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1 Introduction

Large classes of classical problems in analysis such as interpolation problems,
continuation problems of positive definite functions, and power moment prob-
lems can be solved using of Krein’s resolvent formula. This method is based
on the fact that solutions can be expressed in terms of resolvents of selfadjoint
extensions of a certain symmetric operator acting in a space built from given
data.

In order to briefly review Krein’s formula let S be a closed symmetric linear
operator in a Hilbert space H and assume that S has defect numbers (1, 1).
Recall that there is a holomorphic family χ(z) ∈ ker(S∗ − z) and a Q-function
q defined as a solution of the equation

q(z)− q(w)∗

z − w̄
= χ(w)∗χ(z). (1.1)

The Krein formula, cf. [16], establishes a one-to-one correspondence between
the set of all selfadjoint extensions A of S in H and the set of parameters
τ ∈ R ∪ {∞} as follows

(A− z)−1 = (Å− z)−1 − [·, χ(z)]
1

q(z) + τ
χ(z), z ∈ ρ(A) ∩ ρ(Å). (1.2)

In fact, it establishes a one-to-one correspondence between the set of all selfad-
joint exit space extensions A of S and the set of all Nevanlinna functions τ(z)
when the denominator q(z) + τ in (1.2) is replaced by q(z) + τ(z), cf. [1].

There is a huge literature on Krein’s formula and its applications. We give
only a very brief account on the history of Krein’s formula and its generaliza-
tions. M.G. Krein considered in [15] densely defined symmetric operators in
Hilbert spaces which have finite and equal defect numbers; the case of defect
(1, 1) goes back to [16]. In [23] the case of infinite equal defect numbers was
settled by Sh.N. Saakjan. Linear relations (i.e., multi-valued linear operators)
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came into play in [21]. A general treatment in the setting of boundary relations
was given rather recently in [7]. Concerning the early history, one should also
mention M.A. Naimark [22] and A.V. Straus [24], who considered the problem
in a somewhat different language. The move away from the positive definite
regime to symmetric operators with equal (possible infinite) defect numbers in
Pontryagin spaces was made by M.G. Krein and H. Langer in [19, 20]. The case
of standard symmetric relations in Krein spaces was investigated in [10]. Having
available Krein’s formula in indefinite inner product spaces significantly widens
the range of applications, e.g. [17, 18] or [6]. However, the usual approach still
requires that the data space is not degenerated.

The present paper is concerned with a variant of (1.2) in the context of sym-
metric operators or relations with defect numbers (1, 1) in an almost Pontryagin
space. Basically an almost Pontryagin space is a Pontryagin space to which a
degenerated linear space has been added orthogonally; for a precise formula-
tion, see [13]. The theory of such spaces has been specifically introduced to
provide an abstract framework for classical problems from analysis giving rise
to a degenerated data space. An earlier treatment of an appropriate version of
the Krein formula in the context of degeneracies, including some applications,
was given in [14]. There the treatment was rather ad hoc; the aim here is to
give a proof relying on structural and geometric ideas. Our present approach is
based on general algebraic constructions and it is hoped that the same method
can be used to understand the case of higher defect.

The geometric intuition underlying our approach for the degenerated case is
quite the same as in some proofs dealing with the case of Hilbert or Pontryagin
spaces, cf. [11] and [8]. However, the actual formulas and the tools being em-
ployed here are often highly specific for the degenerated situation. For instance,
we use orthogonal couplings, i.e., decompositions of a space into two orthogonal
summands which have a nontrivial intersection, cf. [3, §4], and a strong dual-
ity between Q-functions and h0-resolvents, cf. [5, Theorem III.8]. Both notions
have no analogs in the nondegenerated context.

The contents of this paper are, after this introduction, divided into three
sections. In Section 2 we explain some notation, briefly review the notion of or-
thogonal coupling, and extend it to relations; furthermore, we recall a regularity
condition such that the notion of a Q-function can be developed. In Section 3
we show that additive decompositions of a Q-function correspond to orthogonal
couplings of the considered space and symmetry. In Section 4 we formulate and
prove the discussed variant of Krein’s formula in almost Pontryagin spaces by
combining these facts with results established in our earlier work [3, 4, 5].

2 Preliminaries

2.1 Some notions and notations

Here we briefly review the most important notions for linear relations in almost
Pontryagin spaces; the presentation is rather informal. For details concerning
the theory of Pontryagin spaces we refer to [12], for linear relations in Pontryagin
spaces to [2] and [9], for almost Pontryagin spaces to [13], and for orthogonal
couplings, compressed resolvents, and Q-functions to [3] and [5].

A Pontryagin space A is a linear space with inner product [·, ·], which can
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be decomposed into the direct and orthogonal sum of a Hilbert space and a
finite dimensional negative deefinite subspaces. An almost Pontryagin space
admits finite degeneracy: it is a Pontryagin space to which a finite dimensional
degenerated linear space has been added orthogonally. For a precise formulation,
see [13, Proposition 2.5]. Moreover A◦ denotes the isotropic part of A, i.e.,
A◦ = A ∩A⊥, and ind0(A) = dimA◦ is called the degree of degeneracy of A.

In general, a pair (ı,P) is called a canonical Pontryagin space extension of an
almost Pontryagin space A if P is a Pontryagin space, and the extension embed-
ding ı : A → P is an injective morphism and dimP/ı(A) = ind0A. Canonical
Pontryagin space extensions are in some sense minimal among all Pontryagin
spaces which contain A as a closed subspace. Canonical Pontryagin space ex-
tensions are unique up to isomorphisms and will be denoted by (ιext,Pext(A));
for a particular construction, see [3].

A linear relation T in an almost Pontryagin space A is a linear subspace of
the product A×A; it is closed when it is closed as a subspace. The set γ(T ) of
points of regular type of T is an open set defined by

γ(T ) = {λ ∈ C : (T − z)−1 is a bounded operator },

and on connected components of γ(T ) the defect numbers dim(A/ ran(T − z))
are constant. The adjoint T ∗ of the relation T in A is the linear relation in A
defined by

T ∗ = {(x, y) ∈ A2 : [y, a]− [x, b] = 0, (a, b) ∈ T}.

Note that T ∗ always contains A◦ × A◦. A linear relation is symmetric in A
when T ⊆ T ∗; this is the usual definition. In this case the set γ(T ) is either
connected or splits into two connected components γ(T ) ∩ C+ and γ(T ) ∩ C−.
Furthermore when T is closed the resolvent set ρ(T ) is defined as

ρ(T ) = {z ∈ C : (T − z)−1 is a bounded everywhere defined operator },

so that ρ(T ) is open and

ρ(T ) = {z ∈ γ(T ) : ran(T − z) is dense in A}.

A linear relation S is called selfadjoint if S is closed, symmetric, and has zero
defect numbers. For a closed symmetric relation S in an almost Pontryagin
space A introduce the linear relation Sfac by

Sfac = S/(A◦ ×A◦),

so that Sfac is closed and symmetric in the Pontryagin spaceA/A◦. Assume that
S has defect numbers (1, 1). Then Sfac is selfadjoint in A/A◦ and ρ(Sfac) 6= ∅ if
and only if

∃ z+ ∈ C+, z− ∈ C− : ran(S − z±) +A◦ = A; (2.1)

and if this is the case, then

ρ(Sfac) = {z ∈ C : ran(S − z) +A◦ = A},

see [5, Lemma II.3].
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2.2 Orthogonal coupling of symmetric relations

Loosely speaking the orthogonal coupling of a pair of inner product spaces is
an orthogonal sum with a certain, possibly partial, overlap of isotropic parts. A
formal definition goes as follows. Let A1 and A2 be almost Pontryagin spaces,
let α be a linear subspace of A◦1 ×A◦2, and set

A1 �α A2 := (A1[+̇]A2)/α,

cf. [3, §4]. Here A1[+̇]A2 denotes the direct and orthogonal sum of the spaces
A1 and A2. Associated with this construction are several canonical maps: the
embeddings ιj : Aj → A1[+̇]A2, j = 1, 2, and the canonical projection π :
A1[+̇]A2 → (A1[+̇]A2)/α. This leads to canonical maps from Aj into A1�αA2,
namely

ια1 (x1) := (π ◦ ι1)(x1) = (x1+̇0)/α, ια2 (x2) := (π ◦ ι2)(x2) = (0+̇x2)/α.

The maps ιj are isometric homeomorphisms onto their ranges. They have con-
tinuous left inverses, namely the projections πj : A1[+̇]A2 → Aj , and these are
jointly injective and satisfy πj ◦ιi = 0, i 6= j. The map π is surjective, continous,
open and isometric, and maps closed subspaces to closed subspaces.

The corresponding construction of orthogonal couplings on the level of linear
relations can be found in the following definition.

2.1 Definition. Let A1 and A2 be almost Pontryagin spaces and let α be a
linear subspace of A◦1×A◦2. Moreover, let S1 ⊆ (A1)2 and S2 ⊆ (A2)2 be linear
relations. Then the orthogonal coupling S1 �α S2 ⊆ (A1 �α A2)2 of S1 and S2

is defined as
S1 �α S2 := (ια1 × ια1 )(S1) + (ια2 × ια2 )(S2),

which is a linear relation. ♦

In the next lemma we show that several properties may be transferred from
S1 and S2 to the orthogonal coupling S1 �α S2.

2.2 Lemma. Let A1 and A2 be almost Pontryagin spaces, and let α be a linear
subspace of A◦1 × A◦2. Moreover, let S1 ⊆ (A1)2 and S2 ⊆ (A2)2 be linear
relations.

(i) If S1 and S2 are both closed, so is S1 �α S2.

(ii) Let z ∈ C and assume that ran(S1 − z) and ran(S2 − z) are both closed.
Then also ran(S1 �α S2 − z) is closed.

(iii) If S1 and S2 are both symmetric (isometric), so is S1 �α S2.

Proof. (i) Assume that Sj is closed, j = 1, 2. Then also (ιj×ιj)(Sj) is closed and
hence, due to the existence of left inverses with the above mentioned properties,
also the sum

S1[+̇]S2 := (ι1 × ι1)(S1) + (ι2 × ι2)(S2) = (π1 × π1)−1(S1) ∩ (π2 × π2)−1(S2)

is closed. Since π×π maps closed subspaces to closed subspaces, it follows that
S1 �α S2 is closed.
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(ii) Note that for each z ∈ C,

ran
(
S1 �α S2 − z

)
= ran

(
(π × π)(S1[+̇]S2 − z)

)
= π

(
ran

(
S1[+̇]S2 − z

))
= π

(
ι1(ran(S1 − z))[+̇]ι2(ran(S2 − z))

)
.

(2.2)

Item (ii) follows.
(iii) This statement holds since all canonical maps which are involved are

isometric. q

2.3 Q-functions of symmetric relations with defect (1,1)

Let S be any closed symmetric relation in a Pontryagin space and assume that S
has equal defect numbers. Then one may define a Q-function for S by choosing
some canonical selfadjoint extension of S and some family of defect elements
generated by that extension.

Now assume that S is a closed symmetric relation in an almost Pontryagin
space and assume that S has defect numbers (1, 1). In this case the definition
of a Q-function is somewhat more involved: a certain regularity assumption
must be satisfied by S and not all choices of selfadjoint extensions and defect
families are suitable.

(A) Situation in which Q-functions can be defined. Let A be an almost Pon-
tryagin space with ∆ := ind0A > 0 and let S ⊆ A2 be a closed symmetric
relation with defect index (1, 1) which satisfies the regularity conditions

∀h ∈ A◦ : S ∩
(

span{h} × span{h}
)

= {0}, (2.3)

∃ z+ ∈ C+, z− ∈ C− : ran(S − z±) +A◦ = A. (2.4)

(B) Choices to be made. Assume that the space A and the relation S are
given according to (A). Then the following existence statements are valid, see
[14, §2] (putting together Proposition 1, Corollary 1, and Proposition 2 of this
reference).

(i) There exist elements hl, l = 0, . . . ,∆ − 1, such that {h0, . . . , h∆−1} is a
basis of A◦, and such that

S ∩ (A◦)2 = span{(hl, hl+1) : l = 0, . . . ,∆− 2}. (2.5)

(ii) There exist selfadjoint relations Å ⊆ Pext(A)2 with nonempty resolvent
set which satisfy Å ⊇ S ∪ {(0, h0)}. For each such relation Å there exists
a family (χ(z))z∈ρ(Å) of elements χ(z) ∈ Pext(A), z ∈ ρ(Å), such that

χ(z) ⊥ ran(S − z̄), z ∈ ρ(Å), (2.6)

χ(z) =
(
I + (z − w)(Å− z)−1

)
χ(w), z, w ∈ ρ(Å), (2.7)[

χ(z), hl
]

= zl, z ∈ ρ(Å), l = 0, . . . ,∆− 1. (2.8)

The element h0 is uniquely determined up to scalar multiples. Once a choice of
h0 is made, the elements h1, . . . , h∆−1 are unique.
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2.3 Remark. Let S be any relation in A, and assume that a basis {h0, . . . , h∆−1}
of A◦ is given such that (2.5) holds. Then S satisfies (2.3).

To see this, let h =
∑∆−1
j=0 αjhj ∈ A◦, and assume that (λh, µh) ∈ S where

(λ, µ) 6= (0, 0). Then we can write

(λh, µh) =

∆−2∑
j=0

βj(hj , hj+1)

with some βj . This yields
∑∆−2
j=0 µβjhj =

∑∆−2
j=0 λβjhj+1, and comparing coef-

ficients implies βj = 0, j = 0, . . . ,∆− 2, i.e., h = 0. ♦

The following construction of Q-functions in almost Pontryagin spaces first
appeared in [14] and was further developed and extended in [5, Part II].

2.4 Definition. Let A, S be given according to (A) and let h0, Å, χ be chosen
according to (B). Then a function q with

q(z)− q(w)

z − w
=
[
χ(z), χ(w)

]
, z, w ∈ ρ(Å), (2.9)

is called a Q-function of S, or more specifically, a Q-function of S built with
h0, Å, χ. ♦

3 The sum of Q-functions as a Q-function

Let P1 and P2 be Pontryagin spaces and let S1 and S2 be closed symmetric
relations with defect index (1, 1) in these spaces. Moreover, let q1 and q2 be
Q-functions of S1 and S2, respectively. Then S1[+̇]S2 ⊆ (P1[+̇]P2)2 is a closed
symmetric relation and has defect index (2, 2). The sum q1 + q2 is a Q-function
of some symmetric extension of S1[+̇]S2 with defect (1, 1).

In the case of almost Pontryagin spaces there is a significant difference. Now
the direct and orthogonal sum has to be replaced by an orthogonal coupling with
overlap and, as a consequence, the orthogonal coupling of S1 and S2 already
has defect (1, 1).

3.1 Theorem. Let A1, S1 and A2, S2 be given according to (A) and let qj be
a Q-function of Sj, j = 1, 2. Assume that

ind0A1 = ind0A2 > 0,

and that q1 + q2 does not vanish identically. Then there exists a bijective map
α from A◦1 onto A◦2, such that:

(i) The relation S := S1 �α S2 acting in the almost Pontryagin space A :=
A1 �α A2 is closed and symmetric with defect index (1, 1), and satisfies
the regularity conditions (2.3) and (2.4) in (A).

(ii) The function q := q1 + q2 is a Q-function of S.

Proof. For j ∈ {1, 2}, let hj0, Åj , χj be the data according to (B) for Sj such
that qj is a Q-function of Sj built with these data. These data will be used to
construct corresponding data for S so that (A) and (B) are satisfied for S.
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Step 1. We define α and h0, Å, η. Let α be the following subspace

α := span
{

(h1
l ,−h2

l ) : l = 0, . . . ,∆− 1
}

;

then α is (the graph of) a bijective map of A◦1 onto A◦2.
The space A := A1 �α A2 is an almost Pontryagin space with ind0A = ∆,

cf. [3, Remark 4.6]. Since α is a bijective function, the canonical mappings
ιαj : Aj → A1 �α A2 are injective, cf. [3, Remark 4.3(ii)]. Let ι̃αj : Pext(Aj) →
Pext(A1�αA2) be chosen according to [3, Proposition 5.7]. We have embeddings
of all involved spaces into Pext(A1 �α A2), cf. [3, Remark 5.8]:

Pext(A1 �α A2)

Pext(A1)

ι̃α1

99sssssssss
A1 �α A2

ιext

OO

Pext(A2)

ι̃α2

eeKKKKKKKKK

A1

ιext

YY222222
ια1

??��������
A2

ιext

EE������

ια2

__????????

In order to simplify the notation, we set

Pj := Pext(Aj), j = 1, 2, P := Pext(A) = Pext(A1 �α A2),

and we drop the explicit notation of ιext, ι
α
j , ι̃

α
j . As a consequence we consider

all spaces Aj , Pj and A = A1 �α A2 as subspaces of P. Using this abuse of
language, the definition of α gives h1

l = h2
l , l = 0, . . . ,∆− 1, and we set

hl := hjl , l = 0, . . . ,∆− 1, j = 1, 2.

Further, we have S = span(S1 ∪S2), and by Lemma 2.2 the relation S is closed
and symmetric.

Choose a concrete realization ofA as in [3, Remark 4.8] and, correspondingly,
a concrete realization of P as in [3, Remark 5.8]. Moreover, let PA, PA1,r

, etc.,
be the projections of P onto A, A1,r, etc., introduced there.

Now we define elements η(z) and a relation Å ⊆ P2 as

η(z) := χ1(z) + PAχ2(z), z ∈ ρ(Å1) ∩ ρ(Å2),

Å := cls
(
S ∪{(0, h0)}∪

{(
η(z)−η(w), zη(z)−wη(w)

)
: z, w ∈ ρ(Å1)∩ρ(Å2)

})
.

Step 2. We show that q1 + q2 satisfies the kernel relation (2.9) with η, and that
(2.8) holds for h0, Å, η. First note that

[χ1(z), hl] = zl = [χ2(z), hl], l = 0, . . . ,∆− 1,

and hence
[χ1(z), h] = [χ2(z), h], h ∈ A◦.
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Therefore [3, Lemma 5.9(iv)] may be applied, which yields that

[η(z), η(w)] = [χ1(z), χ1(w)] + [χ2(z), χ2(w)]

=
q1(z)− q1(w)

z − w
+
q2(z)− q2(w)

z − w

=
(q1 + q2)(z)− (q1 + q2)(w)

z − w
;

(3.1)

recall also [3, Lemma 5.9(iii)]. Moreover, observe that by [3, Lemma 5.9(i), (iii),
and Remark 4.3(i)]

[η(z), yj ] = [χj(z), yj ], yj ∈ Aj , j = 1, 2, z ∈ ρ(Å1) ∩ ρ(Å2). (3.2)

In particular, (2.8) holds.

Step 3. We show that Å is selfadjoint with nonempty resolvent set, and that
(2.6), (2.7) hold. We already noted that S is symmetric. By (3.1) and a standard
computation, the relation{

(η(z)− η(w), zη(z)− wη(w)
)

: z, w ∈ ρ(Å1) ∩ ρ(Å2)
}

(3.3)

is symmetric. If (xj , yj) ∈ Sj , then by (3.2)

[η(z), yj − zxj ] = [χj(z), yj − zxj ] = 0. (3.4)

Since S = span(S1 ∪ S2), the span of S with (3.3) is symmetric. Further, (2.6)
follows remembering (2.2).

From (3.2) we see that also h0 ⊥ dom Å, and together conclude that Å is
symmetric. To show that Å is actually selfadjoint, we use [5, Lemma 2.12]. For
each z ∈ ρ(Sfac) ∩ ρ(Å1) ∩ ρ(Å2)

Pext(A) ⊇ ran(Å− z)
⊇ ran(S − z) + span{h0}

+ span
{
η(w) : w ∈ ρ(Å1) ∩ ρ(Å2), w 6= z

}
= A+ span

{
η(w) : w ∈ ρ(Å1) ∩ ρ(Å2), w 6= z

}
= Pext(A),

where for the last equality [5, Lemma II.27] is used. Hence it follows that Å is
indeed selfadjoint and that ρ(Å) ⊇ ρ(Sfac) ∩ ρ(Å1) ∩ ρ(Å2). Finally note that
(2.7) is built in the definition of Å.

Step 4. We show that S has defect index (1, 1), and that (2.3), (2.4), (2.5) hold.
Start with investigating S∩ (A◦)2. Assume that (x1, y1) ∈ S1, (x2, y2) ∈ S2 and
that (x1 + x2, y1 + y2) ∈ (A◦)2. Then we have

PA1,rx1 = PA1,r (x1 + x2)− PA1,rx2 = 0,

and hence x1 ∈ A◦. In the same way it follows that x2, y1, y2 ∈ A◦. Thus

(xj , yj) ∈ Sj ∩ (A◦)2 = span{(hl, hl+1) : l = 0, . . . ,∆− 2}, j = 1, 2,

and hence also (x1 + x2, y1 + y2) ∈ span{(hl, hl+1) : l = 0, . . . ,∆ − 2}. We
conclude that

S ∩ (A◦)2 = span{(hl, hl+1) : l = 0, . . . ,∆− 2},
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i.e., (2.5) holds. By Remark 2.3, S satisfies (2.3).
It is easily seen that S satisfies the condition (2.4). In fact, for each z ∈

ρ(S1,fac) ∩ ρ(S2,fac) we have

ran(S − z) + span{h0}
= ran(S1 − z) + ran(S2 − z) + span{h0}
=
[

ran(S1 − z) + span{h0}
]

+
[

ran(S2 − z) + span{h0}
]

= A1 +A2 = A.

This observation also shows that the defect indices of S do not exceed 1, and
that (2.4) holds. On the other hand, since q1 +q2 is not identically zero also η(z)
does not vanish identically, and we conclude from (2.6) that the defect indices
of S are equal to 1.

Step 5. Conclusion. Putting together Steps 2, 3, and 4, we have shown that S
has the properties (A), that h0, Å, η have the properties (B), and that q1 + q2

is a Q-function of S. q

Before the statement of the next theorem, here is a small detour to negative
indices. For the following definition, see [5, Definition II.10, Definition II.12].

3.2 Definition. Let f be a function which is meromorphic on C\R with domain
of holomorphy ρ(f). Then ind− f is defined as the supremum of the numbers
of negative squares of quadratic forms

Qf (ξ1, . . . , ξn) :=

n∑
i,j=1

Nf (zi, zj)ξiξj ,

where n ∈ N0 and z1, . . . , zn ∈ ρ(f). Here Nf stands for the Nevanlinna kernel

Nf (z, w) :=
f(z)− f(w)

z − w
.

Let ∆ ∈ N. Then ind∆
− f is defined as the supremum of the numbers of negative

squares of quadratic forms

Q∆
f (ξ1, . . . , ξn; η0, . . . , η∆−1) :=

n∑
i,j=1

Nf (zi, zj)ξiξj +

∆−1∑
k=0

n∑
i=1

Re
(
zki ξiηk

)
,

where n ∈ N0 and z1, . . . , zn ∈ ρ(f). ♦

As a direct consequence of the above definitions one sees the following de-
composition of quadratic forms

Q∆
q1+q2 = Q∆

q1 +Nq2 .

Therefore, in terms of Definition 3.2, one obtains the estimate

ind∆
−(q1 + q2) ≤ ind∆

− q1 + ind− q2.

In fact, Theorem 3.1 now provides an improvement of this estimate; remember
here [5, (II.15)].
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3.3 Corollary. Let q1, q2 ∈ N<∞ and ∆ ∈ N. Then

ind∆
−(q1 + q2) ≤ ind∆

− q1 + ind∆
− q2 −∆.

Proof. If one of the functions q1, q2, q1 + q2 vanishes identically this inequality
holds trivially; recall [5, Remark II.13]. Hence, assume that

q1, q2, q1 + q2 ∈ N<∞ \ {0}.

By [5, Proposition II.14], qj can be realized as a Q-function of some min-
imal symmetry S∆(qj) acting in an almost Pontryagin space A∆(qj) with
ind0A∆(qj) = ∆ and ind−A∆(qj) = ind− qj − ∆. Theorem 3.1 tells us that
q1 + q2 is a Q-function of the symmetry S∆(q1) �α S∆(q2) acting in the al-
most Pontryagin space A∆(q1) �α A∆(q2). Using [5, Proposition II.14] and [3,
Remark 4.6], it follows that

ind∆
−(q1 + q2) ≤ ind−

(
A∆(q1) �α A∆(q2)

)
+ ∆

= ind−A∆(q1) + ind−A∆(q2) + ∆

= ind∆
− q1 + ind∆

− q2 −∆,

which is the desired result. q

In Theorem 3.1 a pair of operators or relations and their Q-functions is
combined via an orthogonal coupling. Its counterpart Theorem 3.4 shows how
to write a given Q-function as a sum of Q-functions.

3.4 Theorem. Let A, S be given according to (A), let h0 ∈ A◦ be according to
(i) of (B), and let q be a Q-function of S built with h0 (and some Å, χ according
to (ii) of (B)). Let A1 be a closed subspace of A with A◦1 = A◦. Then A1 and
A2 := A[−]A1 are almost Pontryagin spaces and A◦2 = A◦.

Let M ⊆ C be a subset which is symmetric with respect to R and has
nonempty interior, and assume that

(S − z)−1
(
A1 ∩ ran(S − z)

)
⊆ A1, z ∈M. (3.5)

Then the relations

S1 := S ∩ (A1)2 and S2 := S ∩ (A2)2

are closed symmetric and are as in (A). Explicitly: S1 and S2 have defect index
(1, 1), and satisfy the regularity conditions (2.3) and (2.4).

Let q1 be a Q-function of S1 built with h0 (and some Å1, χ1 according to (ii)
of (B)). Then q2 := q− q1 is a Q-function of S2 built with h0 (and some Å2, χ2

according to (ii) of (B)).

Proof. The proof proceeds in several steps.

Step 1. Geometric situation. As closed subspaces ofA, the spacesA1 andA2 are
themselves almost Pontryagin spaces. By assumption we have A◦1 = A◦. The
quotient A/A◦ is a Pontryagin space and the image of A1 under the canonical
projection π : A → A/A◦ is a closed and nondegenerated subspace. Thus
also its orthogonal complement π(A1)⊥ is nondegenerated. We have A2 =
π−1(π(A1)⊥), and this shows that A◦2 = A◦.
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Set P := Pext(A) and choose a subspace C ⊆ P which is skewly linked with
A◦. Moreover, set

A1,r := A1 ∩ (A◦ + C)⊥, A2,r := A2 ∩ (A◦ + C)⊥,

P1 := A1,r[+̇](A◦ + C), P2 := A2,r[+̇](A◦ + C).

It will now be shown that
A1 = A1,r[+̇]A◦. (3.6)

The inclusion ‘⊇’ holds due to our assumption that A◦ = A◦1. Let us now show
the inclusion ‘⊆’. Assume that x ∈ A1, and write x = x1 +x2 with x1 ∈ A◦+C
and x2 ∈ (A◦ + C)⊥. Since x ⊥ A◦1 = A◦, it follows that x1 ⊥ A◦. Hence
x1 ∈ A◦ ⊆ A1, and therefore x2 ∈ A1,r. Thus (3.6) holds.

The equality (3.6) implies that we may consider P1 as Pext(A1) and that
A2,r = P⊥1 . In the same way, it follows that A2 = A2,r[+̇]A◦, P2 may be
considered as Pext(A2), and A1,r = P⊥2 .

Finally, let PA, PA1,r
, etc., have the same meaning as in the proof of Theo-

rem 3.1.

Step 2. The relations S1 and S2. It is clear that Sj is a closed symmetric relation
in Aj . Moreover, since Sj ⊆ S, the regularity condition (2.3) is satisfied by Sj .
In fact,

Sj ∩ (A◦j )2 = S ∩ (A◦)2 = span{(hl, hl+1) : l = 0, . . . ,∆− 2}.

From [4, Proposition 3.2] we obtain

ran(S1 − z) = A1 ∩ ran(S − z), z ∈ γ(S). (3.7)

Since h0 ∈ A1, it follows that

ran(S1 − z) + span{h0}
=
(
A1 ∩ ran(S − z)

)
+ span{h0}

= A1 ∩
(

ran(S − z) + span{h0}
)

= A1, z ∈ γ(S) ∩ ρ(Sfac).

(3.8)

The set ρ(Sfac) is nonempty, because S satisfies (2.4), remember here (2.1). We
see that S1 satisfies (2.4) and the defect indices of S1 do not exceed 1. Let
z ∈ [γ(S) ∩ ρ(Sfac)] \ {0}. By [14, Corollary 2], we have h0 6∈ ran(S − z) and
hence also h0 6∈ ran(S1 − z). Thus the defect indices of S1 are equal to 1.

To show similar facts for S2, choose an extension Å ⊆ P2 of S according to
(ii) of (B). We claim that

(S − z)−1
(
A2 ∩ ran(S − z)

)
⊆ A2, z ∈ ρ(Å) ∩ ρ(Sfac). (3.9)

Once this claim is established, the same argument as above will show that S2

satisfies (2.4) and has defect indices (1, 1).
In order to verify (3.9) note that the relations (3.5), (3.7), and (3.8) imply

that
(Å− z)−1A1 ⊆ A1, z ∈ ρ(Å) ∩ ρ(Sfac).
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Thus also

(Å− z)−1(P[−]A1) ⊆ P[−]A1, z ∈ ρ(Å) ∩ ρ(Sfac).

By the choice of Å, we have (Å− z)−1A ⊆ A. Since A2 = A∩ (P[−]A1) it now
follows that (Å− z)−1A2 ⊆ A2. In particular, (3.9) holds.

Step 3. Computation of the Nevanlinna kernel of q2. Let Å, χ and Å1, χ1 be
data such that q is a Q-function of S built with h0, Å, χ and q1 is a Q-function
of S1 built with h0, Å1, χ1.

We have (I − PA1
)P1 = C, in particular (I − PA1

)P1 is a neutral subspace.
Using this fact, we can compute

[χ1(z), χ1(w)]

=
[
PA1χ1(z) + (I − PA1)χ1(z), PA1χ1(w) + (I − PA1)χ1(w)

]
= [PA1

χ1(z), PA1
χ1(w)] + [PA1

χ1(z), (I − PA1
)χ1(w)]

+ [(I − PA1
)χ1(z), PA1

χ1(w)]

= −[PA1
χ1(z), PA1

χ1(w)] + [PA1
χ1(z), χ1(w)] + [χ1(z), PA1

χ1(w)].

(3.10)

Let z ∈ ρ(Å1) ∩ ρ(Å) ∩ ρ(Sfac), in which case ran(S1 − z) + span{h0} = A1.
Since

χ(z) ⊥ ran(S − z) ⊇ ran(S1 − z), χ1(z) ⊥ ran(S1 − z),
and

[χ(z), h0] = 1 = [χ1(z), h0],

it follows that

[χ(z), x] = [χ1(z), x], x ∈ A1, z ∈ ρ(Å1) ∩ ρ(Å) ∩ ρ(Sfac). (3.11)

Using this observation and the above formula (3.10) for [χ1(z), χ1(w)], we obtain
for z, w ∈ ρ(Å1) ∩ ρ(Å) ∩ ρ(Sfac), z 6= w,[

χ(z)− PA1
χ1(z), χ(w)− PA1

χ1(w)
]

= [χ(z), χ(w)]− [χ(z), PA1
χ1(w)]

− [PA1
χ1(z), χ(w)] + [PA1

χ1(z), PA1
χ1(w)]

= [χ(z), χ(w)]− [χ1(z), PA1
χ1(w)]

− [PA1
χ1(z), χ1(w)] + [PA1

χ1(z), PA1
χ1(w)]

= [χ(z), χ(w)]− [χ1(z), χ1(w)]

=
q(z)− q(w)

z − w
− q1(z)− q1(w)

z − w
=
q2(z)− q2(w)

z − w
.

(3.12)

Step 4. Construction of Å2, χ2. Introduce the elements χ2(z) and the relation
Å2 by

χ2(z) := χ(z)− PA1χ1(z), z ∈ ρ(Å) ∩ ρ(Å1) ∩ ρ(Sfac),

and

Å2 := cls
(
S2 ∪

{
(0, h0)

}
∪

∪
{(
χ2(z)− χ2(w), zχ2(z)− wχ2(w)

)
: z, w ∈ ρ(Å) ∩ ρ(Å1) ∩ ρ(Sfac)

})
.
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First it will be shown that Å2 is a relation in P2. Note that kerPA1
⊆ P2 and

hence
[PA1

y, x] = [y, x], y ∈ P, x ∈ P⊥2 .

Together with (3.11) and the fact that P⊥2 = A1,r ⊆ A1, we obtain

[χ2(z), x] = [χ(z), x]− [PA1
χ1(z), x] = 0, x ∈ P⊥2 .

Thus χ2(z) ∈ P⊥⊥2 = P2 and Å2 ⊆ (P2)2.
The next aim is to show that Å2 is symmetric in P2. Note that the relation

S2 is symmetric in P2. By (3.12) a standard computation shows that the relation

span
{(
χ2(z)− χ2(w), zχ2(z)− wχ2(w)

)
: z, w ∈ ρ(Å) ∩ ρ(Å1) ∩ ρ(Sfac)

}
is symmetric. Moreover, since A1 ⊥ A2, we have

[χ2(z), x] = [χ(z), x], x ∈ A2.

Hence it follows that

χ2(z) ⊥ ran(S2 − z), [χ2(z), hl] = zl, l = 0, . . . ,∆− 1.

Combining these facts, one sees that the relation Å2 is symmetric.
To show that the symmetric relation Å is actually selfadjoint, we again use

[5, Lemma 2.12]. For each z ∈ ρ(Å) ∩ ρ(Å1) ∩ ρ(Sfac)

P2 ⊇ ran(Å2 − z)
⊇ ran(S2 − z) + span{h0}+ span

{
χ2(w) : w ∈ ρ(Å) ∩ ρ(Å1), w 6= z

}
= A2 + span

{
χ2(w) : w ∈ ρ(Å) ∩ ρ(Å1), w 6= z

}
= P2.

where for the last equality [5, Lemma II.27] is used. Hence Å2 is selfadjoint and
ρ(Å) ⊇ ρ(Å) ∩ ρ(Å1) ∩ ρ(Sfac).

Step 5. Conclusion. We have shown that (2.3) and (2.4) are satisfied by S2

and A2. Furthermore, the validity of (2.6), (2.7), and (2.8) is built into the
definition of Å2. Putting together these facts, it follows that (A) and (B) are
satisfied in the present context. Thus Å2 and χ2(z) qualify for the definition of
a Q-function of S2. By the computation (3.12) the function q2 is indeed such a
Q-function; cf. Definition 2.4. q

4 The Krein formula and orthogonal coupling

This section is devoted to a description of the generalized resolvents of a sym-
metric relation. Recall the following definition; see [5, Definition I.11].

4.1 Definition. Let A be an almost Pontryagin space and S ⊆ A2 a closed
symmetric relation with γ(S) 6= ∅. Moreover, let Ã be an almost Pontryagin
space with Ã ⊇ A and A ⊆ Ã2 a selfadjoint relation with ρ(A) 6= ∅ and A ⊇ S.
Then we call the function family

Rx,z(z) :=
[
(A− z)−1x, y

]
, x, y ∈ A, (4.1)
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the generalized resolvent of S induced by A. The negative index of a generalized
resolvent Rx,y is

ind−Rx,y := ind− cls
(
A ∪

⋃
z∈ρ(A)

(A− z)−1(A)
)
.

♦

In view of applications it is practical to also call the family [(Sfac −
z)−1x/A◦ , y/A◦ ], x, y ∈ A, a generalized resolvent of S, provided ρ(Sfac) 6= ∅. It
may or may not be the case that this family is represented as in (4.1).

The following theorem is about the Krein formula in the setting of almost
Pontryagin spaces. The present alternative proof runs along more geometric
lines than the one in [14]. It is obtained by combining what we have shown so
far.

4.2 Theorem. Let A, S be given according to (A), let h0, Å, χ be given accord-
ing to (B), and denote by q a Q-function of S built with these data. Denote by
Sfac the selfadjoint relation S/A◦ acting in the Pontryagin space A/A◦ . Then
the set of all generalized resolvents of S is equal to the set of all function families
given by

Rx,y(z)=
[
(Sfac − z)−1x/A◦ , y/A◦

]
− [x, χ(z)]

1

q(z)+τ(z)
[χ(z), y],

x, y ∈ A, z ∈ ρ(A) ∩ ρ(Sfac), τ(z) + q(z) 6= 0,

(4.2)

where the parameter τ runs through the class (N<∞ \{−q})∪{∞}. In addition,
we have

ind−Rx,y(z) = ind−A+ ind∆
− τ, τ 6=∞. (4.3)

In the proof we use the following elementary fact shown in [14, Proposition 3].

4.3 Lemma. Let A, S be given according to (A), let h0, Å, χ be given according
to (B), and denote by q a Q-function of S built with these data. Then, for
x, y ∈ A and z ∈ ρ(A) ∩ ρ(Sfac), we have[

(A−z)−1x, y
]

=
[
(Sfac−z)−1x/A◦ , y/A◦

]
+[x, χ(z)]

[
(A−z)−1h0, h0

]
[χ(z), y].

Proof of Theorem 4.2. The proof will be given in a number of steps.

Step 1. Let the parameter τ ∈ N<∞ \ {−q} be given. By [5, Theorem II.15,
Proposition II.14] we can consider τ as a Q-function of a symmetry S∆(τ) acting
in an almost Pontryagin space A∆(τ) with ind0A∆(τ) = ∆ and ind−A∆(τ) =
ind∆
− τ −∆. By Theorem 3.1 the function q+ τ is a Q-function of the symmetry

S �α S∆(τ) acting in the space A �α A∆(τ). Let h0 ∈ A �α A∆(τ) be an
element according to (i) of (B) such that q + τ is a Q-function of S �α S∆(τ)
built with the data h0 and some choice of a selfadjoint extension and defect
elements. Then, by [5, Theorem III.8], there exists a selfadjoint extension A of
S �α S∆(τ) acting in Pext(A�α A∆(τ)), such that

− 1

q(z) + τ(z)
=
[
(A− z)−1h0, h0

]
, z ∈ ρ(A).
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By Lemma 4.3 the function family given by[
(Sfac − z)−1x/A◦ , y/A◦

]
− [x, χ(z)]

1

q(z)+τ(z)
[χ(z), y],

x, y ∈ A, z ∈ ρ(A) ∩ ρ(Sfac), q(z) + τ(z) 6= 0,

is the generalized resolvent of S induced by the selfadjoint extension A of S
acting in the space Pext(A�α A∆(τ)).

Step 2. Let a generalized resolvent Rx,y(z) be given. If

Rx,y(z) = [(Sfac − z)−1x/A◦ , y/A◦ ],

then (4.2) holds with the parameter τ := ∞. Assume throughout the follow-
ing that Rx,y does not coincide with [(Sfac − z)−1x/A◦ , y/A◦ ]. Then, by [14,
Lemma 2], there exists an A-minimal selfadjoint extension A of S acting in
some Pontryagin space P ⊇ A which induces the generalized resolvent Rx,y(z).
Set

Ã := P[−]A◦, r(z) := [(A− z)−1h0, h0].

By [5, Proposition III.9] there exists a closed symmetric relation S̃ ⊆ Ã2 with
defect (1, 1) which extends S and satisfies (2.3) and (2.4), such that −r(z)−1 is
a Q-function of S̃ built with h0 and some selfadjoint relation and defect family.

By [14, Corollary 2] we have h0 6∈ ran(S̃ − z), z ∈ γ(S̃) ∩ ρ(S̃fac). Thus
A∩ ran(S̃− z) is a subspace of A with codimension 1. Since S has defect index
(1, 1), it follows that

A ∩ ran(S̃ − z) = ran(S − z), z ∈ γ(S̃) ∩ ρ(S̃fac) ∩ γ(S), (4.4)

and hence

(S̃ − z)−1
(
A ∩ ran(S̃ − z)

)
= domS ⊆ A, z ∈ γ(S̃) ∩ ρ(S̃fac) ∩ γ(S).

Since γ(S̃)∩ρ(S̃fac)∩γ(S) 6= ∅, the equality (4.4) also implies that S̃∩(A)2 = S.
We have checked all necessary hypotheses to apply Theorem 3.4 with

Ã, S̃, h0, the Q-function −r(z)−1 of S̃, the closed subspace A, the set M :=
γ(S̃)∩ρ(S̃fac)∩γ(S), and the Q-function q of S. The conclusion of this theorem
yields in particular that

τ(z) := − 1

r(z)
− q(z) ∈ N<∞.

Clearly, τ 6= −q. Due to Lemma 4.3 we see that (4.2) holds with this parameter
function τ .

Step 3. To show (4.3) note that by definition ind−Rx,y(z) is the negative index
of a Pontryagin space in which an A-minimal selfadjoint extension of S, inducing
Rx,y(z) as a generalized resolvent, acts. We claim that the selfadjoint relation
constructed in Step 1 of this proof is A-minimal. Once this claim is established,
the equality (4.3) will follow from [3, Remark 4.6]:

ind−Pext(A�α A∆(τ)) = ind−A+ ind−A∆(τ) + ∆

= ind−A+ ind∆
− τ.
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Let χ2(z) ∈ Pext(A∆(τ)) be the defect element which gives rise to the Q-
function τ . Then, as we saw in the proof of Theorem 3.1, cf. (3.1), the defect
elements in Pext(A�αA∆(τ)) which give rise to the Q-function q+ τ are equal
to PA�αA∆(τ)χ(z) + χ2(z); remember [3, Lemma 5.9(iii)]. By the construction
of A in the proof of [5, Theorem III.8], ‘−Q−1 ⊆ R’, we have

(A− z)−1h0 = − 1

q(z) + τ(z)

(
PA�αA∆(τ)χ(z) + χ2(z)

)
.

Since χ(z) ∈ Pext(A), we have PA�αA∆(τ)χ(z) ∈ A. This shows that

χ2(z) ∈ span
(
A ∪ {(A− z)−1h0}

)
.

Since S∆(τ) is minimal, cf. [5, Theorem II.15], we conclude that

Pext(A�α A∆(τ)) ⊇ cls
(
A ∪

{
(A− z)−1h0 : z ∈ ρ(A)

})
⊇ cls

(
A ∪ {χ2(z) : z ∈ ρ(A)}

)
⊇ A+ Pext(A∆(τ))

= Pext(A�α A∆(τ)).

Hence the minimality has been established. q

References

[1] N.I. Akhiezer and I.M. Glazman. Theory of linear operators in Hilbert
space. Vol. II, volume 10 of Monographs and Studies in Mathematics. Pit-
man (Advanced Publishing Program), Boston, Mass.-London, 1981. Trans-
lated from the third Russian edition by E.R. Dawson, Translation edited
by W.N. Everitt.

[2] R.F. Arens. Operational calculus of linear relations. Pacific J. Math.,
11:9–23, 1961.

[3] H.S.V. de Snoo and H. Woracek. Sums, couplings, and completions of
almost Pontryagin spaces. Linear Algebra Appl., 437(2):559–580, 2012.

[4] H.S.V. de Snoo and H. Woracek. Restriction and factorization for isometric
and symmetric operators in almost Pontryagin spaces. In Noncommutative
Analysis, Operator Theory, and Applications, volume 252 of Oper. Theory
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