasing function, then (3.2) holds for R
sufficiently large and a.e. t ∈ [1,∞).

The constant that is implicit in the relation (3.2) depends on the constants

implicit in the assumptions, but not on the actual functions dl,dφ, d̂l, d̂φ.

We start with a preparatory lemma.

3.3 Lemma. Let Φ,Ψ: [1,∞)→ (0,∞) with Φ nondecreasing, and assume that
α, α′ > 0 are such that

∀t ∈ [1,∞): α · Φ(t) ≤ Ψ(t) ≤ α′ · Φ(t).

Set

t0 := sup

({
t ∈ [1,∞) | sup

1≤s≤t
Ψ(s) ≤ 1

}
∪ {1}

)
∈ [1,∞].

Then, if t0 <∞,

∀t ∈ (t0,∞): Ψ(t) >
α

α′
.

Proof. Since Φ is nondecreasing, we have{
t ∈ [1,∞) | α′Φ(t) ≤ 1

}
∪ {1} =

{
t ∈ [1,∞) | sup

1≤s≤t
α′Φ(s) ≤ 1

}
∪ {1}

⊆
{
t ∈ [1,∞) | sup

1≤s≤t
Ψ(s) ≤ 1

}
∪ {1}.

Set

t1 := sup

({
t ∈ [1,∞) | α′Φ(t) ≤ 1

}
∪ {1}

)
∈ [1,∞],

then t1 ≤ t0. Again by monotonicity, α′Φ(t) > 1 for all t > t1. and this yields
that for t > t1

Ψ(t) ≥ αΦ(t) >
α

α′
.
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Proof of Proposition 3.2. We have to trace constants, and thus make the con-
stants from the assumptions explicit: choose a nondecreasing function u and
α, α′ > 0, such that

αu(t) ≤ 2

(d̂ld̂φ)(t)
≤ α′u(t), t ∈ [1,∞),

and choose κl, κφ > 0, such that

d̂l(t) ≤ κldl(t), d̂φ(t) ≤ κφdφ(t), t ∈ [1,∞).

Moreover, set

λ := max
t≥2

log t√
t
,

and note that

x ≤ γy ⇒ log x ≤
(

1 +
log+ γ

log 2

)
· log y for x > 0, y ≥ 2, γ > 0.

Next, observe that

[
R(d̂ld̂φ)(t)

] 1
2 <

(2α′

α

) 1
2

, t > k̂(R). (3.3)

In order to see this, let R be fixed and apply Lemma 3.3 with Φ(t) = u(t)
R and

Ψ(t) = 2

R(d̂ld̂φ)(t)
. Then t0 = k̂(R), and hence for t > k̂(R) we have Ψ(t) > α

α′ ,

which implies (3.3).

In order to establish that ĝ(t, R) . g(t, R) we first assume t < ĥ(R) and
distinguish the following six cases according to the definitions of ĝ(t, R) and
g(t, R).

.. 1 ≤ t < k̂(R) ∧ 1 ≤ t < k(R):

log
[
R(d̂ld̂φ)(t)

]
≤
(

1 +
log+(κlκφ)

log 2

)
log
[
R(dldφ)(t)

]
.

.. 1 ≤ t < k̂(R) ∧ k(R) < t < h(R):

log
[
R(d̂ld̂φ)(t)

]
≤ λ

[
R(d̂ld̂φ)(t)

] 1
2 ≤ λ(κlκφ)

1
2

[
R(dldφ)(t)

] 1
2 .

.. 1 ≤ t < k̂(R) ∧ h(R) < t:

log
[
R(d̂ld̂φ)(t)

]
≤λ
[
R(d̂ld̂φ)(t)

] 1
2 ≤ λ

[
R(d̂ld̂φ)(t)

]
≤λ
[
Rd̂l(t)

]
≤ λκl

[
Rdl(t)

]
.

.. k̂(R) < t < ĥ(R) ∧ 1 ≤ t < k(R). By (3.3),

[
R(d̂ld̂φ)(t)

] 1
2 <

(2α′

α

) 1
2 ≤ 1

log 2

(2α′

α

) 1
2

log
[
R(dldφ)(t)

]
.
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.. k̂(R) < t < ĥ(R) ∧ k(R) < t < h(R):[
R(d̂ld̂φ)(t)

] 1
2 ≤ (κlκφ)

1
2

[
R(dldφ)(t)

] 1
2 .

.. k̂(R) < t < ĥ(R) ∧ h(R) < t:[
R(d̂ld̂φ)(t)

] 1
2 ≤ Rd̂l(t) ≤ κlRdl(t).

Since (t, R) is assumed to satisfy t < ĥ(R) ∨ h(R) < t, and t < ĥ(R) was
already covered, the only case left to treat is

.. ĥ(R) < t ∧ h(R) < t:

Rd̂l(t) ≤ κlRdl(t).

Now we assume the additional condition on
d̂φ

d̂l
. If this quotient is bounded,

then ĥ(R) =∞ for sufficiently large R, and there is nothing to show. Otherwise,
choose a nondecreasing function v and β, β′ > 0 such that

βv(t) ≤ d̂φ

d̂l
≤ β′v(t), t ∈ [1,∞).

We claim that

Rd̂l(t) ≤
β′

β
d̂φ(t), t > ĥ(R). (3.4)

In fact, if we fix R and apply Lemma 3.3 with Φ(t) = v(t)
R and Ψ(t) =

d̂φ(t)

Rd̂l(t)
,

we find that t0 = ĥ(R) and Ψ(t) > β
β′ for t > ĥ(R). This is equivalent to (3.4).

With these preparations, the assertion follows from the following simple
inequalities:

.. ĥ(R) < t ∧ 1 ≤ t < k(R):

Rd̂l(t) ≤
β′

β
d̂φ(t) ≤ β′

β
≤ β′

β log 2
log
[
R(dldφ)(t)

]
.

.. ĥ(R) < t ∧ k(R) < t < h(R):

Rd̂l(t) ≤
β′

β
d̂φ(t) ≤ β′

β
κφdφ(t) ≤ β′

β
κφ
[
R(dldφ)(t)

] 1
2 .

3.4 Corollary. Let dl,dφ, d̂l, d̂φ be as in Proposition 3.2 and subject to the
additional condition of this proposition. Further, let cl, cφ, ĉl, ĉφ : [1,∞) →
(0,∞). If

d̂l . dl, d̂φ . dφ, ĉl . cl, ĉφ . cφ

on [1,∞), then

inf
t≥1

max
{
ĝ
(
t, R
)
, R(ĉlĉφ)

1
2 (t)

}
. inf
t≥1

max
{
g
(
t, R
)
, R(clcφ)

1
2 (t)

}
for sufficiently large R. The constant that is implicit in the assertion depends
on the constants implicit in the assumptions, but not on the actual functions
dl, d̂l etc.
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3.2 About smallness of L(t, R)

To start with, let us observe that g(t, R) must grow at least logarithmically.

3.5 Lemma. Let dl : [1,∞) → (0,∞) and dφ : [1,∞) → (0, 1] be measurable
with dl � 1 � dφ locally. Then, for each ε > 0, there exists a positive constant
c > 0 such that, for t ≥ 1 + ε and R ≥ sup1≤s≤1+ε

2
(dldφ)(s)

we have

g(t, R) ≥ c logR.

Proof. Let η := sup1≤s≤1+ε
2

(dldφ)(s)
. Then R ≥ η is equivalent to 1+ε ≤ k(R).

Hence

g(t, R) ≥
∫ 1+ε

1

log
(
R(dldφ)(s)

)
ds

=
(
ε+

1

logR

∫ 1+ε

1

log(dldφ)(s) ds
)
· logR.

The term in the bracket tends to ε for R→∞, and hence we find R0 ≥ η such
that g(t, R) ≥ ε

2 · logR for all t ≥ 1+ε and R ≥ R0. The function g is nonzero,
and hence bounded away from zero, on the compact set {1 + ε} × [η,R0]. By
monotonicity, it is therefore also bounded away from zero on [1+ε,∞)× [η,R0].
Together, we see that a constant c > 0 can be chosen as required.

The most cumbersome part of L(t, R) is the sum written as the last of the six

summands in (2.6). Assuming monotonicity of the quotient
dφ
dl

, this sum turns
into a telescoping sum and can be estimated.

3.6 Lemma. Let dl,dφ : [1,∞)→ (0,∞) and let h(R) be as in (2.2). Assume

that the quotient
dφ
dl

is eventually monotone but not eventually constant. Then

min{dte,bh(R)c}−1∑
j=1

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣ � 1 +

∣∣∣∣ log
dφ(min{dte, bh(R)c})
dl(min{dte, bh(R)c})

∣∣∣∣
for (t, R) ∈ [1,∞)× [

dφ(1)
dl(1)

,∞).

Proof. We abbreviate T := min{dte, bh(R)c}. Choose M ∈ N such that
dφ
dl

is

monotone on [M,∞) and
dφ(M)
dl(M) 6=

dφ(M+1)
dl(M+1) . For all (t, R) such that T ≥M +1

we have

T−1∑
j=M

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣ =

∣∣∣∣ T−1∑
j=M

log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣
=

∣∣∣∣ log
dφ(M)

dl(M)
− log

dφ(T )

dl(T )

∣∣∣∣.
Clearly, this value is nondecreasing in T and positive for T ≥ M + 1. If∣∣ log

dφ(T )
dl(T )

∣∣ is bounded, it is � 1. If
∣∣ log

dφ(T )
dl(T )

∣∣ is unbounded, it is �
∣∣ log

dφ(T )
dl(T )

∣∣.
The beginning part of the sum which we cut off, i.e.,

M−1∑
j=1

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣
is some nonnegative number independent of t and R.

17



3.7 Corollary. Let dl,dφ : [1,∞) → (0,∞) and let h(R) be as in (2.2). As-
sume that one of the following two assumptions holds.

(i) The quotient
dφ
dl

is eventually nondecreasing and
dφ
dl

(t) . sup1≤s<t
dφ
dl

(s)
for sufficiently large t.

(ii) The quotient
dφ
dl

is eventually nonincreasing and power bounded from below

(i.e. there exists α > 0 such that
dφ(t)
dl(t)

& t−α for sufficiently large t).

Then

min{dte,bh(R)c}−1∑
j=1

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣
.

1 + log+R if (i) holds,

1 + log t if (ii) holds,

for (t, R) ∈ [1,∞)× [
dφ(1)
dl(1)

,∞).

Proof. Again abbreviate T := min{dte, bh(R)c}, and let M ∈ N be such that
dφ
dl

is monotone on [M,∞). Under the assumption (i) we have

dφ(T )

dl(T )
≤ dφ(h(R))

dl(h(R))
. R,

and hence∣∣∣∣ log
dφ(T )

dl(T )

∣∣∣∣ . 1 + logR.

Under the assumption (ii) we have

t−α . T−α .
dφ(T )

dl(T )
. 1,

and hence∣∣∣∣ log
dφ(T )

dl(T )

∣∣∣∣ . 1 + log t.

Another type of condition on the quotient
dφ
dl

that ensures that the sum can be
estimated, is that its variation is not too fast.

3.8 Lemma. Let dl,dφ : [1,∞)→ (0,∞) and let h(R) be as in (2.2). Assume

that the quotient
dφ
dl

can be represented as

dφ(t)

dl(t)
= c(t) · exp

(∫ t

1

ε(u)
du

u

)
, t ∈ [1,∞),
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where ε : [1,∞) → R is locally integrable and eventually bounded, and where
c : [1,∞)→ (0,∞) is eventually constant. Then

min{dte,bh(R)c}−1∑
j=1

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣ . 1 + log t

for (t, R) ∈ [1,∞)× [
dφ(1)
dl(1)

,∞).

Proof. We again abbreviate T := min{dte, bh(R)c}. For M ∈ N such that ε(t)
is bounded and c(t) is constant on [M,∞), we can estimate, for all (t, R) such
that T > M ,

T−1∑
j=M

∣∣∣∣ log

(
dφ(j)
dl(j)

/
dφ(j+1)
dl(j+1)

)∣∣∣∣ =

T−1∑
j=M

∣∣∣∣ ∫ j+1

j

ε(u)
du

u

∣∣∣∣
≤

T−1∑
j=M

∫ j+1

j

|ε(u)| du

u
=

∫ T

M

|ε(u)| du

u
. log t.

Now we give three sets of conditions, each of which ensures that L(t, R) can be
neglected.

3.9 Proposition. Let dl : [1,∞)→ (0,∞) and dφ : [1,∞)→ (0, 1] be measur-
able with dl � 1 � dφ locally, let cl, cφ be continuous and nonincreasing with
lim
t→∞

(clcφ)(t) = 0, and let T (R) be the unique solution of (2.8). Assume that

one of the following three sets of assumptions holds.

(i) The quotient
dφ
dl

is eventually nondecreasing and
dφ
dl

(t) . sup1≤s<t
dφ
dl

(s)

for sufficiently large t. We have cφ(t) . cφ(t+ 1) for sufficiently large t.

(ii) The quotient
dφ
dl

is eventually nonincreasing and power bounded from be-

low. There exists α > 0 such that (clcφ)(t) . t−α for sufficiently large
t. The quotient cl

cφ
is power bounded from above or cφ(t) . cφ(t+ 1) for

sufficiently large t.

(iii) The quotient
dφ
dl

can be represented as

dφ(t)

dl(t)
= c(t) · exp

(∫ t

1

ε(u)
du

u

)
, t ∈ [1,∞),

where ε : [1,∞) → R is locally integrable and eventually bounded, and
where c : [1,∞)→ (0,∞) is eventually constant. There exists α > 0 such
that (clcφ)(t) . t−α for sufficiently large t. The quotient cl

cφ
is power

bounded from above or cφ(t) . cφ(t+ 1) for sufficiently large t.

Let B(R) be as in (3.1). Then L(T (R), R) . 1 + log+R, and

B(R) � g(T (R), R) = R(clcφ)
1
2 (T (R)).
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Proof. Assume (i). The first sentence of (i) is nothing but the assumption (i)
in Corollary 3.7, and hence the sum in the definition of L(t, R) is . 1 + log+R
independently of t. The last but one summand in (2.6) is . 1 by monotonicity

of
dφ
dl

. It remains to estimate the third summand in (2.6), and here we use

the second sentence in the present assumption: using limR→∞ T (R) = ∞ and
Lemma 3.5,

log+ cl(dT (R)e)
cφ(dT (R)e)

. 1 + log+ cl(T (R))

cφ(T (R))
. 1 + log+ 1

(clcφ)(T (R))

= 1 + log+ R2

g(T (R), R)2
. 1 + log+R.

(3.5)

Assume (ii). Let α > 0 be as in the second sentence of (ii), then

R(clcφ)
1
2 (R

2
α ) . 1 � g(R

2
α , R), and hence T (R) . R

2
α . The first sentence of

(ii) is nothing but assumption (ii) in Corollary 3.7. This yields that the sum
in the definition of L(t, R) is . 1 + log+ t, and hence the sum in L(T (R), R) is
. 1 + log+R. The same holds for the last but one summand in (2.6) by power

boundedness of
dφ
dl

, and for the third summand (2.6) in case that cl
cφ

is power

bounded. If cφ(t) . cφ(t + 1) for sufficiently large t, then the third summand
in (2.6) is . 1 + log+R by (3.5).

Assume (iii). The second sentence again ensures that T (R) is power bounded
from above. The first sentence is the assumption of Lemma 3.8, and it follows
that the sum in L(T (R), R) is . 1 + log+R. The form of

dφ
dl

implies that this
quotient is power bounded from below, and hence the last but one summand
(2.6) is . 1 + log+R. Concerning the third summand, just argue as above.

To finish the proof it remains to refer to Lemma 3.5.

4 Regularly varying decay

In the preceding section, we studied properties of the function B(R), in partic-
ular, we saw that the term L(t, R) is usually neglectable. Our next goal is to
explicitly evaluate

min
t≥1

(
max

{
g(t, R), R(clcφ)

1
2 (t)

})
in the situation that dl,dφ, cl, cφ are all regularly varying, cf. Theorem 4.1. As
in the preceding section, this is a pure analysis of functions, and independent of
the meaning in the context of Theorem 2.2. However, after having completed the
proof of Theorem 4.1, we will return to the study of Hamburger Hamiltonians
and combine Theorem 4.1 with Theorem 2.2. This establishes an explicit upper
bound for the growth of the monodromy matrix, cf. Theorem 4.6.

The setup for Theorem 4.1 is as follows:

(i) We are given regularly varying functions dl,dφ, cl, cφ : [1,∞) → (0,∞)
with nonpositive indices, dφ ≤ 1, and dl � 1 � dφ locally.

(ii) We denote

δl := − ind dl, δφ := − ind dφ, γl := − ind cl, γφ := − ind cφ,
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and further

D(t) :=
1

(dldφ)(t)
, δ := ind D = δl + δφ, (4.1)

C(t) :=
1

(clcφ)
1
2 (t)

, γ := ind C=
γl + γφ

2
. (4.2)

(iii) The quantities of interest are

B(t, R) := max
{
g(t, R),

R

C(t)

}
,

B(R) := min
t≥1

B(t, R).
(4.3)

Four fundamentally different cases occur. They depend on the relative size of
D(t) vs. C(t), and on the absolute size of D(t). Moreover, there are a few
exceptional cases that have to be ruled out.

4.1 Theorem. Assume we are given data as in (i) above, and let notation be
as in (ii) and (iii). Assume further that δ > 0, that C is � on [1,∞) to a
nondecreasing function, and that limt→∞ C(t) =∞.

Then the following estimates for B(R) hold for sufficiently large R.

A Case D(t) . tC(t):

Choose α ≥ 4 · sup
t≥1

D(t)
tC(t) , and set f(t) := tC(t) log

[
α tC(t)

D(t)

]
. Then an

asymptotic inverse of f exists, and with τ(R) := f−
(
1
αR
)

we have

B(R) � B
(
τ(R), R

)
� R

C(f−(R))
. (4.4)

The function on the right side is regularly varying with index 1
1+γ .

If δ < 1+γ we have f(t) � tC(t) log t, and B(R) is (up to �) independent
of dl and dφ.

B Case tC(t) . D(t),
∞∫
1

D(s)−
1
2 ds < ∞, and if (δl, δφ, γ) = (1, 1, 0) then

dφ
dl

is bounded or � to a monotone function:

Then

k(R) . B(R) . R
1
2

∞∫
k(R)

D(s)−
1
2 ds. (4.5)

Both bounds in (4.5) are regularly varying with index 1
δ .

If δ > 2, then � holds throughout (4.5) and B(R) is (up to �) independent
of cl and cφ.

C Case 1
dl(t)

. tC(t) . D(t),
∞∫
1

D(s)−
1
2 ds =∞, and (δ, γ) 6= (2, 0):
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Set f0(t) := t2C(t)2

D(t) and f1(t) :=
(
C(t)

t∫
1

D(s)−
1
2 ds

)2
. Then asymptotic

inverses f−0 ,f
−
1 exist, and with

τ(R) := min
{

max
{
f−1 (R),k(R)

}
,h(R)

}
we have

R

C(f−0 (R))
. B(R) . B(τ(R), R) .

R

C(f−1 (R))
. (4.6)

Both bounds in (4.6) are regularly varying with index 2−δ+γ
2−δ+2γ .

If δ < 2, then � holds throughout (4.6).

D Case tC(t) . 1
dl(t)

,
∞∫
1

D(s)−
1
2 ds =∞, and

∫∞
1

dl(s) ds <∞:

Then
dφ
dl

is unbounded and

Rh(R)dl(h(R)) . B(R) . R
1
2

h(R)∫
1

D(s)−
1
2 ds+R

∞∫
h(R)

dl(s) ds. (4.7)

If δl > δφ, then both bounds in (4.7) are regularly varying with index
1−δφ
δl−δφ .

If δ < 2 and δl > 1, then � holds throughout (4.7).

4.1 Proof of Theorem 4.1

We start with two lemmata that determine the function g(t, R) on the intervals
[1,k(R)] and [k(R),h(R)], respectively.

4.2 Lemma. Let D: [1,∞) → (0,∞) be regularly varying with ind D> 0 and
D� 1 locally. Set

k(R) := sup
{
t ∈ [1,∞) | sup

1≤s≤t

2D(s)

R
≤ 1
}
, R ≥ 2D(1). (4.8)

Then we have∫ t

1

log
R

D(s)
ds � t log

R

D(t)
(4.9)

for R ∈ [2D(1),∞) and t ∈
[
2 log R

D(1) ,k(R)
]
.

Proof. In the first part of the proof we establish the assertion under the addi-
tional assumption that D is continuously differentiable with D′(t) > 0 for all
t ≥ 1. Let R ∈ [2D(1),∞) and t ∈

[
2 log R

D(1) ,k(R)
]
. Integration by parts

yields that∫ t

1

log
R

D(s)
ds = t log

R

D(t)
− log

R

D(1)
+

∫ t

1

s
D′(s)

D(s)
ds. (4.10)
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The relation “&” in (4.9) readily follows: The integral on the right side is
positive, and by the definition of k(R) we have R

D(t) ≥ 2. For t ≥ 2 log R
D(1) it

follows that∫ t

1

log
R

D(s)
ds ≥

(1

2
· t log

R

D(t)
+

1

2
· 2 log

R

D(1)
· log 2

)
− log

R

D(1)

≥ 1

2
· t log

R

D(t)
.

To show that “.” holds in (4.9) we make a change of variable and use Kara-
mata’s theorem. The inverse function D−1 exists and is continuously differen-
tiable with positive derivative, and is regularly varying with positive index. We
obtain that, for v →∞,∫ v

1

s
D′(s)

D(s)
ds =

∫ D(v)

D(1)

D−1(u)
du

u
∼ (ind D) · v.

As a function of v ∈ [2 log 2,∞), both v and the integral above are continuous
and nonzero. Hence∫ v

1

s
D′(s)

D(s)
ds � v, v ∈ [2 log 2,∞).

Referring to (4.10) and again using that R
D(t) ≥ 2, we obtain∫ t

1

log
R

D(s)
ds ≤ t log

R

D(t)
+

∫ t

1

s
D′(s)

D(s)
ds . t log

R

D(t)
.

The second part of the proof is to reduce to the above settled special case.
Hence, assume that D is given as in the statement of the lemma. Lemma A.9
gives a regularly varying function D1 which is continuously differentiable with
D′1 > 0, such that D � D1 on [1,∞). Dividing D1 by a sufficiently large
constant, we obtain a function D̃ with the properties listed above and

1

α
D(t) ≤ D̃(t) ≤ D(t) for t ≥ 1

for some α ≥ 1.
Clearly, k(R) ≤ k̃(R) (where k̃(R) is defined by (4.8) with D̃ in place of

D). It follows that for t < k(R)

log
R

D(t)
≤ log

R

D̃(t)
≤ log

(
α

R

D(t)

)
≤ log

R

D(t)
+logα ≤

(
1+

logα

log 2

)
log

R

D(t)
.

We see that∫ t

1

log
R

D(s)
ds �

∫ t

1

log
R

D̃(s)
ds � t log

R

D̃(t)
� t log

R

D(t)
.

4.3 Lemma. Let D: [1,∞) → (0,∞) be regularly varying with ind D> 0 and
D� 1 locally. Then we have

R
1
2 tD(t)−

1
2 . k(R) +R

1
2

∫ t

k(R)

D(s)−
1
2 (s) ds . R

1
2

∫ t

1

D(s)−
1
2 ds

for R ∈ [2D(1),∞) and t ∈ [k(R),∞).
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Proof. The asserted estimate from above is easy to see: by Karamata’s theorem
we have

k(R) � R 1
2 k(R)D(k(R))−

1
2 . R

1
2

∫ k(R)

1

D(s)−
1
2 ds.

To obtain an estimate from below, we use Lemma A.9. This gives a regularly
varying function D1 which is continuously differentiable with D′1 > 0 and satis-
fies D� D1. By multiplying D1 with a sufficiently large constant, we obtain a
function D̃ with the properties listed above and

D(t) ≤ D̃(t) ≤ αD(t)

with some α ≥ 1.
Consider the functions

f1(t) := R
1
2 tD̃(t)−

1
2 , f2(t) :=

√
2k(R) +R

1
2

∫ t

k(R)

D̃(s)−
1
2 ds.

Then

f1(k(R)) = R
1
2 k(R)D̃(k(R))−

1
2

≤ R
1
2 k(R)D(k(R))−

1
2 =
√

2k(R) = f2(k(R)),

and, for t > k(R),

f′1(t) = R
1
2 D̃(t)−

1
2 +R

1
2 t

d

dt

(
D̃(t)−

1
2

)
︸ ︷︷ ︸

<0

≤ R 1
2 D̃(t)−

1
2 = f′2(t).

We see that

f1(t) ≤ f2(t) for t ≥ k(R).

It remains to note that

f1(t) & R
1
2 tD(t)−

1
2 , f2(t) . k(R) +R

1
2

∫ t

k(R)

D(s)−
1
2 ds.

4.4 Lemma. Consider regularly varying functions dl,dφ, D as introduced in

the discussion preceding Theorem 4.1. Suppose that
∫∞
1

D(s)−
1
2 ds < ∞. If

δφ = δl = 1, we also assume that
dφ
dl

is bounded or � to a nondecreasing
function. Then for sufficiently large R we have, independently of t, that

g(t, R) . R
1
2

∞∫
k(R)

D(s)−
1
2 ds.

Proof. We distinguish cases.
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. Assume that
dφ
dl

is bounded, i.e., h(R) =∞ for all sufficiently large R. This
is surely the case if δl < δφ.

By Karamata’s theorem

k(R) =
√

2R
1
2 k(R)D(k(R))−

1
2 . R

1
2

∫ ∞
k(R)

D(s)−
1
2 ds.

Now it follows that, for all t ≥ k(R),

g(t, R) � k(R) +R
1
2

t∫
k(R)

D(s)−
1
2 ds . R

1
2

∞∫
k(R)

D(s)−
1
2 ds.

. Assume that
dφ
dl

is � to a nondecreasing function. This is surely the case if
δl > δφ.

If R is large enough and t > h(R),

Rdl(t) =

(
Rdl(t)

dφ(t)

) 1
2

·
[
R(dldφ)(t)

] 1
2 .

[
R(dldφ)(t)

] 1
2 .

We see that also in this case,

g(t, R) �k(R) +R
1
2

min{t,h(R)}∫
k(R)

D(s)−
1
2 ds+R

t∫
min{t,h(R)}

dl(s) ds

.R
1
2

∞∫
k(R)

D(s)−
1
2 ds.

. Assume that δl = δφ > 1.

By Karamata’s theorem,

R

∫ ∞
h(R)

dl(s) ds � Rh(R)dl(h(R)) � h(R)dφ(h(R)).

Since δφ > 1, the function t 7→ tdφ(t) is eventually decreasing. Since it is
locally bounded, it is even bounded on [1,∞). Again we see that g(t, R) .

R
1
2

∞∫
k(R)

D(s)−
1
2 ds independently of t.

4.5 Lemma. In the situation of Theorem 4.1, the inequality

min
{
g(s,R),

R

C(s)

}
. B(R) ≤ B(t, R) = max

{
g(t, R),

R

C(t)

}
(4.11)

holds for (s, t, R) ∈ [1,∞)2 × [ 2
(dldφ)(1)

,∞). In particular, if τ(R) is a function

satisfying g(τ(R), R) � R
C(τ(R)) , then

B(R) � g(τ(R), R) � R

C(τ(R))
.
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Proof. The upper bound in (4.11) is obvious from the definition of B(t, R) and
B(R). For the lower bound, we observe that

s ≤ t ⇒ g(s,R) ≤ g(t, R),

s > t ⇒ R

C(s)
.

R

C(t)

and hence

min
{
g(s,R),

R

C(s)

}
. B(t, R) (s, t) ∈ [1,∞)2.

Taking the infimum over t proves the lower bound in (4.11).

Now we are ready for the proof of Theorem 4.1.

Proof of Case A . We have indf= 1 + γ > 0, and hence f− exists. Set

τ(R) := f−
( 1

α
R
)
.

Then, for R→∞,

1

α
R ∼ f(τ(R)) = τ(R)C(τ(R)) log

[
α
τ(R)C(τ(R))

D(τ(R))

]
,

and hence

R

D(τ(R))
∼
(
α
τ(R)C(τ(R))

D(τ(R))

)
log
[
α
τ(R)C(τ(R))

D(τ(R))

]
.

Our choice of α implies that 2D(τ(R)) ≤ R for all sufficiently large values of R,
and therefore that τ(R) ≤ k(R) for such R.

It holds that

t

log t
◦ t log t � t for t ≥ 4,

and we further obtain

R
D(τ(R))

log
(

R
D(τ(R))

) � τ(R)C(τ(R))

D(τ(R))
.

Using this and Lemma 4.2, thus

R

C(τ(R))
� τ(R) log

( R

D(τ(R))

)
� g(τ(R), R).

In view of Lemma 4.5, this completes the proof of (4.4).
To see the additional statements, note first that

ind
R

C(f−(R))
= 1− γ · 1

1 + γ
=

1

1 + γ
.

Further δ < 1 + γ implies ind tC(t)
D(t) > 0, and thus log

(
α tC(t)

D(t)

)
� log t.
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Proof of Case B . To obtain the bound from below, we use Lemma 4.2 and our
assumption that tC(t) . D(t). Setting t = k(R) � D−(R), we find that

g(k(R), R) � k(R),
R

C(k(R))
� R

C(D−(R))
& D−(R) � k(R).

Now we prove the upper bound for B(R). If Lemma 4.4 is applicable, then

g(t, R) . R
1
2

∞∫
k(R)

D(s)−
1
2 ds.

Choosing τ(R) so large that R
C(τ(R)) is less than the right hand side of this

relation, we see that

B(R) ≤ B(τ(R), R) . R
1
2

∞∫
k(R)

D(s)−
1
2 ds.

If Lemma 4.4 is not applicable, we must have δl = δφ = 1 and γ > 0. Choose ρ
so large that

indk =
1

δ
> 1− γρ = ind

(
R

C(Rρ)

)
.

Since
dφ
dl

is slowly varying, we have Rρ . h(R), cf. Lemma A.8. Therefore,

g(h(R), R) & k(R)� R

C
(
Rρ
) ≥ R

C(h(R))
.

We thus obtain

B(R) . B(h(R), R) � g(h(R), R) . R
1
2

∞∫
k(R)

D(s)−
1
2 ds.

To see the additional statements, note first that indk = 1
δ and also

ind
(
R

1
2

∫ ∞
k(R)

D(s)−
1
2 ds

)
=

1

2
+

1

δ
·
(

1− δ

2

)
=

1

δ
.

Further, δ > 2 implies that

R
1
2

∫ ∞
k(R)

D(s)−
1
2 ds � R 1

2 k(R)D(k(R))−
1
2 � k(R).

Proof of Case C . We have

indf0 = 2− δ + 2γ, indf1 = 2
(
γ +

(
1− δ

2

))
= 2− δ + 2γ.
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Since D−
1
2 is not integrable, we must have δ ≤ 2. The case that δ = 2 and

γ = 0 is ruled out by assumption, and it follows that 2 − δ + 2γ > 0. Thus,
asymptotic inverses f−0 and f−1 exist.

To prove the bound from below, we use f−0 (R) pushed into the interval
[k(R),h(R)], namely we set

τ(R) := min
{

max
{
f−0 (R),k(R)

}
,h(R)

}
.

Our assumption that 1
dl(t)

. tC(t) . D(t) gives

dφ(t)

dl(t)
. f0(t) . D(t),

and hence k(R) . f−0 (R) . h(R). Thus, τ(R) � f−0 (R).
Using Lemma 4.3 we obtain

g(τ(R), R) & R
1
2 τ(R)D(τ(R))−

1
2 � R 1

2f−0 (R)D(f−0 (R))−
1
2 .

On the other hand, the definition of f0 yields for R→∞ that

R ∼ f0(f−0 (R)) =
f−0 (R)2C(f−0 (R))2

D(f−0 (R))
,

and hence

R
1
2

C(f−0 (R))
∼ f−0 (R)D(f−0 (R))−

1
2 .

Together, thus,

min
{
g(τ(R), R),

R

C(τ(R))

}
& R

1
2f−0 (R)D(f−0 (R))−

1
2 � R

C(f−0 (R))
.

For the proof of the upper bound we use

τ(R) := min
{

max
{
f−1 (R),k(R)

}
,h(R)

}
.

Since f0 . f1 we have f−1 . f−0 . h, and therefore f−1 (R) . τ(R). This readily
implies that

R

C(τ(R))
.

R

C(f−1 (R))
.

To estimate g(τ(R), R) we distinguish two cases. First assume that f−1 (R) ≤
k(R). Then τ(R) = k(R), and hence

g(τ(R), R) � k(R) .
R

C(k(R))
≤ R

C(f−1 (R))
.

Second assume that f−1 (R) ≥ k(R). Then τ(R) ≤ f−1 (R). We use Lemma 4.3
to obtain

g(τ(R), R) . R
1
2

∫ τ(R)

1

D(s)−
1
2 ds . R

1
2

∫ f
−
1 (R)

1

D(s)−
1
2 ds.
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The last integral can be evaluated from the definition of f1: for R→∞

R ∼ f1(f−1 (R)) =
(
C(f−1 (R))

∫ f
−
1 (R)

1

D(s)−
1
2 ds

)2
,

and hence∫ f
−
1 (R)

1

D(s)−
1
2 ds ∼ R

1
2

C(f−1 (R))
.

Altogether we see that always

max
{
g(τ(R), R),

R

C(τ(R))

}
.

R

C(f−1 (R))
.

This completes the proof of (4.6).
To see the additional statements, recall that indf0 = indf1 = 2 − δ + 2γ.

This implies that

ind
R

C(f−0 (R))
= ind

R

C(f−1 (R))
= 1− γ · 1

2− δ + 2γ
=

2− δ + γ

2− δ + 2γ
.

Further, δ < 2 implies that
∫ t
1
D(s)−

1
2 ds � tD(t)−

1
2 , and hence f0 � f1.

Proof of Case D . The first thing to show is that
dφ
dl

is unbounded: if we had

dφ(t) . dl(t), it would follow that

D(t)−
1
2 =

√
dl(t)dφ(t) . dl(t),

and this contradicts the fact that dl(t) is integrable while D−
1
2 (t) is not.

To show the bound from below asserted in (4.7), we note that

g(h(R), R) & R
1
2 h(R)D(h(R))−

1
2

by Lemma 4.3, and that

R

C(h(R))
& Rh(R)dl(h(R))

by our assumption that tC(t) . 1
dl(t)

. Since R � dφ
dl

(h(R)) for R → ∞, we

obtain

Rh(R)dl(h(R)) � R 1
2 h(R)

(dφ(h(R))

dl(h(R))

) 1
2

dl(h(R)) = R
1
2 h(R)D(h(R))−

1
2 ,

and see that

min
{
g(h(R), R),

R

C(h(R))

}
& Rh(R)dl(h(R)).

For the proof of the bound from above, we show that g(t, R) is bounded inde-
pendently of t ≥ h(R). Using again Lemma 4.3, we find

g(t, R) = g(h(R), R) +R

∫ t

h(R)

dl(s) ds
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.R
1
2

∫ h(R)

1

D(s)−
1
2 ds+R

∫ ∞
h(R)

dl(s) ds.

It remains to choose τ(R) sufficiently large, so that R
C(τ(R)) ≤ g(τ(R)), R),

which is clearly possible. This completes the proof of (4.7).
To see the additional statements, assume first that δl > δφ. Then h(R) is

regularly varying with index 1
δl−δφ . We obtain

ind
(
Rh(R)dl(h(R))

)
= 1 +

1

δl − δφ
− δl
δl − δφ

=
1− δφ
δl − δφ

.

By Karamata’s theorem

ind
(
R

1
2

∫ h(R)

1

D(s)−
1
2 ds

)
=

1

2
+
(
1− δ

2

) 1

δl − δφ
=

1− δφ
δl − δφ

,

ind
(
R

∫ ∞
h(R)

dl(s) ds
)

= 1 + (1− δl)
1

δl − δφ
=

1− δφ
δl − δφ

.

Further, again referring to Karamata’s theorem, δ < 2 implies

R
1
2

∫ h(R)

1

D(s)−
1
2 ds � R 1

2 h(R)D(h(R))−
1
2 � Rh(R)dl(h(R)),

and δl > 1 implies

R

∫ ∞
h(R)

dl(s) ds � Rh(R)dl(h(R)).

4.2 Bound for the monodromy matrix

We combine Theorem 2.2 with Theorem 4.1 to obtain a bound for the growth
of WH when the lengths and angle differences of H are bounded by regularly
varying functions. This yields a far reaching generalisation of Corollary 2.5.

4.6 Theorem. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and

(φj)
∞
j=1 a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles, and let WH be its monodromy matrix.
Let ψ ∈ R and let dl,dφ, cl, cφ be regularly varying functions that are ≈ to

some nonincreasing functions, such that dl � 1 � dφ locally, cφ(t) . cl(t) for
sufficiently large t, ind dl + ind dφ < 0, and limt→∞

(
clcφ

)
(t) = 0. Assume

that

lj . dl(j), | sin(φj+1 − φj)| . dφ(j), j sufficiently large,
∞∑

j=N+1

lj . cl(N),

∞∑
j=N+1

lj sin2(φj − ψ) . cφ(N), N sufficiently large.

Denote

D(t) :=
1

(dldφ)(t)
, δ := ind D, C(t) :=

1

(clcφ)
1
2 (t)

, γ := ind C.
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Then we have the following bounds for WH and its order ρH .

Data satisfies log
(

max|z|=R ‖WH(z)‖
)

is . ρH ≤

D(t) . tC(t) R
C(f−(R)) where

f(t) := tC(t) log
[
α tC(t)

D(t)

] 1
1+γ

α := 4 supt≥1
D(t)
tC(t)

tC(t) . D(t),
∞∫
1

D(s)−
1
2 ds <∞,

R
1
2

∞∫
k(R)

D(s)−
1
2 ds 1

δ
(γ > 0 or

dφ
dl
≈ to nondecreasing)

∞∫
1

D(s)−
1
2 ds =∞, 1

dl(t)
. tC(t), R

C(f−1 (R))
where

2−δ+γ
2−δ+2γ

(δ, γ) 6= (2, 0) f1(t) := [C(t)
∫ t
1
D(s)−

1
2 ds]2

tC(t) . 1
dl(t)

,
R

1
2

h(R)∫
1

D(s)−
1
2 ds

1−δφ
δl−δφ∞∫

1

dl(s) ds <∞,

δl>δφ
+R

∞∫
h(R)

dl(s) ds

In each case the relation . holds for R sufficiently large.

The main assumptions on the data dl,dφ, cl, cφ put in this theorem are that
those functions are regularly varying and that ind dl + ind dφ < 0 (i.e., 6= 0).
Monotonicity assumptions are only a minor restriction: for example they are
automatically fulfilled whenever the function under consideration is not slowly
varying. The assumption that cφ . cl is no loss in generality, since replacing
cφ by min{cφ, cl} does not affect validity of any of the other assumptions.

Proof of Theorem 4.6.

À Observe that neither the assumptions of the theorem nor the case distinction
in the assertion of the theorem depends on the equivalence class modulo ≈ of the
functions dl,dφ, cl, cφ. Further, using Remark A.7, we see that the functions
written in the second column of the table change only up to ≈ when we pass to
other data equivalent modulo ≈ to dl,dφ, cl, cφ.

Hence, it is enough to prove the theorem for suitable modifications
d̂l, d̂φ, ĉl, ĉφ of dl,dφ, cl, cφ which differ only up to ≈.

Á The task is to define d̂l, d̂φ, ĉl, ĉφ in such a way that Theorem 2.2, Proposi-
tion 3.9, and Theorem 4.1 become applicable. To this end we use Lemma A.10
and the freedom of choice of nonincreasing smoothenings mentioned in Re-
mark A.11.

We choose S[cφ] such that

∀N ∈ N:
∞∑

j=N+1

lj sin2(φj − ψ) ≤ S[cφ](N),

which is clearly possible by first choosing an arbitrary nonincreasing smoothen-
ing of cφ and then multiplying it with a sufficiently large positive constant.
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Next, we choose S[cl] such that

S[cφ] ≤ S[cl], ∀N ∈ N:
∞∑

j=N+1

lj ≤ S[cl](N).

A suitable modification of dφ is found as follows. If lim inft→∞ dφ(t) > 0, we
choose S[dφ] := 1 (which corresponds to the choices ε[dφ] := 0 and κ[dφ] := 1).
If limt→∞ dφ(t) = 0, we choose S[dφ] such that

S[dφ] ≤ 1, ∀j ∈ N: | sin(φj+1 − φj)| ≤ S[dφ](j),

which is possible by choosing an arbitrary nonincreasing smoothening of dφ,
then multiplying it with a sufficiently large positive constant, and then cutting
it off at 1.

It remains to define a modification of dl. In the generic case that γ > 0 we
proceed just the same as above and choose S[cl] such that

∀j ∈ N: lj ≤ S[dl](j). (4.12)

In the boundary case that γ = 0 we make a further case distinction. If we are
in the situation of the 1st or the 3rd row of the table in the theorem, we do
just the same as above. If we are in the situation of the 2nd or the 4th row,
the additional assumption ensures that dl

dφ
is ≈ to some nonincreasing function,

and we choose

S[dl] := S[dφ] · S
[ dl
dφ

]
,

where S
[
dl
dφ

]
is sufficiently large to ensure that (4.12) holds.

Now we set

d̂l := S[dl], d̂φ := S[dφ], ĉl := S[cl], ĉφ := S[cφ].

Â We apply our previous results with the data d̂l, d̂φ, ĉl, ĉφ. Here we denote

by B̂(R), L̂(t, R), B̂(R), etc. the correspondingly defined functions.

Theorem 2.2 implies that

log
(

max
|z|=R

‖WH(z)‖
)
. B̂(R),

and we face the task to control L̂(t, R). In almost all cases Proposition 3.9 takes
care of this:

. Proposition 3.9 (i) applies if δφ > δl, or if γ = 0 and we are in the situation
of the 2nd row of the table.

. Proposition 3.9 (ii) applies if γ > 0 and δφ < δl.

. Proposition 3.9 (iii) applies if γ > 0 and δφ = δl.
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Thus, in all of these cases, B̂(R) � B̂(R), and the bounds asserted in the second
column of the table follows from Theorem 4.1.

It remains to study the situation that γ = 0, δφ ≤ δl, and we are in the 1st

or 3rd row of the table. Applying Corollary 3.7 (ii) if δφ < δl and Lemma 3.8 if
δφ = δl, yields

L̂(t, R) . 1 + log t.

Let τ(R) be the power bounded function used in Theorem 4.1 A C to estimate

B̂(R). Then

B̂(R) ≤ B̂(τ(R), R) + L̂(τ(R), R) . B̂(τ(R), R).

The bounds asserted in the second column of the table thus follow from Theo-
rem 4.1.

Ã The bounds for ρH arise simply by taking the indices of the regularly varying
functions in the second column.

In the following corollary we revisit the setting of Theorem 4.6, except we are
not given functions cl, cφ.

4.7 Corollary. Let H be a Hamburger Hamiltonian and let dl,dφ be regularly
varying. Assume that dφ(t) is ∼ to a nonincreasing function as t → ∞ and
that dl � 1 � dφ locally.

Assume that the lenghts and angles of H are bounded as

lj . dl(j), | sin(φj+1 − φj)| . dφ(j) for sufficiently large j,

and that dl ∈ L1([1,∞)). Then the following statements hold.

. If δ > 2, then log
(

max|z|=R ‖WH(z)‖
)
. k(R).

. If 0 < δ < 2, then log
(

max|z|=R ‖WH(z)‖
)
. R

∞∫
h(R)

dl(x) dx.

. If 0 < δ ≤ 2, δl > 1, and there exists ψ ∈ R such that | sin(φj − ψ)| .
| sin(φj+1 − φj)|, then again log

(
max|z|=R ‖WH(z)‖

)
. k(R).

. If δ = 2 and (δl, δφ) 6= (1, 1), then ρH ≤ 1
2 .

Proof. Our goal is to apply Theorem 4.6, and in order to do that we need to
construct suitable functions cl, cφ. Note that the assumption dl ∈ L1([1,∞))
implies δl ≥ 1.

À Without any a priori assumption, we can set

cl(t) := cφ(t) :=

∫ ∞
t

dl(x) dx & tdl(t).

Then dl,dφ together with cl, cφ satisfy the general assumptions of Theorem 4.6.
We have

tC(t) .
1

dl(t)
. D(t)
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and γ = δl − 1 ≥ 0. This choice of cl, cφ is sufficient to prove the asserted
bounds in the following cases:

. δ > 2 ∧ δl > 1. Since γ > 0, Theorem 4.6 gives the upper bound

R
1
2

∞∫
k(R)

D(s)−
1
2 ds � k(R).

. δ < 2. Then δφ = δ − δl < 1 ≤ δl, hence
dφ
dl

has positive index and is
eventually nondecreasing. Since

R
1
2

h(R)∫
1

D(s)−
1
2 ds � R 1

2 h(R)D(h(R))−
1
2 . R

∫ ∞
h(R)

dl(s) ds,

Theorem 4.6 gives the asserted upper bound.

. δ = 2 ∧ δl > 1. Then we are either in the second or fourth row of Theo-
rem 4.6, but in both cases the upper bound for the order is equal to 1

2 .

Á Assume δ > 2 and δφ > 1. This implies that
∑∞
j=1 | sin(φj+1 − φj)| < ∞.

We want to choose ψ := limj→∞ φj , so we need to prove that this limit ac-
tually exists (at least if the angles φj are all modified by adding integer mul-
tiples of π which leaves H unchanged). Start by choosing n0 so large that∑∞
j=n0

| sin(φj+1 − φj)| ≤ π
8 . Adding to φj an integer multiple of π, we may

assume |φj − φn0
| ≤ π

2 for all j ∈ N. Since |x| ≤ 2| sin(x)| for |x| ≤ π
2 , and

| sin(x+ y)| ≤ | sin(x)|+ | sin(y)|, we have for j > k ≥ n0
|φj − φk| ≤ |φj − φn0 |+ |φn0 − φk| ≤ 2

(
| sin(φj − φn0)|+ | sin(φn0 − φk)|

)
≤ 4

∞∑
n=n0

| sin(φn+1 − φn)| ≤ π

2
.

Therefore,

|φj − φk| ≤ 2| sin(φj − φk)| ≤ 2

j−1∑
n=k

| sin(φn+1 − φn)|

and thus (φj)
∞
j=1 is a Cauchy sequence. Let ψ be its limit. We set

cl(t) :=

∫ ∞
t

dl(x) dx, cφ(t) := cl(t) ·
(∫ ∞

t

dφ(x) dx
)2

and observe that dl,dφ together with cl, cφ satisfy the assumptions of Theo-
rem 4.6. A calculation shows that γ = δ − 2 > 0. Hence ind[tC(t)| = δ − 1 < δ
and in particular tC(t)� D(t). Again Theorem 4.6 provides the desired upper
bound.

Â Assume that we have ψ ∈ R such that |φj −ψ| . |φj+1−φj |, and δl > 1. Set

cl(t) :=

∫ ∞
t

dl(x) dx � tdl(t),

cφ(t) :=

∫ ∞
t

dl(x)dφ(x)2 dx � tdl(t)dφ(t)2.

Then tC(t) � D(t) and we are in the first row of Theorem 4.6. Now we note
that the bound given in the theorem is � to k(R).
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5 Additions and examples

5.1 Combining with a bound from below

In the same way that upper bounds for lengths and angle differences lead to
upper bounds for the growth of the monodromy matrix, lower bounds lead to
lower bounds. We recall a result obtained in [PW22, Corollary 2.5].

5.1 Proposition. Let H be a Hamburger Hamiltonian with lengths (lj)
∞
j=1 and

angles (φj)
∞
j=1, and let f be regularly varying with positive index. If

lj+1lj sin2(φj+1 − φj) &
1

f(j)
, j ∈ N, (5.1)

then

log
(

max
|z|=R

‖WH(z)‖
)
& f−(R2)

for sufficiently large R.

Let us translate Proposition 5.1 to the setting where we compare the lengths
and the angle differences to regularly varying functions dl,dφ.

5.2 Corollary. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and let

(φj)
∞
j=1 be a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles, and let WH be its monodromy matrix. Assume
that dl,dφ are regularly varying and satisfy

∀j ∈ N. lj & dl(j) | sin(φj+1 − φj)| & dφ(j).

Then

log
(

max
|z|=R

‖WH(z)‖
)
&
[ 1

dldφ

]−
(R)

for sufficiently large R.
In particular, the order of WH is at least 1

δ , where δ := −(ind dl + ind dφ).

Proof. Since dl is regularly varying, we have dl(t+1) ∼ dl(t). Setting D(t) :=
1

(dldφ)(t)
, we see that (5.1) is satisfied for f(t) := D(t)2. Since f−(t) = D−(t

1
2 ),

we obtain

log
(

max
|z|=R

‖WH(z)‖
)
& f−(R2) = D−(R) =

[ 1

dldφ

]−
(R).

If the lengths and angle differences are well-behaved and summable, the growth
of WH can be determined up to �. Note that no functions cl, cφ appear in the
formulation of the following theorem.

5.3 Theorem. Let (lj)
∞
j=1 be a summable sequence of positive numbers, and let

(φj)
∞
j=1 be a sequence of real numbers. Denote by H the Hamburger Hamiltonian

with these lengths and angles. Consider regularly varying functions dl,dφ with
dl � 1 � dφ locally. If
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(i) lj � dl(j) and | sin(φj+1 − φj)| � dφ(j) for sufficiently large j,

(ii) δ := −
(

ind dl + ind dφ
)
> 2,

then

log
(

max
|z|=R

‖WH(z)‖
)
�
[ 1

dldφ

]−
(R) for sufficiently large R,

and

ρH =
1

δ
.

Proof. Due to Corollary 5.2, we only need to show that

log
(

max
|z|=R

‖WH(z)‖
)
.
[ 1

dldφ

]−
(R).

We notice that ind dl ≤ −1 since (lj)
∞
j=1 is summable. Hence dl is ∼ to an

eventually monotone function, and thus∫ ∞
M

dl(x) dx .
∞∑
j=M

dl(j) .
∞∑
j=M

lj <∞.

Since dl � 1 locally, this shows that dl ∈ L1([1,∞)). By Corollary 4.7,

log
(

max
|z|=R

‖WH(z)‖
)
. k(R) �

[ 1

dldφ

]−
(R).

5.2 Power-log-majorisations and exceptional cases

By considering dl,dφ, cl, cφ consisting of a power times a power of a logarithm,
we can gain some insight into the exceptional cases of our results. For data of
this form all functions occurring in our results can in principle be computed
explicitly. We do not aim at giving a complete picture, but rather give a couple
of illustrative examples. It should also be added that not all phenomena (coun-
terexamples, exceptional cases, or similar) can be illustrated with functions of
this form; one would have to admit an additional double-logarithmic factor.

The facts presented below are shown by straightforward, yet tedious and
elaborate, computations. For this reason we defer all proofs to the preprint
version of this article [PRW23].

It is practical to use the lexicographic order on R2, and we denote it by �.
Explicitly, thus

(α, β) � (α′, β′) :⇔ α < α′ ∨
(
α = α′ ∧ β ≤ β′

)
and, as ususal, ≺ stands for “� but not =”.

5.4 Setting and Notation. Assume we are given parameters

(δl, αl), (δφ, αφ), (γl, βl), (γφ, βφ) ∈ [0,∞)× R,

and denote

δ := δl + δφ, α := αl + αφ, γ :=
1

2
(γl + γφ), β :=

1

2
(βl + βφ).

Assume that these parameters satisfy
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. (δl, αl), (δφ, αφ), (γl, βl), (γφ, βφ) � (0, 0),

. δ > 0, (γ, β) � (0, 0),

. (γl, βl) � (γφ, βφ).

Let dl,dφ, cl, cφ be continuous and nonincreasing functions, such that dφ ≤ 1,
cφ ≤ cl, and that (for sufficiently large t)

dl(t) = t−δl(log t)−αl , dφ(t) = t−δφ(log t)−αφ ,

cl(t) = t−γl(log t)−βl , cφ(t) = t−γφ(log t)−βφ .

We compute some of the basic ingredients. Here, and throughout the following,
all formulas are understood to hold for sufficiently large t or R.

5.5 Lemma. We have

(i) D(t) = tδ(log t)α, C(t) = tγ(log t)β,

dφ(t)

dl(t)
= tδl−δφ(log t)αl−αφ ,

cl(t)

cφ(t)
= tγφ−γl(log t)βφ−βl .

(ii) k(R) ≈ R 1
δ (logR)−

α
δ ,

h(R) =∞ ⇔ (δl, αl) � (δφ, αφ),

h(R) ≈

R
1

δl−δφ (logR)
−
αl−αφ
δl−δφ if δl > δφ,

exp
(
R

1
αl−αφ

)
if δl = δφ ∧ αl > αφ.

5.6 Lemma. We have∫ ∞
1

D(s)−
1
2 ds <∞ ⇔ (δ, α) � (2, 2)

∫ ∞
t

D(s)−
1
2 ds =

{
1

δ
2−1
· t1− δ2 (log t)−

α
2 if δ > 2

1
α
2−1
· (log t)1−

α
2 if δ = 2 ∧ α > 2

∫ t

1

D(s)−
1
2 ds ∼


1

1− δ2
· t1− δ2 (log t)−

α
2 if δ < 2,

1
1−α2

· (log t)1−
α
2 if δ = 2 ∧ α < 2,

log log t if δ = α = 2.

In our first example we discuss the role of the term L(t, R); this fits the context
of Proposition 3.9. We show that there are situations where L(t, R) cannot be
neglected, but also that the assumptions in Proposition 3.9 are only sufficient
for B(R) � B(R).
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5.7 Example. Assume that

(δl, αl) ≺ (δφ, αφ), γ = 0, (δ, α) � (2, 2). (5.2)

The first assumption is there to rule out applicability of Proposition 3.9 (i),
the second to rule out applicability of Proposition 3.9 (ii),(iii), and the third to
reduce computational effort (the facts we want to illustrate occur already under
this additional assumption).

For parameters subject to (5.2) it holds that

B(R) �

{
R

1
2 (logR)1−

α
2 if δ = 2,

R
1
δ (logR)−

α
δ if δ > 2.

(5.3)

B(R)

{
� B(R) if δl = δφ ∨ β > 1 ∨ (β = δ − 1 > 1 ∧ α < 0),

� R
1

1+β � B(R) otherwise .
(5.4)

In our second example we discuss the bounds from Theorem 4.1 C . We show
that they are sharp but need not necessarily be attained.

5.8 Example. Assume that

(δl, αl) � (1 + γ, β) � (δ, α), δ = 2, α ≤ 2, γ > 0. (5.5)

These assumptions ensure that we are in the situation of Theorem 4.1 C and
that in (4.6) we do not automatically have equality.

For parameters subject to (5.5) it holds that

R

C(f−0 (R))
� R 1

2 (logR)−
α
2 � k(R), (5.6)

R

C(f−1 (R))
�

{
R

1
2 (logR)1−

α
2 if α < 2,

R
1
2 log logR if α = 2.

(5.7)

B(R) �


R

1
2 (logR)1−

α
2 if γ < 1,

R
1
2 (logR)−

α
2 log logR if γ = 1 ∧ α > β,

R
1
2 (logR)−

α
2 if γ = 1 ∧ α = β.

(5.8)

We see that

. B(R) � R
C(f−1 (R))

if γ < 1 ∧ α < 2,

. R
C(f−0 (R))

� B(R)� R
C(f−1 (R))

if γ < 1 ∧ α = 2 or γ = 1 ∧ α > β,

. B(R) � R
C(f−0 (R))

if γ = 1 ∧ α = β.
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In our third example we discuss the exceptional case “(δ, γ) = (2, 0)” in the third
row of the table in Theorem 4.6. We show that in some cases (interpreting f−1
appropriately) the written bound still holds and is even attained by B(R), while
in others B(R) is strictly larger due to domination of L(t, R).

5.9 Example. Assume that

(δl, αl) � (1, 1 + β), (δ, γ) = (2, 0), α ≤ 2. (5.9)

These assumptions ensure that the exceptional case from the third row of the

table in Theorem 4.6 (and also of Theorem 4.1 C ) takes place. Note that (5.9)
implies that δl ≤ δφ. Moreover, β > 0 since (γ, β) � (0, 0).

For parameters subject to (5.9) it holds that

B(R) �

{
R

2−α+β
2−α+2β if α < 2,

R
1
2 logR if α = 2,

and

B(R)

{
� B(R) if δl = δφ ∨ (δl < δφ ∧ α ≤ 1 + β),

� R
1

1+β � B(R) if δl < δφ ∧ α > 1 + β.

Observe, moreover, that the bound for order in the third row of the table in
Theorem 4.6 has no continuous extension to (2, 0); its directional limits vary
from 1

2 to 1. The above formula shows that the actual order of the bound B(R)
has nothing to do with (δ, γ) (being equal to (2, 0)). Yet, it is sometimes given
by the same formula, only with the “logarithmic exponents” α, β instead of δ, γ.
Also note that the exponent 1

1+β also occurred in Example 5.7.

5.3 Two corollaries given in terms of Jacobi parameters

We present two applications of Theorem 5.3 in which we return to the regime
of power moment problems. The first is a supplement to a result from [Pru20],
and in the second we give examples where the Nevanlinna matrix has prescribed
growth.

At this point we need the concrete formulae relating Jacobi parameters with
Hamiltonian parameters. They read as

1

bn
= sin(φn+1 − φn)

√
ln+1ln,

an = − 1

ln

[
cot(φn+1 − φn) + cot(φn − φn−1)

]
,

(5.10)

where the angles are chosen such that φn+1 − φn ∈ [0, π), cf. [Kac99]. Given
the Jacobi parameters, it is in general hard to solve the equations (5.10) for
the Hamiltonian parameters. Under the assumption that bn, an have a certain
power-like asymptotic, the approximate size of ln and | sin(φn+1 − φn)| can be
determined.

5.10 Corollary. Let an ∈ R and bn > 0 be sequences which have asymptotics

bn =nσ
(
|y0|
2

+
x1
n

+
x2
n2

+ O
( 1

n2+ε

))
,
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an =nσ
(
y0 +

y1
n

+
y2
n2

+ O
( 1

n2+ε

))
,

where

σ > 2, y0 6= 0, x1, x2, y1, y2 ∈ R, ε > 0.

Assume that the moment problem with these Jacobi parameters is indeterminate,
and let W (z) be its Nevanlinna matrix. Then

log
(

max
|z|=R

‖W (z)‖
)
� R 1

σ .

Before we come to the proof, let us put this statement in the right context.
It deals with the critical situation that off-diagonal and diagonal of the Jacobi
matrix are comparable with ratio 2. This setting was considered in [Pru20,
Theorem 2]. In that theorem occurrence of limit circle case was characterised
in terms of the data of the expansions, and it was shown that W (z) is of order
1
σ with positive type. The significance of Corollary 5.10 is that now we know
that W (z) is also of finite type.

Proof. In the proof of [Pru20, Theorem 2] it was shown that

ln � λ(n)2, | sin(φn+1 − φn)| � 1

nσλ(n)2
,

where λ is a function of the form λ(t) = nτ or λ(t) = nτ log t with some τ ∈
[−σ2 ,−

1
2 ). The assumptions of Theorem 5.3 are thus satisfied with dl(t) := λ(t)2

and dφ(t) := 1
nσλ(n)2 . Applying this theorem yields

log
(

max
|z|=R

‖W (z)‖
)
�
[ 1

dldφ

]−
(R) � R 1

σ .

We come to our second corollary, where we produce a variety of examples with
prescribed growth of the Nevanlinna matrix (slower than the threshold R

1
2 ).

Thereby, the speed of growth is always determined by the off-diagonal, and the
diagonal can be as large or as small as we please.

5.11 Corollary. Let g be regularly varying with ind g ∈ (0, 12 ).

(i) Let ω ∈ [−2, 2]. Then there exist Jacobi parameters bn and an, such that

bn ∼ g−(n),
an
bn
→ ω, log

(
max
|z|=R

‖W (z)‖
)
� g(R).

(ii) Let ωn 6= 0, ωn → 0, be such that limn→∞
ωn−1

ωn
exists in (−1,∞). Then

there exist Jacobi parameters bn and an, such that

bn ∼ g−(n),
an
bn
∼ ωn, log

(
max
|z|=R

‖W (z)‖
)
� g(R).
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The condition in (i) that |ω| ≤ 2 is no restriction, since otherwise we could not
have limit circle case by Wouk’s theorem.

Proof. We specify lengths and angles, which is done differently in different cases.

. Assume that ω ∈ (−2, 2). Let ψ ∈ (0, π) be such that cosψ = −ω2 , and set

ln :=
1

sinψ · g−(n)
, φn+1 := nψ, n ∈ N,

so that φn+1 − φn = ψ.

. Assume that ω = −2. Set

ln :=
n

g−(n)
, φn+1 :=

n∑
k=1

1

k
, n ∈ N,

so that φn+1 − φn = 1
n .

. Assume that ω = 2. Set

ln :=
n

g−(n)
, φn+1 := nπ −

n∑
k=1

1

k
, n ∈ N,

so that φn+1 − φn = π − 1
n .

. Assume that ωn 6= 0, ωn → 0, and γ := limn→∞
ωn−1

ωn
exists in (−1,∞). Set

ln :=
1

g−(n)
, φn+1 := n

π

2
+

1

2(1 + γ)

n∑
k=1
|ωn|<π

ωn, n ∈ N,

so that φn+1 − φn = π
2 + ωn

2(1+γ) for all sufficiently large n.

Let bn and an be the Jacobi parameters given by (5.10). Then, in all cases,
bn ∼ g−(n). Multiplying the two equations from (5.10), shows that

an
bn

= −
√
ln+1

ln
·
(

cos(φn+1 − φn) + cos(φn − φn−1)
sin(φn+1 − φn)

sin(φn − φn−1)

)
,

and this implies the asserted property of an
bn

. Finally, we apply Theorem 5.3
with the obvious choices for dl,dφ to obtain that

log
(

max
|z|=R

‖W (z)‖
)
� g(R).
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Appendix A. Regularly varying functions

In complex analysis the growth of an analytic function is compared with func-
tions of the form exp(a(r)). The most classical comparison functions are powers
a(r) = rρ, and this leads to the notions of order and type. A refined compari-
son scale was introduced already at a very early stage by E.Lindelöf [Lin05] who
considered comparison functions behaving for r →∞ like

rα ·
(
log r

)β1 ·
(
log log r

)β2 · . . . ·
(
log · · · log︸ ︷︷ ︸
mth iterate

r
)βm

,

where α > 0 and β1, . . . , βm ∈ R. Functions which are nowadays commonly used
as comparison functions are regularly varying functions in Karamata sense, cf.
[BGT89, Chapter 7] (for other levels of generality see also [Lev80; Rub96]).
Lindelöf’s comparison functions are examples of functions of that kind.

Let us now recall Karamata’s definition of regular variation.

A.1 Definition. A function a: [1,∞) → (0,∞) is called regularly varying at
∞ with index α ∈ R, if it is measurable and

∀λ ∈ (0,∞): lim
r→∞

a(λr)

a(r)
= λα.

We write ind a for the index of regular variation of function a. A regularly
varying function with index 0 is also called slowly varying.

Regularly varying function a are used to quantify growth for r →∞, and hence
the values of a(r) for small r are irrelevant. This allows to change a on any
finite interval without changing the essence of results, and this freedom can
often be used to assume a has some additional practical properties.

We cite a number of fundamental theorems on regularly varying functions.
Proofs can be found, e.g., in [BGT89] or [Sen76]. We start with an representation
theorem.

A.2 Theorem (Representation theorem). Let α ∈ R. A function a: [1,∞)→
(0,∞) is regularly varying with index α if and only if it has a representation of
the form

a(r) = rα · c(r) exp

(∫ r

1

ε(u)
du

u

)
, r ∈ [1,∞),

where c, ε are measurable, limr→∞ c(r) = c ∈ (0,∞), and limr→∞ ε(r) = 0.
If a is slowly varying (i.e., α = 0) and eventually nondecreasing (nonin-

creasing), then ε may be taken eventually nonnegative (nonpositive).

It is a legitimate intuition that regularly varying functions fill in the scale of
powers, and that a regularly varying function with index α behaves roughly like
the power rα. The following results, which we will use frequently, express this
intuition very clearly. The first is a variant of the Potter bounds, and the second
is the classical Karamata Theorem about asymptotic integration.

A.3 Theorem (Potter bounds (variant)). Let a be regularly varying with index
α ∈ R.
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(i) ∀ε > 0: rα−ε � a(r)� rα+ε ,

(ii) limr→∞
log a(r)
log r = α,

(iii) For all ε > 0 the quotients a(r)
rα−ε and rα+ε

a(r) are ∼ to an eventually increasing

function.

A.4 Theorem (Karamata’s Theorem). Let a be regularly varying with index
α ∈ R.

(i) Assume that α ≥ −1. Then the function x 7→
∫ x
1
a(t) dt is regularly

varying with index α+ 1, and

lim
x→∞

(
xa(x)

/ x∫
1

a(t) dt

)
= α+ 1.

(ii) Assume that α ≤ −1 and
∫∞
1

a(t) dt < ∞. Then the function x 7→∫∞
x

a(t) dt is regularly varying with index α+ 1, and

lim
x→∞

(
xa(x)

/ ∞∫
x

a(t) dt

)
= −(α+ 1).

A regularly varying function a with positive index is – at least asymptotically
– invertible. In fact, if

a−(x) := sup
{
t ∈ [1,∞) | a(t) < x

}
,

we have the following result, cf. [BGT89, Theorem 1.5.12].

A.5 Theorem. Let a be regularly varying with index α > 0. Then a− is
regularly varying with index 1

α , and

(a ◦ a−)(x) ∼ (a− ◦ a)(x) ∼ x. (A.1)

Any regularly varying function a− with the property (A.1) is called an asymp-
totic inverse of a, and asymptotic inverses are determined uniquely up to ∼.
We recall a useful formula for computing asymptotic inverses for functions of a
particular form.

A.6 Remark. Assume that ρ > 0 and that f is regularly varying. Set g := f◦log
(for sufficiently large t). Then

a(t) := tρg(t), a−(t) := ρ
indf

ρ ·
( t

g(t)

) 1
ρ

are asymptotic inverses of each other.

Another practical observation is the following.

A.7 Remark. Let f be regularly varying with indf > 0, and assume we have
a function g with g ≈ f. Then g is regularly varying with ind g = indf and
g− ≈ f−.
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By the Potter bounds every regularly varying function a is bounded and
bounded away from zero on every interval [r1, r2] sufficiently far to the right.
Sometimes it is needed for technical reasons to assume this property for all
compact intervals in the domain of a. Of course, this is no loss in generality;
remember that modification on a finite interval does not change the essence of
the function a.

A.8 Lemma. Let a: [1,∞)→ (0,∞) be slowly varying and assume that a. 1
locally. For R ≥ a(1) set

b(R) := sup
{
t ∈ [1,∞) | sup

1≤s≤t

a(s)

R
≤ 1
}
∈ [1,∞].

Then b grows faster than any power, i.e., Rρ ≤ b(R) for every ρ > 0 and R
sufficiently large.

Proof. Let ρ > 0 and set ε := 1
ρ . By Theorem A.3, there exists M > 0 such

that a(r) ≤ rε for all r ≥M . If R ≥ supr∈[1,M ] a(r), this means that{
t ∈ [1,∞) | sup

1≤s≤t

sε

R
≤ 1
}
⊆
{
t ∈ [1,∞) | sup

1≤s≤t

a(s)

R
≤ 1
}
.

The assertion follows if we take suprema of both sets.

A.9 Lemma. Let a be regularly varying with index α > 0 and assume that
a � 1 locally. Then there exists a continuously differentiable and regularly
varying function s, where s′(t) > 0 for t ∈ [1,∞),

a(t) � s(t), t ∈ [1,∞),

a(t) ∼ s(t), t→∞.

Proof. We use the smooth variation theorem [BGT89, Theorem 1.8.2]. This
gives a function s that is continuously differentiable, whose derivative is positive
for all sufficiently large t, and such that a ∼ s for t→∞. W.l.o.g. we assume
s′(t) > 0 for all t ∈ [1,∞).

Choose t0 ≥ 1 such that 1
2a(t) ≤ s(t) ≤ 3

2a(t) for all t ≥ t0. By our
assumption, a � 1 on [1, t0]. Since s is continuous, s � 1 � a on [1, t0].
Summing up, we have s� a on [1,∞).

Another lemma in a similar direction is the following. The proof is immediate
from the representation theorem and we do not go into details.

A.10 Lemma. Let a be regularly varying, and assume that a is ≈ to some
nonincreasing function. Then there exist

ε[a], κ[a] : [1,∞)→ (0,∞)

such that

. ε[a] is locally integrable, limt→∞ ε[a](t) = 0, and ε[a] ≤ 0 if ind a = 0,

. κ[a] is eventually constant,
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. The function

S[a](t) := κ[a](t) · tinda · exp

(∫ r

1

ε[a](u)
du

u

)
is nonincreasing, continuous, and ≈ a.

We speak of any function S[a] as in the lemma as a nonincreasing smoothening
of a.

Of course, κ[a] and ε[a] are far from unique. We mention two particular
instances of the freedom of choice in S[a].

A.11 Remark.

(i) If S[a] is some nonincreasing smoothening of a and α > 0, then also α ·
S[a] is a nonincreasing smoothening of a. This corresponds to multiplying
κ[a] by α.

(ii) If S[a] is some nonincreasing smoothening of a and α > limt→∞S[a](t),
then also min{S[a](t), α} is a nonincreasing smoothening of a. This is
seen by modifying κ[a] on a finite interval.

One more property of this construction is as follows. Assume we have two
functions a1,a2 that are both regularly varying and ≈ to some nonincreasing
function. If S[a1] and S[a2] are nonincreasing smoothenings of a1 and a2,
respectively, then S[a1] ·S[a2] is a nonincreasing smoothening of a1 ·a2. This
corresponds to taking

κ[a1a2] := κ[a1] · κ[a2], ε[a1a2] := ε[a1] + ε[a2].
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Sci. Éc. Norm. Supér. (3) 22 (1905), pp. 369–395.
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