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LIMIT BEHAVIOR OF WEYL COEFFICIENTS

© R. PRUCKNER, H. WORACEK

The sets of radial or nontangential limit points towards i8 of a Nevanlinna

funtion q are studied. Given a nonempty, losed, and onneted subset L

of C
�

, a Hamiltonian H is onstruted expliitly suh that the radial and

outer angular luster sets towards i8 of the Weyl oe�ient qH are both

equal to L. The method is based on a study of the ontinuous group ation

of resaling operators on the set of all Hamiltonians.

�1. Introdution

A Nevanlinna funtion is an analyti funtion in the open upper half-

plane C
�

whose values lie in C
�

Y R. Suh funtions are intensively studied

for various reasons; we mention two of them.

� In omplex analysis they our as regularised Cauhy transforms of posi-

tive Poisson integrable measures, see e.g., [Lev80,KK68,GT00℄. Namely, a

funtion q is a Nevanlinna funtion if and only if it is of the form

qpzq � a� bz �

»

R

� 1

x� z
�

x

1� x2

	

dµpxq, z P C
�

, (1.1)

where a P R, b ¥ 0, and µ is a positive Borel measure on the real line with

»

R

dµpxq

1� x2
  8.

� In the spetral theory of di�erential operators they our as Weyl o-

e�ients whenever H.Weyl's nested disks method is appliable, see e.g.,

[Wey10,Tit46,Atk64,BHS20℄.

The relationship between these two instanes is that (for simpliity we suppress

some tehnial issues and exeptional ases) the measure µ in the integral

Êëþ÷åâûå ñëîâà: Weyl oe�ient, anonial system, luster set, Nevanlinna funtion.
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representation (1.1) of the Weyl oe�ient of an equation is a spetral measure

for the orresponding selfadjoint model operator.

The natural ontext of Weyl's method is the framework of two-dimensional

anonial systems

y1ptq � zJHptqyptq, t P p0,8q, (1.2)

where z P C is the eigenvalue parameter, J :
�

�

0 �1

1 0

	

, and the Hamiltonian H

of the system is assumed to satisfy Hptq ¥ 0 and trHptq � 1 a.e., see, e.g.

[Bra68, HSW00, Rom14, Rem18℄. It is a deep theorem due to L. de Branges

that the map assigning to eah Hamiltonian H the Weyl oe�ient qH of the

equation (1.2) is a bijetion between the set of all Hamiltonians

H :
�

 

H : p0,8q Ñ R
2�2

| H measurable,Hptq ¥ 0, trHptq � 1 a.e.

(

(1.3)

up to equality a.e., and the set of all Nevanlinna funtions inluding the fun-

tion identially equal to 8

N :
�

 

q : C
�

Ñ C | q analyti, qpC
�

q � C
�

(

.

Here C denotes the Riemann sphere C Y t8u regarded as a Riemann surfae

in the usual way, and C
�

denotes the losure of C
�

in the sphere, expliitly,

C
�

� C
�

Y R Y t8u. The assignment H ÞÑ qH is also alled the de Branges

orrespondene.

Having available this bijetion, it is a natural task to relate properties of H

to properties of qH . For many properties of Hamiltonians or Nevanlinna fun-

tions it turns out to be quite involved (or even quite impossible) to �nd their

ounterpart on the other side of de Branges' orrespondene. One type of prop-

erties where some expliit relations are known is the high-energy behavior of

qH , i.e., its behavior towards i8. It is a frequently instantiated intuition, go-

ing bak at least to B.M. Levitan [Lev52℄, that the high-energy behavior of

qH orresponds to the loal behavior of H at 0. For example it was shown

in [EKT18℄ that the nontangential limit

1 lim
z
?

Ñi8
qHpzq exists in C if and only

if the limit limt×0
1
t

³t

0
Hpsq ds exists in R

2�2
. Moreover, if these limits exist,

they are related by simple formulas.

In this paper we investigate the situation when the Weyl oe�ient does not

neessarily have a limit. Natural substitutes for a limit value are luster sets.

We onsider two variants, whih are �tted to the nontangential approah. For

1

We write zn
?

Ñ i8 for: |zn| Ñ 8 while arg zn P rα, π � αs for some α P p0, π

2
s. And we

write lim
z
?

Ñi8
qpzq � ζ if limnÑ8 qpznq � ζ for every sequene zn

?

Ñ i8. Convergene on

the Riemann sphere is understood with respet to the hordal metri.
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α P p0, π
2
s denote by Γα the Stolz angle

Γα :
�

 

z P C
�

| arg z P rα, π � αs
(

.

(i) Let M � C
�

be suh that

M is unbounded, there is α P
�

0,
π

2

�

with M � Γα,

tz PM | |z| ¥ ru is onneted for all su�iently large r.
(1.4)

For a Nevanlinna funtion q we onsider the luster set

C pq,Mq

:
�

 

ζ P C | Dzn PM : |zn| Ñ 8^ qpznq Ñ ζ
(

.

(ii) The outer angular luster set of a Nevanlinna funtion q is

C
?

pqq :�
¤

αPp0,π
2
s

C pq,Γαq �
 

ζ P C | Dzn P C
�

: zn
?

Ñ8^ qpznq Ñ ζ
(

.

We do not onsider an arbitrary � possibly tangential � approah to in�nity.

The luster sets C pq,Mq and C
?

pqq are both nonempty and onneted. They

show di�erent behavior in the sense that C pq,Mq is always losed, while C
?

pqq

need not have this property, f. [CL66,Nos60℄ (see also Remark 3.7 below).

It is known from [BCP85℄ (by using a frational linear transformation to

pass from the half-plane to the unit disk) that for every nonempty, losed,

and onneted subset L of C
�

there exists a Nevanlinna funtion q suh that

the radial luster set C pq, ir1,8qq equals L. In fat, in [BCP85, Theorem℄

the radial boundary interpolation problem was solved for ountably many in-

terpolation nodes, and the given solution is a Blashke produt. Variants of

this result for singular inner funtions an be found in [De94, Theorem 9℄,

or [Don01, Theorem 3℄. For smaller lasses of funtions, e.g., interpolating or

thin Blashke produts, the radial boundary interpolation problem is in gen-

eral not anymore solvable, f. [GM05,GS11℄. The outer angular luster set is

a ountable inreasing union of nonempty, losed, and onneted subsets, and

P. M. Gauthier onjetured in [Gau21℄ (personal ommuniation) that every

set of this form an be realised as an outer angular luster set; a proof has not

yet been given.

Our main result in the present paper is Theorem 4.1, where we give an

expliit solution to the following inverse spetral problem.

Given a nonempty, losed, and onneted subset L of C
�

, �nd

a Hamiltonian H suh that C pqH ,Mq � C
?

pqHq � L (for ar-

bitrary M as in (1.4))

The Hamiltonian H onstruted in the proof of Theorem 4.1 has the property

that qH (transferred to the unit disk) is a Blashke produt.
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Our method of proof is based on a resaling trik, whih goes bak at least

to Y. Kasahara [Kas75℄, who applied it on the level of Krein strings, and

whih was exploited further in [KW10℄, and in [EKT18℄ and its forthoming

extension [LPW℄. Namely, given a Hamiltonian H P H, one onsiders resaled

Hamiltonians

pArHqptq :� Hp t
r
q, t P p0,8q, r ¡ 0. (1.5)

The operators Ar blow up the sale and thereby zoom into the viinity of 0.

We will see that luster sets of qH are related to luster sets of the family

pArHqr¥1 where the set H is appropriately topologized, f. Propositions 3.5

and 3.6. In fat, one may say that the ontinuous group ation of resaling

operators on H is responsible for the mentioned intuition that the high-energy

behavior of qH relates to the loal behavior of H at 0.

In [EKT18,Kas75,KW10℄ a simple ontinuity property of de Branges' orre-

spondene was su�ient to obtain the desired onlusions. This property goes

bak at least to [Bra61℄, where it formed a step in the existene proof of an

inverse spetral theorem. Despite being used in the literature ever sine, an

expliit presentation was given only reently in [Rem18℄. In the presently on-

sidered general situation, when limits do not neessarily exist, �ner arguments

and a thorough understanding of the topology on H are neessary.

After this introdution, the artile is strutured in three more setions. In �2

we study the appropriate topology on H; this setion is to a ertain extent of

expository nature. Contrasting the presentation in [Rem18℄, we introdue the

topology from a higher level viewpoint, namely, as an inverse limit of weak

topologies on sets of Hamiltonians de�ned on �nite intervals (T P p0,8q),

HT :�
 

H : p0, T qÑR
2�2

| H is measurable,Hptq ¥ 0, trHptq�1 a.e.

(

. (1.6)

By this approah the most important features, namely ompatness and metriz-

ability, are readily built into the onstrution. Besides o�ering strutural lar-

ity, it also simpli�es matters by avoiding the unneessary passage from L1
to

the spae of omplex Borel measures done in [Bra61,Rem18℄. For the onve-

niene of the nonspeialist reader, we inlude a omplete and onise derivation

of the required ontinuity of de Branges' orrespondene H Ø qH .

In �3 we study the group ation of resaling operators tAr | r ¡ 0u on H,

and relate limit points of qH with limit points of pArHqr¥1. The ase when

limits exist, whih has been studied in [EKT18℄, was revisited in the extended

preprint version of this artile, f. [PW19℄.

�4 is devoted to the proof of the main result of the paper. In Theorem 4.1

we give the aforementioned expliit onstrution of Hamiltonians whose Weyl

oe�ient has presribed luster set. We lose the paper with stating some

open problems related to Theorem 4.1.
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�2. Topologizing the set of Hamiltonians

Thoroughly understanding the onvergene of Hamiltonians is ruial for our

present investigation. We shall �rst onsider Hamiltonians de�ned on a �nite

interval and then pass to Hamiltonians on the half-line by a limiting proess.

2.1. Hamiltonians on a �nite interval. Reall the notation (1.6):

De�nition 2.1. For T ¡ 0 we denote the set of all Hamiltonians on the

interval p0, T q by HT , i.e.,

HT :
�

 

H : p0, T q Ñ R
2�2

| H is measurable, Hptq ¥ 0, trHptq � 1 a.e.

(

.

We shall always taitly identify two Hamiltonians that oinide almost every-

where.

Let }  } denote the ℓ1-norm on C
2�2

. For every positive semide�nite matrix

A � paijq
2
i,j�1, we have |aij| ¤ }A} ¤ 2 trA. This shows that all H P HT

are entrywise (equivalently, with respet to }  }) essentially bounded by 2. In

partiular, we have

HT � L1
pp0, T q,C2�2

q.

The spae L1
pp0, T q,C2�2

q, and with it its subset HT , arries several natural

topologies. We will work with its norm and weak topology, T
}  }1

and Tw.

Remark 2.2. In order to work with the weak topology, we reall the following

representation of ontinuous funtionals. We have (linearly and homeomorphi-

ally)

L1
pp0, T q,C2�2

q

1

�

�

L1
p0, T q4

�

1

�

�

L1
p0, T q1

�4
�

�

L8p0, T q
�4
� L8pp0, T q,C2�2

q.

A linear homeomorphism is given by the assignment

$

'

'

&

'

'

%

L8pp0, T q,C2�2
q Ñ L1

pp0, T q,C2�2
q

1

pfijq
2
i,j�1 ÞÑ

�

phijq
2
i,j�1 ÞÑ

2
°

i,j�1

T
³

0

hijptqfijptq dt
�

�

.

Sometimes it is pratial to note that L1
pp0, T q,C2�2

q

1

is spanned by the set

of funtionals

!

H ÞÑ

T
»

0

e�1Hptqe2 � f ptq dt | e1, e2 P
 �

1
0

�

,
�

0
1

�(

, f P L8p0, T q
)

.

The weak topology on HT has striking properties.

Lemma 2.3. Let T ¡ 0. The weak topology Tw|HT
is ompat and metrizable.
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Proof. Sine HT is uniformly bounded, it is also uniformly integrable. The

Dunford�Pettis theorem (see, e.g., [Bog07, Theorem 4.7.18℄) implies that HT

is relatively ompat in the weak topology of L1
pp0, T q,C2�2

q. Sine every

}  }1-onvergent sequene has a subsequene that onverges pointwise a.e.,

the set HT is }  }1-losed. Sine it is onvex, it follows that it is weakly losed.

Hene HT is indeed weakly ompat.

Sine L1
pp0, T q,C2�2

q is }  }1-separable, the weak topology on a weakly

ompat subset is metrizable (see, e.g., [Fab+01, Proposition 3.2.9℄). �

We ome to a variant of ontinuity in de Branges' orrespondene for Hamil-

tonians on �nite intervals. To this end, we need some notation. First, denote

by E the set of all entire p2 � 2q-matrix funtions endowed with the topol-

ogy Tlu of loally uniform onvergene. Seond, we introdue a notation for the

(transpose of the) fundamental solution of a anonial system.

De�nition 2.4. Let T ¡ 0. For H P HT we denote by W pH; t, zq a unique

solution of the initial value problem

#

B

Bt
W pH; t, zqJ � zW pH; t, zqHptq, t P r0, T s,

W pH; 0, zq � I,
(2.1)

where I is the p2� 2q-identity matrix.

For every �xed t P r0, T s, the matrix W pH; t,  q is an entire funtion, i.e.,

W pH; t,  q belongs to E .

De�nition 2.5. Let T ¡ 0. We denote by ΨT the map

ΨT :

"

HT Ñ E ,

H ÞÑ W pH;T,  q.

The ontinuity result announed above now reads as follows.

Theorem 2.6 (Continuity; fundamental solution).

Let T ¡ 0. Then ΨT is Tw-to-Tlu-ontinuous.

This theorem is impliit in [Bra61℄, and, up to identi�ation of topologies,

expliit in [Rem18, Theorem 5.7℄. For onveniene of the reader we give a

omplete proof.

Proof of Theorem 2.6. Let

W pH; t, zq �

8

¸

l�0

WlpH; tqzl (2.2)
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be the power series expansion of W pH; t,  q. Plugging this in equation (2.1),

we dedue that the oe�ients WlpH; tq satisfy the reurrane

W0pH, tq � I, Wl�1pH; tq � �

t
»

0

WlpH; sqHpsqJ ds, l P N.

From this one indutively obtains

}WlpH; tq} ¤
p2tql

l!
, H P HT , t P r0, T s, l P N. (2.3)

Therefore, for eah ompat set K � C, the series (2.2) onverges uniformly

on HT � r0, T s �K, and we have the global growth estimate

}W pH; t, zq} ¤ e2t|z|, pH, t, zq P HT � r0, T s �K.

Now let pHnqnPN be a sequene in HT that onverges weakly to some H P HT .

Sine the series (2.2) onverges uniformly in H, it su�es to show that

�l P N : lim
nÑ8

WlpHn;T q �WlpH;T q

in order to onlude that limnÑ8

W pHn;T,  q �W pH;T,  q loally uniformly

on C. We use indution to show the stronger statement

�l P N : lim
nÑ8

WlpHn; tq �WlpH; tq uniformly for t P r0, T s.

For l � 0 this is trivial. Assume that it has already been established for some

l P N. Using the reurrane gives

}Wl�1pHn; tq �Wl�1pH; tq}
8

�

�

�

�

t
»

0

WlpHn; sqHnpsqJ ds�

t
»

0

WlpH; sqHpsqJ ds
�

�

�

8

¤

�

�

�

t
»

0

�

WlpHn; sq �WlpH; sq
�

HnpsqJ ds
�

�

�

8

�

�

�

�

t
»

0

WlpH; sq
�

Hnpsq �Hpsq
�

J ds

loooooooooooooooooooomoooooooooooooooooooon

�

:gnptq

�

�

�

8

.

(2.4)

The �rst summand is estimated as

�

�

�

t
»

0

�

WlpHn; sq �WlpH; sq
�

HnpsqJ ds
�

�

�

8

¤ T � }WlpHn; sq �WlpH; sq}
8

� 2,
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and tends to 0 by the indutive hypothesis. The funtions gn tend to 0 pointwise

on r0, T s beause

}gnptq} �
�

�

�

T
»

0

1

p0,tqpsqWlpH; sq �
�

Hnpsq �Hpsq
�

� J ds
�

�

�

and limw
nÑ8

Hn � H. We see that

gnp0q � 0, }gnptq � gnpt
1

q} ¤ |t� t1| �
p2T ql

l!
� 4,

and by the Arzela�Asoli theorem the family tgn | n P Nu is relatively ompat

in Cpr0, T s,C2�2
q. Thus pointwise onvergene upgrades to uniform onver-

gene, and we dedue that also the seond summand in (2.4) tends to 0. �

2.2. Hamiltonians on the half-line. We turn to Hamiltonians de�ned on

the whole half-line. Reall the notation (1.3).

De�nition 2.7. We denote the set of all Hamiltonians on the half-line p0,8q

by H, i.e.,

H :
�

 

H : p0,8q Ñ R
2�2

| H is measurable,Hptq ¥ 0, trHptq � 1 a.e.

(

.

Again we taitly identify two Hamiltonians that oinide almost everywhere.

We onsider the set of funtions on the half-line as the inverse limit of the

sets of funtions on �nite intervals in the usual way. For T ¡ 0 let ρT be the

restrition map

ρT :

#

H Ñ HT ,

H ÞÑ H|
p0,T q

and let ι be the map

ι :

#

H Ñ

±

T¡0

HT ,

H ÞÑ pρTHqT¡0.

Then ι is injetive and

ιpHq �
!

pHT qT¡0 P

¹

T¡0

HT | �0   T   T 1 : HT 1 |
p0,T q � HT

)

.

We use ι to pull bak the topology of the produt. That is, we de�ne a topology

on H by the demand that ι beome a homeomorphism of H onto ιpHq, where

the odomain is topologized in the anonial way.

De�nition 2.8. Let T be the initial topology on H with respet to the one-

element family tιu from the produt topology of the weak topologies on HT .

This onstrution automatially implies the following ruial properties.
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Lemma 2.9. The topology T is ompat and metrizable.

Proof. By Tyhono�'s theorem and Lemma 2.3 the produt topology of the

weak topologies on HT is ompat. Eah restrition map

ρT
1

T :

#

L1
pp0, T 1

q,C2�2
q Ñ L1

pp0, T q,C2�2
q,

F ÞÑ F |
p0,T q

is }  }1-to-}  }1-ontinuous, and hene also w-to-w-ontinuous. Thus ιpHq is a

losed subset of the produt, and hene also ompat.

Consider the map

κ :

#

±

T¡0 HT Ñ

±

nPN

,

pHT qT¡0 ÞÑ pHnqnPN.

Then κ is learly ontinuous when both produts are endowed with the produt

topology of the weak topologies. Moreover, κ|ιpHq is injetive. Sine ιpHq is

ompat, it is therefore a homeomorphism of ιpHq onto pκ � ιqpHq. Lemma 2.3

implies that the ountable produt

±

nPNHn is metrizable. It follows that H,

being homeomorphi to a subspae of this produt, is metrizable. �

Remark 2.10. The topology T onstruted above oinides with the topology

de�ned in [Rem18, Chapter 5.2℄. This follows by writing out our de�nition and

applying the argument that gave the metrizability of T , and by remembering

Remark 2.2.

In [EKT18, Proposition 2.3℄ onvergene of Hamiltonians was introdued in

yet another form. To see that this form oinides with onvergene with respet

to T , one has to note that step funtions are dense in L1
.

We turn to the ontinuity of de Branges' orrespondene. Reall that N , as

a subset of the spae of all analyti funtions of C
�

into the Riemann sphere,

naturally arries the topology Tlu of loally uniform onvergene.

De�nition 2.11. We denote by Ψ the map

Ψ:

#

HÑ N ,

H ÞÑ qH .

Theorem 2.12 (Continuity; Weyl oe�ients).

The map Ψ is T -to-Tlu�homeomorphi.

Also this theorem is impliit in [Bra61℄ and expliit in [Rem18, Theorem 5.7℄,

and we provide a omplete derivation for onveniene of the reader.
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The proof of the ��nite interval variant� of Theorem 2.6 relied on the uniform

estimate (2.3) of power series oe�ients. The proof of the present �half-line

variant� will follow from a uniform estimate of the size of Weyl disks.

Reall that for H P H and T ¡ 0 the Weyl disk ΩT,zpHq at z P C
�

is

the image of C
�

under the frational linear transformation with oe�ient

matrix W pH;T, zq. Moreover, reall that the inverse stereographi projetion

is Lipshitz ontinuous. In fat, viewing the Riemann sphere as the unit sphere

whose south pole lies at the origin of the omplex plane, the hordal distane χ

of two points ζ, ξ P C (we suppress the expliit notation of the stereographial

projetion) is

χpζ, ξq �
2|ζ � ξ|

a

1� |ζ|2
a

1� |ξ|2
,

and hene χpζ, ξq ¤ 2|ζ � ξ|, ζ, ξ P C � C.

Lemma 2.13. Suppose that H P H, T ¡ 0, and z P C
�

. The diameter of the

Weyl disk ΩT,z with respet to the hordal metri an be estimated as

diamχΩT,zpHq ¤
8

T � Im z
.

Proof. Write H �

�

h1 h3

h3 h2

	

, and assume �rst that

³T

0
h2psq ds ¥

T
2
. Then

8 R ΩT,zpHq. By the usual formula for the the Eulidean radius of ΩT,zpHq,

see, e.g., [Rem18, Lemma 3.11℄, the monotoniity result [Bra61, Lemma 4℄, and

the di�erential equation (2.1), we �nd

diamχΩT,zpHq ¤ 2 diam
|  |

ΩT,zpHq ¤ 2 �
2

Im z �
T
³

0

h2ptq dt

¤

8

T � Im z
.

Now onsider the ase where

T
»

0

h2psq ds  
T

2
.

Then we must have

T
»

0

h1psq ds ¥
T

2
,

and the already established estimate applies to

rH :
� �JHJ . A omputation

shows that W p

rH;T, zq � �JW pH;T, zqJ , and hene the Weyl disk ΩT,zp
rHq is

the image of ΩT,zpHq under the frational linear transformation with oe�ient
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matrix J . Sine J is unitary, this is a rotation of the sphere, and hene is

isometri with respet to the hordal metri. We obtain

diamχ ΩT,zpHq � diamχ ΩT,zp
rHq ¤

8

T � Im z
. �

Proof of Theorem 2.12. Let (HnqnPH be a sequene in H that onverges

to some H P H. By the de�nition of the topology of H, this means that

limw
nÑ8

ρT pHnq � ρT pHq for every T ¡ 0.

Write W pH;T, zq � pwijpH; t, zqq2i,j�1, and denote

Qn,T pzq :�
w12pHn;T, zq

w22pHn;T, zq
, QT pzq :�

w12pH;T, zq

w22pH;T, zq
, z P C

�

.

Throughout the following, all limits of omplex numbers are understood with

respet to the hordal metri χ.

Let K � C
�

satisfy infzPK Im z ¡ 0. Lemma 2.13 shows that the limit

q
rH
pzq � lim

TÑ8

w12p
rH;T, zq

w22p
rH;T, zq

de�ning the Weyl oe�ient of a Hamiltonian

rH is attained uniformly for

p

rH, zq P H�K. This implies

� limTÑ8

Qn,T pzq � qHn
pzq uniformly for pn, zq P N�K;

� limTÑ8

QT pzq � qHpzq uniformly for z P K.

Theorem 2.6 says that

� for eah T ¡ 0 we have limnÑ8

Qn,T pzq � QT pzq loally uniformly for

z P C
�

.

Together, we obtain

qHpzq � lim
TÑ8

lim
nÑ8

Qn,T pzq � lim
nÑ8

lim
TÑ8

Qn,T pzq � lim
nÑ8

qHn
pzq

loally uniformly for z P C
�

.

Being a ontinuous bijetion of a ompat spae onto a Hausdor� spae, Ψ

is a homeomorphism. �

We often use the ontinuity of Ψ in another form.

De�nition 2.14. We denote by Φ the map

Φ:

"

H� C
�

Ñ C
�

,

pH,wq ÞÑ qHpwq.

The following reformulations of the ontinuity of Ψ are obtained by elemen-

tary arguments; an expliit proof is deferred to the preprint version [PW19℄ of

this artile.
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Corollary 2.15 (Continuity; Weyl oe�ients � a variant). Eah of the

properties (i) and (ii) below is equivalent to the T -to-Tlu-ontinuity of Ψ, and

hene holds true.

(i) The map Φ is ontinuous when H � C
�

is endowed with the produt

topology of T and the Eulidean topology.

(ii) For every ompat set K � C
�

the family tΦp  , wq | w P Ku is

equiontinuous.

2.3. Constant Hamiltonians. A partiular role is played by Hamiltonians

H P H that are onstant a.e. on p0,8q. We denote the set of all tham by CH.

Constant Hamiltonians an be identi�ed with the points of C
�

.

De�nition 2.16. Let Θ: C
�

Ñ CH be the map ating as

Θpζq :�
�

h1 h3

h3 h2

	

,

where

h1 :�
|ζ|2

|ζ|2 � 1
, h2 :�

1

|ζ|2 � 1
, h3 :�

Re ζ

|ζ|2 � 1
,

if ζ � 8, and

Θp8q :�
�

1 0
0 0

	

.

The map Θ is bijetive. Its inverse Θ�1 : CHÑ C
�

is given by

Θ�1
�

h1 h3

h3 h2

	

�

h3 � i
a

h1h2 � h23
h2

if h2 � 0, and

Θ�1
�

1 0

0 0

	

� 8.

Note that detΘpζq � 0 if and only if ζ P R, and that Θpζq is diagonal if and

only if ζ P iR
�

From the de�ning formulas it is obvious that for eah T ¡ 0 the map

ρT �Θ: C
�

Ñ xHT ,T
}  }1

y is ontinuous. Thus ρT �Θ is also ontinuous into Tw,

and hene Θ is ontinuous into xH,T y. Sine C
�

is ompat, eah of

xρT pCHq,T
}  }1

y, xρT pCHq,Twy, xCH,T y

is homeomorphi to C
�

. In partiular, these spaes are all ompat.

Remark 2.17. The de�nition of Θ is formulated in suh a way that

qΘpζqpzq � ζ, z P C
�

,
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in other words, ΦpΘpζq, wq � ζ, w P C
�

. This is shown by a simple alulation,

see e.g., [EKT18, �2.2, Example 1℄

2

.

For later use we introdue a separate notation for onstant Hamiltonians

orresponding to boundary points of C
�

, namely,

CH0 :� ΘpRq �
 

H P CH | detH � 0
(

.

�3. The resaling method

We have already mentioned the resaling operation Ar : Hp  q ÞÑ Hp1
r
�  q

on Hamiltonians in (1.5). In this setion we put this in an appropriate frame-

work and establish the relationship between luster sets of ArH for r Ñ 8

and qHpzq for z Ñ i8.

Clearly, Ar maps H into itself and satis�es the omputation rules

A1 � id, �r, s ¡ 0: Ar �As � As �Ar � Ars. (3.1)

This means preisely that the map

"

R
�

�H Ñ H,

pr,Hq ÞÑ ArH.
(3.2)

is a group ation of R
�

on H.

Lemma 3.1. The map (3.2) is ontinuous.

Proof. Assume we are given Hn,H P H with Hn Ñ H and rn, r P R
�

with

rn Ñ r, and assume without loss of generality that

r
2
¤ rn ¤ 2r for all n. We

have to show that

�T ¡ 0: ρTArnHn
w
ÝÑ ρTArH.

Reall Remark 2.2 and let e1, e2 P
 �

1
0

�

,
�

0
1

�(

and f P L8p0, T q be given.

Denote by

rf the extension of f to the element of L8p0,8q with

rfptq � 0,

t ¥ T . Then we have

T
»

0

e�1
�

pρTArnHnqptq � pρTArHqptq
�

e2 � f ptq dt

�

T
»

0

e�1
�

Hnp
t
rn
q �Hp t

rn
q

�

e2 � f ptq dt�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt

2

Caution: notation in [EKT18℄ is di�erent.
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� rn

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 � rf prnsq ds�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt

�

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 �
�

rfprnsq � rfprsq
�

ds

�

2

r
T
»

0

e�1
�

Hnpsq �Hpsq
�

e2 � rf prsq ds�

T
»

0

e�1
�

Hp t
rn
q �Hp t

r
q

�

e2 � f ptq dt.

The �rst summand tends to 0 beause

}e�1pHnpsq �Hpsqqe2}8 ¤ 2

and

}

rfprnsq � rfprsq}1 Ñ 0,

the seond summand also tends to zero beause

Hn Ñ H in H,

and the third beause

}Hp t
rn
q �Hp t

r
q}1 Ñ 0. �

The fat that (3.2) is a ontinuous group ation has some immediate onse-

quenes. In our ontext, the following two are of interest.

Remark 3.2.

(i) For every H P H and s ¡ 0 the map As leaves C lrArHs invari-

ant. Hene, (3.2) indues a ontinuous group ation on the luster set

C lrArHs.

(ii) For every H P H the stabiliser

pR
�

qH :
�

 

r P R
�

| ArH � H
(

is a losed subgroup of R
�

.

Item (ii) of the above remark shows that pR
�

qH is either equal to t1u or R
�

,

or is of the form tpn | n P Zu for some p ¡ 1. We have pR
�

qH � R
�

if and only

if H P CH, and pR
�

qH is a nontrivial subgroup if and only if H is nononstant

and multipliatively periodi.

Remark 3.3. The ase of a nontrivial stabiliser is partiularly simple: if H is

multipliatively periodi with primitive period p ¡ 1, then

C lrArHs � tArH | 1 ¤ r ¤ pu. (3.3)
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For the inlusion ��� note that

tArH | r ¡ 0u � tArH | 1 ¤ r ¤ pu,

and hene the orbit of H is ompat. The reverse inlusion holds sine

AspnH � AsH for all n P N and s ¡ 0, and hene

AsH � lim
nÑ8

AspnH P C lrArHs.

Resaling operators have a resaling e�et on fundamental solutions. This

is a partiular ase of [EKT18, Lemma 2.7℄. For onveniene of the reader, we

reall the argument.

Lemma 3.4. Let H P H and let r ¡ 0. Then the fundamental solutions,

Weyl disks, and Weyl oe�ients of H and ArH are related as follows (t ¥ 0,

z P C
�

):

W pArH; t, zq �W pH; t
r
, rzq, Ωt,zpArHq � Ω t

r
,rzpHq, qArHpzq � qHprzq.

If we use the notation Φ from De�nition 2.14, the relation between Weyl oef-

�ients writes as

�H P H, r ¡ 0, z P C
�

: ΦpArH, zq � ΦpH, rzq. (3.4)

Proof. Set

�W pt, zq :�W pH; t
r
, rzq. Then

B

Bt
�W pt, zqJ �

1

r

B

Bt
W pH;

t

r
, rzq

�

1

r
� rz �W pH;

t

r
, rzqH

� t

r

�

� z�W pt, zqpArHqptq.

Thus

�W pt, zq is the fundamental solution of ArH.

The relation between Weyl disks follows immediately, and the relation be-

tween Weyl oe�ients follows by letting tÑ8. �

The next proposition is the basis for translating luster sets of ArH to those

of qH .

Given a subset M � C
�

as in (1.4), we denote the limiting diretions of M

by

DpMq

:
�

 

θ P r0, πs | Dzn PM : |zn| Ñ 8^ arg zn Ñ θ
(

.

Note that DpMq is losed and ontained in p0, πq.

Proposition 3.5. Let M � C
�

be as in (1.4) and let H P H. Then

C pqH ,Mq � Φ
�

C lrArHs � eiDpMq

�

� C
�

qH , eiDpMq

r1,8q
�

. (3.5)
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Proof. To show the inlusion on the left of (3.5), let w P C pqH ,Mq. Choose

zn P M with |zn| Ñ 8 and qHpznq Ñ w. By the ompatness of H and r0, πs,

we an hoose a subsequene suh that both limits

rH :
� lim

kÑ8

A
|znk

|

H, θ :
� lim

kÑ8

arg znk
,

exist. Then θ P DpMq, and the ontinuity of Φ implies that

w � lim
kÑ8

qHpznk
q � lim

kÑ8

Φ
�

A
|zn

k
|

H, ei arg znk

�

� Φp rH, eiθq.

The inlusion ��� of the laimed identity on the right of (3.5) readily follows

beause DpMq is losed and hene

D
�

eiDpMq

r1,8q
�

� DpMq.

To prove the reverse inlusion, let w P ΦpC lrArHs � eiDpMq

q be given. Write

w � Φp rH, eiθq with some

rH P C lrArHs and θ P DpMq, and hoose rn Ñ 8

with

rH � limnÑ8

ArnH. Then

w � Φp rH, eiθq � lim
nÑ8

ΦpArnH, eiθq � lim
nÑ8

qHprne
iθ
q P C pqH , eiθr1,8qq. �

We also obtain some knowledge about outer angular luster sets.

Proposition 3.6. Let H P H. Then

(i) C
?

pqHq � Φ
�

C lrArHs � C
�

�

;

(ii) C lrArHs � CHñ for all M as in (1.4) we have

C pqH ,Mq � C
?

pqHq � Θ�1
�

C lrArHs
�

;

(iii) C lrArHs XCH � H ñ C
?

pqHq is open.

Proof. Using Remark 3.2 (i) and (3.5) we �nd

Φ
�

C lrArHs�C
�

�

�Φ
�

C lrArHs � eip0,πq
�

�

¤

αPp0,
π
2
s

Φ
�

C lrArHs � eirα,π�αs
�

�

¤

αPp0,
π
2
s

C pqH ,Γαq�C
?

pqHq.

Assume now that C lrArHs � CH, and set K :
� Θ�1

pC lrArHsq. Then

C
?

pqHq � Φ
�

C lrArHs � C
�

�

�

¤

rHPC lrArHs

q
rH
pC

�

q �

¤

rHPC lrArHs

tΘ�1
p

rHqu � K.

The inlusion C pqH ,Mq � C
?

pqHq is trivially true. Let ξ P K, and hoose

rn Ñ 8 with ArnH Ñ Θpξq. Sine tz P M | |z| ¡ ru is onneted for all

su�iently large r, for all su�iently large n we an hoose points zn PM with
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|zn| � rn. Choose a subsequene suh that arg znk
Ñ θ for some θ P p0, πq.

Then

qHpznq � Φ
�

A
|znk

|

H, ei arg znk

�

Ñ Φ
�

Θpξq, eiθ
�

� ξ,

and therefore ξ P C pqH ,Mq.

Finally, assume that C lrArHs X CH � ∅. Then

C
?

pqHq � Φ
�

C lrArHs � C
�

�

�

¤

rHPC lrArHs

q
rH
pC

�

q,

and eah set in the union on the right is open. �

Let us revisit the multipliatively periodi situation.

Remark 3.7. Let H P H be nononstant and multipliatively periodi.

Then (3.3) and Proposition 3.6 (iii) imply that C
?

pqHq is open. In partiular,

the outer angular luster set is not equal to any of the luster sets C pqH ,Mq.

�4. Weyl oe�ients with presribed luster set

In the theorem below we give an expliit onstrution of Hamiltonians H

for whih the luster set of qH an be omputed. These Hamiltonians are

pieewise onstant on quikly shrinking intervals that aumulate only at the

initial point.

In the formulation of the theorem we denote the luster set of a sequene

pζnqnPN in C
�

by

C lrζns :�
 

ζ P C
�

| Dnk P N : nk Ñ8^ lim
kÑ8

ζnk
� ζ

(

.

Moreover, reall that χ denotes the hordal metri on C
�

.

Theorem 4.1. Let ptnqnPN be a sequene of positive numbers with

1 � t1 ¡ t2 ¡ t3 ¡ . . . , lim
nÑ8

tn � 0, lim
nÑ8

tn�1

tn
� 0,

and let pζnqnPN be a sequene of points on C
�

with

lim
nÑ8

χpζn�1, ζnq � 0.

De�ne H to be the pieewise onstant Hamiltonian

Hptq :�

#

Θpζnq, t P ptn�1, tns, n P N,

Θp0q, t P p1,8q.
(4.1)

Then, for every M as in (1.4),

C
?

pqHq � C pqH ,Mq � C lrζns.
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An elementary argument shows that for every nonempty, losed, and on-

neted subset L of C
�

there exists a sequene pζnqnPN with C lrζns � L (an

expliit proof an be found in [PW19℄). Thus we obtain an expliit solution of

an inverse problem dealing with boundary interpolation.

Corollary 4.2. Let L � C
�

be nonempty, losed, and onneted. Then we an

onstrut a Hamiltonian H for whose Weyl oe�ient qH the outer angular

and radial luster sets at i8 are both equal to L.

We turn to the proof of Theorem 4.1. The ruial step is presented in the

next lemma. Here we denote by d
}  }

the metri indued by the L1
-norm.

Lemma 4.3. Let H P H and assume that

lim
rÑ8

d
}  }

�

ρ1ArH, ρ1ΘpCHq
�

� 0. (4.2)

Moreover, denote

K :
�

 

ξ P C
�

| ρ1Θpξq P C l
}  }

rρ1ArHs
(

. (4.3)

Then

(i) C l
}  }

rρTArHs � ρTΘpKq, for all T ¡ 0,

(ii) C lrArHs � ΘpKq.

Proof. Let T ¡ 0 and set

KT :
�

 

ξ P C
�

| ρTΘpξq P C l
}  }

rρTArHs
(

.

The relation

}ρTArH � ρTΘpξq}1 �

T
»

0

}Hp t
r
q �Θpξq} dt

�T

1
»

0

}HpT
r
� tq �Θpξq} dt � T }ρ1A r

T
H � ρ1Θpξq}1,

whih is true for all H P H and ξ P C
�

, shows that

lim inf
rÑ8

}ρTArH � ρTΘpξq}1 �T � lim inf
rÑ8

}ρ1A r

T
H � ρ1Θpξq}1, (4.4)

d
}  }

�

ρTArH, ρTΘpCHq
�

�T � d
}  }

�

ρ1A r

T
H, ρ1ΘpCHq

�

. (4.5)

Relation (4.4) implies that KT � K for all T ¡ 0, and (4.5) that

�T ¡ 0: lim
rÑ8

d
}  }

�

ρTArH, ρTΘpCHq
�

� 0. (4.6)
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Sine ρTΘpCHq is ompat with respet to }  }1, and hene losed, (4.6) in

turn implies that

C l
}  }

rρTArHs � ρTΘpCHq.

Item (i) of the present assertion follows.

The inlusion ��� in item (ii) holds true beause of a general argument.

Namely, it is ful�lled for every Hamiltonian H P H that

 

rH P H | �T ¡ 0: ρT rH P C l
}  }

rρTArHs
(

� C lrArHs.

To show this, assume that

rH belongs to the set on the left. We hoose indu-

tively numbers rn ¡ 0, suh that

�n P N : rn�1 ¥ rn � 1^ }ρnArnH � ρn rH}1 ¤
1

n
.

Given T ¡ 0, for all n ¥ T we have

}ρTArnH � ρT rH}1 ¤ }ρnArnH � ρn rH}1 ¤
1

n
,

and hene ρTArnH
}  }1

ÝÑ

rH. This learly implies that ArnH Ñ

rH.

The reverse inlusion ��� in item (ii) relies on the assumption (4.2). Assume

that

rH P C lrArHs and hoose a sequene rn Ñ8 suh that ArnH Ñ

rH. Then

ρTArnH
w
ÝÑ

rH for all T ¡ 0. (4.7)

Let T ¡ 0. Sine (4.6) holds and ρTΘpCHq is ompat with respet to }  }1,

we �nd a point ξ P C
�

and a subsequene prnk
qkPN (both depending on T )

suh that

ρTArn
k
H

}  }1

ÝÑ Θpξq. (4.8)

Combining this with (4.7), we see that ρT rH � ρTΘpξq. It follows that ξ is

independent of T and that

rH � Θpξq. By (4.8), used for T � 1, we have

ξ P K. �

Proof of Theorem 4.1. The funtion

ρ1 �Θ: C
�

Ñ L1
pp0, 1q,C2�2

q

is χ-to-}  }1�ontinuous and injetive. Sine C
�

is ompat, it is therefore

uniformly ontinuous and a homeomorphism onto its image. Let ω : R
�

Ñ R
�

be the modulus of ontinuity of ρ1 �Θ, so that

lim
δÑ0

ωpδq � 0 ^ �ζ, ξ P C
�

: }ρ1Θpζq � ρ1Θpξq}1 ¤ ωpχpζ, ξqq.

We show that

�n P N, r P
�

1
tn
, 1
tn�1

�

: }ρ1ArH � ρ1Θpζnq}1 ¤ 4
tn�2

tn�1

� ωpχpζn�1, ζnqq. (4.9)
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To see this, estimate

rtn�2
»

0

}Hp t
r
q �Θpζnq} dt ¤ 4rtn�2 ¤ 4

rtn�2

rtn�1

,

rtn�1
»

rtn�2

}Hp t
r
q �Θpζnq} dt �

rtn�1
»

rtn�2

}Θpζn�1q �Θpζnq} dt

¤ }ρ1Θpζn�1q � ρ1Θpζnq}1 ¤ ωpχpζn�1, ζnqq,

1
»

rtn�1

}Hp t
r
q �Θpζnq} dt � 0.

For r¥1 let nprqPN be a unique number with r

1
tn
, 1
tn�1

q. Then limrÑ8

nprq�8.

The right-hand side of (4.9) tends to 0 as n tends to 8, and hene for every

sequene rk Ñ8 we have

lim
kÑ8

}ρ1ArkH � ρ1Θpζnprkqq}1 � 0.

This shows that (4.2) holds true and that

C l
}  }

rρ1ArHs � C l
}  }

rρ1Θpζnqs.

If nk Ñ 8, then (4.9) shows that

lim
kÑ8

}ρ1A 1

tn
k

H � ρ1Θpζnk
q}1 � 0,

and it follows that

ρ1Θ
�

C lrζns
�

� C l
}  }

rρ1ArHs.

Sine ρ1 �Θ is a homeomorphism between ompat sets,

ρ1Θ
�

C lrζns
�

� C l
}  }

rρ1Θpζnqs,

and we see that the set K from (4.3) is equal to C lrζns.

The asserted properties of qH now follow from Lemma 4.3 and Proposi-

tion 3.6 (ii). �

Let us pass from the half-plane to the unit disk with the frational linear

transformation βpzq :� z�i
z�i

, whih maps C�

onto the losed unit disk D with

βp8q � 1.
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Remark 4.4. Consider a Hamiltonian of the form (4.1). Sine H is on-

stant equal to Θp0q on the interval p1,8q, the Weyl oe�ient qH is given

by qH �

w12

w22
, where

w12pzq :� p1, 0qW pH; 1, zq

�

0

1




, w22pzq :� p0, 1qW pH; 1, zq

�

0

1




.

Sine detH is onstant equal to 0, the entire funtion W pH; 1, zq is of zero

exponential type. The funtion

Bpzq :� β � qH � β�1
�

w12 � iw22

w12 � iw22

� β�1

is thus a Blashke produt whose zeroes have no �nite aumulation point.

Cluster sets of qH towards i8 learly orrespond to luster sets of B to-

wards 1. Thus we reobtain the fat that for every nonempty, losed, and on-

neted subset L of D, there exists a Blashke produt whose outer angular and

radial luster sets at 1 are equal to L.

In the ontext of the present onstrution and its onsequenes for funtions

on the disk some open questions our.

(i) We do not know if the funtion onstruted in the above way has

also luster set L when z is allowed to approah 1 in an unrestrited,

possibly tangential, way.

(ii) We do not know if our onstrution method an be modi�ed so as to

yield results about simultaneous boundary interpolation at more than

one point (as done for radial luster sets in [BCP85,De94,Don01℄).

(iii) We do not know if our onstrution method an be modi�ed to pro-

due an approah to luster values along a presribed urve when z

approahes the point 1 radially (as in [Don01, Theorem 1℄).

(iv) We do not know an analog of Theorem 4.1 for outer angular luster

sets that realises any ountable inreasing union of nonempty losed

onneted sets (and by this proves Gauthiers onjeture).

Conerning the third question we have some preliminary results indiating that

the answer is a�rmative.
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