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LIMIT BEHAVIOR OF WEYL COEFFICIENTS

© R. PRUCKNER, H. WORACEK

The sets of radial or nontangential limit points towards i8 of a Nevanlinna

fun
tion q are studied. Given a nonempty, 
losed, and 
onne
ted subset L

of C
�

, a Hamiltonian H is 
onstru
ted expli
itly su
h that the radial and

outer angular 
luster sets towards i8 of the Weyl 
oe�
ient qH are both

equal to L. The method is based on a study of the 
ontinuous group a
tion

of res
aling operators on the set of all Hamiltonians.

�1. Introdu
tion

A Nevanlinna fun
tion is an analyti
 fun
tion in the open upper half-

plane C
�

whose values lie in C
�

Y R. Su
h fun
tions are intensively studied

for various reasons; we mention two of them.

� In 
omplex analysis they o

ur as regularised Cau
hy transforms of posi-

tive Poisson integrable measures, see e.g., [Lev80,KK68,GT00℄. Namely, a

fun
tion q is a Nevanlinna fun
tion if and only if it is of the form

qpzq � a� bz �

»

R

� 1

x� z
�

x

1� x2

	

dµpxq, z P C
�

, (1.1)

where a P R, b ¥ 0, and µ is a positive Borel measure on the real line with

»

R

dµpxq

1� x2
  8.

� In the spe
tral theory of di�erential operators they o

ur as Weyl 
o-

e�
ients whenever H.Weyl's nested disks method is appli
able, see e.g.,

[Wey10,Tit46,Atk64,BHS20℄.

The relationship between these two instan
es is that (for simpli
ity we suppress

some te
hni
al issues and ex
eptional 
ases) the measure µ in the integral

Êëþ÷åâûå ñëîâà: Weyl 
oe�
ient, 
anoni
al system, 
luster set, Nevanlinna fun
tion.
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representation (1.1) of the Weyl 
oe�
ient of an equation is a spe
tral measure

for the 
orresponding selfadjoint model operator.

The natural 
ontext of Weyl's method is the framework of two-dimensional


anoni
al systems

y1ptq � zJHptqyptq, t P p0,8q, (1.2)

where z P C is the eigenvalue parameter, J :
�

�

0 �1

1 0

	

, and the Hamiltonian H

of the system is assumed to satisfy Hptq ¥ 0 and trHptq � 1 a.e., see, e.g.

[Bra68, HSW00, Rom14, Rem18℄. It is a deep theorem due to L. de Branges

that the map assigning to ea
h Hamiltonian H the Weyl 
oe�
ient qH of the

equation (1.2) is a bije
tion between the set of all Hamiltonians

H :
�

 

H : p0,8q Ñ R
2�2

| H measurable,Hptq ¥ 0, trHptq � 1 a.e.

(

(1.3)

up to equality a.e., and the set of all Nevanlinna fun
tions in
luding the fun
-

tion identi
ally equal to 8

N :
�

 

q : C
�

Ñ C | q analyti
, qpC
�

q � C
�

(

.

Here C denotes the Riemann sphere C Y t8u regarded as a Riemann surfa
e

in the usual way, and C
�

denotes the 
losure of C
�

in the sphere, expli
itly,

C
�

� C
�

Y R Y t8u. The assignment H ÞÑ qH is also 
alled the de Branges


orresponden
e.

Having available this bije
tion, it is a natural task to relate properties of H

to properties of qH . For many properties of Hamiltonians or Nevanlinna fun
-

tions it turns out to be quite involved (or even quite impossible) to �nd their


ounterpart on the other side of de Branges' 
orresponden
e. One type of prop-

erties where some expli
it relations are known is the high-energy behavior of

qH , i.e., its behavior towards i8. It is a frequently instantiated intuition, go-

ing ba
k at least to B.M. Levitan [Lev52℄, that the high-energy behavior of

qH 
orresponds to the lo
al behavior of H at 0. For example it was shown

in [EKT18℄ that the nontangential limit

1 lim
z
?

Ñi8
qHpzq exists in C if and only

if the limit limt×0
1
t

³t

0
Hpsq ds exists in R

2�2
. Moreover, if these limits exist,

they are related by simple formulas.

In this paper we investigate the situation when the Weyl 
oe�
ient does not

ne
essarily have a limit. Natural substitutes for a limit value are 
luster sets.

We 
onsider two variants, whi
h are �tted to the nontangential approa
h. For

1

We write zn
?

Ñ i8 for: |zn| Ñ 8 while arg zn P rα, π � αs for some α P p0, π

2
s. And we

write lim
z
?

Ñi8
qpzq � ζ if limnÑ8 qpznq � ζ for every sequen
e zn

?

Ñ i8. Convergen
e on

the Riemann sphere is understood with respe
t to the 
hordal metri
.
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α P p0, π
2
s denote by Γα the Stolz angle

Γα :
�

 

z P C
�

| arg z P rα, π � αs
(

.

(i) Let M � C
�

be su
h that

M is unbounded, there is α P
�

0,
π

2

�

with M � Γα,

tz PM | |z| ¥ ru is 
onne
ted for all su�
iently large r.
(1.4)

For a Nevanlinna fun
tion q we 
onsider the 
luster set

C pq,Mq

:
�

 

ζ P C | Dzn PM : |zn| Ñ 8^ qpznq Ñ ζ
(

.

(ii) The outer angular 
luster set of a Nevanlinna fun
tion q is

C
?

pqq :�
¤

αPp0,π
2
s

C pq,Γαq �
 

ζ P C | Dzn P C
�

: zn
?

Ñ8^ qpznq Ñ ζ
(

.

We do not 
onsider an arbitrary � possibly tangential � approa
h to in�nity.

The 
luster sets C pq,Mq and C
?

pqq are both nonempty and 
onne
ted. They

show di�erent behavior in the sense that C pq,Mq is always 
losed, while C
?

pqq

need not have this property, 
f. [CL66,Nos60℄ (see also Remark 3.7 below).

It is known from [BCP85℄ (by using a fra
tional linear transformation to

pass from the half-plane to the unit disk) that for every nonempty, 
losed,

and 
onne
ted subset L of C
�

there exists a Nevanlinna fun
tion q su
h that

the radial 
luster set C pq, ir1,8qq equals L. In fa
t, in [BCP85, Theorem℄

the radial boundary interpolation problem was solved for 
ountably many in-

terpolation nodes, and the given solution is a Blas
hke produ
t. Variants of

this result for singular inner fun
tions 
an be found in [De
94, Theorem 9℄,

or [Don01, Theorem 3℄. For smaller 
lasses of fun
tions, e.g., interpolating or

thin Blas
hke produ
ts, the radial boundary interpolation problem is in gen-

eral not anymore solvable, 
f. [GM05,GS11℄. The outer angular 
luster set is

a 
ountable in
reasing union of nonempty, 
losed, and 
onne
ted subsets, and

P. M. Gauthier 
onje
tured in [Gau21℄ (personal 
ommuni
ation) that every

set of this form 
an be realised as an outer angular 
luster set; a proof has not

yet been given.

Our main result in the present paper is Theorem 4.1, where we give an

expli
it solution to the following inverse spe
tral problem.

Given a nonempty, 
losed, and 
onne
ted subset L of C
�

, �nd

a Hamiltonian H su
h that C pqH ,Mq � C
?

pqHq � L (for ar-

bitrary M as in (1.4))

The Hamiltonian H 
onstru
ted in the proof of Theorem 4.1 has the property

that qH (transferred to the unit disk) is a Blas
hke produ
t.
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Our method of proof is based on a res
aling tri
k, whi
h goes ba
k at least

to Y. Kasahara [Kas75℄, who applied it on the level of Krein strings, and

whi
h was exploited further in [KW10℄, and in [EKT18℄ and its forth
oming

extension [LPW℄. Namely, given a Hamiltonian H P H, one 
onsiders res
aled

Hamiltonians

pArHqptq :� Hp t
r
q, t P p0,8q, r ¡ 0. (1.5)

The operators Ar blow up the s
ale and thereby zoom into the vi
inity of 0.

We will see that 
luster sets of qH are related to 
luster sets of the family

pArHqr¥1 where the set H is appropriately topologized, 
f. Propositions 3.5

and 3.6. In fa
t, one may say that the 
ontinuous group a
tion of res
aling

operators on H is responsible for the mentioned intuition that the high-energy

behavior of qH relates to the lo
al behavior of H at 0.

In [EKT18,Kas75,KW10℄ a simple 
ontinuity property of de Branges' 
orre-

sponden
e was su�
ient to obtain the desired 
on
lusions. This property goes

ba
k at least to [Bra61℄, where it formed a step in the existen
e proof of an

inverse spe
tral theorem. Despite being used in the literature ever sin
e, an

expli
it presentation was given only re
ently in [Rem18℄. In the presently 
on-

sidered general situation, when limits do not ne
essarily exist, �ner arguments

and a thorough understanding of the topology on H are ne
essary.

After this introdu
tion, the arti
le is stru
tured in three more se
tions. In �2

we study the appropriate topology on H; this se
tion is to a 
ertain extent of

expository nature. Contrasting the presentation in [Rem18℄, we introdu
e the

topology from a higher level viewpoint, namely, as an inverse limit of weak

topologies on sets of Hamiltonians de�ned on �nite intervals (T P p0,8q),

HT :�
 

H : p0, T qÑR
2�2

| H is measurable,Hptq ¥ 0, trHptq�1 a.e.

(

. (1.6)

By this approa
h the most important features, namely 
ompa
tness and metriz-

ability, are readily built into the 
onstru
tion. Besides o�ering stru
tural 
lar-

ity, it also simpli�es matters by avoiding the unne
essary passage from L1
to

the spa
e of 
omplex Borel measures done in [Bra61,Rem18℄. For the 
onve-

nien
e of the nonspe
ialist reader, we in
lude a 
omplete and 
on
ise derivation

of the required 
ontinuity of de Branges' 
orresponden
e H Ø qH .

In �3 we study the group a
tion of res
aling operators tAr | r ¡ 0u on H,

and relate limit points of qH with limit points of pArHqr¥1. The 
ase when

limits exist, whi
h has been studied in [EKT18℄, was revisited in the extended

preprint version of this arti
le, 
f. [PW19℄.

�4 is devoted to the proof of the main result of the paper. In Theorem 4.1

we give the aforementioned expli
it 
onstru
tion of Hamiltonians whose Weyl


oe�
ient has pres
ribed 
luster set. We 
lose the paper with stating some

open problems related to Theorem 4.1.
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�2. Topologizing the set of Hamiltonians

Thoroughly understanding the 
onvergen
e of Hamiltonians is 
ru
ial for our

present investigation. We shall �rst 
onsider Hamiltonians de�ned on a �nite

interval and then pass to Hamiltonians on the half-line by a limiting pro
ess.

2.1. Hamiltonians on a �nite interval. Re
all the notation (1.6):

De�nition 2.1. For T ¡ 0 we denote the set of all Hamiltonians on the

interval p0, T q by HT , i.e.,

HT :
�

 

H : p0, T q Ñ R
2�2

| H is measurable, Hptq ¥ 0, trHptq � 1 a.e.

(

.

We shall always ta
itly identify two Hamiltonians that 
oin
ide almost every-

where.

Let }  } denote the ℓ1-norm on C
2�2

. For every positive semide�nite matrix

A � paijq
2
i,j�1, we have |aij| ¤ }A} ¤ 2 trA. This shows that all H P HT

are entrywise (equivalently, with respe
t to }  }) essentially bounded by 2. In

parti
ular, we have

HT � L1
pp0, T q,C2�2

q.

The spa
e L1
pp0, T q,C2�2

q, and with it its subset HT , 
arries several natural

topologies. We will work with its norm and weak topology, T
}  }1

and Tw.

Remark 2.2. In order to work with the weak topology, we re
all the following

representation of 
ontinuous fun
tionals. We have (linearly and homeomorphi-


ally)

L1
pp0, T q,C2�2

q

1

�

�

L1
p0, T q4

�

1

�

�

L1
p0, T q1

�4
�

�

L8p0, T q
�4
� L8pp0, T q,C2�2

q.

A linear homeomorphism is given by the assignment

$

'

'

&

'

'

%

L8pp0, T q,C2�2
q Ñ L1

pp0, T q,C2�2
q

1

pfijq
2
i,j�1 ÞÑ

�

phijq
2
i,j�1 ÞÑ

2
°

i,j�1

T
³

0

hijptqfijptq dt
�

�

.

Sometimes it is pra
ti
al to note that L1
pp0, T q,C2�2

q

1

is spanned by the set

of fun
tionals

!

H ÞÑ

T
»

0

e�1Hptqe2 � f ptq dt | e1, e2 P
 �

1
0

�

,
�

0
1

�(

, f P L8p0, T q
)

.

The weak topology on HT has striking properties.

Lemma 2.3. Let T ¡ 0. The weak topology Tw|HT
is 
ompa
t and metrizable.
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Proof. Sin
e HT is uniformly bounded, it is also uniformly integrable. The

Dunford�Pettis theorem (see, e.g., [Bog07, Theorem 4.7.18℄) implies that HT

is relatively 
ompa
t in the weak topology of L1
pp0, T q,C2�2

q. Sin
e every

}  }1-
onvergent sequen
e has a subsequen
e that 
onverges pointwise a.e.,

the set HT is }  }1-
losed. Sin
e it is 
onvex, it follows that it is weakly 
losed.

Hen
e HT is indeed weakly 
ompa
t.

Sin
e L1
pp0, T q,C2�2

q is }  }1-separable, the weak topology on a weakly


ompa
t subset is metrizable (see, e.g., [Fab+01, Proposition 3.2.9℄). �

We 
ome to a variant of 
ontinuity in de Branges' 
orresponden
e for Hamil-

tonians on �nite intervals. To this end, we need some notation. First, denote

by E the set of all entire p2 � 2q-matrix fun
tions endowed with the topol-

ogy Tlu of lo
ally uniform 
onvergen
e. Se
ond, we introdu
e a notation for the

(transpose of the) fundamental solution of a 
anoni
al system.

De�nition 2.4. Let T ¡ 0. For H P HT we denote by W pH; t, zq a unique

solution of the initial value problem

#

B

Bt
W pH; t, zqJ � zW pH; t, zqHptq, t P r0, T s,

W pH; 0, zq � I,
(2.1)

where I is the p2� 2q-identity matrix.

For every �xed t P r0, T s, the matrix W pH; t,  q is an entire fun
tion, i.e.,

W pH; t,  q belongs to E .

De�nition 2.5. Let T ¡ 0. We denote by ΨT the map

ΨT :

"

HT Ñ E ,

H ÞÑ W pH;T,  q.

The 
ontinuity result announ
ed above now reads as follows.

Theorem 2.6 (Continuity; fundamental solution).

Let T ¡ 0. Then ΨT is Tw-to-Tlu-
ontinuous.

This theorem is impli
it in [Bra61℄, and, up to identi�
ation of topologies,

expli
it in [Rem18, Theorem 5.7℄. For 
onvenien
e of the reader we give a


omplete proof.

Proof of Theorem 2.6. Let

W pH; t, zq �

8

¸

l�0

WlpH; tqzl (2.2)
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be the power series expansion of W pH; t,  q. Plugging this in equation (2.1),

we dedu
e that the 
oe�
ients WlpH; tq satisfy the re

urran
e

W0pH, tq � I, Wl�1pH; tq � �

t
»

0

WlpH; sqHpsqJ ds, l P N.

From this one indu
tively obtains

}WlpH; tq} ¤
p2tql

l!
, H P HT , t P r0, T s, l P N. (2.3)

Therefore, for ea
h 
ompa
t set K � C, the series (2.2) 
onverges uniformly

on HT � r0, T s �K, and we have the global growth estimate

}W pH; t, zq} ¤ e2t|z|, pH, t, zq P HT � r0, T s �K.

Now let pHnqnPN be a sequen
e in HT that 
onverges weakly to some H P HT .

Sin
e the series (2.2) 
onverges uniformly in H, it su�
es to show that

�l P N : lim
nÑ8

WlpHn;T q �WlpH;T q

in order to 
on
lude that limnÑ8

W pHn;T,  q �W pH;T,  q lo
ally uniformly

on C. We use indu
tion to show the stronger statement

�l P N : lim
nÑ8

WlpHn; tq �WlpH; tq uniformly for t P r0, T s.

For l � 0 this is trivial. Assume that it has already been established for some

l P N. Using the re

urran
e gives

}Wl�1pHn; tq �Wl�1pH; tq}
8

�

�

�

�

t
»

0

WlpHn; sqHnpsqJ ds�

t
»

0

WlpH; sqHpsqJ ds
�

�

�

8

¤

�

�

�

t
»

0

�

WlpHn; sq �WlpH; sq
�

HnpsqJ ds
�

�

�

8

�

�

�

�

t
»

0

WlpH; sq
�

Hnpsq �Hpsq
�

J ds

loooooooooooooooooooomoooooooooooooooooooon

�

:gnptq

�

�

�

8

.

(2.4)

The �rst summand is estimated as

�

�

�

t
»

0

�

WlpHn; sq �WlpH; sq
�

HnpsqJ ds
�

�

�

8

¤ T � }WlpHn; sq �WlpH; sq}
8

� 2,
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and tends to 0 by the indu
tive hypothesis. The fun
tions gn tend to 0 pointwise

on r0, T s be
ause

}gnptq} �
�

�

�

T
»

0

1

p0,tqpsqWlpH; sq �
�

Hnpsq �Hpsq
�

� J ds
�

�

�

and limw
nÑ8

Hn � H. We see that

gnp0q � 0, }gnptq � gnpt
1

q} ¤ |t� t1| �
p2T ql

l!
� 4,

and by the Arzela�As
oli theorem the family tgn | n P Nu is relatively 
ompa
t

in Cpr0, T s,C2�2
q. Thus pointwise 
onvergen
e upgrades to uniform 
onver-

gen
e, and we dedu
e that also the se
ond summand in (2.4) tends to 0. �

2.2. Hamiltonians on the half-line. We turn to Hamiltonians de�ned on

the whole half-line. Re
all the notation (1.3).

De�nition 2.7. We denote the set of all Hamiltonians on the half-line p0,8q

by H, i.e.,

H :
�

 

H : p0,8q Ñ R
2�2

| H is measurable,Hptq ¥ 0, trHptq � 1 a.e.

(

.

Again we ta
itly identify two Hamiltonians that 
oin
ide almost everywhere.

We 
onsider the set of fun
tions on the half-line as the inverse limit of the

sets of fun
tions on �nite intervals in the usual way. For T ¡ 0 let ρT be the

restri
tion map

ρT :

#

H Ñ HT ,

H ÞÑ H|
p0,T q

and let ι be the map

ι :

#

H Ñ

±

T¡0

HT ,

H ÞÑ pρTHqT¡0.

Then ι is inje
tive and

ιpHq �
!

pHT qT¡0 P

¹

T¡0

HT | �0   T   T 1 : HT 1 |
p0,T q � HT

)

.

We use ι to pull ba
k the topology of the produ
t. That is, we de�ne a topology

on H by the demand that ι be
ome a homeomorphism of H onto ιpHq, where

the 
odomain is topologized in the 
anoni
al way.

De�nition 2.8. Let T be the initial topology on H with respe
t to the one-

element family tιu from the produ
t topology of the weak topologies on HT .

This 
onstru
tion automati
ally implies the following 
ru
ial properties.
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Lemma 2.9. The topology T is 
ompa
t and metrizable.

Proof. By Ty
hono�'s theorem and Lemma 2.3 the produ
t topology of the

weak topologies on HT is 
ompa
t. Ea
h restri
tion map

ρT
1

T :

#

L1
pp0, T 1

q,C2�2
q Ñ L1

pp0, T q,C2�2
q,

F ÞÑ F |
p0,T q

is }  }1-to-}  }1-
ontinuous, and hen
e also w-to-w-
ontinuous. Thus ιpHq is a


losed subset of the produ
t, and hen
e also 
ompa
t.

Consider the map

κ :

#

±

T¡0 HT Ñ

±

nPN

,

pHT qT¡0 ÞÑ pHnqnPN.

Then κ is 
learly 
ontinuous when both produ
ts are endowed with the produ
t

topology of the weak topologies. Moreover, κ|ιpHq is inje
tive. Sin
e ιpHq is


ompa
t, it is therefore a homeomorphism of ιpHq onto pκ � ιqpHq. Lemma 2.3

implies that the 
ountable produ
t

±

nPNHn is metrizable. It follows that H,

being homeomorphi
 to a subspa
e of this produ
t, is metrizable. �

Remark 2.10. The topology T 
onstru
ted above 
oin
ides with the topology

de�ned in [Rem18, Chapter 5.2℄. This follows by writing out our de�nition and

applying the argument that gave the metrizability of T , and by remembering

Remark 2.2.

In [EKT18, Proposition 2.3℄ 
onvergen
e of Hamiltonians was introdu
ed in

yet another form. To see that this form 
oin
ides with 
onvergen
e with respe
t

to T , one has to note that step fun
tions are dense in L1
.

We turn to the 
ontinuity of de Branges' 
orresponden
e. Re
all that N , as

a subset of the spa
e of all analyti
 fun
tions of C
�

into the Riemann sphere,

naturally 
arries the topology Tlu of lo
ally uniform 
onvergen
e.

De�nition 2.11. We denote by Ψ the map

Ψ:

#

HÑ N ,

H ÞÑ qH .

Theorem 2.12 (Continuity; Weyl 
oe�
ients).

The map Ψ is T -to-Tlu�homeomorphi
.

Also this theorem is impli
it in [Bra61℄ and expli
it in [Rem18, Theorem 5.7℄,

and we provide a 
omplete derivation for 
onvenien
e of the reader.
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The proof of the ��nite interval variant� of Theorem 2.6 relied on the uniform

estimate (2.3) of power series 
oe�
ients. The proof of the present �half-line

variant� will follow from a uniform estimate of the size of Weyl disks.

Re
all that for H P H and T ¡ 0 the Weyl disk ΩT,zpHq at z P C
�

is

the image of C
�

under the fra
tional linear transformation with 
oe�
ient

matrix W pH;T, zq. Moreover, re
all that the inverse stereographi
 proje
tion

is Lips
hitz 
ontinuous. In fa
t, viewing the Riemann sphere as the unit sphere

whose south pole lies at the origin of the 
omplex plane, the 
hordal distan
e χ

of two points ζ, ξ P C (we suppress the expli
it notation of the stereographi
al

proje
tion) is

χpζ, ξq �
2|ζ � ξ|

a

1� |ζ|2
a

1� |ξ|2
,

and hen
e χpζ, ξq ¤ 2|ζ � ξ|, ζ, ξ P C � C.

Lemma 2.13. Suppose that H P H, T ¡ 0, and z P C
�

. The diameter of the

Weyl disk ΩT,z with respe
t to the 
hordal metri
 
an be estimated as

diamχΩT,zpHq ¤
8

T � Im z
.

Proof. Write H �

�

h1 h3

h3 h2

	

, and assume �rst that

³T

0
h2psq ds ¥

T
2
. Then

8 R ΩT,zpHq. By the usual formula for the the Eu
lidean radius of ΩT,zpHq,

see, e.g., [Rem18, Lemma 3.11℄, the monotoni
ity result [Bra61, Lemma 4℄, and

the di�erential equation (2.1), we �nd

diamχΩT,zpHq ¤ 2 diam
|  |

ΩT,zpHq ¤ 2 �
2

Im z �
T
³

0

h2ptq dt

¤

8

T � Im z
.

Now 
onsider the 
ase where

T
»

0

h2psq ds  
T

2
.

Then we must have

T
»

0

h1psq ds ¥
T

2
,

and the already established estimate applies to

rH :
� �JHJ . A 
omputation

shows that W p

rH;T, zq � �JW pH;T, zqJ , and hen
e the Weyl disk ΩT,zp
rHq is

the image of ΩT,zpHq under the fra
tional linear transformation with 
oe�
ient
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matrix J . Sin
e J is unitary, this is a rotation of the sphere, and hen
e is

isometri
 with respe
t to the 
hordal metri
. We obtain

diamχ ΩT,zpHq � diamχ ΩT,zp
rHq ¤

8

T � Im z
. �

Proof of Theorem 2.12. Let (HnqnPH be a sequen
e in H that 
onverges

to some H P H. By the de�nition of the topology of H, this means that

limw
nÑ8

ρT pHnq � ρT pHq for every T ¡ 0.

Write W pH;T, zq � pwijpH; t, zqq2i,j�1, and denote

Qn,T pzq :�
w12pHn;T, zq

w22pHn;T, zq
, QT pzq :�

w12pH;T, zq

w22pH;T, zq
, z P C

�

.

Throughout the following, all limits of 
omplex numbers are understood with

respe
t to the 
hordal metri
 χ.

Let K � C
�

satisfy infzPK Im z ¡ 0. Lemma 2.13 shows that the limit

q
rH
pzq � lim

TÑ8

w12p
rH;T, zq

w22p
rH;T, zq

de�ning the Weyl 
oe�
ient of a Hamiltonian

rH is attained uniformly for

p

rH, zq P H�K. This implies

� limTÑ8

Qn,T pzq � qHn
pzq uniformly for pn, zq P N�K;

� limTÑ8

QT pzq � qHpzq uniformly for z P K.

Theorem 2.6 says that

� for ea
h T ¡ 0 we have limnÑ8

Qn,T pzq � QT pzq lo
ally uniformly for

z P C
�

.

Together, we obtain

qHpzq � lim
TÑ8

lim
nÑ8

Qn,T pzq � lim
nÑ8

lim
TÑ8

Qn,T pzq � lim
nÑ8

qHn
pzq

lo
ally uniformly for z P C
�

.

Being a 
ontinuous bije
tion of a 
ompa
t spa
e onto a Hausdor� spa
e, Ψ

is a homeomorphism. �

We often use the 
ontinuity of Ψ in another form.

De�nition 2.14. We denote by Φ the map

Φ:

"

H� C
�

Ñ C
�

,

pH,wq ÞÑ qHpwq.

The following reformulations of the 
ontinuity of Ψ are obtained by elemen-

tary arguments; an expli
it proof is deferred to the preprint version [PW19℄ of

this arti
le.



164 R. PRUCKNER, H. WORACEK

Corollary 2.15 (Continuity; Weyl 
oe�
ients � a variant). Ea
h of the

properties (i) and (ii) below is equivalent to the T -to-Tlu-
ontinuity of Ψ, and

hen
e holds true.

(i) The map Φ is 
ontinuous when H � C
�

is endowed with the produ
t

topology of T and the Eu
lidean topology.

(ii) For every 
ompa
t set K � C
�

the family tΦp  , wq | w P Ku is

equi
ontinuous.

2.3. Constant Hamiltonians. A parti
ular role is played by Hamiltonians

H P H that are 
onstant a.e. on p0,8q. We denote the set of all tham by CH.

Constant Hamiltonians 
an be identi�ed with the points of C
�

.

De�nition 2.16. Let Θ: C
�

Ñ CH be the map a
ting as

Θpζq :�
�

h1 h3

h3 h2

	

,

where

h1 :�
|ζ|2

|ζ|2 � 1
, h2 :�

1

|ζ|2 � 1
, h3 :�

Re ζ

|ζ|2 � 1
,

if ζ � 8, and

Θp8q :�
�

1 0
0 0

	

.

The map Θ is bije
tive. Its inverse Θ�1 : CHÑ C
�

is given by

Θ�1
�

h1 h3

h3 h2

	

�

h3 � i
a

h1h2 � h23
h2

if h2 � 0, and

Θ�1
�

1 0

0 0

	

� 8.

Note that detΘpζq � 0 if and only if ζ P R, and that Θpζq is diagonal if and

only if ζ P iR
�

From the de�ning formulas it is obvious that for ea
h T ¡ 0 the map

ρT �Θ: C
�

Ñ xHT ,T
}  }1

y is 
ontinuous. Thus ρT �Θ is also 
ontinuous into Tw,

and hen
e Θ is 
ontinuous into xH,T y. Sin
e C
�

is 
ompa
t, ea
h of

xρT pCHq,T
}  }1

y, xρT pCHq,Twy, xCH,T y

is homeomorphi
 to C
�

. In parti
ular, these spa
es are all 
ompa
t.

Remark 2.17. The de�nition of Θ is formulated in su
h a way that

qΘpζqpzq � ζ, z P C
�

,
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in other words, ΦpΘpζq, wq � ζ, w P C
�

. This is shown by a simple 
al
ulation,

see e.g., [EKT18, �2.2, Example 1℄

2

.

For later use we introdu
e a separate notation for 
onstant Hamiltonians


orresponding to boundary points of C
�

, namely,

CH0 :� ΘpRq �
 

H P CH | detH � 0
(

.

�3. The res
aling method

We have already mentioned the res
aling operation Ar : Hp  q ÞÑ Hp1
r
�  q

on Hamiltonians in (1.5). In this se
tion we put this in an appropriate frame-

work and establish the relationship between 
luster sets of ArH for r Ñ 8

and qHpzq for z Ñ i8.

Clearly, Ar maps H into itself and satis�es the 
omputation rules

A1 � id, �r, s ¡ 0: Ar �As � As �Ar � Ars. (3.1)

This means pre
isely that the map

"

R
�

�H Ñ H,

pr,Hq ÞÑ ArH.
(3.2)

is a group a
tion of R
�

on H.

Lemma 3.1. The map (3.2) is 
ontinuous.

Proof. Assume we are given Hn,H P H with Hn Ñ H and rn, r P R
�

with

rn Ñ r, and assume without loss of generality that

r
2
¤ rn ¤ 2r for all n. We

have to show that

�T ¡ 0: ρTArnHn
w
ÝÑ ρTArH.

Re
all Remark 2.2 and let e1, e2 P
 �

1
0

�

,
�

0
1

�(

and f P L8p0, T q be given.

Denote by

rf the extension of f to the element of L8p0,8q with

rfptq � 0,

t ¥ T . Then we have

T
»

0

e�1
�

pρTArnHnqptq � pρTArHqptq
�

e2 � f ptq dt

�

T
»

0

e�1
�

Hnp
t
rn
q �Hp t

rn
q

�

e2 � f ptq dt�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt

2

Caution: notation in [EKT18℄ is di�erent.
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� rn

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 � rf prnsq ds�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt

�

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 �
�

rfprnsq � rfprsq
�

ds

�

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 � rf prsq ds�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt.

The �rst summand tends to 0 be
ause

}e�1pHnpsq �Hpsqqe2}8 ¤ 2

and

}

rfprnsq � rfprsq}1 Ñ 0,

the se
ond summand also tends to zero be
ause

Hn Ñ H in H,

and the third be
ause

}Hp t
rn
q �Hp t

r
q}1 Ñ 0. �

The fa
t that (3.2) is a 
ontinuous group a
tion has some immediate 
onse-

quen
es. In our 
ontext, the following two are of interest.

Remark 3.2.

(i) For every H P H and s ¡ 0 the map As leaves C lrArHs invari-

ant. Hen
e, (3.2) indu
es a 
ontinuous group a
tion on the 
luster set

C lrArHs.

(ii) For every H P H the stabiliser

pR
�

qH :
�

 

r P R
�

| ArH � H
(

is a 
losed subgroup of R
�

.

Item (ii) of the above remark shows that pR
�

qH is either equal to t1u or R
�

,

or is of the form tpn | n P Zu for some p ¡ 1. We have pR
�

qH � R
�

if and only

if H P CH, and pR
�

qH is a nontrivial subgroup if and only if H is non
onstant

and multipli
atively periodi
.

Remark 3.3. The 
ase of a nontrivial stabiliser is parti
ularly simple: if H is

multipli
atively periodi
 with primitive period p ¡ 1, then

C lrArHs � tArH | 1 ¤ r ¤ pu. (3.3)
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For the in
lusion ��� note that

tArH | r ¡ 0u � tArH | 1 ¤ r ¤ pu,

and hen
e the orbit of H is 
ompa
t. The reverse in
lusion holds sin
e

AspnH � AsH for all n P N and s ¡ 0, and hen
e

AsH � lim
nÑ8

AspnH P C lrArHs.

Res
aling operators have a res
aling e�e
t on fundamental solutions. This

is a parti
ular 
ase of [EKT18, Lemma 2.7℄. For 
onvenien
e of the reader, we

re
all the argument.

Lemma 3.4. Let H P H and let r ¡ 0. Then the fundamental solutions,

Weyl disks, and Weyl 
oe�
ients of H and ArH are related as follows (t ¥ 0,

z P C
�

):

W pArH; t, zq �W pH; t
r
, rzq, Ωt,zpArHq � Ω t

r
,rzpHq, qArHpzq � qHprzq.

If we use the notation Φ from De�nition 2.14, the relation between Weyl 
oef-

�
ients writes as

�H P H, r ¡ 0, z P C
�

: ΦpArH, zq � ΦpH, rzq. (3.4)

Proof. Set

�W pt, zq :�W pH; t
r
, rzq. Then

B

Bt
�W pt, zqJ �

1

r

B

Bt
W pH;

t

r
, rzq

�

1

r
� rz �W pH;

t

r
, rzqH

� t

r

�

� z�W pt, zqpArHqptq.

Thus

�W pt, zq is the fundamental solution of ArH.

The relation between Weyl disks follows immediately, and the relation be-

tween Weyl 
oe�
ients follows by letting tÑ8. �

The next proposition is the basis for translating 
luster sets of ArH to those

of qH .

Given a subset M � C
�

as in (1.4), we denote the limiting dire
tions of M

by

DpMq

:
�

 

θ P r0, πs | Dzn PM : |zn| Ñ 8^ arg zn Ñ θ
(

.

Note that DpMq is 
losed and 
ontained in p0, πq.

Proposition 3.5. Let M � C
�

be as in (1.4) and let H P H. Then

C pqH ,Mq � Φ
�

C lrArHs � eiDpMq

�

� C
�

qH , eiDpMq

r1,8q
�

. (3.5)
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Proof. To show the in
lusion on the left of (3.5), let w P C pqH ,Mq. Choose

zn P M with |zn| Ñ 8 and qHpznq Ñ w. By the 
ompa
tness of H and r0, πs,

we 
an 
hoose a subsequen
e su
h that both limits

rH :
� lim

kÑ8

A
|znk

|

H, θ :
� lim

kÑ8

arg znk
,

exist. Then θ P DpMq, and the 
ontinuity of Φ implies that

w � lim
kÑ8

qHpznk
q � lim

kÑ8

Φ
�

A
|zn

k
|

H, ei arg znk

�

� Φp rH, eiθq.

The in
lusion ��� of the 
laimed identity on the right of (3.5) readily follows

be
ause DpMq is 
losed and hen
e

D
�

eiDpMq

r1,8q
�

� DpMq.

To prove the reverse in
lusion, let w P ΦpC lrArHs � eiDpMq

q be given. Write

w � Φp rH, eiθq with some

rH P C lrArHs and θ P DpMq, and 
hoose rn Ñ 8

with

rH � limnÑ8

ArnH. Then

w � Φp rH, eiθq � lim
nÑ8

ΦpArnH, eiθq � lim
nÑ8

qHprne
iθ
q P C pqH , eiθr1,8qq. �

We also obtain some knowledge about outer angular 
luster sets.

Proposition 3.6. Let H P H. Then

(i) C
?

pqHq � Φ
�

C lrArHs � C
�

�

;

(ii) C lrArHs � CHñ for all M as in (1.4) we have

C pqH ,Mq � C
?

pqHq � Θ�1
�

C lrArHs
�

;

(iii) C lrArHs XCH � H ñ C
?

pqHq is open.

Proof. Using Remark 3.2 (i) and (3.5) we �nd

Φ
�

C lrArHs�C
�

�

�Φ
�

C lrArHs � eip0,πq
�

�

¤

αPp0,
π
2
s

Φ
�

C lrArHs � eirα,π�αs
�

�

¤

αPp0,
π
2
s

C pqH ,Γαq�C
?

pqHq.

Assume now that C lrArHs � CH, and set K :
� Θ�1

pC lrArHsq. Then

C
?

pqHq � Φ
�

C lrArHs � C
�

�

�

¤

rHPC lrArHs

q
rH
pC

�

q �

¤

rHPC lrArHs

tΘ�1
p

rHqu � K.

The in
lusion C pqH ,Mq � C
?

pqHq is trivially true. Let ξ P K, and 
hoose

rn Ñ 8 with ArnH Ñ Θpξq. Sin
e tz P M | |z| ¡ ru is 
onne
ted for all

su�
iently large r, for all su�
iently large n we 
an 
hoose points zn PM with
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|zn| � rn. Choose a subsequen
e su
h that arg znk
Ñ θ for some θ P p0, πq.

Then

qHpznq � Φ
�

A
|znk

|

H, ei arg znk

�

Ñ Φ
�

Θpξq, eiθ
�

� ξ,

and therefore ξ P C pqH ,Mq.

Finally, assume that C lrArHs X CH � ∅. Then

C
?

pqHq � Φ
�

C lrArHs � C
�

�

�

¤

rHPC lrArHs

q
rH
pC

�

q,

and ea
h set in the union on the right is open. �

Let us revisit the multipli
atively periodi
 situation.

Remark 3.7. Let H P H be non
onstant and multipli
atively periodi
.

Then (3.3) and Proposition 3.6 (iii) imply that C
?

pqHq is open. In parti
ular,

the outer angular 
luster set is not equal to any of the 
luster sets C pqH ,Mq.

�4. Weyl 
oe�
ients with pres
ribed 
luster set

In the theorem below we give an expli
it 
onstru
tion of Hamiltonians H

for whi
h the 
luster set of qH 
an be 
omputed. These Hamiltonians are

pie
ewise 
onstant on qui
kly shrinking intervals that a

umulate only at the

initial point.

In the formulation of the theorem we denote the 
luster set of a sequen
e

pζnqnPN in C
�

by

C lrζns :�
 

ζ P C
�

| Dnk P N : nk Ñ8^ lim
kÑ8

ζnk
� ζ

(

.

Moreover, re
all that χ denotes the 
hordal metri
 on C
�

.

Theorem 4.1. Let ptnqnPN be a sequen
e of positive numbers with

1 � t1 ¡ t2 ¡ t3 ¡ . . . , lim
nÑ8

tn � 0, lim
nÑ8

tn�1

tn
� 0,

and let pζnqnPN be a sequen
e of points on C
�

with

lim
nÑ8

χpζn�1, ζnq � 0.

De�ne H to be the pie
ewise 
onstant Hamiltonian

Hptq :�

#

Θpζnq, t P ptn�1, tns, n P N,

Θp0q, t P p1,8q.
(4.1)

Then, for every M as in (1.4),

C
?

pqHq � C pqH ,Mq � C lrζns.
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An elementary argument shows that for every nonempty, 
losed, and 
on-

ne
ted subset L of C
�

there exists a sequen
e pζnqnPN with C lrζns � L (an

expli
it proof 
an be found in [PW19℄). Thus we obtain an expli
it solution of

an inverse problem dealing with boundary interpolation.

Corollary 4.2. Let L � C
�

be nonempty, 
losed, and 
onne
ted. Then we 
an


onstru
t a Hamiltonian H for whose Weyl 
oe�
ient qH the outer angular

and radial 
luster sets at i8 are both equal to L.

We turn to the proof of Theorem 4.1. The 
ru
ial step is presented in the

next lemma. Here we denote by d
}  }

the metri
 indu
ed by the L1
-norm.

Lemma 4.3. Let H P H and assume that

lim
rÑ8

d
}  }

�

ρ1ArH, ρ1ΘpCHq
�

� 0. (4.2)

Moreover, denote

K :
�

 

ξ P C
�

| ρ1Θpξq P C l
}  }

rρ1ArHs
(

. (4.3)

Then

(i) C l
}  }

rρTArHs � ρTΘpKq, for all T ¡ 0,

(ii) C lrArHs � ΘpKq.

Proof. Let T ¡ 0 and set

KT :
�

 

ξ P C
�

| ρTΘpξq P C l
}  }

rρTArHs
(

.

The relation

}ρTArH � ρTΘpξq}1 �

T
»

0

}Hp t
r
q �Θpξq} dt

�T

1
»

0

}HpT
r
� tq �Θpξq} dt � T }ρ1A r

T
H � ρ1Θpξq}1,

whi
h is true for all H P H and ξ P C
�

, shows that

lim inf
rÑ8

}ρTArH � ρTΘpξq}1 �T � lim inf
rÑ8

}ρ1A r

T
H � ρ1Θpξq}1, (4.4)

d
}  }

�

ρTArH, ρTΘpCHq
�

�T � d
}  }

�

ρ1A r

T
H, ρ1ΘpCHq

�

. (4.5)

Relation (4.4) implies that KT � K for all T ¡ 0, and (4.5) that

�T ¡ 0: lim
rÑ8

d
}  }

�

ρTArH, ρTΘpCHq
�

� 0. (4.6)
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Sin
e ρTΘpCHq is 
ompa
t with respe
t to }  }1, and hen
e 
losed, (4.6) in

turn implies that

C l
}  }

rρTArHs � ρTΘpCHq.

Item (i) of the present assertion follows.

The in
lusion ��� in item (ii) holds true be
ause of a general argument.

Namely, it is ful�lled for every Hamiltonian H P H that

 

rH P H | �T ¡ 0: ρT rH P C l
}  }

rρTArHs
(

� C lrArHs.

To show this, assume that

rH belongs to the set on the left. We 
hoose indu
-

tively numbers rn ¡ 0, su
h that

�n P N : rn�1 ¥ rn � 1^ }ρnArnH � ρn rH}1 ¤
1

n
.

Given T ¡ 0, for all n ¥ T we have

}ρTArnH � ρT rH}1 ¤ }ρnArnH � ρn rH}1 ¤
1

n
,

and hen
e ρTArnH
}  }1

ÝÑ

rH. This 
learly implies that ArnH Ñ

rH.

The reverse in
lusion ��� in item (ii) relies on the assumption (4.2). Assume

that

rH P C lrArHs and 
hoose a sequen
e rn Ñ8 su
h that ArnH Ñ

rH. Then

ρTArnH
w
ÝÑ

rH for all T ¡ 0. (4.7)

Let T ¡ 0. Sin
e (4.6) holds and ρTΘpCHq is 
ompa
t with respe
t to }  }1,

we �nd a point ξ P C
�

and a subsequen
e prnk
qkPN (both depending on T )

su
h that

ρTArn
k
H

}  }1

ÝÑ Θpξq. (4.8)

Combining this with (4.7), we see that ρT rH � ρTΘpξq. It follows that ξ is

independent of T and that

rH � Θpξq. By (4.8), used for T � 1, we have

ξ P K. �

Proof of Theorem 4.1. The fun
tion

ρ1 �Θ: C
�

Ñ L1
pp0, 1q,C2�2

q

is χ-to-}  }1�
ontinuous and inje
tive. Sin
e C
�

is 
ompa
t, it is therefore

uniformly 
ontinuous and a homeomorphism onto its image. Let ω : R
�

Ñ R
�

be the modulus of 
ontinuity of ρ1 �Θ, so that

lim
δÑ0

ωpδq � 0 ^ �ζ, ξ P C
�

: }ρ1Θpζq � ρ1Θpξq}1 ¤ ωpχpζ, ξqq.

We show that

�n P N, r P
�

1
tn
, 1
tn�1

�

: }ρ1ArH � ρ1Θpζnq}1 ¤ 4
tn�2

tn�1

� ωpχpζn�1, ζnqq. (4.9)
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To see this, estimate

rtn�2
»

0

}Hp t
r
q �Θpζnq} dt ¤ 4rtn�2 ¤ 4

rtn�2

rtn�1

,

rtn�1
»

rtn�2

}Hp t
r
q �Θpζnq} dt �

rtn�1
»

rtn�2

}Θpζn�1q �Θpζnq} dt

¤ }ρ1Θpζn�1q � ρ1Θpζnq}1 ¤ ωpχpζn�1, ζnqq,

1
»

rtn�1

}Hp t
r
q �Θpζnq} dt � 0.

For r¥1 let nprqPN be a unique number with r

1
tn
, 1
tn�1

q. Then limrÑ8

nprq�8.

The right-hand side of (4.9) tends to 0 as n tends to 8, and hen
e for every

sequen
e rk Ñ8 we have

lim
kÑ8

}ρ1ArkH � ρ1Θpζnprkqq}1 � 0.

This shows that (4.2) holds true and that

C l
}  }

rρ1ArHs � C l
}  }

rρ1Θpζnqs.

If nk Ñ 8, then (4.9) shows that

lim
kÑ8

}ρ1A 1

tn
k

H � ρ1Θpζnk
q}1 � 0,

and it follows that

ρ1Θ
�

C lrζns
�

� C l
}  }

rρ1ArHs.

Sin
e ρ1 �Θ is a homeomorphism between 
ompa
t sets,

ρ1Θ
�

C lrζns
�

� C l
}  }

rρ1Θpζnqs,

and we see that the set K from (4.3) is equal to C lrζns.

The asserted properties of qH now follow from Lemma 4.3 and Proposi-

tion 3.6 (ii). �

Let us pass from the half-plane to the unit disk with the fra
tional linear

transformation βpzq :� z�i
z�i

, whi
h maps C�

onto the 
losed unit disk D with

βp8q � 1.
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Remark 4.4. Consider a Hamiltonian of the form (4.1). Sin
e H is 
on-

stant equal to Θp0q on the interval p1,8q, the Weyl 
oe�
ient qH is given

by qH �

w12

w22
, where

w12pzq :� p1, 0qW pH; 1, zq

�

0

1




, w22pzq :� p0, 1qW pH; 1, zq

�

0

1




.

Sin
e detH is 
onstant equal to 0, the entire fun
tion W pH; 1, zq is of zero

exponential type. The fun
tion

Bpzq :� β � qH � β�1
�

w12 � iw22

w12 � iw22

� β�1

is thus a Blas
hke produ
t whose zeroes have no �nite a

umulation point.

Cluster sets of qH towards i8 
learly 
orrespond to 
luster sets of B to-

wards 1. Thus we reobtain the fa
t that for every nonempty, 
losed, and 
on-

ne
ted subset L of D, there exists a Blas
hke produ
t whose outer angular and

radial 
luster sets at 1 are equal to L.

In the 
ontext of the present 
onstru
tion and its 
onsequen
es for fun
tions

on the disk some open questions o

ur.

(i) We do not know if the fun
tion 
onstru
ted in the above way has

also 
luster set L when z is allowed to approa
h 1 in an unrestri
ted,

possibly tangential, way.

(ii) We do not know if our 
onstru
tion method 
an be modi�ed so as to

yield results about simultaneous boundary interpolation at more than

one point (as done for radial 
luster sets in [BCP85,De
94,Don01℄).

(iii) We do not know if our 
onstru
tion method 
an be modi�ed to pro-

du
e an approa
h to 
luster values along a pres
ribed 
urve when z

approa
hes the point 1 radially (as in [Don01, Theorem 1℄).

(iv) We do not know an analog of Theorem 4.1 for outer angular 
luster

sets that realises any 
ountable in
reasing union of nonempty 
losed


onne
ted sets (and by this proves Gauthiers 
onje
ture).

Con
erning the third question we have some preliminary results indi
ating that

the answer is a�rmative.
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