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Abstract: We give an upper estimate for the order of the entire functions in the
Nevanlinna parameterisation of the solutions of an indeterminate Hamburger
moment problem. Under a regularity condition this estimate becomes explicit and
takes the form of a convergence exponent. Proofs are based on transformations of
canonical systems and I.S.Kac’ formula for the spectral asymptotics of a string.
Combining with a lower estimate from previous work, we obtain a class of moment
problems for which order can be computed. This generalises a theorem of
Yu.M.Berezanskii about spectral asymptotics of a Jacobi matrix (in the case that
order is ≤ 1/2).
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1 Introduction

Let H be a 2×2-matrix valued integrable function on a finite interval [0, L]
whose values are almost everywhere real and positive semidefinite matrices.
The canonical system with Hamiltonian H is the equation

y′(x) = zJH(x)y(x), x ∈ [0, L], (1.1)

where J is the symplectic matrix J :=
(
0 −1
1 0

)
, and z is a complex parameter.

The fundamental solution of the system (for practical reasons one passes to
transposes) is the solution of the initital value problem







d
dxW (x, z)J = zW (x, z)H(x), x ∈ [0, L],

W (0, z) = I.
(1.2)

Classical theory of differential equations says that W (x, z) = (wij(x, z))
2
i,j=1

exists, is unique, and depends analytically on z.
For each x ∈ [0, L] the entries wij(x, z), i, j = 1, 2, are entire functions

of Cartwright class. Their common exponential type is given by the Krein-
de Branges formula

τ(x) =

∫ x

0

√

detH(y) dy, i, j = 1, 2,

cf. [Kre51], [Bra61]. If τ(L) > 0 it follows that the eigenvalues ωn of the
differential operator associated with (1.1) form a two-sided infinite sequence
and have asymptotics (when arranged increasingly)

|ωn| = τ(L) · πn+ o(n), n ∈ Z.

‡This work was supported by a joint project of the Austrian Science Fund (FWF, I 1536–
N25) and the Russian Foundation for Basic Research (RFBR, 13-01-91002-ANF).
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If detH(x) = 0 a.e., the Krein-de Branges formula gives no information about
eigenvalues other than ωn = o(n), and it is a difficile problem to detect
finer asymptotic behaviour. Thinking, for instance, of bounds of the form

lim supn→∞ n− 1
ρωn < ∞, this corresponds to the problem to determine the

order of the functions wij(x, ·).
The question to determine order has been studied in particular in the context

of Hamburger moment problems where W (L, z) is the Nevanlinna matrix asso-
ciated with an indeterminate moment problem, see, e.g., [BP94; BP07; BS14],

or for Krein-Feller operators d2

dmdx where W (L, z) contains the fundamental so-
lutions of the second order equation and their derivatives, see, e.g., [Kac86b;
Fre05].

The connection between moment problems and canonical systems is made
as follows: indeterminate Hamburger moment problems correspond to canonical
systems whose Hamiltonian is piecewise constant and rank one on a sequence
of intervals accumulating only at L, i.e., H being of the form

H(x) = ξφn
ξ∗φn

, x ∈ [xn−1, xn),

0 = x0 < x1 < x2 < · · · < xn < · · · → L,

where

ξφ :=

(
cosφ

sinφ

)

, φ ∈ R,

cf. [Kac99]. Following I.S.Kac, we call such Hamiltonians Hamburger Hamilto-
nians.

In the present paper we establish an upper estimate for the order of a Ham-
burger Hamiltonian; see Theorem 4.1, which is our first main result. The proof is
achieved by associating with the given Hamburger Hamiltonian a certain (singu-
lar) Krein-string. During this process several different types of arguments come
into play. Our method relies on an operator theoretic limiting argument (Propo-
sition 2.5), some purely algebraic computations and transformations (§3), and
estimates for canonical products by means of the density of their zeroes. More-
over, on the way, we leave the positive definite scheme and encounter Hamilto-
nians which may take negative semidefinite matrices as values.

The estimate from Theorem 4.1 is incomparable with the one obtained re-
cently in [PRW16]; in some cases it is better and in some others it is worse, cf.
Proposition 4.5 and Example 4.6.

Our second main result is Theorem 4.4 where we discuss a class of Hamilto-
nians whose order can be determined. We consider a Hamburger Hamiltonian
H whose angles φn (up to a small deviation) walk on the grid Arccot(Z):

φn

n

A
rc
co
t(
Z
)

π
2

0

π
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and assume that lengths ln := xn − xn−1 and angles together decay sufficiently
rapidly (the series

∑∞
n=1[ln sin

2 φn]
1
2 lnn should converge) and regularly (the

sequence ln sin
2 φn should be nonincreasing). The conclusion then is that the

order of wij(L, z) is equal to the convergence exponent of ([ln sin
2 φn]

−1)∞n=1

The proof is obtained by evaluating the upper estimate Theorem 4.1 with help
of [Kac90], and combining this with a lower estimate from [PRW16].

Theorem 4.4 can be seen as a generalisation for orders ≤ 1/2 of a theorem
of Yu.M.Berezanskii. In the language of Hamburger Hamiltonians the essence
of Berezanskii’s theorem can be phrased as follows: Consider a Hamburger
Hamiltonian H whose angles alternate between two values:

ψ1

ψ2

n

φn

If lengths decay regularly (the sequence ln−2/ln should be monotone), then the
order of wij(L, z) is equal to the convergence exponent of (l−1

n )∞n=1.
A detailed discussion of the connection with Berezanskii’s theorem is given

in §4.3, where we shall also see that the present result actually goes far beyond
Berezanskii’s result, cf. Example 4.8.

Acknowledgement: This work was carried out during a visit of the authors to
the St.Petersburg State University. The authors thank the St.Petersburg State
University and the Chebyshev Laboratory for its hospitality. Special thanks go
to Roman Romanov for useful discussions.

2 Schatten-class properties and order

Let H be a Hamiltonian. An interval (a, b) is called indivisible for H, if H(x) =
h(x)ξφξ

∗
φ, x ∈ (a, b) a.e., with some scalar valued function h. We refer to φ

as the angle of the interval and to
∫ b

a
h(x) dx as its length. Obviously, φ is

determined up to integer multiples of π.
Consider now a positive semidefinite Hamiltonian H : [0, L) → R

2×2, which
is defined and locally integrable on a finite or infinite interval [0, L). With H
there is associated a Hilbert L2(H) and a linear relation Tmax(H) acting in
this space, cf. [Kac85; Kac86a] or (in a more accessible form) [HSW00]. The
space L2(H) consists of 2-vector valued measurable functions satisfying a usual
L2-condition and a constancy condition on indivisible intervals1. The relation
Tmax(H) is given by the differential expression f ′ = JHg on its natural maximal
domain in L2(H).

There is a rich spectral theory for canonical systems. The adjoint Tmin(H) :=
Tmax(H)∗ is a completely nonselfadjoint symmetry in L2(H). It has defect index

(2, 2) or (1, 1) depending whether the integral
∫ L

0
trH(x) dx is finite or infinite.

1One word of caution concerning notation: In [HSW00] the space we call L2(H) is denoted
as L2

s
(H), and L

2(H) is used for the space obtained only requiring finiteness of the L2-integral.
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This distinction is known as limit circle case (lcc) if the integral is finite, and
limit point case (lpc) if it is infinite.

Recall the construction of the Titchmarsh-Weyl coefficient associated with
a positive semidefinite Hamiltonian in lpc:

2.1. The Weyl-construction: We denote by N0 the Nevanlinna class, i.e., the
set of all functions Q which are analytic in C\R, satisfy Q(z) = Q(z), and have
nonnegative imaginary part throughout the upper half-plane C

+.
LetH be a positive semidefinite Hamiltonian in lpc. Then for each parameter

τ ∈ N0 ∪ {∞} the limit

QH(z) := lim
x→L

w11(x, z)τ(z) + w12(x, z)

w21(x, z)τ(z) + w22(x, z)
(2.1)

exists locally uniformly on C \ R and does not depend on τ , cf. [HSW00, The-
orem 2.1(2.7)] The function QH is called the Titchmarsh-Weyl coefficient of
H. It belongs to the Nevanlinna class and is the Q-function of the canonical
selfadjoint extension of Tmin(H) given as

A(H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0

}
,

cf. [HSW00, Theorem 4.3]. An inverse theorem holds: Given a function Q ∈ N0,
there exists a positive semidefinite Hamiltonian H such that Q = QH , and H
is unique up to a normalisation. This result is due to L.de Branges and follows
from [Bra68] (an explicit deduction from this source is given in [Win95]). ♦

Let us turn to the case that H is integrable up to L.

2.2. Limit circle case: In this case the limit W (L, z) := limxրL W (x, z) exists
locally uniformly on C, and therefore the right side of (2.1) can be evaluated as

QH/τ (z) :=
w11(L, z)τ(z) + w12(L, z)

w21(L, z)τ(z) + w22(L, z)
, z ∈ C \ R.

When τ runs through N0 ∪{∞}, the functions QH/τ parameterise the family of
regularised 1-resolvents of all selfadjoint exit space extensions of the symmetric
extension of Tmin(H) given as

S(H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0, f(L) = 0

}
.

Thereby constant parameters correspond to canonical extensions. This is due
to the interpretation of W (L, z) as a resolvent matrix in the sense of M.G.Krein,
which follows from [HSW00, Proposition 4.4].

If τ ∈ R∪ {∞}, the function QH/τ is the Q-function of S(H) induced by its
extension

Aτ (H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0, ξ∗φf(L) = 0

}
, (2.2)

where φ = Arccot τ . This can be shown e.g. by appending an indivisible interval
with angle φ and infinite length to H, and checking that for the resulting lpc
Hamiltonian H̃ in fact S(H) = Tmin(H̃) and Aτ (H) = A(H̃). ♦

The following notion of order is the central subject of our studies.
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2.3 Definition. Let H be a positive semidefinite Hamiltonian defined and
locally integrable on the finite or infinite interval [0, L).

If H is lpc and QH is not meromorphic throughout C, set ρ(H) := ∞.
Otherwise, let (ωn)n=1,2,... be the sequence of non-zero poles of QH (or QH/0 if
H is lcc) arranged according to nondecreasing modulus, and define ρ(H) as the
convergence exponent of (ωn)n=1,2,..., i.e.

ρ(H) = inf
{

α > 0 :
∑

n=1,2,...

ω−α
n < ∞

}

.

We call ρ(H) the order of H. ♦

Our motivation to introduce order in this way comes from the lcc. In this case
the entries wij(L, z) are entire functions of bounded type in both half-planes
C

+ and C
− and are real along the real axis. Hence, they are canonical products

and the convergence exponent of their zeroes equals their order. However, the
poles of a function QH/τ (where τ ∈ R ∪ {∞} is arbitrary) interlace with the
zeroes of w21(L, z), and hence have the same convergence exponent.

We use an operator theoretic interpretation of ρ(H). For p > 0 denote by
Sp the Schatten-von Neumann ideal of all compact operators whoes sequence
of s-numbers belongs to ℓp, see, e.g., [GK69].

2.4 Remark. Let H be a positive semidefinite Hamiltonian which is either lcc
or lpc with QH meromorphic throughout C. Then the spectrum of A(H) (or
Aτ (H), respectively) coincides with the set of poles of QH (or QH/τ , respec-
tively). Therefore A(H) (or Aτ (H), respectively) has compact resolvents and,
for arbitrary z in the resolvent set of the operator

ρ(H) = inf
{
p > 0 : (A(H)− z)−1 ∈ Sp

}
,

or ρ(H) = inf
{
p > 0 : (Aτ (H)− z)−1 ∈ Sp

}
, respectively.

Assume now thatH is lpc with QH meromorphic throughout C. There exists
a unique canonical selfadjoint extension of Tmin(H) having 0 in its spectrum,
and hence as an eigenvalue. This means that there exists some constant ξφ(H)

belonging to L2(H). Since we are in lpc, the angle φ(H) is uniquely determined
(modulo π). It is related to QH by

QH(0) = − tanφ(H), (2.3)

cf. [HSW00, Theorem 2.1(2.8)]. ♦

In our present considerations we employ the following result which is interesting
on its own right.

2.5 Proposition. Let H : [0, L) → R
2×2 be a positive semidefinite Hamiltonian

in lpc such that (0, L) is not indivisible. Assume that QH is meromorphic in C,
QH(0) = 0, and

∑

n
1

|ωn| < ∞, where (ωn)n=1,2,... is the sequence of poles of QH

arranged according to nondecreasing modulus. Then the following statements
hold.

(i) Denote by J the set of all points x ∈ (0, L) such that x is not inner point
of an indivisible interval and (0, x) is not indivisible. The limits

b(z) := lim
x→sup J

x∈J

w12(x, z), d(z) := lim
x→sup J

x∈J

w22(x, z),

exist locally uniformly on C.
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(ii) The functions b and d are real along the real axis, have no common zeroes,
are of Polya class and of order ρ(H) (with zero type if ρ(H) = 1).

(iii) For each ε > 0 there exists a constant Cε > 0 such that

∀x ∈ J : |wij(x, z)| ≤ Cε exp
(
|z|ρ(H)+ε

)
, z ∈ C, (i, j) ∈ {(1, 2), (2, 2)}.

In the proof we exploit the connection Remark 2.4 and use a standard estimate
for canonical products2.

Proof. For x ∈ J we can consider L2(H|[0,x]) as a subspace of L2(H), namely by

identifying a function f from L2(H[0,x]) with its extension f̂ defined by f̂(y) = 0,
y ∈ (x, L). We shall always tacitly apply this identification.

Set Px : f 7→ 1[0,x]f , where 1[0,x] denotes the indicator function of the
interval [0, x]. Then Px is the orthogonal projection of L2(H) onto L2(H|[0,x]).
Moreover, set

T := A(H)−1, Tx := A0(H|[0,x])−1, x ∈ J.

Note here that 0 ∈ ρ(A(H)) by assumption and 0 ∈ ρ(A0(H|[0,x])) by the bound-
ary condition in the definition (2.2). The spectrum of T equals (ω−1

n )n=1,2,...

with all eigenvalues being simple. Hence, T ∈ S1.
The crucial observation is that

Tx = PxT |ranPx
, x ∈ J.

To see this, let g ∈ ranPx be given and set f := Tg. Then f ′(x) = JH(x)g(x),
x ∈ [0, L) a.e., and (1, 0)f(0) = 0. Since g(y) = 0, y ∈ (x, L), the function
f |[x,L) is constant. It follows from (2.3) that f |[x,L) ∈ span{

(
1
0

)
}, which implies

(0, 1)f(x) = 0. We see that Txg = 1[0,x]f = PxTg.
We proceed with establishing the required properties of the right lower en-

tries w22(x, z). Since Px → I in the strong operator topology when x ր sup J
and T ∈ S1, we have PxTPx → T in the norm of S1. This implies that

lim
x→sup J

x∈J

det(I − zPxTPx) = det(I − zT )

locally uniformly on C. We have

ker(PxTPx − λ) = ker(PxT |ranPx
− λ), λ 6= 0,

and hence det(I − zPxTPx) = det(I − zPxT |ranPx
) = det(I − zTx).

Let ωn(x) be the zeroes of w22(x, ·) arranged according to nondecreasing
modulus. The spectrum of Tx equals {ω1(x), ω2(x), . . .}, and all eigenvalues of
Tx are simple. Using that w22(x, ·) is of bounded type in C

+ and real along the
real axis we obtain

w22(x, z) =
∏

n

(

1− z

ωn(x)

)

= det(I − zTx) = det(I − zPxTPx).

2Probably an alternative proof could proceed using [Bra68, Theorem 41, Problem 154] and
the “reversing direction transformation” [KW11, Definition 2.6]. However, we did not try to
work out details of this approach since we believe that the operator theoretic argument is
simple and elegant.
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Thus the limit in (i) exists, in fact d(z) = det(I − zT ). Since det(I − zT ) =
∏

n

(
1− z

ωn

)
, the properties of d listed in (ii) follow.

For the proof of the uniform estimate in (iii) consider the counting functions

n(x, r) := #{n : |ωn(x)| ≤ r}, n(r) := #{n : |ωn| ≤ r}.

Denote by sn(·) the n-th s-number of an operator, then

|ωn(x)|−1 = sn(Tx) = sn
(
PxT |ranPx

)
= sn(PxTPx) ≤ sn(T ) = |ωn|−1,

whence n(x, r) ≤ n(r), x ∈ J , r > 0. Using [Lev80, Lemma I.4.3] we obtain the
required bound.

We turn to the function w12(x, z). Let ω̃n(x) be the nonzero zeroes of
w12(x, ·) arranged according to nondecreasing modulus, and let ñ(x, r) be the
counting function for ω̃1(x), ω̃2(x), . . .. Since the zeroes of w12(x, ·) interlace
with the zeroes of w22(x, ·) and w12(x, 0) = 0, we have

ñ(x, r) ≤ n(x, r) ≤ n(r), x ∈ J, r > 0.

Again [Lev80, Lemma I.4.3] applies and yields a uniform estimate for the canon-
ical product

∏

n

(
1 − z

ω̃n(x)

)
. The function w12(x, ·) is of bounded type in C

+

and real along the real axis, hence admits the representation (a prime denotes
differentiation w.r.t. z)

w12(x, z) = w′
12(x, 0) · z

∏

n

(

1− z

ω̃n(x)

)

.

However,

w′
12(x, 0) =

∫ x

0

(
1

0

)∗
H(y)

(
1

0

)

dy ≤
∥
∥
∥

(
1

0

)∥
∥
∥

2

L2(H)
< ∞,

and the bound required in (iii) for w12(x, ·) follows.
We have w12(x, ·)w22(x, ·)−1 → QH locally uniformly on C\R, in particular,

w12(x, z) → d(z)QH(z) pointwise on C \ R. Since the functions w12(x, ·) form
a normal family of entire function and b := dQH is entire, this limit is actually
assumed locally uniformly on all of C. Using the product representation of QH

and the fact that the zeroes of d are exactly the poles of QH , we obtain

b(z) =
∥
∥
∥

(
1

0

)∥
∥
∥

2

L2(H)
· z ·

∏

n

(

1− z

ω̃n

)

where ω̃n denote the nonzero zeroes of QH . Thus b has all the properties listed
in (ii). ❑

In Proposition 2.5 we assume the normalisation QH(0) = 0, equivalently, that
φ(H) = 0. Passing to arbitrary angles φ(H) is easily possible by performing a
rotation (see, e.g., [KW11, Definition 2.4, Lemma 3.29]). Due to the (annoying)
fact that different sources of literature use different normalisations, we need the
corresponding result obtained after a rotation by π

2 .
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2.6 Corollary. Assume in Proposition 2.5 that QH has a pole at 0 instead of
the value 0. Then the assertion remains true when the functions w12(x, z) and
w22(x, z) are replaced by w11(x, z) and w21(x, z).

2.7 Remark. Proposition 2.5 is a natural generalisation of the lcc.

— Assume that H is lcc: The limits wij(L, z) = limxրL wij(x, z), i, j = 1, 2, ex-
ist, and the functions wij(L, z) are real along the real axis and have no common
zeroes.

— Assume in addition that detH = 0 a.e.: The functions wij(L, z), i, j = 1, 2,
are of Polya class and of order ρ(H) (with zero type if ρ(H) = 1).

— Uniform estimate: For each ε > 0 there exists a constant Cε > 0 such that

∀x ∈ [0, L] : |wij(x, z)| ≤ Cε exp
(
|z|ρ(H)+ε

)
, z ∈ C, i, j = 1, 2.

To see the uniform estimate just append an indivisible interval of infinite length
and type π

2 (type 0 for the first column), and apply Proposition 2.5 (Corollary 2.6
for the first column)3. ♦

3 Signed Hamburger Hamiltonians

For an equation (1.1) where H is not anymore positive semidefinite, no compre-
hensive theory corresponding to what we mentioned in 2.1 and 2.2 is known.
Generalisations to some particular indefinite situations have been undertaken
in [KL79; KL80; KL85], [Fle96], [LW98], [KW06; KW11; KW10]. Except of
[Fle96] all papers deal with a Pontryagin space situation (i.e., finite negative
index).

We deal with a class of possibly indefinite Hamiltonians having the very
simple form analogous to Hamburger Hamiltonians.

3.1 Definition. Let ~l = (ln)
∞
n=1 and ~φ = (φn)

∞
n=1 be sequences of real numbers

with ln 6= 0 and φn+1 6≡ φn mod π, n ∈ N, and set

x0 := 0, xn :=

n∑

k=1

|lk|, n ∈ N, L :=

∞∑

k=1

|lk| ∈ (0,∞]. (3.1)

Then we call the function H~l,~φ : [0, L) → R
2×2 defined as

H~l,~φ(x) := sgn(ln)ξφn
ξ∗φn

, x ∈ [xn−1, xn), n ∈ N,

the signed Hamburger Hamiltonian with lengths ~l and angles ~φ. The points xn

are called the nodes of H~l,~φ.

H~l,~φ :

x0 x1 x2 x3 L

sgn(l1)ξφ1
ξ∗
φ1

sgn(l2)ξφ2
ξ∗
φ2

sgn(l3)ξφ3
ξ∗
φ3

︸ ︷︷ ︸

|l1|

︸ ︷︷ ︸

|l2|

︸ ︷︷ ︸

|l3|

3A direct proof can be given repeating some of the arguments from the proof of Proposi-
tion 2.5.
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♦

A signed Hamburger Hamiltonian H~l,~φ is a.e. positive semidefinite if and only if
all lengths ln are positive. If H~l,~φ is positive semidefinite, then lpc or lcc takes

place depending whether L = ∞ or L < ∞, where L is as in (3.1). A signed
Hamburger Hamiltonian is associated with an indefinite power moment problem
as in [KL79; KL80] if and only if all but finitely many lengths are positive.

3.2 Remark. The facts mentioned right after (1.2), that a fundamental solu-
tion exists and is entire, depend only on local integrability of H and not on
definiteness properties.

For a signed Hamburger Hamiltonian H~l,~φ the fundamental solution W~l,~φ
can easily be computed explicitly. Denote

wφ(x, z) :=

(
1− xz sinφ cosφ xz cos2 φ

−xz sin2 φ 1 + xz sinφ cosφ

)

= I − zxξφξ
∗
φJ,

x ∈ R, z ∈ C, φ ∈ R,

then

W~l,~φ(x, z) = wφ1
(l1, z) · . . . · wφn−1

(ln−1, z) · wφn

(
sgn(ln)(x− xn−1), z

)
,

x ∈ [xn−1, xn), n ∈ N.

♦

A particular class of systems is given by Hamiltonians which are almost every-
where a diagonal matrix, and we refer to such as diagonal Hamiltonians. Ob-
serve that a signed Hamburger Hamiltonian is diagonal if and only if φn ∈ {0, π

2 }
(modulo π), n ∈ N. Diagonal Hamiltonians (in the positive semidefinite situa-
tion) are in many ways easier to treat and a variety of symmetry properties is
present, see, e.g., [Bra68, Chapter 47].

Square-root and square transform

The Stieltjes class S is the subclass of N0 consisting of all Nevanlinna functions
Q which are analytic in C \ [0,∞) and satisfy Q(x) ≥ 0, x ∈ (−∞, 0). If
Q ∈ S the function Qd(z) := zQ(z2) also belongs to the Nevanlinna class, cf.
[KK68, Lemma S1.5.1]. Hence, for Q ∈ S, de Branges’ inverse theorem gives two
positive semidefinite Hamiltonians H and Hd, namely those having Q and Qd

as corresponding Titchmarsh-Weyl coefficients. Since Qd(−z) = −Qd(z), Hd is
a diagonal Hamiltonian. These two Hamiltonians can be transformed into each
other by explicit formulae, see, e.g., [KWW07]. We speak of the square-root
transform turning Hd into H, and its converse, the square transform. These
transformations can also be carried out on the level of fundamental solutions.
A systematic discussion on this level including certain indefinite cases is given
in [KWW06].

For a positive semidefinite Hamburger Hamiltonian the mentioned trans-
formations are established by explicit algebraic formulae. We use the same
formulae to define corresponding transforms for signed Hamburger Hamiltoni-
ans.
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First, let us introduce a practical abbreviation: for two sequences of real
numbers ~x = (xn)

∞
n=1 and ~y = (yn)

∞
n=1, we denote by ~x : ~y the mixed sequence

~x : ~y := (x1, y1, x2, y2, x3, . . .).

Moreover, we set
~δ :=

(
0,

π

2
, 0,

π

2
, 0, . . .

)
.

3.3 Definition. Let H be a diagonal signed Hamburger Hamiltonian, and as-
sume (for normalisation) that its first angle is equal to 0. Denote by ~m and ~h
the sequences of odd and even lengths of H, respectively. That just means that
we write H in the form H = H~m:~h,~δ:

H = H~m:~h,~δ :

x0 x1 x2 x3 L

sgn(m1)ξ0ξ∗0 sgn(h1)ξ π
2

ξ∗π
2

sgn(m2)ξ0ξ∗0

︸ ︷︷ ︸

|m1|

︸ ︷︷ ︸

|h1|

︸ ︷︷ ︸

|m2|

Set

ln := hn

(

1 +
( n∑

k=1

mk

)2
)

, φn := Arccot
( n∑

k=1

mk

)

, n ∈ N. (3.2)

Then we call H~l,~φ the square-root transform of H. ♦

The converse transformation is obtained by simply inverting the relations (3.2).

3.4 Definition. Let H~l,~φ be a signed Hamburger Hamiltonian, and assume that

φn 6≡ 0 mod π, n ∈ N. Set (with φ0 := π
2 )

mn := cot(φn)− cot(φn−1), hn := ln sin
2(φn), n ∈ N.

Then we call H~m:~h,~δ the square transform of H~l,~φ. ♦

Inductively applying the computation [KWW06, Proposition 3.6(i)] yields the
following fact.

3.5 Lemma. Let H~l,~φ be a signed Hamburger Hamiltonian with φn 6≡ 0 mod π,

n ∈ N, and let Hd be its square transform. Denote by W~l,~φ(x, z) and Wd(y, z)
the corresponding fundamental solutions, and let xn and yn be the nodes of H~l,~φ

and Hd, respectively. Then for all n ∈ N (a prime denote differentiation w.r.t.
z)

W~l,~φ(xn, z
2) =

(

wd,11(y2n, z)
wd,12(y2n,z)

z − w′
d,12(y2n, 0)wd,11(y2n, z)

zwd,21(y2n, z) wd,22(y2n, z)− w′
d,12(y2n, 0)zwd,21(y2n, z)

)

.

(3.3)

Let us now state some immediate properties of these transformations.

3.6 Remark.

(i) The square-root transform of a diagonal signed Hamburger Hamiltonian
Hd is positive semidefinite if and only if all even lengths of Hd are positive.
The square transform of a signed Hamburger Hamiltonian H~l,~φ is positive
semidefinite if and only if H~l,~φ itself is positive semidefinite and the se-
quence of angles is monotonically decreasing when considered modulo π
as a sequence in (0, π).

10



(ii) Assume that H~l,~φ and its square transform Hd are both positive semidef-
inite. Then

ρ(Hd) = 2ρ(H~l,~φ).

To see this, let Qd be the function QHd
or QHd/∞ depending whether Hd

is lpc or lcc, and let Q~l,~φ be defined analogously for H~l,~φ. Lemma 3.5

shows that Qd(z) = zQ~l,~φ(z
2).

(iii) Assume again that H~l,~φ and Hd are both positive semidefinite. If H~l,~φ

is lcc and Hd is lpc, then φ(Hd) = π
2 . This follows since (denote L̂ :=

∑∞
n=1(mn + hn))

∫ L̂

0

(
0

1

)∗
Hd(y)

(
0

1

)

dy =

∞∑

n=1

hn ≤
∞∑

n=1

ln < ∞.

♦

The modulus transform

A signed Hamburger Hamiltonian can be transformed into a positive semidefi-
nite one simply by taking absolute values of its lengths.

For a sequence ~l of real numbers denote

|~l| := (|ln|)∞n=1.

3.7 Definition. Let H~l,~φ be a signed Hamburger Hamiltonian. Then we call
H|~l|,~φ the modulus transform of H~l,~φ. ♦

The next result shows that the fundamental solution of a diagonal signed Ham-
burger Hamiltonian can be estimated by the fundamental solution of its modulus
transform.

3.8 Proposition. Let ~l be a sequence of nonzero real numbers, and consider
the Hamburger Hamiltonians H~l,~δ and H|~l|,~δ with corresponding fundamental

solutions W~l,~δ and W|~l|,~δ, respectively. Then (note that the sequences (xn)
∞
n=1

defined in (3.1) for ~l and |~l| coincide)
∣
∣
∣(1, 0)W~l,~δ(x2n, z)

(
1

0

)∣
∣
∣ ≤ (1, 0)W|~l|,~δ

(
x2n, i|z|

)
(
1

0

)

, n ∈ N, z ∈ C. (3.4)

The proof follows from a purely algebraic and explicit formula for (the first row
of) the fundamental solution of a diagonal signed Hamburger Hamiltonian. We
define for each n ∈ N and k ∈ {0, . . . , n} polynomials an,k and bn,k in variables
v1, v2, . . . by the recursions

a1,0(~v) := 1, a1,1(~v) := v1v2,

b1,0(~v) := v1, b1,1(~v) := 0,

an+1,k(~v) :=







1 , k = 0,

an,k(~v) + v2n+1v2n+2an,k−1(~v) + v2n+2bn,k−1(~v) , k = 1, . . . , n,

v2n+1v2n+2an,n(~v) , k = n+ 1,

bn+1,k(~v) :=

{

bn,k(~v) + v2n+1an,k(~v) , k = 0, . . . , n,

0 , k = n+ 1.

11



Observe that an,k and bn,k have nonnegative integer coefficients. The poly-
nomial an,k involves only the variables v1, . . . , v2n, and bn,k only the variables
v1, . . . , v2n−1. Moreover,

an,0(~v) = 1, an,n(~v) =
2n∏

k=1

vk, bn,0(~v) =
n∑

k=1

v2k−1, bn,n(~v) = 0,

for all n ∈ N.

3.9 Lemma. Let ~l be a sequence of nonzero real numbers, and let W~l,~δ be the
fundamental solution of H~l,~δ. Then

(1, 0)W~l,~δ(x2n, z) =

n∑

k=0

(z

i

)2k(
an,k(~l), zbn,k(~l)

)
, n ∈ N. (3.5)

Proof. We use induction on n where the computation is based on the formula

w0(l, z)wπ
2
(h, z) =

(

1 +
(
z
i

)2
lh zl

−zh 1

)

. (3.6)

For n = 1 this formula already establishes the required representation of
W~l,δ(x2, z). Assume (3.5) holds for some n ∈ N. Then (3.6) yields

(1, 0)W~l,~δ(x2n+2, z) = (1, 0)W~l,~δ(x2n, z)

(

1 +
(
z
i

)2
l2n+1l2n+2 zl2n+1

−zl2n+2 1

)

=

n∑

k=0

(z

i

)2k(
an,k(~l) + ( zi )

2l2n+1l2n+2an,k(~l)− z2l2n+2bn,k(~l),

zl2n+1an,k(~l) + zbn,k(~l)
)

=

n∑

k=0

(z

i

)2k(
an,k(~l), z[l2n+1an,k(~l) + bn,k(~l)]

)

+
n+1∑

k=1

(z

i

)2k(
l2n+1l2n+2an,k−1(~l) + l2n+2bn,k−1(~l), 0

)

=
n∑

k=0

(z

i

)2k(
an+1,k(~l), zbn+1,k(~l)

)
.

❑

The estimate (3.4) is now nearly obvious.

Proof of Proposition 3.8. We use the representation from Lemma 3.9 and the
fact that the polynomials an,k have nonnegative coefficients to estimate

∣
∣
∣(1, 0)W~l,~δ(x2n, z)

(
1

0

)∣
∣
∣ ≤

n∑

k=0

|z|2k
∣
∣an,k(~l)

∣
∣

≤
n∑

k=0

|z|2kan,k(|~l|) = (1, 0)W|~l|,~δ(x2n, i|z|)
(
1

0

)

.

❑
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4 An estimate for order

4.1 Formulation and proof of our two main theorems

The next statement is the first main theorem. In order not to complicate nota-
tion, we include the normalisation that φn 6≡ 0 mod π for all n ∈ N. Note that
any Hamburger Hamiltonian can be transformed into one with nonzero angles
by adding a certain constant offset to the angles, i.e., by performing a rotation
as discussed before the statement of Corollary 2.6. The form of the rotation
transformation [KW11, Definition 2.4] ensures ρ(H~l,(φn+α)) = ρ(H~l,~φ).

4.1 Theorem. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in

lcc, and assume that φn 6≡ 0 mod π, n ∈ N. Set (with φ0 := π
2 )

mn := cot(φn)− cot(φn−1), hn := ln sin
2(φn), n ∈ N,

~δ :=
(

0,
π

2
, 0,

π

2
, . . .

)

, |~m : ~h| :=
(
|m1|, |h1|, |m2|, |h2|, . . .

)
.

Then

ρ(H~l,~φ) ≤
1

2
ρ
(
H|~m:~h|,~δ

)
.

The main point here is that the Hamiltonian appearing on the right side is
diagonal. This implies that ρ(H|~m:~h|,~δ) can in principle be determined using

Kac’s formula [Kac86b, Theorems A–C] for the order of a string (unfortunately,
a quite bulky expression).

Proof of Theorem 4.1. Starting from H := H~l,~φ build the following successive
transforms:

— Hd = H~m:~h,~δ is the square transform of H;

— H+
d = H|~m:~h|,~δ is the modulus transform of Hd;

— H+ is the square-root transform of H+
d .

The HamiltonianHd will in general carry signs, whereasH+
d andH+ are positive

semidefinite, cf. Remark 3.6, (i).
Denote by xn the nodes of H, by yn the common nodes of Hd and H+

d , and
by x+

n the nodes of H+. Denote by W,Wd,W
+
d ,W+ the fundamental solutions

of the respective Hamiltonian H,Hd, H
+
d , H+, let Q+ be either the function

QH+/∞ if H+ is lcc or the Titchmarsh-Weyl coefficient QH+ if H+ is lpc, and

let Q+
d be defined in the same way for H+

d , respectively. Then Q+
d (z) = zQ+(z2)

and ρ(Hd) = 2ρ(H+
d ), cf. Remark 3.6, (ii).

The assertion of the theorem is equivalent to ρ(H) ≤ ρ(H+). This is trivially
true when ρ(H+) ≥ 1. Hence, assume throughout the following that ρ(H+) <
1. In particular, Q+ is meromorphic throughout the plane, and the sequence
(ωn)n=1,2,... of its nonzero poles satisfies

∑

n
1

|ωn| < ∞.

If H+
d is lcc, the function Q+

d has a pole at 0 by its definition. If H+
d is lpc,

we have (denoting L̂ :=
∑∞

n=1(mn + hn))

∫ L̂

0

(
0

1

)∗
H+

d (y)

(
0

1

)

dy =

∞∑

n=1

hn ≤
∞∑

n=1

ln < ∞,
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i.e.,
(
0
1

)
∈ L2(H+

d ). Again it follows that Q+
d has a pole at 0. From the relation

Q+
d (z) = zQ+(z2) we see that also Q+ has a pole at 0.
Corollary 2.6 and Remark 2.7 provide estimates (ε > 0 arbitrary)

∣
∣w+

11(x
+
n , z)

∣
∣ ≤ Cε exp

(
|z|ρ(H+)+ε

)
, n ≥ 2, z ∈ C,

and (3.3) and Proposition 3.8 yield

|w11(xn, z
2)| = |wd,11(y2n, z)| ≤ w+

d,11(y2n, i|z|)
=w+

11(x
+
n ,−|z|2) ≤ Cε exp

(
|z2|ρ(H+)+ε

)
, n ≥ 2, z ∈ C.

Passing to the limit n → ∞ in the leftmost term, which is possible since H is
lcc, we obtain that the same estimates hold for w11(L, z

2). We conclude that
the order of w11(L, ·), which equals ρ(H), does not exceed ρ(H+). ❑

For the case of a Stieltjes string (translated to the language of Hamiltonians
this means for a diagonal Hamburger Hamiltonian) Kac’ formula [Kac86b, The-
orems A–C] takes the form [Kac90, p.31 (15)]. Still, a complicated expression
which hardly allows explicit evaluation. Under some regularity assumptions on
the involved data, however, it was shown in [Kac90] that it can be handled. We
recall this result in the language of Hamiltonians. The following statement is
the direct translation of [Kac90, Theorem 1].

4.2 Theorem ([Kac90], Theorem 1). Let ~M = (Mn)
∞
n=1 and ~L = (Ln)

∞
n=1

be sequences of positive real numbers such that ~M is nonincreasing and ~L is
nondecreasing. Set

~M : ~L :=
(
M1, L1,M2, L2, . . .

)
, ~∆ :=

(π

2
, 0,

π

2
, 0, . . .

)

,

and consider the positive definite diagonal Hamburger Hamiltonian H ~M :~L,~∆.
Then the following statements hold.

(i) If α ∈ (0, 1
2 ) and

∑∞
n=1(LnMn+1)

α < ∞, then ρ(H ~M :~L,~∆) ≤ 2α.

(ii) If
∑∞

n=1(LnMn+1)
1
2 lnn < ∞, then ρ(H ~M :~L,~∆) ≤ 1.

(iii) If α ∈ ( 12 , 1) and
∑∞

n=1(LnMn+1)
αn2α−1 < ∞, then ρ(H ~M :~L,~∆) ≤ 2α.

Proof. The Hamiltonian H ~M :~L,~∆ is related to the Stieltjes string with masses

(Mn+1)
∞
n=0 and lengths (Ln)

∞
n=1, cf. [KWW07, (4.4),(4.6)].

With the notation from [Kac90], this string is an element of Sα, by definition,
if ρ(H ~M :~L,~∆) ≤ 2α. The statement follows from [Kac90, Theorem 1]. ❑

Concerning [Kac90, Theorem 1] one word of caution is in order. This statement
contains the a priori assumption that the string under consideration is of trace
class, i.e. that

∞∑

n=1

( ∞∑

k=n+1

Mk

)

Ln < ∞

or, equivalently,
∑∞

n=1

(∑n
k=1 Lk

)
Mn+1 < ∞. It is said without a proof on

p.31 right after Theorem 2 that this assumption is superfluous: convergence of

14



this series can be deduced from convergence of the respective series in (i), (ii),
or (iii). In the next result – which is our second main theorem – this fact is
used for the cases (i) and (ii).Let us give a proof for these cases.

In the subsequent computations we use the following practical notation:

f(x) ≍ g(x) :⇐⇒ ∃ c1, c1 > 0∀x : c1f(x) ≤ g(x) ≤ c2f(x).

The notation f(x) . g(x) and f(x) & g(x) refers to the corresponding one-sided
properties.

Lemma. Let ~M = (Mn)
∞
n=1 and ~L = (Ln)

∞
n=1 be sequences of positive real

numbers such that ~M is nonincreasing and ~L is nondecreasing, and let α ∈ (0, 1
2 ].

If
∞∑

n=1

(LnMn+1)
α < ∞,

then also ∞∑

n=1

( n∑

k=1

Lk

)

Mn+1 < ∞.

Proof. Set rn := 1
Mn+1

, n ∈ N, then rn is positive, nondecreasing, and un-

bounded. Let µ be the positive measure (δr denotes the unit point mass at
r)

µ :=

∞∑

n=1

Lnδrn ,

and choose a decreasing C∞-function f : [0,∞) → (0,∞) with f(rn) = Lα−1
n ,

n ∈ N. We have

∫ ∞

0

t−αf(t) dµ(t) =
∞∑

n=1

r−α
n f(rn)Ln =

∞∑

n=1

(Ln

rn

)α

< ∞.

Integrating by parts yields that for each T > 0

∫ T

0

t−αf(t) dµ(t) =T−αf(T )µ([0, T ])−
∫ T

0

d

dt

[
t−αf(t)

]

︸ ︷︷ ︸

<0

·µ([0, t]) dt

≥T−αf(T )µ([0, T ]),

and, choosing T = rn, we obtain the estimate

1 & r−α
n f(rn)µ([0, rn]) = r−α

n Lα−1
n

( n∑

k=1

Lk

)

.

Since 1− α ≥ α and Ln

rn
≤ 1 for large n, it follows that

1

rn

( n∑

k=1

Lk

)

.
(Ln

rn

)1−α

.
(Ln

rn

)α

.

❑
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Combining Theorem 4.1 with Theorem 4.2 leads to the following corollary.

4.3 Corollary. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in

lcc, and let notation ~m,~h, etc. be as in Theorem 4.1. Assume that |~m| is non-

decreasing and ~h is nonincreasing. Then the following statements hold.

(i) If α ∈ (0, 1
2 ) and

∑∞
n=1(hn|mn|)α < ∞, then ρ(H~l,~φ) ≤ α.

(ii) If
∑∞

n=1(hn|mn|)
1
2 lnn < ∞, then ρ(H~l,~φ) ≤ 1

2 .

(iii) If α ∈ ( 12 , 1) and
∑∞

n=1(hn|mn|)αn2α−1 < ∞, then ρ(H~l,~φ) ≤ α.

Proof. Theorem 4.1 gives

ρ(H~l,~φ) ≤
1

2
ρ(H|~m:~h|,~δ).

Set ~m1 := (mn+1)
∞
n=1. Removing the first interval of a Hamburger Hamiltonian

does not change the order, i.e. ρ(H|~m:~h|,~δ) = ρ(H|~h:~m1|,~∆). Apply Theorem 4.2.

❑

4.4 Theorem. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in
lcc, and assume that φn 6≡ 0 mod π, n ∈ N. Set φ0 := π

2 , and assume that

(| cotφn − cotφn−1|)∞n=1 is nondecreasing and bounded, (ln sin
2 φn)

∞
n=1 is non-

increasing, and
∞∑

n=1

[ln sin
2 φn]

1
2 lnn < ∞. (4.1)

Then
ρ(H~l,~φ) = inf

{
α > 0 : (ln sin

2 φn)
∞
n=1 ∈ lα

}
,

i.e., the order of H~l,~φ equals the convergence exponent of ([ln sin
2 φn]

−1)∞n=1.

To make the connection with what we explained in the introduction, observe
that angles φn performing a walk on the grid Arccot(Z) just means that | cotφn−
cotφn−1| is constant equal to 1.

Proof of Theorem 4.4. Let ~m and ~h be as in Theorem 4.1, set Mn :=
∑n

k=1 mk,
and let γ be the convergence exponent of (h−1

n )∞n=1. We have to show that
ρ(H~l,~φ) = γ.

By our assumptions ~h is nonincreasing, and |~m| is nondecreasing and con-
vergent (say m∞ := limn→∞ |mn|) whence |mn| ≍ 1 and Mn . n.

We start with showing ρ(H~l,~φ) ≤ γ. Corollary 4.3, (ii), yields ρ(H~l,~φ) ≤ 1
2 .

If γ = 1
2 (note that by (4.1) certainly γ ≤ 1

2 ), we are done. If γ < 1
2 , we can

apply Corollary 4.3, (i), to obtain the desired inequality.
To establish that actually equality holds, we start from [PRW16, Proposi-

tion 2.14], which says that

ρ(H~l,~φ) ≥ lim sup
n→∞

−n lnn

ln
(√

ln
n−1∏

i=1

li| sin(φi+1 − φi)|
) .
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To evaluate the product, remember (3.2), which yields

li| sin(φi+1 − φi)| = hi · (1 +M2
i )
∣
∣ sin(ArccotMi+1 −ArccotMi)

∣
∣.

Now, supi∈N |Arccot(Mi+1)−Arccot(Mi)| < π since |Mi+1−Mi| = |mi| ≤ m∞,
and hence

sin
(
|Arccot(Mi+1)−Arccot(Mi)|

)
≍ |Arccot(Mi+1)−Arccot(Mi)|.

The mean value theorem provides ξi ∈ (min{Mi,Mi+1},max{Mi,Mi+1}) with

|Arccot(Mi+1)−Arccot(Mi)| =
1

1 + ξ2i
. (4.2)

Since the length of the written interval is at most m∞, it follows that 1 + ξ2i ≍
1 +M2

i . Together li| sin(φi+1 − φi)| ≍ hi, whence

ρ(H~l,~φ) ≥ lim sup
n→∞

−n lnn

ln
(√

ln
n−1∏

i=1

hi

) ≥ lim sup
n→∞

−n lnn

ln
(√

hn

n−1∏

i=1

hi

) .

Denote the rightmost expression by d, and set

D :=
(
sup{τ ≥ 0 : hn = O(n−τ )}

)−1
.

Since ~h is nonincreasing, we have d = D, cf. [PRW16, Lemma 2.21]. However,
γ ≤ D and putting together thus

d ≤ ρ(H~l,~φ) ≤ γ ≤ D = d.

❑

In this context note the following elementary fact.

Lemma. Let ~h = (hn)
∞
n=1 be a sequence of positive real numbers, let β ≥ 0,

and denote by γ ∈ [0,∞] the convergence exponent of (h−1
n )∞n=1. Then

γ ≥ lim sup
n→∞

−n lnn

ln
(

hβ
n

n−1∏

i=1

hi

) .

Proof. If γ = ∞ there is nothing to prove, hence assume γ < ∞.

Consider an > 0 with
∞∑

i=1

ai < ∞ and let ǫ > 0. Then we find n0(ǫ) ∈ N

such that

an ≤ 1, aβn

n−1∏

i=1

ai ≤ 1,
(

aβn +

n−1∑

i=1

ai

)1+ǫ

≤ nǫ, n ≥ n0(ǫ).

Thus


 n

√
√
√
√aβn

n−1∏

i=1

ai





1+ǫ

≤
(
1

n

(

aβn +
n−1∑

i=1

ai

))1+ǫ

≤ 1

n
, n ≥ n0(ǫ),

and taking logarithms yields

−n lnn

ln
(
aβn
∏n−1

i=1 ai
) ≤ 1 + ǫ, n ≥ n0(ǫ).

Now apply this fact with an := hγ′

n where γ′ > γ, let ǫ ց 0 and γ′ ց γ. ❑
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4.2 Relation with the estimate from [PRW16]

In [PRW16, Theorem 2.7] we proved an upper estimate for the order of a Ham-
burger Hamiltonian H~l,~φ, which coincides with the order when lengths and

angle-differences are regularly behaving, cf. [PRW16, Theorem 2.22]. In Theo-
rem 4.4 we obtained a formula for ρ(H~l,~φ) when lengths and angles commonly
behave regularly, angle-differences are never too large, and order is at most
1/2. This theorem, however, allows that lengths and angles separately are very
irregular. In this subsection we show that these two results are incomparable.

First, we show that for a large class of Hamiltonians Theorem 4.4 is applica-
ble whereas the upper estimate [PRW16, Theorem 2.7] does not coincide with
the order (and hence order cannot be computed by means of our previous work).

4.5 Proposition. Let ~h be a nonincreasing sequence of positive real numbers
which satisfies

∞∑

n=1

h
1
2
n lnn < ∞, (4.3)

and denote by γ the convergence exponent of (h−1
n )∞n=1. Let δ◦φ > 0 and δ◦l ≥ 1

be given such that

δ◦φ <
1

γ
− δ◦l < 2.

Then there exists a sequence of angles ~φ performing a walk on Arccot(Z), such
that the Hamburger Hamiltonian H~l,~φ with lengths ln := hn sin

−2 φn, n ∈ N,

and angles ~φ satisfies (quantities δl,φ(H), δl(H), δφ(H) as in [PRW16, Defini-
tions 2.13/2.16])

ρ(H~l,~φ) = δl,φ(H~l,~φ)
−1 = γ, δl(H~l,~φ) = δ◦l , δφ(H~l,~φ) = δ◦φ.

The proof is based on the following elementary construction.

Lemma. Let β ∈ (0, 1). Then there exists a sequence of signs εβ,n ∈ {+1,−1},
such that the partial sums

sβ(n) :=

n∑

i=1

εβ,i, n ∈ N,

satisfy

lim
n→∞

sβ(n)

nβ
= 1. (4.4)

Proof. We simply make sβ(n) oscillating around nβ as close as possible: Define
inductively

εβ,1 := 1, εβ,n+1 :=

{

+1 ,
sβ(n)
nβ ≤ 1

−1 ,
sβ(n)
nβ > 1

The sequence σn :=
sβ(n)
nβ can be handled easily.

— Monotonicity behaviour: Assume first σn ≤ 1. Then (with appropriate
ξn ∈ (n, n+ 1))

σn+1 − σn =
−σn[(n+ 1)β − nβ ] + 1

(n+ 1)β
=

1− σnβξ
β−1
n

(n+ 1)β







≥ 1−β
(n+1)β

> 0

≤ 1
(n+1)β
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Second, if σn > 1 then sβ(n+ 1) < sβ(n) and hence trivially σn+1 < σn.

— Convergence: Let nk be those indices (arranged in increasing order) where
εβ,n changes its sign, i.e., where either σn ≤ 1 < σn+1 or σn > 1 ≥ σn+1.
Note that the first of these cases occurs for all odd k and the second for
all even. Then lim supn→∞ σn = lim supk→∞ σn2k−1+1 and lim infn→∞ σn =
lim infk→∞ σn2k+1. By the previous estimate,

σn2k−1+1 ≤ σn2k−1
+

1

(n+ 1)β
≤ 1 +

1

(n+ 1)β
→ 1,

whence lim supk→∞ σn ≤ 1.

In particular, σn ≤ 2 for large n. Now we estimate for all (sufficiently large) n
with σn > 1

σn − σn+1 =
1 + σnβξ

β−1
n

(n+ 1)β
≤ 1 + 2β

(n+ 1)β
.

This shows that

σn2k+1 ≥ σn2k
− 1 + 2β

(n+ 1)β
≥ 1− 1 + 2β

(n+ 1)β
→ 1,

whence lim infk→∞ σn ≥ 1.

❑

Proof of Proposition 4.5. For a sequence ~a = (an)
∞
n=1 of positive numbers and

α ∈ [0, 1] set

G(n;~a, α) :=
−1

n lnn
ln
(

aαn

n−1∏

i=1

ai

)

, n ∈ N.

By Stirling’s formula

lim
n→∞

G(n; (nβ)∞n=1, α) = −β, β ∈ R,

and from (4.4) thus also

lim
n→∞

G(n; ~sβ , α) = −β.

For the proof of the present proposition we construct a sequence of signs whose
sequence ~s = (sn)

∞
n=1 of partial sums alternates between ~sβ and ~sβ′ where

β :=
1

2
δ◦φ, β′ :=

1

2

( 1

γ
− δ◦l

)

.

n

n0 n1 n2 n3 n4 n5 n6 n7

n′2 n′6

n
sβ′(n)

sβ(n)

sn
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The formula for the sequence ~s is (here [xmod 2] denotes the element of {0, 1}
with the same parity as x)

sn :=







sβ(n) , 1 ≤ n ≤ n0

sβ(n) , nk < n ≤ nk+1, k ≡ 0 mod 4

snk
+ (n− nk) , nk < n ≤ nk+1, k ≡ 1 mod 4

sβ′(n) , nk < n ≤ nk+1, k ≡ 2 mod 4

snk
+
[
(n− nk) mod 2

]
, nk < n ≤ nk+1, k ≡ 3 mod 4

where the sequence (nk)
∞
k=0 of switching indices will be constructed inductively.

To start with, choose n0 > 1 such that sβ′(n) > sβ(n), n ≥ n0, and define
sn, 1 ≤ n ≤ n0, by the first line of the above formula. Now let k ∈ N0 and
assume that nk has already been defined (and with it sn for n ≤ nk).

(i) k ≡ 0 mod 4: Consider the auxiliary sequence

b0,n :=

{

sn , n ≤ nk

sβ(n) , n > nk

Then G(n; ~b0, α) = G(n;~s, α), n ≤ nk, and limn→∞ G(n; ~b0, α) = −β.
Choose nk+1 > nk such that

G(nk+1; ~b0, α) ≥ −β − 1

k
.

(ii) k ≡ 1 mod 4: Set

nk+1 := min
{
n > nk : snk

+ (n− nk) = sβ′(n)
}
.

This is well-defined since snk
= sβ(nk) < sβ′(nk) and sβ′(n) = o(n).

(iii) k ≡ 2 mod 4: Consider the auxiliary sequence

b2,n :=

{

sn , n ≤ nk

sβ′(n) , n > nk

Then G(n; ~b2, α) = G(n;~s, α), n ≤ nk, and limn→∞ G(n; ~b2, α) = −β′.
Choose n′

k > nk such that

G(n; ~b2, α) ≤ −β′ +
1

k
, n ≥ n′

k.

Since ~h is nonincreasing, we have lim inf G(n;~h, α) = 1
γ , and hence can

choose nk+1 > n′
k such that

∃n ∈ [n′
k, nk+1] : G(n;~h, α) ≤ 1

γ
+

1

k
. (4.5)

(iv) k ≡ 3 mod 4: Set

nk+1 := min
{
n > nk : snk

+ [(n− nk) mod 2] = sβ(n)
}
.

This is well-defined since snk
= sβ′(nk) > sβ(nk) and limn→∞ sβ(n) = ∞.
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Set φn := Arccot sn and ln := hn sin
−2 φn. Then Theorem 4.4 is applicable and

yields ρ(H~l,~φ) = γ = δ~l,~φ(H~l,~φ).

Remembering (4.2) and the formulae before and after, we have

| sin(φn+1 − φn)| ≍
1

s2n

and therefore

G
(
n; (| sin(φn+1 − φn)|)∞n=1, α

)
= −2G(n;~s, α) + o(1).

For k ≡ 0 mod 4 it holds that

G(nk+1;~s, α) ≥ −β − 1

k
= −1

2
δ◦φ − 1

k
,

and we conclude that

δφ(H~l,~φ) = lim inf
n→∞

G
(
n; (| sin(φn+1 − φn)|)∞n=1, α

)
≤ δ◦φ.

However, sn ≥ sβ(n) for all n ∈ N, whence

−2G(n;~s, α) ≥ −2G(n; ~sβ , α) → 2β = δ◦φ,

and this shows δφ(H~l,~φ) ≥ δ◦φ.

Since limn→∞ sn = ∞, we have limn→∞ φn = 0 and hence sin2 φn ≍ s−2
n .

Thus ln ≍ hn · s2n. Let k ≡ 2 mod 4 and choose n ∈ [n′
k, nk+1] according to

(4.5). Then

G(n;~l, α) = G(n;~h, α) + 2G(n;~s, α) + o(1)

≤
( 1

γ
+

1

k

)
+
(
− 2β′ +

2

k

)
+ o(1) = δ◦l + o(1),

which gives δl ≤ δ◦l . However, sn ≤ sβ′(n) for all n ∈ N, and hence

2G(n;~s, α) ≥ 2G(n; ~sβ′ , α) → −2β′ = −
( 1

γ
− δ◦l

)
.

This shows that δl(H~l,~φ) ≥ δ◦l . ❑

Next, we show that (for arbitrary small orders) it might be possible to compute
ρ(H~l,~φ) with help of [PRW16, Theorem 2.22], but ρ(H~l,~φ) is not equal to the

convergence exponent of ([ln sin
2 φn]

−1)∞n=1.

4.6 Example. Let α > −1 and β > 3 + 2α, set

Mn :=

n∑

k=1

kα, ln := n−β(1 +M2
n), φn := ArccotMn,

and consider the Hamiltonian H~l,~φ.

Since α > −1, we have Mn ≍ nα+1 and hence ln ≍ n2(α+1)−β . The assump-
tion on β just says that 2(α + 1) − β < −1, i.e., that H~l,~φ is lcc. From the

asymptotics of ~l and [PRW16, Example 2.23] we obtain that

δl = β − 2(α+ 1) (exists as a limit).
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In order to compute δφ, we use the identity

∣
∣ sin(Arccotx−Arccot y)

∣
∣ =

∣
∣
∣ sin

(

Arccot
(xy + 1

x− y

))∣
∣
∣ =

[(xy + 1

x− y

)2

+ 1
]− 1

2

,

which holds for arbitrary x, y ∈ R, x 6= y. Clearly, Mn+1 −Mn = kα, and we
find

| sin(φn+1 − φn)| ≍ n−(α+2),

whence δφ = α + 2. Since δl + δφ = β − α > 2, we can apply [PRW16,
Theorem 2.22(A)] to obtain

ρ
(
H~l,~φ

)
=

1

β − α
.

We have sin−2 φn = 1 +M2
n and hence

ln sin
2 φn = n−β .

The convergence exponent of ([ln sin2 φn]
−1)∞n=1 thus equals 1

β . For α < 0 this
is larger than the order, for α > 0 it is smaller.

It is interesting to observe which hypothesis of Theorem 4.4 are violated in
this example. Of course, if β < 2 already (4.1) fails. If α ∈ (−1, 0) the sequence
(| cotφn − cotφn−1|)∞n=1 is decreasing, if α > 0 it is increasing but unbounded.

♦

4.3 Discussion of Berezanskii’s theorem

Berezanskii’s theorem is formulated in terms of the Jacobi parameters associated
with a Hamburger moment sequence.

4.7 Theorem (Berezanskii [Ber56]). Let ρn > 0, qn ∈ R, and let J be the Jacobi
matrix with off-diagonal parameters ρn and diagonal parameters qn. Assume
that

∞∑

n=1

1

ρn
< ∞ (Carleman condition)

ρ2n ≥ ρn−1ρn+1 or ρ2n ≤ ρn−1ρn+1 (log-concave or log-convex)

( qn
ρn

)∞

n=1
∈ ℓ1 (small diagonal)

Then J is of type C, i.e., the corresponding moment problem is indeterminate.
The order of the functions in the Nevanlinna matrix of the corresponding mo-
ment sequence is equal to the convergence exponent of (ρn)

∞
n=1.

Berezanskii has treated the case of log-concave ρn. Inclusion of the log-convex
case was done in [BS14, Theorem 1.4].

In this subsection we explain the connection with our present (and previous)
results. To this end we need the explicit formulae connecting the Jacobi param-
eters with the lengths ~l and angles ~φ of the Hamburger Hamiltonian whose mon-
odromy matrix coincides with the Nevaninna matrix of the moment sequence.
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These are (cf. [Kac99])

1

ρn
= | sin(φn+1 − φn)|

√

lnln+1,

qn = − 1

ln

[
cot(φn+1 − φn) + cot(φn − φn−1)

]
.

The essence of Theorem 4.7 is the case of a zero-diagonal; adding a small diag-
onal can be achieved with a perturbation argument. Let us therefore focus on
this case, where the above formulae are easy to handle.

First, we see that qn = 0 for all n if and only if the angles φn alternate
between two fixed values. Due to common normalisation, these are 0 and π

2 .
However, multiplying a Jacobi matrix with a positive scalar or adding an offset
to the sequence of angles of a Hamburger Hamiltonian does not influence the
respective order. Hence, we are free to choose those two values and work with
different ones interchangeably.

Plugging the above formula for ρn (with alternating angles) log-concavity or
convexity means that

ln+1

ln−1
≤ ln+2

ln
or

ln+1

ln−1
≥ ln+2

ln
resp., (4.6)

or equivalently,
ln

ln−1
≤ ln+2

ln+1
or

ln
ln−1

≥ ln+2

ln+1
resp.. (4.7)

Monotonicity of the quotients (4.6) leads to the distinction of three cases.

(I) ln+1

ln−1
≥ 1 for large n: Then ρn ≥ ρn+1 for those n, which contradicts

Carleman’s condition.

(II) ln+1

ln−1
≤ t < 1 for large n: Then ln,

1
ρn

. tn, whence the convergence

exponents of (ρn)
∞
n=1 and (l−1

n )∞n=1 are zero, and the order is zero either by
[PRW16, Example 2.24] (∆l = ∞), or [BS14, Theorem 1.2].

(III) ln+1

ln−1
ր 1: This is the nontrivial case concerning order (note that it appears

only when ρn are log-concave), and requires some further analysis.

First, since ln+1

ln−1
< 1, the sequence ~l splits into two decreasing subsequences

(l2k−1)
∞
k=1 and (l2k)

∞
k=1. The quotients

(
l2k

l2k−1

)∞
k=1

and
( l2k+1

l2k

)∞
k=1

are nonde-

creasing by (4.7), and hence have limits t0, t1 ∈ (0,∞]. However, since ln+1

ln−1

tends to 1,
1

t0
= lim

k→∞

l2k−1

l2k
= lim

k→∞

l2k+1

l2k
= t1,

in particular, t0, t1 < ∞. Now we pass to the sequence

l′n :=

{

t0ln , n odd

ln , n even

Then the quotient sequences
( l′2k
l′2k−1

)∞
k=1

and
( l′2k+1

l′2k

)∞
k=1

are still nondecreasing

and both tend to 1. Thus ~l′ is nonincreasing. Monotonicty implies that the con-
vergence exponents of (l′n

−1
)∞n=1 and ([l′nl

′
n+1]

− 1
2 )∞n=1 coincide. Since l′n ≍ ln,
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these are the same as the convergence exponents of (l−1
n )∞n=1 and of (ρn)

∞
n=1, re-

spectively. Moreover, being comparable with a monotone sequence, ~l is regularly
distributed in the sense of [PRW16, Definition 2.19].

Now we can compute order from [PRW16, Theorem 2.22(B)]. Since angles
alternate, we have δφ = 0 and hence the order equals δ−1

l which in turn equals
the convergence exponent of (l−1

n )∞n=1 and hence the convergence exponent of
(ρn)

∞
n=1.
If the convergence exponent of (ρn)

∞
n=1 is less than 1/2, we also can compute

order from Theorem 4.4. To this end we pass to the Jacobi matrix 1√
t0
J and

add an offset −π
4 to the sequence of angles. This leads to the Hamburger

Hamiltonian with lengths (l′n)
∞
n=1 and angles alternating between ±π

4 . Thus

the order equals the convergence exponent of (
√
2

l′n
)∞n=1 which is equal to the

convergence exponent of (ρn)
∞
n=1.

Having seen that Theorem 4.7 (for orders < 1/2) can be deduced from
Theorem 4.4, we shall now show that Theorem 4.4 actually goes far beyond the
Berezanskii case.

4.8 Example. We revisit the Hamiltonians constructed in Proposition 4.5 (so to
make sure that order cannot be computed already from [PRW16]), and consider

the associated Jacobi matrices. Let ~h be a decreasing sequence with (4.3) which

has the property that hn

hn+1
≍ 1. For instance use hn = n− 1

α

(lnn)3 where α ∈ (0, 1/2].

Let ~s,~l, ~φ be the sequences constructed in the proof of Proposition 4.5. Then
we know that

lim
n→∞

sn = ∞, | sin(φn+1 − φn)| ≍
1

s2n
, ln ≍ hn · s2n,

and hence

qn
ρn

= −
√

lnln+1

ln
︸ ︷︷ ︸

→1

· sgn(φn+1 − φn)·

·
(

cos(φn+1 − φn)
︸ ︷︷ ︸

→1

+cos(φn − φn−1)
︸ ︷︷ ︸

→1

sin(φn+1 − φn)

sin(φn − φn−1)

)

Since sn is unbounded but |sn+1−sn| = 1, we find a subsequence (φnk
)∞k=1 with

φnk−1 > φnk
> φnk+1. Along this subsequence

inf
k∈N

sin(φnk+1 − φnk
)

sin(φnk
− φnk−1)

> 0,

and we conclude that lim supn→∞
∣
∣ qn
ρn

∣
∣ > 1. This shows that the Jacobi matrix

associated with H~l,~φ is far from being a small perturbation of the corresponding
zero-diagonal matrix in the sense of Theorem 4.7. ♦
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