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Abstract. Esik and Maletti introduced the notion of a proper semir-
ing and proved that some important (classes of) semirings – Noethe-
rian semirings, natural numbers – are proper. Properness matters as the
equivalence problem for weighted automata over proper and finitely and
effectively presented semirings is decidable. Milius generalised the notion
of properness from a semiring to a functor. As a consequence, a semiring
is proper if and only if its associated “cubic functor” is proper. More-
over, properness of a functor renders soundness and completeness proofs
of axiomatizations of equivalent behaviour.

In this paper we provide a method for proving properness of functors,
and instantiate it to cover both the known cases and several novel ones:
(1) properness of the semirings of positive rationals and positive reals,
via properness of the corresponding cubic functors; and (2) properness
of two functors on (positive) convex algebras. The latter functors are
important for axiomatizing trace equivalence of probabilistic transition
systems. Our proofs rely on results that stretch all the way back to
Hilbert and Minkowski.
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tomata, probabilistic transition systems

1 Introduction

In this paper we deal with algebraic categories and deterministic weighted au-
tomata functors on them. Such categories are the target of generalized deter-
minization [25, 26, 12] and enable coalgebraic modelling beyond sets. For ex-
ample, non-deterministic automata, weighted, or probabilistic ones are coalge-
braically modelled over the categories of join-semilattices, semimodules for a
semiring, and convex sets, respectively. Moreover, expressions for axiomatizing
behavior semantics often live in algebraic categories.

In order to prove completeness of such axiomatizations, the common ap-
proach [24, 5, 26] is to prove finality of a certain object in a category of coalge-
bras over an algebraic category. Proofs are significantly simplified if it suffices to
verify finality only w.r.t. coalgebras carried by free finitely generated algebras,
as those are the coalgebras that result from generalized determinization.



In recent work, Milius [18] proposed the notion of a proper functor on an
algebraic category that provides a sufficient condition for this purpose. This
notion is an extension of the notion of a proper semiring introduced by Esik
and Maletti [9]: A semiring is proper if and only if its “cubic” functor is proper.
A cubic functor is a functor S × (−)A where A is a finite alphabet and S is a
free algebra with a single generator in the algebraic category. Cubic functors
model deterministic weighted automata which are models of determinizations of
non-deterministic and probabilistic transition systems.

Properness is the property that for any two states that are behaviourally
equivalent in coalgebras with free finitely generated carriers, there is a zig-zag of
homomorphisms (called a chain of simulations in the original works on weighted
automata and proper semirings) that identifies the two states, whose nodes are
all carried by free finitely generated algebras.

Even though the notion of properness is relatively new for a semiring and
very new for a functor, results on properness of semirings can be found in more
distant literature as well. Here is a brief history, to the best of our knowledge:

– The Boolean semiring was proven to be proper in [4].
– Finite commutative ordered semirings were proven to be proper in [8, The-

orem 5.1]. Interestingly, the proof provides a zig-zag with at most seven
intermediate nodes.

– Any euclidean domain and any skew field were proven proper in [2, Theorem
3]. In each case the zig-zag has two intermediate nodes.

– The semiring of natural numbers N, the Boolean semiring B, the ring of
integers Z and any skew field were proven proper in [3, Theorem 1]. Here,
all zig-zag were spans, i.e., had a single intermediate node with outgoing
arrows.

– Noetherian semirings were proven proper in [9, Theorem 4.2], commutative
rings also in [9, Corollary 4.4], and finite semirings as well in [9, Corollary
4.5], all with a zig-zag being a span. Moreover, the tropical semiring is not
proper, as proven in [9, Theorem 5.4].

Having properness of a semiring, together with the property of the semiring
being finitely and effectively presentable, yields decidability of the equivalence
problem (decidability of trace equivalence) for weighted automata.

In this paper, motivated by the wish to prove properness of a certain func-
tor F̂ on convex algebras used for axiomatizing trace semantics of probabilistic
systems in [26], as well as by the open questions stated in [18, Example 3.19],
we provide a framework for proving properness. We instantiate this framework
on known cases like Noetherian semirings and N (with a zig-zag that is a span),
and further prove new results of properness:

– The semirings Q+ and R+ of positive rationals and reals, respectively, are
proper. The shape of the zig-zag is a span as well.

– The functor [0, 1]× (−)A on PCA is proper, again the zig-zag being a span.

– The functor F̂ on PCA is proper. This proof is the most involved, and inter-
estingly, provides the only case where the zig-zag is not a span: it contains
three intermediate nodes of which the middle one forms a span.
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Our framework requires a proof of so-called extension and reduction lemma
in each case. While the extension lemma is a generic result that covers all cubic
functors of interest, the reduction lemma is in all cases a nontrivial property
intrinsic to the algebras under consideration. For the semiring of natural numbers
it is a consequence of a result that we trace back to Hilbert; for the case of convex
algebra [0, 1] the result is due to Minkowski. In case of F̂ , we use Kakutani’s
set-valued fixpoint theorem.

It is an interesting question for future work whether these new properness
results may lead to new complete axiomatizations of expressions for certain
weighted automata.

The organization of the rest of the paper is as follows. In Section 2 we give
some basic definitions and introduce the semirings, the categories, and the func-
tors of interest. Section 3 provides the general framework as well as proofs of
propernes of the cubic functors. Section 4–Section 6 lead us to properness of F̂
on PCA. For space reasons, we present the ideas of proofs and constructions in
the main paper and refer all detailed proofs to the appendix.

2 Proper functors

We start with a brief introduction of the basic notions from algebra and coalgebra
needed in the rest of the paper, as well as the important definition of proper
functors [18]. We refer the interested reader to [23, 13, 11] for more details. We
assume basic knowledge of category theory, see e.g. [16] or Appendix A.

Let C be a category and F a C-endofunctor. The category Coalg(F ) of F -
coalgebras is the category having as objects pairs (X, c) where X is an object of
C and c is a C-morphism from X to FX, and as morphisms f : (X, c) → (Y, d)
those C-morphisms from X to Y that make the diagram on the right commute.

X
f //

c ��
Y
d��

FX
Ff // FY

All base categories C in this paper will be algebraic cate-
gories, i.e., categories SetT of Eilenberg-Moore algebras of a
finitary monad 3 in Set. Hence, all base categories are concrete
with forgetful functor that is identity on morphisms.

In such categories behavioural equivalence [15, 28, 27] can be defined as fol-
lows. Let (X, c) and (Y, d) be F -coalgebras and let x ∈ X and y ∈ Y . Then
x and y are behaviourally equivalent, and we write x ∼ y, if there exists an F -
coalgebra (Z, e) and Coalg(F )-morphisms f : (X, c)→ (Z, e), g : (Y, d)→ (Z, e),
with f(x) = g(y).

(X, c)
f // (Z, e)

f(x)=g(y)

(Y, d)
goo

If there exists a final coalgebra in Coalg(F ), and all categories considered in this
paper will have this property, then two elements are behaviourally equivalent if

3 The notions of monads and algebraic categories are central to this paper. We recall
them in Appendix A to make the paper accessible to all readers.
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and only if they have the same image in the final. If we have a zig-zag diagram
in Coalg(F )

(X, c)
f1
''NN

NN
(Z2, e2)

f2
wwnnnn

f3
''PPP

P
· · ·

f4
yysss

s f2n−1

''OO
OOO

(Y, d)
f2n
vvmmm

m

(Z1, e1) (Z3, e1) (Z2n−1, e1)

(1)

which relates x with y in the sense that there exist elements z2k ∈ Z2k, k =
1, . . . , n− 1, with (setting z0 = x and z2n = y)

f2k(z2k) = f2k−1(z2k−2), k = 1, . . . , n,

then x ∼ y.
We now recall the notion of a proper functor, introduced by Milius [18] which

is central to this paper. It is very helpful for establishing completeness of regular
expressions calculi, cf. [18, Corollary 3.17].

Definition 1. Let T : Set→ Set be a finitary monad with unit η and multipli-
cation µ. A SetT -endofunctor F is proper, if the following statement holds.

For each pair (TB1, c1) and (TB2, c2) of F -coalgebras with B1 and B2 finite
sets, and each two elements b1 ∈ B1 and b2 ∈ B2 with ηB1

(b1) ∼ ηB2
(b2), there

exists a zig-zag (1) in Coalg(F ) which relates ηB1
(b1) with ηB2

(b2), and whose
nodes (Zj , ej) all have free and finitely generated carrier.

This notion generalizes the notion of a proper semiring introduced by Esik
and Maletti in [9, Definition 3.2], cf. [18, Remark 3.10].

Remark 2. In the definition of properness the condition that intermediate nodes
have free and finitely generated carrier is necessary for nodes with incoming
arrows (the nodes Z2k−1 in (1)). For the intermediate nodes with outgoing arrows
(Z2k in (1)), it is enough to require that their carrier is finitely generated. This
follows since every F -coalgebra with finitely generated carrier is the image under
an F -coalgebra morphism of an F -coalgebra with free and finitely generated
carrier.

Moreover, note that zig-zag’s which start (or end) with incoming arrows
instead of outgoing ones, can also be allowed since a zig-zag of this form can be
turned into one of the form (1) by appending identity maps.

Some concrete monads and functors

We deal with the following base categories.

– The category S-SMOD of semimodules over a semiring S induced by the monad
TS of finitely supported maps into S, see, e.g., [17, Example 4.2.5].

– The category PCA of positively convex algebras induced by the monad of
finitely supported subprobability distributions, see, e.g., [6, 7] and [20].
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For n ∈ N, the free algebra with n generators in S-SMOD is the direct product Sn,
and in PCA it is the n-simplex ∆n = {(ξ1, . . . , ξn) | ξj ≥ 0,

∑n
j=1 ξj ≤ 1}.

Concerning semimodule-categories, we mainly deal with the semirings N,
Q+, and R+, and their ring completions Z, Q, and R. For these semirings the
categories of S-semimodules are

– CMON of commutative monoids for N,
– AB of abelian groups for Z,
– CONE of convex cones for R+,
– Q-VEC and R-VEC of vector spaces over the field of rational and real numbers,

respectively, for Q and R.

We consider the following functors, where A is a fixed finite alphabet.

– The cubic functor F S on S-SMOD. By this we mean the functor acting as

F SX = S×XA for X object of S-SMOD,

F Sf = idS×(f ◦ −) for f : X → Y morphism of S-SMOD.

We chose the name since F S assigns to objects X a full direct product, i.e., a
full cube. The underlying Set functors of cubic functors are also sometimes
called deterministic-automata functors, see e.g. [12], as their coalgebras are
deterministic weighted automata with output in the semiring.

– The cubic functor F [0,1] on PCA. By this we mean the functor F [0,1]X =
[0, 1]×XA and F [0,1]f = id[0,1]×(f ◦ −).

– A subcubic convex functor F̂ on PCA whose action will be introduced in
Definition 11 4. The name origins from the fact that F̂X is a certain convex
subset of F [0,1]X and that F̂ f = (F [0,1]f)|F̂X for f : X → Y .

All functors are liftings of Set-endofunctors. In particular, they preserve surjec-
tive algebra homomorphisms, which is a property needed to apply the work of
Milius, cf. [18, Assumptions 3.1].

Remark 3. We can now formulate precisely the connection between proper semir-
ings and proper functors mentioned after Definition 1. A semiring S is proper in
the sense of [9], if and only if for every finite input alphabet A the cubic functor
F S on S-SMOD is proper.

We shall interchangeably think of direct products as sets of functions or as
sets of tuples. Taking the viewpoint of tuples, the definition of F Sf reads as

(F Sf)
(
(o, (xa)a∈A)

)
=
(
o, (f(xa))a∈A

)
, o ∈ S, xa ∈ X for a ∈ A.

A coalgebra structure c : X → F SX writes as

c(x) =
(
co(x), (ca(x))a∈A

)
, x ∈ X,

4 This functor was denoted Ĝ in [26] where it was first studied in the context of
axiomatization of trace semantics.
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and we use co : X → S and ca : X → X as generic notation for the components
of the map c. More generally, we define cw : X → X for any word w ∈ A∗

inductively as cε = idX and cwa = ca ◦ cw, w ∈ A∗, a ∈ A.
The map from a coalgebra (X, c) into the final F S-coalgebra, the trace map,

is then given as trc(x) =
(
(co ◦ cw)(x)

)
w∈A∗ for x ∈ X. Behaviour equivalence

for cubic functors is the kernel of the trace map.

3 Properness of cubic functors

Our proofs of properness in this section and in Section 6 below start from the
following idea. Let S be a semiring, and assume we are given two F S-coalgebras
which have free finitely generated carrier, say (Sn1 , c1) and (Sn2 , c2). Moreover,
assume x1 ∈ Sn1 and x2 ∈ Sn2 are two elements having the same trace. Let
dj : Sn1 × Sn2 → F S(Sn1 × Sn2) be given by

dj(y1, y2) =
(
cjo(yj), ((c1a(y1), c2a(y2)))a∈A

)
.

Denoting by πj : Sn1×Sn2 → Snj the canonical projections, both sides of the
following diagram separately commute.

Sn1

c1

��

Sn1 × Sn2
π1oo π2 //

d1

��

d2

��

Sn2

c2

��

6=

F SSn1 F S(Sn1 × Sn2)
F Sπ1oo F Sπ2 // F SSn2

However, in general the maps d1 and d2 do not coincide.
The next lemma contains a simple observation: there exists a subsemimodule

Z of Sn1 × Sn2 , such that the restrictions of d1 and d2 to Z coincide and turn Z
into an F S-coalgebra.

Lemma 4. Let Z be the subsemimodule of Sn1 × Sn2 generated by the pairs
(c1w(x1), c2w(x2)) for w ∈ A∗. Then d1|Z = d2|Z and dj(Z) ⊆ F S(Z).

The significance of Lemma 4 in the present context is that it leads to the
diagram (we denote d = dj |Z)

Sn1

c1

��

Z
π1oo π2 //

d

��

⊆

Sn1× Sn2

Sn2

c2

��

F SSn1 F SZ
F Sπ1oo F Sπ2 //

⊆

S× (Sn1× Sn2)A

F SSn2

6



In other words, it leads to the zig-zag in Coalg(F S)

(Sn1 , c1) (Z, d)
π1oo π2 // (Sn2 , c2) (2)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z.
As a corollary we reobtain the result [9, Theorem 4.2] of Esik and Maletti

establishing properness of certain cubic functors.

Corollary 5 (Esik–Maletti 2010). Every Noetherian semiring is proper.

Our first main result is Theorem 6 below, where we show properness of the
cubic functors F S on S-SMOD, for S being one of the semirings N, Q+, R+, and of
the cubic functor F [0,1] on PCA. The case of FN is known from [3, Theorem 4] 5,
the case of F [0,1] is stated as an open problem in [18, Example 3.19].

Theorem 6. The cubic functors FN, FQ+
, FR+

, and F [0,1] are proper.
In fact, for any two coalgebras with free finitely generated carrier and any two

elements having the same trace, a zig-zag with free and finitely generated nodes
relating those elements can be found, which is a span (has a single intermediate
node with outgoing arrows).

The proof proceeds via relating to the Noetherian case. It always follows the
same scheme, which we now outline. Observe that the ring completion of each of
N, Q+, R+, is Noetherian (for the last two it actually is a field), and that [0, 1]
is the positive part of the unit ball in R.

Step 1. The extension lemma: We use an extension of scalars process to pass
from the given category C to an associated category E-MOD with a Noetherian
ring E. This is a general categorical argument.

To unify notation, we agree that S may also take the value [0, 1], and that
T[0,1] is the monad of finitely supported subprobability distributions giving rise
to the category PCA.

S N Q+ R+ [0, 1]

C N-SMOD (CMON) Q+-SMOD R+-SMOD (CONE) PCA

E-MOD Z-MOD (AB) Q-MOD (Q-VEC) R-MOD (R-VEC) R-MOD (R-VEC)

For the formulation of the extension lemma, recall that the starting category C

is the Eilenberg-Moore category of the monad TS and the target category E-MOD
is the Eilenberg-Moore category of TE. We write ηS and µS for the unit and
multiplication of TS and analogously for TE. We have TS ≤ TE, via the inclusion
ι : TS ⇒ TE given by ιX(u) = u, as ηE = ι ◦ ηS and µE ◦ ιι = ι ◦ µS where

ιι
def
= TEι ◦ ι

nat.
= ι ◦ TSι.

5 In [3] only a sketch of the proof is given, cf. [3, §3.3]. In this sketch one important
point is not mentioned. Using the terminology of [3, §3.3]: it could a priori be possible
that the size of the vectors in G and the size of G both oscillate.
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Definition 7. Let (X,αX) ∈ SetTS and (Y, αY ) ∈ SetTE where TS and TE are
monads with TS ≤ TE via ι : TS ⇒ TE. A Set-arrow h : X → Y is a TS ≤ TE-
homomorphism from (X,αX) to (Y, αY ) if and only if the following diagram
commutes (in Set)

TSX
ιh //

αX ��
TEY

αY��
X

h // Y

where ιh denotes the map ιh
def
= TEh ◦ ιX

nat.
= ιY ◦ TSh.

Now we can formulate the extension lemma.

Proposition 8 (Extension Lemma). For every F S-coalgebra TSB
c→ F S(TSB)

with free finitely generated carrier TSB for a finite set B, there exists an FE-

coalgebra TEB
c̃→ FE(TEB) with free finitely generated carrier TEB such that

TSB
ι //

c ��
TEB

c̃��
F S(TSB)

ι×ιA // FE(TEB)

where the horizontal arrows (ι and ι × ιA) are TS ≤ TE-homomorphisms, and
moreover they both amount to inclusion.

Step 2. The basic diagram: Let n1, n2 ∈ N, let Bj be the nj-element set consisting
of the canonical basis vectors of Enj , and set Xj = TSBj . Assume we are given
F S-coalgebras (X1, c1) and (X2, c2), and elements xj ∈ Xj with trc1 x1 = trc2 x2.

The extension lemma provides FE-coalgebras (Enj , c̃j) with c̃j |Xj = cj .
Clearly, trc̃1 x1 = trc̃2 x2. Using the zig-zag diagram (2) in Coalg(FE) and append-
ing inclusion maps, we obtain what we call the basic diagram. In this diagram
all solid arrows are arrows in E-MOD, and all dotted arrows are arrows in C. The
horizontal dotted arrows denote the inclusion maps, and πj are the restrictions
to Z of the canonical projections.

X1
//

c1

��

En1

c̃1

��

Z
π1oo π2 //

d

��

⊆

En1× En2

En2

c̃2

��

X2
oo

c2

��

F SX1
// FEEn1 FEZ

F Eπ1oo F Eπ2 //

⊆

E× (En1× En2)A

FEEn2 F SX2
oo

Commutativity of this diagram yields d
(
π−1j (Xj)

)
⊆ (FEπj)

−1(F SXj) for j =
1, 2. Now we observe the following properties of cubic functors.
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Lemma 9. We have FEX ∩ F SY = F S(X ∩ Y ). Moreover, if Yj ⊆ Xj, then
(FEπ1)−1(F SY1) ∩ (FEπ2)−1(F SY2) = F S(Y1 × Y2).

Using this, yields

d
(
Z ∩ (X1 ×X2)

)
⊆FEZ ∩ (FEπ1)−1

(
F SX1) ∩ (FEπ2)−1

(
F SX2)

=FEZ ∩ F S(X1 ×X2) = F S
(
Z ∩ (X1 ×X2)

)
.

This shows that Z ∩ (X1 × X2) becomes an F S-coalgebra with the restriction
d|Z∩(X1×X2). Again referring to the basic diagram, we have the following zig-
zag in Coalg(FS) (to shorten notation, denote the restrictions of d, π1, π2 to
Z ∩ (X1 ×X2) again as d, π1, π2):

(X1, c1)
(
Z ∩ (X1 ×X2), d

)π1oo π2 // (X2, c2) (3)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z ∩ (X1 ×X2).

Step 3. The reduction lemma: In view of the zig-zag (3), the proof of Theorem 6
can be completed by showing that Z ∩ (X1 × X2) is finitely generated as an
algebra in C. Since Z is a submodule of the finitely generated module En1 ×En2

over the Noetherian ring E, it is finitely generated as an E-module. The task
thus is to show that being finitely generated is preserved when reducing scalars.

This is done by what we call the reduction lemma. Contrasting the exten-
sion lemma, the reduction lemma is not a general categorical fact, and requires
specific proof in each situation.

Proposition 10 (Reduction Lemma). Let n1, n2 ∈ N, let Bj be the set con-
sisting of the nj canonical basis vectors of Enj , and set Xj = TSBj. Moreover,
let Z be an E-submodule of En1 ×En2 . Then Z ∩ (X1 ×X2) is finitely generated
as an algebra in C.

4 A subcubic convex functor

Recall the following definition from [26, p.309].

Definition 11. We introduce a functor F̂ : PCA→ PCA.

1. Let X be a PCA. Then

F̂X =
{

(o, φ) ∈ [0, 1]×XA |

∃na ∈ N. ∃ pa,j ∈ [0, 1], xa,j ∈ X for j = 1, . . . , na, a ∈ A.

o+
∑
a∈A

na∑
j=1

pa,j ≤ 1, φ(a) =

na∑
j=1

pa,jxa,j

}
.

2. Let X,Y be PCA’s, and f : X → Y a convex map. Then F̂ f : F̂X → F̂ Y is
the map F̂ f = id[0,1]×(f ◦ −).
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For every X we have F̂X ⊆ F [0,1]X, and for every f : X → Y we have

F̂ f = (F [0,1]f)|F̂X . For this reason, we think of F̂ as a subcubic functor.

The definition of F̂ can be simplified.

Lemma 12. Let X be a PCA, then

F̂X =
{

(o, f) ∈ [0, 1]×XA | ∃ pa ∈ [0, 1], xa ∈ X for a ∈ A.

o+
∑
a∈A

pa ≤ 1, f(a) = paxa

}
.

From this representation it is obvious that F̂ is monotone in the sense that

– If X1 ⊆ X2, then F̂X1 ⊆ F̂X2.
– If f1 : X1 → Y1, f2 : X2 → Y2 with X1 ⊆ X2, Y1 ⊆ Y2 and f2|X1 = f1, then

F̂ f2|F̂X1
= F̂ f1.

Note that F̂ is not compatible with direct products.
For a PCA X whose carrier is a compact subset of a euclidean space, F̂X

can be described with help of a geometric notion, namely using the Minkowksi
functional of X. Before we can state this fact, we have to make a brief digression
to explain this notion and its properties.

Definition 13. Let X ⊆ Rn be a PCA. The Minkowski functional of X is the
map µX : Rn → [0,∞] defined as

µX(x) =

{
inf{t > 0 | x ∈ tX} , x ∈

⋃
t>0 tX,

∞ , otherwise.

Minkowski functionals, sometimes also called gauge, are a central and ex-
haustively studied notion in convex geometry, see, e.g., [22, p.34] or [21, p.28].

We list some basic properties whose proof can be found in the mentioned
textbooks.

1. µX(px) = pµX(x) for x ∈ Rn, p ≥ 0,
2. µX(x+ y) ≤ µX(x) + µX(y) for x, y ∈ Rn,
3. µX∩Y (x) = max{µX(x), µY (x)} for x ∈ Rn.
4. If X is bounded, then µX(x) = 0 if and only if x = 0.

The set X can almost be recovered from µX .

5. {x ∈ Rn | µX(x) < 1} ⊆ X ⊆ {x ∈ Rn | µX(x) ≤ 1}.
6. If X is closed, equality holds in the second inclusion of 5.
7. Let X,Y be closed. Then X ⊆ Y if and only if µX ≥ µY .

Example 14. As two simple examples, consider the n-simplex ∆n ⊆ Rn and a
convex cone C ⊆ Rn. Then (here ≥ denotes the product order on Rn)

µ∆n(x) =

{∑n
j=1 ξj , x = (ξ1, . . . , ξn) ≥ 0,

∞ , otherwise.
µC(x) =

{
0 , x ∈ C,
∞ , otherwise.

Observe that ∆n = {x ∈ Rn | µ∆n(x) ≤ 1}.
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Another illustrative example is given by general pyramids in a euclidean
space. This example will play an important role later on.

Example 15. For u ∈ Rn consider the set

X =
{
x ∈ Rn | x ≥ 0 and (x, u) ≤ 1

}
,

where (·, ·) denotes the euclidean scalar product on Rn. The set X is intersection
of the cone Rn+ with the half-space given by the inequality (x, u) ≤ 1, hence it
is convex and contains 0. Thus X is a PCA.

Let us first assume that u is strictly positive, i.e., u ≥ 0 and no component
of u equals zero. Then X is a pyramid (in 2-dimensional space, a triangle).

u

X

(x,u)=1

The n-simplex ∆n is of course a particular pyramid. It is obtained using the
vector u = (1, . . . , 1).

The Minkowski functional of the pyramid X associated with u is

µX(x) =

{
(x, u) , x ≥ 0,

∞ , otherwise.

Write u =
∑n
j=1 αjej , where ej is the j-th canonical basis vector, and set yj =

1
αj
ej . Clearly, {y1, . . . , yn} is linearly independent. Each vector x =

∑n
j=1 ξjej

can be written as x =
∑n
j=1(ξjαj)yj , and this is a subconvex combination if and

only if ξj ≥ 0 and
∑n
j=1 ξjαj ≤ 1, i.e., if and only if x ∈ X. Thus X is generated

by {y1, . . . , yn} as a PCA.

The linear map given by the diagonal matrix made up of the αj ’s induces a
bijection of X onto ∆n, and maps the yj ’s to the corner points of ∆n. Hence, X
is free with basis {y1, . . . , yn}.

If u is not strictly positive, the situation changes drastically. Then X is
unbounded, in particular, not finitely generated as a PCA.

u

X

(x,u)=1

Now we return to the functor F̂ .
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Lemma 16. Let X ⊆ Rn be a PCA, and assume that X is compact. Then

F̂X =
{

(o, φ) ∈ R× (Rn)A | o ≥ 0, o+
∑
a∈A

µX(φ(a)) ≤ 1
}
.

In the following we use the elementary fact that every convex map has a
linear extension.

Lemma 17. Let V1, V2 be vector spaces, let X ⊆ V1 be a PCA, and let c : X → V2
be a convex map. Then c has a linear extension c̃ : V1 → V2. If spanX = V1, this
extension is unique.

Rescaling in this representation of F̂X leads to a characterisation of F̂ -
coalgebra maps. We give a slightly more general statement; for the just said,
use X = Y .

Corollary 18. Let X,Y ⊆ Rn be PCA’s, and assume that X and Y are compact.
Further, let c : X → R+ × (Rn)A be a convex map, and let c̃ : Rn → R × (Rn)A

be a linear extension of c.
Then c(X) ⊆ F̂ Y , if and only if

c̃o(x) +
∑
a∈A

µY (c̃a(x)) ≤ µX(x), x ∈ Rn. (4)

5 An extension theorem for F̂ -coalgebras

In this section we establish an extension theorem for F̂ -coalgebras. It states that
an F̂ -coalgebra, whose carrier has a particular geometric form, can, under a mild
additional condition, be embedded into an F̂ -coalgebra whose carrier is free and
finitely generated.

Theorem 19. Let (X, c) be an F̂ -coalgebra whose carrier X is a compact subset
of a euclidean space Rn with ∆n ⊆ X ⊆ Rn+. Assume that the output map co
does not vanish on invariant coordinate hyperplanes in the sense that (ej denotes
again the j-th canonical basis vector in Rn)

@ I ⊆ {1, . . . , n}.
I 6= ∅, co(ej) = 0, j ∈ I, ca(ej) ⊆ span{ei | i ∈ I}, a ∈ A, j ∈ I.

(5)

Then there exists an F̂ -coalgebra (Y, d), such that X ⊆ Y ⊆ Rn+, the inclusion

map ι : X → Y is a Coalg(F̂ )-morphism, and Y is the subconvex hull of n linearly
independent vectors (in particular, Y is free with n generators).

The idea of the proof can be explained by geometric intuition. Say, we have
an F̂ -coalgebra (X, c) of the stated form, and let c̃ : Rn → R × (Rn)A be the
linear extension of c to all of Rn, cf. Lemma 17.

12



•e2

•
e1

F̂X
X

c = c̃|X

Remembering that pyramids are free and finitely generated, we will be done if
we find a pyramid Y ⊇ X which is mapped into F̂ Y by c̃:

•e2

•
e1

F̂X
X

c = c̃|X

Y

F̂Y

⊆

c̃|Y

This task can be reformulated as follows: For each pyramid Y1 containing X let
P (Y1) be the set of all pyramids Y2 containing X, such that c̃(Y2) ⊆ F̂ Y1. If we
find Y with Y ∈ P (Y ), we are done.

Existence of Y can be established by applying a fixed point principle for set-
valued maps. The result sufficient for our present level of generality is Kakutani’s
generalisation [14, Corollary] of Brouwers fixed point theorem.

6 Properness of F̂

In this section we give the second main result of the paper.

Theorem 20. The functor F̂ is proper.

In fact, for each two given coalgebras with free finitely generated carrier and
each two elements having the same trace, a zig-zag with free and finitely generated
nodes relating those elements can be found, which has three intermediate nodes
with the middle one forming a span.

We try to follow the proof scheme familiar from the cubic case. Assume we
are given two F̂ -coalgebras with free finitely generated carrier, say (∆n1 , c1) and
(∆n2 , c2), and elements x1 ∈ ∆n1 and x2 ∈ ∆n2 having the same trace. Since

F̂∆nj ⊆ R×(Rnj )A we can apply Lemma 17 and obtain FR-coalgebras (Rnj , c̃j)
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with c̃j |∆nj = cj . This leads to the basic diagram:

∆n1 //

c1

��

Rn1

c̃1

��

Z
π1oo π2 //

d

��

⊆

Rn1× Rn2

Rn2

c̃2

��

∆n2oo

c2

��

F̂∆n1 // FRRn1 FRZ
F Rπ1oo F Rπ2 //

⊆

R× (Rn1× Rn2)A

FRRn2 F̂∆n2oo

At this point the line of argument known from the cubic case breaks: it is not
granted that Z ∩ (∆n1 ×∆n2) becomes an F̂ -coalgebra with the restriction of d.

The substitute for Z∩(∆n1×∆n2) suitable for proceeding one step further is
given by the following lemma, where we tacitly identify Rn1 ×Rn2 with Rn1+n2 .

Lemma 21. We have d(Z ∩ 2∆n1+n2) ⊆ F̂ (Z ∩ 2∆n1+n2).

This shows that Z ∩ 2∆n1+n2 becomes an F̂ -coalgebra with the restriction
of d. Still, we cannot return to the usual line of argument: it is not granted that
πj(Z∩2∆n1+n2) ⊆ ∆nj . This forces us to introduce additional nodes to produce

a zig-zag in Coalg(F̂ ). These additional nodes are given by the following lemma.
There co(−) denotes the convex hull.

Lemma 22. Set Yj = co(∆nj ∪ πj(Z ∩ 2∆n1+n2)). Then c̃j(Yj) ⊆ F̂ Yj.

This shows that Yj becomes an F̂ -coalgebra with the restriction of c̃j . We

are led to a zig-zag in Coalg(F̂ ):

(∆n1 , c1)
⊆ // (Y1, c̃1)

(
Z ∩ 2∆n1+n2 , d

)π1oo π2 // (Y2, c̃2) (∆n2 , c2)
⊇oo

This zig-zag relates x1 and x2 since (x1, x2) ∈ Z ∩ 2∆n1+n2 .
By Minkowski’s Theorem, see Appendix B Theorem 31, the middle node has

finitely generated carrier. The two nodes with incoming arrows are, as convex
hulls of two finitely generated PCA’s, of course also finitely generated. But in
general they will not be free (and this is essential, remember Remark 2). Now
Theorem 19 comes into play.

Lemma 23. Assume that each of (∆n1 , c1) and (∆n2 , c2) satisfies the following
condition:

@ I ⊆ {1, . . . , n}.
I 6= ∅, cjo(ek) = 0, k ∈ I, cja(ek) ⊆ co({ei | i ∈ I} ∪ {0}), a ∈ A, k ∈ I.

(6)

Then there exist free finitely generated PCA’s Uj with Yj ⊆ Uj ⊆ Rnj

+ which

satisfy c̃j(Uj) ⊆ F̂Uj.
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This shows that Uj , under the additional assumption (6) on (∆nj , cj), be-

comes an F̂ -coalgebra with the restriction of c̃j . Thus we have a zig-zag in

Coalg(F̂ ) relating x1 and x2 whose nodes with incoming arrows are free and
finitely generated, and whose node with outgoing arrows is finitely generated:

(∆n1 , c1)
⊆ //

%%KK
KKK

KKK
KK

(Y1, c̃1)

��

⊆

(
Z ∩ 2∆n1+n2 , d

)π1oo π2 //

wwnnn
nnn

nnn
nn

''PP
PPP

PPP
PPP

(Y2, c̃2)

��
⊆

(∆n2 , c2)
⊇oo

yysss
sss

sss
s

(U1, c̃1) (U2, c̃2)

Removing the additional assumption on (∆nj , cj) is a easy.

Lemma 24. Let (∆n, c) be an F̂ -coalgebra. Assume that I is a nonempty subset
of {1, . . . , n} with

co(ek) = 0, k ∈ I and ca(ek) ∈ co
(
{ei | i ∈ I} ∪ {0}

)
, a ∈ A, k ∈ I. (7)

Let X be the free PCA with basis {ek | k ∈ {1, . . . , n} \ I}, and let f : ∆n → X be
the PCA-morphism with

f(ek) =

{
0 , k ∈ I,
ek , k 6∈ I.

Further, let g : X → [0, 1]×XA be the PCA-morphism with

g(ek) =
(
co(ek),

(
f(ca(ek))

)
a∈A

)
, k ∈ {1, . . . , n} \ I.

Then (X, g) is an F̂ -coalgebra, and f is an F̂ -coalgebra morphism of (∆n, c)
onto (X, g).

Corollary 25. Let (∆n, c) be an F̂ -coalgebra. Then there exists k ≤ n, an F̂ -
coalgebra (∆k, g), such that (∆k, g) satisfies the assumption in Lemma 24 and

that there exists an F̂ -coalgebra map f of (∆n, c) onto (∆k, g).

The proof of Theorem 20 is now finished by putting together what we showed
so far. Starting with F̂ -coalgebras (∆nj , cj) without any additional assumptions,
and elements xj ∈ ∆nj having the same trace, we first reduce by means of
Corollary 25 and then apply Lemma 23. This gives a zig-zag as required:

(∆n1 , c1)

ψ1

�� $$H
HH

HH
HH

HH

(
Z ∩ 2∆k1+k2 , d

)
xxppp

ppp
ppp

pp

&&NN
NNN

NNN
NNN

(∆n2 , c2)

ψ2

��zzvv
vv
vv
vv
v

(∆k1 , g1) // (U1, g̃1) (U2, g̃2) (∆k2 , g2)oo

and completes the proof of properness of F̂ .
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A. Category theory basics

We start by recalling the basic notions of category, functor and natural transfor-
mation, so that all of the results in the paper are accessible also to non-experts.

A category C is a collection of objects and a collection of arrows (or mor-
phisms) from one object to another. For every object X ∈ C, there is an iden-
tity arrow idX : X → X. For any three objects X,Y, Z ∈ C, given two arrows
f : X → Y and g : Y → Z, there exists an arrow g ◦ f : X → Z. Arrow composi-
tion is associative and idX is neutral w.r.t. composition. The standard example
is Set, the category of sets and functions.

A functor F from a category C to a category D, notation F : C → D, assigns
to every object X ∈ C, an object FX ∈ D, and to every arrow f : X → Y in C

an arrow Ff : FX → FY in D such that identity arrows and composition are
preserved.

A category C is concrete, if it admits a canonical forgetful functor U : C→ Set.
By a forgetful functor we mean a functor that is identity on arrows. Intuitively,
a concrete category has objects that are sets with some additional structure, e.g.
algebras, and morphisms that are particular kind of functions. All categories
that we consider are algebraic and hence concrete.

FX

σX

��

Ff // FY
σY

��
GX

Gf // GY

Let F : C → D and G : C → D be two functors. A natural
transformation σ : F ⇒ G is a family of arrows σX : FX →
GX in D such that the diagram on the right commutes for
all arrows f : X → Y .

A.1. Monads and Algebras

A monad is a functor T : C → C together with two natural transformations: a
unit η : idC ⇒ T and multiplication µ : T 2 ⇒ T . These are required to make the
following diagrams commute, for X ∈ C.

TX
ηTX //

PPP
PPP

PPP
P

PPP
PPP

PPP
P T 2X

µX

��

TX
TηXoo

nnn
nnn

nnn
n

nnn
nnn

nnn
n T 3X

µTX //

TµX ��

T 2X

µX

��
TX T 2X

µX

// TX

Given two monads S, T with units and multiplications ηS , ηT and µS , µT , re-
spectively, and a natural transformation ι : S ⇒ T , we say S is a submonad
of T along ι, and write S ≤ T , if ηT = σ ◦ ηS and ι ◦ µS = µT ◦ ιι where

ιι
def
= TEι ◦ ι

nat.
= ι ◦ TSι.

We briefly describe some examples of monads on Set.

– The finitely supported subprobability distribution monad D is defined, for a
set X and a function f : X → Y , as

DX = {ϕ : X → [0, 1] |
∑
x∈X

ϕ(x) ≤ 1, supp(ϕ) is finite}
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and
Df(ϕ)(y) =

∑
x∈f−1({y})

ϕ(x).

Here and below supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}. The unit of D is given by a
Dirac distribution ηX(x) = δx = (x 7→ 1) for x ∈ X and the multiplication
by µX(Φ)(x) =

∑
ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x) for Φ ∈ DDX.

– For a semiring S the S-valuations monad TS is defined as TSX = {ϕ : X →
S | supp(ϕ) is finite} and on functions f : X → Y we have TSf(ϕ)(y) =∑
x∈f−1({y}) ϕ(x). Its unit is given by ηX(x) = (x 7→ 1) and multiplication

by µX(Φ)(x) =
∑
ϕ∈suppΦ Φ(ϕ) · ϕ(x) for Φ ∈ TSTSX.

– To illustrate the connection between D and TS, consider yet another monad:
For a semiring S, and a (suitable) subset S ⊆ S, the (S, S)-valuations monad
TS,S is defined as follows. On objects it acts like

TS,SX = {ϕ : X → S | supp(ϕ) is finite and
∑
x∈X

ϕ(x) ∈ S}

on functions it acts like TS. The unit and multiplication are defined as in TS.
Note that D = TR+,[0,1].

With a monad T on a category C one associates the Eilenberg-Moore category
SetT of Eilenberg-Moore algebras. Objects of SetT are pairs A = (A,α) of an
object A ∈ C and an arrow α : TA → A, making the first two diagrams below
commute.

A

GG
GG

GG
G

GG
GG

GG
G
ηA // TA

α
��

T 2A

µA

��

Tα // TA

α
��

TA

α
��

Th // TB

β
��

A TA
α
// A A

h
// B

A homomorphism from an algebra A = (A,α) to an algebra B = (B, b) is a map
h : A → B in C between the underlying objects making the diagram above on
the right commute.

A free Eilenberg-Moore algebra for a monad T generated by X is (TX, µX)
and we will often denote it simply by TX. A free finitely generated Eilenberg-
Moore algebra for T is an algebra TX with X a finite set. The diagram in the
middle thus says that the map α is a homomorphism from TA to A.

Indeed, TX is free in the algebraic sense as for any map f : X → A there is
a unique (Kleisli) extension that is an algebra homomorphism from TX to A.
This extension is given by f# = α ◦ Tf .

B. Proof details for properness of cubic functors

Proof (of Lemma 4). Since trc1 x1 = trc2 x2, we have

c1o(c1w(x1)) = [trc1 x1](w) = [trc2 x2](w) = c2o(c2w(x2)), w ∈ A∗,
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and therefore d1|Z = d2|Z . Moreover,

cja(cjw(xj)) = cjwa(xj), w ∈ A∗,

and therefore dj(Z) ⊆ S× ZA. ut

Proof (of Corollary 5). Remembering Remark 3, we have to show that the func-
tor F S is proper. We have the zig-zag (2), and the S-semimodule Z is, as a
subsemimodule of the finitely generated S-semimodule Sn1 × Sn2 , itself finitely
generated. ut

B.1. Proof of the extension lemma

The proof of the extension lemma follows directly from the following two abstract
properties.

Lemma 26. Assume TS ≤ TE via ι : TS ⇒ TE and let X be a finite set. Let
Y ∈ SetTS and Z ∈ SetTE and assume we are given an arrow aY : TSX → Y
in SetTS and a TS ≤ TE-homomorphism h : Y → Z. Then there exists an arrow
aZ : TEX → Z in SetTE making the following diagram commute.

TSX
ι //

aY ��
TEX

aZ��
Y h // Z

Proof. Consider the map h ◦ aY ◦ ηS,X : X → Z. Let aZ = (h ◦ aY ◦ ηS,X)#E .
For any monad T with unit η, an Eilenberg-Moore algebra A = (A,α), and

a set X, the unique (Kleisli) extension (f ◦ η)# : TX → A in SetT for a map
f : TX → A satisfies (f ◦ η)# = f . Indeed, we have, using that f is an algebra
homomorphism from the free algebra TX to A, and the monad laws:

(f ◦ η)# = α ◦ T (f ◦ η) = α ◦ Tf ◦ Tη = f ◦ µ ◦ Tη = f.

Furthermore, for any map f : X → A we have f# ◦ η = f since f# ◦ η = α ◦
Tf ◦ η = α ◦ η ◦ f by naturality of η and the Eilenberg-Moore law. Hence, we
have

aZ ◦ ιX = (h ◦ aY ◦ ηS,X)#E ◦ ιX
= ((h ◦ aY ◦ ηS,X)#E ◦ ιX ◦ ηS,X)#S

(∗)
= (h ◦ aY ◦ ηS,X)#S

= h ◦ aY

and the equation marked with (∗) holds because TS ≤ TE via ι and so

(h ◦ aY ◦ ηS,X)#E ◦ ιX ◦ ηS,X = (h ◦ aY ◦ ηS,X)#E ◦ ηE,X = h ◦ aY ◦ ηS,X .

ut
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Lemma 27. The map ι × ιA is a TS ≤ TE-homomorphism from F S(TSX) to
FE(TEX).

Proof. Recall that F S(TSX) = S × (TSX)A = TS1 × (TSX)A and in the same
way FE(TEX) = TE1 × (TEX)A, hence both algebras are finite products of free
finitely generated algebras. We will prove a more general property. Given two
TS ≤ TE-homomorphisms h1 : TSX → TEX and h2 : TSY → TEY , their product
h1 × h2 is a TS ≤ TE-homomorphism as well from TSX × TSY to TEX × TEY .
We have

(h1 × h2) ◦ (µS,X × µS,X) ◦ 〈TSπ1, TSπ2〉
= (µE,X × µE,X) ◦ (ιh1 × ιh2) ◦ 〈TSπ1, TSπ2〉
= (µE,X × µE,X) ◦ 〈TEπ1, TEπ2〉 ◦ ι(h1 × h2)

where the first equation holds by assumption since h1 and h2 are TS ≤ TE-
homomorphisms, and the second since π1 ◦ (h1 × h2) = h1 ◦ π1 and π2 ◦ (h1 ×
h2) = h2 ◦ π2, by the general property (∗) below, and by properties of products
and pairings. Moreover (µS×µS) ◦ 〈TSπ1, TSπ2〉 and (µE×µE) ◦ 〈TEπ1, TEπ2〉 are
the algebra structures of the corresponding products of the two free algebras.
(∗): Assume maps a, b, f , g such that the left diagram below commutes in
Set. Then the right one commutes as well.

A
f //

a ��
B
b��

TSA
ιf //

TSa ��
TEB

TEb��
C

g // D TSC
ιg // TED

This is indeed the case because

TEb ◦ ιf
def.
= TEb ◦ ι ◦ TSf
nat.
= ι ◦ TSb ◦ TSf

hyp.
= ι ◦ TSg ◦ TSa
def.
= ιg ◦ TSa.

Finally, we remark that, since TS ≤ TE via ι, ιX is a TS ≤ TE-homomorphism
from the free algebra TSX to the free algebra TEX, which completes the proof.

ut

Proof (of Lemma 9). Since S ⊆ E, we have

FEX ∩ F SY = (E×XA) ∩ (S× Y A) = S× (X ∩ Y )A = F S(X ∩ Y ).

Assume now that Yj ⊆ Xj . We have

(FEπ1)−1(F SY1) = {(o, ((x1a, x2a))a∈A) ∈ E× (X1 ×X2)A | o ∈ S, x1a ∈ Y1},

and the analogous formula for (FEπ2)−1(F SY2). This shows that the intersection
of these two inverse images is equal to S× (Y1 × Y2)A. ut
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B.2. Proof of the reduction lemma

â Reducing from AB to CMON

The reduction lemma for passing from abelian groups to commutative monoids
arises from a classical result of algebra. Namely, it is a corollary of the following
theorem due to D.Hilbert, cf. [10, Theorem II] see also [1, Theorem 1.1].

Theorem 28 (Hilbert 1890). Let W be a n×m-matrix with integer entries,
and let X be the commutative monoid

X =
{
x ∈ Zn | x ·W ≥ 0

}
.

Then X is finitely generated as a commutative monoid.

The reduction lemma for passing from AB to CMON is a corollary Since ev-
ery finitely generated abelian group is also finitely generated as a commutative
monoid, we obtain a somewhat stronger variant.

Lemma 29. Let Z be a finitely generated abelian group, let m ∈ N, and let
ϕ : Z → Zm be a group homomorphism. Then ϕ−1(Nm) is finitely generated as
a commutative monoid.

Proof. Write Z, up to an isomorphism, as a direct sum of cyclic abelian groups

Z = Zk ⊕
[ n⊕
j=1

Z/ajZ
]

(8)

with aj ≥ 2. Since ϕ maps into the torsionfree group Zm, we must have

ϕ
( n⊕
j=1

Z/ajZ
)

= {0}.

Hence, an element x ∈ Z satisfies ϕ(x) ≥ 0, if and only if ϕ(x0) ≥ 0 where
x = x0+x1 is the decomposition of x according to the direct sum (8). The action
of the map ψ = ϕ|Zk : Zk → Zm is described as multiplication of x0 = (ξ1, . . . , ξk)
with some k ×m-matrix W having integer coefficients. Thus

ψ−1(Nm) =
{
x0 ∈ Zk | x0 ·W ≥ 0

}
,

and by Hilbert’s Theorem ψ−1(Nm) is finitely generated as a commutative
monoid.

The set
⊕n

j=1 Z/ajZ also has a finite set of generators as a monoid, for

example the residue classes 1/ajZ, j = 1, . . . , n. Together we see that ϕ−1(Nm)
has a finite set of generators as a commutative monoid. ut
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â Reducing from Q-VEC to Q+-MOD

The reduction lemma for passing from vector spaces over Q to Q+-semimodules
is a corollary of the one passing from AB to CMON. Thus we have the corresponding
stronger variant also in this case.

Lemma 30. Let Z be a finite dimensional Q-vector space, let m ∈ N, and
let ϕ : Z → Qm be Q-linear. Then ϕ−1(Qn+) is finitely generated as a Q+-
semimodule.

Proof. Let {u1, . . . , uk} be a set of generators of Z as a Q-vector space. Write

ϕ(uj) =
(aj,1
bj,1

, . . . ,
aj,m
bj,m

)
, j = 1, . . . , k,

with aj,i ∈ Z and bj,i ∈ N \ {0}. Set b =
∏k
j=1

∏m
i=1 bj,i, then ϕ(buj) ∈ Zm,

j = 1, . . . , k.
Let Z ′ ⊆ Z be the Z-submodule generated by {bu1, . . . , buk}, and set ψ =

ϕ|Z′ . Then ψ is a Z-linear map of Z ′ into Zm. By Lemma 29, ψ−1(Nm) is finitely
generated as N-semimodule, say by {v1, . . . , vl} ⊆ Z ′.

Given x ∈ ϕ−1(Qm+ ), choose ν1, . . . , νk ∈ Q with x =
∑k
j=1 νjuj . Write

νj =
αj

βj
with αj ∈ Z and βj ∈ N \ {0}, and set β =

∏k
j=1 βj . Then

βb · x =

k∑
j=1

(βνj) · buj ∈ Z ′,

and
ψ(βb · x) = ϕ(βb · x) = βb · ϕ(x) ∈ Qm+ ∩ Zm = Nm.

Thus βb ·x is an N-linear combination of the elements v1, . . . , vl, and hence x is a
Q+-linear combination of these elements. This shows that ϕ−1(Qm+ ) is generated
by {v1, . . . , vl} as a Q+-semimodule. ut

â Reducing from R-VEC to CONE

The reduction lemma for passing from vector spaces over R to convex cones arises
from a different source than the previously studied. Namely, it is a corollary of
the below classical theorem of H.Minkowski, cf. [19] see also [21, Theorem 19.1].

Recall that a convex subset X of Rn is called polyhedral, if it is a finite inter-
section of half-spaces, i.e., if there exist l ∈ N, u1, . . . , ul ∈ Rn, and ν1, . . . , νl ∈ R,
such that

X =
{
x ∈ Rn | (x, uj) ≤ νj , j = 1, . . . , l

}
,

where (·, ·) denotes the euclidean scalar product on Rn. On the other hand, X
is said to be generated by points a1, . . . , al1 and directions b1, . . . , bl2 , if

X =
{ l1∑
j=1

αjaj +

l2∑
j=1

βjbj | αj ∈ [0, 1],

l1∑
j=1

αj = 1, βj ≥ 0, j = 1, . . . , l2

}
.
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Note that a convex set generated by some points and directions is bounded, if
and only if no (nonzero) directions are present. Further, a convex set is a cone,
if and only if it allows a representation where only directions occur.

Theorem 31 (Minkowski 1896). Let X be a convex subset of Rn. Then X is
polyhedral, if and only if X is generated by a finite set of points and directions.

The relevance of Minkowski’s Theorem in the present context is that it shows
that the intersection of two finitely generated sets is finitely generated (since the
intersection of two polyhedral sets is obviously polyhedral).

The reduction lemma for passing from R-VEC to CONE is an immediate corol-
lary. Since every finite dimensional R-vector space is also finitely generated as a
convex cone, we have the corresponding stronger version.

Lemma 32. Let Z be a finite dimensional R-vector space, let m ∈ N, and let
ϕ : Z → Rm be R-linear. Then ϕ−1(Rn+) is finitely generated as a convex cone.

Proof.

Step 1: The image ϕ(Z) is a linear subspace of Rn, in particular, poyhedral. The
positive cone Rn+ is obviously also polyhedral. We conclude that the convex cone
ϕ(Z) ∩ Rn+ is generated by some finite set of directions.

Step 2: The kernel ϕ−1({0}) is, as a linear subspace of the finite dimensional
vector space Z, itself finite dimensional (generated, say, by {u1, . . . , uk}). Thus
it is also finitely generated as a convex cone (in fact, {±u1, . . . ,±uk} is a set of
generators).

Choose a finite set of directions {a1, . . . , al} generating ϕ(Z)∩Rn+ as a convex
cone, and choose vj ∈ Z with ϕ(vj) = aj , j = 1, . . . , l. Then {±u1, . . . ,±uk} ∪
{v1, . . . , vl} generates ϕ−1(Z) as a convex cone.

ut

â Reducing from R-VEC to PCA

The reduction lemma for passing from vector spaces over R to positively convex
algebras is again a corollary of Theorem 31. However, in a sense the situation
is more complicated. One, the corresponding strong version fails; in fact, no
(nonzero) R-vector space is finitely generated as a PCA. Two, unlike in categories
of semimodules, the direct product T[0,1]B1 × T[0,1]B2 does not coincide with
T[0,1](B1∪̇B2).

Lemma 33. Let n1, n2 ∈ N, and let Z be a linear subspace of Rn1 ×Rn2 . Then
Z ∩ (∆n1 ×∆n2) is finitely generated as a positively convex algebra.

Proof. Obviously, Z and ∆n1 × ∆n2 are both polyhedral. We conclude that
Z ∩ (∆n1 ×∆n2) is generated by a finite set of points and directions. Since it is
bounded, no direction can occur, and it is thus finitely generated as a PCA. ut
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C. Self-contained proof of Lemma 29

We provide a short and self-contained proof of the named reduction lemma. It
proceeds via an argument very specific for N; the essential ingredient is that the
order of N is total and satisfies the descending chain condition. Note that the
following argument also proves Hilbert’s Theorem.

First, a common fact about the product order on Nm (we provide an explicit
proof since we cannot appoint a reference).

Lemma 34. Let m ∈ N, and let M ⊆ Nm be a set of pairwise incomparable
elements. Then M is finite.

Proof. Assume that M is infinite, and choose a sequence (an)n∈N of different
elements of M . Write an = (αn,1, . . . , αn,m). We construct, in m steps, a subse-
quence (bn)n∈N of (an)n∈N with the property that (we write bn = (βn,1, . . . , βn,m))

∀k ∈ {1, . . . ,m}. Lk = sup
n∈N

βn,k <∞ ∨ β0,k < β1,k < β2,k < · · · (9)

In the first step, extract a subsequence of (an)n∈N according to the behaviour of
the sequence of first components (αn,1)n∈N. If supn∈N αn,1 <∞, take the whole
sequence (an)n∈N as the subsequence. If supn∈N αn,1 = ∞, take a subsequence
(anj

)j∈N with
αn0,1 < αn1,1 < αn2,1 < · · · .

Repeating this step, always starting from the currently chosen subsequence, we
succesively extract subsequences which after l steps satisfy the property (9) for
the components up to l.

Denote

I1 =
{
k ∈ {1, . . . ,m} | sup

n∈N
βn,k <∞

}
, I2 =

{
k ∈ {1, . . . ,m} | sup

n∈N
βn,k =∞

}
The map n 7→ (βn,k)k∈I1 maps N into the finite set

∏
k∈I1{0, . . . , Lk}, and hence

is not injective. Choose n1 < n2 with βn1,k = βn2,k, k ∈ I1. Since βn1,k < βn2,k,
k ∈ I2, we obtain bn1

≤ bn2
. However, by our choice of the elements an, bn1

6= bn2
.

Thus M contains a pair of different but comparable elements. ut

Proof (of Lemma 29). If ϕ−1(Nm) = {0}, there is nothing to prove. Hence,
assume that ϕ−1(Nm) 6= {0}.

Step 1: We settle the case that Z ⊆ Zm and ϕ is the inclusion map. Let M
be the set of minimal elements of (Z ∩ Nm) \ {0}. From the descending chain
condition we obtain

∀x ∈ (Z ∩ Nm) \ {0}. ∃ y ∈M. y ≤ x

By Lemma 34, M is finite, say M = {a1, . . . , al}. Now we show that M generates

Z as commutative monoid. Let x ∈ Z, and assume that x−
∑l
j=1 αjaj 6= 0 for

all αj ∈ N. By the descending chain condition, the set of all elements of this
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form contains a minimial element, say, x −
∑l
j=1 α̃jaj . Choose y ∈ M with

y ≤ x −
∑l
j=1 α̃jaj . Since y 6= 0, we have x −

∑l
j=1 α̃jaj − y < x −

∑l
j=1 α̃jaj

and we reached a contradiction.

Step 2: The kernel ϕ−1({0}) is, as a subgroup of the finitely generated abelian
group Z, itself finitely generated (remember here that Z is a Noetherian ring).
Let {u1, . . . , uk} be a set of generators of ϕ−1({0}) as abelian group. Then
{±u1, . . . ,±uk} is a set of generators of ϕ−1({0}) as a commutative monoid.

By Step 1 we find {a1, . . . , al} ⊆ Zm generating ϕ(Z)∩Nm as a commutative
monoid. Choose vj ∈ Z with ϕ(vj) = aj , j = 1, . . . , l. Then we find, for each
x ∈ Z, a linear combination of the vj ’s with nonnegative integer coefficients such
that

ϕ
(
x−

l∑
j=1

νjvj

)
= 0.

Hence, {±u1, . . . ,±uk}∪{v1, . . . , vl} generates ϕ−1(Z) as commutative monoid.

ut

D. Properties of F̂

Proof (of Lemma 12). Here the inclusion “⊇” is obvious. For the reverse inclu-

sion, let (o, φ) ∈ F̂X and choose pa,j and xa,j according to Definition 11. Set
pa =

∑na

j=1 pa,j . If pa = 0, set xa = 0. If pa > 0, set xa =
∑n
j=1

pa,j

pa
xa,j . Then

xa ∈ X and f(a) =
∑na

j=1 pa,jxa,j = paxa. ut

Proof (of Lemma 16). Let (o, φ) ∈ F̂X, and choose pa ∈ [0, 1] and xa ∈ X as in
Lemma 12. Then µX(φ(a)) = paµX(xa) ≤ pa, and hence o+

∑
a∈A µX(φ(a)) ≤ 1.

Further, o ∈ [0, 1], in particular o ≥ 0.
Conversely, assume that o ≥ 0 and o +

∑
a∈A µX(φ(a)) ≤ 1. Let a ∈ A. Set

pa = µX(φ(a)), then pa ∈ [0, 1] since
∑
a∈A pa ≤ 1. To define xa consider first

the case that µX(φ(a)) = 0. In this case φ(a) = 0 since X is bounded, and we
set xa = 0. If µX(φ(a)) > 0, set xa = 1

µX(φ(a))φ(a). Since X is closed, we have

xa ∈ X. In both cases, we obtained a representation φ(a) = paxa with pa ∈ [0, 1]

and xa ∈ X. Clearly, o+
∑
a∈A pa ≤ 1, and we conclude that (o, φ) ∈ F̂X. ut

Proof (of Lemma 17). We build the extension in three stages.

¬ We extend c to the cone generated by X: Set C =
⋃
t>0 tX, and define

c1 : C → V2 by the following procedure. Given x ∈ C, choose t > 0 with x ∈ tX,
and set c1(x) = t · c

(
1
tx
)
. By this procedure the map c1 is indeed well-defined.

Assume x ∈ tX ∩ sX where w.l.o.g. s ≤ t. Then 1
tx = s

t ·
1
sx. Since s

t ≤ 1, it
follows that c( 1

tx) = s
t c(

1
sx). Let us check that c1 is cone-morphism, i.e., that

c1(x+ y) = c1(x) + c2(y), x, y ∈ C, c1(px) = pc1(x), x ∈ C, p ≥ 0.
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Given x, y ∈ C, choose t > 0 such that x, y, x+ y ∈ tX. Observe here that C is
a union of an increasing family of sets. Then

c1(x+ y) = 2t · c
( 1

2t
(x+ y)

)
= 2t · c

(1

2
· 1

t
x+

1

2
· 1

t
y
)

= 2t ·
[1

2
c
(1

t
x
)

+
1

2
c
(1

t
y
)]

= 2t ·
[1

2
c
(1

t
x
)

+
1

2
c
(1

t
y
)]

= t · c
(1

t
x
)

+ t · c
(1

t
y
)

= c1(x) + c2(y)

Given x ∈ C and p > 0, choose t > 0 with x ∈ tX. Then px ∈ (pt)X, and we
obtain

c1(px) = pt · c
( 1

pt
(px)

)
= pt · c

(1

t
x
)

= pt · 1

t
c1(x) = pc1(x).

For p = 0, the required equality is trivial. Finally, observe that c1 extends c,
since for x ∈ X we can choose t = 1 in the definition of c1.

 We extend c1 to the linear subspace generated by C: Since C is a cone, we have
spanC = C −C. We define c2 : spanC → V2 by the following procedure. Given
x ∈ spanC, choose a+, a− ∈ C with x = a+ − a−, and c2(x) = c1(a+)− c2(a−).
By this procedure the map c2 is indeed well-defined. Assume x = a+ − a− =
b+ − b−. Then a+ + b− = b+ + a−, and we obtain

c1(a+) + c1(b−) = c1(a+ + b−) = c1(b+ + a−) = c1(b+) + c1(a−),

which yields c1(a+) − c2(a−) = c1(b+) − c2(b−). Let us check that c2 is linear.
Given x, y ∈ spanC, choose representations x = a+ − a−, y = b+ − b−. Then
x+ y = (a+ + b+)− (a− + b−), and we obtain

c2(x+ y) = c1(a+ + b+)− c1(a− + b−) =
[
c1(a+) + c1(b+)

]
−
[
c1(a−) + c1(b−)

]
=
[
c1(a+)− c1(a−)

]
+
[
c1(b+)− c1(b−)

]
= c2(x) + c2(y).

Given x ∈ spanC and p ∈ R, choose a representation x = a+−a− and distinguish
cases according to the sign of p. If p > 0, we have the representation px =
pa+ − pa− and hence

c2(px) = c1(pa+)− c1(pa−) = pc1(a+)− pc1(a−)

= p
[
c1(a+)− c1(a−)

]
= pc2(x).

If p < 0, we have the representation px = (−p)a− − (−p)a+ and hence

c2(px) = c1((−p)a−)− c1((−p)a+) = (−p)c1(a−)− (−p)c1(a+)

= p
[
c1(a+)− c1(a−)

]
= pc2(x).

For p = 0, the required equality is trivial. Finally, observe that c2 extends c1,
since for x ∈ C we can choose the representation x = x − 0 in the definition of
c2.
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® We extend c2 to V1: By linear algebra a linear map given on a subspace can
be extended to a linear map on the whole space.

The uniqueness statement is clear. ut

Proof (of Corollary 18). First assume that (4) holds. Let x ∈ X. Then µX(x) ≤
1, and we obtain

co(x) +
∑
a∈A

µY (ca(x)) = c̃o(x) +
∑
a∈A

µY (c̃a(x)) ≤ µX(x) ≤ 1.

Further, co(x) ≥ 0 by assumption. Now Lemma 16 gives c(x) ∈ F̂ Y .

Conversely, assume c(X) ⊆ F̂ Y , and let x ∈ Rn be given. If µX(x) =∞, the
relation (4) trivially holds. If µX(x) = 0, then x = 0 since X is bounded. Hence,
the left side of (4) equals 0, and again (4) holds. Assume that µX(x) ∈ (0,∞).

Since X is closed, we have µX(x)−1x ∈ X, and hence c(µX(x)−1x) ∈ F̂ Y . From
Lemma 16, we get the estimate

c̃o(x) +
∑
a∈A

µY (c̃a(x)) =µX(x)
(
c̃o
( 1

µX(x)
x
)

+
∑
a∈A

µY
(
c̃a(

1

µX(x)
x)
))

=µX(x)
(
co
( 1

µX(x)
x
)

+
∑
a∈A

µY
(
ca(

1

µX(x)
x)
))
≤ µX(x).

ut

E. Proof details of the Extension Theorem

Recall Kakutani’s theorem [14, Corollary].

Theorem 35 (Kakutani 1941). Let M ⊆ Rn and P : M → P(M). Assume

1. M is nonempty, compact, and convex,
2. for each x ∈M , the set P (x) is nonempty, closed, and convex,
3. the map P has closed graph in the sense that, whenver xn ∈ M , xn → x,

and yn ∈ P (xn), yn → y, it follows that y ∈ P (x).

Then there exists x ∈M with x ∈ P (x).

Note that P having closed graph implies that P (x) is closed for all x. To see
this, let yn ∈ P (x), yn → y, and use the constant sequence xn = x in the closed
graph property.

In the proof of Theorem 19 we shall, as in Example 15, identify a pyramid
Y with the appropriately scaled normal vector u of its inclined side. Then, for
two pyramids Y1 and Y2 with corresponding normal vectors u1 and u2, the
requirement that X ⊆ Yj becomes (x, uj) ≤ µX(x), x ≥ 0, and the requirement

c̃(Y2) ⊆ F̂ Y1 becomes c̃o(x)+
∑
a∈A(c̃a(x), u1) ≤ (x, u2), x ≥ 0, cf. Corollary 18.
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Proof (of Theorem 19). Let M be the set

M =
{
u ∈ Rn | u ≥ 0 and (x, u) ≤ µX(x), x ≥ 0

}
.

We have to include vectors u with possibly vanishing components into M to
ensure closedness. It will be a step in the proof to show that a fixed point must
be strictly positive.

Let P : M → P(M) be the map

P (u) =
{
v ∈M | c̃o(x) +

∑
a∈A

(c̃a(x), u) ≤ (x, v), x ≥ 0
}
.

Here we again denote by c̃ : Rn → R× (Rn)A the linear extension of c. Observe
that c̃(x) ≥ 0 for all x ≥ 0, since ∆n ⊆ X and c(x) ≥ 0 for x ∈ X.

It is easy to check that M and P satisfy the hypothesis of Kakutani’s Theo-
rem, the crucial point being that P (u) 6= ∅.
¬ M is nonempty: We have 0 ∈M .

 M is compact: To show that M is closed let un ∈ M with un → u. Since
un ≥ 0 also u ≥ 0, and for each fixed x ≥ 0 continuity of the scalar product
yields (x, u) = limn→∞(x, un) ≤ µX(x). Further, M is bounded since (ej , u) ≤
µX(ej) ≤ 1, j = 1, . . . , n, by our assumption that ∆n ⊆ X, and hence u ∈ [0, 1]n.

® M is convex: Let u1, u2 ∈M and p ∈ [0, 1]. First, clearly, pu1 + (1− p)u2 ≥ 0.
Second, for each x ≥ 0,

(x, pu1 + (1− p)u2) = p(x, u1) + (1− p)(x, u2)

≤ pµX(x) + (1− p)µX(x) = µX(x).

¯ P (u) is nonempty: Let u ∈M be given. The map x 7→ c̃o(x)+
∑
a∈A(c̃a(x), u)

is a linear functional on Rn. Thus we find v ∈ Rn representing it as x 7→ (x, v).
Since ej ∈ X, we have

(ej , v) = c̃o(ej) +
∑
a∈A

(c̃a(ej), u) ≥ 0.

Further, using that u ∈M and c̃(X) ⊆ F̂X, we obtain that for each x ≥ 0

(x, v) = c̃o(x) +
∑
a∈A

(c̃a(x), u) ≤ c̃o(x) +
∑
a∈A

µX(c̃a(x)) ≤ µX(x).

Together, we see that v ∈M . By its definition, therefore, v ∈ P (u).

° P (u) is convex: Let v1, v2 ∈ P (u) and p ∈ [0, 1]. First, since M is convex,
pv1 + (1− p)v2 belongs to M . Second, for each x ≥ 0,

(x, pv1+ (1− p)v2) = p(x, v1) + (1− p)(x, v2)

≥ p
(
c̃o(x) +

∑
a∈A

(c̃a(x), u)
)

+ (1− p)
(
c̃o(x) +

∑
a∈A

(c̃a(x), u)
)

= c̃o(x) +
∑
a∈A

(c̃a(x), u).
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± P has closed graph: Let un ∈ M , un → u, and vn ∈ P (un), vn → v. Then
u, v ∈ M since M is closed. Now fix x ≥ 0. Continuity of the scalar product
allows to pass to the limit in the relation

c̃o(x) +
∑
a∈A

(c̃a(x), vn) ≤ (x, un),

which holds for all n ∈ N. This yields c̃o(x) +
∑
a∈A(c̃a(x), v) ≤ (x, u).

Having verified all necessary hypothesis, Theorem 35 can be applied and fur-
nishes us with u ∈M satisfying u ∈ P (u), explicitly, u ∈ Rn with

u ≥ 0, (x, u) ≤ µX(x), x ≥ 0, c̃o(x) +
∑
a∈A

(c̃a(x), u) ≤ (x, u), x ≥ 0. (10)

Set Y = {x ≥ 0 | (x, u) ≤ 1}. Then Y is a PCA, and by definition contained in

Rn+. It contains X since u ∈ M , and since u ∈ P (u) we have c̃(Y ) ⊆ F̂ Y . Thus

d = c̃|Y turns Y into an F̂ -coalgebra, and since c = c̃|X = (c̃|Y )|X = d|X , the

inclusion map ι : X → Y is an F̂ -morphism.
It remains to show that Y is generated by n linearly independent vectors.

Remembering again Example 15, this is equivalent to u being strictly positiv.
Let I = {j ∈ {1, . . . , n} | (ej , u) = 0}. For each j ∈ I the last relation in (10)
implies that co(ej) = 0 and (ca(ej), u) = 0, a ∈ A. Since u ≥ 0 and ca(ej) ≥ 0,
we conclude that the vector ca(ej) can have nonzero components only in those
coordinates where u has zero component. In other words, ca(ej) ∈ span{ei | i ∈
I}. Now (5) gives I = ∅. ut

F. Proof details for properness of F̂

Proof (of Lemma 21). We denote vj = (1, . . . , 1) ∈ Rnj . By Example 15

µ∆nj (xj) = (xj , vj), xj ∈ Rnj

+ .

Since (∆nj , cj) is an F̂ -coalgebra, Corollary 18 yields

c̃jo(xj) +
∑
a∈A

(c̃ja(xj), vj) ≤ (xj , vj), xj ∈ Rnj

+ , j = 1, 2.

Summing up these two inequalities yields that for x1 ∈ Rn1
+ and x2 ∈ Rn2

+[
c̃1o(x1)+c̃2o(x2)

]
+
∑
a∈A

[
(c̃1a(x1), v1)+(c̃2a(x2), v2)

]
≤ (x1, v1)+(x2, v2). (11)

The definition of the map d in the basic diagram ensures that for (x1, x2) ∈ Z

do((x1, x2)) = c̃1o(x1) = c̃2o(x2), da((x1, x2)) =
(
c̃1a(x2), c̃2a(x2)

)
.
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Set v = 1
2 (1, . . . , 1) ∈ Rn1+n2 . Plugging the above into (11) and dividing by 2

yields

do((x1, x2)) +
∑
a∈A

(
da((x1, x2)), v) ≤

(
(x1, x2), v

)
, (x1, x2) ∈ Z ∩ Rn1+n2

+ .

By Example 14 and Example 15, we have

µZ∩2∆n1+n2 (x) = max
{
µZ(x), µ2∆n1+n2 (x)

}
=

{
(x, v) , x ∈ Z ∩ Rn1+n2

+ ,

∞ , otherwise.

From Lemma 16 we now obtain d(Z ∩ 2∆n1+n2) ⊆ F̂ (Z ∩ 2∆n1+n2). ut

Proof (of Lemma 22). Using the basic diagram, we obtain

c̃j(∆
nj ) ⊆ F̂∆nj ⊆ F̂ Yj ,

c̃j(πj(Z ∩ 2∆n1+n2)) ⊆ F̂ (πj(Z ∩ 2∆n1+n2)) ⊆ F̂ Yj .

Since c̃j is linear, in particular convex, and F̂ Yj is convex, it follows that

c̃j
(

co(∆nj ∪ πj(Z ∩ 2∆n1+n2))
)
⊆ F̂ Yj .

ut

Proof (Lemma 23). We check that the PCA Yj satisfies the hypothesis of Theo-
rem 19. By its definition ∆nj ⊆ Yj ⊆ Rnj

+ . Since Yj is finitely generated, it is a
compact subset of Rnj . Finally, since the coalgebra structure on Yj is an exten-
sion of the one on ∆nj , the present assumption (6) implies that the condition
(5) of Theorem 19 is satisfied. Note here that ∆nj ∩ span{ei | i ∈ I} = co({ei |
i ∈ I} ∪ {0}).

Applying Theorem 19 we obtain extensions Uj as required. ut

Proof (of Lemma 24). We show that the diagram

∆n f //

c
��

X

g

��
F̂∆n

id×(f◦−)
// [0, 1]×XA

commutes. First, for k 6∈ I, we have ((id×(f ◦ −)) ◦ c)(ek) = (g ◦ f)(ek) by the
definition of g. Second, consider k ∈ I. Then (g ◦ f)(ek) = 0 since f(ek) = 0. By
(7), also ((id×(f ◦ −)) ◦ c)(ek) = 0.

Since F̂ f maps F̂∆n into F̂X, we have g(X) ⊆ F̂X. This says that X indeed

becomes an F̂ -coalgebra with g. Revisiting the above diagram shows that f is
an F̂ -coalgebra morphism. ut
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Proof (of Corollary 25). Applying Lemma 24 repeatedly, we obtain after finitely

many steps an F̂ -coalgebra (∆k, g) such that no nonempty subset I ⊆ {1, . . . , k}
with (7) exists for (∆k, g), and that we have an F̂ -coalgebra morphism f : (∆n, c)→
(∆k, g). Note here that in each application of the lemma the number of genera-
tors decreases. ut
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