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1 Introduction 

By a Hamiltonian, we understand a function H defined on a (possibly unbounded) 
interval .(a, b), which takes real and non-negative .2×2-matrices as values, is locally 
integrable and does not vanish on any set of positive measure. Throughout this paper, 
we assume that Weyl’s limit point case prevails at the endpoint b; this means that 

for one (and hence for all) .x0 ∈ (a, b), we have .
´ b

x0
tr H(x) dx = ∞. 

The canonical system associated with H is the differential equation 

.y'(x) = zJH(x)y(x), x ∈ (a, b), (1.1) 

where z is a complex parameter (the eigenvalue parameter), J is the signature 

matrix .J :=
(

0 −1
1 0

)
and y is a 2-vector-valued function. Canonical systems appear 

frequently in natural sciences, for example, in Hamiltonian mechanics or as 
generalizations of Sturm–Liouville problems, e.g. in the study of a vibrating string 
with non-homogeneous mass distribution. They provide a unifying approach to 
Schrödinger operators, Jacobi operators and Krein strings. Some selected references 
are [1, 4, 33, 85] for relevance in physics and [6, 53, 54, 92] for the relation to scalar 
second-order differential or difference equations. 

The theory of canonical systems was developed in works of Stieltjes, Weyl, 
Markov, Krein, Kac and de Branges. There is a vast literature, especially on spectral 
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theory, ranging from classical papers to very recent work. As examples we mention 
[5, 15, 41–43, 49, 52, 60, 74, 90, 93–95, 100–102]. Our standard reference is [42], 
where the spectral theory of canonical systems is developed in a modern operator-
theoretic language. 

With a Hamiltonian H , one can associate a Hilbert space .L2(H) and a (minimal) 
differential operator .S(H); see Sect. 3.2. The spectral theory of .S(H) changes 
drastically depending on the left endpoint a being in Weyl’s limit circle case (LC) 
or Weyl’s limit point case (LP), i.e. whether for one (and hence for all) . x0 ∈ (a, b)

. (LC) :
ˆ x0

a

tr H(x) dx < ∞ or (LP) :
ˆ x0

a

tr H(x) dx = ∞.

Note that because of the non-negativity of H , the Hamiltonian H is in the limit 
circle case if and only if all entries of H are integrable at a. 

Limit Circle Case 

Assume that H is in the limit circle case at its left endpoint (and, as always in 
this paper, in the limit point case at its right endpoint). Then the operator .S(H) is 
symmetric with deficiency index .(1, 1). A complex-valued function . qH , the  Weyl 
coefficient of H , can be constructed as follows. Let .θ(· ; z) and .ϕ(· ; z) be the 
solutions of (1.1) that satisfy the initial conditions .θ(a; z) = (1

0

)
and .ϕ(a; z) = (0

1

)
, 

respectively; note that H is integrable at a. The Weyl coefficient . qH is defined by 

.qH (z):= lim
x-b

θ1(x; z)τ + θ2(x; z)

ϕ1(x; z)τ + ϕ2(x; z)
, z ∈ C \ R, (1.2) 

with .τ ∈ R ∪ {∞}; the limit is independent of . τ since H is in the limit point case at 
b. The function .qH belongs to the Nevanlinna class . N0, i.e. it is analytic in .C \ R, 
symmetric with respect to the real line in the sense that .qH (z) = qH (z), .z ∈ C \ R, 
and maps the open upper half-plane .C+ into .C+ ∪ R. 

The Weyl coefficient .qH can be used to construct a spectral measure and a Fourier 
transform. Let .μH be the measure in the Herglotz integral representation of . qH

(see (3.1) below) appropriately including a possible point mass at . ∞, and define an 
integral transformation .oH by 

. (oH f )(t):=
ˆ b

a

ϕ(x; t)T H(x)f (x) dx, f ∈ L2(H), sup(suppf ) < b.

Then a direct spectral theorem holds; more precisely, the following is true. 

(1) The map .oH extends to an isometric isomorphism from .L2(H) onto .L2(μH ), 
where we tacitly understand that the space .L2(μH ) appropriately includes a 
possible point mass at . ∞. 

(2) This extension of .oH establishes a unitary equivalence between the self-adjoint 
extension of .S(H) that is determined by the boundary condition .y1(a) = 0 and
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the operator .MμH
of multiplication by the independent variable in the space 

.L2(μH ). 

This direct theorem shows, in particular, that the mentioned self-adjoint extension 
of .S(H) has simple spectrum. 
An inverse spectral theorem was proved by L. de Branges in [11–14], in particular 
[12, Theorem XII] and [14, Theorem VII]; see also [102] for an explicit treatment. 
These results include the following statements. 

(1) Let a function q in the Nevanlinna class .N0 be given. Then there exists a 
Hamiltonian H that is in the limit circle case at its left endpoint (and in the 
limit point case at its right endpoint) such that .qH = q. 

(2) Let a positive scalar measure . μ with .
´

R(1 + t2)−1dμ(t) < ∞ be given (plus a 
possible point mass at . ∞). Then there exists a Hamiltonian H that is in the limit 
circle case at its left endpoint (and in the limit point case at its right endpoint) 
such that .μ = μH (and possible point masses at . ∞ coincide). 

(3) Let two Hamiltonians . H1 and . H2 be given, both being in the limit circle case at 
their left endpoints (and in the limit point case at their right endpoints). Then we 
have .qH1 = qH2 if and only if . H1 and . H2 are reparameterizations of each other; 
the latter means that .H2(x) = H1(γ (x))γ '(x) with some increasing bijection . γ

such that . γ and .γ −1 are absolutely continuous. 
(4) Let two Hamiltonians .H1 and .H2 be given, both being in the limit circle case 

at their left endpoints (and in the limit point case at their right endpoints). Then 
we have .μH1 = μH2 (and possible point masses at . ∞ coincide) if and only if 
there exists a real constant . α such that the Hamiltonians 

. H1,
(

1 α
0 1

)
H2

(
1 0
α 1

)

are reparameterizations of each other. 

Limit Point Case 

If the limit point case prevails (also) at the left endpoint, much less can be 
said in general. The operator .S(H) is self-adjoint, and its spectral multiplicity 
cannot exceed 2. A .2 × 2-matrix-valued Weyl coefficient can be defined. Via the 
Titchmarsh–Kodaira formula, this leads to a Fourier transform onto an .L2-space 
with respect to a .2 × 2-matrix-valued measure; see, e.g. [42], and [63] or [40, §2] 
for Schrödinger equations. 

For Hamiltonians being in the limit point case, non-simple spectrum can appear; 
and this is not an exceptional case. The class of all Hamiltonians that have 
simple spectrum—despite being in the limit point case at both endpoints—can be 
characterized based on a theorem of I. S. Kac from the 1960s; see [50, Fundamental 
Theorem].1 However, given the Hamiltonian H , the condition given in Kac’s 
theorem is hardly accessible to computation. To the best of our knowledge, an

1 A proof is given in [51] (in Russian). 
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explicit characterization of simplicity of the spectrum is not known. An easy-to-
check sufficient condition for .S(H) having simple spectrum follows from a result 
of L. de Branges; see [15, Theorems 40 and 41]. 

In the study of limit point Hamiltonians with simple spectrum, there remain some 
major drawbacks compared with the limit circle situation. Even in the situation of 
de Branges’ theorem, there is neither a canonical way to choose a scalar-valued 
spectral measure . μ nor further information on properties of . μ can be obtained. In 
view of this fact, naturally, there are no inverse statements asserting existence or 
uniqueness of a Hamiltonian which would lead to a given measure. 

The Main Results of the Present Paper 

We specify a class . H of Hamiltonians, which are in the limit point case at both 
endpoints and for which a Weyl theory analogous to the limit circle case can be 
developed. This class . H is a proper subclass of the one familiar from de Branges’ 
theorem mentioned above, but it is still sufficiently large to cover many cases of 
interest. 

For each Hamiltonian .H ∈ H, we prove the following direct spectral results. 

(1) Every solution of equation (1.1) attains regularized boundary values at a in 
the sense that (at most) finitely many divergent terms are discarded in a well-
defined way (Theorem 4.2); the regularization depends on one free parameter 
.x0 ∈ (a, b). One can then define solutions . θ and . ϕ by prescribing the regularized 
boundary values. Hence, an analogue of the Weyl coefficient, which we call 
singular Weyl coefficient, can be defined with the help of . θ and . ϕ as in (1.2); 
this singular Weyl coefficient depends on the parameter . x0, but the dependence 
shows only in an additive real polynomial (Theorem 4.5). 

(2) A Fourier transform onto an .L2-space generated by a scalar measure exists. 
One measure with this property can be constructed in a canonical way via the 
singular Weyl coefficient, and this measure is independent of the parameter 
. x0 (Theorem 4.8). The corresponding Fourier transform and its inverse can be 
written as integral transforms (Theorem 5.1). 

Concerning the, now meaningfully posed, inverse spectral problem, we 

(3) Characterize the class of measures occurring via the mentioned construction 
(Theorem 6.1) 

(4) Establish global and local uniqueness results (Theorems 6.2 and 6.3) 
(5) Establish a one-to-one correspondence between the growth of the Hamiltonian 

H at a and the growth of the spectral measure .μH at infinity, measured by a 
positive integer . A (Theorem 4.8) 

Sturm–Liouville Equations 

Recently, Sturm–Liouville equations, and in particular Schrödinger equations, with 
two singular endpoints attracted a lot of attention; for example, let us mention 
[30, 32, 35–37, 39, 64–68]. Sturm–Liouville equations for which the corresponding 
operator is bounded from below can be transformed into canonical systems of the 
form (1.1); see Remark 9.14. We consider two classes of Sturm–Liouville equations
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in detail: first, equations without potential, i.e. 

. − (
py')' = λwy (1.3) 

with .p(x),w(x) > 0 a.e., .1/p,w locally integrable and either .1/p or w integrable at 
a. Such equations, which are treated in Sects. 7 and 8, have many applications (see, 
e.g. [17] and [88]) and include equations in impedance form, i.e. where .p = w; see, 
e.g. [2]. Second, we consider one-dimensional Schrödinger equations, i.e. 

. − y'' + qy = λy (1.4) 

with q locally integrable. The class of equations we can treat includes radial 
equations for Schrödinger equations with spherically symmetric potentials; the 
corresponding operators are also called perturbed Bessel operators. We apply our 
results on canonical systems to the Sturm–Liouville equations (1.3) and (1.4); in  
particular, we construct singular Titchmarsh–Weyl coefficients, spectral measures 
and Fourier transforms, and we prove inverse spectral theorems. 

Methods Employed 

In order to establish our present results, we utilize the theory of indefinite inner 
product spaces. Our approach proceeds via Pontryagin space theory, i.e. the theory 
of indefinite inner product spaces with a finite-dimensional negative part. In some 
sense, our approach reaches as far as Pontryagin space models possibly can. One 
key idea is to extend the Hamiltonian H to the left by a so-called indivisible 
interval so that the original left endpoint a becomes an interior point where H is 
singular. We can then apply the theory of generalized Hamiltonians, developed in 
[59–61] and also [82], for which corresponding operator models act in Pontryagin 
spaces (in general, a generalized Hamiltonian can have a finite number of interior 
singularities). 

We use operator-theoretic tools like the spectral theory of self-adjoint relations, 
models for generalized Nevanlinna functions and for generalized Hamiltonians, and 
the theory of de Branges Pontryagin spaces of entire functions. In particular, proofs 
rely heavily on the theory developed in [82] and [84] and in [59–61]. We would 
like to mention that the underlying relation in the Pontryagin space is of the most 
intriguing (but also most difficult to handle) kind: it is a proper relation having 
infinity as a singular critical point with a neutral algebraic eigenspace. 

Organization of the Manuscript 

The paper is divided into sections according to the following table. 

Table of contents 
PART I: General Theory 

2. The Two Basic Classes p. 110 
3. Preliminaries from Indefinite Theory p. 114 
4. Construction of the Spectral Measure p. 126 
5. The Fourier Transform p. 133 
6. Inverse Theorems p. 158
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PART II: Applications to Sturm–Liouville Equations 

7. Sturm–Liouville Equations Without Potential: Singular .1/p p. 163 
8. Sturm–Liouville Equations Without Potential: Singular w p. 184 
9. Schrödinger Equations p. 190 

In Sect. 2 we introduce the class . H of Hamiltonians that is treated in our paper. 
The definition involves a certain growth condition of the Hamiltonian at the left 
endpoint a. We associate a positive integer, .A(H), with each .H ∈ H, which 
measures the growth of H at a. Further, we define a class . M of Borel measures 
on . R that satisfy a certain growth condition at infinity; this class will turn out 
to be the set of spectral measures of Hamiltonians from . H. In Sect. 3 we recall 
the definition and certain properties of generalized Nevanlinna functions and the 
operator that is connected with equation (1.1). Moreover, we recall the notion of 
generalized Hamiltonians, a certain subclass of generalized Hamiltonians that have 
only one interior singularity and corresponding operator models. In Sect. 4 we show 
that solutions of (1.1) attain regularized boundary values at a (Theorem 4.2), and 
we construct singular Weyl coefficients (Theorem 4.5) and construct a spectral 
measure via a Stieltjes-type inversion formula (Theorem 4.8). The Fourier transform 
is constructed in Sect. 5 (Theorem 5.1); this shows, in particular, that the spectrum 
is simple. Inverse spectral theorems (existence and global and local uniqueness 
theorem) are proved in Sect. 6 (Theorems 6.1, 6.2 and 6.3). 

In the second part of the paper, we consider Sturm–Liouville equations. First, we 
consider equations of the form (1.3). The case when .1/p is not integrable at a is 
considered in Sect. 7; the case when w is not integrable at a is studied in Sect. 8. 
Finally, Schrödinger equations of the form (1.4) are investigated in Sect. 9. 

PART I: General Theory 

In the first part, which comprises Sects. 2–6, the direct and inverse spectral theory 
of canonical systems with two singular endpoints is developed. 

2 The Two Basic Classes 

We start with the definition and a brief discussion of the two major objects of our 
investigation. These are a class . H of Hamiltonians and a class . M of measures, which 
will turn out to correspond to each other. 

2.1 The Class H of Hamiltonians 

Let us state the definition of Hamiltonians again explicitly: by a Hamiltonian 
.H = (hij )

2
i,j=1, we understand a function defined on some (non-empty and possibly 

unbounded) interval .(a, b) whose values are real, non-negative .2×2-matrices, which
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is locally integrable and which does not vanish on any set of positive measure. In 
the rest of the paper, we shall also write .dom(H):=(a, b) if H is defined on .(a, b). 

We say that two Hamiltonians .H1 and .H2 defined on intervals .(a1, b1) and 
(a2, b2), respectively, are reparameterizations of each other if there exists an 
increasing bijection .γ : (a2, b2) → (a1, b1) such that . γ and .γ −1 are both absolutely 
continuous and 

.H2(x) = H1
(
γ (x)

) · γ '(x), x ∈ (a2, b2) a.e. (2.1) 

Note that in this situation, y is a solution of (1.1) with .H = H1 if and only if . ỹ, 
where .ỹ(x) = y(γ (x)), is a solution of (1.1) with .H = H2. 

Remark 2.1 As a rule of thumb, Hamiltonians which are reparameterizations 
of each other share all their essential properties. For a detailed and explicit 
exposition of reparameterizations in an up-to-date language, see [104] (in particular, 
Theorem 3.8 therein). 

We also recall the notion of indivisible intervals. An interval .(α,β) ⊆ (a, b) is 
called H-indivisible (or just indivisible) of type . φ if 

.H(x) = h(x)ξφξT
φ , x ∈ (α,β), (2.2) 

where .ξφ = (cos φ, sin φ)T and h is a locally integrable function that is positive 
almost everywhere; see, e.g. [52]. An indivisible interval .(α,β) is called maximal if 
it is not contained in any larger indivisible interval. 

Definition 2.2 Let .H = (hij )
2
i,j=1 be a Hamiltonian defined on .(a, b). We say that 

H belongs to the class . H if H is in the limit point case at both endpoints, the interval 
.(a, b) is neither one indivisible interval nor the union of two indivisible intervals and 
H satisfies the following conditions (I), (HS) and (. A). 

(I) For one (and hence for all) .x0 ∈ (a, b), 

. 

x0
ˆ

a

h22(x) dx < ∞.

(HS) For one (and hence for all) .x0 ∈ (a, b), 

. 

x0
ˆ

a

x
ˆ

a

h22(t) dt h11(x) dx < ∞.

(. A) Let .x0 ∈ (a, b) and define functions .Xk : (a, x0] → C2 recursively by
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. X0(x):=
(

1

0

)
, x ∈ (a, x0],

Xk(x):=
x
ˆ

x0

JH(t)Xk−1(t) dt, x ∈ (a, x0], k ∈ N.

There exists a number .N ∈ N0 such that 

.L2(H |(a,x0)

) ∩ span
{
Xk : k ≤ N

} /= {0}. (2.3) 

If .H ∈ H, we denote by .A(H) the smallest non-negative integer N such that (2.3) 
holds. 

It is proved in [59, Lemma 3.12] that this definition is justified, namely, that the 
validity of (. A) and the number .A(H) do not depend on the choice of . x0 (for (I) and 
(HS), this is trivial to check). 

Notice that, for H ∈ H, we always have .A(H) > 0. This follows since we 
assume limit point case at a. Namely, for each .x0 ∈ (a, b), the constant function 
.(0, 1)T belongs to .L2(H |(a,x0)) by (I), and hence the constant .(1, 0)T cannot be in 
this space. 

Remark 2.3 We assume that .(a, b) is neither one indivisible interval nor the 
union of two indivisible intervals since; otherwise, the corresponding space . L2(H)

(defined in Sect. 3.2) and hence also the Fourier transform would be trivial. 

Remark 2.4 The conditions (I) and (HS) are, up to a normalization and exchanging 
upper and lower rows, precisely the conditions of de Branges’ theorem [15, The-
orem 41]. Note that under the conditions (I) and (HS), any self-adjoint realization 
corresponding to .H |(a,x0) has a Hilbert–Schmidt resolvent. The additional condition 
(. A) arose only recently in the context of indefinite canonical systems; we recall 
more details in Sect. 3.2. 

In general, it is difficult to decide whether a given Hamiltonian satisfies (. A). 
Contrasting (I) and (HS), the condition (. A) is of recursive nature and not accessible 
by simple computation. An easier-to-handle (though still recursive) criterion for 
the validity of (. A) is available for Hamiltonians of diagonal form, cf. [105, 
Theorem 3.7] and Sect. 7. Using this criterion, various examples can be constructed. 
The following two examples are taken from [105, Corollary 3.14 and Example 3.15]. 

Example 2.5 Let .α ∈ R and set 

.Hα(x):=
(

x−α 0

0 1

)
, x ∈ (0,∞).
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Then .Hα is in the limit point case at . ∞ and satisfies (I) at 0. Depending on the value 
of . α, the following conditions hold: 

. 

value of α (LP)/(LC) at 0 (HS) and (A)

α < 1 (LC) both hold (trivially)

1 ≤ α < 2 (LP) both hold

α ≥ 2 (LP) none holds

Hence, we have .Hα ∈ H for each .α ∈ [1, 2) but not for other values of . α. 
The number .A(Hα) can be computed, namely, 

. A(Hα) = n, when α ∈
(

2 − 1

n
, 2 − 1

n + 1

)
with n ∈ N.

This shows that, for a Hamiltonian of class . H, there are no a priori restrictions on 
the value of the number .A(H). Computing .A(Hα) for .α = 2 − 1

n
with . n ∈ N

is equally well possible, but requires more elaborate computations. These have not 
been carried out in [105] but will be made available elsewhere. 

Example 2.6 Consider the Hamiltonian 

. H(x):=
(

(x ln x)−2 0

0 1

)
, x ∈ (0, 1).

This Hamiltonian is in the limit point case at 0 and at 1, satisfies (I) and (HS) at 0, 
but does not satisfy (. A). 

This example shows that the presently considered class . H is a proper subclass of 
the one treated in [15, Theorem 41]. 

2.2 The Class M of Measures 

By a positive Borel measure on . R, we understand a (not necessarily finite) positive 
measure defined on the .σ -algebra of all Borel subsets of . R which takes finite values 
on compact sets. 

Definition 2.7 Let . μ be a positive Borel measure on . R. We say that . μ belongs to 
the class . M if there exists a number .N ∈ N0 such that 

.

ˆ

R

dμ(t)

(1 + t2)N+1
< ∞. (2.4)
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If .μ ∈ M, we denote by .A(μ) the smallest non-negative integer N such that (2.4) 
holds. 

This class of measures is known from Pontryagin space theory. A measure . μ belongs 
to . M if and only if it is the measure in the distributional representation of some 
generalized Nevanlinna function with a certain spectral behaviour, cf. [72] and [84, 
Theorems 2.8 and 3.9]. In the classical (positive definite) setting, this corresponds to 
the fact that a positive Borel measure . μ satisfies .

´

R(1 + t2)−1 dμ(t) if and only if it 
is the measure in the Herglotz integral representation of some Nevanlinna function. 
We recall details in Sect. 3.1. 

3 Preliminaries from Indefinite Theory 

Our approach to direct and inverse spectral theory for Hamiltonians of class . H
is based on the theory of indefinite canonical systems and their Pontryagin space 
operator models as developed in [59–61] and further in [80, 82]. In this preliminary 
section, we recall the relevant notions and theorems. For the theory of Pontryagin 
spaces, we refer the reader, e.g. to [10]. 

3.1 Generalized Nevanlinna Functions and the Class N(∞) 
<∞ 

As we already mentioned in the introduction, a function q is said to be a Nevanlinna 
function if it is analytic in .C \ R and satisfies .q(z) = q(z) for .z ∈ C \ R and 
.Im q(z) ≥ 0 for .z ∈ C+. We denote the set of all Nevanlinna functions by . N0. 

In Pontryagin space theory, an indefinite analogue of this notion appears and 
plays a significant role; see, e.g. [71, 72]. 

Definition 3.1 A function q is called a generalized Nevanlinna function if it is 
meromorphic in .C \ R and has the following properties (i) and (ii): 

(i) .q(z) = q(z) for .z ∈ ρ(q), where .ρ(q) denotes the domain of analyticity of q 
in .C \ R. 

(ii) The reproducing kernel 

. Kq(w, z):=q(z) − q(w)

z − w
, z,w ∈ ρ(q),

has a finite number of negative squares; the latter means that there exists a 
.κ ∈ N0 so that for every choice of .n ∈ N and .z1, . . . , zn ∈ ρ(q), the matrices 
.(Kq(zi, zj ))

n
i,j=1 have at most . κ negative eigenvalues.
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We denote the set of all generalized Nevanlinna functions by .N<∞. Moreover, if 
.q ∈ N<∞, we denote the actual number of negative squares of the kernel .Kq (i.e. 
the minimal . κ in the above definition) by .ind−q. Further, we set . Nκ :={q ∈ N<∞ :
ind−q = κ} for κ ∈ N0. 

That this definition is indeed an extension of the definition of . N0, i.e. that the class 
.N0 in Definition 3.1 coincides with the class defined before Definition 3.1 is a 
classical result, which can be traced back to as far as [44] or [91]. 

Let .q ∈ N0. Using the representation of the positive harmonic function . Im q

as a Poisson integral, one easily obtains a representation of q with a Cauchy-type 
integral. 

3.2 Herglotz integral representation of .N0-functions. A function q belongs to the 
class .N0 if and only if it can be represented in the form 

.q(z) = a + bz +
ˆ

R

( 1

t − z
− t

1 + t2

)
dμ(t), z ∈ C \ R, (3.1) 

with .a ∈ R, .b ≥ 0 and a positive Borel measure . μ satisfying . 
´

R(1 + t2)−1 dμ(t) <

∞. 

The analogue of this integral representation in the indefinite setting is a distribu-
tional representation of a generalized Nevanlinna function. In essence this is shown 
in [72], where an integral representation of .q ∈ N<∞ was given without using the 
language of distributions. The distributional viewpoint was first mentioned in [48, 
Introduction, p. 253], established more thoroughly in [57, Corollary 3.5] and refined 
in [55, Proposition 5.4]. The formulation given below is taken from our paper [84]. 
This paper contains several results which are crucial for the present discussion and 
is our standard reference in the context of distributional representations. 

Before we can provide the actual statement, we need to introduce some notation. 
First, we denote by .R(z) the set of all rational functions with real coefficients. 
Second, we denote by . R the one-point compactification of the real line considered 
as a .C∞-manifold in the usual way. Moreover, for each .z ∈ C \ R, let . βz : R→ C
be defined by 

. βz(t):=

⎧
⎪⎨
⎪⎩

1 + xz

x − z
, x ∈ R,

z, x = ∞.

Third, for a function f , set .f #(z):=f (z) whenever .z ∈ C is in the domain of f . 
Further, we denote by .-D'

(R) the set of all distributional densities on . R; see, e.g. 
[45] or [84]. With each .φ ∈ -D'

(R), one can associate a linear functional on .C∞(R), 
which is again denoted by .φ; see [84, (2.2)]. Next, we denote by .F(R) the set of all 
φ ∈ -D'

(R) for which there exists a finite subset F of R such that φ acts as a positive
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measure on .R \ F ; for details see [84, Definitions 2.1 and 2.3]. Finally, .F{∞} is the 
set of .φ ∈ F(R) that act as a positive measure on . R. For .φ ∈ F{∞}, we denote by 
. μφ the unique positive Borel measure on . R such that 

.φ(f ) =
ˆ

R

f (x)
dμφ(x)

1 + x2
, f ∈ C∞(R), suppf ⊆ R; (3.2) 

see [84, Definition 2.4]. 

3.3 Distributional representation of .N<∞-functions [55, Proposition 5.4]. Let . φ ∈
F(R) and .r ∈ R(z). Then the function 

.q(z):=r(z) + φ(βz) (3.3) 

belongs to .N<∞. 
Conversely, let .q ∈ N<∞ be given. Then there exist unique .φ ∈ F(R) and 

.r ∈ R(z) such that 

(i) the representation (3.3) holds; 
(ii) r is analytic on . R and remains bounded for .|z| → ∞. 

In the present paper, the following subclass of .N<∞ plays a central role. 

Definition 3.4 We denote by .N(∞)
κ , .κ ∈ N0, the set of all functions .q ∈ Nκ such 

that 

lim 
z

<−→i∞ 

q(z) 

z2κ−1 
∈ (−∞, 0) or lim 

z
<−→i∞

||| q(z) 

z2κ−1

||| = ∞, (3.4) 

where
<−→ denotes the non-tangential limit, i.e. .z → ∞ inside some Stolz angle 

.{z ∈ C : ε ≤ arg z ≤ π − ε} for one (and hence for all) .ε ∈ (0, π
2 ). Moreover, set 

. N(∞)
<∞:=

||

κ∈N0

N(∞)
κ .

Let us stress that the significance of the condition in this definition is not that (3.4) 

holds for some . κ , but that it holds exactly for .κ = ind−q. Note that .N(∞)
0 = N0. 

The classes .N(∞)
κ appeared often in the recent literature, where they are also 

denoted by .N∞
κ . Let us mention, for instance, [24, 28, 36, 75], where Sturm– 

Liouville equations with singular endpoints or singular perturbations of self-adjoint 
operators were studied, and [23] in connection with rank one perturbations at infinite 
coupling, and [25–27] where operator models of such functions were investigated. 

The class .N(∞)
<∞ has an operator-theoretic interpretation, namely, the self-adjoint
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relation in the operator/relation representation2 of q has . ∞ has its only spectral 
point of non-positive type; for details see also [84, §5]. 

For our present considerations, it is essential that the distributional representation 

of a generalized Nevanlinna function q takes a simple form if .q ∈ N(∞)
<∞. The  

following result is contained in [84, Theorem 3.9 (i), (ii)]. 

3.5 Distributional representation of .N(∞)
<∞-functions. A function q belongs to the 

class .N(∞)
<∞ if and only if it can be represented as 

.q(z):=r + φ(βz) (3.5) 

with a real constant r and a distributional density .φ ∈ F{∞}. Denote by .μq the 
measure in (3.2) that is connected with the distributional density . φ in (3.5), i.e. 
.μq :=μφq with notation from (3.2). Then a Stieltjes inversion formula is valid: 

.μq

([a, b]) = 1

π
lim
ε\0

lim
δ\0

ˆ b+ε

a−ε

Im q(t + iδ)dt, [a, b] ⊆ R; (3.6) 

see [84, Theorem 3.9 (ii)]. 

3.6 Operator model. With a distributional density .φ ∈ F{∞}, one can associate a 
Pontryagin space .||(φ), which is the completion of .C∞(R) with respect to the inner 
product 

. [f, g]φ:=φ(f g), f, g ∈ C∞(R),

and a self-adjoint relation .Aφ in . ||(φ); see [48, 57] or [84, §5]. The space . ||(φ)

contains the following set: 

.

{
f ∈ L2

( μφ(x)

1 + x2

)
: suppf is compact

}
. (3.7) 

Let .EAφ
(∞) be the algebraic eigenspace at infinity of . Aφ. By [84, Theorem 5.3] 

there exists an isometric, continuous, surjective map 

. ψ(φ) : EAφ
(∞)[⊥] → L2

( μφ(x)

1 + x2

)
,

which acts as the identity on functions from the set in (3.7).

2 A detailed account on the operator representation of scalar-valued generalized Nevanlinna 
functions can be found in [72, §1]. For a slightly different viewpoint and results for operator- (or 
matrix-) valued functions, see [18, 71, §3], or some of the vast more recent literature on operator 
models. 
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Recall from [22] that every function .q ∈ N(∞)
κ can be written as . q(z) = p(z)q0(z)

where .q0 ∈ N0 and p is a monic real polynomial of degree . 2κ . Let .μq be the 
measure associated with q as in 3.5 and let .μ0 be the measure in the integral 
representation (3.1) of . q0. Then the Stieltjes inversion formula (3.6) implies that 

. μq

([a, b]) =
ˆ

[a,b]
p(t)dμ0(t)

for every finite interval .[a, b] with .μq({a}) = μq({b}) = 0. This, together with [79, 
Corollary 3.1], immediately yields the following lemma. 

Lemma 3.7 Let . κ ∈ N, let .qn ∈ N(∞)
κ for .n ∈ N and let .q ∈ N(∞)

κ such that 
.qn(z) → q(z) locally uniformly on .C\R. Moreover, let .μqn and . μq be the measures 
that are associated with . qn and q, respectively, as in 3.5. Then, for every interval 
.[a, b] with .μq({a}) = μq({b}) = 0, we have 

. lim
n→∞ μqn

([a, b]) = μq

([a, b]).

In this lemma, the assumption that .ind−q = ind−qn is crucial. 

3.2 The Operator Associated with a Canonical System 

We recall the definition of the space .L2(H) and the corresponding operator. Note 
that the notion of indivisible intervals and the vector . ξφ were defined in Sect. 2. The  
space .L2(H) is the space of measurable functions f defined on .(a, b) with values 

in . C2 which satisfy .
´ b

a
f ∗Hf < ∞ and have the property that .ξT

φ f is constant 
on every indivisible interval of type . φ, factorized with respect to the equivalence 
relation .=H where 

. f =H g ⇐⇒ H(f − g) = 0 a.e.

In the space . L2(H), the  operator .T (H) is defined via its graph as 

.

T (H):=
{
(f ; g) ∈ (L2(H)

)2 : ∃ representatives f̂ , ĝ of f, g such that

f̂ is locally absolutely continuous and f̂ ' = JHĝ a.e. on (a, b)
}
.

(3.8) 

Since H is in the limit point case at both endpoints, the operator .T (H) is self-
adjoint; see, e.g. [42, §6]. If H is in the limit circle case at the left endpoint, then 
.T (H) is the maximal operator (or relation); its adjoint, the minimal operator .S(H), 
is a symmetric operator.
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3.3 General Hamiltonians 

The definition of the Pontryagin space analogue of a Hamiltonian and the descrip-
tion of its associated canonical system and the operator model are quite long and 
involved. Here we give only an intuitive picture; for a complete and logically sound 
formulation, we refer to [59, §8] or [82, Definitions 2.16–2.18]. The latter paper is 
our standard reference in the context of general Hamiltonians. 

A general Hamiltonian . h is a collection of data: 

. h : n ∈ N0, −∞ ≤ σ0 < σ1 < . . . < σn+1 ≤ ∞;

Hamiltonians Hi : (σi , σi+1) → R2×2, i = 1, . . . , n;

öi ∈ N0, bi,1, . . . , bi,ö+1 ∈ R, di,0, . . . , di,2Ai−1 ∈ R,

i = 1, . . . , n;

E ⊆ {σ0, σn+1} ∪
n||

i=0

(σi , σi+1);

where, among others, the following conditions have to be satisfied. 

– . H0 is in the limit circle case at . σ0; if .n ≥ 1, then .Hi−1 is in the limit point case 
at . σi and . Hi is in the limit point case at . σi for .i = 1, . . . , n. 

– The growth of the Hamiltonians . Hi towards the points .σ1, . . . , σn is restricted; 
the number .Ai ∈ N is a certain measure for this growth. 

– Two adjacent Hamiltonians satisfy an interface condition at their common 
endpoint. 

The general Hamiltonian is called singular if .Hn is in the limit point case at .σn+1; 
it is called regular if .Hn is in the limit circle case at .σn+1. Moreover, let H be the 
function defined on .

Un
i=0(σi , σi+1) such that .H |(σi ,σi+1) = Hi for .i = 0, . . . , n. 

The following visualization of the canonical system associated with a general 
Hamiltonian may be helpful: 

At . σ0 an initial condition can be prescribed. The points .σ1, . . . , σn are inner 
singularities: the Hamiltonian function is in the limit point case from both sides. On 
the interval .(σi , σi+1) a solution of the system behaves according to the canonical 
differential equation .y'(x) = zJHi(x)y(x). The data .öi , bij , dij describe what
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happens to a solution when passing through the singularity . σi . Thereby, . öi , bij

correspond to a point interaction inside the singularity . σi , whereas . dij correspond to 
a local interaction of the Hamiltonians to the left and to the right of the singularity 
σi . The set  E (which we did not indicate in the picture) is used to quantitatively 
describe the influence of the interface conditions manifested by the data part . dij . 
At the points from the set E the interval .(σ0, σn+1) is split into smaller pieces that 
contain at most one singularity. 

It can be proved that the spectral theory of singular general Hamiltonians 
defined in this way is the full Pontryagin space analogue of the theory of classical 
Hamiltonians (being in the limit circle at their left and in the limit point case at their 
right endpoint). 

(1) With a singular general Hamiltonian . h a boundary triple . (P(h), T (h),r(h))

can be associated and a Weyl coefficient . qh can be constructed; see [59, 
Definition 8.5 and Theorem 8.7] and [62, Theorem 5.1 and Definition 5.2]. 

(2) The Weyl coefficient . qh (see 3.8 below) belongs to the class .N<∞ and can 
be interpreted as a Q-function of the minimal operator .S(h):=T (h)∗, which is 
a completely non-self-adjoint symmetry with deficiency index . (1, 1); see [59, 
Theorem 8.7] and [62, Proposition 5.19 and Corollary 6.5]. 

(3) An inverse spectral theorem holds, which states that each generalized Nevan-
linna function is the Weyl coefficient of some singular general Hamiltonian and 
that the general Hamiltonian is, up to reparameterization, uniquely determined 
by its Weyl coefficients; see [61, Theorem 1.4] and [62, Remark 3.38]. 

A local uniqueness theorem holds, which states that beginning sections 
of Hamiltonians are uniquely determined (up to reparameterization) by the 
asymptotic behaviour of the Weyl function towards . i∞; see [81, Theorem 1.2 
and Remark 1.3]. 

We should point out that the term ‘reparameterization’, which we used without 
further notice in item . (3), actually requires some explanation. Not only the 
Hamiltonians .Hi may be reparameterized (in the sense of the classical theory, 
see (2.1)) but also the data . dij and E may be changed according to certain rules; 
see [62, Remark 3.38]. 

3.8 The fundamental solution. A crucial concept in the theory of general Hamilto-
nians is the fundamental solution associated with a general Hamiltonian . h. This is  
the indefinite analogue of the fundamental matrix solution of the system (1.1) in the 
positive definite case. 

It is shown in [62, §5a–c] that, with a general Hamiltonian . h, a chain . ωh of entire 
.2 × 2-matrix functions is associated, namely, .ωh = ωh(x; z), . x ∈ [σ0, σn+1) \
{σ1, . . . , σn}, .z ∈ C, so that, for fixed x, the function . ωh is entire in z and, for fixed 
z, it satisfies 

.
∂

∂x
ωh(x; z)J = zωh(x; z)H(x), x ∈ (σ0, σn+1) \ {σ1, . . . , σn}. (3.9)
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Note that the rows of . ωh satisfy the differential equation (1.1). Moreover, 

. ωh(x; 0) = I, det ωh(x; z) = 1, x ∈ [σ0, σn+1) \ {σ1, . . . , σn}, z ∈ C
(3.10) 

and .ωh(σ0; z) = I , .z ∈ C. The chain . ωh is used to construct the Weyl coefficient 
. qh using a similar limiting procedure as in the positive definite case: if . ωh =
(ωh,ij )

2
i,j=1, then 

. qh(z) = lim
x-σn+1

ωh,11(x; z)τ + ωh,12(x; z)

ωh,21(x; z)τ + ωh,22(x; z)

for .τ ∈ R ∪ {∞} and z in the domain of holomorphy of . qh (which is .C \ R with 
at most a finite number of points removed); the limit is locally uniform in z and 
independent of . τ ; see [57, Lemma 8.2]. 

In the present paper we use some specific properties of fundamental solutions; 
detailed references are provided at the appropriate places. Here we only would like 
to mention that two general Hamiltonians that are reparameterizations of each other 
give rise to the same fundamental solutions (up to reparameterization in the sense of 
[62, Definition 3.4]) and hence to the same Weyl coefficients; this is shown in [61, 
Theorem 1.6]. 

3.9 Splitting of general Hamiltonians. Let . h be a general Hamiltonian, let . s ∈Un
i=0(σi , σi+1) and assume that s is not inner point of an indivisible interval. Then 

‘restrictions’ of . h to the intervals .(σ0, s) and .(s, σn+1) can be defined, which are 
denoted by .h]s and . h[s , respectively; see [62, Definition 3.47] and also [82, §2.19]. 

3.4 The Class H0 

In the present paper those general Hamiltonians are of interest whose Weyl 

coefficients belong to the class .N(∞)
<∞. They can be characterized in a neat way; 

see [82, Theorem 3.1]. For the notion of indivisible intervals see Sect. 2, (2.2). 

Definition 3.10 We say that a singular general Hamiltonian . h belongs to the class 
. H0 if 

(i) . h has exactly one singularity, i.e. H is defined on a set of the form . (σ0, σ1) ∪
(σ1, σ2); 

(ii) the interval .(σ0, σ1) is indivisible of type 0, i.e. the Hamiltonian function . H0 of 

. h on .(σ0, σ1) is of the form .H0(x) = h0(x)
(

1 0
0 0

)
with some scalar function . h0. 

It follows from the definition of a general Hamiltonian and the form of . H0 that the 
component .(H1)22 is integrable on .(σ1, x0) for some (and hence all) .x0 ∈ (σ1, σ2), 
i.e. . H1 satisfies condition (I) in Definition 2.2.
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3.11 The relation .H0 - N(∞)
<∞. The content of [82, Theorem 3.1] is the following: 

a general Hamiltonian . h belongs to . H0 if and only if its Weyl coefficient . qh belongs 

to .N(∞)
<∞ \N0. 

Thereby, the negative index of . qh can be expressed in terms of the general 
Hamiltonian . h: 

.ind−qh = A1 +
|

ö1

2

|
+
⎧
⎨
⎩

1, ö1 odd, b1,1 > 0,

0, otherwise.
(3.11) 

This is a particular instance of a general formula shown in [61, Theorem 1.4], 
namely, that .ind−qh = ind−h where .ind−h is given by the formula [82, (2.13)]. 

Often it is convenient to use a particular form of a general Hamiltonian from the 
class . H0, namely 

.

h : σ0 = −1, σ1 = 0, σ2 = ∞; E = {−1, x0,∞};

H0(x) = x−2
(

1 0
0 0

)
, x ∈ (−1, 0); H1(x), x ∈ (0,∞);

ö1 ∈ N0, b1,1, . . . , b1,ö1+1 ∈ R, d1,0, . . . , d1,2A1−1 ∈ R,

(3.12) 

where .x0 ∈ (0,∞); one can choose .b1,ö1+1 = 0 if no interval of the form . (0, ε)

with .ε > 0 is indivisible. For every given general Hamiltonian g ∈ H0 and given 
.x0 ∈ (0,∞) there exists an . h as in (3.12) which is a reparameterization of . g. 

3.5 The Operator Model 

The original definition of the boundary triple associated with a general Hamiltonian 
given in [59] is involved and quite abstract (using a completion procedure). The 
boundary triple associated with a general Hamiltonian . h that has only one singularity 
can be described isomorphically in a more concrete way; see [80, Definition 2.14 
and Theorem 2.15]. Since we deal with the operator model in some depth, we 
recall its concrete description for a general Hamiltonian of the form (3.12). In the  
above mentioned reference the component .h11 is integrable around .σ1 instead of 
the component . h22. One has to apply a rotation isomorphism as defined in [62, 
Definition 2.4] and also discussed in [82, §2.g] to transform the model from [80] to  
the current situation. 

First we need the following fact, which was shown in [59, Lemma 3.10]; also 
here one has to apply a rotation isomorphism. 

3.12 The functions . wk . Let .H ∈ H with .dom(H) = (a, b). For each .x0 ∈ (a, b), 
there exists a unique sequence .(wk)k∈N0

of absolutely continuous real 2-vector
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functions on .(a, b) such that 

.

w0 =
(

1

0

)
,

w'
l+1 = JHwl , l ≥ 0,

wl |(a,x0) ∈ L2(H |(a,x0)

)
, l ≥ A(H),

wl (x0) ∈ span

{(
1

0

)}
, l ≥ 0.

(3.13) 

Let .H1,H2 ∈ H, and assume that . H1 and . H2 are reparameterizations of each other, 
say, .H2(x) = H1(γ (x))γ '(x), where . γ is an increasing bijection such that . γ and 
.γ −1 are absolutely continuous. Let .x1 ∈ dom(H1), set .x2:=γ −1(x1) and let . w1;l
and .w2;l be the corresponding sequences of functions for .H1 and .H2 respectively. 
with . x0 replaced by . x1 and . x2 respectively. Then, as a simple calculation shows, one 
has 

. w2;l = w1;l ◦ γ , l ≥ 0.

In the following item 3.13, we recall the above-mentioned isomorphic form of the 
operator model. We restrict ourselves to the case that is needed in the present paper 
(this leads to a significant simplification of the formulae). 

3.13 The boundary triple .(P(h), T (h),r(h)). Let .h ∈ H0 be given by the data as 
in (3.12), and assume, in addition, that .ö1 = 0 and that no interval .(0, ε) with 
.ε > 0 is indivisible. Due to the growth restriction imposed on the Hamiltonian 
functions of a general Hamiltonian in its definition (cf. [82, Definitions 2.16–2.18]) 
the Hamiltonian function .H1 of . h satisfies (I), (HS) and (. A), i.e. it belongs to 
the class . H. Let . wl be the corresponding functions (3.13) and denote by .1]x0 the 
indicator function of the interval .(0, x0]. 

First, we define the base space .P(h) of the boundary triple .(P(h), T (h),r(h)). 
Set .A:=A(H1) = A1 and 

. L2
A(H1):=L2(H1) +̇ span

{
wk1]x0 : k = 0, . . . ,A − 1

}
.

Then .P(h) is the linear space 

. P(h):=L2
A(H1) × CA

endowed with an inner product as follows. Let .F = (f ; ξ),G = (g;η) ∈ P(h), 
where .ξ = (ξk)

A−1
k=0 , .η = (ηk)

A−1
k=0 , and denote by .λ = (λk)

A−1
k=0 and . μ = (μk)

A−1
k=0

the unique coefficients such that
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.

f̃ :=f −
A−1E

l=0

λlwl1]x0 ∈ L2(H1),

g̃:=g −
A−1E

l=0

μlwl1]x0 ∈ L2(H1).

(3.14) 

Then 

. [F,G]:=(f̃ , g̃)L2(H1)
+

A−1E

k=0

λkηk +
A−1E

k=0

ξkμk.

Second, we define the maximal relation .T (h). Set 

. TA,max(H1):=
{
(f ; g) ∈ L2

A(H1) × L2
A(H1) : ∃f̂ absolutely continuous

representative of f s.t. f̂ ' = JH1g
}
.

Then a pair .(F ;G) of elements .F = (f ; ξ),G = (g;η) ∈ P(h) belongs to .T (h) if 
and only if (with . λ and . μ again as in (3.14)) 

(i) .(f ; g) ∈ TA,max(H1); 
(ii) for each .k ∈ {0, . . . ,A − 2}, 

. ξk = ηk+1 + 1

2
μA−1dA+k + 1

2
λ0dk − wk+1(x0)1f (x0)2;

(iii) .ξA−1 =
x0
ˆ

0

w∗
AH1g̃ + 1

2

A−1E

l=0

λldl+A−1 + μA−1d2A−1 − wA(x0)1f (x0)2. 

Here .wk(x0)2 denotes the lower component of the vector .wk(x0) and . f (x0) =
(f (x0)1, f (x0)2)

T denotes the value at . x0 of the unique absolutely continuous 
representative . f̂ with .f̂ ' = JH1g (uniqueness of this representative follows since 
. H1 does not end indivisibly towards 0, cf. [42, Lemma 3.5]). 

Finally, we define the boundary relation . r(h): for .(F ; G) ∈ T (h), we set  

. r(h)(F ;G):=

(
||(

−λ0

η0 − f (x0)2 + 1

2

A−1E
l=0

μldl

⎞
⎟⎟⎠ .

The space .P(h) and the relation .T (h) are related to the space .L2(H1) and the 
maximal relation .Tmax(H1) therein as follows.
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3.14 The map .ψ(h). The original definition of the map .ψ(h) that establishes this 
relation is again implicit, cf. [59, Definitions 8.5 and 4.10]. However, based on [59, 
(4.12)], it is easy to obtain the following description in the concrete model space 
P(h) introduced above. 

Let . h be a general Hamiltonian as in 3.13. Then we denote by . ψ(h) : P(h) →
L2

A(H1) the projection onto the first component of .P(h), i.e. 

.ψ(h)(f ; ξ):=f, (f ; ξ) ∈ P(h). (3.15) 

This map satisfies 

. 
(
ψ(h) × ψ(h)

)
T (h) = TA,max(H1);

see [80, Remark 2.11]. Moreover, it is obvious that .ψ(h) maps . L2(H1) × CA

isometrically and surjectively onto .L2(H1); note that the elements in .CA are neutral. 
Using that 

. L2(H1) × CA = ({0} × CA
)[⊥]

we can deduce that 

.

ψ(h)
(
({0} × CA)[⊥]) = L2(H1),

(
ψ(h) × ψ(h)

)((
T (h) ∩ ({0} × CA)[⊥])2) = Tmax(H1);

(3.16) 

here .[⊥] denotes the orthogonal companion with respect to the inner product .[ ·, · ], 
i.e. .M[⊥] = {x : [x, y] = 0 for all y ∈M}. 

3.6 The Basic Identification 

The class . H of Hamiltonians can be identified with the class .H0 of general 
Hamiltonians up to the parameters . ö1, .b1,j , .d1,j . This is nearly obvious, but is a 
crucial observation for our approach. Hence we point it out in this prominent way. 

3.15 The relation .H0 - H. Let .h ∈ H0 be given by the data (3.12). Then . H1 ∈ H
and .A(H1) = A1. 

3.16 The relation .H - H0. Let .H ∈ H be given, assume that H is defined on 
.(0,∞) and choose .x0 ∈ (0,∞). Then we associate with H a general Hamiltonian 
.h ∈ H0 as in (3.12) with .H1 = H and . ö1, .b1,j , .d1,j arbitrary. Again one has . A1 =
A(H1), and the negative index of . qh is given by (3.11).



126 M. Langer and H. Woracek

4 Construction of the Spectral Measure 

Let a Hamiltonian .H ∈ H be given. In this section we complete the following tasks: 
(1) we show that each solution of the canonical system (1.1) attains regularized 

boundary values; (2) we construct a family of functions from the class .N(∞)
<∞ to 

which we refer as singular Weyl coefficients of H ; and (3) we construct a positive 
Borel measure of class . M to which we refer as the spectral measure of H . Most of  
these facts follow relatively easily by using the basic identification 3.16 and previous 
results from [82, 84]. 

In order to formulate the theorems, one more notation is needed. 

4.1 The defect spaces . Nz. Let .H ∈ H and .z ∈ C. We denote the set of all locally 
absolutely continuous solutions of the differential equation (1.1) by . Nz and speak 
of the defect space of H at the point z. Clearly, . Nz is a linear space of dimension 2. 
Note that, for .z = 0, this space is trivial in the sense that it consists of all constant 
functions. 

Let .H1,H2 ∈ H and assume that .H1 and .H2 are reparameterizations of each 
other: .H2(x) = H1(γ (x))γ '(x) where . γ is an increasing bijection such that . γ and 
.γ −1 are absolutely continuous. Then a simple calculation shows that the mapping 
.ψ |→ ψ ◦ γ is a bijection between the corresponding defect spaces .N1,z and .N2,z. 

In the next theorem we show that each solution of (1.1) assumes regularized 
boundary values at the left endpoint. These regularized boundary values will be 
used later to fix a fundamental system of solutions. 

Theorem 4.2 (Regularized boundary values) Let .H ∈ H with .dom(H) = (a, b). 
Then, for each fixed .x0 ∈ (a, b), the following statements hold (the functions . wk are 
as in 3.12). 

(i) For each .z ∈ C and each solution .ψ = (ψ1,ψ2)
T ∈ Nz the boundary value 

. rbvz,1ψ:= lim
x\a

ψ1(x)

and the regularized boundary value 

. rbvz,2ψ:= − lim
x\a

[ A(H)E

l=0

zl
(
wl (x)

)∗
J

(
ψ(x) − lim

t\a
ψ1(t)

2A(H)−lE

k=A(H)+1

zkwk(x)

)]

(4.1) 
exist. 

(ii) For .z ∈ C define 

. rbvz :
{
Nz → C2,

ψ |→ (rbvz,1ψ, rbvz,2ψ)T .

Then .rbvz is a bijection from . Nz onto . C2.
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(iii) For each z ∈ C \ {0} there exists an (up to scalar multiples) unique solution 
.ψ = (ψ1,ψ2) ∈ Nz \ {0} such that .limx\a ψ2(x) exists. 
This solution is characterized by the property that .ψ|(a,x0) ∈ L2(H |(a,x0)), and 
also by the property that rbvz,1ψ = 0 (and ψ /= 0). 
If . ψ is such that .limx\a ψ2(x) exists, then 

. rbvz,2ψ = lim
x\a

ψ2(x).

In contrast to .rbvz,1ψ, the regularized boundary value .rbvz,2ψ depends on the 
choice of . x0 since the . wk depend on . x0. This dependence is controlled as follows. 

(iv) Let .x0, x̂0 ∈ (a, b), and let .rbvz and . <rbvz be the correspondingly defined 
regularized boundary value mappings. Then there exists a polynomial . p(z)

with real coefficients which has no constant term and whose degree does not 
exceed .2A(H) such that 

. <rbvz,2ψ = rbvz,2ψ + p(z)rbvz,1ψ, ψ ∈ Nz, z ∈ C.

Remark 4.3 For .z = 0, solutions . ψ of (1.1) are constant, and for such . ψ the 
relation 

. rbvzψ = ψ(x), x ∈ (a, b),

holds. 

Proof (Proof of Theorem 4.2) There is no loss of generality in assuming that H 
is defined on .(0,∞). This follows since the functions .wk transform naturally by 
composition when performing a reparameterization, cf. 3.12. 

Let . h be the general Hamiltonian given by the data (3.12) with .H1 = H as in the 
basic identification 3.16 with . ö1, .b1,j , .d1,j all equal to 0. Items (i) and (ii) follow 
immediately from [82, Theorem 5.1]; we just need to match notation. Comparing 
the respective definitions we can deduce that 

. rbvz,1ψ <= rbvr(z)ψ, rbvz,2ψ <= − rbvs(z)ψ, rbvzψ <= rbv(z)ψ,

where the expressions on the right-hand sides are generalized boundary values 
corresponding to the general Hamiltonian . h as in [82]. Item (iii) follows directly 
from [82, Theorem 5.2]. Only the proof of item (iv) requires an argument. 

Let . <h be the general Hamiltonian which is constituted by the same data as . h with 

the exception that we take .<E:={−1, x̂0,∞} instead of E. Then . <rbvzψ = rbv(<h, z)ψ, 
where .rbv(<h, z) denotes the regularized boundary value map defined for . <h as in [82, 
Theorem 5.1]. 

By [59, Proposition 8.11] there exist numbers .d0, . . . , d2A(H)−1 ∈ R such that 
the general Hamiltonian . g defined as in (3.12) with .H1 = H , .ö1 = 0 and .b1,1 = 0
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is a reparameterization of .<h. Thereby, the increasing bijection between the domains 
of . <h and . g is the identity map. Clearly, the defect spaces . Nz and the functions . wl

in (3.13) built with the base point . x0 for . h and for . g, respectively, coincide. 
The fundamental solutions .ω

ĥ
and .ωg coincide; see 3.8. Let .rbv(g, z) be the 

regularized boundary value map defined for . g and let .rbvr(g, z), rbvs(g, z) be its 
components as in [82, Theorem 5.1]. By [82, Remark 5.8], equality of fundamental 
solutions implies equality of regularized boundary values, i.e. 

. rbvr(<h, z) = rbvr(g, z), rbvs(<h, z) = rbvs(g, z).

The first of these equalities is of course trivial; both sides, applied to a solution 
.ψ = (ψ1,ψ2)

T ∈ Nz, are equal to .limx\a ψ1(x). The second equality tells us that 

. <rbvz,2ψ = −rbvs(g, z)ψ, ψ ∈ Nz.

Comparing the definition of .rbvs(g, z) in [82, (5.3)] with the definition of . rbvz,2

in (4.1) we obtain that 

. rbvs(g, z)ψ = −rbvz,2ψ + rbvz,1ψ ·
2A(H)E

l=1

zldl−1, ψ ∈ Nz, z ∈ C.

The assertion in item (iv) thus follows with the polynomial 

.p(z):= −
2A(H)E

l=1

zldl−1.

nu
Remark 4.4 In the above proof we have defined the general Hamiltonian . h via the 
basic identification using . ö1, .b1,j , .d1,j all equal to 0. This may seem artificial, and 
thus requires an explanation. To this end, revisit [82, (5.3)]. If we had used other 
values for . ö1, .b1,j , .d1,j , then the regularized boundary values of . h as defined in [82] 
would have changed by the summand 

.

(
lim
t\a

ψ1(t)
)( 2A(H)E

l=1

zld1,l−1 −
ö1E

l=0

z2A(H)+lb1,ö1+1−l

)
. (4.2) 

This summand is independent of x and hence contains no information about the 
asymptotic behaviour of . ψ. We regard the inclusion of a summand (4.2) as a 
distracting complication from the point of our presentation and hence use the choice 
of vanishing . ö1, .b1,j , .d1,j . 

Of course, notions intrinsic for H must not depend on the choice of parameters 
in the basic identification. Thus we shall keep track of the influence of . ö1, .b1,j , .d1,j .
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In the next theorem a fundamental system of solutions of (1.1) is constructed. 
Since H is not integrable at the left endpoint, this is a non-trivial task. We fix 
solutions with the help of the regularized boundary values from Theorem 4.2. With 
this fundamental system of solutions we then construct a singular Weyl coefficient, 
which will be used later to obtain a spectral measure. For the definition of the class 
.N(∞)

κ see Definition 3.4. 

Theorem 4.5 (Singular Weyl coefficients) Let .H ∈ H with .dom(H) = (a, b). 
Then, for each fixed .x0 ∈ (a, b), the following statements hold. 

(i) For each .z ∈ C denote by .θ(· ; z) = (θ1(· ; z), θ2(· ; z))T and . ϕ(· ; z) =
(ϕ1(· ; z),ϕ2(· ; z))T the unique elements of . Nz such that 

.rbvzθ(· ; z) = (1, 0)T , rbvzϕ(· ; z) = (0, 1)T . (4.3) 

Then, for each .x ∈ (a, b), the functions .θ(x; ·) and .ϕ(x; ·) are entire of finite 
exponential type3 

.

ˆ x

a

/
det H(t) dt, (4.4) 

and they satisfy .θ1(x; z)ϕ2(x; z) − θ2(x; z)ϕ1(x; z) = 1 for .z ∈ C. 
Moreover, let .a+ = inf

{
x ∈ (a, b) : ´ x

a
h22(t)dt > 0

}
. Then, for each 

.z ∈ C, the following relations hold: 

.

lim
x\a

θ1(x; z) = 1, lim
x\a

θ1(x; z)
´ x0
x

h11(t)dt
= −z,

lim
x\a+

ϕ1(x; z)
´ x

a
h22(t)dt

= −z, lim
x\a

ϕ2(x; z) = 1.

(4.5) 

(ii) For each .τ ∈ R ∪ {∞}, the limit 

.qH (z):= lim
x-b

θ1(x; z)τ + θ2(x; z)

ϕ1(x; z)τ + ϕ2(x; z)
, z ∈ C \ R, (4.6) 

exists locally uniformly on .C \ R, defines an analytic function in z on . C \ R
and does not depend on . τ (here the fraction on the right-hand side of (4.6) is 
interpreted as . θ1(x;z)

ϕ1(x;z) if .τ = ∞). The function . qH belongs to the class .N(∞)
A(H). 

(iii) We have 

.θ(· ; z) − qH (z)ϕ(· ; z) ∈ L2(H |(x0,b)

)
, z ∈ C \ R, (4.7) 

3 If the integral in (4.4) is 0, then .θ(x; ·) and .ϕ(x; ·) are either of minimal exponential type or of 
order less than 1.
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and this property characterizes the value .qH (z) for each .z ∈ C \ R. 

The function . qH depends on the choice of . x0, which is controlled as follows. 

(iv) Let .x0, x̂0 ∈ (a, b) and let .qH and .<qH be the correspondingly defined 
functions (4.6). Then there exists a polynomial p with real coefficients which 
has no constant term and whose degree does not exceed .2A(H) such that 

. <qH (z) = qH (z) + p(z).

Proof Again we may assume without loss of generality that H is defined on .(0,∞). 
Let . h be the general Hamiltonian (3.12) with .H1 = H and . ö1, .b1,j , .d1,j all equal to 
0, so that .rbvzψ = rbv(z)ψ, where .rbv(z)ψ is as in [82, Theorem 5.1]. It follows 
from [82, Corollary 5.7] that the fundamental solution .ωh from 3.8 associated with 
. h is given by 

.ωh(x; z) =
(

θ1(x; z) θ2(x; z)

ϕ1(x; z) ϕ2(x; z)

)
. (4.8) 

The first properties of . θ and . ϕ mentioned in (i) are immediate; see 3.8. The  
formula for the exponential type follows from [83, Theorem 4.1] if we observe that 
.det H0(x) = 0 for .x ∈ (−1, 0) with . H0 from (3.12). The limit relations in (4.5) is a 
consequence of [82, Theorem 4.1 (with .α = 0), Remark 4.2 (iii) and Lemma 4.14]. 

Corollary 5.7 in [82] also implies that the limit in (4.6) exists locally uniformly, 
that . qH is characterized by (4.7) and that . qH coincides with the Weyl coefficient . qh
of the general Hamiltonian . h. In particular, this shows that .qH belongs to the class 

. N(∞)
A(H); see  3.11 and note that .A(H) = A1 and .ö1 = 0. 

For the proof of item (iv), consider again the general Hamiltonians . <h and . g as in 
the proof of Theorem 4.2 (iv). Since they are reparameterizations of each other, their 
Weyl coefficients coincide. An application of [82, Corollary 5.9] with . h and . g gives 

. <qH (z) − qH (z) = q<h(z) − qh(z) = qg(z) − qh(z) = −
2A(H)E

l=1

zldl−1,

which shows (iv). nu
Note that for .z = 0 one has 

.θ(x; 0) =
(

1

0

)
, ϕ(x; 0) =

(
0

1

)
, x ∈ (a, b), (4.9) 

which follows from (4.3). 

Remark 4.6 Let us study the influence of the parameters . ö1, .b1,j , .d1,j in 3.16 on 
the above proof. If we chose other parameters than all equal to 0 and hence alter
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the regularized boundary values by a polynomial summand, then the same would 
happen to the function . qH . In fact, revisiting [82, Corollary 5.9] we would pass 
from . qH to .qH + p where p is a polynomial with real coefficients with .p(0) = 0. 

Notice that, conversely, each summand p ∈ R[z] with p(0) = 0 can be produced 
by a proper choice of . ö1, .b1,j , .d1,j . Moreover, changing the base point . x0 (which is 
the second arbitrariness in our basic identification) also manifests only in adding a 
polynomial summand .p ∈ R[z] with .p(0) = 0. 

In order to handle the arbitrariness in the basic identification in a structurally clean 
way, we introduce an equivalence relation on the set of Weyl coefficients. Namely, 
we set 

.q1 ∼ q2 :⇐⇒ q1 − q2 ∈ R[z], (q1 − q2)(0) = 0. (4.10) 

Clearly, this is an equivalence relation on .N(∞)
<∞. In this context, remember that . q ∈

N(∞)
<∞ implies that .q + p ∈ N(∞)

<∞ for all .p ∈ R[z]. 
Definition 4.7 Let .H ∈ H be given. Then we denote by .[q]H the equivalence 
class modulo the relation (4.10) which contains some (and hence any) function . qH

constructed in Theorem 4.5. 
We speak of .[q]H as the singular Weyl coefficient of H. Each representative . qH

of .[q]H is called a (!) singular Weyl coefficient of H. 

By this definition we achieve that the singular Weyl coefficient .[q]H of .H ∈ H is 
nothing but the equivalence class which consists of all Weyl coefficients of general 
Hamiltonians associated with H by the basic identification. 

In the following theorem a measure is constructed with the help of the singular 
Weyl coefficient and a Stieltjes-type inversion formula. 

Theorem 4.8 (The spectral measure) Let .H ∈ H be given. Then there exists a 
unique positive Borel measure .μH with 

. μH

([s1, s2]
) = 1

π
lim
ε\0

lim
δ\0

s2+ε
ˆ

s1−ε

Im qH (t + iδ) dt, −∞ < s1 < s2 < ∞,

(4.11) 
where .qH ∈ [q]H is any singular Weyl coefficient of H . We have .μH ∈ M and 
.A(μH ) = A(H). 

Proof Since .qH ∈ N(∞)
<∞, it has a representation .qH (z) = r + φ(βz) with . r ∈ R

and a distributional density .φ ∈ F{∞}, i.e. . φ coincides with a measure .μφ on . R; 
see 3.5. It follows from (3.6) (see also [84, Theorem 3.9 (ii)]) that the measure . μφ

is given by the right-hand side of (4.11) on the set of closed intervals; in particular, 
the double limit exists. Moreover, [84, Theorem 2.8 (ii)] implies that .μH ∈ M. 

The fact that .μH does not depend on the choice of .qH ∈ [q]H is clear since a 
summand that is a real polynomial yields no contribution in the Stieltjes inversion 
formula.
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Finally, we show that .A(μH ) = A(H). It follows from [84, Theorem 3.9 (v)] 
that 

. A(μH ) = min
{
ind−(qH + p) : p ∈ R[z]}

= min
{
ind−(qH + p) : p ∈ R[z], p(0) = 0

}
.

For every .p ∈ R[z] with .p(0) = 0 there exist . ö1, .b1,j , .d1,j such that the Weyl 
coefficient of the general Hamiltonian . h in (3.12) with .H1 = H is equal to .qH + p; 
and for each choice of . ö1, .b1,j , .d1,j the Weyl coefficient is of this form; see 4.6. It  
follows from this and (3.11) that 

.A(μH ) = min
{
ind−h : h as in (3.12) with H1 = H and ö1, b1,j , d1,j arbitrary

}

= A1 = A(H).

nu
Definition 4.9 Let .H ∈ H be given. Then we call the unique positive Borel measure 
.μH defined by (4.11) the spectral measure of H. 

The choice of this terminology is justified by Theorem 5.1 below where we construct 
a Fourier transform into the space .L2(μH ). Before we establish this Fourier 
transform, let us mention one simple observation. Namely, it is almost immediate 
that Hamiltonians which are reparameterizations of each other give rise to the same 
singular Weyl coefficients and the same spectral measures. We provide a slightly 
more exhaustive variant of this fact. 

Proposition 4.10 Let .H ∈ H and .α ∈ R. Then the Hamiltonian 

. Hα:=
(

1 α

0 1

)
H

(
1 0
α 1

)

belongs to . H. 
Let, in addition, .H̃ ∈ H be given and assume that . H̃ and .Hα are reparameteri-

zations of each other. Then 

(i) for each pair of singular Weyl coefficients . q
H̃

and . qH of . H̃ and H , respectively, 
the difference .q

H̃
− qH is a real polynomial whose constant term equals . α; 

(ii) .μ
H̃

= μH . 

Proof Let . h be the general Hamiltonian as in (3.12) with .H1 = H and let . ωh be its 
fundamental solution. It follows from [57, Lemma 10.2] that 

. ωα:=
(

1 α

0 1

)
ωh

(
1 −α

0 1

)

is the fundamental solution of some general Hamiltonian . hα . This factorization 
immediately yields
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.qhα
= qh + α, (4.12) 

which implies that .qhα ∈ N(∞)
<∞, and hence .hα ∈ H0. A short computation, based on 

[62, Corollary 5.6], shows that the Hamiltonian function of . hα on .(0,∞) is equal to 
. Hα , and therefore .Hα ∈ H. The functions .qhα and . qh are singular Weyl coefficients 
of .Hα and H , respectively. Relation (4.12), together with Theorem 4.5 (iv) implies 
that .qHα − qH is a real polynomial whose constant term is equal to . α. 

Assume now that . H̃ is a reparameterizations of . Hα , say (2.1) holds with . H1 =
Hα , .H2 = H̃ and some .γ : (0,∞) → (0,∞). We can build general Hamiltonians 
. ̃h and . hα via 3.16 with .ö1 = ö̃1 = 0, .b1,1 = b̃1,1 = 0, .d1,j = d̃1,j = 0 and 

some .x0, x̃0 ∈ (0,∞) such that .γ (x̃0) = x0. Then . ̃h and . hα are reparameterizations 
of each other; see [62, Remark 3.38] and [59, Proposition 8.13]. Hence . ̃h and . hα
have the same Weyl coefficients; see [61, Theorem 1.4]. This shows that .q

H̃
= qHα , 

which in turn implies (i). 
For (ii) observe that an entire summand yields no contribution in the Stieltjes 

inversion formula. nu

5 The Fourier Transform 

For a positive Borel measure . μ on . Rwe denote by .Mμ the operator of multiplication 
by the independent variable in .L2(μ). In this section we prove that for each . H ∈ H
there exists a unitary operator .oH from .L2(H) onto .L2(μH ), the Fourier transform 
connected with H , which establishes unitary equivalence of .T (H) and . MμH

. Both  
.oH and its inverse act as integral transformations. These results are the most 
involved ones in the paper. Their proofs require to go deeply into the operator model 
of a general Hamiltonian . h. The essential ingredients are the following: 

(1) the spectral theory of the model relation in the Pontryagin space . P(h), in  
particular, the spectral decomposition of a self-adjoint relation in a Pontryagin 
space, 

(2) Q-function theory to relate the model relation connected with . h to the model 
relation of a distributional density, 

(3) the interpretation of a fundamental solution matrix as a generalized u-resolvent 
matrix. 

Theorem 5.1 (The Fourier transform) Let .H ∈ H with .dom(H) = (a, b) be 
given, let .T (H) be the self-adjoint operator as defined in Sect. 3.2 and let . μH

be the spectral measure associated with H via (4.11). Moreover, let . ϕ(· ; z) =
(ϕ1(· ; z),ϕ2(· ; z))T be the unique element of . Nz with .rbvzϕ(· ; z) = (0, 1)T as 
in Theorem 4.5. Then the following statements hold. 

(i) The map defined by
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. 
(oH f )(t):=

b
ˆ

a

ϕ(x; t)T H(x)f (x) dx, t ∈ R,

f ∈ L2(H), sup(suppf ) < b,

(5.1) 

extends to an isometric isomorphism from .L2(H) onto . L2(μH ), which we  
again denote by .oH . 

(ii) The operator .oH establishes a unitary equivalence between .T (H) and .MμH
, 

i.e. we have 

. oH ◦ T (H) = MμH
◦ oH .

(iii) On the subspace of compactly supported functions, also the inverse of .oH acts 
as an integral transformation, namely, 

. 
(o−1

H g)(x) =
∞̂

−∞
g(t)ϕ(x; t) dμH (t), x ∈ (a, b),

g ∈ L2(μH ), supp g compact.
(5.2) 

Remark 5.2 Note that the integrals in (5.1) and (5.2) are always well defined. For 
the latter this is obvious since .ϕ(x; t) is continuous in t ; for the former it follows 
from Theorem 4.2 (iii). 

As an additional result we prove a connection between the point mass at 0 of the 
spectral measure and the behaviour of H at b. 

Proposition 5.3 Let .H = (hij )
2
i,j=1 ∈ H, defined on .(a, b), and let .μH be the 

spectral measure associated with H via (4.11). Then .μH ({0}) > 0 if and only if 

.

b
ˆ

a

h22(x)dx < ∞. (5.3) 

If (5.3) is satisfied, then 

.μH

({0}) =
[ b
ˆ

a

h22(x)dx

]−1

. (5.4) 

Note that in any case, 

.μH

({0}) = − lim
y\0

iyqH (iy) (5.5)
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by [84, (3.8)]. 
The rest of this section is devoted to the proof of Theorem 5.1 and Proposi-

tion 5.3. We split the proof of Theorem 5.1 into three parts, which are contained in 
three separate subsections. First, in Sect. 5.1, we construct a Fourier transform oH

from .L2(H) onto .L2(μH ) in an abstract way. In Sect. 5.2 we show that this map acts 
as asserted in (5.1). The formula for .o−1

H is proved in Sect. 5.3. Finally, we prove 
Proposition 5.3 in Sect. 5.4. 

Since all statements in Theorem 5.1 and Proposition 5.3 are invariant under 
reparameterizations, we can assume without loss of generality that . domH =
(0,∞). Throughout these four subsections, keep .H ∈ H fixed and let . h be the 
general Hamiltonian defined in the basic identification 3.16 with . ö1, .b1,j , .d1,j all 
equal to 0. 

5.1 Construction of a Fourier Transform 

Let us first consider the case when .(0, c) is a maximal H -indivisible interval of type 
0. Then the space .L2(H) can be identified with .L2(H |(c,∞)) and .ϕ(c; z) = (0, 1)T ; 
see [82, proof of Theorem 5.1, p. 541]. Now items (i) and (ii) in Theorem 5.1 follow 
from [13, Theorem III]. For the rest of Sects. 5.1 and 5.2 we assume that H does 
not start with an indivisible interval at 0. Hence we can use the boundary triple 
.(P(h), T (h),r(h)) associated with the general Hamiltonian . h in the form in 3.13. 

The Fourier transform .oH is constructed by combining several mappings. We 
provide a comprehensive summary in Fig. 1 on page 139. The reader may find it 
helpful to visit this summary already while going through the construction. 

It is shown in [62, Proposition 5.19] that the Weyl coefficient . qh is a Q-function 
of the minimal relation .S(h):=T (h)∗. In fact, denote by .πl,1 the projection from 
.C2 × C2 onto the upper entry of the first vector component,4 set 

.A:= ker(πl,1 ◦ r(h)), (5.6) 

and let . εz be the defect elements with 

.
(
πl ◦ r(h)

)
(εz; zεz) =

(
1

−qh(z)

)
. (5.7) 

Then . qh is the Q-function of .S(h) induced by A and .(εz)z∈ρ(A). In particular, since 
. qh is analytic in .C\R and .S(h) is completely non-self-adjoint, we have .C\R ⊆ ρ(A).

4 Here ‘. l, 1’ stands for ‘left vector, first entry’. This is a generic notation: for example, . πl is 
the projection from .C2 × C2 onto the first vector component, .πr,2 onto the lower entry of the 
second vector component, etc. The use of ‘left’ and ‘right’ is motivated by the fact that the vectors 
correspond to boundary values at the left and right endpoint, respectively. 
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Let .φh be the distributional density in the representation (3.3) of . qh, and 
let .||(φh), .Aφh

and .ψ(φh) be as in 3.6. By [57, Proposition 3.4, Proof of 

Corollary 3.5], there exists an isometric isomorphism (where we use the base point 
.z0 = i) 

.oh : P(h) → ||(φh) with (oh × oh)(A) = Aφh
. (5.8) 

This isomorphism is determined by its action on defect elements, namely, 

.oh(εz) = ε̂z, z ∈ ρ(A), (5.9) 

where .ε̂z ∈ ||(φh) is defined by 

.ε̂z(t):=

⎧
⎪⎨
⎪⎩

t − i

t − z
, t ∈ R,

1, t = ∞.

(5.10) 

Denote by .EA(∞) and .Eφh
(∞) the algebraic eigenspaces at infinity of the relations 

A and .Aφh
, respectively. By [82, Lemma 3.2 (d)] we have .EA(∞) = {0} × CA; in  

particular, .EA(∞) is neutral. It follows from (5.8) that 

. oh(EA(∞)) = Eφh
(∞),

and 

.oh
(EA(∞)[⊥]) = Eφh

(∞)[⊥]. (5.11) 

These relations imply that also .Eφh
(∞) is neutral and that the restriction 

.oh|EA(∞)[⊥] is an isometric bijection from .EA(∞)[⊥] onto .Eφh
(∞)[⊥]. Let . πA

and .πφh
be the following canonical projections: 

. πA : EA(∞)[⊥] → EA(∞)[⊥]/EA(∞),

πφh
: Eφh

(∞)[⊥] → Eφh
(∞)[⊥]/Eφh

(∞).

Then there exists an isometric isomorphism 

. Ah : EA(∞)[⊥]/EA(∞) → Eφh
(∞)[⊥]/Eφh

(∞)

such that
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. πφh
◦ oh = Ah ◦ πA.

By (3.15) we have 

. ker πA = EA(∞) = {0} × CA = ker ψ(h).

Since .ψ(h)
(EA(∞)[⊥]) = L2(H) by the first relation in (3.16), we can deduce that 

there exists an isometric isomorphism 

. wA : EA(∞)[⊥]/EA(∞) → L2(H) with wA ◦ πA = ψ(h)|EA(∞)[⊥] .

By [84, Theorem 5.3], .ψ(φh) maps .Eφh
(∞)[⊥] isometrically onto .L2

(μφh
(x)

1+x2

)
. 

Since .L2
(μφh

(x)

1+x2

)
is non-degenerate, we have 

. ker ψ(φh) = (Eφh
(∞)[⊥])◦ = Eφh

(∞) = ker πφh
,

and we obtain an isometric isomorphism 

. wφh
: Eφh

(∞)[⊥]/Eφh
(∞) → L2

(μφh
(x)

1 + x2

)

such that 

. wφh
◦ πφh

= ψ(φh)
||Eφh

(∞)[⊥] .

Finally, let 

. U : L2
(μφh

(x)

1 + x2

)
→ L2(μφh

)

be the operator of multiplication by . 1
x−i

, which is an isomorphism from . L2
(μφh

(x)

1+x2

)

onto .L2(μφh
). 

Now we define .oH as the composition of the constructed isometric isomor-
phisms, namely 

. oH :=U ◦ wφh
◦ Ah ◦ w−1

A .

Then .oH is an isometric isomorphism from .L2(H) onto .L2(μφh
).
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In order to see how .oH is related to .T (H), it is enough to trace back the defining 
procedure.5 Using (5.8) and (5.11) we obtain 

. (Ah×Ah)
[
(πA ×πA)

(
A∩ (EA(∞)[⊥])2)] = (πφh

×πφh
)
(
Aφh

∩ (Eφh
(∞)[⊥])2).

By [59, Proposition 4.17 (iii)] we have 

. (ψ(h) × ψ(h))
(
T (h) ∩ (EA(∞)[⊥])2) = T (H),

and hence 

. (wA × wA)
[
(πA × πA)

(
A ∩ (EA(∞)[⊥])2)] ⊆ T (H).

It follows from [84, Theorem 5.3] that 

. (ψ(φh) × ψ(φh))
(
Aφh

∩ (Eφh
(∞)[⊥])2) = M(1+x2)−1dμφh

(x),

and therefore 

. (wφh
× wφh

)
[
(πφh

× πφh
)
(
Aφh

∩ (Eφh
(∞)[⊥])2)] = M(1+x2)−1dμφh

(x).

Putting these relations together we obtain 

. 
(
o−1

H × o−1
H

)
Mμφh

= (
wAA−1

h
w−1

φh
× wAA−1

h
w−1

φh

)
M(1+x2)−1dμφh

(x)

= (
wAA−1

h
× wAA−1

h

)[
(πφh

× πφh
)
(
Aφh

∩ (Eφh
(∞)[⊥])2)]

= (wA × wA)
[
(πA × πA)

(
A ∩ (EA(∞)[⊥])2)]

⊆ T (H).

Strict inclusion cannot occur since both .Mμφh
and .T (H) are self-adjoint. We 

conclude that 

. (oH × oH )T (H) = Mμφh
.

It remains to remember (from the proof of Theorem 4.8) that .μH = μφh
.

5 Remember in the following that .T (H) is self-adjoint, and hence .T (H) = Tmax(H) = S(H) in 
the notation of several previous papers like [59]. 
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Fig. 1 Construction of .oH in Sect. 5.1 

5.2 Computation of OH as an Integral Transform 

Since . h starts with an indivisible interval of type 0, [62, Theorem 6.4] is not 
applicable; a computation of the full Fourier transform .oh in the spirit of this 
result is not possible. However, we are only interested in .oH , which is essentially a 
restriction of . oh. And it turns out that the action of this restriction can be computed. 
The argument is based on a refined variant of [57, Proposition 4.6]. It requires to go 
into the details of the constructions made in [57] and [62]. 

Let us lay out the operator-theoretic setup (in five parts). Thereby we use, without 
much further notice, terminology and results from [56]. In particular, we ask the 
reader to recall definitions and usage of spaces, like . P−, dualities .[ · , · ]± and 
resolvent-like operators . R±

z , as introduced and studied in [56, §3]. Moreover, we 
repeatedly employ terminology and results from [62]. A comprehensive summary 
of the involved spaces and relations can be found in Fig. 2 on page 145. We advice 
the reader to visit this summary already on going through the construction. 

✰ ✰ ✰  Part 1 ✰ ✰ ✰  

Let A and . εz be as in the previous section, cf. (5.6), (5.7), so that . qh is a Q-function 

of .S(h) induced by A and .(εz)z∈ρ(A). Let .u ∈ P(h)−:=(S(h)∗)' be the element 
defined by 

.
[
u, (f ; g)

]
±:=(πl,2 ◦ r(h)

)
(f ; g), (f ; g) ∈ S(h)∗.
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Moreover, set 

. Rz:=(A − z)−1, R+
z :

{
P(h) → S(h)∗

f |→ (Rzf ; I + zRzf )

for .z ∈ ρ(A) and let .R−
z : P(h)− → P(h) be the dual of . R+

z , i.e. the unique map 
with 

. [R−
z v, f ] = [v,R+

z f ]±, v ∈ P(h)−, f ∈ P(h).

Then, by [62, Theorem 4.24], we have .εz = R−
z u, .z ∈ ρ(A). 

✰ ✰ ✰ Part 2 ✰ ✰ ✰  

Since .qh ∈ N(∞)
<∞, the only critical point of A is the point . ∞ and A has no 

finite spectral points of non-positive type, cf. [82, Lemma 2.5] and the paragraph 
preceding it. This implies that for each bounded Borel set . A the spectral projection 
.E(A) of A is well defined and its range is a Hilbert space. Moreover, . EA :
A' |→ E(A ∩ A') is the spectral measure of the bounded self-adjoint operator 
.AA:=A ∩ (ranE(A) × ranE(A)) in the Hilbert space .ranE(A), and .σ (AA) ⊆ A, 
cf. [76, Theorem II.3.1, p. 34].6 

For a bounded Borel set . A and elements .f, g ∈ P(h) we thus have a complex 
measure .EA;f,g on . R defined by 

. EA;f,g(A
'):=[E(A ∩ A')f, g

]
, A' a Borel set on R.

For later use let us list some simple properties of these objects. 

(1) We have 

.EA;f,g = EA;E(A)f,g = EA;f,E(A)g, f, g ∈ P(h), (5.12) 

and 

.EA;f,g(A
') = EA;g,f (A'), f, g ∈ P(h), A' a Borel set on R. (5.13) 

(2) Denote by .|| · ||P(h) some norm which induces the Pontryagin space topology 
of .P(h), .||E(A)|| the corresponding operator norm, and let .||EA;f,g|| denote the 
total variation of the measure .EA;f,g . Then

6 In [76] bounded operators are treated. The extension to the case of relations is provided in [21]. 
In [76] results are formulated for . A being an interval whose endpoints are not critical points. In our 
case, the only critical point is . ∞. Moreover, with the usual measure-theoretic extension process 
one can define .E(A) for each bounded Borel set; cf. the first paragraph in the proof of Lemma 5.4 
below. We tacitly use this fact and often formulate results for bounded Borel sets although in the 
original references only intervals were considered. 
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. ||EA;f,g|| ≤ ||E(A)|| ||f ||P(h)||g||P(h).

(3) Let . T > 0, let .F : [−T , T ] → C be continuous and let .f, g ∈ P(h). Then the 
map 

. A |→
ˆ

[−T ,T ]
F dEA;f,g, A a Borel subset of [−T , T ],

is a complex Borel measure on .[−T , T ]. 
(4) For each bounded Borel set . A we have 

. E(A)Rz|ranE(A) = (AA − z)−1 =
ˆ

R

1

t − z
dEA(t), z ∈ ρ(A).

(5) If .A,A' are bounded Borel sets with .A ⊆ A' and .f, g ∈ P(h), then 

. EA;f,g << EA';f,g with
dEA;f,g

dEA';f,g

= 1A.

✰ ✰ ✰ Part 3 ✰ ✰ ✰  

Introduce the set 

.Ireg:=
{
t ∈ (0,∞) : t is not inner point of an indivisible interval

}
. (5.14) 

For .t ∈ Ireg the boundary triple .(P(h), T (h),r(h)) is isomorphic to the boundary 
triple that is obtained by pasting the boundary triples corresponding to .h]t and 
. ht[; for the notation of pasting boundary triples and the mentioned result see [62, 
Definition 3.47] and [62, Remark 3.51] (or [80, 2.2, 2.3 and Lemma 2.5]); for the 
definition of . h]t and . h[t see 3.9. In particular, the space .P(h) can be decomposed as 
follows: 

. P(h) = P(h]t ) [+̇]P(ht[),

and we may consider .P(h]t ) naturally as a subspace of .P(h). Denote by . Pt , .t ∈ Ireg, 
the orthogonal projection in .P(h) onto .P(h]t ). Note that this projection acts as 

.Pt

(
(f ; ξ)

) = (1]t f ; ξ), (f ; ξ) ∈ P(h). (5.15) 

Let us consider the relation 

. S1(h]t ):= ker
[
(πl,1 × πr )r(h]t )

] ⊆ P(h]t )
2.

This relation is symmetric and has deficiency index . (1, 1). Let .ψt (z) ∈ P(h]t ), 
.z ∈ C, be the defect elements of .S(h]t ) that satisfy
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.
(
πl ◦ r(h]t )

)(
ψt (z); zψt (z)

) =
(

0

1

)
, z ∈ C; (5.16) 

then .ψt (z) are also defect elements of .S1(h]t ), i.e. 

. ran
(
S1(h]t ) − z

)⊥ = span
{
ψt (z)

}
, z ∈ C.

Considering .S1(h]t ) as a linear relation in . P(h), we have .S1(h]t ) ⊆ A and hence 
.A ⊆ S1(h]t )

∗, where .S1(h]t )
∗ denotes the adjoint of .S1(h]t ) as a relation in .P(h). 

The adjoint .S1(h]t )
∗t of .S1(h]t ) in .P(h]t ) is given by .S1(h]t )

∗t = ker(πl,1◦r(h]t )), 
and it follows that 

.S1(h]t )
∗t = (Pt × Pt )(A). (5.17) 

Let .ut ∈ P(h]t )−:=(S1(h]t )
∗t )' be the unique element with 

.[ut , (f ; g)]±t :=
(
πl,2 ◦ r(h]t )

)
(f ; g), (f ; g) ∈ S1(h]t )

∗t , (5.18) 

where .[ · , · ]±t denotes the duality between .S1(h]t )
∗t and .P(h]t )−. Since . (Pt ×

Pt )(S(h)∗) = S(h]t )
∗t and 

. (πl ◦ r(h))(f ; g) = (πl ◦ r(h]t ))(Ptf ; Ptg), (f ; g) ∈ S(h)∗,

we have 

.[u, (f ; g)]± = [ut , (Ptf ;Ptg)]±t , (f ; g) ∈ A, (5.19) 

where .[ · , · ]± denotes the duality between .S(h)∗ and .P(h)−. 

✰ ✰ ✰ Part 4 ✰ ✰ ✰  

Let . ψt be as in (5.16). For .t ∈ Ireg and .w ∈ C \ R, define elements . ψt,w(z) ∈ P(h)

by 

. ψt,w(z):=(I + (z − w)Rz

)
ψt (w), z ∈ ρ(A);

remember here that .C \ R ⊆ ρ(A). It follows from the resolvent identity that 

.ψt,w(z1) = (
I + (z1 − z2)Rz1

)
ψt,w(z2), z1, z2 ∈ ρ(A). (5.20) 

Moreover, since .ψt (w) ⊥ ran(S1(h]t ) − w) and A is a self-adjoint extension of 
. S1(h]t ), we have  

.ψt,w(z) ⊥ ran
(
S1(h]t ) − z

)
, z ∈ ρ(A). (5.21) 

Hence, there exists a scalar function .λt,w, which is analytic on .ρ(A), such that
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.Ptψt,w(z) = λt,w(z) · ψt (z), z ∈ ρ(A). (5.22) 

Clearly, .λt,w(w) = 1, and the zeros of .λt,w form a discrete subset of .ρ(A). Set 

. St,w:={
(f ; g) ∈ A : g − zf ⊥ ψt,w(z), z ∈ ρ(A)

} ⊆ P(h)2.

Relation (5.21) implies that .St,w is a symmetric extension of .S1(h]t ) ⊆ P(h]t )
2, 

which acts in the larger Pontryagin space .P(h) and has deficiency index . (1, 1). It  
follows that .(Pt × Pt )((St,w)∗) ⊆ S1(h]t )

∗t . In fact, due to (5.17), equality must 
hold. 

Set .P(h)
t,w
− :=(S∗

t,w)' and let .Pt,w : P(h]t )− → P(h)
t,w
− be the adjoint of the map 

.Pt × Pt : S∗
t,w → S1(h]t )

∗t , i.e. 

. 
[
Pt,wv, (f ; g)

]
±t,w

= [
v, (Ptf ;Ptg)

]
±t

, v ∈ P(h]t )−, (f ; g) ∈ (St,w)∗,

where .[ · , · ]±t,w is the duality between .S∗
t,w and .P(h)

t,w
− . Set .ut,w:=Pt,wut , so that 

.
[
ut,w, (f ; g)

]
±t,w

= [
ut , (Ptf ; Ptg)

]
±t

, (f ; g) ∈ S∗
t,w. (5.23) 

Remembering (5.19) we have, in particular, 

.[ut,w, (f ; g)]±t,w = [u, (f ; g)]±, (f ; g) ∈ A. (5.24) 

Note here that A is contained in both .S(h)∗ and .S∗
t,w. 

Denote by .R−
t,w;z the dual of .R+

z : P(h) → A ⊆ S∗
t,w corresponding to the 

duality .[ · , · ]±t,w . Then, by (5.24), we have  

. [R−
t,w;zut,w, f ] = [ut,w, R+

z f ]±t,w = [u,R+
z f ]± = [R−

z u, f ], f ∈ P(h),

and hence 

.R−
t,w;zut,w = R−

z u = εz, z ∈ ρ(A). (5.25) 

✰ ✰ ✰ Part 5 ✰ ✰ ✰  

For .t ∈ Ireg let .φt (z), .z ∈ C, be the defect elements of .S(h]t ) with 

.
(
πl ◦ r(h]t )

)(
φt (z); zφt (z)

) =
(

1

0

)
, z ∈ C. (5.26) 

By [62, Theorem 4.19], the map . Et , which is defined by
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.(Et f )(z) =
([f,φt (z)]

[f,ψt (z)]

)
, f ∈ P(h]t ), (5.27) 

is an isomorphism from .P(h]t ) onto the reproducing kernel space .K(ωh(t)) with the 
kernel (here . ωh is the fundamental solution of . h) 

. Hωh(t)
(w, z) = ωh(t; z)Jωh(t;w)∗ − J

z − w
.

By [62, Proposition 4.4] the kernel .Hωh(t)
can be written as 

. Hωh(t)
(w, z) =

([φt (z),φt (w)] [φt (z),ψt (w)]
[ψt (z),φt (w)] [ψt (z),ψt (w)]

)
.

On the dense subspace .span
({φt (z) : z ∈ C} ∪ {ψt (z) : z ∈ C}) of . P(h]t ), the  

action of . Et is determined by linearity and the formula 

.Et

(
λφt (z) + μψt (z)

) = Hωh(t)
(z, ·)

(
λ

μ

)
, λ,μ ∈ C, z ∈ C. (5.28) 

This relation is seen as follows (.ζ ∈ C): 

. Et

(
λφt (z) + μψt (z)

)
(ζ ) = λ

([φt (z),φt (ζ )]
[φt (z),ψt (ζ )]

)
+ μ

([ψt (z),φt (ζ )]
[ψt (z),ψt (ζ )]

)

= (
Hωh(t)

(ζ , z)
)T
(

λ

μ

)
= (

Hωh(t)
(ζ, z)

)∗
(

λ

μ

)
= Hωh(t)

(z, ζ )

(
λ

μ

)
.

✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰  

In order to prove (5.1), we proceed in several steps and compute various inner 
products and the action of several maps. The desired result will then follow by 
putting these formulae together. A comprehensive overview of the involved maps 
is provided in the diagram on page 155. 

For .t ∈ Ireg denote by . ot the map . Et followed by projection onto the second 
component, i.e. 

.(otf )(z):=[f,ψt (z)], f ∈ P(h]t ). (5.29) 

Recall that the entries of .ωh(t; z) are by definition (see [62, Definitions 5.3, 4.3]) 
just the right-hand boundary values of the elements .φt (z) and .ψt (z):
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Fig. 2 Computation of .oH in Sect. 5.2 

. 
(
πr ◦ r(h]t )

)(
φt (z); zφt (z)

) = ωh(t; z)T
(

1

0

)
,

(
πr ◦ r(h]t )

)(
ψt (z); zψt (z)

) = ωh(t; z)T
(

0

1

)
.

With the same method that was used in the proof of [57, Proposition 4.1], we obtain 
the following statement.
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Lemma 5.4 Let . A be a bounded Borel set, .z0 ∈ C \ R and .t ∈ Ireg. Then 

. 

[
E(A)f,ψt,w(ζ )

] =
∞̂

−∞
(otf )(x) · (x − z0) dEA;εz0 ,ψt,w(ζ )(x),

f ∈ P(h]t ), ζ, w ∈ C \ R.

(5.30) 

Proof The algebra of all bounded Borel sets is the union .
U

T >0 B[−T ,T ] of the .σ -
algebras .B[−T ,T ] of all Borel subsets of .[−T , T ]. Since .B[−T ,T ], as a .σ -algebra, is 
generated by the set of all closed intervals whose endpoints do not carry a point 
mass of E, it is enough to establish (5.30) for such intervals. 

Throughout the proof fix .f ∈ P(h]t ) and an interval .[a−, a+] with . E({a−}) =
E({a+}) = 0. Moreover, choose a bounded open interval .A0 which contains 
.[a−, a+]. 
Step 1: some computations. To start with, we compute (indicating which equa-

tions are used) 

. 
[
ut,w,

(
ψt,w(z); zψt,w(z)

)]
±t,w

(5.23)= [
ut ,
(
Ptψt,w(z); zPtψt,w(z)

)]
±t 

(5.22)= λt,w(z)
[
ut ,
(
ψt (z); zψt (z)

)]
±t 

(5.16, 5.18)= λt,w(z), 

which yields 

. [f,ψt,w(z)] (5.22)= λt,w(z) [f, ψt (z)] = (otf )(z)·[ut,w,
(
ψt,w(z); zψt,w(z)

)]
±t,w 

. 
(5.31) 

Since 

. (z − z0)Rz0ψt,w(z)
(5.20)= ψt,w(z) − ψt,w(z0), 

we have 

. (z − z0)[εz0 ,ψt,w(z)] (5.25)= (z − z0)
[
R− 

t,w;z0 
ut,w,ψt,w(z)

]

= [
ut,w, (z − z0)R

+ 
z0 

ψt,w(z)
]
±t,w 

=
[
ut,w,

(
(z − z0)Rz0ψt,w(z); (z − z0)

(
I + z0Rz0

)
ψt,w(z)

)]
±t,w 

=
[
ut,w,

(
ψt,w(z)−ψt,w(z0); (z−z0)ψt,w(z)+z0

(
ψt,w(z)−ψt,w(z0)

))]
±t,w
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= [
ut,w, (ψt,w(z); zψt,w(z))

]
±t,w 

− [
ut,w, (ψt,w(z0); z0ψt,w(z0))

]
±t,w 

. 

Bringing the very last summand to the left-hand side and substituting the first 
term on the right-hand side into (5.31), we obtain 

.

[f,ψt,w(z)] = (otf )(z) ·
(
(z − z0)

[
εz0 ,ψt,w(z)

]

+ [
ut,w,

(
ψt,w(z0); z0ψt,w(z0)

)]
±t,w

)
.

(5.32) 

For each .z, ζ ∈ C \ R, we have  

. 
[
(I + (z − ζ )Rz)f,ψt,w(ζ )

] = [
f, (I + (z − ζ )Rz)ψt,w(ζ )

] (5.20)= [f, ψt,w(z)] 
(5.33) 

and 

. 

[
εz0 ,ψt,w(z)

] (5.20)= [
εz0 , (I  + (z − ζ )Rz)ψt,w(ζ )

]

= [
(I + (z − ζ )Rz)εz0 ,ψt,w(ζ )

]

= [
εz0 ,ψt,w(ζ )

]+ (z − ζ )
[
RzE(A0)εz0 ,ψt,w(ζ )

]

+ (z − ζ )
[
RzE(Ac 

0)εz0 ,ψt,w(ζ )
]
. 

(5.34) 

If .z /= ζ , then 

. 
1

z − ζ
[f,ψt,w(ζ )] + [Rzf,ψt,w(ζ )] (5.33)= 

1 

z − ζ 
[f, ψt,w(z)]. (5.35) 

(5.32)= 
1 

z−ζ 
(otf )(z)·

(
(z−z0)

[
εz0 ,ψt,w(z)

]+[ut,w, (ψt,w

(
z0); z0ψt,w(z0)

)]
±t,w

)

(5.34)= (otf )(z) ·
(

z − z0 

z − ζ 
[εz0 ,ψt,w(ζ )]. (5.36) 

+ (z − z0)
[
RzE(A0)εz0 ,ψt,w(ζ )

]+ (z − z0)
[
RzE(Ac 

0)εz0 ,ψt,w(ζ )
]
. 

(5.37) 

+ 
1 

z − ζ

[
ut,w,

(
ψt,w(z0); z0ψt,w(z0)

)]
±t,w

)
. (5.38) 

Step 2: use of the Stieltjes–Lifšic inversion formula. We shall apply the Stieltjes– 
Lifšic inversion formula as stated in [76, p. 24, Corollary II.2 (second formula)] 
with two minor modifications. First, since we assume that the endpoints .a+
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and . a− carry no point mass of E, the limit ‘.ε \ 0’ is not needed. Second, by 
analyticity we may apply Cauchy’s theorem to replace the path of integration 
used in [76] by the path . γδ composed of the two oriented line segments 
connecting the points a− − iδ, a+ − iδ, and a+ + iδ, a− + iδ, respectively. Then, 
for each function g that is analytic in some open neighbourhood of .[a−, a+] and 
.u, v ∈ ranE(A0), 

. lim
δ\0

−1

2π i

ˆ

γδ

g(z)[Rzv,w]dz =
ˆ

[a−,a+]
g(x) dEA0;v,w(x). (5.39) 

Since .otf is entire and .ζ /∈ R, the first term on the left-hand side of (5.35), the  
terms in (5.36) and (5.38) and the second term in (5.37) are holomorphic in a 
neighbourhood of .[a−, a+]. Hence, 

. lim
δ\0

ˆ

γδ

[Rzf,ψt,w(ζ )]dz = lim
δ\0

ˆ

γδ

(otf )(z) · (z − z0)
[
RzE(A0)εz0 ,ψt,w(ζ )

]
dz.

(5.40) 
Applying (5.39) twice, namely, with the entire functions .g(z) = 1 and . g(z) =
(otf )(z) · (z − z0), we obtain 

. 
[
E([a−, a+])f,ψt,w(ζ )

]

= [
E([a−, a+])E(A0)f,E(A0)ψt,w(ζ )

] =
ˆ

[a−,a+]
dEA0;E(A0)f,E(A0)ψt,w(ζ )(x)

(5.39)= lim 
δ\0 

−1 

2π i  

ˆ 

γδ

[
RzE(A0)f, E(A0)ψt,w(ζ )

]
dz 

= lim 
δ\0 

−1 

2π i  

ˆ 

γδ

[
Rzf, ψt,w(ζ )

]
dz 

(5.40)= lim 
δ\0 

−1 

2π i  

ˆ 

γδ 

(otf )(z) · (z − z0)
[
RzE(A0)εz0 , E(A0)ψt,w(ζ )

]
dz 

(5.39)= 
ˆ 

[a−,a+] 
(otf )(x) · (x − z0) dEA0;E(A0)εz0 ,E(A0)ψt,w(ζ )(x) 

= 
ˆ 

[a−,a+] 
(otf )(x) · (x − z0) dEA0;εz0 ,ψt,w(ζ )(x).
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It remains to remember that .
dE[a−,a+];u,v

dEA0;u,v
= 1[a−,a+]. nu

The next statement is the key lemma. 

Lemma 5.5 Assume that H does not end with an indivisible interval towards . ∞. 
Then, for each .s0 ∈ (0,∞), we have 

.c.l.s.
{
ψt,w(z) : t ∈ Ireg, t ≥ s0, z, w ∈ C \ R} = P(h) [−]EA(∞), (5.41) 

where .c.l.s. stands for ‘closed linear span’ and .Ireg is defined in (5.14). 

Proof 

Step 1. Fix a point .s ∈ Ireg and let .M ⊆ C be a set with a finite accumulation 

point. Let .δj ∈ P(h]s), .j = 0, . . . , A(H)−1, be the elements . δj :=(0, (δjk)
A(H)−1
k=0 )

where .δjk is the Kronecker delta. Then . (0; δ0), (δ0; δ1), . . . , (δA(H)−2; δA(H)−1) ∈
T (h]s), and the boundary values of these elements vanish. Repeatedly applying 
the abstract Green identity [59, (2.6) and Proposition 5.2], we obtain, for . k =
0, . . . ,A(H) − 1 and .z ∈ C, 

. [δk,ψs(z)] = [δk−1, zψs(z)] = . . . = [δ0, z
kψs(z)] = [0, zk+1ψs(z)] = 0.

In particular, we have 

.P(h]s) [−] c.l.s.
{
ψs(z) : z ∈ M

} ⊇ span{δ0, . . . , δA(H)−1}. (5.42) 

Applying the isomorphism .Es : P(h]s) → K(ωh(s)) from (5.27) and using (5.28), 
we can deduce that 

. Es

(
P(h]s) [−] c.l.s.{ψs(z) : z ∈ M}

)

=
(
c.l.s.

{
Hωh(s)

(z, ·)
(

0

1

)
: z ∈ M

})[⊥]
.

By analyticity, the space on the right-hand side equals .ker π−, where . π− denotes the 
projection onto the second component in .K(ωh(s)). As shown in the proof of [106, 
Lemma 6.3 (subcase 3b)], we have .dim ker π− = A(H). Thus, equality must hold 
in (5.42). 

Step 2. First note that .Psδk = δk where . Ps is as in (5.15), and hence 

. [ψs,w(z), δk]=[Psψs,w(z), δk] (5.22)= λs,w(z)[ψs(z), δk] =  0, 

k = 0, . . . , A(H)  − 1, z,  w  ∈ ρ(A).
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Together with the fact that .EA(∞) = span{δ0, . . . , δA(H)−1} (see [82, 
Lemma 3.2 (d)]), this gives 

. EA(∞) ⊆ {ψt,w(z) : t ∈ Ireg, t ≥ s0, z, w ∈ C \ R}[⊥],

i.e. the inclusion ‘. ⊆’ in  (5.41). To show the reverse inclusion, let .f ∈ P(h) be given 
and assume that .f [⊥]ψs,w(z), .s ∈ Ireg, .s ≥ s0, .z,w ∈ C \ R. Then, for each fixed 
.s ≥ s0 and .z ∈ C \ R, 

. [Psf,ψs(z)] = [f,ψs,z(z)] = 0, z ∈ C \ R.

By Step 1 we therefore have .Psf ∈ span{δ0, . . . , δA(H)−1}. This tells us that 
.ψ(h]s)Psf = 0. Since 

. ψ(h)f |(−1,0)∪(0,s) = ψ(h]s)Psf,

and s may be chosen arbitrarily large by our hypothesis that H does not end 
indivisibly, it follows that .ψ(h)f = 0. Hence, 

. f ∈ span{δ0, . . . , δA(H)−1} = EA(∞),

which proves the reverse inclusion. nu
If .s1, s2 ∈ Ireg, .s1 < s2, then clearly .Ps1ψs2(z) = ψs1(z), and hence 

. os1f = os2f, f ∈ P(h]s1
),

where .Ps and .os are defined in (5.15) and (5.29). Thus, a map .o∞ on 
.
U

s∈Ireg
P(h]s) is well defined by setting 

.o∞f :=osf f with sf sufficiently large so that f ∈ P(h]sf ). (5.43) 

Using Lemma 5.5 we can extend Lemma 5.4. 

Proposition 5.6 Let . A be a bounded Borel set and let .z0 ∈ C \ R. Then 

.

[E(A)f, g] =
∞̂

−∞
(o∞f )(x) · (x − z0) dEA;εz0 ,g(x),

f ∈
||

s∈Ireg

P(h]s), g ∈ P(h).

(5.44) 

Proof Fix .f ∈U
s∈Ireg
P(h]s) and let . sf be so large that .f ∈ P(h]sf ). By Lemma 5.4 

the asserted relation holds for all . g ∈ span{ψs,w(z) : s ∈ Ireg, s ≥ sf , z, w ∈
C \ R}.
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Both sides of (5.44) depend continuously on g. For the left-hand side, this is 
obvious, and for the right-hand side, remember that .EA is compactly supported, 
and hence, for each continuous function F on . R, the integral .

´∞
−∞ F dEA exists in 

the strong operator topology. We obtain from Lemma 5.5 that (5.44) holds for all 
.g ∈ EA(∞)[⊥]. 

Finally, let an arbitrary element .g ∈ P(h) be given. Since .E(A)g ∈ EA(∞)[⊥], 
we may apply what we have already shown and obtain 

. [E(A)f, g] = [E(A)f,E(A)g] =
∞̂

−∞
(o∞f )(x) · (x − z0) dEA;εz0 ,E(A)g(x)

(5.12)= 

∞̂ 

−∞ 

(o∞f )(x) · (x − z0) dEA;εz0 ,g.

nu
Lemma 5.7 Let . A be a bounded Borel set and .g ∈ P(h). Then 

.(x − z0) dEA;εz0 ,g = (x − z1) dEA;εz1 ,g, z0, z1 ∈ C \ R. (5.45) 

Proof To see this, note that 

. I + (z0 − z1)(AA − z0)
−1 =

ˆ

R

x − z1

x − z0
dEA, z0, z1 ∈ C \ R.

From the identity [56, (3.2)], we obtain 

. 
(
I + (z0 − z1)(A − z0)

−1)E(A)R−
z1

= R−
z0

.

Hence, for each Borel set . A' and .g ∈ P(h), 

. EA;εz0 ,g(A
') (5.25)= [E(A ∩ A')R−

z0 
u, g] = [E(A')E(A)R−

z0 
u, E(A)g] 

= [
E(A')E(A)

(
I + (z0 − z1)(A − z0)

−1)R−
z1 

u, E(A)g
]

= [
E(A')

(
I + (z0 − z1)(AA − z0)

−1)E(A)R−
z1 

u, E(A)g
]

(5.25)=
[
ˆ

A'

x − z1 

x − z0 
dEA(x) · E(A)εz1 , E(A)g

]

= 
ˆ

A'

x − z1 

x − z0 
dEA;E(A)εz1 ,E(A)g(x) 

(5.12)= 
ˆ

A'

x − z1 

x − z0 
dEA;εz1 ,g(x).
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It follows that .EA;εz0 ,g << EA;εz1 ,g and .(x−z0) dEA;εz0 ,g = (x−z1) dEA;εz1 ,g . nu
Now we are in position to relate the maps .o∞ and . oh. 

Lemma 5.8 Let . φh be the distributional density in the representation (3.5) of the 
Weyl coefficient . qh of . h, let .ψ(φh) be as in 3.6, let .oh be the isomorphism acting as 
in (5.9) and let .o∞ be as in (5.43). Then 

. (o∞f )(x) = 1

x − i

([
ψ(φh) ◦ oh

]
f
)
(x) μH –a.e.,

f ∈
||

s∈Ireg

P(h]s) ∩ EA(∞)[⊥].

In particular, .o∞ maps .
U

s∈Ireg
P(h]s) into .L2(μH ). 

Proof Let .f ∈ U
s∈Ireg

P(h]s) ∩ EA(∞)[⊥] be given. For a bounded open interval 

. A and .w ∈ C \ R, we compute the inner product .[E(A)f, εw] in two ways. 
On the one hand, we have 

. 

[E(A)f, εw] (5.44)= 
ˆ 

R 

(o∞f )(x)(x − i) dEA;εi ,εw (x) 

(5.13,5.45)= 
ˆ 

R 

(o∞f )(x)(x − i) 
x + i 

x − w 
dEA;εi ,εi (x). 

(5.46) 

Using a standard argument, we now relate .EA;εi ,εi
to . μH . Since .qH is the Q-

function induced by A and the family .(εz)z∈ρ(A), we have the representation 

. qh(z) = qh(i) + (z + i)[εi , εi] + (z2 + 1)[Rzεi , εi]

= qh(i) + (z + i)[εi , εi] + (z2 + 1)
[
RzE(Ac)εi , E(Ac)εi

]

+ (z2 + 1)
[
(AA − z)−1E(A)εi , E(A)εi

]
. (5.47) 

Let .[a−, a+] ⊆ A be such that .μH ({a−}) = μH ({a+}) = 0 and . E({a−}) =
E({a+}) = 0. Observing that all summands on the right-hand side of (5.47) apart 
from the last one are analytic across . A, we compute (where . γδ is as in the proof of 
Lemma 5.4) 

. μH

([a−, a+]) (4.11)= 
1 

π 
lim 
δ\0 

ˆ 

[a−,a+] 
Im qH (x + iδ) dx
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q h(z)=q h(z) 

= 1 

π 
lim 
δ\0 

−1 

2i 

ˆ 

γδ 

qH (z) dz 

(5.47)= lim 
δ\0 

−1 

2π i  

ˆ 

γδ 

(z2 + 1)
[
(AA − z)−1E(A)εi , E(A)εi

]
dz 

(5.39)= 
ˆ 

[a−,a+] 
(x2 + 1) dEA;E(A)εi ,E(A)εi 

(5.12)= 
ˆ 

[a−,a+] 
(x2 + 1) dEA;εi ,εi . 

From this it follows that .1A(x) dμH (x) << dEA;εi ,εi
and 

. 
1A(x) dμH (x)

dEA;εi ,εi

= x2 + 1.

Hence, we can further rewrite the last integral in (5.46) and obtain 

.[E(A)f, εw] =
ˆ

R

(o∞f )(x)(x − i)
x + i

x − w

1A(x)dμH (x)

1 + x2
. (5.48) 

On the other hand, let .Eφh
(∞)[⊥] be the algebraic eigenspace at infinity of .Aφh

, 

let .Eφh
be the spectral measure of .Aφh

and let . ̂εw be as in (5.10). Since .oh is 

isometric, .ranEφh
(A) ⊆ Eφh

(∞)[⊥] and .ψ(φh) is isometric on .Eφh
(∞)[⊥] (by 

[84, Theorem 5.3]), we have 

. [E(A)f, εw] = [E(A)f, E(A)εw]

= [
ohE(A)f, ohE(A)εw

]
||(φh)

(5.8)= [
Eφ h (A)ohf, Eφ h (A)ohεw

]
||(φ h) 

(5.9)= 
ˆ 

R

(
ψ(φh)Eφ h (A)ohf

)
(x)

(
ψ(φh)Eφ h (A)ε̂w

)
(x) 

dμH (x) 

1 + x2 
. 

(5.49) 

The mappings .ψ(φh) ◦ Eφh
(A)|Eφh

(∞)[⊥] and .( ·1A) ◦ ψ(φh) are continuous on 

.Eφh
(∞)[⊥]. By the definition of .ψ(φh) and [57, Proposition 3.1], they coincide on 

all compactly supported functions of .B2(φh) (for this notation, see [84, §5]). Their 

continuity implies that they coincide on .Eφh
(∞)[⊥]. The assumption . f ∈ EA(∞)[⊥]

and the relation (5.11) imply that .ohf ∈ Eφh
(∞)[⊥]. Hence,
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. 

(
ψ(φh)Eφh

(A)ohf
)
(x) = 1A(x)

(
ψ(φh)ohf

)
(x) x ∈ R μH -a.e.

Using [57, Proposition 3.1] and the fact that .ψ(φh) acts as the identity on compactly 
supported functions, we obtain 

. 

(
ψ(φh)Eφh

(A)ε̂w

)
(x) =

(
ψ(φh)

(
1Aε̂w

))
(x) = 1A(x) · x − i

x − w
.

The integral on the right-hand side of (5.49) thus equals 

.

ˆ

R

(
ψ(φh)ohf

)
(x) · x + i

x − w
1A(x)

dμH (x)

1 + x2
. (5.50) 

Since the linear span of the functions .x |→ x+i
x−w

, .w ∈ ρ(A), is dense in 

.L2
(1A(x)

1+x2 μH (x)
)
, we conclude from (5.48), (5.49) and (5.50) that 

. (o∞f )(x)(x − i) =
(
ψ(φh)ohf

)
(x), x ∈ A μH -a.e.

Since . A was an arbitrary bounded open interval, the assertion follows. nu
To finish the proof of (5.1), let .[a, b] ⊆ (0,∞) and denote by . o the map defined on 
.L2(H |[a,b]) as 

. (of )(z):=
(
(
´

[a,b]
[
ψ(h]b)φb(z)

]
(t)∗H(t)f (t) dt

´

[a,b]
[
ψ(h]b)ψb(z)

]
(t)∗H(t)f (t) dt

⎞
⎠ ,

where .φb and .ψb are as in (5.26) and (5.16), respectively. The function 
.[ψ(h]b)ψb(z)](t) is a solution of (1.1) with z replaced by . z, which assumes 
boundary values at 0, namely, .(0, 1)T . The function .φ(t; z) shares these properties, 
and hence we have .[ψ(h]b)ψb(z)](t) = φ(t; z). Thus, the second component of . o
can be rewritten as 

. 

ˆ

[a,b]
φ(t, z)∗H(t)f (t) dt.

The asserted formula (5.1) for the action of .oH is now obtained by putting together 
the so far collected knowledge. Consider the following diagram (here .π− denotes 
the projection onto the second component, and references between . # are for the 
proof of the commutativity of the corresponding part of the diagram):
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. 

We see that (5.1) holds for each .f ∈ L2(H) supported on .[a, b]. For each fixed 
.T > 0, both sides of (5.1) depend continuously on f when f varies in the set 
of all elements of .L2(H) whose support is bounded above by T . Remember here 
that .φ( · ; z) ∈ L2(0, T ). Hence, (5.1) holds for all .f ∈ L2(H) whose support is 
bounded above by T . 

5.3 Computation of O−1 
H as an Integral Transform 

The final task in the proof of Theorem 5.1 is to establish the formula (5.2) for the 
action of .o−1

H . 
Denote by E the spectral family associated with . T (H). Let .f ∈ L2(H) with 

.sup(supp f ) < b, let .h ∈ L2(H) be bounded and with sup(supp h) < b and let 

.A ⊆ R be a finite interval. Using (i), (ii) of Theorem 5.1 and Fubini’s theorem, we 
obtain 

.
(
E(A)f, h

)
L2(H)

=
ˆ

R
1A(t)

(
oH f

)
(t)
(
oH h

)
(t) dμH (t)

=
ˆ

A

(
oH f

)
(t)

ˆ b

a

h(x)∗H(x)ϕ(x; t) dx dμH (t)

=
ˆ b

a

h(x)∗H(x)

ˆ

A

(
oH f

)
(t)ϕ(x; t) dμH (t) dx.
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Since the set .{h ∈ L2(H) : sup(supp h) < b, h bounded} is dense in . L2(H), it  
follows that 

.
(
E(A)f

)
(x) =

ˆ

A

(
oH f

)
(t)ϕ(x; t) dμH (t) H -a.e. (5.51) 

Both sides of this equality depend continuously on f , and therefore this relation is 
valid for arbitrary .f ∈ L2(H). 

To complete the proof, let .g ∈ L2(μH ) with compact support be given. Choose 
a finite interval . A which contains .supp g. Since .oH intertwines .T (H) with the 
multiplication operator in .L2(μH ), we have  

.E(A) ◦ o−1
H = o−1

H ◦ ( · 1A

)
. (5.52) 

Thus, 

. 
(
o−1

H g
)
(x) = (

o−1
H (1Ag)

)
(x)

(5.52)= (
E(A)(o−1 

H g)
)
(x) 

(5.51)= 
ˆ

A

g(t)ϕ(x; t)  dμH (t) = 
ˆ 

R 
g(t)ϕ(x; t) dμH (t) H -a.e. 

This finishes the proof of Theorem 5.1. 

5.4 The Connection Between the Point Mass at 0 and the 
Behaviour of H 

Before we prove Proposition 5.3, we need a lemma. 

Lemma 5.9 Let .H ∈ H with .domH = (0,∞) and let . h be the general Hamiltonian 
as in 3.15. Moreover, let .ωh be the chain of matrices as in 3.8. Then, for each 
.x ∈ (0,∞), 

.

[
∂

∂z
ωh,21(x; z)

]||||
z=0

= −
ˆ x

0
h22(t)dt. (5.53) 

Proof Let .x1 ∈ (0, x). Integrating (3.9) we obtain 

. ωh(x; z) − ωh(x1; z) = z

ˆ x

x1

ωh(t; z)H(t)Jdt

for .z ∈ C. If we differentiate both sides with respect to z, set .z = 0 and use (3.10), 
we arrive at
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.

[
∂

∂z
ωh(x; z)

]||||
z=0

−
[

∂

∂z
ωh(x1; z)

]||||
z=0

=
ˆ x

x1

ωh(t; 0)H(t)Jdt

=
ˆ x

x1

H(t)Jdt.

(5.54) 

It follows from [82, Theorem 4.1] that 

. lim
x1\0

[
∂

∂z
ωh,21(x1; z)

]||||
z=0

= 0,

which, together with (5.54), implies (5.53). nu
Proof (Proof of Proposition 5.3) Assume first that .μH ({0}) > 0. Define . g ∈
L2(μH ) by 

. g(t) =
⎧
⎨
⎩

1, t = 0,

0, t /= 0.

Then 

. (o−1
H g)(x) =

ˆ ∞

−∞
g(t)ϕ(x; t)dμH (t) = μH

({0})ϕ(x; 0) = μH

({0})
(

0

1

)
.

Since .oH is an isometric isomorphism, we obtain 

. μH

({0}) = ||g||2
L2(μH )

= ||||o−1
H g

||||2
L2(H)

= [
μH

({0})]2
ˆ ∞

0

(
0

1

)∗
H(x)

(
0

1

)
dx

= [
μH

({0})]2
ˆ ∞

0
h22(x)dx,

which implies (5.3) and (5.4). 
Now assume that (5.3) is satisfied. Let .c > 0 be large enough such that .(0, c) is 

not an indivisible interval and introduce the Hamiltonian function 

. Hc(x):=
⎧
⎨
⎩

H(x), x ∈ (0, c],
(

1 0
0 0

)
, x ∈ (c,∞),

which belongs to . H, satisfies .A(Hc) = A(H) and is in the limit point case at infinity. 
Moreover, let . hc be the corresponding singular general Hamiltonian as in 3.15 and 
let .ωhc

be the chain of matrices as in 3.8. The singular Weyl coefficient .qHc is given 
by
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. qHc(z) = qhc
(z) = ωhc

(c; z) * ∞ =
ωhc,11(c; z)

ωhc,21(c; z)
, z ∈ C \ R;

it belongs to .N(∞)
A(H) and is meromorphic in . C. Let .μHc be the spectral measure 

associated with .Hc via (4.11). Then Lemma 5.9 and (3.10) imply that, for every 
.ε > 0, 

. μHc

(
(−ε, ε)

) ≥ μHc

({0}) = Res (qHc ; 0) = −
ωhc,11(c; 0)

[
∂
∂z

ωhc,21(c; z)
]||

z=0

=
[
ˆ c

0
h22(x)dx

]−1

≥
[
ˆ ∞

0
h22(x)dx

]−1

=:M.

By Theorem 4.5 (ii) we have .qH (z) = limc→∞ qHc(z) locally uniformly in .C \ R. 
Since .ind−qHc = A(Hc) = A(H) = ind−qH , we can apply Lemma 3.7, which 
implies that, for every .ε > 0 such that .μH ({−ε}) = μH ({ε}) = 0, 

. μH

(
(−ε, ε)

) = lim
c→∞ μHc

(
(−ε, ε)

) ≥ M.

Hence, .μH ({0}) ≥ M > 0. nu

6 Inverse Theorems 

By the procedure described in Theorem 4.8, a map from . H to . M, namely, . H |→
μH , is well defined. Hence, it is meaningful to pose inverse problems. Concisely 
formulated, we face the task to determine the range and kernel of the mapping . H |→
μH . 

In this section, we complete this task. In fact, we provide somewhat more detailed 
results. They include singular Weyl functions and a local version of the uniqueness 
theorem. Proofs are again relatively simple; they are carried out in the same manner 
as in Sect. 4, using the basic identifications 3.15, 3.16, and some results taken from 
the literature. Recall the notation from Definition 4.7. Theorems 6.1 and 6.2 are 
the analogues for our class . H of Hamiltonians with two singular endpoints to de 
Branges’ celebrated inverse spectral theorem. 

Theorem 6.1 (Existence Theorem) The following statements hold. 

(i) Let .q ∈ N(∞)
<∞ with .ind−q > 0. Then there exists a Hamiltonian .H ∈ H with 

.q ∈ [q]H . 
(ii) Let .μ ∈ M with .A(μ) > 0. Then there exists a Hamiltonian .H ∈ H with 

.μH = μ.
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Proof To show (i) let .q ∈ N(∞)
<∞ be given. According to [61, Theorem 1.4], there 

exists a general Hamiltonian . h0 with .qh0
= q. Moreover, [82, Theorem 3.1] implies 

that .h0 ∈ H0. Applying an appropriate reparameterization, we may assume that: 

– . h0 is defined on . (−1, 0) ∪ (0,∞)

– The Hamiltonian function of . h equals .x−2
(

1 0
0 0

)
for . x ∈ (−1, 0)

– . bö+1 = 0
– . E = {−1, 1,∞}
Let H be the Hamiltonian function of . h0 on the interval .(0,∞). Then, by our basic 
identification 3.15, we have .H ∈ H. 

Let . h be the general Hamiltonian built from H in the basic identification 3.16 with 
. ö1, .b1,j , .d1,j all equal to 0. Then . h and . h0 differ only in the data part .ö1, b1,j , d1,j . 
From [82, Corollary 5.9] we obtain that 

. qH (z) = qh = qh0
−

2A(H)E

l=1

zld1,l−1 +
ö1E

l=1

z2A(H)+lb1,ö1+1−l ,

i.e. .qH and q differ only by a polynomial with real coefficients and vanishing 
constant term. Hence, .q ∈ [q]H . 

For the proof of (ii), let .μ ∈ M be given. Choose .q ∈ N(∞)
<∞ with .μq = μ; this  

is possible by [84, Theorem 3.9 (v)].7 An application of the already proved item 
(i) provides us with a Hamiltonian .H ∈ H such that .qH − q is a real polynomial. 
By the Stieltjes inversion formula (3.6) and the definition of . μH , it follows that  
.μH = μqH

= μ. nu
As we have seen in Proposition 4.10, Hamiltonians which are—essentially— 
reparameterizations of each other have, essentially, the same singular Weyl coeffi-
cients and have the same spectral measures. The converse of this fact is an important 
result. 

Theorem 6.2 (Global Uniqueness Theorem) Let .H1,H2 ∈ H be given. 

(i) Assume that there exist singular Weyl coefficients .qH1 and .qH2 of .H1 and . H2, 
respectively, such that .qH1 − qH2 is a real polynomial, and set . α:=(qH1 −
qH2)(0). Then the Hamiltonians 

.H1 and

(
1 α

0 1

)
H2

(
1 0
α 1

)
, (6.1) 

are reparameterizations of each other. 
In particular, if .[q]H1 = [q]H2 , then .H1 and .H2 are reparameterizations of 
each other.

7 The set on the right-hand side of [84, Theorem 3.9 (v)] is certainly non-empty. 
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(ii) If .μH1 = μH2 , then there exists a real constant . α such that the Hamiltonians 
in (6.1) are reparameterizations of each other. 

Proof Let .H1,H2 ∈ H be given. Assume that both Hamiltonians are defined on 
.(0,∞). This is no loss in generality since it can always be achieved by a reparam-
eterization, and reparameterizations change neither singular Weyl coefficients nor 
spectral measures; see Proposition 4.10. 

First, we consider the case when .[q]H1 = [q]H2 . Let . h1 and . h2 be the general 
Hamiltonians defined for .H1 and .H2 by the basic identification 3.16 with . ö1, .b1,j , 
.d1,j all equal to 0 with some base points . x1 and . x2. Then 

. qh1
∈ [q]H1 and qh2

∈ [q]H2 .

Applying a reparameterization to . h2, we can achieve that . x1 = x2. By [82, 
Corollary 5.9] there exist numbers .d1,0, . . . , d1,2A(H2)−1 ∈ R and .ö1 ∈ N0, 
.b1,1, . . . , b1,ö1 ∈ R such that the Weyl coefficient of the general Hamiltonian . ̃h2
constituted by the same data as . h2 with exception of .d1,j , ö1, b1,j is equal to . qh1

. 

By the uniqueness part in [61, Theorem 1.4], thus, . h1 and . ̃h2 are reparameterizations 
of each other. In particular, their Hamiltonian functions on .(0,∞) are reparameter-
izations of each other. However, the Hamiltonian function of . h1 on this interval is 
. H1 and the one of . ̃h2 is . H2. 

Now assume that some singular Weyl coefficients .qH1 and .qH2 differ by a real 

constant, say . α. Consider the Hamiltonian .H0:=
(

1 α
0 1

)
H2

(
1 0
α 1

)
. We know from 

Proposition 4.10 (and its proof) that .H0 ∈ H and that .qH0 − qH2 = α when we 
choose the same base point in the construction of .qH1 and . qH2 , respectively. We 
thus have .qH1 = qH0 . By what we proved in the previous paragraph, this implies 
that . H1 and . H0 are reparameterizations of each other; hence (i) is shown. 

For the proof of (ii), assume that .μH1 = μH2 . Choose .x0 ∈ (0,∞), and let . qH1

and .qH2 be singular Weyl coefficients of . H1 and . H2, respectively, built with the base 
point . x0. By [84, Theorem 3.9 (iv)] the difference .qH1 − qH2 is a real polynomial. 
Now the already proved item (i) yields (6.1). nu
Our last result in this section is a refined version of the above uniqueness theorem. 
It asserts that certain beginning sections of two Hamiltonians .H1,H2 ∈ H coincide 
if (and only if) some of their singular Weyl coefficients are exponentially close. 
Local uniqueness theorems for one-dimensional Schrödinger operators were first 
proved by B. Simon in [99, Theorem 1.2]. For canonical systems with a regular left 
endpoint, a local uniqueness theorem was proved in [81, Theorem 1.2]; see also [78, 
Section 4] for a formulation in terms of transfer functions. 

Theorem 6.3 (Local Uniqueness Theorem) Let .H1,H2 ∈ H with . dom(Hi) =
(ai, bi), .i = 1, 2, be given and set
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. si(τ ):= sup

{
x ∈ (ai, bi) :

x
ˆ

ai

/
det Hi(ξ) dξ < τ

}
, τ > 0, i = 1, 2.

(6.2) 
Then, for each .τ > 0, the following statements are equivalent. 

(i) The Hamiltonian .H1|(a1,s1(τ )) is a reparameterization of .H2|(a2,s2(τ )). 
(ii) There exist singular Weyl coefficients .qH1 and .qH2 of . H1 and . H2, respectively, 

and there exists a .β ∈ (0,π) such that for each .ε > 0, 

. qH1(re
iβ) − qH2(re

iβ) = O
(
e(−2τ+ε)r sin β

)
, r → ∞.

(iii) There exist singular Weyl coefficients .qH1 and .qH2 of . H1 and . H2, respectively, 
and there exists a .k ≥ 0 such that for each .δ ∈ (0, π

2 ), 

.qH1(z) − qH2(z) = O
(
(Im z)ke−2τ Im z

)
, |z| → ∞, z ∈ rδ, (6.3) 

where . rδ is the Stolz angle .rδ:={z ∈ C : δ ≤ arg z ≤ π − δ}. 
Note that the integral in (6.2) is always finite. This is a consequence of [83, 
Theorem 4.1], which also implies that this integral is equal to the exponential type 
of each entry of .θ(x; ·) and .ϕ(x; ·). 
Proof (Proof of Theorem 6.3) This theorem is a consequence of the indefinite 
version of [81, Theorem 1.2] indicated in [81, Remark 1.3]. Let .H1,H2 ∈ H be 
given, and assume w.l.o.g. that both are defined on .(0,∞). The proof again proceeds 
via considering general Hamiltonians . h1 and . h2 built in our basic identification 3.16 
from . H1 and . H2, respectively. 

Assuming (i) we choose .ö1, b1,j , d1,j all equal to 0 and the same base point . x0

in the definition of . h1 and . h2. Then, by [81, Theorem 1.2 (indefinite variant)], it 
follows that .qh1

and .qh2
are exponentially close in the sense of (ii) and (iii). 

Conversely, assume (ii) or (iii), and choose . ö(1)
1 , .b(1)

1,j , .d(1)
1,j and . x1 and . ö(2)

1 , .b(2)
1,j , 

.d
(2)
1,j and . x2 in the definition of . h1 and . h2 so that .qHi

= qhi
. This is possible; cf. 

Remark 4.6. Then, again by [81, Theorem 1.2 (indefinite variant)], .h1,]s1(τ ) and 
.h2,]s2(τ ) are reparameterizations of each other. In particular, (i) holds. nu
Remark 6.4 If one (and hence all) of the equivalent conditions of Theorem 6.3 
holds, then (6.3) holds with 

.k:=8 max{A(H1),A(H2)} + 3. (6.4) 

This can be seen by tracing the proof of [81, Theorem 1.2 (indefinite version)] as 
indicated in the footnotes in this paper.



162 M. Langer and H. Woracek

The value (6.4) of the constant k in (6.3) is probably not the best possible. 
However, it is noteworthy that (6.4) depends only on .A(H1) and .A(H2). 

Remark 6.5 The dependence of these results on the choices of .qH1 and .qH2 is not 
essential. If (ii/iii) holds with some pair .(qH1 , qH2) ∈ [q]H1 × [q]H2 , then for each 
.q1 ∈ [q]H1 , there exists a unique element .q2 ∈ [q]H2 such that (ii/iii) holds for 
.(q1, q2). This corresponding function . q2 can be determined by starting with some 
.q ∈ [q]H2 , computing the polynomial asymptotics of .q−qH1 at . i∞, and subtracting 
this polynomial from q. 

Viewing the above remark from a slightly different perspective leads to the 
following more effective test for (ii/iii) to hold, which removes the dependence on 
the choice of .qH1 and . qH2 . 

Corollary 6.6 Assume that we are in the situation of Theorem 6.3. Pick some  
singular Weyl coefficients .q1 ∈ [q]H1 and .q2 ∈ [q]H2 and let 

. q2(iy) − q1(iy) = αny
n + αn−1y

n−1 + . . . + α1y + o(y), y → ∞.

Then (ii/iii) of Theorem 6.3 hold if and only if the conditions stated in (ii/iii) hold 
with .qH1 = q1 and 

. qH2(z) = q2(z) −
nE

l=1

αl (−i)lzl .

The following corollary of Theorem 6.3 is also worth mentioning. It says that 
under the a priori hypothesis of finite exponential type, the global uniqueness result 
Theorem 6.2 can be strengthened; and it may be much easier to establish exponential 
closeness of singular Weyl coefficients than their actual equality. 

Corollary 6.7 Let .H1,H2 ∈ H with .dom(Hi) = (ai, bi), .i = 1, 2, be given and 
assume that 

. 

bi
ˆ

ai

/
det Hi(y) dy < ∞, i = 1, 2.

If there exist singular Weyl coefficients qH1 and .qH2 of . H1 and . H2, respectively, and 

there exist .β ∈ (0,π) and .τ > max
{ ´ bi

ai

√
det Hi(y) dy : i = 1, 2

}
such that 

. qH1(re
iβ) − qH2(re

iβ) = O
(
e−2τ r sin β

)
, r → ∞,

then . H1 and . H2 are reparameterizations of each other.
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PART II: Applications to Sturm–Liouville Equations 

In Sects. 7–9, we study scalar second-order differential equations. Under certain 
assumptions, such equations can be transformed to canonical systems of the 
form (1.1) so that the results from Sects. 4–6 can be applied. In Sects. 7 and 8, we  
consider Sturm–Liouville equations of the form (7.1) below where either .1/p or w 
is not integrable at a. In Sect. 9 we study one-dimensional Schrödinger operators 
with a singular potential. 

7 Sturm–Liouville Equations Without Potential: 

Singular 1/p 

In this section, we consider Sturm–Liouville equations of the form 

. − (
py')' = λwy (7.1) 

on an interval .(a, b) with .−∞ ≤ a < b ≤ ∞ where .λ ∈ C and the functions p and 
w satisfy the conditions 

.p(x) > 0, w(x) > 0 a.e.,
1

p
,w ∈ L1

loc(a, b). (7.2) 

In the following, we write .dom(p;w):=(a, b). Moreover, let .L2(w) be the weighted 

.L2-space with inner product .(f, g) = ´ b

a
f gw. 

We consider the following class of coefficients. 

Definition 7.1 We say that .(p;w) ∈ KSL if p and w are defined on some interval 
.(a, b) and they satisfy (7.2) and the following conditions. 

(i) For one (and hence for all) .x0 ∈ (a, b), 

.

x0
ˆ

a

1

p(x)
dx = ∞ and

x0
ˆ

a

w(x)dx < ∞. (7.3) 

(ii) For one (and hence for all) .x0 ∈ (a, b), 

.

x0
ˆ

a

x
ˆ

a

w(t)dt
1

p(x)
dx < ∞. (7.4) 

(iii) Let .x0 ∈ (a, b) and define functions . wl , .l = 0, 1, . . . , recursively by
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.

w0(x) = 1,

wl(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0
ˆ

x

1

p(t)
wl−1(t)dt if l is odd,

x
ˆ

a

w(t)wl−1(t)dt if l is even.

(7.5) 

There exists an .n ∈ N0 such that 

.wn

||
(a,x0)

∈

⎧
⎪⎨
⎪⎩

L2
(

1
p

||
(a,x0)

)
if n is even,

L2
(
w

||
(a,x0)

)
if n is odd.

(7.6) 

(iv) Equation (7.1) is in the limit point case at b, i.e. for .λ ∈ C \ R, equation (7.1) 
has (up to a scalar multiple) only one solution in .L2(w|(x0,b)) for .x0 ∈ (a, b). 

If .(p;w) ∈ KSL, we denote by .ASL(p,w) the minimal .n ∈ N0 such that (7.6) holds. 

Remark 7.2 

(i) Under the assumption of (7.3), condition (7.4) is equivalent to 

. 

x0
ˆ

a

x0
ˆ

x

1

p(t)
dt w(x)dx < ∞;

see, e.g. [82, Lemma 4.3]. 
(ii) Assume that (7.3) holds. Then (7.4) and (7.6) with .n = 1 are satisfied if and 

only if equation (7.1) is in the limit circle case at a; this is true because the 
solutions of (7.1) with .λ = 0 are .y(x) = c1w1(x) + c2 with . c1, c2 ∈ C
and the limit circle case prevails at a if and only if all these solutions are in 
.L2(w|(a,x0)). 

(iii) The functions . w0 and . w1 are solutions of (7.1) with .λ = 0. Since . w1(x) → ∞
as .x \ a, the function .w0 is a principal solution and .w1 is a non-principal 
solution, i.e. .w0(x) = o(w1(x)) as .x \ 0; for the notions of principal and 
non-principal solutions, see, e.g. [89]. Moreover, one can easily verify that 

. − 1

w

(
pw'

l+2

)' = wl when l ∈ N is odd.

For given p and w satisfying (7.2), define the Hamiltonian
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.H(x):=

(
|(

1

p(x)
0

0 w(x)

⎞
⎟⎠ , x ∈ (a, b). (7.7) 

If .ψ = (ψ1,ψ2)
T is a solution of equation (1.1) with H as in (7.7), then 

. ψ'
1 = −zwψ2, ψ'

2 = z
1

p
ψ1,

and hence .ψ2 is a solution of (7.1) with .λ = z2. Conversely, if . ψ is a solution 
of (7.1) and .z ∈ C is such that .z2 = λ, then 

.ψ(x) =
(

p(x)ψ '(x)

zψ(x)

)
(7.8) 

satisfies (1.1) with H as in (7.7). 
In the following, assume that .(p;w) ∈ KSL. The first relation in (7.3) implies 

that H is in the limit point case at a. Since (7.1) is in the limit point case at b, the  
Hamiltonian H is also in the limit point case at b because .ψ ∈ L2(H |(x0,b)) with 
. ψ as in (7.8), .z /= 0 and .x0 ∈ (a, b) implies that .ψ ∈ L2(w|(x0,b)). Therefore, the 
operator .T (H), which is defined in (3.8) and acts in the space . L2(H) = L2( 1

p
) ⊕

L2(w), is self-adjoint. Since .H(x) is invertible for a.e. .x ∈ (a, b), the operator 
.T (H) can be written as 

. T (H)f = H−1J−1f ' =
(
(

pf '
2

− 1

w
f '

1

⎞
⎠

with maximal domain 

. dom(T (H)) =
{(

f1

f2

)
: f1, f2 abs. cont., pf '

2 ∈ L2
( 1

p

)
,

1

w
f '

1 ∈ L2(w)

}

Hence, .(T (H))2 acts as follows:  

.
(
T (H)

)2
(

f1

f2

)
=

(
||(

−p
( 1

w
f '

1

)'

− 1

w

(
pf '

2

)'

⎞
⎟⎟⎠ . (7.9) 

With the mappings
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.ι2 :

⎧
⎪⎨
⎪⎩

L2(w) → L2(H)

g |→
(

0

g

)
,

P2 :

⎧
⎪⎨
⎪⎩

L2(H) → L2(w)
(

f

g

)
|→ g,

(7.10) 

we define the self-adjoint operator 

.Ap,w:=P2
(
T (H)

)2
ι2. (7.11) 

This operator acts like 

. Ap,wy = − 1

w

(
py')'

dom(Ap,w) =
{
y ∈ L2(w) : y, py' locally absolutely continuous,

ˆ b

a

p(x)
||y'(x)

||2
dx < ∞,

1

w

(
py')' ∈ L2(w)

}
(7.12) 

and is the Friedrichs extension of the minimal operator associated with (7.1) since 
all functions in .dom(Ap,w) are in the form domain; note that .Ap,w is non-negative. 
If (7.1) is also in the limit point case at a (i.e. when .ASL(p,w) ≥ 2), then 

.Ap,w coincides with the maximal operator, i.e. the condition .
´ b

a
p|y'|2 < ∞ is 

automatically satisfied. If (7.1) is in the limit circle case at a, one can replace the 

condition .
´ b

a
p|y'|2 < ∞ in (7.12) by any of the two boundary conditions 

. lim
x\a

y(x)

w1(x)
= 0, lim

x\a
p(x)y'(x) = 0; (7.13) 

see, e.g. [89, Theorem 4.3]. 

Remark 7.3 One can also treat the situation when (7.1) is either regular or in the 
limit circle case at b. In the former case, one extends H by an indivisible interval of 
infinite length; in the latter case, H is in the limit point case. In both cases, elements 
in the domain of .Ap,w defined via (7.11) satisfy some boundary condition at b. 

Assume that .(p;w) ∈ KSL and let H be as in (7.7). It follows from [105, 
Theorem 3.7] that .H ∈ H, that the functions . wl , .l ∈ N0, defined in (3.13) are 
given by 

.wl (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
wl(x)

0

)
if l is even,

(
0

−wl(x)

)
if l is odd,

(7.14)
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and that 

.ASL(p,w) = A(H). (7.15) 

Therefore, we can apply the results from Part I to the Hamiltonian H . Using the  
connection between (7.1) and (1.1), we can show that regularized boundary values 
of solutions of (7.1) exist at a. Denote by .NSL

λ the set of all solutions of the Sturm– 
Liouville equation (7.1). 

Theorem 7.4 (Regularized boundary values) Let .(p;w) ∈ KSL with 
.dom(p;w) = (a, b) and set .A:=ASL(p,w). Then, for .x0 ∈ (a, b), the following 
statements hold. 

(i) For each .λ ∈ C and each solution .ψ ∈ NSL
λ , the boundary value 

.rbvSL
λ,1ψ := lim

x\a
p(x)ψ '(x) (7.16) 

and the regularized boundary value 

.rbvSL
λ,2ψ := lim

x\a

[ L A−1
2 ]E

k=0

λk
(
w2k(x)ψ(x) + w2k+1(x)p(x)ψ '(x)

)
(7.17) 

+
{

λ
A
2 wA(x)ψ(x) if A is even 

0 if A is odd

}

+
(

lim 
t\a 

p(t)ψ '(t)
) A−1E

k=L A+1 
2 ]

2k−AE

l=0 

(−1)l λk wl(x)w2k−l+1(x)

]

exist. 
(ii) For each .λ ∈ C, we define 

. rbvSL
λ :

{
NSL

λ → C2

ψ |→ (
rbvSL

λ,1ψ, rbvSL
λ,2ψ

)T
.

Then .rbvSL
λ is a bijection from .NSL

λ onto . C2. 
(iii) For each .λ ∈ C, there exists an (up to scalar multiples) unique solution . ψ ∈

NSL
λ \ {0} such that .limx\a ψ(x) exists. 

This solution is characterized by the property that .
´ x0
a

p|ψ '|2 < ∞ and also 
by the property that .rbvSL

λ,1ψ = 0 (and .ψ /≡ 0). 

If . ψ is a solution such that . lim
x\a

ψ(x) exists, then .rbvSL
λ,2ψ = lim

x\a
ψ(x).
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The regularized boundary value .rbvSL
λ,2 depends on the choice of . x0 in the following 

way. 

(iv) Let .x0, x̂0 ∈ (a, b), and let .rbvSL
λ and . <rbvSL

λ be the correspondingly defined 
regularized boundary value mappings. Then there exists a polynomial . px0,x̂0

with real coefficients whose degree does not exceed .A − 1 such that 

. <rbvSL
λ,2ψ = rbvSL

λ,2ψ + px0,x̂0
(λ)rbvSL

λ,1ψ, ψ ∈ NSL
λ , λ ∈ C.

Moreover, clearly, . <rbvSL
λ,1 = rbvSL

λ,1. 

Remark 7.5 

(i) Let 

.Wp(y1, y2)(x):=p(x)
(
y1(x)y'

2(x) − y'
1(x)y2(x)

)
(7.18) 

be the weighted Wronskian with weight p. Using  (7.5) we can rewrite the 
expression that appears within the round brackets in (7.17) as follows: 

. w2kψ + w2k+1pψ ' = Wp(w2k+1,ψ).

(ii) When .ASL(p,w) = 1, i.e. when (7.1) is in the limit circle case at a, then 
.rbvSL

λ,2ψ does not depend on . λ explicitly, and it takes the form 

. rbvSL
λ,2ψ = lim

x\a

(
ψ(x) + p(x)w1(x)ψ '(x)

)
= lim

x\a
Wp(w1,ψ)(x).

Note also that .rbvSL
λ,1ψ = limx\a Wp(1,ψ)(x). 

(iii) Instead of the functions . wl , one can use functions . w̌l that are defined by the 
recurrence relation .w̌0 ≡ 1 and 

. w̌l(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0
ˆ

x

1

p(t)
w̌l−1(t)dt + cl if l is odd,

x
ˆ

a

w(t)w̌l−1(t)dt if l is even,

with arbitrary real numbers . cl for odd l. To add the extra constants . cl is useful 
for practical calculations, in particular, when . wl has an asymptotic expansion 
(for .x \ a) in which a constant term can be removed by adjusting . cl . One can 

show that the corresponding regularized boundary value . ˇrbv
SL
λ,2 satisfies
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. ˇrbv
SL
λ,2ψ = rbvSL

λ,2ψ + p̌(λ)rbvSL
λ,1ψ

with 

.p̌(λ) =
A−1E

k=0

λk
kE

i=0

c2k+1−2i lim
t\a

v2i (t) (7.19) 

where .v0 ≡ 1 and 

. vl(x) =
x0
ˆ

x

x
ˆ

a

w(t)vl−2(t)dt
1

p(x)
dx, l even.

The limit .limt\a vl(t) exists because of condition (7.4). 

Before we prove Theorem 7.4, we show the following lemma, where . Nz denotes the 
set of all solutions of (1.1); see Sect. 4.1. 

Lemma 7.6 Let .z ∈ C and let . ψ be a solution of (7.1) with .λ:=z2. Moreover, set 

.ψ(x):=
(

p(x)ψ '(x)

zψ(x)

)
, <ψ(x):=

(
p(x)ψ '(x)

−zψ(x)

)
. (7.20) 

Then 

.ψ ∈ Nz, <ψ ∈ N−z, rbvz,1ψ = rbv−z,1<ψ (7.21) 

and 

. rbvz,2ψ = −rbv−z,2<ψ

= z lim
x\a

[ E

l: 0≤l≤A−1
l even

zl
(
wl(x)ψ(x) + wl+1(x)p(x)ψ '(x)

)

+
{

zAwA(x)ψ(x) if A is even

0 if A is odd

}

+
(

lim
t\a

p(t)ψ '(t)
) A−1E

k=L A+1
2 ]

2k−AE

l=0

(−1)lz2kwl(x)w2k−l+1(x)

]
.

Proof Let H be as in (7.7) and set .A:=A(H). The relations in (7.21) are clear from 
the considerations around equation (7.8) and the fact that (7.1) does not change
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when we replace z by . −z. From  (4.1) and (7.14), we obtain 

.rbvz,2ψ = − lim
x\a

[ AE

l=0

zl
(
wl (x)

)∗
J

(
ψ(x) − (rbvz,1ψ)

2A−lE

k=A+1

zkwk(x)

)]

= lim
x\a

[ E

l: 0≤l≤A

l even

zlwl(x)

(
ψ(x) − (rbvz,1ψ)

2A−lE

k=A+1

zkwk(x)

)

2

+
E

l: 1≤l≤A

l odd

zlwl(x)

(
ψ(x) − (rbvz,1ψ)

2A−lE

k=A+1

zkwk(x)

)

1

]

= lim
x\a

[ E

l: 0≤l≤A

l even

zlwl(x)

(
zψ(x) +

(
lim
t\a

p(t)ψ '(t)
) E

k:A+1≤k≤2A−l

k odd

zkwk(x)

)

+
E

l: 1≤l≤A

l odd

zlwl(x)

(
p(x)ψ '(x)−

(
lim
t\a

p(t)ψ '(t)
) E

k:A+1≤k≤2A−l

k even

zkwk(x)

)]

= z lim
x\a

[ E

l: 0≤l≤A

l even

zlwl(x)ψ(x) +
E

l: 0≤l≤A−1
l even

zlwl+1(x)p(x)ψ '(x)

+
(

lim
t\a

p(t)ψ '(t)
)( E

l: 0≤l≤A

l even

E

k:A+1≤k≤2A−l

k odd

zl+k−1wl(x)wk(x)

−
E

l: 1≤l≤A

l odd

E

k:A+1≤k≤2A−l

k even

zl+k−1wl(x)wk(x)

)]

= z lim
x\a

[ E

l: 0≤l≤A

l even

zlwl(x)ψ(x) +
E

l: 0≤l≤A−1
l even

zlwl+1(x)p(x)ψ '(x)

+
(

lim
t\a

p(t)ψ '(t)
) AE

l=0

E

k:A+1≤k≤2A−l

l+k odd

(−1)lzl+k−1wl(x)wk(x)

]
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= z lim 
x\a

[ E

l: 0≤l≤A−1 
l even 

zl
(
wl(x)ψ(x) + wl+1(x)p(x)ψ '(x)

)

+
{

zAwA(x)ψ(x) if A is even 

0 if A is odd

}

+
(

lim 
t\a 

p(t)ψ '(t)
) E

m:A≤m≤2A−2 
m even 

m−AE

l=0 

(−1)l zm wl(x)wm−l+1(x)

]
, 

which proves the statement for .rbvz,2ψ. Inside the limit, only even powers of z 
appear, and hence, as .rbv−z,2<ψ is obtained from .rbvz,2ψ by replacing z by . −z, the  
equality .rbvz,2ψ = −rbv−z,2<ψ follows. nu
Proof (Proof of Theorem 7.4) First, we settle the case .λ = 0. The solutions of (7.1) 
with .λ = 0 are of the form 

. ψ(x) = c1

ˆ x

x0

dt

p(t)
+ c2

with .c1, c2 ∈ C. For such a solution, the limits in (7.16) and (7.17) exist and 
.rbvSL

0,1ψ = c1 and 

. rbvSL
0,2ψ = lim

x\a

(
w0(x)ψ(x) + w1(x)p(x)ψ '(x)

)

= lim
x\a

(
c1

ˆ x

x0

dt

p(t)
+ c2 +

ˆ x0

x

dt

p(t)
· p(x) · c1

p(x)

)
= c2.

This shows that .rbvSL
0 : NSL

0 → C2 is a bijective mapping. Moreover, the conditions 

in (iii) are all equivalent to .c1 = 0 since . 1
p

is not integrable at a. 
For the rest of the proof, assume that .λ /= 0. 

(i) Let . ψ be a solution of (7.1), let .z ∈ C with .z2 = λ and define . ψ as in (7.20). 
The existence of the limit in (7.16) and the equality 

.rbvSL
λ,1ψ = rbvz,1ψ (7.22) 

are immediate. The existence of the limit in (7.17) and the relation 

.rbvSL
λ,2ψ = 1

z
rbvz,2ψ (7.23) 

follows from Lemma 7.6 by observing that z2 = λ.
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(ii) Theorem 4.2 (ii) and the relations in (7.22) and (7.23) show that the mapping 
.rbvSL

λ : NSL
λ → C2 is bijective. 

(iii) The first and the last assertions follow immediately from Theorem 4.2 (iii). 
For the second statement, note that there is (up to a scalar multiple) 
a unique solution .ψreg such that .ψreg|(a,x0) ∈ L2(H |(a,x0)). Hence, 

.pψ '
reg|(a,x0) = ψreg,1|(a,x0) ∈ L2

( 1
p

||
(a,x0)

)
. Any other solution . ψ is 

such that .limx\ p(x)ψ '(x) /= 0 according to the already proved third 
statement of (iii). Since . 

1
p

is not integrable at a by assumption, such 

a . ψ satisfies .pψ '|(a,x0) /∈ L2
( 1

p

||
(a,x0)

)
. Now the claim follows because 

.pψ '|(a,x0) ∈ L2
(

1
p

||
(a,x0)

)
if and only if .

´ x0
a

p|ψ '|2 < ∞. 

(iv) It follows from Theorem 4.2 (iv) that there exists a polynomial . p̂ of degree at 
most .2A with real coefficients and no constant term such that 

. <rbvz,2ψ = rbvz,2ψ + p̂(z)rbvz,1ψ (7.24) 

for all .ψ ∈ Nz. If we choose . ψ as in (7.20) for .ψ ∈ NSL
z2 , then, by (7.22) 

and (7.23), we have  

.

<rbvSL
z2,2

ψ = 1

z
<rbvz,2ψ = 1

z

(
rbvz,2ψ + p̂(z)rbvz,1ψ

)

= rbvSL
z2,2

ψ + p̂(z)

z
rbvSL

z2,1
ψ.

(7.25) 

Since this relation must be true for all .z ∈ C \ {0} and all .ψ ∈ NSL
z2 , it follows by  

replacing z by . −z that . p̂ is an odd polynomial. Hence, one can define a polynomial 

.px0,x̂0
by the relation .px0,x̂0

(z2) = p̂(z)
z

, which is a real polynomial of degree at 
most .A − 1. Now the assertion follows from (7.25). nu

In the next theorem, we establish the existence of a singular Titchmarsh–Weyl 
coefficient, which is used in Theorem 7.11 to obtain a spectral measure. Recall from 
Definition 3.1 that . Nκ , .κ ∈ N0, is the set of all generalized Nevanlinna functions 
with . κ negative squares and that .N<∞ = U

κ∈N0
Nκ . Further, denote by .N(∞)

κ , . κ ∈
N0, the set of functions from .Nκ whose only generalized pole of non-positive type 

is infinity and set .N(∞)
<∞ = U

κ∈N0
N(∞)

κ ; see Definition 3.4. Note that a function q, 

defined on .C \ R, belongs to .N(∞)
κ if and only if 

. q(z) = p2κ(z)q0(z)

where .p2κ is a monic real polynomial of degree . 2κ and .q0 ∈ N0, i.e. . q0(z) = q0(z)

and .Im q0(z) ≥ 0 for .z ∈ C+ = {z ∈ C : Im z > 0}.
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Theorem 7.7 (Singular Titchmarsh–Weyl coefficients) Let .(p;w) ∈ KSL with 
.dom(p;w) = (a, b) be given. Then, for each fixed .x0 ∈ (a, b), the following 
statements hold. 

(i) For .λ ∈ C let .θ(· ; λ) and .ϕ(· ; λ) be the unique solutions of (7.1) such that 

.rbvSL
λ θ(· ; λ) =

(
1

0

)
, rbvSL

λ ϕ(· ; λ) =
(

0

1

)
. (7.26) 

Then, for each .x ∈ (a, b), the functions .θ(x; ·) and .ϕ(x; ·) are entire of order 
. 
1
2 and finite (positive) type 

. 

x
ˆ

a

/
w(t)

p(t)
dt.

Moreover, for each .λ ∈ C, one has .Wp

(
ϕ(· ; λ), θ(· ; λ)

) ≡ 1 where the 
weighted Wronskian .Wp is as in (7.18), and the following relations hold: 

.

lim
x\a

ϕ(x; λ) = 1, lim
x\a

p(x)ϕ'(x; λ)
´ x

a
w(t)dt

= −λ,

lim
x\a

θ(x; λ)

w1(x)
= −1, lim

x\a
p(x)θ '(x; λ) = 1.

(7.27) 

(ii) The limit 

.mp,w(λ):= lim
x-b

θ(x; λ)

ϕ(x; λ)
, λ ∈ C \ [0,∞), (7.28) 

exists locally uniformly on .C \ [0,∞) and defines an analytic function in . λ. 
The function .mp,w belongs to the class .N(∞)

κ with .κ = |ASL(p,w)
2

|
. 

(iii) We have 

. θ(· ; λ) − mp,w(λ)ϕ(· ; λ) ∈ L2(w|(x0,b)

)
, λ ∈ C \ [0,∞),

and this property characterizes the value .mp,w(λ) for each .λ ∈ C \ [0,∞). 
(iv) For .λ ∈ C\[0,∞) let . ψ be any non-trivial solution of (7.1) such that . ψ |(x0,b) ∈

L2(w|(x0,b)). Then 

.mp,w(λ) = − rbvSL
λ,2ψ

rbvSL
λ,1ψ

.
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The function .mp,w depends on the choice of . x0. This dependence is controlled as 
follows: 

(iv) Let .x̂0 ∈ (a, b), and let .<mp,w be the correspondingly defined singular 
Titchmarsh–Weyl coefficient. Then there exists a polynomial .px0,x̂0

with real 
coefficients whose degree does not exceed .ASL(p,w) − 1 such that 

.<mp,w(λ) = mp,w(λ) − px0,x̂0
(λ). (7.29) 

Before we prove Theorem 7.7, let us introduce some notation. 

Definition 7.8 We refer to each function .mp,w constructed as in Theorem 7.7 
as a singular Titchmarsh–Weyl coefficient associated with the Sturm–Liouville 
equation (7.1) when .(p;w) ∈ KSL. We denote by .[m]p,w the equivalence class 

of .N(∞)
<∞-functions modulo the relation 

.m1 ∼̂ m2 :⇐⇒ m1 − m2 ∈ R[z] (7.30) 

which contains some (and hence any) function .mp,w in Theorem 7.7; we call . [m]p,w

the singular Titchmarsh–Weyl coefficient. 

Remark 7.9 

(ii) If .ASL(p,w) = 1, then .mp,w ∈ N0 by Theorem 7.7 (ii), which is in accordance 
with the classical theory since (7.1) is in the limit circle case at a; see, e.g. [9, 
Corollary 8.1] and [66, Corollary A.9]. 

(ii) According to Theorem 7.4 (iii), .ϕ(· ; λ) is the—up to a multiplicative scalar— 
unique solution of (7.1) that satisfies .

´ x0
a

p(x)|ϕ'(x; λ)|2dx < ∞ for some . x0. 
If (7.1) is in the limit circle case at a (i.e. if .ASL(p,w) = 1), then .ϕ(· ; λ) is the 
only solution of (7.1) that satisfies the boundary condition (7.13); if  (7.1) is in 
the limit point case, then .ϕ(· ; λ) is the only solution in .L2(w|(a,x0)). 

For the proof of Theorem 7.7 let .θ(· ; λ) and .ϕ(· ; λ) be as in the statement of the 
theorem, i.e. the unique solutions of (7.1) that satisfy (7.26). Let .z ∈ C \ {0} be such 
that .λ = z2 and let H be as in (7.7). Then the functions .θ(· ; z),ϕ(· ; z) ∈ Nz that 
satisfy (4.3) have the following form: 

.θ(x; z) =
(
(

p(x)θ '(x; z2)

zθ(x; z2)

⎞
⎠ , ϕ(x; z) =

(
(

1

z
p(x)ϕ'(x; z2)

ϕ(x; z2)

⎞
⎠ , (7.31) 

where . 
' denotes the derivative with respect to x; cf. (7.22) and (7.23). It follows from 

Lemma 7.6 that
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.θ(x;−z) =
(
(

p(x)θ '(x; z2)

−zθ(x; z2)

⎞
⎠ , ϕ(x;−z) =

(
(−1

z
p(x)ϕ'(x; z2)

ϕ(x; z2)

⎞
⎠ . (7.32) 

Moreover, let . qH be a singular Weyl coefficient of H as in (4.6). 

Proof (Proof of Theorem 7.7) Let . θ and . ϕ be as in (7.31). 
Item (i) follows directly from Theorem 4.5 (i). Note that .a+ = a in Theorem 4.5 

since .w(x) > 0, .x ∈ (a, b) a.e. 

(ii) It follows from Theorem 4.5 (ii) that, for .z ∈ C \ R, 

. 
θ(x; z2)

ϕ(x; z2)
= θ2(x; z)

zϕ2(x; z)
→ 1

z
qH (z) as x - b.

The function . qH is an odd function as the following calculation shows (where 
we use (7.31) and (7.32)): 

.qH (−z) = lim
x-b

θ2(x;−z)

ϕ2(x;−z)
= lim

x-b

−θ2(x; z)

ϕ2(x; z)
= −qH (z). (7.33) 

Hence, 

. lim
x-b

θ(x; λ)

ϕ(x; λ)
= lim

x-b

θ(x; z)

zϕ(x; z)
= 1

z
qH (z) (7.34) 

is independent of the choice of z such that .z2 = λ, and therefore . mp,w

is well defined as a function of . λ and analytic on .C \ [0,∞). It follows 

from [84, Theorem 4.4] that .mp,w ∈ N(∞)
<∞. Set .m+(λ):=λmp,w(λ); then 

.m+ ∈ N(∞)
<∞ again by [84, Theorem 4.4]. Now [55, Proposition 4.8] implies 

that .ind−mp,w + ind−m+ = ind−qH . Moreover, .mp,w and .m+ have infinity 
as only generalized pole of non-positive type and therefore, by the definition 
of .m+ and by (3.4), we have .ind−m+ − 1 ≤ ind−mp,w ≤ ind−m+. This,  
together with the fact that .ind−qH = A(H) = ASL(p,w) by Theorem 4.5 (ii) 
and (7.15), yields .ind−mp,w = |ASL(p,w)

2

|
. 

(iii) We can write 

. θ(· ; z2) − mp,w(z2)ϕ(· ; z2) = 1

z

(
θ2(· ; z) − qH (z)ϕ2(· ; z)

)
.

By Theorem 4.5 (iii) the right-hand side of this equality is in .L2(w|(x0,b)). 
Since (up to a scalar multiple) only one solution is in .L2(w) at b (because of 
the limit point assumption at b), the value of .mp,w(z2) is uniquely determined 
by the . L2 property.
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(iv) The formula follows from item (iii) since any such . ψ is a multiple of 
.ψ0:=θ(· ; λ) − mp,w(λ)ϕ(· ; λ) and .rbvSL

λ,1ψ0 = 1, .rbvSL
λ,2ψ0 = −mp,w(λ). 

(v) Let .ψ ∈ NSL
λ be such that .ψ |(x0,b) ∈ L2(w|(x0,b)). It follows from item (iv) and 

Theorem 7.4 (iv) with the notation used there that 

. <mp,w(λ) = −
<rbvSL

λ,2ψ

<rbvSL
λ,1ψ

=− rbvSL
λ,2ψ + px0,x̂0

(λ)rbvSL
λ,1ψ

rbvSL
λ,1ψ

=mp,w(λ)−px0,x̂0
(λ).

Since .px0,x̂0
is the polynomial from Theorem 7.4 (iv), it has the properties 

stated there. 
nu

From (7.34) we obtain the following relation between .mp,w and . qH if the same base 
point . x0 is chosen: 

.mp,w(z2) = 1

z
qH (z), z ∈ C \ R. (7.35) 

Next, we construct a measure with the help of the Stieltjes inversion formula 
and the singular Titchmarsh–Weyl coefficient. Before we formulate the theorem, 
we introduce the following class of measures. 

Definition 7.10 Let . ν be a Borel measure on . R. We say that .ν ∈ M− if there exists 
an .n ∈ N0 such that 

.ν
(
(−∞, 0)

) = 0 and

ˆ

[0,∞)

dν(t)

(1 + t)n+1
< ∞. (7.36) 

If .ν ∈ M−, we denote by .A−(ν) the minimal .n ∈ N0 such that (7.36) holds. 

The reason for the use of the minus sign in the notation will become clearer in 
the next section; see, in particular, item 3 in 8.2. 

In the next theorem, a measure is constructed, which will turn out to be a spectral 
measure for the Sturm–Liouville equation (7.1). 

Theorem 7.11 (The spectral measure) Let .(p;w) ∈ KSL with . dom(p;w) =
(a, b) be given. Then there exists a unique Borel measure .μp,w that satisfies 

. μp,w

([s1, s2]
) = 1

π
lim
ε\0

lim
δ\0

s2+ε
ˆ

s1−ε

Im mp,w(t + iδ) dt, −∞ < s1 < s2 < ∞,

(7.37) 

where .mp,w ∈ [m]p,w is any singular Titchmarsh–Weyl coefficient associated 
with (7.1). We have .μp,w ∈ M− and .A−(μp,w) = ASL(p,w). 

Moreover, .μp,w({0}) > 0 if and only if
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.

ˆ b

a

w(x)dx < ∞. (7.38) 

If (7.38) is satisfied, then 

.μp,w

({0}) =
[
ˆ b

a

w(x)dx

]−1

. (7.39) 

We refer to the measure .μp,w given by (7.37) as the spectral measure associated 
with the Sturm–Liouville equation (7.1). This is justified by Theorem 7.13. 

Remark 7.12 

(i) The number .A−(μp,w), which describes the behaviour of the spectral measure 
.μp,w at infinity, gives a finer measure of the growth of the coefficients p 
and w at the endpoint a than .ind−mp,w, the negative index of the singular 
Titchmarsh–Weyl coefficient. 

(ii) If .ASL(p,w) = 1, then .
´∞

0
dμp,w(t)

(1+t)2 < ∞, which is the classical growth 

condition for a spectral measure corresponding to a Nevanlinna function. This 
is in accordance with the fact that in this case (7.1) is in the limit circle case and 
therefore classical Hilbert space theory is sufficient to obtain a scalar spectral 
measure; see, e.g. [9, Theorem 11.1]. 

(iii) If one uses the more general functions . w̌l instead of . wl as in Remark 7.5 (iii), 
then—similarly to (7.29)—the singular Titchmarsh–Weyl coefficient changes 
only by the real polynomial p from (7.19), which is of degree at most .A − 1, 
and hence the spectral measure is unchanged. 

Proof (Proof of Theorem 7.11) Let us first note that (3.6), (4.11) and (7.37) imply 
that 

. μH = μqH
and μp,w = μmp,w

with the notation from Sect. 3.5. Define .τ (s):=s2, .s ∈ R, and denote by . μτ

the corresponding push-forward measure for a Borel measure . μ, i.e. . μτ (B) =
μ(τ−1(B)) for Borel sets .B ⊆ R. It follows from [84, Theorem 4.4] and (7.35) 
that 

.μp,w << μτ
H and

dμp,w

dμτ
H

(t) = 1[0,∞)(t), (7.40) 

where .1[0,∞) denotes the characteristic function of the interval .[0,∞). 
For .m ∈ N0, we obtain from (7.40) that 

.

ˆ

R

dμH (t)

(1 + t2)m+1
= μH

({0})+
ˆ

(0,∞)

dμτ
H (s)

(1 + s)m+1
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= μH

({0})+ 
ˆ 

(0,∞) 

dμp,w(s) 

(1 + s)m+1 
, 

which shows that .μp,w ∈ M− and .A−(μp,w) = A(μH ) = A(H) = ASL(p,w), 
where the last equality follows from (7.15). The fact that a real polynomial makes 
no contribution in the Stieltjes inversion formula implies that the measure .μp,w does 
not depend on the choice of the representative from .[m]p,w. 

Since .μp,w({0}) = μH ({0}) by (7.40), the equivalence of . μp,w({0}) > 0
and (7.38) and the relation (7.39) follow from Proposition 5.3. nu

In the following theorem, a Fourier transform is constructed, which yields the 
unitary equivalence of the operator .Ap,w and the multiplication operator in the space 
.L2(μp,w). In particular, this implies that the spectrum of .Ap,w is simple. Note that 
the function . ϕ that appears in the Fourier transform is the (up to a scalar multiple) 
unique solution of (7.1) that is ‘regular’ at a; cf. Remark 7.9 (ii). 

Theorem 7.13 (The Fourier transform) Let .(p;w) ∈ KSL with . dom(p;w) =
(a, b) be given, and let .μp,w be the spectral measure associated with (7.1) 
via (7.37). Then the following statements hold. 

(i) The map defined by 

. 
(op,wf )(t):=

ˆ b

a

ϕ(x; t)f (x)w(x) dx, t ∈ R,

f ∈ L2(w), sup(supp f ) < b,

(7.41) 

extends to an isometric isomorphism from .L2(w) onto .L2(μp,w). 
(ii) The operator .op,w establishes a unitary equivalence between .Ap,w and the 

operator .Mμp,w of multiplication by the independent variable in .L2(μp,w), i.e. 
we have 

. op,wAp,w = Mμp,wop,w.

(iii) For compactly supported functions, the inverse of .op,w acts as an integral 
transformation, namely, 

. 
(o−1

p,wg)(x) =
ˆ ∞

0
ϕ(x; t)g(t) dμp,w(t), x ∈ (a, b),

g ∈ L2(μp,w), supp g compact.
(7.42) 

First, we need a lemma. 

Lemma 7.14 Set 

.L2
odd(μH ):=u

{
g ∈ L2(μH ) : g is odd

}
,
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L2 
even(μH ):=u

{
g ∈ L2(μH ) : g is even

}
. 

The Fourier transform .oH from Theorem 5.1 maps 

. 

{(
f1

f2

)
∈ L2(H) : f2 ≡ 0

}
bijectively onto L2

odd(μH )

and 

. 

{(
f1

f2

)
∈ L2(H) : f1 ≡ 0

}
bijectively onto L2

even(μH ).

Proof Since .ϕ1(x;−z) = −ϕ1(x; z) and .ϕ2(x;−z) = ϕ2(x; z) by (7.32), we have,  
for .f1 ∈ L2

(
1
p

)
with .sup(suppf1) < b, that 

. 

[
oH

(
f1

0

)]
(−t) =

ˆ b

a

ϕ(x;−t)∗H(x)

(
f1(x)

0

)
dx =

ˆ b

a

ϕ1(x;−t)
1

p(x)
f1(x)dx

= −
ˆ b

a

ϕ1(x; t)
1

p(x)
f1(x)dx = −

[
oH

(
f1

0

)]
(t),

and similarly, 

. 

[
oH

(
0

f2

)]
(−t) =

[
oH

(
0

f2

)]
(t)

for .f2 ∈ L2(w). Now the result follows from the bijectivity of .oH . nu
Proof (Proof of Theorem 7.13) 

(i) The operator 

. U :

⎧
⎪⎨
⎪⎩

L2
even(μH ) → L2(μp,w)

f |→ g with g(s) = f
(√

s
)
, s ∈ [0,∞),

is well defined since .μp,w((−∞, 0)) = 0. It is isometric because (7.40) 
implies that, for .f ∈ L2

even(μH ), 

.||Uf ||2
L2(μp,w)

=
ˆ

[0,∞)

||f
(√

s
)||2

dμp,w(s) =
ˆ

[0,∞)

||f
(√

s
)||2

dμτ
H (s)

=
ˆ

R
|f (t)|2dμH (t) = ||f ||2

L2(μH )
,
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where .μτ
H is as at the beginning of the proof of Theorem 7.11. Moreover, U is 

surjective and the inverse is given by .(U−1g)(t) = g(t2). 
Let . ι2 and . P2 be as (7.10). By Lemma 7.14 the operator .UoH ι2 is well 

defined and isometric from .L2(w) onto .L2(μp,w). Moreover, 

. 
(
UoH ι2f

)
(t) = U

[
ˆ b

a

ϕ2(x; ·)w(x)f (x)dx

]
(t)

=
ˆ b

a

ϕ2
(
x;√

t
)
w(x)f (x)dx = (

op,wf
)
(t)

by (7.31), which shows that 

.op,w = UoH ι2. (7.43) 

(ii) Let .MμH
be the multiplication operator by the independent variable in . L2(μH )

as in Theorem 5.1 (ii). With Theorem 5.1 (ii), the definition of .Ap,w and (7.43) 
we obtain 

.

op,wAp,w = UoH ι2P2
(
T (H)

)2
ι2 = UoH

(
T (H)

)2
ι2

= UM2
μH

oH ι2 = UM2
μH

U−1op,w = Mμp,wop,w.

(7.44) 

(iii) It follows from (7.43) that .o−1
p,w = P2o

−1
H U−1. If .g ∈ L2(μp,w) with compact 

support, then, by (7.31) and (7.40), we have  

. (o−1
p,wg)(x) = P2

ˆ

R
g(t2)ϕ(x; t)dμH (t) =

ˆ

R
g(t2)ϕ(x; t2)dμH (t)

=
ˆ

[0,∞)

g(s)ϕ(x; s)dμτ
H (s) =

ˆ

[0,∞)

g(s)ϕ(x; s)dμp,w(s),

which shows the desired representation for .o−1
p,w. 

nu
From Theorem 6.2, we obtain the following uniqueness result, which says that 
equality of singular Titchmarsh–Weyl coefficients or spectral measures implies 
equality of the coefficients up to a reparameterization of the independent variable. 
We cannot prove an existence result since we cannot characterize those spectral 
measures that lead to diagonal Hamiltonians with non-vanishing determinant. If we 
considered strings and the corresponding Krein–Feller operators, we would also 
obtain an existence result: namely, every measure from the class .M− is the spectral 
measure of a certain string with two singular endpoints.
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Theorem 7.15 (Global Uniqueness Theorem) Let .(p1;w1), (p2;w2) ∈ KSL be 
given with .dom(pi;wi) = (ai, bi), .i = 1, 2. Then the following statements are 
equivalent: 

(i) There exists an increasing bijection .γ : (a2, b2) → (a1, b1) such that . γ and 
.γ −1 are locally absolutely continuous and 

.p2(x) = 1

γ '(x)
p1
(
γ (x)

)
, w2(x) = γ '(x)w1

(
γ (x)

)
(7.45) 

for .x ∈ (a2, b2) a.e.; 
(ii) .[m]p1,w1 = [m]p2,w2 ; 

(iii) .μp1,w1 = μp2,w2 . 

Proof The theorem follows from Theorem 6.2 and Proposition 4.10 if we 
recall (2.1) and observe that 

.qH1(z) − qH2(z) = z
(
mp1,w1(z

2) − mp2,w2(z
2)
)
,

which vanishes at 0 and that hence .α = 0 in Theorem 6.2. nu
Remark 7.16 If one considers Sturm–Liouville equations in impedance form, i.e. 
when .p = w, and assumes that the left endpoints coincide, then equality of spectral 
measures is equivalent to the equality of coefficients a.e. because in this case, one 
has .γ ' = 1 if (7.45) is satisfied. We refer to [2] and the references therein for 
other types of inverse spectral theorems for Sturm–Liouville equations in impedance 
form. 

We also obtain a local version of the uniqueness result, which is an extension of 
[81, Theorem 1.5] to the case of two singular endpoints. See also [78, §4.4] for a 
result on strings with regular left endpoint. The next theorem follows immediately 
from Theorem 6.3. 

Theorem 7.17 (Local Inverse Spectral Theorem) Let . (p1;w1), (p2;w2) ∈ KSL

be given with .dom(pi;wi) = (ai, bi), .i = 1, 2, and let .τ > 0. Moreover, for 
.i = 1, 2, let .si(τ ) be the unique value . si such that 

. 

si
ˆ

ai

/
wi(ξ)

pi(ξ)
dξ = τ

if .
´ bi

ai

/
wi(ξ)
pi (ξ)

dξ > τ and set .si(τ ):=bi otherwise. Then the following statements are 

equivalent. 

(i) There exists an increasing bijection .γ : (a2, s2(τ )) → (a1, s1(τ )) such that . γ
and .γ −1 are locally absolutely continuous and (7.45) holds for . x ∈ (a2, s2(τ ))

a.e.
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(ii) There exist singular Titchmarsh–Weyl coefficients .mp1,w1 and .mp2,w2 , and 
there exists a .β ∈ (0, 2π) such that, for each .ε > 0, 

. mp1,w1

(
reiβ

)− mp2,w2

(
reiβ

) = O
(
e(−2τ+ε)

√
r sin β

2

)
, r → ∞.

(iii) There exist singular Titchmarsh–Weyl coefficients .mp1,w1 and .mp2,w2 , and 
there exists a .k ≥ 0 such that, for each .δ ∈ (0,π), 

. mp1,w1(λ) − mp2,w2(λ) = O
(
|λ|ke−2τ Im

√
λ
)
,

|λ| → ∞, λ ∈ {
z ∈ C : δ ≤ arg z ≤ 2π − δ

}
,

where .
√

λ is chosen so that .Im
√

λ > 0. 

In the next proposition, we provide a sufficient condition for .(p;w) ∈ KSL. This  
result is also used in Sect. 9. Let us recall the following notation: we write . f (x) X
g(x) as .x \ 0 if there exist .c, C > 0 and .x0 > 0 such that . cg(x) ≤ f (x) ≤ Cg(x)

for all .x ∈ (0, x0). 

Proposition 7.18 Let .α ≥ 1 and assume that p and w, defined on .(0, b) with . b > 0
or .b = ∞ satisfy (7.2) with .a = 0 and 

.p(x) X xα, w(x) X xα as x \ 0. (7.46) 

If (7.1) is in the limit point case at b, then .(p;w) ∈ KSL and .ASL(p,w) = |
α+1

2

|
. 

Before we prove Proposition 7.18, we need a lemma.  

Lemma 7.19 Let .α > 1 and assume that p and w, defined on .(0, b) with .b > 0 or 
.b = ∞, satisfy (7.46). Moreover, choose .x0 ∈ (0, b). Then 

.wl(x) X
⎧
⎨
⎩

xl if l is even and l < α + 1,

x−α+l if l is odd and l < α,
(7.47) 

as .x \ 0. 

Proof We prove the lemma by induction. For .l = 0, the statement is clear from 
the definition of . w0. Now assume that (7.47) is true for . l ∈ N0. If  l is even and 
.l + 1 < α, then 

. wl+1(x) X
x0
ˆ

x

t−αt ldt = 1

α − l − 1

(
x−α+l+1 − x−α+l+1

0

) X x−α+l+1.

If l is odd and .l + 1 < α + 1, then
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. wl+1(x) X
x
ˆ

0

tαt−α+ldt = 1

l + 1
xl+1 X xl+1.

In both cases, it follows that (7.47) is true for .l+1 instead of l. Hence, the statement 
follows by induction. nu
Proof (Proof of Proposition 7.18) The conditions (i) and (ii) in Definition 7.1 are 
easy to check. For (iii) let us first consider the case .α = 1. Then . w1(x) X − ln x

and hence .w1 ∈ L2(w|(0,x0)), which shows that .ASL(p,w) = 1 = |
1+1

2

|
. 

Now let . α > 1. If  l is even and .l < α + 1, then 

. wl ∈ L2
( 1

p

||
(0,x0)

)
⇐⇒

x0
ˆ

0

x−αx2ldx < ∞ ⇐⇒ l >
α − 1

2
.

(7.48) 
If l is odd and .l < α, then 

. wl ∈ L2(w|(0,x0)) ⇐⇒
x0
ˆ

0

xαx2(−α+l)dx < ∞ ⇐⇒ l >
α − 1

2
.

(7.49) 

The minimal integer l that satisfies .l > α−1
2 is .

|
α+1

2

|
. Since .

|
α+1

2

|
< α for .α > 1, 

the asymptotic relations (7.47) are valid for . wl , .l ≤ Lα+1
2 ]. nu

Example 7.20 Equations of the form 

. − a2y
'' − a1y

' = λy,

where . a1 and . a2 are continuous functions on .(a, b) and .a2(x) > 0 for x ∈ (a, b), 
can be written in the form (7.1) with 

. p(x) = exp

(
ˆ x

x0

a1(t)

a2(t)
dt

)
, w(x) = 1

a2(x)
exp

(
ˆ x

x0

a1(t)

a2(t)
dt

)

with some .x0 ∈ [a, b]. As an example, we consider the associated Laguerre equation 

. − xy''(x) − (1 + α − x)y'(x) = λy(x), x ∈ (0,∞),

with . α ≥ 0. For  p and w, one obtains 

. p(x) = xα+1e−x, w(x) = xαe−x.

It can be shown in a similar way as in Proposition 7.18 that .(p;w) ∈ KSL with 
.A = Lα + 1]. Hence, the singular Titchmarsh–Weyl coefficient belongs to .N(∞)

κ
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with .κ = |
α+1

2

|
. This is in agreement with [29] where a model for this singular 

Titchmarsh–Weyl coefficient was constructed. For .α < −1, the associated Laguerre 
equation was studied with the help of Pontryagin spaces in [20, 69, 70]; in this case, 
the results of the next subsection can be applied. 

8 Sturm–Liouville Equations Without Potential: Singular w 

In this section, we consider the case when w is not integrable at a but . 1
p

is. In 

Definition 7.1 and most theorems, one just has to swap the roles of . 1
p

and w. Let us 
state the definition of the class of coefficients explicitly. 

Definition 8.1 We say that .(p;w) ∈ K+
SL if p and w are defined on some interval 

.(a, b) and they satisfy (7.2) and the following conditions. 

(i) For one (and hence for all) .x0 ∈ (a, b), 

. 

x0
ˆ

a

w(x)dx = ∞ and

x0
ˆ

a

1

p(x)
dx < ∞.

(ii) For one (and hence for all) .x0 ∈ (a, b), 

. 

x0
ˆ

a

x
ˆ

a

1

p(t)
dt w(x)dx < ∞.

(iii) Let .x0 ∈ (a, b) and define functions . wl , .l = 0, 1, . . . , recursively by 

. w0(x) = 1,

wl(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0
ˆ

x

w(t)wl−1(t)dt if l is odd,

x
ˆ

a

1

p(t)
wl−1(t)dt if l is even.

There exists an .n ∈ N0 such that 

.wn

||
(a,x0)

∈

⎧
⎪⎨
⎪⎩

L2
(
w

||
(a,x0)

)
if n is even,

L2
(

1
p

||
(a,x0)

)
if n is odd.

(8.1)
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(iv) Equation (7.1) is in the limit point case at b, i.e. for .λ ∈ C \ R, equation (7.1) 
has (up to a scalar multiple) only one solution in .L2(w|(x0,b)) for .x0 ∈ (a, b). 

If .(p;w) ∈ K+
SL, we denote by .A+

SL(p,w) the minimal .n ∈ N0 such that (8.1) holds. 

8.2 Differences between the classes .KSL and .K+
SL In the following list, we 

mention the major differences that occur in theorems and other important statements 
corresponding to coefficients in .KSL and .K+

SL, respectively. 

1. The analogue of Remark 7.2 (ii) is not true; the equation (7.1) is always in the 
limit point case at a if .A+

SL(p,w) ≥ 1. This follows from the fact that . 1 /∈
L2(w|(a,x0)). 

2. The regularized boundary values have the following form (with . A =
A+

SL(p,w)): 

. rbvSL,+
λ,1 ψ = lim

x\a
ψ(x),

rbvSL,+
λ,2 ψ = lim

x\a

[
p(x)ψ '(x) +

L A
2 ]E

k=1

λk
(
w2k(x)p(x)ψ '(x) − w2k−1(x)ψ(x)

)

−
{

λ
A+1

2 wA(x)ψ(x) if A is odd

0 if A is even

}

+ (
lim
t\a

ψ(t)
)( AE

k=L A+3
2 ]

2k−A−2E

l=0

(−1)l+1λkwl(x)w2k−l−1(x)

)]
.

3. The singular Titchmarsh–Weyl coefficient .m+
p,w, which is defined as in (7.28), 

is connected with the singular Weyl coefficient of the corresponding canonical 
system via 

.m+
p,w(z2) = zqH (z). (8.2) 

This relation explains the use of the notation with . + as this was used, e.g. in 
[55] and [84]. The singular Titchmarsh–Weyl coefficient .m+

p,w belongs to . N(∞)
κ

where .κ = |A+
SL(p,w)+1

2

|
. The equivalence classes .[m]+p,w are defined not with 

respect to the equivalence relation . ∼̂ defined in (7.30) but with the equivalence 
relation . ∼ defined in (4.10), which is 

. m1 ∼ m2 :⇐⇒ m1 − m2 ∈ R[z], (m1 − m2)(0) = 0.

4. The spectral measure .μ+
p,w belongs to the class .M+, which is the set of Borel 

measures on . R such that
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.ν
(
(−∞, 0]) = 0 and

ˆ

(0,∞)

dν(t)

t (1 + t)n+1
< ∞. (8.3) 

If .ν ∈ M+, we denote by .A+(ν) the minimal .n ∈ N0 such that (8.3) holds. Then 
.A+(μ+

p,w) = A+
SL(p,w). 

5. Instead of (7.39), one has 

. − lim
λ-0

m+
p,w(λ) =

[
ˆ b

a

1

p(x)
dx

]−1

, (8.4) 

and that the left-hand side is zero if and only if the integral on the right-hand side 
is infinite. Relation (8.4) follows from (5.4), (5.5) and (8.2). 

The global uniqueness result is different from the one in the previous subsection 
since adding a constant to the singular Titchmarsh–Weyl coefficient corresponds to 
a more complicated transformation; cf. also [31, Corollary 3.6] for the case when 
the equations are in impedance form. 

Theorem 8.3 (Global Uniqueness Theorem) 

(i) Let .(p1;w1), (p2;w2) ∈ K+
SL be given with .dom(pi;wi) = (ai, bi), . i =

1, 2. Assume that there exist singular Titchmarsh–Weyl coefficients . m+
pi,wi

corresponding to .(pi;wi) for .i = 1, 2 such that 

.m+
p1,w1

(λ) − m+
p2,w2

(λ) = cnλ
n + . . . + c1λ + c0 (8.5) 

with .c0, . . . , cn ∈ R. Then there exists an increasing bijection . γ : (a2, b2) →
(a1, b1) such that . γ and .γ −1 are locally absolutely continuous and 

.

p2(x) = 1

γ '(x)

(
1 + c0

ˆ γ (x)

a1

1

p1(t)
dt

)2

p1
(
γ (x)

)
,

w2(x) = γ '(x)

(
1 + c0

ˆ γ (x)

a1

1

p1(t)
dt

)2

w1
(
γ (x)

)
(8.6) 

for .x ∈ (a2, b2); for all .x ∈ (a2, b2), one has 

.1 + c0

ˆ γ (x)

a1

1

p1(t)
dt > 0. (8.7) 

Moreover, .A+
SL(p1, w1) = A+

SL(p2, w2). 
(ii) Let .(p1;w1) ∈ K+

SL be given with .dom(p1;w1) = (a1, b1). Let . (a2, b2) ⊆ R
be an open interval, .γ : (a2, b2) → (a1, b1) an increasing bijection such that 
. γ and .γ −1 are locally absolutely continuous, and let .c0 ∈ R such that
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.1 + c0

ˆ b1

a1

1

p1(t)
dt ≥ 0. (8.8) 

Define functions .p2, w2 by (8.6). Then .(p2;w2) ∈ K+
SL with . A+

SL(p1, w1) =
A+

SL(p2, w2), and there exist singular Titchmarsh–Weyl coefficients .m+
pi,wi

, 
.i = 1, 2, such that 

. m+
p1,w1

(λ) − m+
p2,w2

(λ) = c0.

(iii) Let .(p1;w1), (p2;w2) ∈ K+
SL be given with .dom(pi;wi) = (ai, bi), .i = 1, 2. 

Then .μ+
p1,w1

= μ+
p2,w2

if and only if there exists . γ as above and .c0 ∈ R such 
that (8.6) and (8.8) hold. 

Before we can prove the theorem, we need a lemma about a transformation of 
diagonal Hamiltonians. 

Lemma 8.4 Let .H ∈ H be a diagonal Hamiltonian with .domH = (a, b) of the 
form 

. H(x) =
(

h11(x) 0

0 h22(x)

)
.

Assume that .h22(x) > 0 for almost all .x ∈ (a, b) and let .qH be a singular Weyl 
coefficient and .μH the corresponding spectral measure. Moreover, let .c ∈ R and 
define the functions 

.α(x):= 1 + c

ˆ x

a

h22(t)dt, x ∈ (a, b), . (8.9)

-q(z):= qH (z) − 
c 

z 
. (8.10) 

Then the following statements are equivalent: 

(i) .α(x) > 0 for all .x ∈ (a, b). 
(ii) .c + μH

({0}) ≥ 0. 

(iii) .-q ∈ N(∞)
<∞. 

If these conditions are satisfied, then 

. -H(x):=

(
||(

(
α(x)

)2
h11(x) 0

0
h22(x)
(
α(x)

)2

⎞
⎟⎟⎠ , x ∈ (a, b), (8.11) 

belongs to . H and . -q is a singular Weyl coefficient for . -H .
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Proof First note that the integral in (8.9) is positive for all .x ∈ (a, b) and strictly 
increasing in x. Hence, (i) is equivalent to 

. c +
[
ˆ b

a

h22(t)dt

]−1

≥ 0,

where we use .1/∞ = 0 in the case when the integral is infinite. Since . μH ({0}) =[ ´ b

a
h22(t)dt

]−1
by Proposition 5.3, the equivalence of (i) and (ii) follows. The 

function . -q is in .N<∞. The only possible finite generalized pole of non-positive 

type of . -q is 0. Hence, .-q ∈ N(∞)
<∞ if and only if 

. lim
ε\0

iε-q(iε) ≤ 0;

see, e.g. [77, Theorem 3.1]. It follows from [84, Theorem 3.9 (ii)] that 

. c + μH

({0}) = c − lim
ε\0

iεqH (iε) = − lim
ε\0

iε-q(iε),

which implies the equivalence of (ii) and (iii). 
For the rest of the proof, assume that .α(x) > 0 for all .x ∈ (a, b). One can 

easily show that the assertions of the lemma are unaffected by reparameterizations. 
So we can assume that H is defined on . (0,∞). Let . h be the indefinite Hamiltonian 
associated with H as in Sect. 3.16 with Weyl coefficient . qh such that .qh = qH , and 
let .ωh be the corresponding maximal chain of matrices as in Sect. 3.8. It follows 
from Lemma 5.9 that 

. -α(x):=1 − c
∂

∂z
ωh,21(x; z)

|||
z=0

=

⎧
⎪⎨
⎪⎩

1, x ∈ [−1, 0),

α(x), x ∈ (0,∞).

The transformation . Tc from [58, Definition 4.1] applied to .ωh yields a maximal 

chain of matrices . -W , where 

. -W(x; z):=(Tcωh
)
(x; z) =

(
(1 −c

z

0 1

⎞
⎠ωh(x; z)

(
|(

1

-α(x)

c

z

0 -α(x)

⎞
⎟⎠ ,

so that . -W corresponds to an indefinite Hamiltonian . -h whose Weyl coefficient is 

. q-h(z) = qh(z) − c

z
;

see [58, Theorem 4.4]. Differentiating . -W with respect to x and using the differential 
equation (3.9), i.e.
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. 
∂

∂x
-W(x; z)J = z -W(x; z) -H(x),

one can easily show that the Hamiltonian function . -H that corresponds to . -h is given 
by (8.11); cf. [103, Rule 4].  nu
Proof (Proof of Theorem 8.3) Throughout the proof, let .H1 and .H2 be the 
corresponding Hamiltonians 

. Hi(x) =

(
|(

wi(x) 0

0
1

pi(x)

⎞
⎟⎠ , i = 1, 2,

and let . qH1 , .qH2 be the singular Weyl coefficients such that .m+
pi,wi

(z2) = zqHi
(z), 

.i = 1, 2 as in (8.2). 

(i) Suppose that (8.5) holds. Define . -q as in (8.10) with .H = H1 and .c = c0, i.e. 

.-q(z) = qH1(z) − c0

z
= qH2(z) + cnz

2n−1 + cn−1z
2n−3 + . . . + c1z. (8.12) 

The equality of the first and the last expression in (8.12) implies that .-q ∈ N(∞)
<∞, 

i.e. condition (iii) in Lemma 8.4 is satisfied. Hence, we can apply Lemma 8.4, 
which yields a Hamiltonian . -H with corresponding singular Weyl coefficient 
. -q. Since . -q and .qH2 differ only by a real polynomial without constant term, 
Theorem 6.1 (iii) implies that . H2 is a reparameterization of . -H . This, together 
with (8.11) and (8.9), shows  (8.6). Relation (8.7) follows from Lemma 8.4 (i). 
Since .μ+

p1,w1
= μ+

p2,w2
, we obtain 

. A+
SL(p1, w1) = A+(μ+

p1,w1
) = A+(μ+

p2,w2
) = A+

SL(p2, w2).

(ii) Condition (8.8) implies that (i) in Lemma 8.4 is satisfied with .H = H1 and . c =
c0. Hence, we can apply Lemma 8.4, which yields . -H . The assertion follows 
since . H2 is a reparameterization of . -H . 

(iii) It follows from [84, Theorem 3.9 (iv)] that .μ+
p1,w1

= μ+
p2,w2

if and only if 

.m+
p1,w1

and .m+
p2,w2

differ by a real polynomial. Now the claim follows from (i) 
and (ii). nu

Let us finally point out that Proposition 7.18 remains valid for the situation in 
this section if (7.46) is replaced by 

. p(x) X x−α, w(x) X x−α as x \ 0

and .KSL is replaced by .K+
SL.
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9 Schrödinger Equations 

Let .V ∈ L1
loc(0, b) with .b > 0 or .b = ∞ and consider the one-dimensional 

Schrödinger equation 

. − u''(x) + V (x)u(x) = λu(x). (9.1) 

In this section, the left endpoint needs to be finite, which without loss of generality 
we assume to be 0. In the following, we write .dom(V ):=(0, b). 

Assume that, for .λ = 0, equation (9.1) has a solution . φ (i.e. . V = φ''
φ

) in  

.W
2,1
loc (0, b) that satisfies 

.

φ(x) > 0 for all x ∈ (0, b),

φ
||
(0,x0)

∈ L2(0, x0),
1

φ

|||
(0,x0)

/∈ L2(0, x0) for some x0 ∈ (0, b).

(9.2) 

A similar approach, namely, to assume the existence of a particular solution instead 
of explicit conditions on the coefficients, was used in [19]. 

Note that . φ with the above properties is determined only up to a multiplicative 
positive constant; see Remark 9.11 for a further discussion of this non-uniqueness. 

Let .x0 ∈ (0, b) and define functions . -wl , .l = 0, 1, . . . , recursively by 

.

-w0(x) = 1

φ(x)
,

-wk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ(x)

x0
ˆ

x

1

φ(t)
-wk−1(t)dt if k is odd,

1

φ(x)

x
ˆ

0

φ(t)-wk−1(t)dt if k is even.

(9.3) 

Remark 9.1 It follows from the last condition in (9.2) and [89, Theorem 2.2] that 
. φ is a principal solution of (9.1) with .λ = 0. The function .-w1 is a non-principal 
solution of (9.1) with .λ = 0, and one has 

. − -w''
k+2 + V -wk+2 = -wk when k ∈ N is odd. (9.4) 

In [75] a sequence of functions . gk was used which satisfy the relations 

. − g''
k+1 + Vgk+1 − μkgk+1 = gk
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with pairwise distinct numbers . μk . 

Remark 9.2 Instead of . -wk one can use more general functions . w̌k that are defined 
as in (9.3) but with the relation 

. w̌k(x) = φ(x)

⎡
⎣

x0
ˆ

x

1

φ(t)
w̌k−1(t)dt + ck

⎤
⎦ , k odd,

with arbitrary constants . ck ∈ R; cf. Remarks 7.5 (iii) and 7.12 (iii). The spectral 
measure that is constructed below remains the same. 

In this section, we consider the following class of potentials. 

Definition 9.3 We say that .V ∈ KSchr if .V ∈ L1
loc(0, b), there exists a . φ so that . φ

is a solution of (9.1) with .λ = 0 that (9.2) holds and that the following conditions 
are satisfied. 

(i) For one (and hence for all) .x0 ∈ (0, b), 

. 

x0
ˆ

0

φ(x)-w1(x)dx < ∞.

(ii) There exists an .n ∈ N such that 

.-wn

||
(0,x0)

∈ L2(0, x0). (9.5) 

(iii) Equation (9.1) is in the limit point case at b. 

If .V ∈ KSchr, we denote by .ASchr(V ) the minimal .n ∈ N such that (9.5) holds. 

Remark 9.4 

(i) Since the function . -w1 is a non-principal solution of (9.1) with . λ = 0, we have  
.A(V ) = 1 if and only if equation (9.1) is regular or in the limit circle case at 
the left endpoint. 

(ii) One can also consider the case when (9.1) is regular or in the limit circle case at 
the right endpoint b. In this case, one has to impose a fixed self-adjoint boundary 
condition at b; cf. Remark 7.3. This situation was considered, e.g. in [98] in  
connection with n-entire operators. 

In order to apply the results from Sect. 7, we set  

.p(x) = w(x):=(φ(x)
)2

, x ∈ (0, b). (9.6) 

With . wk defined as in (7.5), we have
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.-wk(x) =

⎧
⎪⎪⎨
⎪⎪⎩

wk(x)

φ(x)
if k is even,

φ(x)wk(x) if k is odd.

(9.7) 

It is easy to see that .V ∈ KSchr if and only if .(p;w) ∈ KSL with .p,w from (9.6); for  
the equivalence of the limit point property at b, see (9.15). Moreover, if .V ∈ KSchr, 
then .ASchr(V ) = ASL(p,w). 

Example 9.5 

(i) A large subclass of .KSchr is the following. Let .b > 0 or . b = ∞, let . V0 ∈
L1

loc(0, b) and let .l ∈ [− 1
2 ,∞)

. Moreover, set 

.V (x) = l(l + 1)

x2
+ V0(x) (9.8) 

and assume that 

.

xV0(x)
||
(0,x0)

∈ L1(0, x0) if l > −1

2
,

(ln x)xV0(x)
||
(0,x0)

∈ L1(0, x0) if l = −1

2

(9.9) 

with some .x0 ∈ (0, b). Moreover, suppose that the minimal operator associated 
with (9.2) is bounded from below and that (9.1) is in the limit point case at b. 
Under the assumption that (9.9) is valid, it follows from [67, Lemma 3.2] that 
there exists a solution . φ of (9.1) with .λ = 0 such that 

.φ(x) = xl+1(1 + o(x)
)
, x \ 0. (9.10) 

Assume that .φ(x) > 0 for .x ∈ (0, b), which is satisfied, e.g. if the minimal 
operator is uniformly positive, which can be achieved by a shift of the spectral 
parameter. Now it follows from Proposition 7.18 that .(p;w) ∈ KSL, and hence 
.V ∈ KSchr and .ASchr(V ) = ASL(p,w) = |

l + 3
2

|
. 

Since .l = 0 is allowed in (9.8), the class .KSchr contains potentials where 0 
is a regular endpoint. If .l ∈ [− 1

2 , 1
2

) \ {0}, then (9.1) is in the limit circle case 
at 0 and .ASchr(V ) = 1. 

Potentials of the form (9.8) have been studied in many papers; see, e.g. 
[3, 30, 35–37, 47, 64, 65, 67, 68, 75, 86, 97, 98]. 

(ii) The class .KSchr contains also potentials that have a stronger singularity at the 
left endpoint than those considered in (i). If 

.V (x) = φ''(x)

φ(x)
where φ(x) X xβ , x \ 0 (9.11)
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with .β ≥ 1
2 , .φ(x) > 0 for .x ∈ (0, b) and (9.1) is in the limit point case at b, 

then .V ∈ KSchr with .ASchr(V ) = |
β + 1

2

|
; cf. Proposition 7.18. For instance, 

functions of the form 

. φ(x) = xβ
(

2 + sin
1

x

)
, x ∈ (0, x0),

with .β > 0 lead to oscillatory potentials that do not satisfy (9.9), namely, 

. V (x) = − 1

x4
· sin 1

x

2 + sin 1
x

+ O
( 1

x3

)
, x \ 0.

It follows from Lemma 7.19 and (9.7) that if V is of the form in (9.11), then 

.-wk(x) X x−β+k, x \ 0, k ∈ N0, k < 2β. (9.12) 

In particular, the relation in (9.12) is valid for .k = 0, 1, . . . , 2A − 1 if . β is not 
an odd integer multiple of . 

1
2 , and it is valid for .k = 0, 1, . . . , 2A−2, otherwise. 

(iii) The function .V (x) = 1
x4 does not belong to .KSchr. It can easily be checked 

that the only possible choice for . φ (up to scalar multiples) is .φ(x) = xe−1/x . 
Moreover, one can show that 

. -wn(x) ∼ Cnx
αne

1
x , x \ 0,

with some .Cn > 0, .n ∈ N, and .αn = 3n−2
2 when n is even and . αn = 3n−1

2
when n is odd. Hence, condition (i) in Definition 9.3 is satisfied, but there is 
no .n ∈ N such that (9.5) holds. This potential was also studied in [87], where 
it was shown that the approach with super-singular perturbations, as developed 
in [75] and [86], cannot be applied to this potential. 

(iv) Potentials from the class .H−1
loc (0, b) could also be treated by our method if we 

relaxed the assumption .V ∈ L1
loc(0, b). In this case, one would only have . φ ∈

H 1
loc(0, b). Operators with such potentials were considered, e.g. in [31, 46, 96]. 

Note that the class .H−1
loc (0, b) includes measure coefficients. 

Let us introduce the unitary operator 

.U :
⎧
⎨
⎩

L2(0, b) → L2(w),

u |→ u

φ

(9.13) 

and define the self-adjoint operator 

.AV :=U−1Ap,wU (9.14)
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with p and w as in (9.6) and .Ap,w from (7.11). For .u ∈ W 2,1(0, b) with compact 
support, we have 

.

AV u = −φ
1

w

(
p
(u

φ

)')' = − 1

φ

(
φ2 φu' − φ'u

φ2

)'

= −φu'' − φ''u
φ

= −u'' + V u.

(9.15) 

Therefore, .AV is the Friedrichs extension of the minimal operator connected with 
the equation (9.1); cf. the discussion below (7.12). In particular, if .ASchr(V ) = 1, 
then a possible boundary condition at 0 to characterize .AV is 

. lim
x\0

u(x)

-w1(x)
= 0;

see [89, Theorem 4.3]. As mentioned above, if .ASchr(V ) ≥ 2, then (9.1) is in the 
limit point case at 0 and hence no boundary condition is needed there. 

We can apply all theorems from Sect. 7. In order to rewrite these results in a more 
intrinsic form, we define regularized boundary values by .rbvSchr

λ u:=rbvSL
λ Uu for 

.λ ∈ C and u a solution of  (9.1). Then Theorem 7.4, together with a straightforward 
calculation, yields the following theorem. 

Theorem 9.6 (Regularized boundary values) Let .V ∈ KSchr with . dom(V ) =
(0, b), set .A:=ASchr(V ) and let .NSchr

λ be the set of all solutions of (9.1). Then, 
for .x0 ∈ (0, b), the following statements hold. 

(i) For each .λ ∈ C and each solution .u ∈ NSchr
λ , the boundary value 

. rbvSchr
λ,1 u = lim

x\0

(
φ(x)u'(x) − φ'(x)u(x)

)
,

and the regularized boundary value 

. rbvSchr
λ,2 u = lim

x\0

[ L A−1
2 ]E

k=0

λk
(
-w2k+1(x)u'(x) − -w'

2k+1(x)u(x)
)

+
{

λ
A
2 -wA(x)u(x) if A is even

0 if A is odd

}

+ (
rbvSchr

λ,1 u
)( A−1E

k=L A+1
2 ]

2k−AE

l=0

(−1)lλk-wl(x)-w2k−l+1(x)

)]
.

exist.
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(ii) For each .λ ∈ C, we define 

. rbvSchr
λ :

{
NSchr

λ → C2

u |→ (
rbvSchr

λ,1 u, rbvSchr
λ,2 u

)T
.

Then .rbvSchr
λ is a bijection from .NSchr

λ onto . C2. 
(iii) For each .λ ∈ C, there exists an (up to scalar multiples) unique solution . u ∈

NSchr
λ \ {0} such that .limx\0

u(x)
φ(x)

exists. 

This solution is characterized by the property that .
´ x0

0 φ2
||( u

φ

)'||2
< ∞ and 

also by the property that .rbvSchr
λ,1 u = 0 (and .u /≡ 0). 

If u is a solution such that . lim
x\0

u(x)
φ(x)

exists, then .rbvSchr
λ,2 u = lim

x\0

u(x)
φ(x)

. 

The regularized boundary value .rbvSchr
λ,2 depends on the choice of . x0 in the following 

way. 

(iv) Let .x0, x̂0 ∈ (0, b), and let .rbvSchr
λ and . <rbvSchr

λ be the correspondingly defined 
regularized boundary value mappings. Then there exists a polynomial . px0,x̂0

(z)

with real coefficients whose degree does not exceed .A − 1 such that 

. <rbvSchr
λ,2 u = rbvSchr

λ,2 u + px0,x̂0
(λ)rbvSchr

λ,1 u, u ∈ NSchr
λ , λ ∈ C.

Moreover, clearly, . <rbvSchr
λ,1 = rbvSchr

λ,1 . 

The next theorem about a fundamental system of solutions of (9.1) and the existence 
of a singular Titchmarsh–Weyl coefficient follows from Theorem 7.7 (i) with the 
help of the unitary operator U from (9.13). 

Theorem 9.7 (Singular Titchmarsh–Weyl coefficients) Let .V ∈ KSchr with 
.dom(V ) = (0, b) be given. Then, for each fixed .x0 ∈ (0, b), the following statements 
hold. 

(i) For . λ ∈ C, let -θ(· ; λ) and .-ϕ(· ; λ) be the unique solutions of (9.1) such that 

. rbvSchr
λ

-θ(· ; λ) =
(

1

0

)
, rbvSchr

λ -ϕ(· ; λ) =
(

0

1

)
.

Then, for each .x ∈ (0, b), the functions .-θ(x; ·) and .-ϕ(x; ·) are entire of order 
. 
1
2 and finite type x. Moreover, for each .λ ∈ C, one has . W

(
-ϕ(· ; λ),-θ(· ; λ)

) ≡
1 where .W :=W1 denotes the Wronskian as in (7.18) with .p ≡ 1, and the 
following relations hold: 

. lim
x\0

-ϕ(x; λ)

φ(x)
= 1, lim

x\0

φ(x)-ϕ'(x; λ) − φ'(x)-ϕ(x; λ)
´ x

a

(
φ(t)

)2
dt

= −λ,
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lim 
x\0

-θ(x; λ)

-w1(x) 
= −1, lim 

x\0

(
φ(x)-θ '(x; λ) − φ'(x)-θ(x; λ)

) = 1. 

Further, one has .-ϕ(x; 0) = φ(x) and .-θ(x; 0) = −-w1(x), .x ∈ (0, b). 
(ii) The limit 

. -mV (λ):= lim
x-b

-θ(x; λ)

-ϕ(x; λ)
, λ ∈ C \ [0,∞),

exists locally uniformly on .C \ [0,∞) and defines an analytic function in . λ. 
The function .-mV belongs to the class .N(∞)

κ with .κ = |
ASchr(V )

2

|
. 

(iii) We have 

. -θ(· ; λ) − -mV (λ)-ϕ(· ; λ) ∈ L2(x0, b), λ ∈ C \ [0,∞),

and this property characterizes the value .-mV (λ) for each .λ ∈ C \ [0,∞). 
(iv) For .λ ∈ C\[0,∞), let  u be any non-trivial solution of (9.1) such that . u|(x0,b) ∈

L2(x0, b). Then 

. -mV (λ) = − rbvSchr
λ,2 u

rbvSchr
λ,1 u

.

The function .-mV depends on the choice of . x0. This dependence is controlled as 
follows. 

(v) Let .x̂0 ∈ (a, b), and let .<-mV be the correspondingly defined singular 
Titchmarsh–Weyl coefficient. Then there exists a polynomial .px0,x̂0

with real 
coefficients whose degree does not exceed .ASchr(V ) − 1 such that 

. <-mV (λ) = -mV (λ) − px0,x̂0
(λ).

The functions . -θ and . -ϕ are related to the functions . θ and . ϕ corresponding to (7.1) 
with p and w as in (9.6) as follows: 

.-θ(x; λ) = φ(x)θ(x; λ), -ϕ(x; λ) = φ(x)ϕ(x; λ), x ∈ (0, b). (9.16) 

The function .-mV is called singular Titchmarsh–Weyl coefficient. It follows 
from (7.28) and (9.16) that .-mV = mp,w. As in Sect. 7, one defines equivalence 
classes .[-m]V with respect to the equivalence relation  ∼̂ defined in (7.30). 

The next theorem about the existence of a spectral measure follows from 
Theorem 7.11. For the definition of the class .M−, see Definition 7.10. 

Theorem 9.8 (The spectral measure) Let .V ∈ KSchr with .dom(V ) = (0, b) be 
given. Then there exists a unique Borel measure .-μV that satisfies
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. -μV

([s1, s2]
) = 1

π
lim
ε\0

lim
δ\0

s2+ε
ˆ

s1−ε

Im -mV (t + iδ) dt, −∞ < s1 < s2 < ∞,

where .-mV ∈ [-m]V is any singular Titchmarsh–Weyl coefficient associated 
with (9.1). We have .-μV ∈ M− and .A−(-μV ) = ASchr(V ). 

Moreover, .-μV ({0}) > 0 if and only if 

.

ˆ b

0

(
φ(x)

)2
dx < ∞. (9.17) 

If (9.17) is satisfied, then 

. -μV

({0}) =
[
ˆ b

0

(
φ(x)

)2
dx

]−1

.

Clearly, we have .-μV = μp,w where p and w are as in (9.6). 

Example 9.9 Consider V as in Example 9.5 (i). Since .ASchr(V ) = |
l + 3

2

|
, 

we obtain from Theorem 9.7 that .-mV ∈ N(∞)
κ with .κ = |

l
2 + 3

4

|
. Moreover, 

Theorem 9.8 yields that .-μV ∈ M− with .A−(-μV ) = ASchr(V ) = |
l + 3

2

|
. 

In the next theorem, we consider the corresponding Fourier transform and its 
inverse. This theorem follows from Theorem 7.13. 

Theorem 9.10 (The Fourier transform) Let .V ∈ KSchr with .dom(V ) = (0, b) be 
given, and let .-μV be the spectral measure associated with (9.1) as in Theorem 9.8. 
Then the following statements hold. 

(i) The map defined by 

. 

(-oV f
)
(t):=

ˆ b

0
-ϕ(x; t)f (x) dx, t ∈ R,

f ∈ L2(0, b), sup(suppf ) < b,

(9.18) 
extends to an isometric isomorphism from .L2(0, b) onto . L2(-μV )

(ii) The operator .-oV establishes a unitary equivalence between .AV and the 
operator .M-μV

of multiplication by the independent variable in .L2(-μV ), i.e. 
we have 

. -oV AV = M-μV
-oV .

(iii) For compactly supported functions, the inverse of .-oV acts as an integral 
transformation, namely,
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. 
(-o−1

V g
)
(x) =

ˆ ∞

0
-ϕ(x; t)g(t) d-μV (t), x ∈ (a, b),

g ∈ L2(-μV ), supp g compact.

The existence of a Fourier transform into a scalar L2-space shows in particular that 
the spectrum of .AV is simple. 

Remark 9.11 Recall that the solution . φ is not unique. If . φ is multiplied by a 
positive constant r , then . -wl and . -θ are divided by r , . -ϕ is multiplied by r and . -mV

and .-μV are divided by . r2. However, in the situation of Example 9.5 (i), one can 
normalize . φ such that (9.10) holds. 

Finally, let us state global and local uniqueness theorems. For the case of Bessel-
type potentials as in Example 9.5 (i), see, e.g. [30, Theorem 5.1]. 

Theorem 9.12 (Global Uniqueness Theorem) Let .V1, V2 ∈ KSchr be given with 
.dom(Vi) = (0, bi), .i = 1, 2. Then the following statements are equivalent: 

(i) .b1 = b2 and .V1(x) = V2(x), .x ∈ (0, b1) a.e. 
(ii) There exists a .c > 0 such that .[-m]V1 = c[-m]V2 . 

(iii) There exists a .c > 0 such that .-μV1 = c-μV2 . 

Proof For the implication (i) . ⇒ (ii), see Remark 9.11. The equivalence of (ii) and 
(iii) is clear from the definition of . -μV . Now suppose that (ii) holds and let . pi =
wi = φ2

i be as in (9.6). By rescaling . φ2, we may assume that .c = 1. Then we have 
.[m]p1,w1 = [m]p2,w2 . It follows from Theorem 7.15 that there exists . γ : (0, b2) →
(0, b1) such that (7.45) holds. However, this implies that .γ '(x) = 1 a.e., and hence 
.b1 = b2 and .φ1 = φ2. This shows that .V1 = V2, i.e. (i) is satisfied. nu

Local uniqueness theorems for Schrödinger equations have attracted a lot of 
attention recently. For the case of a regular left endpoint, B. Simon proved the first 
version of such a theorem in [99, Theorem 1.2]; alternative proofs were given in 
[7, 38] and [78]. For Bessel-type operators with potentials as in Example 9.5 (i), a 
local uniqueness theorem was proved in [68, Theorem 4.1]. 

Theorem 9.13 (Local Uniqueness Theorem) Let .V1, V2 ∈ KSchr be given with 
.dom(Vi) = (0, bi), .i = 1, 2. Then, for .τ > 0, the following statements are 
equivalent: 

(i) One has .V1(x) = V2(x), .x ∈ (0, min{τ, b1, b2}
)

a.e. 
(ii) There exist singular Titchmarsh–Weyl coefficients .-mV1 and .-mV2 , and there exist 

.c > 0 and .β ∈ (0, 2π) such that, for each .ε > 0, 

. -mV1

(
reiβ

)− c-mV2

(
reiβ

) = O
(
e(−2τ+ε)

√
r sin β

2

)
, r → ∞.

(iii) There exist singular Titchmarsh–Weyl coefficients .-mV1 and .-mV2 , and there exist 
.c > 0 and .k ≥ 0 such that, for each .δ ∈ (0,π),
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. -mV1(λ) − c-mV2(λ) = O
(
|λ|ke−2τ Im

√
λ
)
,

|λ| → ∞, λ ∈ {
z ∈ C : δ ≤ arg z ≤ 2π − δ

}
,

where .
√

λ is chosen so that .Im
√

λ > 0. 

Proof This theorem follows from Theorem 7.17; we only have to observe that 
.si(τ ) = min{τ, bi} and that the validity of (7.45) with .pi = wi implies that 
.γ (x) = x for .x ∈ (0, τ ). nu
Let us conclude this section with two remarks about possible extensions. 

Remark 9.14 With a similar method, one can also treat general Sturm–Liouville 
equations of the form 

. − (
Py')' + Qy = λWy (9.19) 

where .1/P , Q and W are locally integrable. If a positive solution . φ of (9.19) with 
.λ = 0 exists such that .φ ∈ L2(W |(a,x0)), then one can use the mapping .u |→ u

φ
to 

transform (9.19) to an equation of the form (7.1) with 

. p:=Pφ2, w:=Wφ2;

cf. [89, Lemma 3.2]. Using Theorem 7.15, one can show that if the spectral measures 
corresponding two equations of the form (9.19) coincide, then the coefficients are 
related via a Liouville transform; see [31, Theorem 3.4] for a related result and [8, 
Theorem 4.2] for the case when .W ≡ 1 and the left endpoint is regular. 

Remark 9.15 One can also apply the results of the first part of the paper to Dirac 
systems of the form 

. − Ju' + V u = zu (9.20) 

on an interval .(a, b), where V is a real-valued, symmetric and locally integrable 
.2 × 2-matrix function, .z ∈ C is the spectral parameter and u is a 2-vector function. 
Assume that there exists a solution . φ of (9.20) with .z = 0 (i.e. .Jφ' = V φ) 
which is in .(L2(a, x0))

2 for some .x0 ∈ (a, b). Under this assumption, we can 
transform (9.20) into a canonical system (1.1) as it was done in [73, Section 4.1, 
pp. 336, 337]. Let . o be a .2 × 2-matrix solution of .Jo' = V o (i.e. columns of . o
are solutions of (9.20) with .z = 0) such that 

. 

(
o12

o22

)
= φ and det o(x0) = 1.

From the second relation, it follows that .o(x0)
T Jo(x0) = J . Since . d

dx
(oT Jo) =

0, we have
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.oT Jo = J on (a, b), (9.21) 

and hence .det o(x) = 1, .x ∈ (a, b). Set 

. H :=oT o,

which is clearly symmetric and non-negative and does not vanish on any set of 
positive measure. It is easy to see that y is a solution of (1.1) if and only if .u:=oy is a 
solution of (9.20). Since .h22 = o2

12 +o2
22 = φ2

1 +φ2
2 , condition (I) in Definition 2.2 

is satisfied. If .H ∈ H, i.e. also (HS) and (. A) are fulfilled, then one can apply the 
results from Sects. 4–6. 

In order to write the results in a more intrinsic form, one can use the unitary 
transformation 

. U :
⎧
⎨
⎩

L2(H) → (L2(a, b))2,

y |→ ou,

whose inverse acts like .U−1u = o−1u = −JoT Ju. For instance, one can define 
regularized boundary values by .rbvDir

z u:=rbvzU
−1u as in Sect. 9. Details are left to 

the reader. See also, e.g. [16, 34] for different approaches to Dirac operators. 
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