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We study spectral properties of two-dimensional canonical 
systems y′(t) = zJH(t)y(t), t ∈ [a, b), where the Hamilto-
nian H is locally integrable on [a, b), positive semidefinite, 
and Weyl’s limit point case takes place at b. We answer the 
following questions explicitly in terms of H:

Is the spectrum of the associated selfadjoint operator dis-
crete?
If it is discrete, what is its asymptotic distribution?

Here asymptotic distribution means summability and limit 
superior conditions relative to comparison functions growing 
sufficiently fast. Making an analogy with complex analysis, 
this corresponds to convergence class and type w.r.t. proxi-
mate orders having order larger than 1. It is a surprising fact 
that these properties depend only on the diagonal entries of H.
In 1968 L.de Branges posed the following question as a fun-
damental problem:

Which Hamiltonians are the structure Hamiltonian of 
some de Branges space?
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We give a complete and explicit answer.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We study the spectrum of the selfadjoint model operator associated with a two-
dimensional canonical system

y′(t) = zJH(t)y(t), t ∈ [a, b). (1.1)

Here H is the Hamiltonian of the system, −∞ < a < b ≤ ∞, J is the symplectic matrix 
J :=

(
0 −1
1 0

)
, and z ∈ C is the eigenvalue parameter. We assume throughout that H

satisfies

� H ∈ L1([a, c), R2×2), c ∈ (a, b), and {t ∈ [a, b) : H(t) = 0} has measure 0,
� H(t) ≥ 0, t ∈ [a, b) a.e. and 

∫ b

a
trH(t) dt = ∞.

Differential equations of this form originate from Hamiltonian mechanics, and appear 
frequently in theory and applications. Various kinds of equations can be rewritten to 
the form (1.1), and several problems of classical analysis can be treated with the help of 
canonical systems. For example we mention Schrödinger operators [33], Dirac systems 
[41], or the extrapolation problem of stationary Gaussian processes via Bochners theorem 
[22]. Other instances can be found, e.g., in [19,18], [27], [2], or [1].

The direct and inverse spectral theory of the equation (1.1) was developed in [11,7]. 
Recent references are [34,35].

With a Hamiltonian H a Hilbert space L2(H) is associated, and in L2(H) a selfadjoint 
operator A[H] is given by the differential expression (1.1) and by prescribing the boundary 
condition (1, 0)y(a) = 0 (in one exceptional situation A[H] is a multivalued operator, but 
this is only a technical difficulty). This operator model behind (1.1) was given its final 
form in [14,15]. A more accessible reference is [12], and the relation with de Branges’ 
work on Hilbert spaces of entire functions was made explicit in [43,44].

In the present paper we answer the following questions:

Is the spectrum of A[H] discrete?
If it is discrete, what is its asymptotic distribution?

The question about asymptotic distribution is understood as the problem of finding the 
convergence exponent and the upper density of eigenvalues in terms of the Hamiltonian.
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Discreteness of the spectrum. In our first theorem we characterise discreteness of the 
spectrum of A[H].

1.1 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [a, b) and assume that 

∫ b

a
h1(s) ds <

∞. Then the spectrum of A[H] is discrete if and only if

lim
t↗b

( b∫
t

h1(s) ds ·
t∫

a

h2(s) ds
)

= 0. (1.2)

1.2 Remark. The assumption that 
∫ b

a
h1(s) ds < ∞ in Theorem 1.1 is made for normal-

isation and is no loss in generality. First, a necessary condition that 0 /∈ σess(A[H]) is 
that there exists some angle φ ∈ R such that 

∫ b

a
(cosφ, sinφ)H(s)(cosφ, sinφ)∗ ds < ∞. 

Second, applying rotation isomorphism always allows to reduce to the case that φ = 0. 
We will give details in Section 5.2. ♦

Let us remark that Theorem 1.1 yields a new proof of the discreteness criterion for strings 
given by I.S. Kac and M.G. Krein in [21, Theorema 4,5], of [37, Theorem 1.4], and of 
[17, Theorem 1] (see Appendix B).

Structure Hamiltonians of de Branges spaces. Recall that a de Branges space H(E) is 
a reproducing kernel Hilbert space of entire functions with certain additional proper-
ties, whose kernel is generated by a Hermite-Biehler function E. For each de Branges 
space there exists a unique maximal chain of de Branges subspaces H(Et), t ≤ 0, con-
tained isometrically (on exceptional intervals only contractively) in H(E). The generating 
Hermite-Biehler functions Et satisfy a canonical system on the interval (−∞, 0] with 
some Hamiltonian H, and this Hamiltonian is called the structure Hamiltonian of H(E).

L. de Branges identified in [6, Theorem IV] (see also [7, Theorem 41]) a particular 
class of Hamiltonians which are structure Hamiltonians of de Branges spaces. Namely 
those corresponding to functions E of Polya class. A mild generalisation of de Branges’ 
theorem can be found in [29, Theorem 4.11], and a further class of structure Hamiltonians 
is identified (in a different language) by the already mentioned work of I.S. Kac and 
M.G. Krein [21] and its generalisation in [37]. These classes do by far not exhaust the set 
of all structure Hamiltonians. In 1968, after having finalised his theory of Hilbert spaces 
of entire functions, de Branges posed the following question as a fundamental problem, 
cf. [7, p.140]:

Which Hamiltonians H are the structure Hamiltonian of some de Branges space 
H(E)?

In the following decades there was no significant progress towards a solution of this 
question. One result was claimed by I.S. Kac in 1995; proofs have never been published. 
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He states a sufficient condition and a (different) necessary condition for H to be a 
structure Hamiltonian. Unfortunately, his conditions are difficult to handle.

The connection with Theorem 1.1 is the following: a Hamiltonian is the structure 
Hamiltonian of some de Branges space H(E), if and only if the operator A[H̃] associated 
with the reversed Hamiltonian

H̃(t) :=
(

1 0
0 −1

)
H(−t)

(
1 0
0 −1

)
, t ∈ [0,∞),

has discrete spectrum. This can be seen by a simple “juggling with fundamental 
solutions”–argument. A proof based on a different argument was published in [20], see 
also [29, Theorem 2.3].

Hence we obtain from Theorem 1.1 a complete and explicit answer to de Branges’ 
question.

Summability properties. We turn to discussing the asymptotic distribution of σ(A[H]). 
Consider a Hamiltonian H with discrete spectrum. Then its spectrum is a (finite or 
infinite) sequence of simple eigenvalues without a finite accumulation point. If σ(A[H])
is finite, any questions about the asymptotic behaviour of the eigenvalues are obsolete. 
Moreover, under the normalisation that 

∫ b

a
h1(s) ds < ∞, the point 0 is not an eigenvalue 

of A[H]. Hence, we can think of σ(A[H]) as a sequence (λn)∞n=1 of pairwise different real 
numbers arranged such that

0 < |λ1| ≤ |λ2| ≤ |λ3| ≤ . . . (1.3)

In our second theorem we characterise summability of the sequence (λ−1
n )∞n=1 rela-

tive to suitable comparison functions. In particular, this answers the question whether 
(λ−1

n )∞n=1 ∈ �p when p > 1. The only known result in this direction is [25, Theorem 2.4], 
which settles the case p = 2; we reobtain this theorem.

As comparison functions we use regularly varying functions, i.e., measurable functions 
g: [0, ∞) → (0, ∞) such that there exists ρg ∈ R with

lim
x→∞

ψ(kx)
ψ(x) = kρg , ∀k > 0.

The number ρg is called the order (or index) of g. Regularly varying functions form a 
comparison scale which is finer than the scale of powers rρ. The history of working with 
growth scales other than powers probably starts with the paper [28], where E. Lindelöf 
compared the growth of an entire function with functions of the form

g(r) = rρ ·
(
log r

)β1 ·
(
log log r

)β2 · . . . ·
(
log · · · log︸ ︷︷ ︸
mth-iterate

r
)βm for r large.

A function of this form is regularly varying with order ρ. In what follows the reader may 
think of g(r) for simplicity as a concrete function of this form, or simply as a power rρ.
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1.3 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on an interval [a, b) such that ∫ b

a
h1(s) ds < ∞ and that A[H] has discrete spectrum. Moreover, assume that h1 does 

not vanish a.e. on any interval (c, b) with c ∈ (a, b). Let g be a regularly varying func-
tion with order ρg > 1. Then

∞∑
n=1

1
g(|λn|)

< ∞ ⇔

b∫
a

[
g

(( b∫
t

h1(s) ds ·
t∫

a

h2(s) ds
)− 1

2
)]−1

· h1(t) dt∫ b

t
h1(s) ds

< ∞.

1.4 Remark. For the same reasons as explained in Remark 1.2, the assumption that ∫ b

a
h1(s) ds < ∞ is just a normalisation and no loss in generality. Also the assumption 

that h1 cannot vanish a.e. on any interval (c, b) is no loss of generality. The reason being 
that, if h1 does vanish on an interval of this form, then the Krein-de Branges formula, 
cf. [23, p.369 (english translation)], [6, Theorem X], says that

lim
n→∞

n

λ+
n

= lim
n→∞

n

λ−
n

= 1
π

b∫
a

√
detH(s) ds, (1.4)

where λ±
n denote the sequences of positive and negative, respectively, eigenvalues ar-

ranged according to increasing modulus. In particular, the series 
∑∞

n=1
1

g(|λn|) converges 
whenever ρg > 1. ♦

Theorem 1.3 yields new proofs for the conditions for square summability given in [25]
and in [21, p.139f] in the string case. It also gives a new approach to the results on the 
convergence exponent of the spectrum of a string given in [13, Theorema 1,2] and in [16]
for the case of orders between 1

2 and 1.

Limit superior properties. In our third theorem, we characterise lim sup–properties of 
the sequence (λn)∞n=1, again relative to regularly varying functions g with ρg > 1. 
While the characterisations in Theorems 1.1 and 1.3 are perfectly explicit in terms of H, 
the conditions occurring in this context are somewhat more complicated. The reason 
for this is intrinsic, and manifests itself in the necessity to pass to the nonincreasing 
rearrangement of a certain sequence.

1.5 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on an interval [a, b) such that ∫ b

a
h1(s) ds < ∞ and that A[H] has discrete spectrum. Moreover, assume that h1 does 

not vanish a.e. on any interval (c, b) with c ∈ (a, b). Let g be a regularly varying func-
tion with order ρg > 1.
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Choose a right inverse χ of the nonincreasing surjection
⎧⎨
⎩ [a, b] → [0, 1]

t 	→
( ∫ b

a
h1(s) ds

)−1( ∫ b

t
h1(s) ds

)
and let (ω∗

n)n∈N be the nonincreasing rearrangement of the sequence (ωn)n∈N defined as

ωn := 2−n
2

( χ(2−n)∫
χ(21−n)

h2(s) ds
) 1

2

, n ∈ N.

Then

(i) lim sup
n→∞

n

g(|λn|)
< ∞ ⇔ lim sup

n→∞

n

g((ω∗
n)−1) < ∞,

(ii) lim
n→∞

n

g(|λn|)
= 0 ⇔ lim

n→∞
n

g((ω∗
n)−1) = 0.

Remember here Remark 1.4.

Outline of the proofs. The proof of Theorems 1.1, 1.3, and 1.5 proceeds through four 
stages.

➀ The first stage is to pass from eigenvalue distribution to operator theoretic prop-
erties. This is done in a standard way using symmetrically normed operator ideals: 
discreteness of the spectrum of A[H] is equivalent to (A[H] − z)−1 being compact, 
summability properties of σ(A[H]) are equivalent to (A[H]− z)−1 belonging to Orlicz 
ideals, and lim sup–properties of σ(A[H]) are equivalent to (A[H] − z)−1 belonging to 
Lorentz spaces.

➁ Simple considerations (apparently known in the folklore) resumed in Theorem 3.4
show that the eigenvalues of the canonical system with Hamiltonian H are estimated 
by those of the system with Hamiltonian diagH, where diagH is obtained from 
H by replacing its off-diagonal entries by 0. In fact, it holds that |λn(A[H])|−1 ≤
2|λn(A[diag H])|−1, and therefore (A[diag H] − z)−1 ∈ I implies (A[H] − z)−1 ∈ I for 
any operator ideal I ⊆ S∞. The second stage is to prove the probably surprising 
fact that for a wide class of ideals the converse is also true. If a weak variant of 
Matsaev’s Theorem on real and imaginary parts of Volterra operators holds in I, 
then membership of resolvents (A[H] − z)−1 in I is independent of h3. This is the 
reason why the conditions in our theorems do not involve the off-diagonal entry h3
of the Hamiltonian H.

➂ In a work of A.B. Aleksandrov, S. Janson, V.V. Peller, and R. Rochberg, member-
ship in Schatten classes of integral operators whose kernel has a particular form is 
characterised using a dyadic discretisation method. The third stage is to realise that 
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a minor generalisation of one of their results suffices to prove the mentioned weak 
Matsaev Theorem in the ideal S∞ of all compact operators. For Orlicz- and Lorentz 
ideals, it is known that (the full) Matsaev Theorem holds. Thus the Independence 
Theorem stated in ➁ will apply to all ideals occurring in ➀.

➃ The final stage is to characterise membership in the mentioned ideals for a diagonal 
Hamiltonian (meaning that h3 = 0). This again rests on the discretisation method 
from [3], which yields characterisations of a sequential form (as the one stated in 
Theorem 1.5) for all ideals occurring in ➀. For the cases of S∞ and Orlicz ideals, 
sequential characterisations can be rewritten to a continuous form (as stated in 
Theorems 1.1 and 1.3). This is nearly obvious for S∞, while for Orlicz ideals a little 
more effort and passing to dual spaces is needed.

The threshold ρg = 1. It is not difficult to find Hamiltonians H =
(

h1 h3
h3 h2

)
whose 

spectrum is discrete and satisfies limn→∞
n

|λn|ρ ∈ (0, ∞) for some ρ < 1, and for which 
h1h2 does not vanish a.e., see Example 1.7. Together with Example 1.6, this shows that 
for every Schatten–von Neumann class Sp with ρ < p ≤ 1, the Independence Theorem 
mentioned in ➁ fails. This shows that our method necessarily must break down at (and 
below) trace class, i.e., growth of speed g(r) := r.

On a less concrete level, growth of order 1 is a threshold because of (at least) four 
reasons.

� Orders larger than 1, meaning eigenvalue distribution more dense than integers, can 
occur only from the behaviour of tails of H at its singular endpoint b. In fact, for 
ρ > 1, the spectrum of A[H] is discrete with convergence exponent ρ if and only if 
for some c ∈ (a, b) the spectrum of A[H|[c,b)] is discrete with convergence exponent ρ.
Contrasting this, orders less than 1 will in general accumulate over the whole interval 
(a, b). In fact, it may happen that σ(A[H]) has convergence exponent 1 while for every 
c ∈ (a, b) the spectrum of the tail H|[c,b) has convergence exponent 0.

� Entire functions of bounded type have very specific properties related to exponential 
type. In complex analysis, orders larger than 1 are usually considered as more stable 
than smaller orders.

� The theory of symmetrically normed operator ideals is significantly more complicated 
for ideals close to trace class than for ideals containing some Schatten–von Neumann 
class Sp with p > 1. When going even below trace class, a lot of the theory breaks 
down completely.

� Rewriting asymptotic conditions on the spectral distribution to conditions on mem-
bership in Orlicz- and Lorentz ideals is not anymore possible when coming close to 
trace class.

Let us now give two examples which illustrate our results. They are simple, and given 
by Hamiltonians related to a string, but, as we hope, still illustrative. At this point we 
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only state their spectral properties; the proof is given in Section 5.3, where we in fact 
treat a more general example.

1.6 Example. Given α > 1 and α1, α2 ∈ R, we consider the Hamiltonian (to avoid bulky 
notation, we skip indices α, α1, α2 at h2)

Hα;α1,α2(t) :=
(

1 0
0 h2(t)

)
, t ∈ [0, 1),

where

h2(t) :=
( 1

1 − t

)α(
1 + log 1

1 − t

)−α1(
1 + log+ log 1

1 − t

)−α2
, t ∈ [0, 1). (1.5)

Since α > 1, we have 
∫ 1
0 h2(t) dt = ∞.

If α > 2, then 0 belongs to the essential spectrum of A[Hα;α1,α2 ], and if α ∈ (1, 2), 
then the spectrum is discrete with convergence exponent 1 but lim infn→∞

n
|λn| > 0, in 

particular, 
∑∞

n=1
1

|λn| = ∞.
A behaviour between those extreme situations occurs when α = 2. First, the spectrum 

of A[H2;α1,α2 ] is discrete, if and only if

(α1 > 0) ∨ (α1 = 0, α2 > 0).

For such parameter values, the convergence exponent of the spectrum is

conv.exp. of σ(A[H2;α1,α2 ]) =

⎧⎪⎪⎨
⎪⎪⎩
∞ , α1 = 0,
2
α1

, α1 ∈ (0, 2),
1 , α1 ≥ 2.

(1.6)

For α1 ∈ (0, 2), we have a more refined lim sup-property relative to a comparison function 
which is not a power:

0 < lim sup
n→∞

n

|λn|
2

α1 (log |λn|)−
α2
α1

< ∞. ♦

1.7 Example. Given α1 > 0 and α2 ∈ R consider the Hamiltonian (again indices at h2
are skipped)

H̊α1,α2 :=
(

1 −
√

h2(t)
−
√
h2(t) h2(t)

)
, t ∈ [0, 1),

where h2 is as in (1.5) with α = 2. Then the spectrum of A[H̊α1,α2 ] is discrete, and its 
convergence exponent is
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conv.exp. of σ(A[H̊α1,α2 ]) =
{

2
α1

, α1 ∈ (0, 4),
1
2 , α1 ≥ 4.

(1.7)

The diagonalisation of H̊α1,α2 , i.e., the Hamiltonian obtained by skipping its off-diagonal 
entries, is H2;α1,α2 . Comparing the convergence exponents computed in (1.6) and (1.7), 
illustrates validity of the Independence Theorem from ➁ as long as the convergence 
exponent is not less than 1, and its failure for other values. ♦

Organisation of the manuscript. Section 2 is of preliminary character. We recall some 
facts about operator ideals which are crucial for the present investigations. In particular, 
we recall a theorem of G.I. Russu characterising a class of ideals for which Matsaev’s The-
orem about real and imaginary parts of Volterra operators holds. A standard reference 
about symmetrically normed ideals is [10]; another classical reference is [42]. A standard 
reference about Volterra operators is [11].

Sections 3 and 4 deal with the general operator theoretic aspect. We prove the central 
Independence Theorem mentioned in ➁, and the AJPR-type Theorem mentioned in ➂ 
and ➃. The latter is only a minor generalisation of [3], and is established by just the 
same method. For the convenience of the reader, we give a self-contained proof.

Connecting the general theory with spectral asymptotics is done in Section 5. There 
we prove Theorems 1.1 and 1.5, a slightly more general variant of Theorem 1.3 (Theo-
rem 5.6), and a characterisation of bounded invertibility (Theorem 5.2).

In Section 6 we round off the presentation by discussing the normalisation condition ∫ b

a
h1(s) ds < ∞, giving details for a somewhat more general variant of Examples 1.6

and 1.7, and showing that the class of comparison functions introduced to measure the 
growth of eigenvalues is a natural one.

The paper closes with two appendices. In Appendix A we provide detailed proof for 
some technical facts used in the text, and in Appendix B we make the connection of our 
present work with the results of I.S. Kac.

2. Some facts about operator ideals

This section is of preliminary nature. We collect some basic definitions and facts about 
operator ideals which are essential for the present investigation.

Let H be a Hilbert space and B(H) the set of all bounded linear operators on H. For 
an operator T ∈ B(H) we denote by an(T ) the n-th approximation number of T , i.e.,

an(T ) := inf
{
‖T −A‖ : A ∈ B(H),dim ranA < n

}
, n ∈ N.

The Calkin correspondence [5] is the map assigning to each T ∈ B(H) the sequence 
(an(T ))∞n=1 of its approximation numbers.

An operator ideal I in H is a two-sided ideal of the algebra B(H). Every nonzero 
operator ideal I contains the ideal of all finite rank operators. Provided H is separable, 
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every operator ideal I = B(H) is contained in the ideal S∞ of all compact operators. 
Moreover, every operator ideal contains with an operator T also its adjoint T ∗.

Via the Calkin correspondence, operator ideals can be identified with certain sequence 
spaces.

2.1 Remark. A linear subspace S of �∞ (⊆ RN) is called solid, if

(αn)∞n=1 ∈ S ∧ |βn| ≤ |αn|, n ∈ N ⇒ (βn)∞n=1 ∈ S,

and it is called symmetric, if

(αn)∞n=1 ∈ S, σ permutation of N ⇒ (ασ(n))∞n=1 ∈ S.

It is shown in [8, Theorem 1] that for every separable Hilbert space H the Calkin corre-
spondence induces a bijection Seq of the set of all operator ideals of H onto the set of 
all solid symmetric sequence spaces. The action of this bijection and its inverse Idl is as 
follows:

� If S is a solid symmetric subspace of �∞, then Idl(S) is the operator ideal {T ∈
B(H) : (an(T ))∞n=1 ∈ S}.

� If I is an operator ideal, then Seq(I) is the linear subspace of �∞ generated by the 
convex cone {(an(T ))∞n=1 : T ∈ I}.

In other words, we have for all T ∈ B(H)

T ∈ I ⇔ (an(T ))∞n=1 ∈ Seq(I). ♦

For example, the ideal S∞ of all compact operators corresponds to c0, the trivial ideal 
B(H) to �∞, and the Schatten–von Neumann classes Sp to �p.

Taking the viewpoint of sequence spaces is natural in (at least) two respects.

� It allows to compare ideals in B(H) for different base spaces H. A solid symmetric 
sequence space S invokes the family of “same-sized” operator ideals

{
T ∈ B(H) : (an(T ))∞n=1 ∈ S

}
, H Hilbert space.

� Virtually all examples of operator ideals I which “appear in nature” are defined by 
a specifying their sequence space Seq(I).

Let H be a separable Hilbert space. A symmetrically normed ideal I in H is a proper 
(meaning I = {0}, B(H)) operator ideal which is endowed with a norm ‖.‖I, such that

(i) (I, ‖.‖I) is complete,
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(ii) ‖ATB‖I ≤ ‖A‖ · ‖T‖I · ‖B‖, T ∈ I, A,B ∈ B(H),
(iii) ‖T‖I = ‖T‖ for T with dim ranT = 1.

Basic examples of symmetrically normed ideals are the Schatten–von Neumann classes 
Sp, 1 ≤ p ≤ ∞.

While the relation between operator ideals and sequence spaces goes back to the 
early 1940’s, and also the theory of symmetrically normed ideals is a classical topic, the 
appropriate correspondent of symmetrically normed ideals on the sequence space side 
has been identified only recently in [24].

2.2 Remark. A symmetric Banach sequence space is a solid and symmetric linear sub-
space S of c0 which is endowed with a norm ‖.‖S such that

(i) (S, ‖.‖S) is complete,
(ii) it holds that

(αn)∞n=1 ∈ S ∧ |βn| ≤ |αn|, n ∈ N ⇒ ‖(βn)∞n=1‖S ≤ ‖(αn)∞n=1‖S ,
(αn)∞n=1 ∈ S, σ permutation of N ⇒ ‖(ασ(n))∞n=1‖S = ‖(αn)∞n=1‖S ,

(iii) ‖(1, 0, 0, . . .)‖S = 1.

The mutually inverse bijections Seq and Idl exhibited above induce mutually inverse 
bijections between the set of all symmetrically normed ideals and the set of all symmetric 
Banach sequence spaces. The action of these maps is as follows:

� If (S, ‖.‖S) is a symmetric Banach sequence function space, then Idl(S) endowed 
with ‖T‖Idl(S) := ‖(an(T ))∞n=1‖S is a symmetrically normed ideal.

� Let H be a separable Hilbert space, and choose an orthonormal basis {φn : n ∈ N}
of H. Let (I, ‖.‖I) be a symmetrically normed ideal in H. Then Seq(I) endowed with 
‖(an)∞n=1‖Seq(I) :=

∥∥∑∞
n=1 an(., φn)φn

∥∥
I

is a symmetric Banach sequence space. ♦

Convention: From now on we do not anymore distinguish explicitly between sequence 
spaces and operator ideals, and tacitly apply the Calkin correspondence if needed. ♦

Every nonzero operator ideal contains the space c00 (⊆ RN) of all finitely supported 
sequences. For a symmetrically normed ideal I, we denote by I◦ the closure of c00 in I. 
The space I◦ is again a symmetrically normed ideal.

Many symmetrically normed ideals can be generated using so-called symmetric norm-
ing functions.

2.3 Remark. A symmetric norming function is a function Φ: c00 → [0, ∞), such that

(i) Φ is a norm,
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(ii) (αn)∞n=1 ∈ c00, σ permutation of N ⇒ Φ
(
(|ασ(n)|)∞n=1

)
= Φ

(
(αn)∞n=1

)
,

(iii) Φ
(
(1, 0, 0, . . .)

)
= 1.

A symmetric norming function Φ has a natural extension, again denoted as Φ, to a larger 
subspace. Namely, by (1N denotes the indicator function of the set {1, . . . , N})

cΦ :=
{
(αn)∞n=1 ∈ c0 : sup

N∈N
Φ
(
(1N (n)αn)∞n=1

)
< ∞

}
,

Φ
(
(αn)∞n=1

)
:= lim

N→∞
Φ
(
(1N (n)αn)∞n=1

)
for (αn)∞n=1 ∈ cΦ.

Then (cΦ, Φ) is a symmetrically normed ideal.
Conversely, if (I, ‖.‖I) is a symmetrically normed ideal, then Φ := ‖.‖I|c00 is a 

symmetric norming function. We have I◦ ⊆ cΦ, and ‖(αn)∞n=1‖I = Φ((αn)∞n=1)) for 
all (αn)∞n=1 ∈ I◦. However, it may happen that ‖(αn)∞n=1‖I = Φ((αn)∞n=1)) for some 
(αn)∞n=1 ∈ (I \ I◦) ∩ cΦ. If I ⊆ cΦ and ‖.‖I = Φ on all of I, we say that ‖.‖I is induced 
by a symmetric norming function. ♦

For an operator ideal I, we denote by I+ the convex cone of all nondecreasing nonnegative 
elements of I. A symmetrically normed ideal I is called fully symmetric, if for (αn)∞n=1 ∈
I+ and (βn)∞n=1 ∈ (�∞)+ with

∀n ∈ N.

n∑
k=1

βk ≤
n∑

k=1

αk,

it holds that

(βn)∞n=1 ∈ I, ‖(βn)∞n=1‖I ≤ ‖(αn)∞n=1‖I.

If Φ is a symmetric norming function, then both symmetrically normed ideals cΦ and c◦Φ
are fully symmetric.

Next, we recall an operator theoretic notion.

2.4 Definition. Let I be a symmetrically normed ideal which is properly contained in 
S∞. We say I has the Matsaev property, if the following statement is true.

� Let H be a Hilbert space, and let T be a Volterra operator in H. Then ReT ∈ I

implies T ∈ I. ♦

A result of G.I. Russu stated in [39, Theorem 1]3 gives a characterisation of the Matsaev 
property for a certain class of ideals. In Theorem 2.5 below we formulate the part of 

3 Proofs are given in [40]; a translation to english is not available.
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Russu’s Theorem used in the sequel. To this end, we need one more notation. Let I be 
an operator ideal, and T : I+ → I+ a convex and positively homogeneous map. Then 
we denote

‖T ‖ := sup
{
‖T (αn)∞n=1‖I : (αn)∞n=1 ∈ I+, ‖(αn)∞n=1‖I = 1

}
.

2.5 Theorem ([39,40]). Let I a symmetrically normed ideal whose norm is induced by 
a symmetric norming function. For each n ∈ N define maps Tn and T1/n acting in the 
cone I+ as

Tn(αk)∞k=1 := (α1, . . . , α1︸ ︷︷ ︸
n times

, α2, . . . , α2︸ ︷︷ ︸
n times

, . . . ), (2.1)

T1/n(αk)∞k=1 :=
( 1
n

n∑
k=1

αk,
1
n

n∑
k=1

αn+k,
1
n

n∑
k=1

α2n+k, . . .
)
. (2.2)

Then I has the Matsaev property, if and only if

lim
n→∞

1
n
‖Tn‖ = 0, lim

n→∞
‖T1/n‖ = 0. (2.3)

Let us show that for a separable ideal the second condition in (2.3) automatically holds.

2.6 Lemma. Let I be a separable symmetrically normed ideal. Then limn→∞ ‖T 1
n
‖ = 0.

Proof. Set Φ := ‖.‖I, then I = c◦Φ. For (αn)∞n=1 ∈ I+ we have limN→∞ Φ
(
(αN+n)∞n=1

)
=

0. Now let (αn)∞n=1 ∈ I+ with ‖(αn)∞n=1‖I ≤ 1 be given. Then, for every N ∈ N,

Φ
(
(αN+n)∞n=1

)
≤ Φ

(
(αn)∞n=1

)
≤ 1.

Let ε > 0 and choose N0 ∈ N such that Φ
(
(αN+n)∞n=1

)
≤ ε, N ≥ N0. For n ∈ N and 

j ∈ {1, . . . , n} set

(α(n,j)
k )∞k=1 :=

(
αj+n(k−1)

)∞
k=1.

Then T 1
n

(
(αn)∞n=1

)
= 1

n

∑n
j=1(α

(n,j)
k )∞k=1. We have

∥∥(α(n,j)
k )∞k=1

∥∥
I
≤ Φ

(
(αj , αj+1, αj+2, . . .)

)
≤
{

1 , j ≤ N0,

ε , j > N0.

Now choose N1 ∈ N such that 1
N1

≤ ε. Then, for n ≥ N0N1, we have

∥∥J 1
n

(
(αk)∞k=1

)∥∥
I
≤ 1

n

N0∑
j=1

∥∥(α(n,j)
k )∞k=1

∥∥
I

+ 1
n

n∑
j=N0+1

∥∥(α(n,j)
k )∞k=1

∥∥
I
≤ 2ε. �
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3. The independence theorem

To start with, let us recall some facts about the model operator A[H] associated with 
a Hamiltonian H. The first lemma is folklore; one possible reference is [25] where it 
appears implicitly. Recall that the model space L2(H) associated with a Hamiltonian H
is a closed subspace of the L2-space of 2-vector valued functions on (a, b) with respect 
to the matrix measure H(t)dt. Namely, each indivisible interval of H contributes only a 
one-dimensional space .4

3.1 Lemma. Under the assumption that 
∫ b

a
h1(s) ds < ∞, the operator A[H] is injective 

and its inverse B[H] := A−1
[H] acts as

(B[H]f)(t) = − lim
c↗b

c∫
a

( 0 1s<t(t, s)
1s>t(t, s) 0

)
H(s)f(s) ds, (3.1)

on the domain

domB[H] =
{
f ∈ L2(H) : limc↗b(0, 1)

∫ c

a
JH(s)f(s) ds exists,

r.h.s. of (3.1) belongs to L2(H)

}
. (3.2)

Denote by L2(Idt) the L2-space of 2-vector valued functions on (a, b) with respect to the 

matrix measure 
(

1 0
0 1

)
dt. The function

Φ: f(t) 	→ H(t) 1
2 f(t)

maps the model space L2(H) isometrically onto some closed subspace of L2(Idt).
Let C[H] be the (closed, but possibly unbounded) integral operator on L2(Idt) with 

kernel

C[H] : −H(t) 1
2

( 0 1s<t(t, s)
1s>t(t, s) 0

)
H(s) 1

2 (3.3)

and the natural maximal domain.
The next lemma says that the operator B[H] can be transformed into C[H], and was 

shown in [25, Proof of Lemma 2.2].

3.2 Lemma. Assume that 
∫ b

a
h1(s) ds < ∞, and denote by P the orthogonal projection of 

L2(Idt) onto ran Φ. Then

B[H] = Φ−1PC[H]Φ and C[H] = ΦB[H]Φ−1P.

4 In [12] and [25], this space is called L2
s(H). However, for simplicity of notation, we prefer to use L2(H).
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As a consequence of Lemma 3.2, the operators B[H] and C[H] are together bounded or 
unbounded, and if they are bounded their approximation numbers coincide. Thus, for 
every operator ideal I, we have

B[H] ∈ I ⇔ C[H] ∈ I.

Next we introduce integral operators whose kernel has a very special form. Let −∞ ≤
a < b ≤ ∞, and κ, ϕ : (a, b) → C be measurable functions such that κ ∈ L2(a, b)
and 1(a,c)ϕ ∈ L2(a, b) for every c ∈ (a, b). Then we consider the (closed, but possibly 
unbounded) integral operator T in L2(a, b) with kernel

T : 1t<s(t, s)ϕ(t)κ(s) (3.4)

Explicitly, this is the operator acting as

(Tf)(t) := ϕ(t)
b∫

t

f(s)κ(s) ds, t ∈ (a, b),

on its natural maximal domain

domT :=
{
f ∈ L2(a, b) :

(
t 	→ ϕ(t)

b∫
t

f(s)κ(s) ds
)
∈ L2(a, b)

}
.

Note that domT always contains the dense linear subspace

L00 :=
{
f ∈ L2(a, b) : sup supp f < b

}
.

The adjoint of T is the integral operator with kernel

T ∗ : 1s<t(t, s)κ(t)ϕ(s)

explicitly,

(T ∗f)(t) := κ(t)
t∫

a

f(s)ϕ(s) ds, t ∈ (a, b).

Since κ ∈ L2(a, b), we again have L00 ⊆ domT ∗. The operator 1
2 (T + T ∗) is densely 

defined and symmetric; we denote its closure as ReT .
We are going to compare a Hamiltonian H with its diagonal part.

3.3 Definition. Let H be a Hamiltonian and write H =
(

h1 h3
h3 h2

)
. Then we denote the 

corresponding diagonal Hamiltonian as
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diagH :=
(
h1 0
0 h2

)
. ♦

Concerning operator theoretic properties, the diagonalised Hamiltonian always domi-
nates the original one.

3.4 Theorem (Diagonal Dominance). Let H be a Hamiltonian defined on an interval 
[a, b), and assume that 

∫ b

a
h1(s) ds < ∞. If C[diag H] is bounded, then also C[H] is bounded 

and there exists an operator λ in L2(Idt) with ‖λ‖ ≤
√

2 such that

C[H] = λ ◦ C[diag H] ◦ λ∗.

In particular, an(C[H]) ≤ 2an(C[diag H]), n ∈ N, and C[diag H] ∈ I implies C[H] ∈ I for 
every operator ideal I.

Proof. For any nonnegative 2 × 2-matrix G it holds that

2 diagG−G =
(

1 0
0 −1

)
G
(

1 0
0 −1

)
≥ 0.

Hence we find a matrix V with ‖V ‖ ≤
√

2, such that

G
1
2 = V (diagG) 1

2 = (diagG) 1
2V ∗.

If det(diagG) = 0, then clearly V = G
1
2 (diagG)− 1

2 . Otherwise, we can choose V = I.
It follows that there exists a measurable matrix function V (t), t ∈ (a, b), with ‖V (t)‖ ≤√

2, t ∈ (a, b) a.e., and

H(t) 1
2 = V (t)[diagH(t)] 1

2 = [diagH(t)] 1
2V (t)∗, t ∈ (a, b) a.e.

On substituting this into the definition (3.3) of C[H], we obtain the required assertion 
where λ is the multiplication operator with V (t). �
Let us remark that Theorem 3.4 implies the first inequality [36, Theorem 1.1] (personal 
communication by C. Remling).

The central result in this section is that under a certain assumption on the ideal I
also the converse holds, i.e., membership of B[H] in the ideal does not depend on the 
off-diagonal entry of H.

3.5 Definition. Let I be an operator ideal. We say that the weak Matsaev Theorem holds 
in I, if the following statement is true.

� Let −∞ ≤ a < b ≤ ∞, let κ, ϕ : (a, b) → C be measurable functions such that 
κ ∈ L2(a, b) and 1(a,c)ϕ ∈ L2(a, b) for every c ∈ (a, b), and let T be the integral 
operator with kernel (3.4). Then ReT ∈ I implies T ∈ I. ♦
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This property is not very strong. Intuitively speaking, it fails only close to trace class, 
close (but away from) the ideal of all compact operators, and for some ideals which 
hardly ever appear in nature.

3.6 Theorem (Independence Theorem). Let H be a Hamiltonian defined on an interval 
[a, b), and assume that 

∫ b

a
h1(s) ds < ∞. Let I be an operator ideal, and assume that the 

weak Matsaev Theorem holds in I. If B[H] ∈ I, then B[diag H] ∈ I.

The following simple computation is a key step to the proof of Theorem 3.6.

3.7 Lemma. Let H be a Hamiltonian on [a, b) with 
∫ b

a
h1(s) ds < ∞. Denote

H(t) 1
2 =

(
v1(t) v3(t)
v3(t) v2(t)

)
, t ∈ [a, b),

and let Tij, (i, j) ∈ {2, 3} × {1, 3}, be the integral operators in L2(a, b) with kernel

Tij : 1t<s(t, s)vi(t)vj(s)

Then

C[H]f = −
(
T31 + T ∗

31 T ∗
21 + T33

T21 + T ∗
33 T23 + T ∗

23

)
f, f ∈ L00 × L00.

Proof. Multiplying out the kernel (3.3) of the integral operator C[H] gives
⎛
⎜⎜⎜⎝

1t<s(t, s)v3(t)v1(s)
+1t>s(t, s)v1(t)v3(s)

1t<s(t, s)v3(t)v3(s)
+1t>s(t, s)v1(t)v2(s)

1t<s(t, s)v2(t)v1(s)
+1t>s(t, s)v3(t)v3(s)

1t<s(t, s)v2(t)v3(s)
+1t>s(t, s)v3(t)v2(s)

⎞
⎟⎟⎟⎠

The adjoint T ∗
ij is the integral operator with kernel

T ∗
ij : 1t>s(t, s)vj(t)vi(s)

and the assertion follows. �
3.8 Corollary. Let H =

(
h1 0
0 h2

)
be a diagonal Hamiltonian, and let S21 be the integral 

operator in L2(a, b) with kernel

S21 : 1t<s(t, s)
√
h2(t)

√
h1(s)

Then for every operator ideal I we have

B[H] ∈ I ⇔ S21 ∈ I.
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Proof. Lemma 3.7 gives

C[H]f = −
(

0 S∗
21

S21 0

)
f, f ∈ L00 × L00. � (3.5)

For a bounded function ψ, we denote by Mψ the multiplication operator with ψ on 
L2(a, b):

(Mψf)(t) := ψ(t)f(t), ‖Mψ‖ = ‖ψ‖∞.

Proof of Theorem 3.6. It holds that h1 = v2
1 + v2

3 and h2 = v2
2 + v2

3 , and hence

√
h1 ≤ v1 + |v3|,

√
h2 ≤ v2 + |v3|.

Thus the functions (quotients are understood as 0 if their denominator vanishes)

ψ1 :=
√
h1

v1 + |v3|
, ψ2 :=

√
h2

v2 + |v3|
,

are bounded. Set ϑj := ψj · sgn v3, then for all f ∈ L00

S21f = Mϑ2T33Mϑ1f + Mϑ2T31Mψ1f + Mψ2T23Mϑ1f + Mψ2T21Mψ1f.

We see that S21 ∈ I if T21, T23, T31, T33 ∈ I.
Assume that the weak Matsaev Theorem holds for I. If B[H] ∈ I, then

ReT31,ReT23,ReT21 + ReT33 ∈ I.

The operator ReT33 is one-dimensional, hence certainly belongs to I, and it follows that 
also ReT21 ∈ I. We conclude that T23, T31, T21, and T33, all belong to I. From this 
S21 ∈ I, and in turn B[diag H] ∈ I. �
4. Invoking the AJPR-method

The Independence Theorem together with Corollary 3.8 leaves us with two tasks:

� Determine for which operator ideals the weak Matsaev Theorem holds.
� Characterise membership in an operator ideal for integral operators of the form (3.4).

In Theorem 4.1 below we complete these tasks to an extent sufficient for our present 
purposes. This rests on a method developed in a paper by A.B. Aleksandrov, S. Janson, 
V.V. Peller, and R. Rochberg. In order to formulate the result, we still need to introduce 
some notation.
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Let −∞ ≤ a < b ≤ ∞, let κ, ϕ : (a, b) → C be measurable functions such that 
κ ∈ L2(a, b) and 1(a,c)ϕ ∈ L2(a, b) for every c ∈ (a, b). Then the function t 	→ ‖1(t,b)κ‖2

is a nonincreasing surjection of [a, b] onto [0, ‖κ‖2]. Hence, we can choose an increasing 
sequence c0 := a < c1 < c2 < . . . < b such that ‖1(cn,b)κ‖2 = 2−n‖κ‖2, n ∈ N. Note that 
this requirement is equivalent to

‖1(cn−1,cn)κ‖2 =
(1

2

)n
‖κ‖2, n ∈ N. (4.1)

Having chosen cn, we denote

Jn := (cn−1, cn), ωn := ‖1Jn
κ‖ · ‖1Jn

ϕ‖, n ∈ N. (4.2)

Explicitly, by (4.1),

ωn = ‖κ‖ · 2−n
2

( cn∫
cn−1

|ϕ(s)|2 ds
) 1

2
, n ∈ N.

The following theorem is a (minor) extension of [3, Theorems 3.1,3.2,3.3].

4.1 Theorem (AJPR-type Theorem). Let I be an operator ideal which is either �∞ or c0, 
or a symmetrically normed ideal which is fully symmetric and has the Matsaev property. 
Moreover, let −∞ ≤ a < b ≤ ∞, let κ, ϕ : (a, b) → C be measurable functions with 
κ ∈ L2(a, b) and 1(a,c)ϕ ∈ L2(a, b), c ∈ (a, b), and consider the integral operator T on 
L2(a, b) with kernel given by (3.4).

Then the following statements are equivalent.

(i) T ∈ I;
(ii) ReT ∈ I;
(iii) (ωn)∞n=1 ∈ I, where ωn are as in (4.2).

4.2 Remark. The implication “(i)⇒(ii)” holds of course for every operator ideal. Our 
proof will show that “(ii)⇒(iii)” holds for every fully symmetric operator ideal, and 
“(iii)⇒(i)” holds for every symmetrically normed ideal with the Matsaev property. ♦

The argument needed to establish Theorem 4.1 is nearly verbatim the same as in [3]. 
For the convenience of the reader we provide a self-contained proof.

Proof of “ReT ∈ I ⇒ (ωn)∞n=1 ∈ I”. Let I be �∞, c0, or a fully symmetric operator 
ideal, and assume that ReT ∈ I. Moreover, denote by Pn the orthogonal projection 
Pnf := 1Jn

f of L2(a, b) onto its subspace L2(Jn).
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Since I is of one of the stated forms, we obtain that 
∑∞

n=1 Pn(ReT )Pn+1 ∈ I. For 
I = �∞ or I = c0, this is obvious. For I being fully symmetric, it is a consequence of 
[10, Theorem II.5.1].5

Clearly, PnTPn+1 = (␣ , 1Jn+1κ)1Jn
ϕ. The adjoint of T is an integral operator whose 

kernel vanishes for s > t, and hence PnT
∗Pn+1 = 0. Together,

∞∑
n=1

Pn(ReT )Pn+1 = 1
2

∞∑
n=1

2−1/2ωn ·
(
␣ ,

1Jn+1κ

‖1Jn+1κ‖
) 1Jn

ϕ

‖1Jn
ϕ‖ ,

and hence an
(∑∞

n=1 Pn(ReT )Pn+1
)

= 2− 1
2ω∗

n. We see that (ωn)∞n=1 ∈ I. �
Proof of “(ωn)∞n=1 ∈ I ⇒ T ∈ I”. Let I be �∞, c0, or a symmetrically normed ideal with 
the Matsaev property, and assume that (ωn)∞n=1 ∈ I. Note that in every case (ωn)∞n=1 is 
bounded.

➀ The crucial point is to handle the diagonal cell sum 
∑∞

n=1 PnTPn. Our aim is to 
show that this series converges to an operator in I.

The summand PnTPn is the integral operator in L2(a, b) with kernel

PnTPn : 1t<s(t, s)1Jn
(t)1Jn

(s)ϕ(t)κ(s)

Since 1Jn
κ, 1Jn

ϕ ∈ L2(a, b), it is compact and

‖PnTPn‖ ≤
( b∫

a

b∫
a

|1t<s(t, s)1Jn
(t)1Jn

(s)ϕ(t)κ(s)|2 ds dt
) 1

2

≤‖1Jn
κ‖‖1Jn

ϕ‖ = ωn.

The sequence (ωn)∞n=1 is bounded, and hence the series 
∑∞

n=1 PnTPn converges strongly, 
and its sum is a bounded operator with

5 This is actually a variant of [10, Theorem II.5.1] which is easy to obtain in the present situation since all 
spaces L2(Jn) have the same Hilbert space dimension. Choose unitary operators Un : L2(Jn) → L2(Jn+1), 
let S : L2(a, b) → L2(a, b) be the block shift

S :=

⎛
⎜⎜⎜⎜⎜⎝

0
U1 0

U2 0
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ :

⎛
⎜⎜⎜⎜⎝

L2(J1)
⊕

L2(J2)
⊕
...

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝

L2(J1)
⊕

L2(J2)
⊕
...

⎞
⎟⎟⎟⎟⎠ ,

and apply [10, Theorem II.5.1] to the operator (ReT )S.
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∥∥∥ ∞∑
n=1

PnTPn

∥∥∥ ≤ ‖(ωn)∞n=1‖∞.

This settles the case that I = �∞. If limn→∞ ωn = 0, the series converges w.r.t. the 
operator norm and hence its sum is a compact operator. This settles the case that 
I = c0.

Consider the remaining case. Then, in particular, limn→∞ ωn = 0. Let Q0 be the 
compact operator given by the Schmidt-series

Q0 :=
∞∑

n=1
ωn ·

(
␣ , 1Jn

κ

‖1Jn
κ‖
) 1Jn

ϕ

‖1Jn
ϕ‖ .

Then an(Q0) = ω∗
n, and hence Q0 ∈ I. By the Matsaev property the triangular trun-

cation transformator C, cf. [11], is defined on all of I and maps I boundedly into itself. 
Thus CQ0 ∈ I, and

CQ0 =
∞∑

n=1
C
(
(␣ ,1Jn

κ)1Jn
ϕ
)
.

However, C
(
(␣ , 1Jn

κ)1Jn
ϕ
)

= PnTPn. Thus we have 
∑∞

n=1 PnTPn ∈ I.

➁ The rest of the proof merely uses completeness. For l ∈ N let Ql be the compact 
operator given by the Schmidt-series

Ql :=
∞∑

n=1
2− l

2ωn ·
(
␣ ,

1Jn+l
κ

‖1Jn+l
κ‖
) 1Jn

ϕ

‖1Jn
ϕ‖ .

Then Ql ∈ I and ‖Ql‖I = 2−l/2‖(ωn)∞n=1‖I. Hence, the series 
∑∞

l=1 Ql converges 
w.r.t. ‖␣‖I and its sum belongs to I.

A short computation shows that

Tf =
( ∞∑

n=1
PnTPn

)
f +

( ∞∑
l=1

Ql

)
f, f ∈ L2(a, b), sup supp f < b.

Since T is closed, it follows that T =
∑∞

n=1 PnTPn +
∑∞

l=1 Ql, and we conclude that 
T ∈ I. �
The AJPR-type Theorem has the following obvious consequence (which was our motiva-
tion for the choice of terminology). Note that we do not assume I to be fully symmetric 
in this statement.

4.3 Corollary. Let I be an operator ideal which is either �∞ or c0, or a symmetrically 
normed ideal with the Matsaev property. Then the weak Matsaev Theorem holds in I.
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Proof. If I = �∞ or I = c0, this is immediate from the AJPR-type Theorem.
Assume now that I is a symmetrically normed ideal with the Matsaev property. An 

integral operator T whose kernel has the form (3.4) obviously has no nonzero eigenvalues. 
If ReT ∈ I, then in particular ReT ∈ c0. Thus T ∈ c0 by the c0-case of the AJPR-type 
Theorem. This means that T is a Volterra operator, and now the Matsaev property 
implies that T ∈ I. �
5. Connecting with spectral properties

We instantiate the general results from the previous sections to characterise properties 
of the spectrum of A[H].

5.1. The ideals c0 and �∞

The characterisation of discreteness of the spectrum stated in Theorem 1.1 is obtained
from the general results applied with the ideal I := c0. The proof follows a very structured 
scheme, which will repeat in later theorems.

Proof of Theorem 1.1. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [a, b) and assume that ∫ b

a
h1(s) ds < ∞.

➀ The spectrum of A[H] is discrete if and only if B[H] is compact.
➁ We invoke the results of Sections 3 and 4.

� By the AJPR-type Theorem the weak Matsaev Theorem holds in c0, cf. Corol-
lary 4.3.

� The Independence Theorem is applicable, and yields that B[H] is compact if and 
only if the integral operator S21 with kernel (3.4) where

κ :=
√

h1, ϕ :=
√
h2,

is compact.
� The AJPR-type Theorem says that compactness of S21 is equivalent to the se-

quential condition limn→∞ ωn = 0.
➂ A simple elementary argument (explicit proof is provided in Appendix A) shows that 

the sequential condition limn→∞ ωn = 0 is equivalent to the continuous condition

lim
t↗b

( b∫
t

h1(s) ds ·
t∫

a

h2(s) ds
)

= 0. �

5.1 Remark. Using the connection between Krein strings and diagonal canonical systems 
elaborated in [27], the present Theorem 1.1 yields a new proof of the classical criterion 
[21, Theorema 4,5] for a string to have discrete spectrum. ♦
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Using I := �∞ we obtain a condition for the model operator A[H] to be boundedly 
invertible.

5.2 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [a, b) and assume that 

∫ b

a
h1(s) ds <

∞. Then 0 ∈ ρ(A[H]) if and only if

sup
t∈[a,b)

( b∫
t

h1(s) ds ·
t∫

a

h2(s) ds
)
< ∞.

Proof. We execute the same scheme as in the proof of Theorem 1.1.

➀ We have 0 ∈ ρ(A[H]) if and only if B[H] is bounded.
➁ Invoking the general results in exactly the same way as above yields that B[H] is 

bounded if and only if

sup
n∈N

ωn < ∞.

➂ This sequential condition is easily seen to be equivalent to the stated continuous 
condition (for an explicit proof see again Appendix A). �

We remark that Theorem 5.2 implies [37, Theorem 1.5].

5.2. Ideals with the Matsaev property

Executing our generic proof scheme for ideals with the Matsaev property leads to the 
following theorem. Remember here Russu’s characterisation of the Matsaev property, cf. 
Theorem 2.5.

5.3 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [a, b) and assume that 

∫ b

a
h1(s) ds <

∞. Moreover, assume that h1 does not vanish a.e. on any interval (c, b) with c ∈ (a, b). 
Let I a symmetrically normed ideal whose norm is induced by a symmetric norming 
function, and assume that

lim
n→∞

1
n
‖Tn‖ = 0, lim

n→∞
‖T1/n‖ = 0,

where Tn and T1/n are the maps (2.1) and (2.2). Then the following statements are 
equivalent.

(i) The spectrum of A[H] is discrete and (λ−1
n )∞n=1 ∈ I, where λn are the eigenvalues 

of A[H] arranged according to increasing modulus (and if necessary extended to an 
infinite sequence by setting λn := ∞ for n > dim ranA−1 ).
[H]
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(ii) (ωn)∞n=1 ∈ I, where ωn is as in (4.2) with κ :=
√
h1, ϕ :=

√
h2.

Note that we do not claim a continuous characterisation similar as in Theorem 1.1 or 
Theorem 5.2. Most probably, such a continuous form does not exist in the general setting.

Proof of Theorem 5.3. The property (i) just means that B[H] ∈ I. The general results 
are applicable since by Russu’s Theorem and Corollary 4.3 the weak Matsaev Theorem 
holds in I. Thus B[H] ∈ I if and only if (ωn)∞n=1 ∈ I. �
5.3. Spectral asymptotics I. Convergence class conditions

As usual let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [a, b) and assume that 

∫ b

a
h1(s) ds < ∞. 

Further assume that the spectrum of A[H] is discrete.
We are interested in measuring the density of the point set σ(A[H]) by means of 

convergence class w.r.t. a suitable comparison function M . To be precise, we wish to 
characterise whether

∑
n

M
( 1
|λn|

)
< ∞,

where λn denote the spectral points of A[H]. Since the inverses of absolute values of 
eigenvalues are the approximation numbers of B[H], we may say equivalently that the 
task is to decide whether

B[H] ∈ S�M� :=
{

(αn)∞n=1 ∈ c0 :
∞∑

n=1
M(|αn|) < ∞

}

via the Calkin correspondence.

5.4 Example. If M(x) := xp with some p > 0, then S�M� is the usual Schatten–von Neu-
mann class Sp. Completing the above task for this class of comparison functions would 
mean to determine the convergence exponent (including convergence class) of the spec-
trum of A[H]. ♦

Since we work in the regime of symmetrically normed ideals and the Matsaev property 
plays a decisive role, this example already suggests that our method has a natural border 
(namely, a slight bit above trace class). This corresponds in some sense – but not fully 
– to the threshold discussed in the introduction where the Independence Theorem is 
known to fail.

Let us now rigorously define what we understand by a “suitable comparison function”.

5.5 Definition. Let M : [0, ∞) → [0, ∞). Then we say that M is a suitable comparison 
function, if



R. Romanov, H. Woracek / Journal of Functional Analysis 278 (2020) 108318 25
(i) M is increasing and M(0) = 0,
(ii) M is continuous, satisfies limt→∞

M(t)
t = ∞, and M(1) = 1,

(iii) the Δ0
2-condition holds: lim supx↓0

M(2x)
M(x) < ∞,

(iv) M is convex,

(v) α0
M := lim

t↓0

( 1
log t · log

[
lim sup

u↓0

M(tu)
M(u)

])
> 1. ♦

We will discuss these conditions in more detail in Section 5.3, and see that they form 
the natural range of comparison functions for our method.

The theorem we are going to prove now reads as follows.

5.6 Theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on an interval [a, b) such that ∫ b

a
h1(s) ds < ∞ and that A[H] has discrete spectrum. Moreover, assume that h1 does 

not vanish a.e. on any interval (c, b) with c ∈ (a, b). Let m: [0, ∞) → [0, ∞) be equiva-
lent at 0 to some suitable comparison function M in the sense that

∃c1, c2 > 0, x0 > 0 ∀x ∈ [0, x0). c1M(x) ≤ m(x) ≤ c2M(x).

Then

∞∑
n=1

m
(
an(B[H])

)
< ∞ ⇔

b∫
a

m

(( b∫
t

h1(s) ds ·
t∫

a

h2(s) ds
) 1

2
)
· h1(t) dt∫ b

t
h1(s) ds

< ∞.

This theorem includes Theorem 1.3 as a particular case. Based on [4, Theorem 1.3.3], 
for every regularly varying function g with order ρg > 1 the function

m(x) := g(x−1)−1 (5.1)

is equivalent at 0 to a suitable comparison function.
The proof runs along the same lines as in the discrete spectrum case. However, sig-

nificantly heavier machinery is needed to establish that we actually may proceed along 
these lines.

➀ Neither the left side nor the right side in the asserted equivalence in Theorem 5.6
change their truth value when passing from a function m to another one which is 
equivalent to m at 0. For the left side this is obvious, while for the right side we 
should remember Theorem 1.1. Hence, we may assume without loss of generality 
that m = M is a suitable comparison function.
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➁ The space S�M� is known as the Orlicz class associated with M . Based on the condi-
tions (i)–(iv) in Definition 5.5, it becomes a separable Banach space when endowed 
with the Luxemburg norm

‖(αn)∞n=1‖S�M�
:= inf

{
β > 0:

∞∑
n=1

M
( |αn|

β

)
≤ 1
}
.

This is a classical fact, and shown e.g. in [31, Section 4.a].
Obviously S�M� is a symmetric Banach sequence space, i.e., via the Calkin corre-
spondence a symmetrically normed ideal.

➂ We show that the condition Definition 5.5(v) ensures the Matsaev property for S�M�.

5.7 Lemma. Let M be a suitable comparison function. Then S�M� has the Matsaev prop-
erty.

Proof. To show this, we use Russu’s Theorem. Since S�M� is separable, the norm 
‖.‖S�M�

is induced by a symmetric norming function. Moreover, by Lemma 2.6, we have 
limn→∞ ‖T1/n‖ = 0.

Consider an element (αn)∞n=1 ∈ S�M� with ‖(αn)∞n=1‖S�M�
≤ 1. This means that ∑∞

n=1 M(αn) ≤ 1, and it follows in particular that αn ≤ 1, n ∈ N. From Definition 5.5(v) 
and [32, Theorem 11.13] we find δ > 1 and C > 0 such that

M
( t

β

)
≤ C

( 1
β

)δ
M(t), t ≤ 1, β ≥ 1.

Let n ≥ 1
C , then β0 :=

(
Cn
) 1

δ ≥ 1, and we obtain

∞∑
k=1

M
( |αk|

β0

)
≤ C

( 1
β0

)δ
︸ ︷︷ ︸

= 1
n

·
∞∑
k=1

M(|αk|)︸ ︷︷ ︸
≤1

≤ 1
n
,

and now we can estimate

∥∥Tn((αk)∞k=1
)∥∥

S�M�
= inf

{
β > 0: n

∞∑
n=1

M
( |αn|

β

)
≤ 1
}
≤ (Cn) 1

δ .

This shows that ‖Tn‖ ≤ (Cn) 1
δ . �

➃ The left side of the equivalence asserted in Theorem 5.6 means that B[H] ∈ S�M�. 
By Theorem 5.3 this is equivalent to (ωn)∞n=1 ∈ S�M�.

➄ It remains to rewrite the sequential condition “(ωn)∞n=1 ∈ S�M�” to the continuous 
condition stated in Theorem 5.6.
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5.8 Lemma. Let −∞ ≤ a < b ≤ ∞, let κ, ϕ : (a, b) → C be measurable functions with 
κ ∈ L2(a, b) and 1(a,c)ϕ ∈ L2(a, b), c ∈ (a, b). Moreover, let M be a suitable comparison 
function. Then

∞∑
n=1

M(ωn) < ∞ ⇔
b∫

a

M
(
‖1(a,t)ϕ‖‖1(t,b)κ‖

)
· |κ(t)|2 dt
‖1(t,b)κ‖2 < ∞.

The proof of this lemma requires some technical arguments about Orlicz spaces and is 
carried out in Appendix A.

5.4. Finite- or minimal-type conditions

Again assuming that the spectrum of A[H] is discrete, we now investigate the density of 
the point set σ(A[H]) in terms of “big-O or small-o” conditions on its counting function 
w.r.t. a regularly varying function g. To be precise, we wish to characterise whether 
(n denotes the counting function)

lim sup
r→∞

n
(
(λn)∞n=1, r

)
g(r) < ∞ or lim

r→∞

n
(
(λn)∞n=1, r

)
g(r) = 0. (5.2)

The threshold discussed in the introduction says that we have to assume that the order 
ρg is not less than 1. It will turn out that the limit of our method is actually a slight bit 
higher.

Obviously, the properties in (5.2) do not change their truth value when passing from 
a function g to another one g1 which is equivalent to g at ∞ in the sense that

∃c1, c2 > 0, r0 > 0 ∀r ≥ r0. c1g1(r) ≤ g(r) ≤ c2g1(r).

Hence, based on [4, Theorem 1.3.3], we may always assume that g is smooth, strictly 
monotone, and normalised by g(1) = 1.

Passing to the language of approximation numbers of B[H], our task thus is to decide 
whether

an(B[H]) = O(πn) or an(B[H]) = o(πn), (5.3)

where we have set (g−1 denotes the inverse function of g)

πn := 1
g−1(n) , n ∈ N.

Assume now that ρg > 1. Then [10, Theorem III.14.2] applies, and the conditions (5.3)
can further be reformulated as
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B[H] ∈ S[π] or B[H] ∈ S◦
[π],

where S[π] is the Lorentz ideal

S[π] :=
{

(αn)∞n=1 ∈ c0 : sup
n∈N

( n∑
k=1

α∗
k

/ n∑
k=1

πk

)
< ∞

}
,

‖(αn)∞n=1‖S[π] := sup
n∈N

( n∑
k=1

α∗
k

/ n∑
k=1

πk

)
,

and S◦
[π] is its separable part. For this type of sequence spaces we refer to [10, Theo-

rem III.14.1] or [30, Example 1.2.7].
Again using that ρg > 1, we can apply [11, Theorem III.9.1] (or Russu’s Theorem) 

and conclude that S[π] and S◦
[π] have the Matsaev property.

Now we easily obtain the proof of Theorem 1.5.

Proof of Theorem 1.5. The properties on eigenvalues of A[H] on the left sides of the as-
serted equivalences just mean that B[H] ∈ S[π] or B[H] ∈ S◦

[π], respectively. Theorem 5.3
tells that this is equivalent to (ωn)∞n=1 ∈ S�M�. By a property of regularly varying 
functions, it holds that

lim sup
n→∞

ω∗
ng

−1(n) < ∞ ⇔ lim sup
n→∞

n

g((ω∗
n)−1) < ∞,

lim
n→∞

ω∗
ng

−1(n) = 0 ⇔ lim
n→∞

n

g((ω∗
n)−1) = 0,

and the proof is complete. �
6. Normalisation, examples, and comparison functions

6.1. The normalisation 
∫ b

a
h1(s) ds < ∞

In this section we provide the arguments announced in Remark 1.2. Denote by Tmin(H)
and Tmax(H) the minimal and maximal operators induced by the equation (1.1), cf. [12, 
Section 3]. First observe that, in the cases of present interest, the space L2(H) always 
contains some constant.

6.1 Lemma. Assume that 0 /∈ σess(A[H]). Then there exists φ ∈ R such that

(
cosφ
sinφ

)
∈ L2(H). (6.1)

This follows from [34, Theorem 3.8(b)] (use t = 0); for the convenience of the reader we 
recall the argument.
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Proof of Lemma 6.1. Since 0 /∈ σess(A[H]), 0 is a point of regular type for Tmin(H). 
Thus there exists a selfadjoint extension Ã of Tmin(H) such that 0 ∈ σp(Ã) (see, e.g., [9, 
Propositions 3.3 and 3.5]), and it follows that kerTmax(H) = {0}. This kernel, however, 
consists of all constant functions in L2(H). �
To achieve the normalisation 

∫ b

a
h1(s) ds < ∞, equivalently, φ = 0 in (6.1), one uses 

rotation isomorphisms.

6.2 Definition. Let α ∈ R, and denote

Nα :=
(

cosα sinα
− sinα cosα

)
.

(i) For a Hamiltonian H defined on some interval [a, b), we set

(�α H)(t) := NαH(t)N−1
α , t ∈ [a, b).

(ii) For a 2-vector valued function defined on some interval [a, b), we set

(ωαf)(t) := Nαf(t), t ∈ [a, b). ♦

6.3 Remark. The following facts hold (see, e.g., [26, p.263]):

� �α H is a Hamiltonian,
� ωα induces an isometric isomorphism of L2(H) onto L2(�α H),
� Tmin(�α H) ◦ ωα = ωα ◦ Tmin(H).

Consequently, the Hamiltonians H and �α H will share all operator theoretic pro-
perties. ♦

6.2. Discussion of Examples 1.6 and 1.7

In this section we consider Hamiltonians of a particularly simple form for which the 
conditions given in Theorems 1.1, 1.3, and 1.5 can be evaluated. Namely, we assume that 
H defined on the interval (0, 1), where h1(t) = 1 a.e., and where h2(t) varies regularly 
at the singular endpoint 1 in the following sense.

6.4 Definition. We call a function ϕ : [0, 1) → (0, ∞) regularly varying at 1 with index 
ρ ∈ R, if the function

ψ(x) := ϕ
(x− 1

x

)
: [1,∞) → (0,∞)

is regularly varying with index ρ. ♦
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The Hamiltonians considered in Examples 1.6 and 1.7 obviously are of this form. Let us 
point out that the reason for the behaviour exhibited in Examples 1.6 and 1.7 is not the 
concrete form of the functions studied there, but their property to be regularly varying.

6.5 Lemma. Let ϕ : [0, 1) → (0, ∞) be continuous and regularly varying at 1 with index 
ρ > 0, and set κ(t) := 1, t ∈ [0, 1). Then the numbers ωn constructed in (4.2) satisfy6

ωn � 2−nϕ
(
1 − 2−n

)
.

Proof. We have ‖1(t,1)κ‖2 = 1 − t, and hence the sequence (cn)∞n=0 is given as

cn = 1 − 2−n, n = 0, 1, 2, . . . .

Since ϕ is continuous, we find tn ∈ Jn with

ωn = 2−n
2

(∫
Jn

|ϕ(s)|2 ds
) 1

2 = 2−n
2 (cn − cn−1)

1
2ϕ(tn) = 2−nϕ(tn).

Set

ψ(x) := ϕ
(x− 1

x

)
, xn := 1

1 − cn
, yn := 1

1 − tn
.

Since xn−1
xn

= 1
2 , we have yn = knxn with kn ∈ [ 12 , 1]. From the Uniform Convergence 

Theorem, see e.g. [4, Theorem 1.5.2], we obtain that

(1
4

)ρ
≤ ψ(yn)

ψ(xn) ≤
(5

4

)ρ
, n sufficiently large.

Passing back to ϕ, cn, tn, this yields ϕ(tn) � ϕ(cn). �
Proof of Example 1.6. We apply Lemma 6.5 with the function ϕ(t) :=

√
h2(t). This is 

justified, since the corresponding function ψ is

ψ(x) = x
α
2 (1 + log x)−

α1
2 (1 + log+ log x)−

α2
2 ,

and hence is regularly varying with index α
2 . Therefore the numbers ωn which decide 

about the behaviour of the operator S21 satisfy

ωn � 2−nϕ(1 − 2−n)

= 2−n · 2nα
2 (1 + log 2n)−

α1
2 (1 + log+ log 2n)−

α2
2

� 2n(α
2 −1)n−α1

2 (logn)−
α2
2 .

6 We write αn � βn, if there exist c1, c2 > 0 such that c1αn ≤ βn ≤ c2αn, n ∈ N.
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Using this relation, the stated spectral properties of Hα;α1,α2 follow immediately from 
the known sequential characterisations. Let us go through the cases.

� First of all the Krein-de Branges formula implies

lim inf
n→∞

n

|λn|
≥

1∫
0

√
h2(s) ds > 0. (6.2)

� If (α > 2) or (α = 2, α1 < 0) or (α = 2, α1 = 0, α2 < 0), then limn→∞ ωn = ∞, and 
hence 0 belongs to the essential spectrum.

� If (α = 2, α1 = α2 = 0), then ωn � 1, and hence the spectrum is not discrete, but 
bounded invertibility takes place.

� If (α < 2) or (α = 2, α1 > 0) or (α = 2, α1 = 0, α2 > 0), then limn→∞ ωn = 0, and 
hence the spectrum is discrete.

� If (α = 2, α1 > 0), then the convergence exponent of (ωn)∞n=1 equals 2
α1

, while in the 
case (α = 2, α1 = 0, α2 > 0), the convergence exponent of (ωn)∞n=1 is infinite. From 
this and (6.2) it follows that (for α = 2)

conv.exp. of (|λn|)∞n=1 =

⎧⎪⎪⎨
⎪⎪⎩
∞ , α1 = 0, α2 > 0,
2
α1

, α1 ∈ (0, 2), α2 ∈ R,

1 , α1 ≥ 2, α2 ∈ R.

� If (α = 2, α1 ∈ (0, 2), α2 ∈ R) and g(r) := r
2

α1 (log r)γ , then

g
( 1
ωn

)
�g

(
n

α1
2 (logn)

α2
2
)

=
[
n

α1
2 (logn)

α2
2
] 2

α1
[
log
(
n

α1
2 (logn)

α2
2
)]γ

�n(logn)
α2
α1

+γ .

This shows that for γ = −α2
α1

we have n · g( 1
ωn

)−1 � 1. Since the sequence (ωn)∞n=1
is comparable to a monotone sequence, it follows that

0 < lim sup
n→∞

n

g((ω∗
n)−1) < ∞. �

Proof of Example 1.7. With a simple trick properties of H̊α1,α2 can be obtained from 
Example 1.6. To explain this, we start in the reverse direction. Consider the Hamiltonian 
H2;α1,α2 , and set

H̊2;α1,α2(t) :=
(

1 −m(t)
−m(t) m(t)2

)
, t ∈ [0, 1),



32 R. Romanov, H. Woracek / Journal of Functional Analysis 278 (2020) 108318
where

m(t) :=
t∫

0

h2(s) ds.

Moreover, let q be the Weyl-coefficient of H2;α1,α2 and q̊ the one of H̊2;α1,α2 . Then, by 
[27, Theorem 4.2], we have

q(z) = 1
z
q̊(z2).

Thus the spectra of A[H̊2;α1,α2 ] and A[H2;α1,α2 ] are together discrete or not. If these spectra 
are discrete, then the convergence exponent of σ(A[H2;α1,α2 ]) is twice the convergence 
exponent of σ(A[H̊2;α1,α2 ]). This yields

conv.exp. of σ(A[H̊2;α1,α2 ]) =
{

1
α1

, α1 ∈ (0, 2),
1
2 , α1 ≥ 2.

Integrating by parts gives

lim
t↗1

m(t)
h2(t)(1 − t) = 1.

The function (h2(t)(1 − t))2 is again of the form (1.5) with α = 2, but with the param-
eters 2α1 and 2α2 instead of α1 and α2. Thus the spectrum of A[H̊α1,α2 ] has the same 
asymptotic behaviour as the spectrum of A[H̊2;α1

2 ,
α2
2

]. �
6.3. On the notion of suitable comparison functions

Let us discuss the conditions (i)–(v) from Definition 5.5. The basic need to apply the 
general theorems about operator ideals is that the Orlicz class S�M� is a symmetrically 
normed ideal with the Matsaev property.

� Monotonicity of M is necessary and sufficient in order that S�M� contains with 
an operator T also all operators T̃ having smaller approximation numbers and 
‖T̃‖S�M�

≤ ‖T‖S�M�
. The condition M(0) = 0 is necessary and sufficient that S�M�

is not empty.
� Continuity is a very mild regularity assumption. The normalisation M(1) = 1 and 

the requirement that M grows sufficiently fast towards ∞ is no loss in generality, 
since S�M� does not change when passing to another function equivalent at 0 to M .

� The Δ0
2-condition is necessary and sufficient that S�M� is a linear space. This follows 

from [32, §3.Corollary c)].
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� S�M� is always naturally topologised, and in fact is a Frechet-space. Convexity of 
M implies that S�M� is a Banach space (with the Luxemburg norm). On the other 
hand, if S�M� is locally convex then M is equivalent to a convex function, cf. [32, 
Theorem 5.3].

� The quantity α0
M in (v) is in the literature known as one of the Matuszewska-Orlicz 

indices associated with M . We saw in Lemma 5.7 that α0
M > 1 is sufficient for S�M�

having the Matsaev property.
Consider the Matuszewska-Orlicz index

β0
M := lim

t→∞

( 1
log t · log

[
lim sup

u↓0

M(tu)
M(u)

])
.

Then S�M� having the Matsaev property implies that β0
M > 1.

Recall at this point that always α0
M ≤ β0

M , cf. [32, p.84, Remark 2]. If M corresponds 
to a regularly varying function g via (5.1), then

α0
M = β0

M = ρg.

Let us provide explicit proof for the necessity part in the last item.

Proof of necessity. Assume that M is subject to the conditions Definition 5.5(i)–(iv), 
and assume that S�M� has the Matsaev property. Then, by Russu’s Theorem, 
limn→∞

1
n‖Tn‖ = 0. A simple argument shows that we can find ρ ∈ [0, 1), C > 0

such that ‖Tn‖ ≤ Cnρ, cf. [38, Theorema 1].
For each n ∈ N consider the sequence

ξ(n) :=
(
M−1( 1

n

)
, . . . ,M−1( 1

n

)
︸ ︷︷ ︸

n times

, 0, 0, . . .
)
.

Then 
∑∞

k=1 M(ξ(n)
k ) = 1, and hence ‖ξ(n)‖S�M�

= 1 (remember here that we assume M
to be increasing). We have

Tnξ(n) :=
(
M−1( 1

n

)
, . . . ,M−1( 1

n

)
︸ ︷︷ ︸

n2 times

, 0, 0, . . .
)
,

and hence 
∑∞

k=1 M
(
[Tnξ(n)]k

)
= n. By our choice of ρ and C, it holds that 

‖Tnξ(n)‖S�M�
≤ Cnρ, and hence for each C ′ > C

n2M
(M−1( 1

n )
C ′nρ

)
=

∞∑
k=1

M
( [Tnξ(n)]k

C ′nρ

)
≤ 1.

This implies that
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M−1( 1
n )

C ′nρ
≤ M−1( 1

n2

)
,

and hence, for each ρ′ ∈ (ρ, 1),

nρ′−ρ

C ′ ≤
M−1( 1

n · 1
n

)
( 1
n

)ρ′
·M−1

( 1
n

) .
Letting n tend to ∞, we see that the Matuszewska-Orlicz index α0

M−1 is not larger 
than ρ. By [32, Theorem 11.5], it follows that

β0
M ≥ 1

ρ
> 1. �

Appendix A. Rewriting sequential to continuous conditions

In this section we give details on how to rewrite the sequential conditions obtained 
from the AJPR-type Theorem to the continuous conditions stated in our theorems.

Recall the relevant notation. We are given a finite or infinite interval (a, b), and mea-
surable functions κ, ϕ : (a, b) → C with κ ∈ L2(a, b) and 1(a,c)ϕ ∈ L2(a, b), c ∈ (a, b). 
Further, c0 := a < c1 < c2 < . . . < b is a sequence with

‖1(cn,b)κ‖2 =
(1

2

)n
‖κ‖2, equivalently, ‖1(cn−1,cn)κ‖2 =

(1
2

)n
‖κ‖2,

and Jn := (cn−1, cn) and ωn := ‖1Jn
κ‖ · ‖1Jn

ϕ‖. Moreover, denote

Ω(t) := ‖1(t,b)κ‖ · ‖1(a,t)ϕ‖, t ∈ (a, b).

The proof of what is needed in Theorem 1.1 and Theorem 5.2 is simple.

A.1 Lemma. Letting notation be as in Theorem 4.1, we have

lim
n→∞

ωn = 0 ⇔ lim
t↗b

‖1(a,t)ϕ‖‖1(t,b)κ‖ = 0,

and

sup
n→∞

ωn < ∞ ⇔ lim sup
t↗b

‖1(a,t)ϕ‖‖1(t,b)κ‖ < ∞.

Proof. A sequence (αn)∞n=1 of nonnegative numbers is bounded (tends to 0), if and only 
if the sequence 

(
2−n

∑n
k=1 2kαk

)∞
n=1 is bounded (tends to 0, respectively). Applying this 

with

αn := 2−n

cn∫
|ϕ(s)|2 ds, n ∈ N,
cn−1
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yields the assertion. �
The proof of Lemma 5.8 is based on dualising and requires some technique for Orlicz 
ideals. From our assumption Definition 5.5(v) and [32, Theorem 11.13], we find c >
0, p > 1 such that

M(tu) ≤ CM(u)tp, u, t ∈ (0, 1].

Using u = 1 and letting t tend to 0 shows that limt↓0
M(t)

t = 0. In the language of 
[32, Chapter 8,p.47] this means that M belongs to the class N (remember here Defini-
tion 5.5(ii)). Thus the duality theory for Orlicz spaces is available.

We start with a preparatory lemma.

A.2 Lemma. Set I := N and let q ∈ (0, 1).

(i) Set J := {(n, k) ∈ I × I : k ≤ n} and let S�M� denote the Orlicz space of se-
quences indexed by I or by J depending on the context. For a sequence (αn)n∈I

define sequences (β(n,k))(n,k)∈J and (β′
(n,k))(n,k)∈J as

βn,k := αnq
n−k, β′

(n,k) := αkq
n−k, (n, k) ∈ J.

If (αn)n∈I ∈ S�M�, then (β(n,k))(n,k)∈J , (β′
(n,k))(n,k)∈J ∈ S�M�. There exists a con-

stant C1 > 0 such that

max
{
‖(β(n,k))(n,k)∈J‖S�M�

, ‖(β′
(n,k))(n,k)∈J‖S�M�

}
≤ C1‖(αn)n∈I‖S�M�

, (αn)n∈I ∈ S�M�.

(ii) Consider a sequence (αn)n∈I with (qnαn)n∈I ∈ S�M�, and define a sequence (βn)n∈I

as

βn :=
∑
k∈I
k≤n

αk, n ∈ I.

Then (qnβn)n∈I ∈ S�M�. There exists a constant C2 > 0 such that

‖(qnβn)n∈I‖S�M�
≤ C2‖(qnαn)n∈I‖S�M�

, (qnαn)n∈I ∈ S�M�.

Proof. For the proof of item (i) let (αn)n∈I ∈ S�M� with ‖(αn)n∈I‖S�M�
≤ 1 be given. 

Then, in particular, |αn| ≤ 1, n ∈ I. By our assumption Definition 5.5(v) and [32, 
Theorem 11.13], we have

C := sup M(γt)
γM(t) < ∞.
0<γ,t≤1
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Note that C ≥ 1. Thus we can estimate
∑

(n,k)∈J

M(|βn,k|) =
∑

(n,k)∈J

M(|αn|qn−k) ≤
∑

(n,k)∈J

Cqn−kM(|αn|)

=C
∑
n∈I

(∑
k∈I
k≤n

qn−k

︸ ︷︷ ︸
≤ 1

1−q

)
M(|αn|) ≤

C

1 − q

∑
n∈I

M(|αn|) ≤
C

1 − q
.

Since |βn,k| ≤ |αn| ≤ 1 and C2

1−q ≥ 1, it follows that

∑
(n,k)∈J

M
( |βn,k|
C2/(1 − q)

)
≤

∑
(n,k)∈J

C
1 − q

C2 M(|βn,k|) ≤ 1.

This shows that ‖(β(n,k))(n,k)∈J‖S�M�
≤ C2

1−q .
The sequence (β′

(n,k))(n,k)∈J is handled in the same way. Namely

∑
(n,k)∈J

M(β′
n,k) =

∑
(n,k)∈J

M(|αk|qn−k) ≤
∑

(n,k)∈J

Cqn−kM(|αk|)

=C
∑
k∈I

(∑
n∈I
n≥k

qn−k

︸ ︷︷ ︸
= 1

1−q

)
M(|αk|) = C

1 − q

∑
k∈I

M(|αk|) ≤
C

1 − q
,

from which we again obtain that ‖(β′
(n,k))(n,k)∈J‖S�M�

≤ C2

1−q .
The proof of (ii) is based on dualising. Let M∗ be the Orlicz function complementary 

to M , cf. [32, Chapter 8,p.48]. The Matuszewska-Orlicz indices of M and M∗ are related 
as

1
α0
M

+ 1
β0
M∗

= 1
α0
M∗

+ 1
β0
M

= 1,

cf. [32, Corollary 11.6]. By Definition 5.5(iii) and [32, Theorem 11.7] we have β0
M < ∞, 

and Definition 5.5(v) is α0
M > 1. It follows that also β0

M∗ < ∞ and α0
M∗ > 1. From [32, 

Theorem 11.13] we obtain

C∗ := sup
0<γ,t≤1

M∗(γt)
γM∗(t) < ∞.

Now let (σn)n∈I ∈ S�M∗�. Then we can use (i), the Hölder inequality [32, Chap-
ter 8,Corollary 3], and the relation [32, Theorem 1.1] between Amemiya- and Luxemburg 
norms, to estimate
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∣∣∣∑
n∈I

σn · qnβn

∣∣∣ ≤ ∑
n∈I

|σn|qn
∑
k∈I
k≤n

|αk| =
∑

(n,k)∈J

|σn|(
√
q)n−k ·

(
qk|αk|

)
(√q)n−k

≤ 2
∥∥(σn · (√q)n−k

)
(n,k)∈J

∥∥
S�M∗�

∥∥(qkαk · (√q)n−k
)
(n,k)∈J

∥∥
S�M�

≤ 2C2(C∗)2

(1 −√
q)2 ‖(σn)n∈I‖S�M∗�

‖(qnαn)n∈I‖S�M�
.

By [32, Theorem 8.6] it follows that (qnβn)n∈I ∈ S�M� and

‖(qnβn)n∈I‖S�M�
≤ 2C2(C∗)2

(1 −√
q)2 ‖(q

nαn)n∈I‖S�M�
. �

Proof of Lemma 5.8. For t ∈ Jn it holds that

Ω(t) ≥ ‖1(a,cn−1)ϕ‖‖1(cn,b)κ‖ ≥ ‖1Jn−1ϕ‖‖1Jn+1κ‖ = ωn−1

2 ,

and we can estimate

∞∑
n=1

M
(ωn

2

)
=

∞∑
n=1

[
M
(ωn

2

)
· 1
log 2

∫
Jn+1

|κ(t)|2 dt
‖1(t,b)κ‖2

]

≤
∞∑

n=1

[
1

log 2

∫
Jn+1

M(Ω(t)) · |κ(t)|2 dt
‖1(t,b)κ‖2

]

≤ 1
log 2

b∫
a

M(Ω(t)) · |κ(t)|2 dt
‖1(t,b)κ‖2 < ∞.

This shows that the implication “⇐” holds.
Conversely, we have for t ∈ Jn

Ω(t) ≤ ‖1(a,cn)ϕ‖‖1(cn−1,b)κ‖ ≤
( n∑

k=1

‖1Jk
ϕ‖
)
·
( 1√

2

)n−1
‖κ‖.

Assume that (ωn)∞n=1 ∈ S�M�. Since ωn = ‖κ‖
( 1√

2

)n · ‖1Jn
ϕ‖, we can apply 

Lemma A.2(ii) with the sequence αn := ‖1Jn
ϕ‖, n ∈ N. This shows that

(( 1√
2

)n n∑
k=1

‖1Jk
ϕ‖
)∞
n=1

∈ S�M�,

and we obtain
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b∫
a

M(Ω(t)) · |κ(t)|2 dt
‖1(t,b)κ‖2 =

∞∑
n=1

∫
Jn+1

M(Ω(t)) · |κ(t)|2 dt
‖1(t,b)κ‖2

≤ log 2
∞∑

n=1
M
(
‖κ‖
( 1√

2

)n−1 n∑
k=1

‖1Jk
ϕ‖
)
< ∞. �

Appendix B. I.S. Kac’s compactness theorem

As mentioned in the introduction, the only result on the discreteness of the spec-
trum in the nondiagonal case is a theorem announced by I.S. Kac in [17, Theorem 1]; 
we reformulate it below. We were unable to find a proof of it in published papers or 
other sources. In this appendix we derive the meaningful part of Kac’ result from our 
discreteness criterion Theorem 1.1.

Let us elaborate on his theorem first. It consists of one necessary condition for the 
discreteness of the spectrum and one sufficient condition, the latter having two cases. We 
shall show that the necessary condition and one of the cases of the sufficient condition 
follow from Theorem 1.1. As for the second case in the sufficiency condition, we shall 
show that it is either empty, that is, no Hamiltonian satisfies it, or it is wrong.

We start by formulating Kac’ theorem. Let H =
(

h1 h3
h3 h2

)
be a Hamiltonian on [0, ∞)

such that trH(t) = 1 a.e.7 For K ≥ 0 we define

mj(t) :=
t∫

0

hj(t) dt,

AK :=
{
λ ∈ R \ {0} : lim sup

t→∞

( ∞∫
t

h1(s)eλm3(s)ds ·
t∫

0

h2(s)e−λm3(s)ds

)
≤ K

λ2

}
,

BK :=
{
λ ∈ R \ {0} : lim sup

t→∞

( ∞∫
t

h2(s)e−λm3(s)ds ·
t∫

0

h1(s)eλm3(s)ds

)
≤ K

λ2

}
.

B.1 Theorem ([17]). The implications “(i)⇒(ii)⇒(iii)” hold, where

(i) sup
( ⋃

K<1
AK ∪

⋃
K<1

BK

)
= +∞, inf

( ⋃
K<1

AK ∪
⋃
K<1

BK

)
= −∞.

(ii) The operator A[H] has discrete spectrum, with8 either h1 ∈ L1(0, ∞), or h2 ∈
L1(0, ∞).

(iii) A1 ∪B1 = R \ {0}.

7 Recall that this trace normalisation can always be achieved by means of a change of scale in the inde-
pendent variable, which does not change any operator theoretic properties.
8 This normalisation does not appear in [17]. However, without it the statement is false.
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We are going to establish the following theorem.

B.2 Theorem. Using the above notation, the following statements are equivalent.

(i) There exists a K > 0 such that the set 
⋃

K′<K AK′ accumulates at both −∞ and 
+∞.

(ii) The operator A[H] has discrete spectrum and h1 ∈ L1(0, ∞).
(iii) We have

lim
t→∞

( ∞∫
t

h1(s)eλm3(s) ds ·
t∫

0

h2(s)e−λm3(s) ds
)

= 0, λ ∈ R \ {0}. (B.1)

The analogous statement holds when AK is replaced by BK in (i), and h1 and h2 are 
interchanged in (ii) and (iii).

Proof. The assertion (iii) means simply that A0 = R \ {0}, hence the implication 
“(iii)⇒(i)” holds trivially.

We come to the proof of “(i)⇒(ii)”. Fix c ∈ (0, ∞) such that the function h2 does not 
vanish almost everywhere on [0, c], and consider the function F : [c, ∞) × R → [0, ∞]
defined as

F (t, λ) :=
∞∫
t

h1(s)eλm3(s) ds ·
t∫

0

h2(s)e−λm3(s) ds.

Consider an arbitrary interval [μ1, μ2] ⊂ R and a number λ = vμ1 +(1 −v)μ2, v ∈ (0, 1), 
from this interval. The Hölder inequality gives

∞∫
t

h1(s)e2λm3(s) ds =
∞∫
t

(
h1(s)eμ1m3(s)

)v
·
(
h1(s)eμ2m3(s)

)1−v

ds

≤
( ∞∫

t

h1(s)eμ1m3(s) ds
)v

·
( ∞∫

t

h1(s)eμ2m3(s) ds
)1−v

,

t∫
0

h2(s)e−λm3(s) ds ≤
( t∫

0

h2(s)e−μ1m3(s) ds
)v

·
( t∫

0

h2(s)e−μ2m3(s) ds
)1−v

.

Multiplying these inequalities we obtain,

F (t, λ) ≤
(
F (t, μ1)

)v(
F (t, μ2)

)1−v
.

Let μ1 ∈ AK1 ∩ (−∞, 0), μ2 ∈ AK2 ∩ (0, ∞), for some K1, K2 < K. Then
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lim sup
t→∞

F (t, λ) ≤
(K
μ2

1

)v(K
μ2

2

)1−v

= K

μ2v
1 μ

2(1−v)
2

.

Consider now λ = 0 and let μ2 tend to ∞ in the set 
⋃

K′<K AK′ . Then v → 1, and 
therefore

lim sup
t→∞

F (t, 0) ≤ K

μ2
1
.

Since inf
⋃

K′<K AK′ = −∞ this implies that

lim
t→∞

( ∞∫
t

h1(s) ds ·
t∫

0

h2(s) ds
)

= lim
t→∞

F (t, 0) = 0.

In particular, h1 ∈ L1, and we infer from Theorem 1.1 that the spectrum of A[H] is 
discrete.

The proof of “(ii)⇒(iii)” is carried out in three steps.

➀ Assume that the spectrum of A[H] is discrete and h1 ∈ L1(0, ∞). By Theorem 1.1
we have

lim
t→∞

( ∞∫
t

h1(s) ds ·
t∫

0

h2(s) ds
)

= 0. (B.2)

Since we have the normalisation trH(t) = 1, it holds that

(B.2) ⇔ lim
t→∞

t

∞∫
t

h1(s) ds = 0 ⇔ lim
t→∞

sup
x≥t

(
x

∞∫
x

h1(s) ds
) 1

2

︸ ︷︷ ︸
=:p(t)

= 0

Note that p is nonincreasing. Moreover, again from trace normalisation,

max{h1(t), h2(t)} ≤ 1, h3(t)2 ≤ h1(t)h2(t) ≤ min{h1(t), h2(t)}. (B.3)

➁ In this step we show that

|m3(y) −m3(x)| ≤ p(x)
(
1 + log y

x

)
, 0 < x < y. (B.4)

We have

|m3(y) −m3(x)| =
∣∣∣

y∫
h3(s) ds

∣∣∣ ≤ (
y∫ 1
s
ds
) 1

2
( y∫

sh3(s)2 ds
) 1

2

x x x
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=
(
log y

x

) 1
2
( y∫

x

sh3(s)2 ds
) 1

2
.

Using (B.3) and integrating by parts gives

y∫
x

sh3(s)2 ds ≤
y∫

x

sh1(s) ds = x

y∫
x

h1(s) ds +
y∫

x

( y∫
s

h1(t) dt
)
ds

≤ p(x)2 +
y∫

x

1
s
· p(s)2 ds ≤ p(x)2

(
1 + log y

x

)
.

Combined these imply the estimate (B.4).
➂ Fix t0 > 0 such that p(t0) < 1

|λ| . This is possible, since p(t) → 0 as t → ∞. We are 
going to show that for all t ≥ t0

∞∫
t

h1(s)eλm3(s) ds ·
t∫

t0

h2(s)e−λm3(s) ds ≤ p(t)2 · e2

(1 − |λ|p(t0))2
. (B.5)

Notice that the left hand side in (B.5) equals to

∞∫
t

h1(s)eλ(m3(s)−m3(t)) ds ·
t∫

0

h2(s)e−λ(m3(s)−m3(t)) ds.

We estimate the integrals in this product separately.

∞∫
t

h1(s) eλ(m3(s)−m3(t)) ds ≤
∞∫
t

h1(s) exp
(
|λ|p(t)

(
1 + log s

t

))
ds

≤ e

t|λ|p(t)

∞∫
t

h1(s)s|λ|p(t) ds = e

t|λ|p(t)

[
t|λ|p(t)

∞∫
t

h1(s) ds

︸ ︷︷ ︸
≤ 1

t p(t)2

+
∞∫
t

|λ|p(t)s|λ|p(t)−1 ·
( ∞∫

s

h1(x) dx

︸ ︷︷ ︸
≤ 1

sp(s)2≤ 1
sp(t)2

)
ds

]

≤ e

t
p(t)2 + e

t|λ|p(t)
|λ|p(t)3 t|λ|p(t)−1

1 − |λ|p(t) ≤ p(t)2

t
· e

1 − |λ|p(t0)
;
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t∫
t0

h2(s) e−λ(m3(s)−m3(t)) ds ≤
t∫

t0

h2(s)︸ ︷︷ ︸
≤1

exp
(
|λ| p(s)︸︷︷︸

≤p(t0)

(
1 + log t

s

))
ds

≤ et|λ|p(t0)
t1−|λ|p(t0)

1 − |λ|p(t0)
= t · e

1 − |λ|p(t0)
.

Combined, these estimates imply (B.5). The required limit (B.1) follows from it since 
p(t) → 0 as t → ∞. �

The theorem just proved immediately establishes the implication “(ii)⇒(iii)” in Kac’ 
theorem (even in a stronger form). Consider now the implication “(i)⇒(ii)” in the latter.

B.3 Lemma. We have AK ∩BK′ = ∅ for all K, K ′ > 0.

Proof. Arguing by contradiction, assume that λ ∈ AK ∩ BK′ . Then h1e
λm3 , h2e

−λm3 ∈
L1(R+), which implies that h3 ∈ L1(R+) in view of the estimate

∞∫
−∞

|h3(x)| dx ≤
∞∫

−∞

√
h1(x)h2(x) dx

≤
( ∞∫
−∞

h1(x)eλm3(x) dx ·
∞∫

−∞

h2(x)e−λm3(x) dx
) 1

2
.

Thus, the function m3 is bounded, and h1, h2 ∈ L1(R+), which obviously contradicts 
the normalization trH(x) = 1. �
Proceeding, notice that it follows from the proof of the implication “(i)⇒(ii)” in Theo-
rem B.2 that the sets 

⋃
K>0 AK and 

⋃
K>0 BK are convex. Together with Lemma B.3

this shows that there are just four possible situations in Theorem B.1(i):

� sup
( ⋃

K<1
AK

)
= ∞ and inf

( ⋃
K<1

AK

)
= −∞,

� sup
( ⋃

K<1
AK

)
= ∞ and inf

( ⋃
K<1

BK

)
= −∞,

� each of the above obtained by switching A and B.

In the first case the assertion of the Kac theorem is immediately contained in Theo-
rem B.2. Assume now that a Hamiltonian H is in the second case, and Theorem B.1
holds. By the implication “(ii)⇒(iii)” in Theorem B.2 there exists a point λ ∈ AK ∩BK′

on the negative semiaxis. However, by Lemma B.3, the sets AK and BK′ are disjoint and 
we have reached a contradiction. Hence, either no Hamiltonian belongs to the second 
case, or the assertion of Kac’ theorem in this case is false.
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