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Abstract:

We investigate the structure of the set of de Branges spaces of entire functions which
are contained in a space L2(µ). Thereby, we follow a perturbation approach. The
main result is a growth dependent stability theorem: Assume that two measures µ1

and µ2 are close to each other in a sense quantified relative to a proximate order.
Consider the sections of corresponding chains of de Branges spaces C1 and C2 which
consist of those spaces whose elements have finite (possibly zero) type w.r.t. the
given proximate order. Then these sections coincide, or one is smaller than the other
but its complement consists only of a (finite or infinite) sequence of spaces.

Among others we apply – and refine – this general theorem in two important
particular situations. (1) the given measures µ1 and µ2 differ in essence only on a
compact set; then stability of whole chains rather than sections can be shown. (2)
the linear space of all polynomials is dense in L2(µ1); then conditions for density of
polynomials in the space L2(µ2) are obtained.

In the proof of the main result we employ a method used by P.Yuditskii in the
context of density of polynomials. Another vital tool is the notion of the index of a
chain, which is a generalisation of the index of determinacy of a measure having all
power moments. We undertake a systematic study of this index, which is also of
interest on its own right.
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1 Introduction

In this paper, a de Branges space is a reproducing kernel Hilbert space of entire
functions with certain additional properties. Formulated in an operator theo-
retic way, one may say that the operator of multiplication by the independent
variable should be symmetric with defect index (1, 1) and real w.r.t. a natural in-
volution. Spaces of this kind were introduced in the late 1950’s by L. de Branges
as a generalisation of Fourier analysis, cf. [Bra59b], [Bra59a]. They receive a lot
of attention up to the present day. Besides their intrinsic beauty, a reason for
this continuous interest is that de Branges’ Hilbert spaces of entire functions
appear in many places of functional analysis and complex analysis. To men-
tion some: spectral theory of canonical systems, cf. [Bra68] (for a more explicit
treatment see also [Win95]), and of Schrödinger operators, cf. [Dym70; Rem02],
the prediction theory of stationary Gaussian processes, cf. [DM70; Pit72], bases,
interpolation and sampling, cf. [OS02; Bar06], or Beurling–Malliavin type the-
orems, cf. [HM03a; HM03b; BBH07].

In theory and applications of de Branges spaces the notion of isometric
embeddings into spaces L2(µ), where µ is a positive Borel measure on the real
line, plays a crucial role. For a measure µ, we denote by Sub[µ] the set of
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all linear spaces of entire functions whose elements are square integrable w.r.t.
µ along the real line, and which become a de Branges space when endowed
with the L2(µ)-inner product. The structure theory of Sub[µ] lies at the core
of de Branges’ theory. The basic information, formulated informally, is that
Sub[µ] is the union of disjoint chains (subsets which are totally ordered w.r.t. set-
theoretic inclusion), and that each of these chains enjoys certain completeness
properties; we recall details in 2.16 below.

In this paper we follow a perturbation approach to investigate Sub[µ].
Namely: Given two measures µ1 and µ2 which are small perturbations of each
other, can one relate chains from Sub[µ1] and Sub[µ2] ?

Our main result is the growth dependent stability theorem Theorem 3.9. The
size of the perturbation is measured relative to a growth function (or proximate
order; we shall recall details in §2 below). Again speaking informally the theorem
states the following: Let λ be a growth function, assume that µ1 and µ2 are
close in a sense quantified via λ, and consider chains Ci ∈ Sub[µi] (which fit
each other in a certain weak sense). Then their beginning sections consisting
of those spaces whose elements are entire functions having growth limited by λ
satisfy an ordering property (meaning, one of them is contained in the other).
The situation that these sections are not equal may occur. However, if this is
the case, then the complement of the smaller section in the larger one consists
of a (finite or infinite) sequence of spaces.

Perturbation approaches are classical and widely used in spectral theory.
The probably most prominent example is the Gelfand–Levitan approach to the
inverse spectral problem for Schrödinger operators, cf. [GL51]. In [Rem02], the
connection with the theory of de Branges spaces was elaborated. It turns out
that the decisive property for a measure to be the spectral measure for some
potential is that Sub[µ] contains a very specific chain (consisting of spaces whose
elements are given by cosine transforms of square integrable functions). When
viewing spectral problems from the point of de Branges’ theory, we may say
that the stability of this chain under perturbations of the spectral measure is
the crucial point. In this context, it is worth to notice that to some extent the
Gelfand–Levitan method has been pushed further to the case of Krein strings
in [DK78a; DK78b], and canonical systems in [Win00].

Comparatively recently a stability result was shown in the context of the
Hamburger power moment problem. Namely, in [Yud00] it is proved that density
of polynomials in a space L2(µ) with infinite index of determinacy (we recall
details in §6.4) is preserved under sufficiently small perturbations of µ.

Our present work is inspired by P.Yuditskii’s paper (and contains his result
as a particular case). The essential idea – here, as well as in [Yud00] – is
to exploit a compactness property. Though we obtain more general results,
the core of our proof is the same. In [Yud00] it is shown via an argument
based on orthogonal polynomials that a certain selfadjoint operator is of trace-
class. However, it is only needed that it is a compact perturbation of a positive
operator strictly smaller than the identity; and this is not difficult to verify
(also in the presently considered general situation). Moreover, using a well-
known perturbation result for quadratic forms, the explicit determinant-based
argument elaborated in [Yud00] can be shortened. The major novelties in the
present paper are

(1) The permitted perturbation may possibly be of much larger size than in
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[Yud00]; it can be adjusted to a priori knowledge on growth (slow growing
functions allow large perturbations of measures).

(2) Moving portions of a measure within its (measure theoretic) support is
admitted up to a fixed ratio.

(3) The results hold for arbitrary chains of de Branges spaces including the
situation that the spaces are not invariant under difference quotients.

A different notion of smallness of perturbation of a measure was introduced
in [BS11] for studying the type problem from a perturbation viewpoint. The
methods in [BS11] are very different from our present methods. In fact, the au-
thors also state a stability result which includes Yuditskii’s Theorem (see §3.1
in [BS11]), and raise the question whether Yuditskii’s approach can be used to
treat their kind of perturbations. Our present investigations suggest that this
is only partially the case. Roughly speaking, the perturbations considered in
[BS11] are composed of two contributions. One, the measure of a set may in-
crease, two, the support of the measure may be shifted. In our present results
increase of the measure (possibly even on much larger scale) and limited redis-
tribution of mass within the support is permitted, but shifting large parts of
the support is ruled out.

Let us explain organisation and content of the paper. Section 2 is of prelim-
inary nature. There we set up our notation and recall facts about growth func-
tions and de Branges spaces up to the extent necessary. In Section 3 we establish
a first perturbation result which is simple but essential. Namely, in Theorem 3.5
we prove an ordering property for certain parts of chains of de Branges spaces
for arbitrary measures, i.e., without assuming closeness of measures. Thereby,
the situation that one measure majorizes the other is of particular importance.
After having settled the general situation, we formulate and illustrate our main
theorem; the growth dependend stability result Theorem 3.9. In Section 4 we
define the index of a chain, and undertake a systematic study of this notion. The
index of a chain is a generalisation of the index of determinacy of a measure hav-
ing all power moments, cf. [BD95]. The case of inifinite index appeared not only
in connection with moment problems, but also in the above mentioned context of
the type problem for measures of polynomial growth (there the authors use the
term “stable density”). Our main result in this section is the de Branges space
theoretic interpretation of the index of a chain given in Theorem 4.10. This
result is of independent interest, and includes as particular cases several results
for the index of determinacy of a measure having all power moments. Section 5
is devoted to the proof of Theorem 3.9. Finally, in Section 6, we apply this the-
orem in particular situations where essential stability of whole chains (rather
than beginning sections) can be shown. We deal with: (1) instances when nec-
essary a priori growth hypothesis are automatically fullfilled, (2) perturbations
which are small outside a compact set, (3) consequences of majorization of one
measure by the other, (4) the chain of polynomials. As corollaries we reobtain a
certain part of the stability result for type from [BS11, Corollary 1.5] (in Corol-
lary 6.6), an inclusion result from [Win00] (in Corollary 6.8), the stability result
[Yud00, Theorem] (in Corollary 6.12), and the classical sufficient determinacy
condition [Fre69, Satz 5.2] (in Remark 6.14).

Acknowledgement: This work was carried out during a visit of the author
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2 Growth functions and de Branges spaces

Growth functions

Let us recall the notion of a growth function.

2.1 Definition. A function λ : R+ → R+ is called a growth function if it
satisfies the following axioms.

(gf1) The function λ is differentiable, strictly increasing, and λ(0) = 1.

(gf2) lim
r→∞

λ(r) =∞.

(gf3) The limit ρλ := lim
r→∞

lnλ(r)
ln r exists and is finite and non-negative.

(gf4) lim
r→∞

(
r λ
′(r)
λ(r)

/
lnλ(r)

ln r

)
= 1.

♦

Growth functions are used to measure growth on a scale which is more refined
than the usual scale of order and type. Typical examples are functions of the
form

λ(r) = ra ·
(
ln(m1) r

)b1 · . . . · (ln(mn) r
)bn

for large enough r, where a > 0, mi ∈ N, m1 < . . . < mn, b1, . . . , bn ∈ R, and
ln(n) is defined by

ln(1) r := ln r, ln(k+1) r := ln
(
ln(k) r

)
, k ∈ N,

for sufficiently large r. Comparing the growth of an entire function with this
kind of functions goes back as far as to work of E.Lindelöf and G.Valiron.

The condition (gf1) could be replaced by the weaker one

(gf1’) For all sufficiently large values of r the function λ is differentiable.

However, since the whole importance of a growth function lies in its behaviour
at infinity, this yields no gain in generality. Note here that (gf4) implies that
λ′(r) > 0 for r sufficiently large.

Standard references for the theory of growth functions and their use in com-
plex analysis are [Lev80; LG86; Rub96]. In the literature one sometimes rather

works with the function ρ(r) := lnλ(r)
ln r instead of λ(r), and speaks of ρ(r) as a

proximate order. The axioms (gf2)–(gf4) translate as follows:

– lim
r→∞

λ(r) =∞ ⇔ lim
r→∞

ρ(r) ln r =∞;
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– lim
r→∞

lnλ(r)

ln r
= ρ ⇔ lim

r→∞
ρ(r) = ρ;

– lim
r→∞

(
r λ
′(r)
λ(r)

/
lnλ(r)

ln r

)
= 1 ⇔ lim

r→∞

rρ′(r) ln r

ρ(r)
= 0.

Often the condition (gf4) is substituted by

(gf4’) lim
r→∞

r
λ′(r)

λ(r)
= ρλ.

Clearly, for ρλ > 0 this is equivalent to (gf4). However, if ρλ = 0, it is weaker
and in some contexts is not enough to yield the desired properties. In any case,
in terms of proximate orders, (gf4’) translates as follows:

– Assuming (gf3), we have lim
r→∞

r
λ′(r)

λ(r)
= ρλ ⇔ lim

r→∞
rρ′(r) ln r = 0.

2.2 Definition. Let λ be a growth function. An entire function f is said to
have finite λ-type, if

lim sup
|z|→∞

ln |f(z)|
λ(|z|)

<∞.

For a function of finite λ-type its indicator w.r.t. λ is

h(f, λ; θ) := lim sup
r→∞

ln |f(reiθ)|
λ(r)

, θ ∈ [0, 2π).

♦

2.3 Remark. We use the following classical fact: Assume that f is an entire func-
tion of finite λ-type. Then also f ′ has this property, and h(f, λ; θ) = h(f ′, λ; θ),
θ ∈ [0, 2π).

For growth functions λ with ρλ > 0, this is well-known and can be deduced
from results in standard textbooks, e.g., from [Lev80, Ch.1,Theorems 27,28].
The case that ρλ = 0 seems to be less widely known. If ρλ = 0, the above
statement follows using that the indicator h(f, λ; θ) is constant. This fact in
turn goes back to [Gol62]. A more recent reference, which contains a nice proof
due to W.Hayman, is [BP07, Appendix]. ♦

Positive Borel measures

We denote by M+(R) the set of all positive Borel measures on R. Thereby,
we agree that the term “Borel measure” includes the requirement that compact
sets have finite measure.

We will deal with differences of positive measures which are (by the finiteness
of measure of compact sets) σ-finite, but not necessarily finite. To make it
explicit, let us state the following conventions.

2.4. Notational convention: Expressions like µ − ν or |µ − ν|, where µ, ν ∈
M+(R), are understood as set functions defined on the collection of all bounded
Borel subsets of the real line. Correspondingly, inequalities between linear com-
binations of measures are understood to hold for all bounded Borel sets. ♦
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Notice that inequalities between linear combinations of measures which hold
for their restrictions to bounded sets certainly imply that the corresponding
inequalities hold for integrals of nonnegative functions.

We will deal a lot with inclusions of spaces of analytic functions into spaces
L2(µ). In this context it is sometimes necessary, or at least helpful, to be very
precise. (1) If µ is a discrete measure, such inclusions are not necessarily injec-
tive, (2) different inclusions may give rise to different (non-equivalent) norms.
Let us introduce some notation to take care of these facts. Let µ ∈ M+(R) be
given. If f and g are complex valued functions on the real line, we write f ∼µ g
if f(x) = g(x) for µ-a.a. x ∈ R. We denote the equivalence class modulo ∼µ
of f as [f ]µ. Next, we denote by (., .)µ the L2(µ)-inner product, by ‖.‖µ the
corresponding norm, and

ρµ : f 7→ [f |R]∼µ . (2.1)

Zero divisors

We use the common formal way to locate the zeroes of an entire function.

2.5 Definition. Let f be an entire function which does not vanish identically.
Then, for each w ∈ C, we denote by df (w) the multiplicity of w as a zero of f .
The function df : C→ N0 is called the zero divisor of f .

If L is a set of entire functions which contains at least one element that does
not vanish identically, we set

dL(w) := min
{
df (w) : f ∈ L \ {0}

}
.

♦

Embeddings of de Branges spaces

2.6 Definition. Let H be a linear space whose elements are entire functions1.
We call H an algebraic de Branges space, if it contains a function which does
not vanish identically and satisfies the following axioms.

(adB1) If f ∈ H, w ∈ C \ R, and f(w) = 0, then also the function f(z)
z−w

belongs to H.

(adB2) If f ∈ H, then also the function f#(z) := f(z) belongs to H.

♦

Algebraic de Branges spaces appear in several contexts.

2.7 Example.

(i) The space C[z] of all polynomials with complex coefficients is an algebraic
de Branges space. This space occurs in the context of power moment
problems: Let µ ∈ M+(R). Then ρµ(C[z]) ⊆ L2(µ) holds if and only if µ
has power moments of arbitrary order, and2 ClosL2(µ) ρµ(C[z]) = L2(µ) if
and only if µ is in addition uniquely determined by its power moments.

1Here, and always, we tacitly assume that linear operations are defined by pointwise addi-
tion and scalar multiplication.

2We denote by “ClosM” the closure of the set M (it will always be clear from the context
within which topological space this closure has to be understood).
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(ii) For each a > 0, let E(a) be the image under the Fourier transform of the
space C∞00 (−a, a) of all infinitely differentiable functions compactly sup-
ported in (−a, a). Then E(a) is an algebraic de Branges space (note here
that the Fourier transform of a compactly supported function is entire).
These spaces occur in the type problem for a measure, that is, the problem
of determining the minimal width of frequencies needed to approximate
any function in L2(µ): Let µ ∈M+(R) be a (for simplicity) finite measure,
then ρµ(E(a)) ⊆ L2(µ). To have ClosL2(µ) ρµ(E(a)) = L2(µ), means that
the type of µ does not exceed a.

♦

Often algebraic de Branges space occur by means of the following fact: The
union of an increasing chain of algebraic de Branges spaces is itself an algebraic
de Branges space. For example, for each n ∈ N, the space

C[z]n := {p ∈ C[z] : deg p < n}

is an algebraic de Branges space, and C[z] is the union of the chain {C[z]n : n ∈
N}.

We call a space 〈H, (., .)H〉 a reproducing kernel Hilbert space of entire func-
tions, if the elements of H are entire functions and for each w ∈ C the point-
evaluation functional χw : f 7→ f(w), f ∈ H, is continuous.

2.8 Definition. Let H be a linear space whose elements are entire functions,
H 6= {0}, and let (., .)H be a positive definite inner product on H. We call
〈H, (., .)H〉 a de Branges space, if H is an algebraic de Branges space and the
following axioms are fullfilled3.

(dB1)
∥∥∥z − w
z − w

f(z)
∥∥∥
H

= ‖f‖H, f ∈ H, w ∈ C \ R, f(w) = 0.

(dB2) ‖f#‖H = ‖f‖H, f ∈ H.

(dB3) 〈H, (., .)H〉 is a reproducing kernel Hilbert space of entire functions.

♦

Note that a linear space of functions may carry at most one Banach-space
topology such that all point evaluations are continuous (as is seen by apply-
ing the Closed Graph Theorem with the identity map). Hence, if 〈H, (., .)1〉 and
〈H, (., .)2〉 are de Branges spaces, necessarily ‖.‖1 and ‖.‖2 are equivalent.

2.9. de Branges spaces via Hermite-Biehler functions: In the above definition
we used an axiomatic way to introduce de Branges spaces. A more concrete,
equivalent, approach proceeds via a certain class of entire functions, cf. [Bra68,
§19]: We call an entire function a Hermite-Biehler function, if it satisfies

|E(z)| < |E(z)|, z ∈ C+.

Given a Hermite-Biehler function E, consider the function KE defined as

KE(w, z) =
i

2π

E(z)E#(w)− E#(z)E(w)

z − w
, z, w ∈ C, (2.2)

3Here, and always, we denote by ‖.‖H the norm induced by (., .)H. Corresponding notation
is applied also with other inner products.
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where the formula has to be interpreted as a derivative if z = w. Then KE is
a positive semidefinite kernel, and the reproducing kernel Hilbert space H(E)
generated by KE is a de Branges space. Conversely, for each de Branges space
〈H, (., .)H〉 there exist Hermite-Biehler functions E, such that the reproducing
kernel kH of the space 〈H, (., .)H〉 coincides with KE . Given a Hermite-Biehler
function E, we denote the de Branges space it generates as H(E). ♦

2.10 Example. The probably most classical infinite dimensional de Branges
spaces are the Paley-Wiener spaces. These spaces arise from the Fourier trans-
form. Namely, for a > 0 let PWa be the image under the Fourier transform
of the space L2(−a, a) endowed with scalar product (f, g)PWa :=

∫
R f(t)g(t) dt.

Then PWa is a de Branges space. It is generated by the Hermite-Biehler func-
tion given by Ea(z) := e−iaz, z ∈ C. By a theorem of Paley and Wiener, the
space PWa is equal to the set of all entire functions which are of bounded type
in the upper- and lower half planes, whose exponential type does not exceed a,
and which are square integrable along the real line. ♦

The norm of point-evaluation functionals χw in a normed (not necessarily com-
plete) space of functions, plays a decisive role. For a normed space 〈X , ‖.‖X 〉 of
functions we denote

∇〈X ,‖.‖X 〉(w) := sup
{
|f(w)| : f ∈ H, ‖f‖X ≤ 1

}
,

where the supremum is understood as an element of [0,∞]. To shorten nota-
tion, the dependency of this definition on the norm ‖.‖X is suppressed when no
confusion is possible.

If the space under consideration is a reproducing kernel Hilbert space
〈H, (., .)H〉, and kH denotes its reproducing kernel, then the norm of point eval-
uation functionals is given as

∇H(w) = kH(w,w)
1
2 .

2.11. Inner products defined by integration: Let H be an algebraic de Branges
space, let µ ∈ M+(R), and assume that

∫
R |f |

2 dµ < ∞, f ∈ H. Then we may
consider the inner product space 〈H, (., .)µ〉 where (in order to avoid cumbersome
notation, we slightly overload useage of the symbol (., .)µ)

(f, g)µ := (ρµf, ρµg)µ =

∫
R
fg dµ, f, g ∈ H.

As usual, denote ‖f‖µ := (f, f)
1
2
µ , f ∈ H. Note, however, that ‖.‖µ is in general

only a seminorm on H.
Since integration takes place along the real line, the isometry conditions

in (dB1) and (dB2) are automatically satisfied. Hence, if H is an algebraic
de Branges space, then 〈H, (., .)µ〉 is a de Branges space if and only if

(1) (., .)µ is nondegenerate on H;

(2) H is complete w.r.t. the norm ‖.‖µ;

(3) for each w ∈ C, the point evaluation functional χw : f 7→ f(w), f ∈ H, is
continuous w.r.t. ‖.‖µ.

Equivalently, we may say that
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(1′) ρµ|H is injective;

(2′) ρµ(H) is closed;

(3′) for each w ∈ C, we have ∇H(w) <∞.

♦

2.12 Lemma. Let 〈H, (., .)H〉 be a de Branges space, µ ∈M+(R), and assume
that

∫
R |f |

2 dµ <∞, f ∈ H. Then the map ρµ|H is continuous. It is bicontinu-
ous, if and only if 〈H, (., .)µ〉 is a de Branges space.

Proof. Assume that fn → f in H and ρµ(fn) → g in L2(µ). Choose a subse-
quence (fnk)∞k=1, such that ρµ(fnk)→ g pointwise almost everywhere. Since H
is a reproducing kernel space, we have fnk(x) → f(x), x ∈ R. Thus ρµ(f) = g
almost everywhere. The closed graph theorem implies that ρµ is continuous.

Clearly, if ρµ is bicontinuous, then ρµ is in particular injective and 〈H, ‖.‖µ〉 is
complete. Conversely, if 〈H, (., .)µ〉 is a de Branges space, then ρµ is a continuous
bijection onto ρµ(H) and we may apply the open mapping theorem to conclude
that ρµ is bicontinuous. q

2.13. A word of caution concerning notation
�

: In the present paper inclusions
are understood solely in their set-theoretic sense. Writing “H1 ⊆ H2” means
that

∀f :
(
f ∈ H1 ⇒ f ∈ H2

)
. (2.3)

By writing “ρµ(H) ⊆ L2(µ)” we mean that

∀f :
(
f ∈ H ⇒

∫
R
|f |2 dµ <∞

)
. (2.4)

If the norms coincide and we wish to emphasise this, we say that H1 ⊆ H2

isometrically (if (2.3) and ‖f‖H1
= ‖f‖H2

, f ∈ H1) and ρµ(H) ⊆ L2(µ) iso-
metrically (if (2.4) and ‖f‖H = ‖ρµf‖µ, f ∈ H). ♦

Chains of de Branges spaces

2.14 Definition. Let µ ∈M+(R).

(1) We denote by Sub[µ] the set of all algebraic de Branges spaces H with the
properties that ρµ(H) ⊆ L2(µ) and that 〈H, (., .)µ〉 is a de Branges space.

(2) We call a subset C of Sub[µ] a partial chain for µ, if

(a) C 6= ∅;
(b) C is totally ordered w.r.t. inclusion;

(c) dH1 = dH2 for every pair of spaces H1,H2 ∈ C and that each quotient
f1

f2
with fi ∈ Hi \ {0}, i = 1, 2, is a meromorphic function of bounded

characteristic in the open upper half-plane C+.

(3) We call C a chain for µ, if C is a maximal element in the set of all partial
chains for µ. The set of all chains for µ is denoted as Chains[µ].

♦
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2.15 Example. We inspect the set Sub[µ] when µ is the Lebesgue measure µ on
R. We already have seen one family of de Branges spaces in L2(µ), namely the
Paley-Wiener spaces PWa, a > 0. The set

C := {PWa : a > 0}

clearly is a partial chain. It has the properties⋂
a>0

PWa = {0}, ClosL2(µ)

⋃
a>0

PWa = L2(µ),⋂
a>a0

PWa = PWa0
, ClosL2(µ)

⋃
a0>a>0

PWa = PWa0
, a0 ∈ (0,∞).

(2.5)

Hence, C is maximal, i.e., C ∈ Chains[µ].
There are many other chains contained in L2(µ); let us exhibit one of them.

Denote by Hn the n-th Hermite polynomial, i.e.,

Hn(z) := (−1)nez
2 dn

dzn
e−z

2

, z ∈ C, n ∈ N0.

Each of the spaces

Hn := e−
z2

2 C[z]n, n ∈ N,

is contained in L2(µ). The family {e− z
2

2 Hk(z) : k = 0, . . . , n − 1} forms an
orthogonal basis of 〈Hn, (., .)L2(µ)〉. The family

C′ := {Hn : n ∈ N}

is a partial chain, and⋂
n>m

Hn = Hm+1,
⋃

0<n<m

Hn = Hm−1, m ∈ N.

Since {e− z
2

2 Hk(z) : k = 0, 1, 2, . . .} is an orthogonal basis of L2(µ), we obtain
properties similar to (2.5):⋂

n∈N
Hn = span{1}, ClosL2(µ)

⋃
n∈N
Hn = L2(µ),

dim
( ⋂
n>m

Hn/Hm
)

= 1, dim
(
Hm/

⋃
0<n<m

Hn
)

= 1, m ∈ N.

It follows that C′ ∈ Chains[µ]. Clearly, C ∩ C′ = ∅. ♦

Using the above notation a portion of the core results of de Branges’ theory (as
presented in [Bra68]) can be summarised as follows.

2.16. Structure of Sub[µ]: Let µ ∈M+(R).

(1) Sub[µ] =
⋃

C∈Chains[µ]

C, and for each C ∈ Chains[µ] we have

Clos ρµ
(⋃
H∈CH

)
= L2(µ).

(2) Let C1, C2 ∈ Chains[µ]. Then the following statements are equivalent.

10



(a) C1 ∩ C2 6= ∅.
(b) C1 = C2.

(c) There exist Hi ∈ Ci, i = 1, 2, and fi ∈ Hi \ {0}, i = 1, 2, such that
dH1 = dH2 and f1

f2
is a meromorphic function of bounded characteristic

in C+.

The properties in (c) are the crucial hypothesis in de Branges’ Ordering
Theorem, cf. [Bra68, Theorem 35].

(3) Let C ∈ Chains[µ] and H ∈ C. Then(
Clos

⋃
L∈C∪{{0}}
L(H

L
)
∈ C ∪ {{0}} and dim

(
H
/

Clos
⋃

L∈C∪{{0}}
L(H

L
)
≤ 1,

and ⋂
L∈C,L)H

L ∈ C and dim
( ⋂
L∈C,L)H

L
/
H
)
≤ 1,

if H is not maximal element of C.

(4) Let C ∈ Chains[µ]. Then the following statements are equivalent.

(a) C contains a maximal element.

(b) ∃H ∈ C : ρµ(H) = L2(µ).

(c) In each of the upper and lower half-planes C+ and C− there exist points
w with sup{∇H(w) : H ∈ C} <∞.

(d) sup{∇H(w) : H ∈ C} <∞ for every point w ∈ C.

(5) Let C ∈ Chains[µ]. Then the following statements are equivalent.

(a) C contains a minimal element.

(b) C contains a one-dimensional element.

(c) There exists a point w ∈ C with inf{∇H(w) : H ∈ C} > 0.

The following fact can be regarded as common knowledge.

2.17 Remark. Let µ ∈ M+(R), let Ω ⊆ C be open and connected with R ⊆ Ω,
and let p ∈ [1,∞]. Moreover, let L be a linear space of functions analytic in
Ω. If Lp(µ) ⊆ ρµ(L), then µ is discrete (this is seen by an application of the
Identity Theorem). ♦

In particular, we have the following.

2.18 Lemma. Let µ ∈M+(R), C ∈ Chains[µ], and assume that C has a maximal
element. Then µ is discrete.

Proof. Let H be the maximal element of C. Then ρµ(H) = L2(µ). q

In our present studies chains which contain elements with finite codimension in
the space L2(µ) appear frequently. Let us briefly comment on this situation.

11



2.19 Remark. Let µ ∈ M+(R) and C ∈ Chains[µ]. Assume that C contains a
space H0 with

0 < dim
(
L2(µ)

/
ρµ(H0)

)
︸ ︷︷ ︸

=:d

<∞.

Then there exist spaces H1, . . . ,Hd with H0 ( H1 ( . . .Hd and dimHi/Hi−1 =
1, i = 1, . . . , d, such that4

C = {H ∈ C : H ⊆ H0}∪̇{H1, . . . ,Hd}.

In particular, C has a maximal element and µ is discrete. ♦

In many, but not all, applications of canonical systems a chain of de Branges
spaces with a particular property plays a decisive role.

2.20 Remark. Let µ ∈M+(R) and assume that∫
R

dµ(x)

1 + x2
<∞.

Then there exists a unique chain C ∈ Chains[µ] with the property that each
de Branges space H ∈ C is invariant under difference quotients. This means
that

∀F ∈ H, w ∈ C : G(z) :=
F (z)− F (w)

z − w
∈ H

Another, equivalent, way to express this property is to say that

∀H ∈ C : 1 ∈ H+ zH (2.6)

It is a nontrivial fact that (2.6) already follows when it is known that one single
space H ∈ C has the property that 1 ∈ H + zH, cf. [Bra61, Lemma 12] and
[Bra68, Problem 72]. ♦

In de Branges’ original work this situation was exhibited as an important par-
ticular case, however, his work includes all other situations also. Curiously, still
most of the literature dealing in one or the other way with chains of de Branges
spaces focuses on considering chains C with (2.6).

3 Comparing chains for different measures

Our aim is to compare chains for different measures. Let µ1, µ2 ∈ M+(R) and
let C1 ∈ Chains[µ1] and C2 ∈ Chains[µ2]. An obvious necessary condition for a
space H to be an element of both chains is that those properties which appeared
in Definition 2.14, (2/c), and in 2.16, (2/c), hold, and that the elements of H
are square integrable w.r.t. both measures µ1 and µ2.

In the following two definitions we notationally single out these properties.

3.1 Definition. Let µ1, µ2 ∈ M+(R), and let Ci ∈ Chains[µi], i = 1, 2. We say
that C1 and C2 are admissible for comparison, if

(1) ∃H1 ∈ C1,H2 ∈ C2 : dH1
= dH2

,

4We use the symbol ∪̇ to emphasise that the union is a union of disjoint sets.
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(2) ∃H1 ∈ C1,H2 ∈ C2, f1 ∈ H1 \ {0}, f2 ∈ H2 \ {0} : f1

f2
is a meromorphic

function of bounded characteristic in C+.

♦

If two chains have nonempty intersection, then they are admissible for compar-
ison. The converse is not true; see, e.g., Example 3.2 below. Saying that two
chains are admissible for comparison means that they have a chance to have
common parts. Since we are interested in showing that two chains actually do
have common parts, we may always restrict our attention to chains which are
admissible for comparison.

Also notice that replacing in this definition (all or some) existential quanti-
fiers with universal quantifiers leads to equivalent conditions. In view of 2.16,
(2/c), the conditions (1) and (2) are equivalent (e.g.) to the following statements
(1′) and (2′):

(1′) ∀H1 ∈ C1,H2 ∈ C2 : dH1
= dH2

,

(2′) ∀H1 ∈ C1,H2 ∈ C2, f1 ∈ H1 \ {0}, f2 ∈ H2 \ {0} : f1

f2
is a meromorphic

function of bounded characteristic in C+.

Let us show by an example that being admissible for comparison is only neces-
sary but not sufficient that two chains have nonempty intersection.

3.2 Example. Let µ be the Lebesgue measure on R, and let C and C′ be the
chains exhibited in Example 2.15, i.e., C is the chain of Paley-Wiener spaces,

and C′ is the chain originating from the Hermite-polynomials multiplied by e−
x2

2

as orthonormal basis.
As example for another measure, we consider a space which occurs in number

theory (rather than harmonic analysis). Let Ξ be the (upper case) Riemann
Ξ-function, and set E(z) := Ξ(

√
iz), z ∈ C. Then E is a Hermite-Biehler

function, and the de Branges space H(E) generated by E contains C[z] as a
dense subspace, cf. [KW05b, Theorem 3.1, Example 3.2]. Let ν be the measure
given by dν(x) := 1

|E(x)|2 dx. It is a consequence of [KW05a, Theorem 2.7] that

the set
D :=

{
C[z]n : n ∈ N

}
∪
{
H(E(z)e−iaz) : a ≥ 0

}
(3.1)

is ordered as (0 < a < b)

C[z]1 ( · · · ( C[z]n ( C[z]n+1 ( · · · ( H(E(z)) ( · · ·
· · · ( H(E(z)e−iaz) ( · · · ( H(E(z)e−ibz) ( · · ·

and belongs to Chains[ν]. The chains C′ andD are not admissible for comparison.
The chains C and D are admissible for comparison, since all functions sin z

z−kπ ,
k ∈ Z, belong to PW1, and the function 1 belongs to some (actually every)
space in D. However, they are still disjoint since the function 1 is not square
integrable along the real axis and hence cannot belong to any Paley-Wiener
space. ♦

3.3 Definition. Let ν ∈ M+(R) and C be a chain of de Branges spaces. Then
we denote

P[C, ν] :=
{
H ∈ C : ρν(H) ⊆ L2(ν)

}
.

♦

13



Clearly, P[C, ν] is a beginning section of C, i.e., if it contains one element of C,
then it contains also all smaller elements of C.

Let us inspect some examples which indicate that chains for different mea-
sures may be related in various different ways. We focus on the case that one
measure is larger than the other.

3.4 Example. Let ν again be the measure dν(x) := 1
|E(x)|2 dx, E(z) := Ξ(

√
iz),

which we studied in Example 3.2, and let D be the chain (3.1). We construct
another measure µ in a similar way, namely as

dµ(x) :=
1

|F (x)|2
dx, F (z) :=

∞∏
n=1

(
1 +

z

in3

)
.

Then (the ordering is analogous to the ordering in (3.1))

C :=
{
C[z]n : n ∈ N

}
∪
{
H(F (z)e−iaz) : a ≥ 0

}
∈ Chains[µ].

We have, by classical function theory,

lim
x→±∞

ln |E(x)|√
|x| ln |x|

=
1

4
√

2
, lim

x→±∞

ln |F (x)|
3
√
|x|

= π. (3.2)

Hence, ν ≤ γµ for some appropriate constant γ > 0. Moreover, E(x)(1+|x|)−1 6∈
L2(µ), and hence H(E) * L2(µ). We see that P[D, µ] = {C[z]n : n ∈ N}, and
hence

D ) P[D, µ] ( C
(
D ∈ Chains[ν], C ∈ Chains[µ], ν ≤ γµ

)
.

Let σ be the measure defined as dσ(x) := e−|x|dx. By the limit relation (3.2)
we have σ ≤ γν for some appropriate constant γ > 0. From the classical deter-
minacy condition [Fre69, Satz 5.2] we have C := {C[z]n : n ∈ N} ∈ Chains[σ].
We see that

C = P[C, ν] ( D
(
C ∈ Chains[σ],D ∈ Chains[ν], σ ≤ γν

)
.

Finally, for an example of two measures having equal chains, it is enough to
take any two measures subject to the determinacy condition [Fre69, Satz 5.2].

♦

The following result is easy to show, but is a basic fact when it comes to com-
paring chains. Its core, which is the statement in item (2), says in essence that
the situations encountered in Example 3.4 represent all possibilities.

3.5 Theorem. Let µ1, µ2 ∈M+(R) be given.

(1) Let C1 ∈ Chains[µ1], C2 ∈ Chains[µ2], and assume that C1 and C2 are ad-
missible for comparison. Then either P[C1;µ2] is a beginning section of
P[C2;µ1], or P[C2;µ1] is a beginning section of P[C1;µ2].

Assume that there exists γ > 0 such that µ1 ≤ γµ2, let C1 ∈ Chains[µ1], and
assume that P[C1, µ2] 6= ∅.

(2) There exists a unique chain C2 ∈ Chains[µ2] which is admissible for compar-
ison with C1, and P[C1;µ2] is a beginning section of C2.

14



(3) Let C2 ∈ Chains[µ2] be admissible for comparison with C1. Then

sup
H∈P[C1;µ2]

∇〈H,‖.‖µ2 〉(w) <∞, w ∈ C,

if and only if either C2 6= P[C1;µ2], or C2 = P[C1;µ2] and C2 contains a
maximal element.

If C2 = P[C1;µ2] and C2 does not contain a maximal element, then C1 = C2.

Proof. We start with showing property (2). Consider a space H ∈ P[C1;µ2].
Then, by Lemma 2.12, ρµ2

|H is continuous, i.e., ‖f‖µ2
≤ γ′‖f‖µ1

, f ∈ H, for
some γ′ > 0. However, by our assumption ‖f‖µ1 ≤ γ‖f‖µ2 , f ∈ H, and hence
‖.‖µ1 and ‖.‖µ2 are equivalent on H. Thus H ∈ Sub[µ2] and

{K ∈ Sub[µ1] : K ⊆ H} = {K ∈ Sub[µ2] : K ⊆ H}. (3.3)

Since P[C1;µ2] is a nonempty partial chain, there exists a unique chain C2 ∈
Chains[µ2] with C2 ⊇ P[C1;µ2]. Since (3.3) holds for every space H ∈ P[C1;µ2],
we see that P[C1;µ2] is a beginning section of C2.

We come to the proof of (1). Introduce the measure µ := µ1 + µ2. If
P[C1;µ2] = ∅ or P[C2;µ1] = ∅, there is nothing to prove. Hence, assume that
both sets are nonempty. Clearly, P[C1, µ2] = P[C1, µ] and P[C2, µ1] = P[C2, µ].
Choose a space H0 ∈ P[C1;µ2]. Then, by the already proved item (2), H0 ∈
Sub[µ]. Let C ⊆ Sub[µ] be the chain which contains H0. Then C1 and C are
admissible for comparison. Hence, also C2 and C have this property. Item (2)
yields that both, P[C1;µ2] and P[C2;µ1] are beginning sections of C. From this
(1) follows.

Finally, let us turn to the proof of (3). If C2 6= P[C1;µ2], or C2 = P[C1;µ2] and
C2 contains a maximal element, then trivially supH∈P[C1;µ2]∇〈H,‖.‖µ2

〉(w) <∞.
Assume that C2 = P[C1;µ2] and C2 does not contain a maximal element. Since
the unit ball of a space H w.r.t. the norm ‖.‖µ1

contains the ‖.‖µ2
-ball centered

at 0 with radius 1
γ , we have

sup
H∈P[C1;µ2]

∇〈H,‖.‖µ1
〉(w) ≥ 1

γ
sup

H∈P[C1;µ2]

∇〈H,‖.‖µ2
〉(w)

=
1

γ
sup
H∈C2

∇〈H,‖.‖µ2
〉(w) =∞.

The asserted equivalence follows. Moreover, since P[C1;µ2] is a beginning section
of C1, it follows that P[C1;µ2] = C1. q

We may picture the possible situations described in Theorem 3.5 as follows (as
examples show all these cases can occur).
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Situation in general. Case µ1 ≤ γµ2 Case µ1 ≤ γµ2
(possible only if C2 has
a maximal element)

The case that µ1 and µ2 differ only by a compactly supported part deserves
particular attention. Let us comment on this situation.

3.6 Remark. Let µ1, µ2 ∈ M+(R) and assume that µ1 − µ2 is compactly sup-
ported. Let Ci ∈ Chains[µi], i = 1, 2, be admissible for comparison. Then

P[C1, µ2] = C1 and P[C2, µ1] = C2.

Theorem 3.5 implies that either C1 is a beginning section of C2, or C2 is one of
C1. If µ1 ≤ γµ2 with some γ > 0, then the first of these cases occurs. ♦

Formulation of the Main Theorem

Let us now state our main theorem, the below Theorem 3.9. In this result we
show stability of the section of a chain of de Branges spaces which is defined by a
restriction speed of growth of functions when the measure containing the chain
is perturbed where the maximal admissible size of the perturbation corresponds
to the maximal speed of growth. The proof of Theorem 3.9 needs some more
machinery (to be built up in §4) and will be carried out in §5.

To make the meaning of “growth restrictions” precise, we need to introduce
an appropriate notation for growth classes, and an appropriate quantification
of smallness of a measure.

3.7 Definition. Let λ be a growth function and let c ∈ R ∪ {∞}. We denote
by G(λ, c) the set of all algebraic de Branges spaces H with the property that

lim sup
|z|→∞

ln |f(z)|
λ(|z|)

<∞, lim sup
x→±∞

ln |f(x)|
λ(|x|)

≤ c, f ∈ H \ {0}.

Observe that for c =∞ the second of these conditions is void. ♦

Note that G(λ,∞) =
⋃
c∈R G(λ, c).

3.8 Definition. Let λ be a growth function and let µ ∈M+(R). Then we set

p(λ, µ) := sup
{
β ∈ R :

∫
R
eβλ(|x|) dµ(x) <∞

}
,

where the supremum is understood as an element of R ∪ {±∞}. ♦

One may think of p(λ, µ) as a convergence exponent of µ w.r.t. λ; the number
p(λ, µ) being large means that µ decays fast relative to λ.
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3.9 Theorem. Let µ1, µ2 ∈M+(R), and let Ci ∈ Chains[µi], i = 1, 2, be admis-
sible for comparison. Let λ be a growth function, c ∈ R∪{∞}, ν ∈M+(R), and
assume that

c <
1

2
p(λ, ν) or p(λ, ν) =∞, (3.4)

and that
∃ ε ∈ (0, 1) : |µ1 − µ2| ≤ (1− ε)(µ1 + µ2) + ν. (3.5)

Then:

(1) The inclusions C1 ∩G(λ, c) ⊆ P[C1;µ2] and C2 ∩G(λ, c) ⊆ P[C2;µ1] hold.

(2) Either C1 ∩G(λ, c) is a beginning section of C2 ∩G(λ, c), or C2 ∩G(λ, c) is
a beginning section of C1 ∩G(λ, c).

(3) Moreover, if C1 ∩G(λ, c) ( C2 ∩G(λ, c), then:

(a) C1 = P[C1;µ2] = C1 ∩G(λ, c).

(b) There exist N ∈ N ∪ {∞}, and de Branges spaces Hn, n ∈ N0, n < N ,
with Hn−1 ( Hn and dimHn/Hn−1 = 1, n ∈ N, n < N , such that

C2 ∩G(λ, c) = C1∪̇
{
Hn : n ∈ N0, n < N

}
. (3.6)

(c) There exists a finitely supported positive Borel measure on the real line
with

sup
H∈C
∇〈H,‖.‖µ+µ0

〉(w) <∞, w ∈ C. (3.7)

The assertions analogous to (3, a-c) hold when C2 ∩G(λ, c) ( C1 ∩G(λ, c).
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(

Equality of section. Proper inclusion.

Remember in this place that two chains with nonempty intersection are certainly
admissible for comparison.

Although the assumptions and conclusions of Theorem 3.9 are fully sym-
metric in µ1 and µ2, one may sometimes take a perturbation viewpoint, and
consider one of the given measures as the unperturbed one, and the other as
the perturbed one.

Let us demonstrate Theorem 3.9 with a concrete example.
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3.10 Example. Let µ1 be the measure dµ1(x) := 1
|Ξ(
√
ix)|2 dx investigated in

Examples 3.2 and 3.4, and let C1 be the chain (3.1). Let ν be the measure
defined by

dν(x) := e−
√
|x| ln+ |x|dx,

let µ2 be any measure with
|µ1 − µ2| ≤ ν,

and let C2 ∈ Chains[µ2] be the chain with 1 ∈ H+ zH, H ∈ C2. Then C1 and C2
are admissible for comparison.

We use a growth function λ which is (for sufficiently large values of r) equal
to
√
r ln r, and c := 1

4 . This data obviously satisfies (3.4), in fact, p(λ, ν) = 1.
The chain C1 can be analysed further. Due to the asymptotics of the function

Ξ, cf. (3.2), we have H(Ξ(
√
iz)) ∈ G(λ, c). By [KW05a, Theorem 2.7], the space

H(Ξ(
√
iz)e−iaz), a > 0, can be written as

H
(
Ξ(
√
iz)e−iaz

)
= Ξ(

√
iz)PWa ⊕ eiazH(Ξ(

√
iz)).

Thus, each such space contains functions of positive exponential type. More-

over, for each f ∈ H(Ξ(
√
iz)e−iaz), we have

∫∞
−∞ |f(x)|2 · e−

√
|x| ln+ |x| dx <∞.

Together, this leads to

C1 ∩G(λ, c) =
{
C[z]n : n ∈ N

}
∪
{
H(Ξ(

√
iz))

}
( P[C1;µ2] = C1.

Since both measures µ1 and µ2 are not discrete, there cannot exist a finitely
supported measure with (3.7), see Corollary 4.7 below. Theorem 3.9 now yields
that

C1 ∩G(λ, c) = C2 ∩G(λ, c).

♦

4 The index of a chain

Let µ ∈ M+(R) and C ∈ Chains[µ]. Then ρµ
(⋃
H∈CH

)
is dense in L2(µ). This

density property may or may not be stable under finite-dimensional perturba-
tions of µ. For spaces of polynomials this is known from the theory of moment
problems under the name of infinite- or finite index of determinacy, cf. [BD95],
and for the spaces E(a) (from Example 2.7) related with the type of a measure
under the name of stable- or unstable density, cf. [BS11]. However, it is a general
phenomenon. Since it plays an important role in the subsequent considerations
(as well as in other contexts), we make the effort to undertake a systematic
study.
For illustration, let us first provide two examples (based on Paley-Wiener
spaces).

4.1 Example. Let µ be the Lebesgue measure, and let C ∈ Chains[µ] be the chain
of Paley-Wiener spaces. Let µ0 be a positive and finitely supported measure,
and let C0 ∈ Chains[µ+µ0] be the chain which contains C, cf. Remark 3.6. Since⋃
a>0 PWa contains functions of arbitrary large exponential type, we must have
C0 \ C = ∅. Hence,

⋃
a>0 PWa is dense in L2(µ+ µ0). ♦
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4.2 Example. Denote by δx the unit point-mass concentrated at the point x,
and consider the measure µ :=

∑∞
n=−∞ δn. In the Paley-Wiener space PWπ we

have the complete orthogonal system{ sin(π(z − n))

z − n
: n ∈ Z

}
.

The Parseval-identity yields that ρµ : PWπ → L2(µ) is an isometric isomor-
phism. Thus, we have the chain

C :=
{
PWa : 0 < a ≤ π

}
∈ Chains[µ].

Let α ∈ R \ Z, and consider the measure µ+ δα. Let g be the function

g(x) :=

{
sin(π(x−α))
π(x−α) , x ∈ Z
−1 , x = α

Then g belongs to L2(µ+ δα) and is orthogonal to all functions in ρµ+δα(PWπ).
Thus

⋃
0<a≤π PWa fails to be dense in L2(µ+ δα). ♦

We come to the general definition of the index of a chain. Denote by Mfin
+ (R)

the set of all finitely supported positive Borel measures on R.

4.3 Definition. Let µ ∈M+(R) and C ∈ Chains[µ]. Then we denote byM(µ, C)
the (possibly empty) set of all measures µ0 ∈Mfin

+ (R) with the property that

∇C,µ0(w) := sup
H∈C
∇〈H,‖.‖µ+µ0 〉(w) <∞, w ∈ C. (4.1)

We define the index of the chain C as

ind C := inf{| suppµ0| : µ0 ∈M(µ, C)} ∈ [0,∞].

Moreover, for µ0 ∈M(µ, C), we denote

δ(µ0) :=
∣∣{x ∈ suppµ0 : µ({x}) = 0}

∣∣.
♦

Observe that
∇C,µ0 = ∇〈⋃H∈C H,‖.‖µ+µ0 〉.

Hence, finiteness of ∇C,µ0
means that the closure of the algebraic de Branges

space
⋃
H∈CH inside L2(µ+ µ0) is a de Branges space.

By 2.16, (4), a chain C has index 0 if and only if it contains a maximal
element. This suggests that chains with finite index may be viewed as a gener-
alisation of chains having a maximal element. And indeed, it is the case that the
property to have finite index has in many respects quite similar consequences
as having a maximal element.

4.4 Remark. Let µ0 ∈ M+(R) and set ∆ := {x ∈ R : µ({x}) = 0}. If µ0 ∈
Mfin

+ (R), then we find a constant γ > 0 such that (here 1∆ denotes the indicator
function of the set ∆)

µ+ 1∆µ0 ≤ µ+ µ0 ≤ γ(µ+ 1∆µ0).
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In particular, the measure µ0 satisfies (4.1) if and only if 1∆µ0 does. Moreover,
δ(µ0) = δ(1∆µ0) = | supp1∆µ0|. We conclude that

ind C = inf{δ(µ0) : µ0 ∈M(µ, C)} = inf{| suppµ0| : µ0 ∈M(µ, C), µ0 ⊥ µ}.

♦

With a chain C ∈ Chains[µ] there is associated a family of (possibly) larger
chains. Theorem 3.5 and Remark 3.6 justify the following definition.

4.5 Definition. Let µ ∈ M+(R), C ∈ Chains[µ], and let µ0 ∈ Mfin
+ (R). Then

we denote by Cµ0
the unique element of Chains[µ+ µ0] with C ⊆ Cµ0

. ♦

Appealing to 2.16, (4), we may say that µ0 ∈ M(µ, C) if and only if Cµ0 has a
maximal element.

Our first step towards understanding the structure of the setM(µ, C) is the
following lemma.

4.6 Lemma. Let µ ∈ M+(R), C ∈ Chains[µ], and let µ0 ∈ M(µ, C). Denote
L :=

⋃
H∈CH. Then

dim
(
L2(µ+ µ0)

/
Clos ρµ+µ0(L)

)
≤ δ(µ0).

Proof. Let P0 be the map

P0 :

{
L2(µ+ µ0) → L2(µ)

[f ]µ+µ0
7→ [f ]µ

(4.2)

Then P0 is contractive, surjective, and

kerP0 = span
{

[1{x}]µ+µ0
: x ∈ suppµ0, µ({x}) = 0

}
.

In particular, dim kerP0 = δ(µ0) <∞. Clearly, ρµ = P0 ◦ ρµ+µ0 .
Since C ∈ Chains[µ], the set ρµ(L) is dense in L2(µ). Hence, P−1

0 (ρµ(L)) is
dense in L2(µ+ µ0). However, we have

P−1
0 (ρµ(L)) = P−1

0

(
P0(ρµ+µ0(L))

)
= ρµ+µ0(L) + kerP0,

and using that dim kerP0 <∞, we thus obtain

L2(µ+ µ0) = Clos
[
P−1

0 (ρµ(L))
]

= Clos
[
ρµ+µ0(L)

]
+ kerP0. (4.3)

q

4.7 Corollary. Let µ ∈ M+(R) and C ∈ Chains[µ]. If ind C < ∞, then µ is
discrete.

Proof. The set M(µ, C) is nonempty. By the above lemma, the chain Cµ0 con-
tains an element with finite codimension in L2(µ+ µ0). Therefore it must have
a maximal element. Lemma 2.18 implies that µ + µ0 is discrete, and hence µ
also is. q

For µ0 ∈M(µ, C) we set

d(µ0) := δ(µ0)− dim
(
L2(µ+ µ0)

/
Clos ρµ+µ0

(L)

)
.

By Lemma 4.6, the number d(µ0) is a well-defined nonnegative integer.
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4.8 Proposition. Let µ ∈ M+(R) and C ∈ Chains[µ]. Then the number d(µ0)
is independent of µ0 ∈M(µ, C).

Proof. If M(µ, C) = ∅, there is nothing to prove. Hence, assume that M(µ, C)
is nonempty. Then, in particular, µ is discrete.

Let µ1, µ2 ∈M(µ, C) and let P1, P2 be the respective maps (4.2). Moreover,
to shorten notation, set ρi := ρµ+µi , i = 1, 2. Note that, clearly,

P1 ◦ ρ1 = P2 ◦ ρ2.

Denote again L :=
⋃
H∈CH. Then, for each f ∈ L,

‖f‖2µ+µ2
=

∫
R
|f |2 dµ+

∑
x∈suppµ2

|f(x)|2µ2({x})

≤
(

1 +
∑

x∈suppµ2

∇C,µ1
(x)2µ2({x})

)
‖f‖2µ+µ1

,

‖f‖2µ+µ1
=

∫
R
|f |2 dµ+

∑
x∈suppµ1

|f(x)|2µ1({x})

≤
(

1 +
∑

x∈suppµ1

∇C,µ2
(x)2µ1({x})

)
‖f‖2µ+µ2

.

These relations imply that the set{
(ρ1f, ρ2f) ∈ L2(µ+ µ1)× L2(µ+ µ2) : f ∈ L

}
(4.4)

is the graph of a bicontinuous bijection ψ0 of ρ1(L) onto ρ2(L).
Let ψ be the extension by continuity of ψ0. Then ψ is a bicontinuous bijection

of Clos ρ1(L) onto Clos ρ2(L). Since the graph of ψ contains (4.4), we have

ρ2 = ψ ◦ ρ1.

It follows that P1 ◦ ρ1 = P2 ◦ ρ2 = P2 ◦ ψ ◦ ρ1, and by continuity that

P1|Clos ρ1(L) = P2 ◦ ψ.

In the same way, we obtain P2|Clos ρ2(L) = P1 ◦ ψ−1. Together these relations
yield

ψ
(
[Clos ρ1(L)] ∩ kerP1

)
= [Clos ρ2(L)] ∩ kerP2.

Since ψ is injective, in particular,

dim
(
[Clos ρ1(L)] ∩ kerP1

)
= dim

(
[Clos ρ2(L)] ∩ kerP2

)
. (4.5)

As we saw in (4.3),

[Clos ρi(L)] + kerPi = L2(µ+ µi), i = 1, 2,

and we conclude that

dim
(
L2(µ+ µi)

/
Clos ρi(L)

)
= dim kerPi︸ ︷︷ ︸

=δ(µi)

−dim
(
[Clos ρi(L)] ∩ kerPi

)
.

Now (4.5) implies that d(µ1) = d(µ2). q
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Our next aim is to investigate the chains Cµ0
for µ0 ∈M(µ, C) more closely. A

crucial result in this context is the following general fact.

4.9 Proposition. Let µ ∈ M+(R) be a discrete measure, and let ∆ be a finite
subset of suppµ. If C ∈ Chains[µ], then{

H ∈ C : dim
(
L2(µ)

/
Clos ρµ(H)

)
≥ |∆|

}
∈ Chains[1∆cµ].

Proof. We shall settle the case of a 1-element subset ∆. The general assertion
then follows by repeated application of this case.

First, we make a preliminary notice. Let x ∈ suppµ, then the space {[f ]µ ∈
L2(µ) : f(x) = 0} is a closed and proper subspace of L2(µ). Since

⋃
H∈CH is

dense in L2(µ), there must exist Hx ∈ C and fx ∈ Hx with fx(x) 6= 0. This
shows that dHx(x) = 0. Hence, for all H ∈ C we have dH(x) = 0. The point x
was arbitrary in suppµ, and we infer that

dH(x) = 0, H ∈ C, x ∈ suppµ.

Assume now that we are given a point x0 ∈ suppµ and consider the subset
∆ := {x0}. Let P be the map

P :

{
L2(µ) → L2(1∆cµ)

[f ]µ 7→ [f ]1∆cµ

then P is a contractive surjection and

kerP =
{

[f ]µ : f(x) = 0, x ∈ [suppµ] \ {x0}
}

= span{[1∆]µ}.

As a continuous surjection with finite-dimensional kernel, P maps closed sub-
spaces to closed subspaces. Moreover, clearly, P ◦ ρµ = ρ1∆cµ.

The next step in the proof is to show that for each space H ∈ C with
ρµ(H)∩kerP 6= {0} it holds that ρµ(H) = L2(µ). Assume that H ∈ C and that
H contains a function gx0 with ρµgx0 = [1∆]µ. This means that

gx0
(x) =

{
0 , x ∈ [suppµ] \ {x0}
1 , x = x0

For x ∈ [suppµ] \ {x0}, set dx := dgx0
(x) and consider the function

gx(z) :=
dx!

g
(dx)
x0 (x)

(z − x0)
gx0(z)

(z − x)dx
.

Then gx ∈ H and ρµgx = [1{x}]µ. We conclude that ρµ(H) contains all finitely
supported functions in L2(µ), and hence is dense in L2(µ). However, ρµ(H) is
closed in L2(µ), and thus indeed ρµ(H) = L2(µ).

Now let H ∈ C with dim(L2(µ)/ρµ(H)) ≥ 1 be given. By what we showed
above, ρµ(H) ∩ kerP = {0}, and hence P |ρµ(H) maps ρµ(H) bijectively onto
some closed subspace of L2(1∆cµ). By the Open Mapping Theorem, P |ρµ(H) is
bicontinuous. This yields that ρ1∆cµ maps H injectively onto a closed subspace
of L2(1∆cµ), and that

∇〈H,‖.‖1∆cµ〉(w) ≤ ‖(P |H)−1‖∇〈H,‖.‖µ〉(w) <∞, w ∈ C.
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Thus H ∈ Sub[1∆cµ]. We see that C1 := {H ∈ C : dim(L2(µ)/ρµ(H)) ≥ 1} is a
partial chain for 1∆cµ.

Let C0 ∈ Chains[1∆cµ] be the chain with C0 ⊇ C1. By Remark 3.6, we have
C0 ⊆ C. The set C \ C1 contains at most one element: namely, C \ C1 contains
the maximal element of C if it exists, and is empty otherwise. In the second
case, we already have C0 = C1. Assume C has a maximal element, say H. Then
ρµ(H) = L2(µ), and hence ρ1∆cµ|H is not injective. Hence, H 6∈ Sub[1∆cµ], and
we conclude again that C0 = C1. q

Using Proposition 4.8 and Proposition 4.9 we can establish the main result of
this section.

4.10 Theorem. Let µ ∈ M+(R) and C ∈ Chains[µ]. Then the following state-
ments hold.

(1) M(µ, C) = {µ0 ∈Mfin
+ (R) : δ(µ0) ≥ ind C}.

(2) For each µ0 ∈M(µ, C) we have

dim
(
L2(µ+ µ0)

/
Clos ρµ+µ0

( ⋃
H∈C
H
))

= δ(µ0)− ind C.

(3) Assume that ind C = 0, and let µ0 ∈Mfin
+ (R). Denote the maximal element

of C by H0. Then there exist de Branges spaces H1, . . . ,Hδ(µ0) with Hi−1 (
Hi, dimHi/Hi−1 = 1, i = 1, . . . , δ(µ0), such that

Cµ0
= C∪̇

{
H1, . . . ,Hδ(µ0)

}
.

(4) Assume that 0 < ind C < ∞, and let µ0 ∈ M(µ, C). Then there exist
de Branges spaces H0, . . . ,Hδ(µ0)−ind C with Hi−1 ( Hi, dimHi/Hi−1 = 1,
i = 1, . . . , δ(µ0)− ind C, such that

Cµ0
= C∪̇

{
H0, . . . ,Hδ(µ0)−ind C

}
,

H0 = Clos
⋃
H∈C
H, dimH0

/
H =∞, H ∈ C.

(5) Let µ0 ∈Mfin
+ (R) \M(µ, C). Then we have Cµ0 = C, in particular,

Clos ρµ+µ0

( ⋃
H∈C
H
)

= L2(µ+ µ0).

Item (5) is easy to see.

Proof (of Theorem 4.10, (5)). If Cµ0 ) C, then obviously (4.1) holds for µ0.
Thus, if µ0 ∈Mfin

+ (R)\M(µ, C), we must have Cµ0 = C. In particular,
⋃
H∈CH =⋃

H∈Cµ0
H, and hence ρµ+µ0

(⋃
H∈CH

)
is dense in L2(µ+ µ0). q

Next, we settle the case that ind C equals zero.
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Proof (of Theorem 4.10, Case ind C = 0). Assume that C has index zero. Then
C has a maximal element; denote this space as H0. Since ∇C,µ0

(w) ≥ ∇C,µ1
(w)

whenever µ0 ≤ µ1, it follows that M(µ, C) = Mfin
+ (R). This is (1). For the zero

measure we have

d(0) = δ(0)︸︷︷︸
=0

−dim
(
L2(µ)

/
Clos ρµ

( ⋃
H∈C
H︸ ︷︷ ︸

=H0

))
= 0.

By Proposition 4.8, thus

δ(µ0)− dim
(
L2(µ+ µ0)

/
Clos ρµ+µ0

H0

)
= d(µ0) = d(0) = 0, µ0 ∈Mfin

+ (R).

This is (2). Item (3) follows immediately, remember Remark 2.19. q

The case that ind C is a finite positive number is the most involved one.

Proof (of Theorem 4.10, Case 0 < ind C <∞). Let us fix a measure λ ∈
M(µ, C) with λ ⊥ µ and | suppλ| = ind C. Moreover, set again L :=

⋃
H∈CH.

In the first part of this proof we investigate the chain Cλ. This chain has a
maximal element; denote it as H0. Our aim is to show that ρµ+λ(L) is dense in
L2(µ+ λ). Assume the contrary, then by Lemma 4.6

0 < dim
(
L2(µ+ λ)

/
Clos ρµ+λ(L)

)
≤ | suppλ| <∞.

Hence, the chain Cλ contains an element H1 with dimH0/H1 = 1. Choose
x0 ∈ suppλ, then by Proposition 4.9 the space H1 is the maximal element of
the chain C1{x0}cλ

. This implies that 1{x0}cλ ∈ M(µ, C), and we have reached
a contradiction.

Since ind C > 0, the chain C has no maximal element, and hence
dim(L2(µ)/ρµ(H)) = ∞ for all H ∈ C. Since ρµ+λ(H0) = L2(µ + λ), also
ρµ(H0) = L2(µ), and it follows that

dim(H0/H) ≥ dim(L2(µ)/ρµ(H)) =∞, H ∈ C.

In the second part of the proof we establish (1). By Remark 4.4 it is enough to
show that {

µ0 ∈Mfin
+ (R) : µ0 ⊥ µ, | suppµ0| ≥ ind C

}
⊆M(µ, C),

and that (2) and (4) hold for measures µ0 ∈M(µ, C) with µ0 ⊥ µ.
Let µ0 ∈Mfin

+ (R) with µ0 ⊥ µ and | suppµ0| ≥ ind C be given, and set

ν := 1(suppλ)cµ0.

Consider the chain Cλ ∈ Chains[µ + λ]. Then ind Cλ = 0, and we may apply
what we already proved for this case. Clearly, ν ⊥ (µ + λ), and it follows that
(note that

⋃
H∈Cλ H = H0 ∈ Cλ+ν)

dim
(
L2((µ+ λ) + ν)

/
ρ(µ+λ)+ν(H0)

)
= | supp ν|.
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Set ∆ := suppλ \ suppµ0. We have

| supp ν| =| suppµ0 \ suppλ| = | suppµ0| − | suppµ0 ∩ suppλ|
≥ ind C − | suppµ0 ∩ suppλ| = | suppλ| − | suppµ0 ∩ suppλ|
=| suppλ \ suppµ0| = |∆|.

Since µ(∆) = 0, we have 1∆c((µ+λ)+ν) = µ+1∆c(λ+ν), and Proposition 4.9
yields that H0 ∈ C1∆c (λ+ν) and that

dim
(
L2(µ+ 1∆c(λ+ ν))

/
ρµ+1∆c (λ+ν)(H0)

)
= | supp ν| − |∆| <∞. (4.6)

This implies that C1∆c (λ+ν) has a maximal element, and hence that 1∆c(λ+ν) ∈
M(µ, C). However, supp1∆c(λ + ν) = suppµ0, and hence we find constants
γ, γ′ > 0 with

γµ0 ≤ 1∆c(λ+ ν) ≤ γ′µ0. (4.7)

It follows that µ0 ∈M(µ, C), and the proof of (1) is complete.
Finally, for the proof of (2) and (4), we compute

| suppµ0|− ind C = | suppµ0| − | suppλ|
=
(
| suppµ0 \ suppλ|+ | suppµ0 ∩ suppλ|

)
−
(
| suppλ \ suppµ0|+ | suppµ0 ∩ suppλ|

)
= | supp ν| − |∆|.

Since H0 ∈ C1∆c (λ+ν), Cλ is a beginning section of C1∆c (λ+ν). Hence, H0 =
Clos

⋃
H∈CH. We have the two-sided estimate (4.7), and thus the relation (4.6)

gives the formula required in (2). Item (4) is an immediate consequence of (2)
and Remark 2.19. q

5 Proof of Theorem 3.9

There are three essential ingredients in the proof of Theorem 3.9. The first
one (Lemma 5.1) is to show a compactness property under an assumption on
the norm of point-evaluation functionals and relies on a geometric perturbation
argument. The second one (Lemma 5.2) is an analytic argument which shows
that the assumption of Lemma 5.1 can be verified from growth restrictions.
Last, but not least, the theory of the index of a chain developed in the previous
section enters in a crucial way.

5.1 Lemma. Let Ω ⊆ C be a domain which contains the real line, and let
〈H, ‖.‖H〉 be a reproducing kernel space of functions analytic in Ω. Moreover,
let ν ∈M+(R), and assume that

∇H|R ∈ L2(ν). (5.1)

Then:

(1) ρν(H) ⊆ L2(ν) and ρν |H : 〈H, ‖.‖H〉 → L2(ν) is compact.

(2) There exist γ0, γ1 > 0 and µ0 ∈Mfin
+ (R), such that

γ0‖f‖2H ≤ ‖f‖2H − ‖f‖2ν + ‖f‖2µ0
≤ γ1‖f‖2H, f ∈ H.
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In other words, (5.1) says that the reproducing kernel kH of the Hilbert space
〈H, (., .)H〉 satisfies

∫
R kH(x, x) dν <∞.

Proof. We have |f(x)| ≤ ‖f‖H · ∇H(x), f ∈ H, x ∈ R, and hence (5.1) immedi-
ately implies that ρν maps H boundedly into L2(ν). To show compactness, con-
sider a sequence (fn)n∈N in H which converges weakly to some element f ∈ H.
Then fn(x)− f(x)→ 0 for x ∈ R pointwise, and β := supn∈N ‖fn‖H <∞. The
function (2β∇H|R)2 is a ν-integrable majorant for |fn − f |2, and by bounded
convergence

‖fn − f‖2ν =

∫
R
|fn − f |2 dν → 0.

Thus ρν |H is compact.
The sesquilinear form

[f, g] := (f, g)H −
∫
R
fg dν, f, g ∈ H,

is bounded w.r.t. ‖.‖H, and its Gram operator G w.r.t. (., .)H is given as

G := I − (ρν |H)∗(ρν |H).

Let L be the spectral subspace of G corresponding to the set [ 1
2 ,∞). Then,

by compactness of ρν |H, we have dimH/L < ∞. Clearly, [., .]|L×L is positive
definite on L and induces a norm equivalent to (‖.‖H)|L.

The family of point-evaluation functionals {χx : x ∈ R} is point separating
on H. Hence, by a standard perturbation argument (for an explicit proof see,
e.g., [Wor14, Proposition A.9]), we find x1, . . . , xn ∈ R and α1, . . . , αn > 0, such
that the sesquilinear form

(f, g) := [f, g] +

n∑
i=1

αif(xi)g(xi), f, g ∈ H,

is positive definite on H and induces a norm equivalent to ‖.‖H. Denote by
δx the unit point-mass concentrated at the point x. Then the assertion of the
lemma follows with

µ0 :=

n∑
i=1

αiδxi .

q

5.2 Lemma. Let λ be a growth function, c ∈ R∪ {∞}, and let 〈H, (., .)H〉 be a
de Branges space which is contained in G(λ, c). Then the following statements
hold.

(1) We have5

lim sup
|z|→∞

ln∇H(z)

λ(|z|)
<∞ and lim sup

x→±∞

ln∇H(x)

λ(|x|)
≤ c. (5.2)

(2) If ν ∈M+(R) with c < 1
2p(λ, ν) or p(λ, ν) =∞, then (5.1) holds.

5Again, the second condition is void if c =∞.
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Proof. Choose a function E of Hermite-Biehler class which generates the
de Branges space 〈H, (., .)H〉. The representation (2.2) of the reproducing ker-
nel kH of H can be rewritten in terms of the functions A := 1

2 (E + E#) and

B := i
2 (E −E#). Then it reads as (again this formula has to be interpreted as

a derivative if z = w)

kH(w, z) =
1

π

B(z)A(w)−A(z)B(w)

z − w
, z, w ∈ C.

In particular, we obtain that

∇H(x)2 = kH(x, x) =
1

π

[
B′(x)A(x)−A′(x)B(x)

]
, x ∈ R.

Since A ∈ H+ zH, we have

lim sup
|z|→∞

ln |A(z)|
λ(|z|)

<∞, lim sup
x→±∞

ln |A(x)|
λ(|x|)

≤ c, (5.3)

and the same for B. Remembering Remark 2.3, we see that (5.2) holds.
In view of the definition of p(λ, c), these relations immediately imply (2). q

Proof (of Theorem 3.9). Let K ⊆ R be compact, then (3.5) yields

µ2(K) ≤ µ1(K) +
∣∣µ2(K)−µ1(K)

∣∣ ≤ µ1(K) + (1− ε)
(
µ1(K) +µ2(K)

)
+ ν(K).

This implies that
εµ2(K) ≤ (2− ε)µ1(K) + ν(K). (5.4)

Exchanging the roles of µ1 and µ2, yields

εµ1(K) ≤ (2− ε)µ2(K) + ν(K). (5.5)

Let H ∈ C1 ∩G(λ, c)∪ C2 ∩G(λ, c). Lemma 5.2, (2), shows that (5.1) holds and
hence that ρν(H) ⊆ L2(ν). We conclude that

C1 ∩G(λ, c) ⊆ P[C1;µ2] and C2 ∩G(λ, c) ⊆ P[C2;µ1], (5.6)

and this is (1). It follows that C1 ∩G(λ, c) and C2 ∩G(λ, c) are both beginning
sections of the larger of P[C1;µ2] and P[C2;µ1], remember Theorem 3.5. This
already implies that (2) holds.

If C1 ∩ G(λ, c) and C2 ∩ G(λ, c) coincide, there is nothing more to prove.
We consider the case that C1 ∩ G(λ, c) ( C2 ∩ G(λ, c); the case C2 ∩ G(λ, c) (
C1 ∩G(λ, c) is treated completely analogously.

Choose K ∈ C2 ∩ G(λ, c) \ C1 ∩ G(λ, c). From (5.4) and (5.5) we conclude
that for each compact set K ⊆ R

ε

2− ε
µ2(K) ≤ µ1(K) +

1

2− ε
ν(K) ≤ 2− ε

ε
µ2(K) +

(1

ε
+

1

2− ε

)
ν(K). (5.7)

Denote by ‖ρν |K‖ the norm of ρν |K as an operator from 〈K, ‖.‖µ2
〉 to L2(ν).

Then

ε

2− ε

∫
R
|f |2 dµ2 ≤

∫
R
|f |2 dµ1 +

∫
R
|f |2 dν

2− ε

≤ 2− ε
ε

∫
R
|f |2 dµ2 +

(1

ε
+

1

2− ε

)∫
R
|f |2 dν

≤
(2− ε

ε
+
(1

ε
+

1

2− ε

)
‖ρν |K‖2

)∫
R
|f |2 dµ2, f ∈ K.
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Hence, as the norm ‖.‖µ2
is equivalent to the norm based on µ1 + ν

2−ε , the

space K becomes a de Branges space when endowed with the norm ‖f‖2K :=
‖f‖2µ1

+ ‖f‖2dν
2−ε

, f ∈ K.

We apply Lemma 5.1, (2), with the space 〈K, ‖.‖K〉 and the measure dν
2−ε ; the

required hypothesis (5.1) holds by Lemma 5.2 since K ∈ G(λ, c). This provides
us with µ0 ∈Mfin

+ (R) and γ0, γ1 > 0, such that

γ0‖f‖2K ≤ ‖f‖2µ1
+ ‖f‖2µ0︸ ︷︷ ︸

=‖f‖2µ1+µ0

≤ γ1‖f‖2K, f ∈ K.

It follows that K ∈ Sub[µ1 + µ0].
Consider the chain C1,µ0 , i.e., the unique element of Chains[µ1 + µ0] which

contains C1. By Theorem 4.10, we have

C1,µ0 = C1∪̇
{
Km : m ∈ N,m ≤M

}
with some M ∈ N0 and de Branges spaces Km satisfying

Ki−1 ( Ki,dimKi/Ki−1 = 1, i = 2, . . . ,M,
⋃
H∈C1

H ⊆ K1 if M > 0.

Since C1 and C2 are admissible for comparison, so are C1,µ0
and C2, and it

follows that K ∈ C1,µ0
. Since K ∈ G(λ, c) \ C1 ∩ G(λ, c), we have K 6∈ C1.

Hence, we must have M > 0 and K = Km0
for some m0 ∈ {1, . . . ,M}. Thus

µ0 ∈ M(µ1, C1), in particular, ind C1 <∞. Moreover,
⋃
H∈C1 H ⊆ K ∈ G(λ, c),

i.e., C1 = C1 ∩G(λ, c). Remembering (5.6), we obtain

C1 = C1 ∩G(λ, c) ⊆ P[C1;µ2] ⊆ C1,

and hence equality prevails throughout.
Let H′ ∈ C2 with ⋃

H∈C1

H ⊆ H′ ⊆ K.

Since the norms ‖.‖µ2 and ‖.‖µ1+µ0 are equivalent on K, we have H′ ∈ C1,µ0 .
Thus

{H′ ∈ C2 : H′ ⊆ K} = C1∪̇{Km : m ∈ N,m ≤ m0}.

Since the choice of K ∈ C2∩G(λ, c)\C1∩G(λ, c) was arbitrary, (3.6) follows. q

6 Stability and inclusion results for whole chains

In this section we present some instances when our growth dependent stability
result can be applied to obtain knowledge about whole chains rather than for
beginning sections. Those examples, corollaries and supplements of Theorem 3.9
cover several known stability results.

6.1 Using a priori knowledge on measures and/or chains

The following fact is a trivial corollary of Theorem 3.9.
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6.1 Corollary. Let µ1, µ2 ∈ M+(R), and let Ci ∈ Chains[µi], i = 1, 2, be
admissible for comparison. Let λ be a growth function, c ∈ R∪{∞}, ν ∈M+(R),
and assume that (3.4) and (3.5) hold. Assume in addition that

C1, C2 ⊆ G(λ, c). (6.1)

Then one of the following three alternatives must take place.

[ I ] C1 = C2.

[ II1 ] ind C2 <∞ and

∃N ∈ N∪{∞} ∃Hn for n ∈ N0, n < N :

Hn−1 ( Hn, dimHn/Hn−1 = 1, n ∈ N, n < N,
(6.2)

such that C1 = C2∪̇{Hn : n ∈ N0, n < N}.

[ II2 ] ind C1 <∞ and (6.2) such that C2 = C1∪̇{Hn : n ∈ N0, n < N}.

In addition:

(a) If “N <∞” in [ II1 ] or [ II2 ], then the corresponding larger chain has index
zero.

(b) If “N = ∞” in [ II1 ] or [ II2 ], then the corresponding larger chain has
nonzero index.

Proof. Observe that (6.1) yields Ci∩G(λ, c) = Ci, i = 1, 2. Moreover, “N <∞”
in (6.2) implies that the corresponding larger chain has a maximal element,
whereas “N =∞” implies that it has no. q

The justification to formulate this corollary is that there are situations when
the required a priori knowledge (6.1) is available from accessible properties of
the measures or chains under consideration.

6.2 Example. Let µ ∈ M+(R) with
∫
R
dµ(x)
1+x2 < ∞, and assume that suppµ is

semibounded (from above or from below). Let C ∈ Chains[µ] be the chain with

1 ∈ H+ zH, H ∈ C. Then C ⊆ G(r
1
2 ,∞).

Hence, under the a priori assumption that

suppµ1, suppµ2 semibounded, 1 ∈ H+ zH,H ∈ C1 ∪ C2, (6.3)

Corollary 6.1 applies with λ(r) := r
1
2 and c :=∞. ♦

The bounded type property mentioned in Definition 2.14, (2/c), and Defini-
tion 3.1, (2), gives rise to two other situations where a priori knowledge is
available.

6.3 Example. Let C be a chain for some measure µ, and assume that there exists
a function f ∈

⋃
H∈CH which does not vanish identically and is of bounded type

in C+. Let λ(r) := r and c := 0. Then the triple [C;λ, c] possesses the property

[A] For each chain C′ which is admissible for comparison with C, we have
C′ ⊆ G(λ, c).
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Hence, under the a priori assumption that

∃ f ∈
( ⋃
H∈C
H
)
\ {0} : f bounded type in C+, (6.4)

Corollary 6.1 applies with λ(r) := r and c := 0. ♦

6.4 Example. Let C be a chain for some measure µ, let λ be a growth function
with r = O(λ(r)), and let c ∈ R ∪ {∞}. Assume that there exists a function
f ∈

⋃
H∈CH which does not vanish identically and satifies

lim sup
|z|→∞

ln |f(z)|
λ(|z|)

<∞, lim sup
x→±∞

ln |f(x)|
λ(|x|)

≤ c. (6.5)

Then the triple [C;λ, c] possesses the property [A]. This follows, e.g., from the ar-
gument in the proof of [KW05a, Theorem 3.10] using that the indicator h(f, λ; θ)
is continuous.

Hence, under the a priori assumption that

r = O(λ(r)), ∃ f ∈
( ⋃
H∈C
H
)
\ {0} : (6.5) holds, (6.6)

Corollary 6.1 applies with λ(r) and c. ♦

Let us point out the essential difference in the nature of the conditions (6.3)
and (6.4)/(6.6). The first requests knowlegde on both measures and chains,
wheras the latter request knowledge only on one chain. Taking a perturbation
viewpoint this means to either require knowledge about the unperturbed and
the perturbed objects, or only about the unperturbed ones.

The reason that (6.4)/(6.6) are in this sense much better than (6.3), is the
property [A]. In fact, we may say that whenever [A] is present, Corollary 6.1
applies. Even more, we can improve the additional property (b).

6.5 Proposition. Let µ1, µ2 ∈ M+(R), and let Ci ∈ Chains[µi], i = 1, 2, be
admissible for comparison. Let λ be a growth function, c ∈ R∪{∞}, ν ∈M+(R),
and assume that (3.4) and (3.5) hold. Assume that the triple [C1;λ, c] possesses
the property [A].

Then one of the alternatives [ I ], [ II1 ], [ II2 ] must take place. Moreover, the
addition (a) holds and:

(b+) If “N = ∞” in [ II1 ] or [ II2 ], then the corresponding larger chain has
infinite index.

Proof. The property [A], applied with the chains C′ := C1 and C′ := C2 implies
that the hypothesis (6.1) is fullfilled. Hence one of [ I ], [ II1 ], [ II2 ] takes place.

We need to consider the case that “N = ∞” in [ II1 ]. Assume on the
contrary that ind C1 <∞. Choose µ0 ∈ M(µ1, C1) with | suppµ0| = ind C1. By
Theorem 4.10 there exists a de Branges space K such that

C1,µ0
:= C1∪̇{K} = C2∪̇{Hn : n ∈ N0}∪̇{K}. (6.7)

Due to [A] we have C1,µ0
⊆ G(λ, c). The measures µ2, µ1 +µ0 and ν+µ0 satisfy

(3.4) and (3.5). Hence, Corollary 6.1 applies with these measures and the chains
C2 and C1,µ0

. Since C2 ( C1 ⊆ C1,µ0
, the respective alternative [ II1 ] must occur.

This contradicts the form (6.7) of C1,µ0 . q
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As a consequence of Proposition 6.5 we reobtain a certain part of a stability
result on the type of a measure shown in [BS11, Corollary 1.5], see also the
discussion in [Pol13, Theorem 11]. The part which we cover is enlarging the
measure and limited redistribution of mass, what we do not cover is shifting of
mass.

Moreover, we restrict ourselves to consideration of measures µ with∫
R
dµ(x)
1+x2 < ∞. The case of power bounded measures and admitting a poly-

nomial factor in the perturbation could be treated analogously making use of
the theory developed in [LW13b] and [LW13a]. This, however, would require
recalling a serious amount of notation, and we feel that it is beyond the scope
of the present paper.

To formulate the stability result, let us recall (one possible) definition of the

type of a measure. Let µ ∈ M+(R) and assume that
∫
R
dµ(x)
1+x2 < ∞. Moreover,

let C ∈ Chains[µ] be the chain with 1 ∈ H + zH, H ∈ C. Then the type of the
measure µ is defined as the supremum of the exponential types of all functions
in
⋃
H∈CH.

6.6 Corollary (part of [BS11, Corollary 1.5]). Let µ1, µ2 ∈ M+(R) with∫
R
dµi(x)
1+x2 <∞, i = 1, 2, and let Ci ∈ Chains[µi] be the chains with 1 ∈ H + zH,

H ∈ Ci. Assume that there exists a measure ν ∈M+(R) with

(1) ∃ δ > 0 :

∫
R
eδ|x| dµ <∞,

(2) ∃ ε ∈ (0, 1) : |µ1 − µ2| ≤ (1− ε)(µ1 + µ2) + ν.

Then µ1 and µ2 have equal types.

Proof. Proposition 6.5 yields that one of [ I ], [ II1 ], [ II2 ] must take place. In
each of these cases the classical formula of de Branges–Krein for computing the
type of a measure in terms of the associated canonical system yields that the
types of µ1 and µ2 are equal. q

6.2 Compactly supported perturbations

The situation that the measure ν is compactly supported is of particular interest
(and will be of importance in forthcoming work). In this case already a very
weak a priori assumption on one of the chains is enough to ensure that one of
the alternatives [ I ], [ II1 ], [ II2 ] must take place, and that even finer additions
hold than in Proposition 6.5.

6.7 Theorem. Let µ1, µ2 ∈ M+(R), let Ci ∈ Chains[µi], i = 1, 2, be admissible
for comparison, and let ν ∈M+(R). Assume that

supp ν compact, (3.5) holds, ∃ f ∈
( ⋃
H∈C1∪C2

H
)
\{0} : f is of finite order.

Then one of the alternatives [ I ], [ II1 ], [ II2 ] must take place. Moreover, the
addition (a) holds and:

(b++) If “N = ∞” in [ II1 ] or [ II2 ], then measure corresponding to the larger
chain is not discrete.
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(c) If µ1 � µ2 then C1 ⊆ C2, and if µ2 � µ1 then C2 ⊆ C1.

Proof. Since supp ν is compact, we have p(λ, ν) =∞ for every growth function
λ, and hence (3.4) always holds. Choose f ∈

(⋃
H∈C1∪C2 H

)
\ {0} with finite

order, say ρf , and choose ρ > max{1, ρf}. By Example 6.4 the triple [C1; rρ, 0]
possesses the property [A]. Hence, Proposition 6.5 is applicable, and yields that
one of the alternatives [ I ], [ II1 ], [ II2 ] must take place and that the additions
(a) and (b+) hold.

Consider the case that [ II1 ] takes place with “N =∞”. Then we know from
(b+) that ind C1 = ∞. Moreover, since ind C2 < ∞, the measure µ2 is discrete.
To show (b++) assume on the contrary that µ1 is discrete. Denote K := supp ν,
then by (5.7)

ε

2− ε
µ2({x}) ≤ µ1({x}) ≤ 2− ε

ε
µ2({x}), x ∈ R \K. (6.8)

Choose σ2 ∈M(µ2, C2), and set

σ1 := 1Kµ2 + σ2.

Remembering that ε ∈ (0, 1), we obtain

ε

2− ε
(
µ2+(1Kµ1+σ2)

)
≤ 1Kcµ1+1Kµ2+1Kµ1+σ2︸ ︷︷ ︸

=µ1+σ1

≤ 2− ε
ε

(
µ2+(1Kµ1+σ2)

)
By equivalence of norms we have C2,1Kµ1+σ2

∈ Chains[µ1 + σ1]. However, C1,σ1

and C2,1Kµ1+σ2
both contain C2, and hence are equal. Since 1Kµ1 + σ2 ∈

M(µ2, C2), equivalence of norms yields σ1 ∈ M(µ1, C1). Thus ind C1 <∞, and
we have reached a contradiction. The case that [ II2 ] takes place with “N =∞”
is treated in the same way.

To show (c) assume on the contrary that µ1 � µ2 and C2 ( C1. Then
ind C2 <∞ and hence µ2 is discrete. By absolute continuity, also µ1 is discrete
and suppµ1 ⊆ suppµ2. In the same way as in the first part of the proof, we
obtain (6.8).

Since K ∩ suppµ1 is finite, we find γ0 ∈ (0, 1) and γ1 > 1 such that

γ0µ2({x}) ≤ µ1({x}) ≤ γ1µ2({x}), x ∈ suppµ1. (6.9)

Set σ := 1(suppµ1)cµ2. Since K ∩ suppµ2 is finite, (6.8) implies that | suppσ| <
∞. From (6.9) we obtain

1

γ1
(µ1 + σ) ≤ µ2 ≤

1

γ0
(µ1 + σ).

Equivalence of norms implies that C2 ∈ Chains[µ1+σ]. However, C2 ( C1 ⊆ C1,σ,
and we have reached a contradiction. The case that µ2 � µ1 is treated in the
same way. q

The following inclusion result was obtained in [Win00] from a Gelfand-Levitan
type construction (see Lemma 2.3 and the paragraph at the bottom of p.243

in [Win00]): Let µ1, µ2 ∈ M+(R) with
∫
R
dµi(x)
1+x2 < ∞, i = 1, 2, and let Ci ∈

Chains[µi] be the chains with 1 ∈ H+ zH, H ∈ Ci. Assume that
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(i) there exists a bounded interval E and c > 0 such that µ2|R\E � µ1|R\E
and d|µ1−µ2|

dµ1
(x) ≤ c

1+x2 for µ1-a.a x ∈ R \ E;

(ii) µ1 � µ2.

Then C1 ⊆ C2.
Note that strict inclusion may occur; examples are obtained by choosing µ1

such that C1 has finite index and setting µ2 := µ1 + σ where σ ∈M(µ1, C1).
Using Theorem 6.7 we can show a slight improvement of this stability result6.

6.8 Corollary ([Win00]). Let µ1, µ2 ∈ M+(R) with
∫
R
dµi(x)
1+x2 < ∞, i = 1, 2,

and let Ci ∈ Chains[µi] be the chains with 1 ∈ H+ zH, H ∈ Ci. Assume that

(1) there exists a bounded interval E such that µ2|R\E � µ1|R\E and

ess supx∈R\E
d|µ1−µ2|
dµ1

(x) < 1;

(2) µ1 � µ2.

Then C1 ⊆ C2.

Proof. Set α := ess supx∈R\E
d|µ1−µ2|
dµ1

(x) and ν := 1E · |µ1 − µ2|, then

|µ1 − µ2| ≤ α · µ1 + ν.

In particular, (3.5) holds. Hence, Theorem 6.7 is applicable. q

6.3 A priori knowledge on sign

A stability result can also be shown when the unperturbed measure (in the
statement below this is µ2) is everywhere larger than the perturbed one.

6.9 Proposition. Let µ1, µ2 ∈ M+(R), and let Ci ∈ Chains[µi], i = 1, 2, be
admissible for comparison. Let λ be a growth function and c ∈ R∪{∞}. Assume
that

(1) ind C2 > 0 and C2 ⊆ G(λ, c);

(2) there exists ν ∈M+(R) with (3.4) and ε ∈ (0, 1) with εµ2 − ν ≤ µ1 ≤ µ2.

Then one of the alternatives [ I ], [ II2 ] must take place.

Proof. By assumption we have C2 ∩ G(λ, c) = C2. Hence, Theorem 3.9 yields
that either

(A) C2 ⊆ C1 ∩G(λ, c)

or

(B) C1 ∩G(λ, c) ( C2 ∩G(λ, c).

Consider the case (A). From Theorem 3.5, (2), and Theorem 3.9, (1), we obtain

C2 ⊆ C1 ∩G(λ, c) ⊆ P[C1;µ2] ⊆ C2
and hence equality must hold throughout. By assumption ind C2 > 0, and
Theorem 3.5, (3), implies that C1 = C2.

Consider the case (B). Theorem 3.9, (3), applies and yields that ind C1 <∞,
that C1 = C1 ∩G(λ, c) ( C2, and that C2 \ C1 is of the desired form. q

6Notice: we obtain only the inclusion result, not the formula [Win00, (3.30)] for the ele-
ments of C1 as de Branges subspaces of L2(µ2).
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6.4 The closure of polynomials

Theorem 3.9 can be employed to obtain results about density of polynomials in
a space L2(µ) and properties of their closure if they are not dense.

Recall the notion of determinacy of a measure and of its index of determinacy.
For practical reasons, we do not use the definition given in [BD95], but the
equivalent property provided in [BD95, Theorems 3.6,3.9].

6.10 Definition. Let µ ∈ M+(R) and assume that µ possesses all power mo-
ments.

(1) The measure µ is called determinate, if it is uniquely determined by the
sequence of its power moments. It is called indeterminate otherwise.

(2) The measure µ is said to have infinite index of determinacy if every measure
µ+ µ0 with µ0 ∈Mfin

+ (R), is determinate.

(3) Assume that µ is determinate but does not have infinite index of determi-
nacy. Then the index of determinacy of µ is the minimal number N ∈ N
such that there exists µ0 ∈ Mfin

+ (R), | suppµ0| = N , with µ + µ0 being
indeterminate.

We denote the index of determinacy of µ by indµ (thereby including the possible
value ∞). Moreover, we set indµ := 0 if µ is indeterminate. ♦

Reformulated in terms of our present notation, we may say the following: Let
µ ∈M+(R) with | suppµ| =∞ be given, and assume that µ possesses all power
moments and is determinate. Then C := {C[z]n : n ∈ N} ∈ Chains[µ] and
ind C = indµ.

6.11 Proposition. Let µ1 ∈ M+(R) possess all power moments, and assume
that either | suppµ1| < ∞ or µ1 has infinite index of determinacy. Let λ be a
growth function and c ∈ [0,∞]. Let µ2 ∈ M+(R), and assume that (3.4) and
(3.5) hold.

Then µ2 possesses all power moments, and each space H ∈ Sub[µ2] with
1 ∈ H + zH is either finite-dimensional or does not belong to the growth class
G(λ, c).

Proof. The case that µ2 = 0 is trivial. Hence, assume that µ2 6= 0. Moreover,
notice that, for every polynomial p ∈ C[z],

lim sup
|z|→∞

ln |p(z)|
λ(|z|)

= 0. (6.10)

Consider the chain C1 for µ1 which consists of polynomials, i.e.,

C1 :=

{C[z]n : n = 1, . . . , | suppµ1|} , | suppµ1| <∞,

{C[z]n : n = 1, 2, . . .} , indµ1 =∞.

Since c ≥ 0, we have C1 ⊆ G(λ, c).
Since p(λ, ν) > 0, we see from (6.10) that C[z] ⊆ L2(ν), i.e., ν possesses all

power moments. Now (5.4) yields that also µ2 possesses all power moments.
Let C2 ∈ Chains[µ2] be the chain with span{1} ∈ C2. Theorem 3.9 yields that
either
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(A) C2 ∩G(λ, c) ⊆ C1

or

(B) C1 ( C2 ∩G(λ, c).

If the alternative (A) takes place, the assertion of the present proposition follows
immediately. Assume that (B) takes place. By Theorem 3.9, (3/c), we must have
ind C1 <∞. Our assumption says that this may happen only if | suppµ1| <∞.
By Theorem 3.9, (3/b), we have

C2 ∩G(λ, c) = C1∪̇
{
Hn : n ∈ N0, n < N

}
where N ∈ N ∪ {∞} and Hn−1 ( Hn, dimHn/Hn−1 = 1, n ∈ N, n < N . This
show that each member of C2 ∩G(λ, c) is finite-dimensional. q

Using λ(r) := r and c := 0 in Proposition 6.11, we obtain a slightly refined
version of Yuditskii’s theorem [Yud00].

6.12 Corollary ([Yud00, Theorem]). Let µ1 ∈ M+(R) possess all power mo-
ments and have infinite index of determinacy. Let µ2 ∈ M+(R), and assume
that

|µ1 − µ2| ≤ (1− ε)(µ1 + µ2) + ν

with some ε ∈ (0, 1) and ν ∈M+(R) satisfying

∃δ > 0 :

∫
R
eδ|x| dν(x) <∞.

Then C[z] is a dense subspace of L2(µ2).

Proof. If C[z] were not dense, its closure would be a space contained in G(r, 0).

q

Another interesting consequence of Proposition 6.11 is the case “µ1 = 0”.

6.13 Corollary. Let λ be a growth function, c ∈ [0,∞], µ ∈ M+(R) with
| suppµ| =∞, and assume that

c <
1

2
p(λ, µ) or p(λ, µ) =∞.

Then either C[z] is dense in L2(µ) or ClosL2(µ) C[z] 6∈ G(λ, c). q

6.14 Remark. Using λ(r) := r and c := 0 in Corollary 6.13 gives the classical
fact (see, e.g., [Fre69, Satz 5.2]) that a measure µ ∈ M+(R) is determinate
provided that

∃δ > 0 :

∫
R
eδ|x| dµ <∞.

♦
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