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LIMIT BEHAVIOR OF WEYL COEFFICIENTS

© R. PRUCKNER, H. WORACEK

The sets of radial or nontangential limit points towards i00 of a Nevanlinna
function ¢ are studied. Given a nonempty, closed, and connected subset £
of C;, a Hamiltonian H is constructed explicitly such that the radial and
outer angular cluster sets towards 00 of the Weyl coefficient ¢z are both
equal to £. The method is based on a study of the continuous group action
of rescaling operators on the set of all Hamiltonians.

§1. Introduction

A Nevanlinna function is an analytic function in the open upper half-
plane C, whose values lie in C;. U R. Such functions are intensively studied
for various reasons; we mention two of them.

> In complex analysis they occur as regularised Cauchy transforms of posi-
tive Poisson integrable measures, see e.g., |[Lev80, KK68, GT00|. Namely, a
function ¢ is a Nevanlinna function if and only if it is of the form

1 T
q(z):a—l—bz—i—f(x_z—1+m2)du(l’)7 zeCy, (1.1)
R

where a € R, b > 0, and p is a positive Borel measure on the real line with

dp(z)
Jl + 22 =%

R

> In the spectral theory of differential operators they occur as Weyl co-
efficients whenever H. Weyl’s nested disks method is applicable, see e.g.,
[Wey10, Tit46, Atk64, BHS20].

The relationship between these two instances is that (for simplicity we suppress
some technical issues and exceptional cases) the measure p in the integral
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representation (1.1) of the Weyl coefficient of an equation is a spectral measure
for the corresponding selfadjoint model operator.

The natural context of Weyl’s method is the framework of two-dimensional
canonical systems

y'(t) = 2JH(t)y(t), te(0,00), (1.2)

? 701>, and the Hamiltonian H

of the system is assumed to satisfy H(¢f) > 0 and tr H(t) = 1 a.e., see, e.g.
[Bra68, HSW00, Rom14, Rem18|. It is a deep theorem due to L.de Branges
that the map assigning to each Hamiltonian H the Weyl coefficient ¢z of the
equation (1.2) is a bijection between the set of all Hamiltonians

where z € C is the eigenvalue parameter, J := (

H:= {H: (0,00) - R*** | H measurable, H(t) >0,tr H(t) = 1 a.e.} (1.3)

up to equality a.e., and the set of all Nevanlinna functions including the func-
tion identically equal to co

N = {q: C, — C| q analytic,q(C,) < (C_+}

Here C denotes the Riemann sphere C U {00} regarded as a Riemann surface
in the usual way, and C, denotes the closure of C, in the sphere, explicitly,
C, = C; UR U {o0}. The assignment H — qp is also called the de Branges
correspondence.

Having available this bijection, it is a natural task to relate properties of H
to properties of gg. For many properties of Hamiltonians or Nevanlinna func-
tions it turns out to be quite involved (or even quite impossible) to find their
counterpart on the other side of de Branges’ correspondence. One type of prop-
erties where some explicit relations are known is the high-energy behavior of
qm, i-e., its behavior towards ico. It is a frequently instantiated intuition, go-
ing back at least to B.M. Levitan [Lev52|, that the high-energy behavior of
qg corresponds to the local behavior of H at 0. For example it was shown
in [EKT18] that the nontangential limit lim y qu (#) exists in C if and only

if the limit limy o 1 SS H (s) ds exists in R?2*2. Moreover, if these limits exist,
they are related by simple formulas.

In this paper we investigate the situation when the Weyl coefficient does not
necessarily have a limit. Natural substitutes for a limit value are cluster sets.
We consider two variants, which are fitted to the nontangential approach. For

IWe write z, 5 ic0 for: |z,| — o0 while arg z, € [a, 7 — ] for some a € (0, Z1. And we
write lim 4 - q(z) = ¢ if limp—o g(2zn) = ¢ for every sequence zp 3 . Convergence on
Z=>100

the Riemann sphere is understood with respect to the chordal metric.
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a € (0, 5] denote by I'y, the Stolz angle
[o:={2€Cy | argz € [a,m —al}.
(i) Let M < C4 be such that

M is unbounded, thereis « € (0, g] with M € T'y, (1.4)
{z€ M| |z| = r} is connected for all sufficiently large r. .

For a Nevanlinna function ¢ we consider the cluster set
€(q, M) := {(e@ | 3z, € M: |z = 0 A q(2) — C}

(ii) The outer angular cluster set of a Nevanlinna function g is

Cx(9):= |J %(aTa) ={CeT| Iz eCy:z, D0 nglzn) = ()

aE(O,%]

We do not consider an arbitrary — possibly tangential — approach to infinity.
The cluster sets (¢, M) and €y (q) are both nonempty and connected. They

show different behavior in the sense that € (¢, M) is always closed, while €x(q)

need not have this property, cf. [CL66,Nos60] (see also Remark 3.7 below).

It is known from [BCP85| (by using a fractional linear transformation to
pass from the half-plane to the unit disk) that for every nonempty, closed,
and connected subset £ of C, there exists a Nevanlinna function g such that
the radial cluster set %'(q,i[1,00)) equals £. In fact, in [BCP85, Theorem|
the radial boundary interpolation problem was solved for countably many in-
terpolation nodes, and the given solution is a Blaschke product. Variants of
this result for singular inner functions can be found in [Dec94, Theorem 9|,
or [Don01, Theorem 3]. For smaller classes of functions, e.g., interpolating or
thin Blaschke products, the radial boundary interpolation problem is in gen-
eral not anymore solvable, cf. [GM05, GS11]. The outer angular cluster set is
a countable increasing union of nonempty, closed, and connected subsets, and
P. M. Gauthier conjectured in |[Gau2l| (personal communication) that every
set of this form can be realised as an outer angular cluster set; a proof has not
yet been given.

Our main result in the present paper is Theorem 4.1, where we give an
explicit solution to the following inverse spectral problem.

Given a nonempty, closed, and connected subset L of C, find
a Hamiltonian H such that € (qu, M) = €x(qu) = L (for ar-
bitrary M as in (1.4))

The Hamiltonian H constructed in the proof of Theorem 4.1 has the property
that gy (transferred to the unit disk) is a Blaschke product.
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Our method of proof is based on a rescaling trick, which goes back at least
to Y. Kasahara [Kas75], who applied it on the level of Krein strings, and
which was exploited further in [KW10], and in [EKT18] and its forthcoming
extension [LPW]. Namely, given a Hamiltonian H € H, one considers rescaled
Hamiltonians

(A H)(t) :== H(%), t€(0,00), r>0. (1.5)

The operators A, blow up the scale and thereby zoom into the vicinity of 0.
We will see that cluster sets of gy are related to cluster sets of the family
(A.H);>1 where the set H is appropriately topologized, cf. Propositions 3.5
and 3.6. In fact, one may say that the continuous group action of rescaling
operators on H is responsible for the mentioned intuition that the high-energy
behavior of gy relates to the local behavior of H at 0.

In [EKT18,Kas75, KW10] a simple continuity property of de Branges’ corre-
spondence was sufficient to obtain the desired conclusions. This property goes
back at least to [Bra6l], where it formed a step in the existence proof of an
inverse spectral theorem. Despite being used in the literature ever since, an
explicit presentation was given only recently in [Rem18]. In the presently con-
sidered general situation, when limits do not necessarily exist, finer arguments
and a thorough understanding of the topology on H are necessary.

After this introduction, the article is structured in three more sections. In §2
we study the appropriate topology on H; this section is to a certain extent of
expository nature. Contrasting the presentation in [Rem18], we introduce the
topology from a higher level viewpoint, namely, as an inverse limit of weak
topologies on sets of Hamiltonians defined on finite intervals (7" € (0, 00)),

Hyp:={H: (0,T)>R**? | H is measurable, H(t) > 0,tr H(t)=1 a.e.}. (1.6)

By this approach the most important features, namely compactness and metriz-
ability, are readily built into the construction. Besides offering structural clar-
ity, it also simplifies matters by avoiding the unnecessary passage from L' to
the space of complex Borel measures done in [Bra6l, Rem18]. For the conve-
nience of the nonspecialist reader, we include a complete and concise derivation
of the required continuity of de Branges’ correspondence H <> qp.

In §3 we study the group action of rescaling operators {4, | » > 0} on H,
and relate limit points of gy with limit points of (A, H),>1. The case when
limits exist, which has been studied in [EKT18], was revisited in the extended
preprint version of this article, cf. [PW19].

§4 is devoted to the proof of the main result of the paper. In Theorem 4.1
we give the aforementioned explicit construction of Hamiltonians whose Weyl
coefficient has prescribed cluster set. We close the paper with stating some
open problems related to Theorem 4.1.
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§2. Topologizing the set of Hamiltonians

Thoroughly understanding the convergence of Hamiltonians is crucial for our
present investigation. We shall first consider Hamiltonians defined on a finite
interval and then pass to Hamiltonians on the half-line by a limiting process.

2.1. Hamiltonians on a finite interval. Recall the notation (1.6):
Definition 2.1. For T > 0 we denote the set of all Hamiltonians on the
interval (0,7") by Hr, i.e.,

Hyp := {H: (0,T) > R**?| H is measurable, H(t) >0, tr H(t) = 1 a.e.}.
We shall always tacitly identify two Hamiltonians that coincide almost every-

where.

Let | _ || denote the £'-norm on C?*2. For every positive semidefinite matrix

A= (aij)?,j:p we have |a;;| < |A] < 2tr A. This shows that all H € Hy
are entrywise (equivalently, with respect to | _ ||) essentially bounded by 2. In

particular, we have

Hy < L'((0,T),C%*?).
The space L'((0,T),C?*?), and with it its subset Hr, carries several natural
topologies. We will work with its norm and weak topology, 7 _, and Ty.

Remark 2.2. In order to work with the weak topology, we recall the following
representation of continuous functionals. We have (linearly and homeomorphi-
cally)

LY((0,7),C>?) = [L'(0,7)"]
~ [L10,7)]" = [£*(0,T)]" = L*((0,T), C**?).
A linear homeomorphism is given by the assignment
L®((0,T),C2%2) — L((0,T),C2*2Yy

1

T
(fij)zz,jzl — [(hij)zz,jl = i § hij(t) fij (t) dt)]'

2,7=10

Sometimes it is practical to note that L'((0,7),C?**2)" is spanned by the set
of functionals
T

{H — JeTH(t)eg F@)dt] e ese {(), (O}, fe LOO(O,T)}.
0
The weak topology on Hyr has striking properties.

Lemma 2.3. Let T > 0. The weak topology Ty |m, is compact and metrizable.
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Proof. Since Hyr is uniformly bounded, it is also uniformly integrable. The
Dunford—Pettis theorem (see, e.g., [Bog07, Theorem 4.7.18]) implies that Hp
is relatively compact in the weak topology of L'((0,T),C?*?). Since every
| = [1-convergent sequence has a subsequence that converges pointwise a.e.,
the set Hyp is || _ |1-closed. Since it is convex, it follows that it is weakly closed.
Hence Hr is indeed weakly compact.

Since L'((0,T),C?*2) is | _ |1-separable, the weak topology on a weakly
compact subset is metrizable (see, e.g., [Fab+01, Proposition 3.2.9]). O

We come to a variant of continuity in de Branges’ correspondence for Hamil-
tonians on finite intervals. To this end, we need some notation. First, denote
by € the set of all entire (2 x 2)-matrix functions endowed with the topol-
ogy T, of locally uniform convergence. Second, we introduce a notation for the
(transpose of the) fundamental solution of a canonical system.

Definition 2.4. Let 7' > 0. For H € Hy we denote by W(H;t,z) a unique
solution of the initial value problem

SW(H;t,2)J = 2W (H;t,2)H(t), te[0,T], 1)
W(H;0,2) =1, '
where I is the (2 x 2)-identity matrix.

For every fixed ¢ € [0,T], the matrix W (H;t,_) is an entire function, i.e.,
W(H;t,_ ) belongs to £.

Definition 2.5. Let T' > 0. We denote by ¥ the map

HT - g)
\I/TZ
H — W(H;T,.).

The continuity result announced above now reads as follows.
Theorem 2.6 (Continuity; fundamental solution).
Let T > 0. Then VY1 is Ty,-to-Tiu-continuous.

This theorem is implicit in [Bra61], and, up to identification of topologies,
explicit in [Rem18, Theorem 5.7|. For convenience of the reader we give a
complete proof.

Proof of Theorem 2.6. Let

W(H;t,z) = i Wi (H;t)2! (2.2)
=0
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be the power series expansion of W(H;t,_ ). Plugging this in equation (2.1),
we deduce that the coefficients W;(H;t) satisfy the reccurrance

Wo(H,t) =1, Wiy (H;t) sz (H;s)H(s)J ds, leN.

From this one inductively obtains

2t)!
win) < &L Hewr, tepr) ten (2.3)

Therefore, for each compact set K < C, the series (2.2) converges uniformly
on Hy x [0,T] x K, and we have the global growth estimate

W (H;t,2)| < ¥l (H,t,2) e Hp x [0,T] x K.

Now let (Hp)nen be a sequence in Hyp that converges weakly to some H € Hry.
Since the series (2.2) converges uniformly in H, it suffices to show that

Vie N: lingoVVl(Hn;T) =W, (H;T)

in order to conclude that lim,,_,o W (H,;T,_ ) = W(H; T, _ ) locally uniformly
on C. We use induction to show the stronger statement

VlieN: lingo Wi(Hp;t) = Wi(H;t) uniformly for ¢ € [0,T].

For [ = 0 this is trivial. Assume that it has already been established for some
[ € N. Using the reccurrance gives

Wi (Hpst) — Wi (H;t)l|o

- Mwl i 8) Ho(s)J ds — sz (H;s)H(s)J dus
M — Wi(H;5)) Hp(s).J dsHOO (2.4)
0

+| j Wi(H;s)(Hn(s) — H(s))J ds Hoo

[\ >
"

=:ign(t)

The first summand is estimated as

sz i 5) = WilH35) Ha(s) ds| < T+ [Wi(Hais) = WiH;5) o -2
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and tends to 0 by the inductive hypothesis. The functions g, tend to 0 pointwise
on [0, 7] because

T
9001 = | [ Lo IWiHs) - (Halo) = H() -7 ds]
0

and lim;, |, H, = H. We see that

27)!
020 =0, lgn(®) ()] < It —#]- C1)
and by the Arzela—Ascoli theorem the family {g,, | n € N} is relatively compact
in C([0,T],C%*%). Thus pointwise convergence upgrades to uniform conver-
gence, and we deduce that also the second summand in (2.4) tends to 0. O

.47

2.2. Hamiltonians on the half-line. We turn to Hamiltonians defined on
the whole half-line. Recall the notation (1.3).

Definition 2.7. We denote the set of all Hamiltonians on the half-line (0, c0)
by H, i.e.,

H:= {H: (0,00) > R**? | H is measurable, H(t) > 0,tr H(t) = 1 a.e.}.
Again we tacitly identify two Hamiltonians that coincide almost everywhere.

We consider the set of functions on the half-line as the inverse limit of the
sets of functions on finite intervals in the usual way. For T' > 0 let pr be the

restriction map
H — HT,
pT -
H > H|(0,T)
and let ¢ be the map

T>0

{ H — [] Hyp,
L
H — (prH)r>0.

Then ¢ is injective and
L(H) = {(HT)T>O € H HT | VO < T < T’I HT’|(0,T) = HT}
T>0

We use ¢ to pull back the topology of the product. That is, we define a topology
on H by the demand that ¢ become a homeomorphism of H onto «(H), where
the codomain is topologized in the canonical way.

Definition 2.8. Let 7 be the initial topology on H with respect to the one-
element family {¢} from the product topology of the weak topologies on Hry.

This construction automatically implies the following crucial properties.
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Lemma 2.9. The topology T is compact and metrizable.

Proof. By Tychonoff’s theorem and Lemma 2.3 the product topology of the
weak topologies on Hyp is compact. Each restriction map
pT’, Ll((O,T'),(C2X2) N Ll((O,T),(C2X2),
T .
F [ F|(0,T)
is || = [1-to-| < |1-continuous, and hence also w-to-w-continuous. Thus ¢(H) is a
closed subset of the product, and hence also compact.
Consider the map

neN

(Hr)r=0 +— (Hp)nen-

Then « is clearly continuous when both products are endowed with the product
topology of the weak topologies. Moreover, [, is injective. Since (H) is
compact, it is therefore a homeomorphism of ¢(H) onto (x o ¢)(H). Lemma 2.3
implies that the countable product [, .yHy is metrizable. It follows that H,
being homeomorphic to a subspace of this product, is metrizable. O

. { [lrsoHr — 11,

Remark 2.10. The topology T constructed above coincides with the topology
defined in [Rem18, Chapter 5.2|. This follows by writing out our definition and
applying the argument that gave the metrizability of 7, and by remembering
Remark 2.2.

In [EKT18, Proposition 2.3| convergence of Hamiltonians was introduced in
yet another form. To see that this form coincides with convergence with respect
to 7, one has to note that step functions are dense in L',

We turn to the continuity of de Branges’ correspondence. Recall that N, as
a subset of the space of all analytic functions of C, into the Riemann sphere,
naturally carries the topology 7Ty, of locally uniform convergence.

Definition 2.11. We denote by ¥ the map

v {H—)N,
HHqH.

Theorem 2.12 (Continuity; Weyl coefficients).
The map ¥ is T -to-Tiu—homeomorphic.

Also this theorem is implicit in [Bra61] and explicit in [Rem18, Theorem 5.7],
and we provide a complete derivation for convenience of the reader.
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The proof of the “finite interval variant” of Theorem 2.6 relied on the uniform
estimate (2.3) of power series coefficients. The proof of the present “half-line
variant” will follow from a uniform estimate of the size of Weyl disks.

Recall that for H € H and T' > 0 the Weyl disk Q7 ,(H) at z € Cy is
the image of C, under the fractional linear transformation with coefficient
matrix W (H;T, z). Moreover, recall that the inverse stereographic projection
is Lipschitz continuous. In fact, viewing the Riemann sphere as the unit sphere
whose south pole lies at the origin of the complex plane, the chordal distance x
of two points ¢, £ € C (we suppress the explicit notation of the stereographical
projection) is

o 2c—¢]
x(¢,€) NN EaTE

and hence x(¢,€) <2/ — €[, (e C = T.

Lemma 2.13. Suppose that H e H, T > 0, and z € C. The diameter of the
Weyl disk Q. with respect to the chordal metric can be estimated as

. 8
diam, Q7 . (H) < T Ima

Proof. Write H = (:; Zz), and assume first that SOT ha(s)ds > L. Then

w0 ¢ Qr ,(H). By the usual formula for the the Euclidean radius of Qr ,(H),
see, e.g., [Rem18, Lemma 3.11|, the monotonicity result [Bra61, Lemma 4], and
the differential equation (2.1), we find

2 8

diam, Q7.(H) < 2diam|_ | Qp.(H) <2- ST Tmz

T
Imz- § ho(t) dt
0

Now consider the case where

r T
fhg(s) ds < —.
2
0
Then we must have
T
T
fhl(s) ds > —,
2
0
and the already established estimate applies to H:=—JHJ. A computation

shows that W (H; T, z) = —JW (H; T, z)J, and hence the Weyl disk QTZ(I;T) is
the image of Qr . (H) under the fractional linear transformation with coefficient
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matrix J. Since J is unitary, this is a rotation of the sphere, and hence is
isometric with respect to the chordal metric. We obtain
8
T-ITmz’
Proof of Theorem 2.12. Let (H,)nem be a sequence in H that converges
to some H € H. By the definition of the topology of H, this means that
limY . pr(Hy) = pr(H) for every T > 0.
Write W (H; T, z) = (w;;(H;t, z))ij:l, and denote
wi(Hy T, 2) _wi(H;T,2)
Qn,1(2) = W (i T, 2)’ Qr(z) = (I T,2)’
Throughout the following, all limits of complex numbers are understood with

respect to the chordal metric y.
Let K € C, satisfy inf,ex Im z > 0. Lemma 2.13 shows that the limit

H:T
0(2) = Jim 2ET2)
T—00 qp9g (H; T, Z)

diam, Qp.(H) = diam,, QT,Z(I;T) < O

ZG(C+.

defining the Weyl coefficient of a Hamiltonian H is attained uniformly for
(H,z) € H x K. This implies
> limp o0 Qn7(2) = qm, (2) uniformly for (n,z) e N x K;
> limy_ 00 @7(2) = qu(2) uniformly for z € K.
Theorem 2.6 says that
> for each T" > 0 we have lim, o Qp 7(2) = Qr(2) locally uniformly for
zeC,.
Together, we obtain

an(2) = Jim lim Qnir(2) = lim lim Qnr() = lim an, (2)

locally uniformly for z € C,.
Being a continuous bijection of a compact space onto a Hausdorff space, ¥
is a homeomorphism. O

We often use the continuity of ¥ in another form.

Definition 2.14. We denote by ® the map
P H x (C+ —> (C++,
(H,w) — qg(w).
The following reformulations of the continuity of W are obtained by elemen-

tary arguments; an explicit proof is deferred to the preprint version [PW19] of
this article.
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Corollary 2.15 (Continuity; Weyl coefficients — a variant). Fach of the
properties (i) and (ii) below is equivalent to the T -to-Ty-continuity of ¥, and
hence holds true.
(i) The map @ is continuous when H x C, is endowed with the product
topology of T and the Euclidean topology.
(ii) For every compact set K < Cy the family {®(_,w) | w € K} is
equicontinuous.

2.3. Constant Hamiltonians. A particular role is played by Hamiltonians
H e H that are constant a.e. on (0,00). We denote the set of all tham by CH.
Constant Hamiltonians can be identified with the points of C,.

Definition 2.16. Let ©: C; — CH be the map acting as
. (h1 hs
@(C) T (h3 h2)7
where

P, 1, . Reg
2 = |<|2+17 3

1=

PR+ P+

if ¢ # o0, and
_ (10
o) = (5 §)-
The map O is bijective. Its inverse 01:CH - (C++ is given by

@—l(hl h3) _ h3 + 14/ h1ho —h%

hs hso - h2

if hy # 0, and

Note that det ©(¢) = 0 if and only if ¢ € R, and that ©(() is diagonal if and
only if ¢ € iR

From the defining formulas it is obvious that for each 7" > 0 the map
pro0O: (C+Jr — (Hrp, ﬂu H1> is continuous. Thus pro® is also continuous into 7Ty,

and hence © is continuous into (H, 7). Since C, is compact, each of
(r(CH).Tj_y) (pr(CH), T, (CH,T)

is homeomorphic to C. In particular, these spaces are all compact.

Remark 2.17. The definition of © is formulated in such a way that

QQ(C)(Z) =(, ZE€ (C_-‘r?
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in other words, ®(©((),w) = ¢, w € C,. This is shown by a simple calculation,
see e.g., [EKT18, §2.2, Example 1]°.

For later use we introduce a separate notation for constant Hamiltonians
corresponding to boundary points of C,, namely,

CHp := O(R) = {H € CH | det H = 0}.

§3. The rescaling method

We have already mentioned the rescaling operation A,: H(_ )~ H(2- _)
on Hamiltonians in (1.5). In this section we put this in an appropriate frame-
work and establish the relationship between cluster sets of A,.H for r — o
and qp(z) for z — io0.

Clearly, A, maps H into itself and satisfies the computation rules

A =id, Vr,s >0: A, oAy = A0 A, = Ays. (3.1)
This means precisely that the map
R, xH — H,
- (3.2)
(r,H) — A.H.

is a group action of Ry on H.
Lemma 3.1. The map (3.2) is continuous.

Proof. Assume we are given H,, H € H with H,, - H and r,,r € Ry with
r, — 7, and assume without loss of generality that § < r, < 2r for all n. We
have to show that

VT >0: prA,, Hp, - prAH.

Recall Remark 2.2 and let eq,es € {((1)), (?)} and f € L®(0,7) be given.

Denote by f~ the extension of f to the element of L*(0,00) with f(t) = 0,
t > T. Then we have

T
f et ((prAn, ) () — (pr A H) (1)) en - £(2) dt
0

T T
- j et (Ha(L) = H(L))es - () dt + f e (H(L) — H(L))es - f(2) dt
0 0

2Caution: notation in [EKT18] is different.
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The first summand tends to 0 because
let (Hn(s) — H(s))e2]o < 2

and

~ ~

1f(rns) = f(rs)[1 — 0,
the second summand also tends to zero because
H, —» H in H,
and the third because
|H(L) = H(L)] — o. O

The fact that (3.2) is a continuous group action has some immediate conse-
quences. In our context, the following two are of interest.

Remark 3.2.

(i) For every H € H and s > 0 the map A, leaves ¥l[A,H]| invari-
ant. Hence, (3.2) induces a continuous group action on the cluster set
ClAH].

(ii) For every H € H the stabiliser

(Ri)w:={reRy | A,H=H}
is a closed subgroup of R .

Item (ii) of the above remark shows that (R, ) is either equal to {1} or R,
or is of the form {p"™ | n € Z} for some p > 1. We have (R; )y = Ry if and only
if H € CH, and (R, )y is a nontrivial subgroup if and only if H is nonconstant
and multiplicatively periodic.

Remark 3.3. The case of a nontrivial stabiliser is particularly simple: if H is
multiplicatively periodic with primitive period p > 1, then

Cl[AH] = {AH | 1 <r <p}. (3.3)
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For the inclusion “C” note that
{A,H|r>0}={AH|1<r<p},

and hence the orbit of H is compact. The reverse inclusion holds since
AspnH = AgH for all n € N and s > 0, and hence

AH = lim AgnH € CI[AH].

Rescaling operators have a rescaling effect on fundamental solutions. This
is a particular case of [EKT18, Lemma 2.7|. For convenience of the reader, we
recall the argument.

Lemma 3.4. Let H € H and let v > 0. Then the fundamental solutions,
Weyl disks, and Weyl coefficients of H and A,.H are related as follows (t = 0,
ZE (C+):

W(.ATH;t,Z) = W(H L ""Z)’ Qt,z(ArH) = QLWZ(H)v QATH(Z) = QH(""Z)'

s

If we use the notation ® from Definition 2.14, the relation between Weyl coef-
ficients writes as

VHeH,r>0,2€Cy: O(AH,2) = D(H,rz). (3.4)
Proof. Set W(t,z) := W (H; L rz). Then
0 ~ 10 t
gW(t, Z)J = ;gW(H, ;, T'Z)
1 t t ~
=Tz W(H; ;,rz)H(;) =2W(t, z)(AH)(t).
Thus W (¢, z) is the fundamental solution of A, H.

The relation between Weyl disks follows immediately, and the relation be-
tween Weyl coefficients follows by letting ¢ — co. O

The next proposition is the basis for translating cluster sets of A, H to those

of qp.
Given a subset M < C; as in (1.4), we denote the limiting directions of M
by

D(M):={0¢€[0,m] | 3zn € M: |2,| > o0 A arg z, — 0}.
Note that D(M) is closed and contained in (0, 7).
Proposition 3.5. Let M < C, be as in (1.4) and let H € H. Then

% (qu, M) € ®(CILAH] x P = € (qzr, e PM[1, 0)). (3.5)
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Proof. To show the inclusion on the left of (3.5), let w € €(qm, M). Choose
zn, € M with |z,| — o0 and gg(2,) — w. By the compactness of H and [0, 7],
we can choose a subsequence such that both limits

H:=lim A, (H, 0:= lim argz,,
exist. Then 6 € D(M), and the continuity of ® implies that
w = lim gg(2p,) = lim @(A‘Z H, eiargZ”k) — O(H, ).
k—00 k—o0 "k
The inclusion “2” of the claimed identity on the right of (3.5) readily follows
because D (M) is closed and hence
D(e’PM[1,00)) = D(M).

To prove the reverse inclusion, let w € ®(FI[A, H] x e!PM)) be given. Write
w = ®(H,e"?) with some H € €I[A,H] and § € D(M), and choose 7, — o
with H = lim,,_,« A,,H. Then

w=(H,e") = lim &(A,, H,e") = lim qu(rne”) € €(qm, ™). O
n—0o0 n—oo0
We also obtain some knowledge about outer angular cluster sets.

Proposition 3.6. Let H € H. Then

(i) Cx(qu) = ®(CILAH] x Cy);
(ii) €l|A-H] < CH = for all M as in (1.4) we have

@ (g, M) = Cx(an) = © ' (CI[AH]);
(iii) Cl[AH]| nCH = & = Fx(qu) is open.
Proof. Using Remark 3.2 (i) and (3.5) we find
O (CUAH]xCH) =3 (CI[A, H] x 'O™)
= |J @(@ifAH] x el o)) = | | (g, Ta) = %5 (qn).
ae(0,5] ae(0,5]
Assume now that €I[A,H] < CH, and set K := © 1(€I[A,H]). Then
Cxlqn) = ®(CIAH xC ) = | J qz(C) = |J (07} =K.
He¥?I[A-H] He%I[A-H]

The inclusion €(qg, M) S €x(qp) is trivially true. Let £ € K, and choose
rn — 00 with A, H — O(§). Since {z € M | |z| > r} is connected for all
sufficiently large r, for all sufficiently large n we can choose points z, € M with
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|zn| = 7. Choose a subsequence such that argz,, — 6 for some 6 € (0, ).
Then

QH(zn) = @(A|znk\H7 eiargznk) - @(@(E)’ew) = 67
and therefore £ € € (qp, M).
Finally, assume that €I[A, H] n CH = @. Then
Cxlan) = @(CIUAH] xCy) = ] q5(Cy),
He%I[A,H]

and each set in the union on the right is open. U
Let us revisit the multiplicatively periodic situation.

Remark 3.7. Let H € H be nonconstant and multiplicatively periodic.
Then (3.3) and Proposition 3.6 (iii) imply that €y (qx) is open. In particular,
the outer angular cluster set is not equal to any of the cluster sets € (qm, M).

§84. Weyl coefficients with prescribed cluster set

In the theorem below we give an explicit construction of Hamiltonians H
for which the cluster set of gy can be computed. These Hamiltonians are
piecewise constant on quickly shrinking intervals that accumulate only at the
initial point.

In the formulation of the theorem we denote the cluster set of a sequence
(Cn)neN in (CJr by

Cl¢n] = {CEE| dng € N: nk—>oo/\klim Cnp :C}
—00

Moreover, recall that x denotes the chordal metric on C.

Theorem 4.1. Let (t,)nen be a sequence of positive numbers with

t
1=t >ty >t3>..., limt,=0, lim =2 =0,
n—0o0 n— tn

and let (Cu)nen be a sequence of points on C 1 with
i x(Got1s Gn) = 0.
n—00

Define H to be the piecewise constant Hamiltonian

H(t) = {g(Cn)a te (tnit,tn],neN,

(0), te(1,0). (4.1)

Then, for every M as in (1.4),
Cxlqn) = € (qu, M) = €[]
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An elementary argument shows that for every nonempty, closed, and con-
nected subset £ of C there exists a sequence ((,)neny With €1[¢,] = £ (an
explicit proof can be found in [PW19]). Thus we obtain an explicit solution of
an inverse problem dealing with boundary interpolation.

Corollary 4.2. Let L < C, be nonempty, closed, and connected. Then we can
construct a Hamiltonian H for whose Weyl coefficient qi the outer angular
and radial cluster sets at 100 are both equal to L.

We turn to the proof of Theorem 4.1. The crucial step is presented in the
next lemma. Here we denote by d| _ the metric induced by the L'-norm.

Lemma 4.3. Let H € H and assume that

lim dy_y(prA-H, p1©(CH)) = 0. (4.2)
Moreover, denote
K:={¢eCy | mO() €€l _mAH]}. (4.3)

Then

(i) €l _ylprArH] = prO(K), for all T >0,
(i) ¢l[AH] = ©(K).

Proof. Let T > 0 and set
Kr:={¢eCy | prO(§) € €l_|[prA-Hl}.

The relation

T
lorAH — prO(©)]s = f [H(L) — 0(&) dt

0
1
7 f JH(Z 1)~ 0(©)] dt = T|prA; H — mO(©)|1,
0

which is true for all H € H and ¢ € C, shows that
liminf prAH — prO@) =T - liminf [ A, H— @O, (44)
dy_|(prA-H,prO(CH)) =T -dj_|(p1 Az H, 1 ©(CH)). (4.5)
Relation (4.4) implies that K7 = K for all T' > 0, and (4.5) that
VI >0: lim dy_(prAcH, prO(CH)) = 0. (4.6)
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Since prO(CH) is compact with respect to || |1, and hence closed, (4.6) in
turn implies that
<l _lprA-H] < prO©(CH).
Item (i) of the present assertion follows.
The inclusion “2” in item (ii) holds true because of a general argument.
Namely, it is fulfilled for every Hamiltonian H € H that

{HeH | YT > 0: prH € €ly_ylprAH|} € CUAH].

To show this, assume that H belongs to the set on the left. We choose induc-
tively numbers 7, > 0, such that

SIH

VneN:rp =21y + 1A |pnAr, H — anHl
Given T > 0, for all n > T we have

1
lor A, H = prH 1 < lonAv, H = puTy < -

and hence pr A, H -1y H. This clearly implies that A, H — H.
The reverse inclusion “C” in item (ii) relies on the assumption (4.2). Assume
that H € €l[.A,H] and choose a sequence r,, — oo such that A, H — H. Then

pr Ay, H-"> H for all T > 0. (4.7)

Let T' > 0. Since (4.6) holds and pr©(CH) is compact with respect to | _ ||1,
we find a point ¢ € C; and a subsequence (7, )gen (both depending on T)
such that

pr A, H =5 o). (4.8)

Combining this with (4.7), we see that pTI;T = prO(§). It follows that £ is

independent of 7" and that H = O(¢). By (4.8), used for T = 1, we have
e K. O

Proof of Theorem 4.1. The function

p1o O: (C++ - Ll((ov 1)7 (C2X2)
is x-to-| _ [1—continuous and injective. Since C, is compact, it is therefore
uniformly continuous and a homeomorphism onto its image. Let w: Ry — R4
be the modulus of continuity of p; 0 ©, so that
limw(d) =0 A V(€€ Tt [mO(C) = pO©)h < wx(C, ).

—0

We show that

VneNre [, 7] [ AH — piO(Ga)h < i”j+w<x<<n+1,<n>>- (4.9)
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To see this, estimate

rin4+2
t
|H (L) = ©(Co)| dt < Arty o < 4—t2,
Ttpt1
0
rin+1 Ttn+1
f JH(L) — 0(Cy)] dt = f 10(Cusr) — O(C)] dt
Ttn+2 Ttn 42

< le@(gn+1) - pl@((n)Hl < W(X(Cn+17gn))a
1
| @ -ea-o
Ttn+1

i7 i) Then lim,., o n(r) = 0.

The right-hand side of (4.9) tends to 0 as n tends to 0o, and hence for every
sequence 7 — o0 we have

kh_I}(}O leArkH - ple(gn(rk))ul =0.

For r =1 let n(r)eN be a unique number with [

This shows that (4.2) holds true and that
Gl o1 ArH] € €l [p1O(Ga)]-
If ny — oo, then (4.9) shows that
lim [p1A + H — p1O((y) |1 =0,
k—o0 tny,
and it follows that
p1©(E1[¢a]) € €Ly [p1AH].
Since p1 0 © is a homeomorphism between compact sets,
O (€1Ga]) =l _ylp1O(Ca)l:

and we see that the set K from (4.3) is equal to €[]
The asserted properties of qg now follow from Lemma 4.3 and Proposi-
tion 3.6 (ii). O

Let us pass from the half-plane to the unit disk with the fractional linear
transformation 3(z) := Z75, which maps C* onto the closed unit disk D with
B(e0) = 1.
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Remark 4.4. Consider a Hamiltonian of the form (4.1). Since H is con-
stant equal to ©(0) on the interval (1,00), the Weyl coefficient gy is given

by qu = g—;g, where

wis(2) = (1,0)W (H: 1, 2) ((f) was(2) = (0, YW (H: 1, 2) ((f)

Since det H is constant equal to 0, the entire function W (H;1, z) is of zero
exponential type. The function

B(z):=foquoft = 22 5o
w12 + 1wa2
is thus a Blaschke product whose zeroes have no finite accumulation point.
Cluster sets of gy towards ico clearly correspond to cluster sets of B to-
wards 1. Thus we reobtain the fact that for every nonempty, closed, and con-
nected subset £ of D, there exists a Blaschke product whose outer angular and
radial cluster sets at 1 are equal to L.

In the context of the present construction and its consequences for functions
on the disk some open questions occur.

(i) We do not know if the function constructed in the above way has
also cluster set £ when z is allowed to approach 1 in an unrestricted,
possibly tangential, way.

(i) We do not know if our construction method can be modified so as to
yield results about simultaneous boundary interpolation at more than
one point (as done for radial cluster sets in [BCP85,Dec94, Don01]).

(iii) We do not know if our construction method can be modified to pro-
duce an approach to cluster values along a prescribed curve when z
approaches the point 1 radially (as in [Don01, Theorem 1]).

(iv) We do not know an analog of Theorem 4.1 for outer angular cluster
sets that realises any countable increasing union of nonempty closed
connected sets (and by this proves Gauthiers conjecture).

Concerning the third question we have some preliminary results indicating that
the answer is affirmative.
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