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Abstract: The following theorem holds: Let L be a – not necessarily
nondegenerated or complete – positive semidefinite inner product space carrying an
anti-isometric involution, and let S be a symmetric operator in L. If S possesses a
universal directing functional Φ : L× C→ C which is real w.r.t. the given involution,
and the closure of S in the completion of L has defect index (1, 1), then there exists
a de Branges (Hilbert-) space B such that x 7→ Φ(x, ·) maps L isometrically onto a
dense subspace of B and the multiplication operator in B is the closure of the image
of S under this map.

In this paper we consider a version of universal directing functionals defined on an
open set Ω ⊆ C instead of the whole plane, and inner product spaces L having finite
negative index. We seek for representations of S in a class of reproducing kernel
almost Pontryagin spaces of functions on Ω having de Branges-type properties. Our
main result is a version of the above stated theorem, which gives conditions making
sure that Φ establishes such a representation. This result is accompanied by a
converse statement and some supplements.

As a corollary, we obtain that if a de Branges-type inner product space of analytic
functions on Ω has a reproducing kernel almost Pontryagin space completion, then
this completion is a de Branges-type almost Pontryagin space. This is an important
fact in applications. The corresponding result in the case that Ω = C and L is
positive semidefinite is well-known, often used, and goes back (at least) to work of
M.Riesz in the 1920’s.
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1 Introduction

The method of directing functionals was orginally developed by M.G.Krein in
the 1940’s. Nowadays it comes in various flavours and generalities: scalar- or
operator valued, defined locally around the real line or on the whole complex
plane, for positive semidefinite inner product spaces or indefinite ones leading
to Pontryagin or Krein spaces, for symmetric or isometric operators, etc.

One feature of directing functionals, which is the mainly exploited one, is
that they can be used to establish existence of spectral functions µ for a sym-
metric operator S which is given on a non-complete inner product space. They
provide explicit representations of S as a part of the multiplication operator in
L2(µ). Another feature of the method of directing functionals is that it can be
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1



combined with the theory of entire operators, and then leads to explicit repre-
sentations of S as the multiplication operator in a de Branges space of entire
functions.

In many concrete situations directing functionals are naturally present and
lead in a most elegant way to interesting and deep results. Surprisingly, despite
its power and ease in application, the method of directing functionals seems to
be not widely known.

In the present paper we develop a generalisation of the second mentioned
feature to the setting of almost Pontryagin spaces and spaces of analytic func-
tions on arbitrary open base sets Ω ⊆ C. Our main result is a theorem which
constructs in presence of an “Ω-directing functional” a representation of S as
the multiplication operator in an “Ω-space”.

We continue with a rather detailed discussion of the known theory and avail-
able literature. Only after that, in §1.2, we explain the contribution of the
present paper in detail, since then it will be much clearer how it relates to the
existing theory and what our major achivements are1.

1.1 Review of the existing theory

Krein considered in his pioneering work [Kre48] finite families of directing func-
tionals, in other words directing mappings into a finite dimensional space Cp.
For the reason of simplicity, we shall restrict ourselves to the scalar valued case.
Moreover, at least in the subsequent informal discussion, we always think of
densely defined linear operators (rather than linear relations).

Directing functionals in positive semidefinite inner product spaces

The power of the method of directing functionals can – to the taste of the author
– be best understood in the context of models for symmetric operators. Hence,
let us start with a short digression about representations of symmetric operators
as the operator of multiplication by the independent variable in certain classes
of spaces.

Generally speaking, it is an important problem in spectral theory to find
such representations. The first result in this direction which comes to ones
mind is of course the spectral theorem providing a normal form for a selfadjoint
operator. A few concrete situations where such results play a role are: The
spectral theory of differential operators where one speaks of a Fourier-transform
or – maybe slightly old-fashioned – of eigenfunction expansions; power moment
problems where representations of a certain operator yield measures having
a given sequence of numbers as moments; the theory of continuous positive
definite functions on the real line or an interval where a proof of Bochner’s
theorem or certain continuation results can be obtained using representations
of an associated selfadjoint or symmetric operator.

We will now state three theorems which provide representations. To do that
some notation is required:

1.1 Definition. Let H be a Hilbert space and T a closed symmetric operator
in H.

1We compiled the following §1.1 also with the idea to give a very brief survey of the
presently available theory of directing functionals.
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(i) We call β+ := dim[H/ ran(T − i)] and β− := dim[H/ ran(T + i)] the upper-
and lower deficiency indices of T , and the pair (β+, β−) the defect index
of T .

(ii) T is completely non-selfadjoint, if
⋂
ζ∈C\R ran(T − ζ) = {0}.

(iii) T is regular, if its set of points of regular type equals C.

Moreover:

(iv) If K is a Hilbert space of functions, we denote by S(K) the operator of mul-
tiplication by the independent variable in K defined on its natural maximal
domain.

♦

Remember in this context that every regular operator is completely non-
selfadjoint.

The first theorem is a simple consequence of the spectral theorem applied to
selfadjoint extensions of T .

1.2 Theorem. Let T be a closed symmetric operator in a Hilbert space H.
Assume that T is completely non-selfadjoint and that the deficiency indices of
T do not exceed 1. Then there exists a positive Borel measure µ on R and an
isometric operator F : H → L2(µ), such that F ◦ T ⊆ S(L2(µ)) ◦ F .

The other two theorems deal with the defect (1, 1) case. These results go back at
least to work of M.S.Livšic [Liv60b; Liv60a] on the characteristic function (when
transferred via Caley transforms), or to work of M.G.Krein [Kre44; Kre46b] on
theQ-function of a symmetric operator (when combined with reproducing kernel
models for Q-functions). There is a vast literature on the topic from many
different points of view, for instance let us also mention the more function-
theoretic viewpoint taken up in [Nik02].

A Herglotz space B is a reproducing kernel Hilbert space of functions analytic
on C \ R with certain additional properties. For details see [AMR13, p.1042],
from where we also borrowed the terminology, and [Bra68, Theorems 5,6].

1.3 Theorem. Let T be a closed symmetric operator in a Hilbert space H.
Assume that T has defect index (1, 1) and is completely non-selfadjoint. Then
there exists a Herglotz space B and a unitary operator F : H → B, such that
F ◦ T = S(B) ◦ F .

A de Branges (Hilbert-) space B is a reproducing kernel Hilbert space of
entire functions with certain additional properties. For details see [Bra68,
§19,Problem 50,Theorem 23].

1.4 Theorem. Let T be a closed symmetric operator in a Hilbert space H. As-
sume that T has defect index (1, 1) and is regular. Then there exists a de Branges
space B and a unitary operator F : H → B, such that F ◦ T = S(B) ◦ F .

References which contain explicit proofs are [AMR13, Theorem 6.3] for Theo-
rem 1.3 and [Mar11, Theorem 5.0.7] for Theorem 1.4. In these papers repro-
ducing kernel space theory is systematically exploited, and proofs are based on
Livšic’ characteristic functions.
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Usually in concrete situations one is given a linear space L with a positive
semidefinite inner product and a symmetric operator S in this space. However,
this explicitly accessible space L is (usually) not complete. For instance, when
dealing with differential operators one has a linear space of compactly supported
C∞-functions, or when dealing with power moments one has the linear space
of polynomials. In order to apply general results as the ones mentioned above,
one first has to pass to the Hilbert space completion H of L and the closure
T of S in this completion. Whereas L and S are given directly by the data of
the problem under consideration, the space H and the operator T are often not
anymore easily and explicitly accessible, simply by the inconstructive nature of
the completion process. And this is the point where the method of directing
functionals comes into play: It can be used to produce explicit representations
of S and to draw conclusions about the closure T of S.

In the sequel we explain two aspects related to representations as in Theo-
rem 1.2 and Theorem 1.4 in more detail.

Aspect 1. Representations in spaces L2(µ):

At this point recall the definition of a directing functional, cf. [Kre48, Defini-
tion 1] (see also [GG97, Definition II.8.1]).

1.5 Definition. Let L be a positive semidefinite inner product space (not nec-
essarily nondegenerated or complete) and let S be a symmetric operator (not
necessarily everywhere defined) in L. A function Φ : L × R → C is called a
directing functional for S, if:

(df1) For each x ∈ L the map ζ 7→ Φ(x, ζ), ζ ∈ R, has a continuation to
an analytic function defined on some open set Ωx containing R.

(df2) For each ζ ∈ R the map x 7→ Φ(x, ζ), x ∈ L, is linear.

(df3) For each x ∈ L and ζ ∈ R we have x ∈ ran(S − ζ) if and only if
Φ(x, ζ) = 0.

(df4) There exists an element u ∈ L such that the function Φ(u, ·) does
not vanish identically.

♦

Regardless of the properties of the closure T of S in the Hilbert space completion
H of L, presence of a directing functional for S yields an explicit representation
of S in a space L2(µ).

1.6 Theorem. Let L be a positive semidefinite inner product space, let S be a
symmetric operator in L, and let Φ be a directing functional for S. Then there
exists a positive Borel measure µ on R, such that the map F : x 7→ [Φ(x, ·)]µ
(here [·]µ denotes the equivalence class µ-almost everywhere) is an isometry of
L into L2(µ) and satisfies F ◦ S ⊆ S(L2(µ)) ◦ F .

A proof can be found in the original reference [Kre48, Theorem 1] or in [GG97,
Theorem II.8.1]2.

2When referring to the treatment of directing functionals in [GG97] one has to be careful.
Theorem II.8.1 in this reference is correctly proved, but Theorems II.8.4 and II.8.5 are not.

4



As far as we understand history and literature, validity of this result was
considered the main feature of directing functionals. However, we believe that
the features explained below as “Aspect 2” are equally valuable.

Aspect 2. Representations in reproducing kernel spaces:

Recall the definition of a universal directing functional, cf. [GG97, Defini-
tion II.8.2] (we do not know where this notion appeared for the first time).

1.7 Definition. Let L be a positive semidefinite inner product space (not nec-
essarily nondegenerated or complete) and let S be a symmetric operator (not
necessarily everywhere defined) in L. A function Φ : L × C → C is called a
universal directing functional for S, if:

(udf1) For each x ∈ L the map ζ 7→ Φ(x, ζ), ζ ∈ C, is analytic.

(udf2) For each ζ ∈ C the map x 7→ Φ(x, ζ) is linear.

(udf3) For each x ∈ L and ζ ∈ C we have x ∈ ran(S − ζ) if and only if
Φ(x, ζ) = 0.

(udf4) There exists an element u ∈ L such that the function Φ(u, ·) does
not vanish identically.

♦

Note that, if S has a universal directing functional, the deficiency indices of the
closure T of S cannot exceed 1.

Presence of a universal directing functional plus assuming existence of an
entire gauge (using the terminology of [GG97]) plus assuming that T (the closure
of S in the Hilbert space completion of L) has defect (1, 1) invokes Krein’s theory
of entire operators, and hence leads to an explicit representation in a de Branges
space (this is probably a classical fact, an explicit mentioning can be found in
[ST10]).

1.8 Theorem. Let L be a positive semidefinite inner product space, let S be
a symmetric operator in L, and let Φ be a universal directing functional for
S. Assume that T has defect index (1, 1), and that there exists an element
u ∈ L with Φ(u, ·) = 1. Then there exists a de Branges space B, such that
the map F : x 7→ Φ(x, ·) is an isometry of L onto a dense subspace of B and
satisfies F ◦S ⊆ S(B)◦F where (thinking of operators in terms of their graphs)
S(B) = ClosB×B[(F×F)(S)]. In particular, T is regular.

It is worth to compare the notions of directing and universal directing functionals
in more detail. Apparently, the conditions (udf1) and (udf3) in Definition 1.7
are strengthenings of Definition 1.5, (df1) and (df3). The fact in (udf3) that the
description of ran(S−ζ) holds for nonreal points, together with analyticity along

For Theorem II.8.4 the mistake is obvious: what if Φ(v, ·) vanishes identically (compare with
the correct statement [GL74, Behauptung 3.5]). The mistake in the proof of Theorem II.8.5
is more difficile: In course of the proof Theorem II.3.3 is employed. This result however
requires that T is completely non-selfadjoint, which is not known at that point. Adding the
additional assumption that T is completely non-selfadjoint implies correctness of the proof
of Theorem II.8.5. Despite this mistake in the proof, we do not know whether the actual
assertion of Theorem II.8.5 is true or false. However, compare Proposition 1.9.
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R in (udf1) already implies existence of a representation in a de Branges space
(combine the below Proposition 1.9 with Theorem 1.4). Having entire functions
in (udf1) in conjunction with existence of an entire gauge (the element u) is
responsible for one representation in a de Branges space to be actually given by
x 7→ Φ(x, ·). For completeness, let us note that (df2) together with analyticity
on all of C readily implies (udf2).

1.9 Proposition. Let L be a positive semidefinite inner product space and let
S be a symmetric operator in L whose domain is dense in L w.r.t. the seminorm
induced by the inner product. Let Ω ⊆ C be an open neighbourhood of R, and
let Φ : L × R→ C be a function which satisfies

(df1+) For each x ∈ L the map ζ 7→ Φ(x, ζ), ζ ∈ R, has a continuation to
an analytic function on Ω (which we shall again denote by Φ(x, ·)).

(df2+) For each ζ ∈ Ω the map x 7→ Φ(x, ζ), x ∈ L, is linear.

(df3+) For each x ∈ L and ζ ∈ Ω we have x ∈ ran(S − ζ) if and only if
Φ(x, ζ) = 0.

(df4+) There exists an element u ∈ L such that the function Φ(u, ·) does
not vanish identically on R.

Assume that T has defect index (1, 1). Then T is regular.

The proof of this fact will be given in §4.
It is noteworthy that Theorem 1.8 has a partial converse; one half of (udf3)

should be replaced by an approximative variant of the condition.

1.10 Proposition. Let L 6= {0} be a positive semidefinite inner product space
and let S be a symmetric operator in L. Assume that there exists a de Branges
space B and an isometric map F : L → B such that ranF is dense in B and
S(B) = ClosB×B[(F×F)(S)]. Then the map

Φ(x, ζ) := [F(x)](ζ), x ∈ L, ζ ∈ C,

satisfies (udf1), (udf2), (udf4), and

(udf3’) If ζ ∈ C and x ∈ ran(S − ζ), then Φ(x, ζ) = 0.

(udf3”) If x ∈ L, ζ ∈ C \ R, and Φ(x, ζ) = 0, then there exists a sequence
(xn)n∈N with xn ∈ ran(S − ζ), n ∈ N, such that

lim
n→∞

(xn − x, xn − x)L = 0, lim
n→∞

Φ(xn − x, η) = 0, η ∈ C.

The proof is straightforward (using verbatim the same argument as in the proof
of Proposition 4.6, (v)).

Directing functionals in indefinite inner product spaces

Let us turn to the presently available versions for indefinite inner product spaces.
These are [GL74, §3] treating the Pontryagin space case and [Tex06] for the
Krein space case.
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The two aspects of directing functionals discussed above now become indis-
tinct. The reason for this is that selfadjoint operators in a Pontryagin or Krein
space may have nonreal spectrum. When seeking representations in spaces of
the type L2(µ), µ should be substituted by a suitable distribution φ and L2(µ)
by the model space Π(φ) as introduced in [JLT92] for the Pontryagin space case
and in [Kle10] for the Krein spaces case. Analyticity of the functions Φ(x, ·) is
needed on the spectrum of selfadjoint extensions of T . Thus, contrasting the
Hilbert space case, analyticity on the whole plane must be required even if only
interested in “Aspect 1”.

Maybe it is for the reason just explained that the definitions of a direct-
ing functional in [GL74] and [Tex06] (when written out for the scalar valued
case) read exactly as Definition 1.7. The results establishing the analogues
of Theorem 1.6 are [GL74, Behauptung 3.1] and [Tex06, Theorem 5.1]. These
statements have a different form, but can be reformulated in a way that matches
Theorem 1.6. For the analogue of Theorem 1.8 we do not know an explicit ref-
erence, but the results of [GL74, §3] certainly go in that direction. In fact, it
can be obtained by combining the “defect (1, 1)” case in [GL74, §3] with the
indefinite version of entire operators developed a bit later in [KL78, §6].

About the literature

Our research for literature about theory and applications of directing functionals
produced the following list of references which seems to be exhaustive at this
point in time. If the reader knows about further references, we would be grateful
to learn about them.

(1) Positive definite theory: First of all, of course, the pioneering work
[Kre48] of M.G.Krein (announced in [Kre46a]). There he considered directing
mappings into a finite dimensional space Cp. The basic theorem is a vector-
valued version of Theorem 1.6, cf. [Kre48, Theorem 1]. The paper contains
two applications, namely a matrix-valued version of Bochner’s theorem and a
Fourier-transform for a first-order differential operator. An overview (including
more details and also other topics) can be found in [Ber00].

Soon after that the theory was supplemented by A.Ya.Povzner in [Pov50] who
proved inversion formulas, and a bit later F.S.Rofe-Beketov implicitly used di-
recting mappings into infinite-dimensional spaces in his consideration [Rof60] of
differential operators with an operator valued potential. A systematic treatment
of the theory of directing mappings into infinite-dimensional spaces was given
by H.Langer in [Lan70]. A generalisation to linear relations, including applica-
tions to differential expressions and an operator-valued moment problem, was
given by H.Langer and B.Textorius in [LT78; LT84; LT85]. These results were
somewhat refined and transferred to isometric operators by V.A.Yavryan and
A.V.Yavryan in [YY95], where also some more applications are found.

A further generalisation can be found in [BK88, Chapter V,§5]. A version of
directing functionals for isometric operators (instead of symmetric ones) was
investigated by M.B.Bekker in [Bek89]. In [ST10] universal directing function-
als and the theory of entire operators is applied to obtain representations in
de Branges spaces.

Finally we mention the book [AG81] where a treatment (somewhat incomplete
and bound to a differential operator) can be found in Appendix II, §7, and the
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book [GG97] where it is attempted to elaborate the scalar-valued case (remem-
ber footnote 2).

(2) Indefinite theory: A treatment of directing functionals in the Pontrya-
gin space setting was given by M.Großmann and H.Langer in [GL74], where the
theory was applied to a continuation problem for hermitian indefinite functions
on an interval. It is noteworthy that in this paper the method of directing
functionals was also combined with ideas from the theory of entire operators.

A version of the basic Theorem 1.6 in the setting of Krein spaces was given by
B.Textorius in [Tex06].

(3) Applications: The following is a list of references where typical applica-
tions of the method of directing functionals are given, i.e., where existence of
spectral functions for various problems is established by applying an appropri-
ate variant of Theorem 1.6. In chronological order: [GG71], [Ovc80], [Kac85;
Kac86] (announced in [Kac83]), [Bek98] (where moreover the method is com-
bined with the theory of entire operators), [LM00], [Bek01], [FLL12] (this paper
is remarkable since it deals with an equation having two singular endpoints).
Most recently, an application to the transfer function of a Sturm-Liouville equa-
tion was elaborated by H.Langer in [Lan16, §5.2,5.3].

1.2 The contribution of the present paper

In this paper we investigate “Aspect 2” and establish a variant of Theorem 1.8.
Our results generalise this theorem in different directions:

(1) Geometrically: We allow L to be indefinite with finite index of negativity,
and ask for an explicit representation in reproducing kernel almost Pontrya-
gin spaces B with certain additional properties. At this point it should be
said that such representations may exists even if there are no in reproducing
kernel Pontryagin spaces.

(2) Function theoretically: We neither require the elements of B to be analytic
on C \ R nor to be entire. We ask for analyticity on some pregiven subset
Ω of C. In particular, Ω ∩ R may be a proper – but nonempty – subset of
the real line.

(3) Operator theoretically: We allow S to be a linear relation. Of course, this
is only a minor point.

We improve upon the conditions given in Theorem 1.8:

(4) Using an approximate version as in Proposition 1.10, an “if and only if”
statement is obtained.

(5) The condition that T has defect index (1, 1) is replaced by a pair of condi-
tions which are more directly formulated in terms of L and Φ. Admittedly,
these conditions are still not easy to check (but we believe that this is in
the nature of the problem).

The version of directing functionals used in this paper – we call them Ω-directing
functionals – is introduced in Definition 4.1. The type of spaces B in which
we seek for representations of S – we call them Ω-spaces – is introduced in
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Definition 2.19. The main result is Theorem 4.3, where we show that presence
of an Ω-directing functional together with some further conditions yields an
explicit representation in an Ω-space. This theorem is accompanied by the
converse result Proposition 4.6, and a supplement taking care of an additional
algebraic structure, cf. Proposition 4.8. Matching the presently used conditions
with the ones more familiar from the literature is done in the second part of §4.

Besides what we already mentioned above, a striking difference between
Definition 4.1 and Definition 1.7 is that Definition 4.1 does not pose any as-
sumptions on ran(S− η) when η is real. However, this does not mean that such
assumptions are not necessary; they just take a different form, namely, they
appear as the separate assumption (ii) in Theorem 4.3.

1.3 Organisation of the manuscript

Section 2 is of preliminary nature. However, we do not only set up notation and
recall some basics, we also introduce and study some essential notions: sets of
Φ-containement, cf. Definitions 2.7 and 2.8, and Ω-spaces, cf. Definition 2.19.
Moreover, we formulate an appropriate version of a theorem of Krein about
preservation of analyticity, cf. Theorem 2.15.

Section 3 contains the core arguments needed for the proof of our main result
Theorem 4.3. These are arranged in the form of eight lemmata; an outline is
given in the beginning of Section 3. Concerning proofs and technique, in this
section the major part of the work is done.

In Section 4 we define Ω-directing functionals, cf. Definition 4.1, and establish
our main theorem. Its proof is obtained by applying the lemmata from the
previous section. Moreover, we establish the afore mentioned converse and
supplement.

In Section 5 we introduce a non-complete variant of Ω-spaces, cf. Defini-
tion 5.1, and show that these geometric properties are inherited when passing
to a reproducing kernel completion, cf. Proposition 5.2. This includes the case
of de Branges space completions, cf. Corollary 5.8, a fact which is of importance
in many concrete situations (and which is well-known for the positive definite
case, at least going back to work of M.Riesz from the 1920’s). One such appli-
cation, namely a treatment of (an indefinite version of) the Hamburger power
moment problem and the index of determinacy of a measure, will be presented
in forthcoming work.

The paper closes with an appendix where we elaborate the proof of two
results on preservation of analyticity for which we cannot appoint an explicit
reference. The intention is to make our work more easily accessible also to the
reader who is not fully into the subject.

Finally, some standard references: for the geometry of Pontryagin spaces
[IKL82], for indefinite inner product spaces in general [Bog74; AI89], for al-
most Pontryagin spaces [KWW05], [SW12], and [Wor14, Appendix], for com-
plex analysis, e.g., [BG91; Con78; Rem98], and for linear relation in indefinite
inner product spaces [DS87a].
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2 Preliminaries

2.1 Some general notation

In the following items we introduce some notation which is used throughout the
paper.

1◦ For a subset Ω of C, set Ω# := {η ∈ C : η ∈ Ω}, and for a complex-valued
function f on Ω, set

f# :

{
Ω# → C
η 7→ f(η)

(2.1)

2◦ Let Ω be an open and nonempty subset of C. Then we denote by H(Ω) the
set of all complex-valued analytic functions on Ω.

We denote by C∞ the Riemann sphere considered as a Riemann surface in
the usual way, and by H(Ω,C∞) the set of all analytic functions of Ω into C∞.
In other words, H(Ω,C∞) is the set of all meromorphic functions on Ω.

The spaces H(Ω) and H(Ω,C∞) are always endowed with the compact-open
topology, that is, the topology of locally uniform convergence.

3◦ For a function f ∈ H(Ω,C∞), we denote by df : Ω → Z ∪ {±∞} its divi-
sor. This is the function defined as df (η) := −∞ if f = ∞ on the connected
component of Ω containing η, as df (η) := +∞ if f = 0 on the component of Ω
containing η, and as df (η) being the power of the first nonvanishing term in the
Laurent-expansion of f at η if non of the previous cases occurs.

For a nonempty family F ⊆ H(Ω,C∞), we set

dF (η) := inf{df (η) : f ∈ F} ∈ Z ∪ {±∞}, η ∈ Ω.

4◦ For two nonempty sets Ω and X we denote by χη : XΩ → X the point
evaluation functional at the point η ∈ Ω, i.e.,

χη :

{
XΩ → X
f 7→ f(η)

, η ∈ Ω.

If Ω is an open and nonempty subset of C, we denote

χ(l)
η :

{
H(Ω) → C

f 7→ f (l)(η)
, η ∈ Ω, l ∈ N0. (2.2)

5◦: Let X ,Y be linear spaces. A linear subspace of V of X ×Y is called a linear
relation. We set

domV :=
{
x ∈ X : ∃ y ∈ Y with (x; y) ∈ V

}
,

ranV :=
{
y ∈ Y : ∃x ∈ X with (x; y) ∈ V

}
,

kerV :=
{
x ∈ X : (x; 0) ∈ V

}
,

mulV :=
{
y ∈ Y : (0; y) ∈ V

}
,

and speak of the domain, range, kernel, and multivalued part of V . Moreover,
set

V −1 := {(y;x) : (x; y) ∈ V }.
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If v : L ⊆ X → Y is a linear map defined on some linear subspace L of X , then
its graph

graph v :=
{

(x; v(x)) : x ∈ L
}
⊆ X × Y

is a linear relation. A linear relation is the graph of some linear map if and only
if its multivalued part equals {0}.

6◦: Let X be a linear space, and let V ⊆ X ×X be a linear relation. For η ∈ C
set

V − η :=
{

(x; y − ηx) : (x; y) ∈ V
}

and

σp(V ) :=
{
η ∈ C : ker(V − η) 6= {0}

}
=
{
η ∈ C : ∃x ∈ X \ {0} with (x; ηx) ∈ V

}
.

7◦: Let X and Y be normed spaces, and let V ⊆ X × Y be a linear relation.
Then we say that V is closed, if it is closed as a subset of X × Y w.r.t. the
product topology.

Let X be a normed space, and let V ⊆ X × X be a linear relation. We say
a point η ∈ C is a point of regular type of V , if (V − η)−1 is (the graph of) a
bounded linear operator (with domain and range not necessarily equal to all of
X ). The set of all points of regular type is denoted by r(V ). If X is a Banach
space and V is closed, then η ∈ r(V ) if and only if ran(V − η) is closed and
η 6∈ σp(V ).

8◦: Let X be a linear space. A map [·, ·]X is called an inner product, if it is
linear in the first argument and [x, y]X = [y, x]X , x, y ∈ X . We call 〈X , [·, ·]X 〉
an inner product space. Note that we do not assume any definiteness properties.

Let 〈X , [·, ·]X 〉 be an inner product space. Then we denote

ind+ X := sup
{

dimL : L positive definite subspace of X
}
,

ind− X := sup
{

dimL : L negative definite subspace of X
}
.

We write x ⊥ y if [x, y]X = 0, set M⊥ := {x ∈ X : x ⊥ y, y ∈ M} for M ⊆ X ,
and set X ◦ := X⊥ and ind0 X := dimX ◦.

Let us point out that we do not distinguish different cardinalities of infinity.
All dimensions, as well as ind± and ind0, are understood as elements of N0∪{∞}.
In particular, if we write expressions like “d < dimL”, then this implies that d
is finite.

2.2 Almost Pontryagin spaces

Almost Pontryagin spaces are a type of complete topological inner product
spaces which generalise Pontryagin spaces. We recall only the definition; precise
references to the literature for geometric and topological properties will be given
during the presentation.

2.1 Definition. We call a triple 〈A, [·, ·]A,O〉 an almost Pontryagin space, if
A is a linear space, [·, ·]A is an inner product on A, and O is a topology on A,
such that the following axioms hold.

(aPs1) The topology O is a Hilbert space topology on A, i.e., it is induced
by some inner product which turns A into a Hilbert space.
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(aPs2) The inner product [·, ·]A is O-continuous, i.e., it is continuous as a
map of A × A into C where A × A carries the product topology
O ×O and C the euclidean topology.

(aPs3) There exists an O-closed linear subspace M of A with finite codi-
mension in A, such that 〈M, [·, ·]A|M×M〉 is a Hilbert space.

If 〈A, [·, ·]A,O〉 and 〈B, [·, ·]B, T 〉 are two almost Pontryagin spaces, then we call
a map ψ : A → B an isomorphism if ψ is a linear and isometric homeomorphism
of A onto B. Here isometry is understood w.r.t. the inner products [·, ·]A and
[·, ·]B, and bicontinuity w.r.t. O and T . ♦

When no confusion is possible, we drop explicit notation of inner product and
topology, and shortly speak of an almost Pontryagin space A.

An almost Pontryagin spaceA is a Pontryagin space if and only if ind0A = 0.
If ind0A = 0, the topology O is uniquely determined by the linear space A and
the inner product [·, ·]A on A. If ind0A > 0, this is not the case, see, e.g.,
[KWW05, Lemma 2.8].

Our focus in the present paper lies on a special kind of almost Pontryagin
spaces, namely such whose elements are complex-valued functions and which
have the property that point evaluation functionals are continuous.

2.2 Definition. Let Ω be a nonempty set. We call an almost Pontryagin space
〈A, [·, ·]A,O〉 a reproducing kernel almost Pontryagin space on Ω, if the following
axioms hold.

(RKS1) The elements of A are complex-valued functions on Ω, and the
linear operations of A are given by pointwise addition and scalar
multiplication.

(RKS2) For each η ∈ Ω the point evaluation functional χη|A : A → C is
continuous w.r.t. the topology O on A.

♦

A systematic treatment of reproducing kernel almost Pontryagin spaces is given
in [Wor14]. Among other things, it is shown in this paper that for a reproduc-
ing kernel almost Pontryagin space an analogue of the reproducing kernel of
a reproducing kernel Pontryagin space exists (which also justifies the choice of
terminology).

If 〈A, [·, ·]A〉 is an inner product space subject to (RKS1), then there exists at
most one topology on A such that 〈A, [·, ·]A,O〉 is a reproducing kernel almost
Pontryagin space. This is due to the presence of the point separating family
{χη|A : η ∈ Ω} of continuous functionals, cf. [KWW05, Proposition 2.9].

2.3 Almost Pontryagin space completions

Given an inner product space L, the question appears naturally whether L can
be embedded into an almost Pontryagin space as a dense subspace. This leads
to the notion of completions which was formally introduced in [KWW05], with
some ideas going back to [JLT92]. A more systematic study was undertaken in
[SW12] and supplemented in [Wor14].

Again we recall only some definitions; precise references to the literature are
provided in course of the presentation.
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2.3 Definition. Let L be an inner product space. We call a pair 〈ι,A〉 an
almost Pontryagin space completion of L, if A is an almost Pontryagin space,
and ι is a linear and isometric map of L onto a dense subspace of A.

Let 〈ιi,Ai〉, i = 1, 2, be two almost Pontryagin space completions of L. We
say that 〈ι1,A1〉 and 〈ι2,A2〉 are isomorphic, if there exists an isomorphism ϕ
of A1 onto A2 with ϕ ◦ ι1 = ι2. ♦

It is easy to see that an inner product space L has an almost Pontryagin space
completion if and only if ind− L < ∞. If ind− L < ∞, the totality of all
completions of L corresponds to certain spaces of linear functionals on L. The
relevant notion in this context is given in Definition 2.4 below. We state this
definition in the intrinsic form given in [Wor14, Lemma A.14]. The description
of isomorphy classes of completions was given in [SW12, Theorem 6.8].

2.4 Definition. Let L be an inner product space with ind− L <∞. We denote
by L′ the set of all linear functionals ϕ on L with

∀ (xn)n∈N, xn ∈ L :

limn→∞[xn, xn]L = 0

limn→∞[xn, y]L = 0, y ∈ L

}
=⇒ lim

n→∞
ϕ(xn) = 0

♦

The choice of notation L′, resembling the standard notation for the topological
dual of a topological vector space, is motivated by the fact that indeed L′ is the
topological dual of L w.r.t. a certain intrinsically contructed seminorm. How-
ever, for a quick approach, it is simpler to just write out the explicit conditions
as done above.

It is an important fact that L′ can be topologised in a canonical way (dif-
ferent than with a weak topology); for a proof of the following see [Wor14,
Lemma A.13, Lemma A.17].

2.5. The topology T (L′) on L′: Let L be an inner product space with ind− L <
∞ and let 〈ι,A〉 be an almost Pontryagin space completion of L. Then the
restriction ι∗|A′ of the algebraic dual map ι∗ of ι to the topological dual A′ of
A maps the closed subspace

Ao := {[·, y]A : y ∈ A}

of A′ onto L′. We denote by T (L′) the final topology on L′ w.r.t. the map ι∗|Ao
and the norm topology on Ao inherited from A′. The topology T (L′) does not
depend on the choice of 〈ι,A〉. It can be constructed using only the Pontryagin
space completion of L. ♦

Let us return to our focus: reproducing kernel almost Pontryagin spaces on a
set Ω. In this context the following question occurs:

Given an inner product space L whose elements are complex-valued
functions on a set Ω, does there exist a reproducing kernel almost
Pontryagin space A which contains L isometrically as a dense sub-
space ?
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2.6 Definition. Let Ω be a nonempty set, L ⊆ CΩ an inner product space, and
A a reproducing kernel almost Pontryagin space. We say that A is a reproducing
kernel space completion of L, if A contains L isometrically as a dense subspace.

♦

Observe that, if A is a reproducing kernel space completion of L, then 〈⊆,A〉
is an almost Pontryagin space completion of L.

The obvious necessary condition on L that a reproducing kernel space com-
pletion exists, namely that ind− L <∞, is far from sufficient. In [Wor14, The-
orem 4.1] a characterisation of existence was given. Moreover, it is shown that
a reproducing kernel space completion is unique (provided there exists one).

2.4 Sets of Φ-containement

The following sets play a central role in the present paper.

2.7 Definition. Let L be a linear space, let V ⊆ L×L be a linear relation, let
Ω ⊆ C, and Φ : L × Ω→ C. Then we denote

r⊆(V,Φ) :=
{
η ∈ Ω : ran(V − η) ⊆ ker Φ(·, η)

}
r⊇(V,Φ) :=

{
η ∈ Ω : ran(V − η) ⊇ ker Φ(·, η)

}
r=(V,Φ) := r⊆(V,Φ) ∩ r⊇(V,Φ)

♦

Moreover, we introduce an approximative variant of r⊇(·, ·).

2.8 Definition. Let 〈L, [·, ·]L〉 be an inner product space, let V ⊆ L × L be a
linear relation, let Ω ⊆ C, let Φ : L × Ω→ C, and M ⊆ Ω. Then we denote

rapp

⊇ (V,Φ;M) :=

{
η ∈ Ω : ∀x ∈ ker Φ(·, η) ∃(xn)n∈N with xn ∈ ran(V − η),

lim
n→∞

[xn, xn]L = [x, x]L, lim
n→∞

[xn, y]L = [x, y]L, y ∈ L,

lim
n→∞

Φ(xn, ζ) = Φ(x, ζ), ζ ∈M
}
.

♦

Clearly, the inclusion r⊇(V,Φ) ⊆ rapp
⊇ (V,Φ;M) holds; for given x ∈ ker Φ(·, η)

simply use the constant sequence xn := x.
For later reference let us explicitly state the following fact.

2.9 Remark. Assume that A is an almost Pontryagin space, V ⊆ A × A is a
linear relation, Ω ⊆ C, and Φ : A × Ω → C. Let M ⊆ Ω be a subset with the
properties

(i) Φ(·, η) ∈ A′, η ∈M ;

(ii) the family {Φ(·, η) : η ∈M} is point separating on A◦ which means that

A◦ ∩
⋂
η∈M

ker Φ(·, η) = {0}.
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Then
r⊇(V,Φ) ⊇ rapp

⊇ (V,Φ;M) ∩ {η ∈ C : ran(V − η) closed}.

To see this, choose a sequence (xn)n∈N according to the definition of
rapp
⊇ (V,Φ;M). By [Wor14, Proposition A.5] it holds that limn→∞ xn = x in

the norm of A, whence x ∈ ran(V − η). ♦

2.5 Symmetric relations in almost Pontryagin spaces

2.10 Definition. Let 〈L, [·, ·]L〉 be an inner product space, and let S ⊆ L× L
be a linear relation in L. We say that S is symmetric, if

[y1, x2]L = [x1, y2]L, (x1; y1), (x2; y2) ∈ S.

♦

For a linear map (considered as a linear relation via its graph) this condition
reduces to the usual symmetry condition [Sx, y]L = [x, Sy]L, x, y ∈ domS.

The following basic result on symmetric linear relations in a Pontryagin
space is shown in [DS87a].

2.11 Theorem. Let P be a Pontryagin space and let S be a closed symmetric
relation in P. Then the following statements hold.

(i) ran(S − η) is closed for η ∈ C \ R.

(ii) The codimension of ran(S − η) is constant on connected components of
r(S).

(iii) There exist numbers α, β+, β− ∈ N0 with α ≤ ind− P, and an exceptional
set Υ ⊆ C \ R, such that

max
{
|Υ ∩ C+|, |Υ ∩ C−|

}
≤ ind− P − α, (2.3)

codimP ran(S − η) = β±, dim ker(S − η) = α, η ∈ C± \Υ, (2.4)

codimP ran(S − η)− β± = dim ker(S − η)− α > 0, η ∈ C± ∩Υ, (2.5)

α ≤ dim mulS. (2.6)

(iv) The numbers β± can be evaluated as

β± = min
{

codimA ran(S − η) : η ∈ L
}
,

L ⊆ C±, |L| > ind− P. (2.7)

Item (i) is [DS87a, Proposition 4.3, (ii)], item (ii) is [DS87a, Corollary to The-
orem 2.4], item (iii) is [DS87a, Proposition 4.4 and Theorem 2.4], and item (iv)
follows immediately by combining (2.4) and (2.5).

Using [KWW05, Proposition 3.2], Theorem 2.11 transfers immediately to
the almost Pontryagin space situation.

2.12 Corollary. Let A be an almost Pontryagin space and let S be a closed
symmetric relation in A. Then the assertions of Theorem 2.11 remain true when
ind− P is everywhere replaced by ind−A+ ind0A.
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Proof. Due to [KWW05, Proposition 3.2], we can choose a Pontryagin space P
which contains A as a closed subspace with codimension ind0A. It holds that
ind− P = ind−A+ ind0A. q

We refer to β+ and β− as the upper- and lower defect indices of S in A, and to
the pair (β+, β−) as the defect index of S in A.

The concept of a completely non-selfadjoint symmetric relation in an al-
most Pontryagin space is defined in the usual way (only taking care of possible
unsymmetrically located spectral points).

2.13 Definition. Let A be an almost Pontryagin space and let S be a closed
symmetric relation in A with r(S) 6= ∅. We say that S is completely non-
selfadjoint, if ⋂

η∈r(S)∩r(S)#

ran(S − η) = {0}.

♦

The usual consequence of analyticity holds true (an explicit proof can be found
in [SW]):

2.14 Lemma. Let A be an almost Pontryagin space and let S be a closed
symmetric relation in A with r(S) 6= ∅. Let Ω be an open and nonempty subset
of r(S) ∩ r(S)# ∩ C+, and set

U :=

{
r(S) ∩ r(S)# , r(S) ∩ R 6= ∅
r(S) ∩ r(S)# ∩ C+ , r(S) ∩ R = ∅

Then ⋂
η∈Ω

ran(S − η) =
⋂
η∈U

ran(S − η).

The same holds with C+ replaced by C−.

2.6 Krein’s Theorem on preservation of analyticity

A central result in the theory of entire operators and directing functionals is a
theorem on preservation of analyticity which goes back to M.G.Krein. The below
Theorem 2.15 is a variant of this result formulated in a sufficiently general way
to serve our present needs. The crux of the proof can be extracted from [Kre49],
see also the argument leading to [GG97, Ch.2,Theorem 3.2] and the argument
indicated in [KL78] leading to Items (i)–(iii) on p.430 of this reference. The
reader who is not familiar with this type of arguments can find a fully elaborated
proof in Appendix A of this paper.

2.15 Theorem ([Kre49], [KL78]). Let K be a Krein space and A ⊆ K × K a
definitisable selfadjoint linear relation. Let a0 ∈ K, ζ0 ∈ ρ(A), and set

a(ζ) :=
(
I + (ζ − ζ0)(A− ζ)−1

)
a0, ζ ∈ ρ(A).

Moreover, assume that y ∈ K with the property that [a(·), y]K does not vanish
identically on any component of ρ(A). Then the following statements hold.
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(i) Let x ∈ K. Consider the set of all open subsets O ⊆ C with the property
that the function{

{ζ ∈ ρ(A) : [a(ζ), y]K 6= 0} → C
ζ 7→ [a(ζ),x]K

[a(ζ),y]K

, (2.8)

has a meromorphic continuation to O. This set has a largest element.

We denote this largest element by Ωx,y, and the meromorphic continuation
of the function (2.8) to Ωx,y by Θx,y.

(ii) Let Ω ⊆ C be open and let d : Ω→ Z be a function with discrete support.
Choose a function W ∈ H(Ω,C∞) with dW = −d. Then the family ( ‖ · ‖K
denotes some norm induced by a fundamental decomposition of K)

F :=
{
WΘx,y : Ox,y ⊇ Ω, dΘx,y ≥ d, ‖x‖K ≤ 1

}
is normal in H(Ω).

(iii) Let Ω ⊆ C be open and let d : Ω→ Z be a function with discrete support.
Then the linear subspace

M :=
{
x ∈ K : Ox,y ⊇ Ω, dΘx,y |Ω ≥ d

}
⊆ K

is closed.

We will also make use of the following lemma which depends on analyticity.
This fact is folklore, however, we cannot appoint an explicit reference. For
completeness, a proof is provided in Appendix A.

2.16 Lemma. Let X be a complete metrisable topological vector space, let Ω ⊆
C be open, nonempty, and connected, and let Φ : X × Ω→ C. Assume that

(i) for each x ∈ X , the map Φ(x, ·) is analytic;

(ii) the set L := {η ∈ Ω : Φ(·, η) ∈ X ′} has an accumulation point in Ω.

Then Φ(·, η) is linear for all η ∈ Ω, and the map

ΦX :

{
X → H(Ω)
x 7→ Φ(x, ·)

is continuous. In particular, we have ∂l

∂ηl
Φ(·, η) ∈ X ′, η ∈ Ω. For every bounded

subset M of X , the image {Φ(x, ·) : x ∈M} of M under ΦX is a normal family.

2.7 The multiplication operator

In this subsection we introduce the type of spaces of analytic functions which
we are going to deal with, and study the operator of multiplication by the
independent variable in such spaces.

2.17 Definition. Let Ω ⊆ C be open and nonempty, and let B be a reproducing
kernel almost Pontryagin space of analytic functions on Ω. Then we denote by
S(B) the multiplication operator in B. Written as a linear relation this is

S(B) :=
{

(f(ζ); ζf(ζ)) : f(ζ), ζf(ζ) ∈ B
}
.

♦
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The operator S(B) is closed and (remember the notation (2.2))

σp(S(B)) = ∅, mulS(B) = {0}, (2.9)

ran(S(B)− η) ⊆ kerχ(dB(η))
η , η ∈ Ω, dB(η) <∞. (2.10)

Moreover, for each subset L ⊆ Ω which has accumulation points in each con-
nected component of Ω, it holds that

⋂
η∈L ran(S(B) − η) = {0}. The above

properties give rise to the following fact.

2.18 Remark. Assume that S(B) is symmetric. Then C\R ⊆ r(S(B)) and S(B)
is completely non-selfadjoint. ♦

The following class of spaces is an analogue of de Branges spaces for arbitrary
open subsets Ω of C.

2.19 Definition. Let Ω be an open and nonempty subset of C, and let B be a
reproducing kernel almost Pontryagin space on Ω. We call B an Ω-space, if it
satisfies the following axioms.

(Ω1) The elements of B are analytic functions on Ω.

(Ω2) supp dB is a discrete subset of Ω (in particular, thus, B 6= {0} and
dB(η) <∞, η ∈ Ω).

(Ω3) ∀ ξ ∈ Ω ∀ f ∈ B, f (dB(ξ))(ξ) = 0 :
f(ζ)

ζ − ξ
∈ B.

(Ω4) ∀ ξ ∈ Ω ∀ f, g ∈ B, f (dB(ξ))(ξ) = g(dB(ξ))(ξ) = 0 :[ζ − ξ
ζ − ξ

f(ζ),
ζ − ξ
ζ − ξ

g(ζ)
]
B

=
[
f(ζ), g(ζ)

]
B.

♦

An Ω-space has several operator theoretic properties which follow immediately
from the definition.

2.20 Remark. Let B be an Ω-space. Then S(B) is symmetric, completely non-
selfadjoint, and

ran(S(B)− η) = kerχ(dB(η))
η , η ∈ Ω, Ω ∪ (C \ R) ⊆ r(S(B)). (2.11)

If Ω∩C+ 6= ∅, then the upper defect index β+ of S(B) equals 1. The same holds
with C+ and β+ replaced by C− and β−.

Using Lemma 2.14 and analyticity, we obtain the following fact: For each
f ∈ B, the set supp df ∩ C+ is either a discrete subset of Ω or all of Ω ∩ C+.
The same holds with C+ replaced by C−. As a consequence, if Ω∩R 6= ∅, then
supp df is a discrete subset of Ω whenever f ∈ B \ {0}. ♦

These operator theoretic properties are characteristic for Ω-spaces.

2.21 Proposition. Let Ω ⊆ C be open and nonempty, and let B be a reproduc-
ing kernel almost Pontryagin space on Ω. Assume that B satisfies (Ω1), (Ω2),
and

(i) S(B) is symmetric;
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(ii) if Ω ∩ C+ 6= ∅ then β+ = 1, and if Ω ∩ C− 6= ∅ then β− = 1.

Then B is an Ω-space.

Proof. We need to show that the condition in (Ω3), i.e., invariance under di-
vision, holds for all ξ ∈ Ω. Since supp dB is discrete, for no η ∈ Ω the func-

tional χ
(dB(η))
η vanishes identically. If ξ ∈ Ω ∩ r(S(B)), then by (ii) we have

codimB ran(S(B) − η) = 1. Hence, in the inclusion (2.10) equality must hold.
This means that the condition in (Ω3) holds for ξ. Since C \ R ⊆ S(B), the
condition in (Ω3) holds for all ξ ∈ Ω \ R.

Assume that Ω ∩ R 6= ∅. Then Ω certainly intersects both half-planes C+

and C−, whence by (ii) the defect index of S(B) is (1, 1). We are going to show
that Ω ∩ R ⊆ r(S(B)). This is achieved by reducing to the Hilbert space case.

Fix ξ ∈ Ω ∩ R, and choose a nonempty interval (a, b) ⊆ Ω with ξ ∈ (a, b).
Let f ∈ B, and assume that f vanishes on (a, b). Then it vanishes identically
on the component Ω0 of Ω which contains (a, b). Using Lemma 2.14, it follows
that

f ∈
⋂

η∈(Ω0∩Ω#
0 )\R

ran
(
S(B)− η

)
=

⋂
η∈r(S(B))∩r(S(B))

ran
(
S(B)− η

)
= {0}.

In other words, we may say that the family {χη : η ∈ (a, b)} is a point separating
subset of B′. From [Wor14, Proposition A.9] we obtain γ ∈ R and η1, . . . , ηn ∈
(a, b), such that the inner product

(f, g)B := [f, g]B + γ

n∑
l=1

f(ηl)g(ηl), f, g ∈ B,

turns B into a Hilbert space and induces the topology of B.
Since the points η1, . . . , ηn are real, it is straightforward to check that S(B)

is also symmetric w.r.t. (·, ·)B. All algebraic and topological properties of S(B)
are independent of the inner product, and hence remain valid. In particular,
S(B) is completely non-selfadjoint and has defect index (1, 1) when considered
as an operator in the Hilbert space 〈B, (·, ·)B〉. Moreover, r(S(B)) is the same
whether considered in the almost Pontryagin space B or in the Hilbert space
〈B, (·, ·)B〉.

Choose u ∈ B \ {0}. Then M := {η ∈ Ω0 : u(η) = 0} is a discrete subset of
Ω0. We have

f − f(η)

u(η)
u ∈ kerχη = ran(S(B)− η), f ∈ B, η ∈ Ω0 \ (R ∪M).

Hence, for each η ∈ Ω0 \ (R ∪M), the projection of f onto span{u} according

to the decomposition B = ran(S(B) − η)+̇ span{u} is equal to f(η)
u(η)u. Since

M is discrete it holds that du(η) < ∞, η ∈ Ω0, and we see that the function

pf := f(η)
u(η) has an extension Pf ∈ H(Ω,C∞) with dPf ≥ −du. Applying [GG97,

Ch.2,Theorem 3.3] yields ξ ∈ r(S(B)).
Now it follows that the condition in (Ω3) holds also for all ξ ∈ Ω∩R. Finally,

the condition in (Ω4) is void if ξ ∈ Ω∩R, and for ξ ∈ Ω\R it is just the isometry
property of the Caley-transform of S(B). q
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3 The core arguments

In this section the core arguments needed to establish Theorem 4.3 are proved.
We present the matters in the form of eight lemmata. In order to point out
“what is needed where”, we tried to give minimal assumptions in each of them,
rather than proving “just” what is needed somewhere afterwards.

We start with explaining the setting which will mainly be present.

3.1. Frequently considered setup: Data L, S, 〈ι,A〉,Ω,Φ,M has the meaning

(1) L is an inner product space and S is a symmetric linear relation in L;

(2) 〈ι,A〉 is an almost Pontryagin space completion of L;

(3) Ω is a subset of C and Φ is a map Φ : L × Ω → C with the property that
for each η ∈ Ω the map Φ(·, η) : L → C is linear;

(4) M is a subset of Ω with the property that

ι∗(A′) = L′ + span
{

Φ(·, η) : η ∈M
}
. (3.1)

♦

Whenever we are given data L, S, 〈ι,A〉 according to 3.1(1,2), we set

T := ClosA
[
(ι× ι)(S)

]
. (3.2)

Since ι is isometric, T is a closed symmetric relation in A.
Whenever we are given data according to 3.1(1−3), we set

Φ̃η := (ι∗|A′)−1Φ(·, η) whenever Φ(·, η) ∈ ι∗(A′).

The above described situation arises in particular when we already start with
an almost Pontryagin space.

3.2. Inclusion of the complete case: Assume we are given data A, T,Ω,Ψ,M
such that

(1′) A is an almost Pontryagin space, T is a closed symmetric relation in A;

(2′) Ω is a subset of C and Ψ : A×Ω→ C is a map with the property that for
each η ∈ Ω the map Ψ(·, η) : A → C is linear;

(3′) M is a subset of Ω, such that Ψ(·, η) ∈ A′, η ∈ M , and {Ψ(·, η) : η ∈ M}
is point separating on A◦.

Set
L := A, S := T, ι := idA, Φ := Ψ.

Then L, S, 〈ι,A〉,Ω,Φ,M satisfies 3.1(1−4). Moreover, the relation (3.2) equals

the given relation T , and Φ̃η = Ψ(·, η) whenever Ψ(·, η) ∈ A′.
If we are given A, T,Ω,Ψ with (1′), (2′), then the above defined data

L, S, 〈ι,A〉,Ω,Φ satisfies 3.1(1−3). ♦

Now let us give a brief outline of what happens in the lemmata of this section.

(1) Lemma 3.3: Some basic relations among r⊆(S,Φ), rapp
⊇ (S,Φ;M), ran(T−η),

and ker Φ̃η.

20



(2) Lemma 3.4: Data as in 3.1. Conclusion about the defect indices of T , in
particular a way to conclude that T has defect indices equal to 1; properties of
points in rapp

⊇ (S,Φ;M).

(3) Lemma 3.5: Data as in 3.1. Conclusion towards complete non-
selfadjointness of T ; conclusion about the size of r(T ).

(4) Lemma 3.6: Data as in 3.2. Construction of a reproducing kernel almost
Pontryagin space B; comparison of T and S(B); properties of r⊆(S,Φ).

(5) Lemma 3.7 (cont. of Lemma 3.6): Data as in 3.2. More properties of
S(B); identification with T ; properties of r⊇(S,Φ).

(6) Lemma 3.8: Data as in 3.1. Construction of a lifting of Φ to the completion
A. The central assumption is that T has defect index (1, 1). This is the point
where the connection with Krein’s representation by analytic functions is made
and where preservation of analyticity is applied.

(7) Lemma 3.9 (cont. of Lemma 3.8): Data as in 3.1. Conclusion towards
complete non-selfadjointness of T ; properties of r⊆(T,Ψ), r=(T,Ψ).

(8) Lemma 3.10 (cont. of Lemmata 3.8 and 3.9): Data as in 3.1. Showing
that B is an Ω-space.

P P P P P P P P P

3.3 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ be given according to 3.1(1−3). Then it
holds that (remember the definitions of Φ-containement sets from Definition 2.7
and Definition 2.8)

η ∈ r⊆(S,Φ),Φ(·, η) ∈ ι∗(A′) =⇒ ran(T − η) ⊆ ker Φ̃η (3.3)

If in addition a set M is given according to 3.1(4), then it holds that

η ∈ rapp

⊇ (S,Φ;M), ran(T − η) closed =⇒ codimA ran(T − η) ≤ 1 (3.4)

η ∈ rapp

⊇ (S,Φ;M), ran(T − η) closed, codimA ran(T − η) = 1

=⇒ η ∈ r⊆(S,Φ),Φ(·, η) ∈ ι∗(A′) \ {0}, ran(T − η) = ker Φ̃η (3.5)

Proof.

1◦ The implication (3.3): We have

ran(T − η) ⊆ ClosA
[
ι
(

ran(S − η)
)]
⊆ ClosA

[
ι
(

ker Φ(·, η)
)]
⊆ ker Φ̃η.

Here the last but one inclusion holds since η ∈ r⊆(S,Φ), and the last inclusion
because ker Φ̃η is closed and Φ̃η ◦ ι = Φ(·, η).

2◦ The implication (3.4): Choose y0 ∈ L with ker Φ(·, η) + span{y0} = L. Since
ι(L) is dense in A, it follows that

ClosA
[
ι
(

ker Φ(·, η)
)]

+ span{ιy0} = A,
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and hence that codimA ClosA[ι(ker Φ(·, η))] ≤ 1.
Let x ∈ ker Φ(·, η) and choose a sequence (xn)n∈N according to the definition

of rapp
⊇ (S,Φ;M). By (3.1) the family of functionals F := {Φ̃η : η ∈M} is point

separating on A◦, cf. [Wor14, Remark A.4, Lemma A.13]. We apply [Wor14,
Proposition A.5] with the dense set ι(L) and the family F . This yields that
limn→∞ ιxn = ιx in the norm of A. Since ιxn ∈ ran(T − η) and ran(T − η) is
closed, it follows that ιx ∈ ran(T − η). We conclude that ClosA[ι(ker Φ(·, η))] ⊆
ran(T − η), and hence that codimA ran(T − η) ≤ 1.

3◦ The implication (3.5): Since codimA ran(T − η) = 1, we can choose y ∈ A
with

A = ran(T − η)+̇ span{y}.

Denote by ϕ : A → C the linear functional defined by

x− ϕ(x)y ∈ ran(T − η), x ∈ A.

Clearly, ϕ does not vanish identically. Since ran(T−η) is closed, ϕ is continuous.
If x ∈ ran(S − η), then ιx ∈ ran(T − η), and hence ϕ(ιx) = 0. This shows that

ι
[

ran(S − η)
]
⊆ kerϕ. (3.6)

Let x ∈ ker Φ(·, η) and choose (xn)n∈N according to the definition of
rapp
⊇ (S,Φ;M). Again, we have limn→∞ ιxn = ιx in A. Moreover, ιxn ∈ kerϕ by

(3.6). Since kerϕ is closed, it follows that ιx ∈ kerϕ. We conclude that

ker Φ(·, η) ⊆ ker(ι∗ϕ). (3.7)

Since ι∗|A′ is injective, we have ι∗ϕ 6= 0. This implies that in (3.7) equality
holds, and hence that Φ(·, η) is a nonzero scalar multiple of ι∗ϕ. In particular,
Φ(·, η) ∈ ι∗(A′) \ {0}. Now (3.6) says that η ∈ r⊆(S,Φ), and the already proved
implication (3.3) yields ran(T − η) ⊆ ker Φ̃η. Since codimA ran(T − η) = 1 and

Φ̃η 6= 0, equality must hold. q

3.4 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ,M be given according to 3.1(1−4). As-
sume that

<1> the set M0 := M ∩ r⊆(S,Φ) ∩ {η ∈ Ω : Φ(·, η) 6= 0} satisfies

dim
([
L′ + span{Φ(·, η) : η ∈M}

]/
L′
)

+ ind− L < |M0 ∩ C+|.

Then the upper defect index β+ of T is larger or equal to 1. We have

rapp

⊇ (S,Φ;M) ∩ C+ ⊆ r⊆(S,Φ) ∩
{
η ∈ C : Φ(·, η) 6= 0

}
∩

∩
{
η ∈ C : Φ(·, η) ∈ ι∗(A′), ran(T − η) = ker Φ̃η

}
. (3.8)

In particular Υ ∩ (rapp
⊇ (S,Φ;M) ∩C+) = ∅ where Υ is the exceptional set for T

as in Theorem 2.11/Corollary 2.12, and rapp
⊇ (S,Φ;M)∩C+ 6= ∅ implies β+ = 1.

The same statement holds with C+, β+ replaced by C−, β−.
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Proof. Let α, β±,Υ be the data obtained by applying Corollary 2.12 with T
in A. If η ∈ M0, then Φ(·, η) ∈ ι∗(A′), Φ(·, η) 6= 0, and η ∈ r⊆(S,Φ). The
implication (3.3) yields codimA ran(T − η) ≥ 1. Remembering that

ind0A = dim
(
ι∗(A′)/L′),

our assumption <1> ensures that M0 contains sufficiently many points to eval-
uate β+ by means of (2.7). Doing so yields β+ ≥ 1.

Let η ∈ rapp
⊇ (S,Φ;M) ∩ C+. Then ran(T − η) is closed and (3.4) implies

that codimA ran(T − η) ≤ 1. Since β+ ≥ 1, this codimension (and hence also
β+ itself) must be equal to 1 and the point η cannot belong to the exceptional
set Υ. Applying (3.5) yields η ∈ r⊆(S,Φ), Φ(·, η) ∈ ι∗(A′) \ {0}, ran(T − η) =
ker Φ̃η. q

3.5 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ,M be given according to 3.1(1−4). If

<2> a set M ′ ⊆ r⊆(S,Φ) ∩ {η ∈ Ω : Φ(·, η) ∈ ι∗(A′)} is given such that
L′ ∩ span{Φ(·, η) : η ∈M ′} is dense in L′ (w.r.t. T (L′), cf. 2.5),

then ⋂
η∈M ′

ran(T − η) ⊆
⋂
η∈M ′

ker Φ̃η ⊆ A◦.

If, in addition to <2>,

<3> a set M ′′ ⊆ r⊆(S,Φ) ∩ {η ∈ Ω : Φ(·, η) ∈ ι∗(A′)} is given such that
L′ + span{Φ(·, η) : η ∈M ′′} = ι∗(A′),

then ⋂
η∈M ′∪M ′′

ran(T − η) =
⋂

η∈M ′∪M ′′
ker Φ̃η = {0}, mulT = {0}.

If, in addition to <2> and <3>, the hypothesis <1> of Lemma 3.4 is fullfilled,
then

rapp

⊇ (S,Φ;M) ∩ C+ ⊆ r(T ). (3.9)

The same holds with C+ replaced by C− in <1> and (3.9).

Proof. Assume that a set M ′ with the properties stated in <2> is given. We
know that (ι∗|A′)−1 maps L′ homeomorphically onto the closed subspace Ao of
A′ whose annihilator is equal to A◦, cf. [Wor14, Lemma A.17, Proposition A.1].
Using (3.3) it follows that (here⊥ denotes the annihilator w.r.t. the usual duality
between A and A′)⋂

η∈M ′
ran(T − η) ⊆

⋂
η∈M ′

ker Φ̃η ⊆

⊆
[
(ι∗|A′)−1

(
L′ ∩ span{Φ(·, η) : η ∈M ′}

)]⊥
=
[
(ι∗|A′)−1(L′)

]⊥
= A◦.

Assume that in addition a set M ′′ with the properties stated in <3> is
given. Then {Φ̃η : η ∈ M ′′} is point separating on A◦, cf. [Wor14, Re-
mark A.4, Lemma A.13]. Hence,⋂

η∈M ′∪M ′′
ran(T − η) ⊆

⋂
η∈M ′∪M ′′

ker Φ̃η ⊆ A◦ ∩
⋂

η∈M ′′
ker Φ̃η = {0}.
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In particular, mulT = {0}.
Since mulT = {0}, the constant α from Theorem 2.11/Corollary 2.12 equals

0. This implies that r(T ) \ R = C \ (R ∪Υ).
Assume that in addition also <1> holds. If η ∈ rapp

⊇ (S,Φ;M) ∩ C+, then
we already saw in Lemma 3.4 that η 6∈ Υ. q

3.6 Lemma. Let data A, T,Ω,Ψ be given according to 3.2(1′,2′). Assume that

<4>
⋂
η∈Ω

ker Ψ(·, η) ⊆ A◦;

<5> the set Ω is open and for each x ∈ A the function Ψ(x, ·) is analytic;

<6> both sets
{
η ∈ Ω : Ψ(·, η) ∈ A′

}
and r⊆(T,Ψ) have accumulation points

in each connected component of Ω;

Set ΨA : x 7→ Ψ(x, ·) and

B := ran ΨA =
{

Ψ(x, ·) : x ∈ A
}
.

Then B can be endowed with a unique almost Pontryagin space structure such
that ΨA : A → B becomes isometric, continuous and open. In this way B
becomes a reproducing kernel almost Pontryagin space of analytic functions on
Ω. We have (here S(B) denotes the multiplication operator in B)

Ψ(·, η) ∈ ι∗(A′), η ∈ Ω, (ΨA ×ΨA)(T ) ⊆ S(B), r⊆(T,Ψ) = Ω. (3.10)

Proof. First, existence of an almost Pontrygain space structure on B such that
ΨA becomes isometric, continuous and open follows from [Wor14, Proposi-
tion A.7]. The hypothesis necessary to apply this result is satisfied by our
assumption <4>. Uniqueness is clear.

The topology of B is the final topology w.r.t. the map ΨA. Applying
Lemma 2.16 with each component of Ω separately (which is possible by the
first half of <6>), it follows that it is finer than the topology of locally uniform
convergence. In particular, all point evaluation functionals are continuous, i.e.,
B is a reproducing kernel almost Pontryagin space. Also Lemma 2.16 already
gives Ψ(·, η) ∈ A′, η ∈ Ω.

To show that (ΨA ×ΨA)(T ) ⊆ S(B), let (x; y) ∈ T . Then

y − ηx ∈ ran(T − η) ⊆ ker Ψ(·, η), η ∈ r⊆(T,Ψ),

and hence
Ψ(y, η)− ηΨ(x, η) = 0, η ∈ r⊆(T,Ψ).

By the second half of <6> and analyticity, this identity holds for all η ∈ Ω.
Hence,

(ΨA(x); ΨA(y)) = (Ψ(x, ·); Ψ(y, ·)) ∈ S(B).

It remains to show that r⊆(T,Ψ) = Ω. However, the just proved inclusion in
(3.10) yields

ΨA
(

ran(T − η)
)

= ran
(
(ΨA ×ΨA)(T )− η

)
⊆ ran

(
S(B)− η

)
⊆ ker(χη|B).

Hence, for each x ∈ ran(T − η),

Ψ(x, η) =
[
ΨA(x)

]
(η) = χη

(
ΨA(x)

)
= 0.

q
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3.7 Lemma. Let data A, T,Ω,Ψ be given according to 3.2(1′,2′), and assume
that the hypothesis <4>, <5>, <6> are fullfilled. Assume in addition that

<7> r⊇(T,Ψ) 6= ∅.

Then S(B) is symmetric,

(ΨA ×ΨA)(T ) = S(B), r⊇(T,Ψ) ∪ (C \ R) ⊆ r(S(B)),

and(
∀ η ∈ r⊇(T,Ψ) ∩ C+ : Ψ(·, η) 6= 0

)
or
(
∀ η ∈ r⊇(T,Ψ) ∩ C+ : Ψ(·, η) = 0

)
.

(3.11)
Assume in addition to <4>–<7> that r⊇(T,Ψ) ∩ C+ 6= ∅. If the first case in
(3.11) takes place, then the upper defect index β+ of S(B) is equal to 1. In the
second case β+ = 0 and Ψ|A×(Ω∩C+) = 0. The same statement holds true when
C+, β+ are replaced by C−, β−.

If r⊇(T,Ψ)∩R 6= ∅, then either Ψ vanishes identically or the defect index of
S(B) is (1, 1).

Proof. Using the inclusion in (3.10), the fact that Ψ(·, η) = χη ◦ ΨA, and that
ΨA is surjective (onto B), we obtain that for each η ∈ r⊇(T,Ψ)

ker(χη|B) = ΨA
(

ker Ψ(·, η)
)
⊆ ΨA

(
ran(T − η)

)
=

= ran
(
(ΨA ×ΨA)(T )− η

)
⊆ ran

(
S(B)− η

)
⊆ ker(χη|B),

and hence

ran
(
(ΨA ×ΨA)(T )− η

)
= ran

(
S(B)− η

)
= ker(χη|B), η ∈ r⊇(T,Ψ). (3.12)

By <7> the set r⊇(T,Ψ) is nonempty. Since σp(S(B)) = ∅, cf. (2.9), the known
inclusion of relations and equality of ranges implies (ΨA×ΨA)(T ) = S(B). Now
isometry of ΨA implies that S(B) is symmetric. Moreover, we see from (3.12)
that ran(S(B) − η) is closed for all η ∈ r⊇(T,Ψ), and that (by surjectivity of
ΨA we have χη|B = 0 if and only if Ψ(·, η) = 0)

codimB ran(S(B)− η) =

{
1 , Ψ(·, η) 6= 0

0 , Ψ(·, η) = 0
, η ∈ r⊇(T,Ψ). (3.13)

Remembering again that σp(S(B)) = ∅, we conclude that r⊇(T,Ψ) ⊆ r(S(B)).
Moreover, the exceptional set Υ for S(B) is empty. Hence, C \R ⊆ r(S(B)) and
the codimension of ran(S(B)− η) is constant on each component of r(S(B)).

If r⊇(T,Ψ)∩C+ = ∅, (3.11) is void. Hence, assume that r⊇(T,Ψ)∩C+ 6= ∅.
Then (3.13) shows that β+ ∈ {0, 1} and, depending whether β+ = 1 or β+ = 0,
the first or second alternative in (3.11) takes place. Let us further consider the
case β+ = 0. Then ran(S(B) − η) = B, η ∈ C+. However, ran(S(B) − η) ⊆
ker(χη|B), η ∈ Ω, and we conclude that each element of B (i.e. each function of
the form Ψ(x, ·)) vanishes on Ω ∩ C+.

The case of the lower half-plane is treated in the same way. If r⊇(T,Ψ)∩R 6=
∅, the set r(S(B)) contains a real point, and hence is connected. Thus the defect
numbers of S(B) are equal, and they are either both equal to 1 or both equal
to 0. In the latter case, it follows that each element of B vanishes on Ω \R and
by continuity everywhere. q
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3.8 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ be given according to 3.1(1−3). Assume
that

<8> the set Ω is open and for each x ∈ L the function Φ(x, ·) is analytic;

<9> the set {η ∈ Ω : Φ(·, η) ∈ ι∗(A′)} ∩ r⊆(S,Φ) has accumulation points in
each connected component of Ω \ R;

<10> the relation T := ClosA×A
[
(ι×ι)(S)

]
has defect index (1, 1) and r(T ) 6= ∅.

Then there exists a unique function Ψ : A× Ω→ C with

Ψ(·, η) ∈ A′, η ∈ Ω, Ψ(x, ·) ∈ H(Ω), x ∈ A,

which lifts Φ:
A× Ω

Ψ

''O
OOOOOO

L × Ω
Φ

//

ι×idΩ

OO

C

It holds that

dim
(
L′ + span{Φ(·, η) : η ∈ Ω}

/
L′
)
≤ ind0A, r⊆(S,Φ) ⊆ r⊆(T,Ψ).

Proof. Choose a Pontryagin space P which contains A as a closed subspace
with codimension ind0A, and choose ζ0 ∈ r(T ). The relation T , considered in
the Pontryagin space P, has finite and equal defect numbers, namely equal to
1 + ind0A. Hence, we can choose a selfadjoint extension A0 of T in P with
ζ0 ∈ ρ(A0), see, e.g., [KW98, Lemma 2.1]. Since ran(T − ζ0) ⊆ A, there exists
y0 ∈ P with

P[−] ran(T − ζ0) = A◦+̇ span{y0}. (3.14)

We use y0 to generate a family of defect elements of T : set

y(ζ) :=
(
I + (ζ − ζ0)(A0 − ζ)−1

)
y0, ζ ∈ ρ(A0).

Then y(ζ) ⊥ ran(T − ζ), ζ ∈ ρ(A0). Since y(ζ0) = y0 6∈ A◦, the set {η ∈ ρ(A0) :
y(η) ∈ A◦} intersects the connected component of ρ(A0) which contains ζ0 only
in a discrete set.

In the subsequent items 1◦– 3◦ we carry out some reductions, in 4◦ we com-
ment on uniqueness, and in 5◦ we provide an additional preliminary observation.

1◦: We show that the choice of y0 can be made such that {η ∈ ρ(A0) : y(η) ∈ A◦}
intersects each component of ρ(A0) only in a discrete set. To this end assume
that ρ(A0) has two components and that y(ζ) ∈ A◦ for all ζ in the compo-
nent which does not contain ζ0. Fix a point ζ1 in this component. The map
(I + (ζ1 − ζ0)(A0 − ζ1)−1) is a bijection of P[−] ran(T − ζ0) = A◦+̇ span{y0}
onto P[−] ran(T − ζ1). Since ρ(A0) ⊆ r(T ), the latter space contains A◦
as a proper subset. Since y(ζ1) ∈ A◦, there must exist a0 ∈ A◦ with
(I+ (ζ1− ζ0)(A0− ζ1)−1)a0 6∈ A◦. Set ỹ0 := y0 +a0, and let ỹ(ζ), ζ ∈ ρ(A0), be
the correspondingly defined defect family. Note here that, clearly, (3.14) holds
also for ỹ0 in place of y0. Then ỹ(ζ0) = ỹ0 6∈ A◦ and also

ỹ(ζ1) = y(ζ1) + (I + (ζ1 − ζ0)(A0 − ζ1)−1)a0 6∈ A◦.
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Thus we may assume for the rest of the proof that {η ∈ ρ(A0) : y(η) ∈ A◦}
intersects each component of ρ(A0) only in a discrete set.

2◦: In order to define a lifting Ψ : A × Ω → C we may define Ψ separately
for each set A × Ω′ where Ω′ is a component of Ω. This holds because each
component of Ω′ \ R is a component of Ω \ R, and hence our assumption <9>
remains valid when Ω is replaced by Ω′. Thus we may assume for the rest of
the proof that Ω is connected.

3◦: If Φ vanishes identically, the map Ψ(x, η) := 0, x ∈ A, η ∈ Ω, trivially
satisfies all requirements. Thus we may assume for the rest of the proof that Φ
does not vanish identically.

4◦: Uniqueness of a lifting Ψ is clear since ι(L) is dense in A and Ψ(·, η) is
required to be continuous.

5◦: We show that {η ∈ ρ(A0) : y(η) ∈ A◦} has no accumulation point in
C \R. Assume on the contrary that this set would accumulate in C+ (the case
of C− is treated in the same way). Nonreal spectral points of A0 are poles of
the resolvent. Hence, we find a polynomial p having σ(A0) ∩ C+ as its zero
set, such that p(ζ)y(ζ) has an analytic continuation to C+, say z(ζ). The set
{η ∈ C+ : z(η) ∈ A◦} has an accumulation point in C+, and hence z(ζ) ∈ A◦
for all ζ ∈ C+. Thus y(ζ) ∈ A◦ for all ζ ∈ ρ(A0) ∩ C+, and we have reached a
contradiction.

Now we come to the actual construction of Ψ. The facts that y(ζ) ⊥ ran(T −ζ),
ζ ∈ ρ(A0), and that T has defect index 1 + ind0A in P, lead to

P[−] ran(T − ζ) = A◦+̇ span{y(ζ)}, ζ ∈ ρ(A0), y(ζ) 6∈ A◦.

We conclude that (note here that ρ(A0) is symmetric w.r.t. the real line)

x ∈ ran(T − ζ) ⇔ x ⊥ y(ζ), x ∈ A, ζ ∈ ρ(A0), y(ζ) 6∈ A◦. (3.15)

Choose b0 ∈ L with Φ(b0, ·) 6= 0, and consider the set

N := r⊆(S,Φ) ∩
{
η ∈ Ω : Φ(·, η) ∈ ι∗(A′)

}
∩ (C \ R)∩

∩ ρ(A0) ∩
{
η ∈ Ω : Φ(b0, η) 6= 0

}
∩
{
η ∈ ρ(A0) : y(η) 6∈ A◦

}
.

From our assumption <9> and 5◦ it follows that this set has accumulation
points in each component of Ω \ R.

If η ∈ r⊆(S,Φ) ∩ {η ∈ Ω : Φ(·, η) ∈ ι∗(A′)}, then (3.3) gives ran(T − η) ⊆
ker Φ̃η. For η ∈ N we have Φ̃η(ιb0) = Φ(b0, η) 6= 0 and hence ιb0 6∈ ran(T − η).
The equivalence (3.15) yields

[ιb0, y(η)]P 6= 0, η ∈ N,

and

x− [x, y(η)]P
[ιb0, y(η)]P

ιb0 ∈ ran(T − η), x ∈ A, η ∈ N.

We conclude that

Φ̃η(x) =
[x, y(η)]P

[ιb0, y(η)]P
· Φ(b0, η), x ∈ A, η ∈ N. (3.16)
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For a ∈ L and x ∈ A consider the quotients

pa :=
( Φ(a, ·)

Φ(b0, ·)

)#

and qx :=
[y(·), x]P

[y(·), ιb0]P
.

Then pa ∈ H(Ω#,C∞) and the divisor of pa can be estimated from below by

dpa = dΦ(a,·)# − dΦ(b0,·)# ≥ −dΦ(b0,·)# .

Since the nonreal spectral points of A0 are poles of the resolvent, we have
qx ∈ H(C \ R,C∞). Denoting

eA0
(η) :=

{
−pole order of (A0 − η)−1 at η , η ∈ σ(A0) \ R
0 , η ∈ ρ(A0) \ R

we can estimate the divisor of qx from below by

dqx = d[y(·),x]P − d[y(·),ιb0]P ≥ eA0
− d[y(·),ιb0]P .

Let a ∈ L. By (3.16) the functions pa and qιa coincide on N#. Since N#

accumulates in each component of Ω# ∩ (C \ R), they coincide on all of Ω# ∩
(C \R), i.e., are analytic extensions of each other. This shows that the quotient
qιa has an extension Qιa ∈ H(Ω# ∪ (C \ R),C∞). The divisor of this extension
can be estimated from below by3

dQιa ≥ 1(C\R)\Ω# ·
(
eA0
− d[y(·),ιb0]P

)
− 1Ω# · dΦ(b0,·)# . (3.17)

Notice that the right side is independent of a ∈ L.
Now Theorem 2.15, (iii), applies and yields that for each x ∈ A the quotient

qx has an extension Qx ∈ H(Ω# ∪ (C \ R),C∞) whose divisor is bounded from
below by the right side of (3.17). Set

Ψ(x, ·) := Q#
x · Φ(b0, ·), x ∈ A.

Then Ψ(x, ·) ∈ H(Ω,C), x ∈ A, and

Ψ(ιa, η) =
[
p#
a · Φ(b0, ·)

]
(η) = Φ(a, η), a ∈ L, η ∈ Ω.

Remember here that Φ(b0, ·) vanishes only on a discrete subset of Ω. By (3.16)
we have

Ψ(x, η) =
[
q#
x · Φ(b0, ·)

]
(η) = Φ̃η(x), x ∈ A, η ∈ N,

and hence Ψ(·, η) ∈ A′, η ∈ N . Since N accumulates in Ω, we may apply
Lemma 2.16 to conclude that Ψ(·, η) ∈ A′, η ∈ Ω. This implies that

dim
(
L′ + span{Φ(·, η) : η ∈ Ω}

/
L′
)
≤ dim

(
ι∗(A′)

/
L′
)

= ind0A.

The inclusion r⊆(S,Φ) ⊆ r⊆(T,Ψ) now follows from (3.3). q

3.9 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ be given according to 3.1(1−3), and
assume that the hypothesis <8>,<9>,<10>, are fullfilled. Let Ψ be the lifting
of Φ constructed in Lemma 3.8. If

3Here 1E denotes the characteristic function of the set E.
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<11> L′ ∩ span{Φ(·, η) : η ∈ Ω} is dense in L′,

then the following statements hold.

(i) For each subset L ⊆ Ω which has accumulation points in each connected
component of Ω, we have ⋂

η∈L
ker Ψ(·, η) ⊆ A◦. (3.18)

(ii) r⊆(T,Ψ) = Ω, r=(T,Ψ) ⊇ r(T ) ∩
{
η ∈ Ω : Φ(·, η) 6= 0

}
. (3.19)

(iii) For each subset L′ ⊆ C which has accumulation points in each of the
half-planes C± intersecting Ω, we have⋂

η∈L′
ran(T − η) ⊆ A◦. (3.20)

If, in addition to <8>–<11>,

<12> L′ + span{Φ(·, η) : η ∈ Ω} = ι∗(A′),

then σp(T ) = ∅, mulT = {0}, and for sets L and L′ as above⋂
η∈L

ker Ψ(·, η) = {0},
⋂
η∈L′

ran(T − η) = {0}. (3.21)

Proof. Assume that <11> holds. Using analyticity and the same argument as
in Lemma 3.5, it follows that⋂

η∈L
ker Ψ(·, η) =

⋂
η∈Ω

ker Ψ(·, η) =
[

span{Ψ(·, η) : η ∈ Ω}
]⊥ ⊆

⊆
[
(ι∗|A′)−1

(
L′ ∩ span{Φ(·, η) : η ∈ Ω}

)]⊥
=

=
[
(ι∗|A′)−1(L′)

]⊥
= A◦.

By means of Lemma 3.8 and the just proved (3.18), all assumptions of
Lemma 3.6 are fullfilled. Applying this lemma yields r⊆(T,Ψ) = Ω. If
η ∈ r(T ) ∩ Ω, the codimension of ran(T − η) is equal to 1. As we just showed,
this range is contained in ker Ψ(·, η). Hence, provided that Ψ(·, η) 6= 0, we must
have ran(T − η) = ker Ψ(·, η). This is (3.19).

It remains to prove (3.20). Assume that L′ has an accumulation point in
C+. Then (remember here that the resolvent of any selfadjoint extension is
meromorphic in C+ and hence we may apply the identity theorem in H(C+,C∞),
see, e.g., [Rem91, p.319f])⋂

η∈L′∩C+

ran(T − η) ⊆
⋂

L′∩r(T )∩C+

ran(T − η) =
⋂

r(T )∩C+

ran(T − η) ⊆

⊆
⋂

Ω∩r(T )∩C+

ran(T − η) ⊆
⋂

Ω∩r(T )∩C+

ker Ψ(·, η). (3.22)
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In the same way, we obtain
⋂
η∈L′∩C− ran(T − η) ⊆

⋂
Ω∩r(T )∩C− ker Ψ(·, η)

provided that L′ has an accumulation point in C−. Our assumption en-
sures that we may put together these inclusions and apply (3.18) with the set
L := Ω ∩ r(T ) ∩ (C+ ∪ C−).

Assume that in addition <12> holds. Then {Ψ(·, η) : η ∈ Ω} is point sepa-
rating on A◦. By analyticity, the family {Ψ(·, η) : η ∈ L} has the same property.
Using the already proved inclusion (3.18), it follows that

⋂
η∈L ker Ψ(·, η) = {0}.

The argument which led to (3.22) thus also gives
⋂
η∈L′ ran(T − η) = {0}.

From this we get mulT = {0}. Moreover, if η ∈ C and x ∈ ker(T − η), then
x ∈ ran(T − ζ), ζ ∈ C \ {η}, and it follows that x = 0. q

3.10 Lemma. Let data L, S, 〈ι,A〉,Ω,Φ be given according to 3.1(1−3), and
assume that the hypothesis <8>–<12> are fullfilled. Let Ψ be the lifting of Φ
constructed in Lemma 3.8, and let B := ran ΨA (remember that, by (3.21), ΨA
is injective). Assume, in addition to <8>–<12> that

<13> there is no nonempty open subset O of Ω, such that Φ|L×O = 0.

Then B is an Ω-space. In particular, Ω ⊆ r(T ) and r=(T,Ψ) = {η ∈ Ω :
Φ(·, η) 6= 0}.

Proof. Our aim is to apply Proposition 2.21. We know from the proof of
Lemma 3.9 that the assumptions < 4 >–< 6 > of Lemma 3.6 are fullfilled.
Thus, B is an reproducing kernel almost Pontryagin space of analytic functions
on Ω. Our present assumption <13> yields that supp dB is a discrete subset of
Ω.

Since T has no eigenvalues, we have C \ R ⊆ r(T ). The relation (3.19)
together with <13> shows that the assumption <7> of Lemma 3.7 is fullfilled.
In fact, if Ω ∩ C+ 6= ∅ then r=(T,Ψ) ∩ C+ 6= ∅, and the same for the lower
half-plane. Lemma 3.7 implies that S(B) is symmetric and isomorphic to T via
ΨA. If Ω ∩C+ 6= ∅, the second alternative in (3.11) is ruled out by <13>, and
it follows that β+ = 1. The same holds for the lower half-plane.

Now Proposition 2.21 applies and yields that B is an Ω-space. Since S(B)
and T are isomorphic, the statements for T follow. q

4 Embeddings into spaces of analytic functions

The following version of directing functionals should be thought of as a general-
isation of universal directing functionals. Remember the definition of r⊆(S,Φ)
and rapp

⊇ (S,Φ; Ω) from Definitions 2.7 and 2.8.

4.1 Definition. Let L be an inner product space with ind− L <∞, let S be a
symmetric linear relation in L, let Ω ⊆ C, and let Φ : L×Ω→ C. We call Φ an
Ω-directing functional for S, if:

(Ωdf1) The set Ω is open and nonempty. For each x ∈ L the function
Φ(x, ·) : Ω→ C is analytic.

(Ωdf2) For each ζ ∈ Ω the function Φ(·, ζ) : L → C is linear.

(Ωdf3’) The set r⊆(S,Φ) has accumulation points in each connected com-
ponent of Ω \ R.
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(Ωdf3”) The set rapp
⊇ (S,Φ; Ω) has nonempty intersection with both half-

planes C+ and C−.

(Ωdf4) There is no nonempty open subset O of Ω, such that Φ|L×O = 0.

♦

Note that (Ωdf3”) implicitly contains that Ω intersects both half-planes C±.

4.2 Remark. Let us pause and revisit the discussions in §1.1.

– We seek for representations in almost Pontryagin spaces. Hence, we restrict
from the start to spaces L with finite index of negativity.

– We want to have the representations of S to be established explicitly by Φ.
Hence, Φ(x, ·) is defined and analytic on all of Ω.

– We aim towards an “if and only if” statement. Hence, we use the approximative
version (Ωdf3”).

– The conditions known from (udf3’) and (udf3”) are assumed only on sufficiently
large sets. Weakening the first is possible by analyticity, weakening the second
by constancy of defect on half-planes.

♦

Our aim is to determine when presence of an Ω-directing functional for S gives
rise to a representation of S in an Ω-space (remember Definition 2.19). The
next theorem is the main result of this paper. We give conditions which ensure
that such a representation exists and is established by Φ. It is not difficult to
show that these conditions are also necessary. This is deferred to Proposition 4.6
below, where a slightly refined converse statement is given.

4.3 Theorem. Let L be an inner product space with ind− L < ∞, let S be a
symmetric linear relation in L, and let Ω ⊆ C. Assume that Φ : L × Ω → C
is an Ω-directing functional for S, and that there exists a subset M ⊆ r⊆(S,Φ)
which has accumulation points in each connected component of Ω \R, such that
(notation L′ and T (L′) as in Definition 2.4 and 2.5)

(i) dim
([
L′ + span{Φ(·, η) : η ∈M}

]/
L′
)
<∞,

(ii) L′ ∩ span
{

Φ(·, ζ) : ζ ∈ r⊆(S,Φ),Φ(·, ζ) ∈ L′ + span{Φ(·, η) : η ∈M}
}

is
dense in L′ w.r.t. T (L′).

Then there exists a unique reproducing kernel almost Pontryagin space B, such
that the assignment ΦL : x 7→ Φ(x, ·) maps L isometrically onto a dense subspace
of B. This space B is an Ω-space and ClosB

[
(ΦL×ΦL)(S)

]
= S(B). Moreover,

[ΦL]∗(B′) = L′ + span
{

Φ(·, η) : η ∈M
}

= L′ + span
{

Φ(·, η) : η ∈ Ω
}
, (4.1)

ind0 B = dim
([
L′ + span{Φ(·, η) : η ∈ Ω}

]/
L′
)
. (4.2)

4.4 Remark. In the proof we will not use the full strength of (Ωdf3”). It is only
needed that rapp

⊇ (S,Φ;M) has nonempty intersection with both half-planes C+

and C−. ♦
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4.5 Remark. Notice the balance between the conditions (i) and (ii): Condition
(i) gets stronger when M gets larger, whereas (ii) gets stronger when M gets
smaller. Hence, it is important that (i) and (ii) hold with a common set M .

♦

Proof of Theorem 4.3. Choose a subset M according to the assumption of the
theorem, and choose an almost Pontryagin space completion 〈ι,A〉 of L with

ι∗(A′) = L′ + span
{

Φ(·, η) : η ∈M
}
. (4.3)

This is possible by (i) and [Wor14, Theorem A.15]. Then the data
L, S, 〈ι,A〉,Ω,Φ,M qualifies according to 3.1(1−4).

1◦ Applying Lemma 3.4: We have M ⊆ r⊆(S,Φ), and by (Ωdf4) and analyticity
the set {η ∈ Ω : Φ(·, η) = 0} is a discrete subset of Ω. Therefore the set

M0 := M ∩ r⊆(S,Φ) ∩
{
η ∈ Ω : Φ(·, η) 6= 0

}
has accumulation points in each component of Ω \ R. Since Ω intersects both
half-planes C+ and C−, the set M0 in particular contains infinitely many points
of each of these half-planes. Thus <1> is satisfied for both half-planes and
Lemma 3.4 is applicable. Since rapp

⊇ (S,Φ;M) ∩ C± 6= ∅, the relation T :=
ClosA[(ι×ι)(S)] has defect index (1, 1). For later reference, note that Lemma 3.4
also gives

ran(T − η) = ker Φ̃η 6= A, η ∈ rapp

⊇ (S,Φ;M) \ R. (4.4)

2◦ Applying Lemma 3.5: Set

M ′ := r⊆(S,Φ) ∩
{
η ∈ Ω : Φ(·, η) ∈ ι∗(A′)

}
, M ′′ := M.

Then <2> holds by assumption (ii) of the theorem, and <3> by the choice
〈ι,A〉, cf. (4.3). It follows that (note here that M ′′ ⊆M ′)⋂

η∈M ′
ker Φ̃η = {0}, ∅ 6= rapp

⊇ (S,Φ;M) ∩ C± ⊆ r(T ). (4.5)

3◦ Applying Lemma 3.8: The required hypothesis <8> holds by (Ωdf1), <9>
since M ⊆ M ′, and <10> by what we showed above. Hence, we find a lifting
Ψ : A × Ω → C of Φ with the properties stated in Lemma 3.8. We have
Φ(·, η) = ι∗Ψ(·, η), η ∈ Ω, and hence

L′ + span
{

Φ(·, η) : η ∈ Ω
}
⊆ ι∗(A′) = L′ + span

{
Φ(·, η) : η ∈M

}
. (4.6)

It follows that equality holds throughout.

4◦ Applying Lemma 3.6: Clearly the data A, T,Ω,Ψ qualifies according to
3.2(1′,2′). Let us check the hypothesis <4>, <5>, <6>. First, by (4.5),⋂

η∈Ω

ker Ψ(·, η) ⊆
⋂
η∈M ′

ker Ψ(·, η)︸ ︷︷ ︸
Φ̃η

= {0},

Second, Ψ(x, ·) ∈ H(Ω) by construction. Third, the first set in <6> equals Ω
and the second contains M .
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It follows that the space

B :=
{

Ψ(x, ·) : x ∈ A
}

becomes a reproducing kernel almost Pontryagin space and that ΨA : A → B is
an isomorphism; remember here that ker ΨA =

⋂
η∈Ω ker Ψ(·, η) = {0}.

We may view B as a completion of L via ΦL. To be precise, 〈ΨA ◦ ι,B〉 is
an almost Pontryagin space completion of L which is isomorphic to 〈ι,A〉. Now
(4.1) follows from (4.6) since ΨA ◦ ι = ΦL, and (4.2) follows from (4.1) and
[Wor14, Theorem A.15].

5◦ Applying Lemma 3.7: As we have seen in step 1◦, cf. (4.4), it holds that

∅ 6= rapp

⊇ (S,Φ;M) \ R ⊆ r=(T,Ψ) ∩ {η ∈ Ω : Ψ(·, η) 6= 0}.

In particular, <7> is fullfilled. We conclude that

S(B) = (ΨA ×ΨA)(T ) = (ΨA ×ΨA)
(

ClosA[(ι× ι)(S)]
)

= ClosA
[
((ΨA ◦ ι)× (ΨA ◦ ι))(S)

]
= ClosA

[
(ΦL × ΦL)(S)

]
.

Moreover, being isomorphic to T , the operator S(B) has defect index (1, 1).

6◦ Applying Lemma 3.10: Hypothesis <11> holds by assumption (ii) of the
theorem, <12> holds by (4.6), and <13> by (Ωdf4). It follows that B is an
Ω-space.

7◦ Uniqueness: Assume that B1 and B2 are reproducing kernel almost Pontrya-
gin spaces such that ΦL maps L isometrically onto dense subspaces of each of
them. Then the inner products [·, ·]B1 and [·, ·]B2 coincide on the linear space

M :=
{

ΦL(x) : x ∈ L
}
.

Hence, an inner product is well-defined on M by setting [f, g]M := [f, g]Bi ,
f, g ∈ M, i ∈ {1, 2}. The spaces B1 and B2 both contain 〈M, [·, ·]M〉 isometri-
cally as a dense linear subspace and hence, by the uniqueness part of [Wor14,
Theorem 4.1], are equal. q

Next we show the promised converse to Theorem 4.3.

4.6 Proposition. Let L be an inner product space. Let Ω ⊆ C be open and
nonempty, B a reproducing kernel almost Pontryagin space of analytic functions
on Ω, and ι : L → B a linear and isometric map whose range is dense in B.
Define a map Φ : L × Ω→ C by (χη denotes point evaluation)

Φ(x, η) := χη
(
ι(x)

)
, x ∈ L, η ∈ Ω.

Then:

(i) Φ satisfies (Ωdf1) and (Ωdf2).

(ii) Assume that M ⊆ Ω has accumulation points in each component of Ω.
Then L′ + span

{
Φ(·, η) : η ∈M

}
= ι∗(B′), in particular,

dim
([
L′ + span{Φ(·, η) : η ∈M}

]/
L′
)

= ind0 B <∞,

and the set L′ ∩ span{Φ(·, η) : η ∈M} is dense in L′ w.r.t. T (L′).
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Let, in addition, S be a linear relation in L. Then:

(iii) If (ΦL × ΦL)(S) ⊆ S(B), then r⊆(S,Φ) = Ω, in particular, Φ satisfies
(Ωdf3’).

(iv) If supp dB is discrete, then Φ satisfies (Ωdf4).

(v) If B is an Ω-space and ClosB
[
(ΦL × ΦL)(S)

]
= S(B), then

rapp

⊇ (S,Φ; Ω) = Ω \ supp dB.

Provided that Ω intersects both half-planes, Φ is an Ω-directing functional.

Proof. Item (i) is obvious. For the proof of (ii), let M ⊆ Ω be given and assume
that M accumulates in each component of Ω. By analyticity,⋂

η∈M
ker
(
χη|B

)
= {0}, (4.7)

whence in particular {χη|B : η ∈M} is point separating on B◦. By its definition,
Φ(·, η) = ι∗(χη|B), and we can invoke [Wor14, Proposition A.3, Lemma A.17]
to conclude that

ι∗(B′) = L′ + span
{

Φ(·, η) : η ∈M
}
.

To show the asserted density property we repeat an argument which already
appeared in the proof of [Wor14, Proposition 4.3]. The relation (4.7) shows that
span{χη|B : η ∈M} is w∗-dense in B′. By reflexivity and convexity it is thus also
dense w.r.t. the norm of B′. Choose η1, . . . , ηm such that {χηi |B : i = 1, . . . ,m}
is linearly independent and B′ = Bo+̇ span{χηi |B : i = 1, . . . ,m}, and denote by
P the corresponding projection of B′ onto Bo. Then

Bo ∩ span
{
χη|B : η ∈M

}
= P

(
span

{
χη|B : η ∈M

})
,

and continuity of P implies that this space is norm-dense in Bo. Applying the
homeomorphism ι∗ yields that L′ ∩ span{Φ(·, η) : η ∈M} is T (L′)-dense in L′.

Item (iii) is again obvious. For (iv) assume that supp dB is discrete, and
let O ⊆ Ω be open and nonempty. Choose η ∈ O \ supp dB, and f ∈ B with
f(η) 6= 0. Since ι(L) is dense in B, we find x ∈ L with Φ(x, η) = (ιx)(η) 6= 0.

We come to the proof of (v). Let η ∈ Ω \ supp dB and x ∈ ker Φ(·, η). Then
(ιx)(η) = 0, and hence ιx ∈ ran(S(B) − η) = ClosB ι[ran(S − η)]. Choose
xn ∈ ran(S − η) with limn→∞ ιxn = ιx in the norm of B, then

lim
n→∞

[xn, xn]L = lim
n→∞

[ιxn, ιxn]B = [ιx, ιx]B = [x, x]L,

lim
n→∞

[xn, y]L = lim
n→∞

[ιxn, ιy]B = [ιx, ιy]B = [x, y]L, y ∈ L,

lim
n→∞

Φ(xn, η) = lim
n→∞

(ιxn)(η) = (ιx)(η) = Φ(x, η), η ∈ Ω,

and we see that η ∈ rapp
⊇ (S,Φ; Ω).

Assume that η ∈ rapp
⊇ (S,Φ; Ω)∩supp dB. Let x ∈ L, then Φ(x, η) = (ιx)(η) =

0. Choose a sequence (xn)n∈N according to the definition of rapp
⊇ (S,Φ; Ω). Then

limn→∞ ιxn = ιx in the norm of B, and we conclude that ιx ∈ ran(S(B)− η) =

kerχ
(dB(η))
η . This contradicts the fact that kerχ

(dB(η))
η is not dense in B. q
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In many applications, the space L carries an additional algebraic structure.

4.7 Definition. Let L be an inner product space and let .# be a conjugate-
linear involution on L which is anti-isometric, i.e., satisfies

[x#, y#]L = [y, x]L, x, y ∈ L.

If Ω ⊆ C and Φ : L × Ω→ C, then we call Φ real w.r.t. .#, if4

Ω = Ω# and Φ(x#, ·) = [Φ(x, ·)]#, x ∈ L.

♦

The following result is the supplement to Theorem 4.3 taking care of such invo-
lutions.

4.8 Proposition. In the situation and under the hypothesis of Theorem 4.3,
assume in addition that L carries a conjugate linear and anti-isometric involu-
tion .#, and that Φ is real w.r.t. this involution. Then the space B constructed
in Theorem 4.3 is invariant under .#, and .#|B is anti-isometric.

Proof. The family F := {χη|B : η ∈ Ω} is a point-separating subfamily of B′.
Let f ∈ B and let (xn)n∈N be a sequence of elements of L with limn→∞ ΦL(xn) =
f in the norm of B. Then

lim
n,m→∞

[
ΦL(xn)− ΦL(xm),ΦL(y)

]
B = 0, y ∈ L,

lim
n,m→∞

[
ΦL(xn)− ΦL(xm),ΦL(xn)− ΦL(xm)

]
B = 0,

lim
n,m→∞

χη
(
ΦL(xn)− ΦL(xm)

)
= 0, η ∈ Ω.

Using that .# is anti-isometric, that L# = L, and that Ω# = Ω, we obtain

lim
n,m→∞

[
ΦL(x#

n )− ΦL(x#
m),ΦL(y)

]
B = 0, y ∈ L,

lim
n,m→∞

[
ΦL(x#

n )− ΦL(x#
m),ΦL(x#

n )− ΦL(x#
m)
]
B = 0,

lim
n,m→∞

χη
(
ΦL(x#

n )− ΦL(x#
m)
)

= 0, η ∈ Ω.

By [Wor14, Proposition A.5], this implies that (ΦL(x#
n ))n∈N is a Cauchy-

sequence in the norm of B. Thus it converges to some element of B, say,
h := limn→∞ΦL(x#

n ). Continuity of point-evaluations implies that h = f#,
and we see that f# ∈ B.

Let f, g ∈ B be given, and choose approximating sequences (xn)n∈N, (yn)n∈N
as above. Then

[f, g]B = lim
n→∞

[
ΦL(xn),ΦL(yn)

]
B = lim

n→∞
[xn, yn]L = lim

n→∞
[y#
n , x

#
n ]L = [g#, f#]B.

q
4Observe the double meaning of the symbol .#. One, it is the given involution on the space

L, two, it is the natural involution present on CΩ, cf. (2.1). This notice will apply throughout.
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Matching with the commonly used conditions

The results in the literature providing representations in spaces of entire func-
tions use two kinds of assumptions: one, that the closure T of S has defect
index (1, 1) and, two, that the directing functional Φ is also defined on R and
characterises the range of (S − η) also for real points.

In the following we deduce a result based on similar assumptions, instead
of (i) and (ii) of Theorem 4.3. This viewpoint also explains very clearly the
different roles of assumptions on real and nonreal points η, cf. Remark 4.14.
In order to point out the essentials and directly match the results from the
literature, we use characterisation of ranges as in (udf3) instead of the pair of
conditions (Ωdf3’) and (Ωdf3”).

4.9 Definition. Let L be an inner product space with ind− L <∞, let S be a
symmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω → C. We call Φ
a strong Ω-directing functional for S, if Ω ∩ C± 6= ∅, Φ satisfies (Ωdf1), (Ωdf2),
(Ωdf4) and:

(Ωdf3) Ω \ R ⊆ r=(S,Φ).

♦

4.10 Theorem. Let L be an inner product space with ind− L < ∞, let S be a
symmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω → C be a strong
Ω-directing functional for S. Assume that there exists an almost Pontryagin
space completion 〈ι,A〉 of L, such that

(i) T := ClosA×A
[
(ι× ι)(S)

]
has defect index (1, 1);

(ii)
⋂
η∈C\R ran(T − η) ⊆ A◦.

Then the function ΦL : x 7→ Φ(x, ·) establishes a representation of S in an
Ω-space.

Clearly, the first condition is an assumption on nonreal points. Interestingly, the
second condition corresponds to the assumption on real points in the classical
case, see Remark 4.14 below.

In the proof we use two lemmata. In the first one we rewrite condition (i)
of Theorem 4.10.

4.11 Lemma. Let Φ be a strong Ω-directing functional for S, let 〈ι,A〉 be an
almost Pontryagin space completion of L, and set T := ClosA×A

[
(ι × ι)(S)

]
.

Then T has defect index (1, 1) if and only if Φ(·, η) ∈ ι∗(A′), η ∈ Ω \ R.

Proof. The proof is based on a non-approximative variant of (3.4) and (3.5):

η ∈ r⊇(S,Φ), ran(T − η) closed =⇒ codimA ran(T − η) ≤ 1 (4.8)

η ∈ r⊇(S,Φ), ran(T − η) closed, codimA ran(T − η) = 1

=⇒ η ∈ r⊆(S,Φ),Φ(·, η) ∈ ι∗(A′) \ {0}, ran(T − η) = ker Φ̃η (4.9)

Their proof is similar as in Lemma 3.3, even simpler: For (4.8) note that the
inclusion ran(S − η) ⊇ ker Φ(·, η) implies ran(T − η) ⊇ ClosA ι[ker Φ(·, η)] and
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the right side has codimension at most 1. For (4.9) consider again the projection
ϕ introduced in the proof of (3.4), and observe that

ι
[

ker Φ(·, η)
]
⊆ ran(T − η) = kerϕ,

whence Φ(·, η) = ι∗ϕ.
We come to the actual proof of the present lemma. Assume first that T

has defect index (1, 1). By (4.8) we have codimA ran(T − η) ≤ 1, η ∈ Ω \ R.
Hence, the exceptional set from Theorem 2.11 does not intersect Ω \ R and
codimA ran(T − η) = 1, η ∈ Ω \ R. Now (4.9) implies

Φ(·, η) ∈ ι∗(A′) \ {0}, ran(T − η) = ker Φ̃η, η ∈ Ω \ R. (4.10)

Conversely, assume that Φ(·, η) ∈ ι∗(A′), η ∈ Ω \ R. By (3.3) we have ker(T −
η) ⊆ ker Φ̃η, and by (Ωdf4) the set {η ∈ Ω\R : Φ̃η = 0} is discrete. We conclude
that codimA ran(T −η) ≥ 1 with possible ecxception of a discrete set. However,
by (4.8), for such points in fact codimA ran(T − η) = 1. Now we evaluate the
defect indices of T with (2.7). q

From this lemma, we have an immediate corollary.

4.12 Corollary. In the situation of Theorem 4.10 there exists 〈ι,A〉 such that
the condition Theorem 4.10, (i), holds, if and only if

dim
([
L′ + span{Φ(·, η) : η ∈ Ω \ R}

]/
L′
)
<∞. (4.11)

If (4.11) holds, the set of all completions satsfying Theorem 4.10, (i), has a
smallest element (w.r.t. the partial order [SW12, Definition 6.2(ii)]), namely,
the completion 〈ι0,A0〉 with

ι∗0(A′0) = L′ + span{Φ(·, η) : η ∈ Ω \ R}. (4.12)

In the second lemma, we investigate condition (ii) of Theorem 4.10.

4.13 Lemma. Assume that (4.11) holds. Then the following are equivalent.

(i) There exists a completion 〈ι,A〉 which satisfies Theorem 4.10, (i) and (ii).

(ii) Every completion that satisfies Theorem 4.10, (i), also satisfies (ii).

(iii) The smallest completion with Theorem 4.10, (i), satisfies⋂
η∈Ω\R

ran(T − η) = {0}.

Proof. We need to show “(i) ⇒ (ii), (iii)”. Hence, assume that a completion
〈ι,A〉 is given which satisfies Theorem 4.10, (i) and (ii). Set

D :=
⋂

η∈Ω\R

ran(T − η), B := A/D, ιB := π ◦ ι,

where π : A → B is the canonical projection. Consider B as an almost Pon-
tryagin space being endowed with the inherited inner product and the factor
topology.
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The tuple 〈ιB,B〉 is a completion of L. Due to the choice of D there exist
linear functionals Φ̃′η : B → C, η ∈ Ω \ R, with

L ι //

ιB ��@
@@

@@
@@

@ A

π

��

Φ̃η // C

B
Φ̃′η

??~
~

~
~

Since B carries the final topology, we have Φ̃′η ∈ B′. Moreover,

ι∗B(Φ̃′η) = Φ̃′η ◦ ιB = Φ̃′η ◦ π ◦ ι = Φ̃η ◦ ι = Φ(·, η),

whence Φ(·, η) ∈ ι∗B(B′). Thus 〈ιB,B〉 satisfies Theorem 4.10, (i). Remembering
(4.10), we have

π−1
( ⋂
η∈Ω\R

ker Φ̃′η

)
=

⋂
η∈Ω\R

ker Φ̃η = D = kerπ,

and hence ⋂
η∈Ω\R

ker Φ̃′η = {0}.

Now let 〈ι0,A0〉 be the completion with (4.12). The fact that 〈ι0,A0〉 is the
smallest w.r.t. the order [SW12, Definition 6.2], provides a surjective, contin-
uous, and open map π0 : B → A0 with ι0 = π0 ◦ ιB. The right half of the
diagram

L ιB //

ι0 ��?
??

??
??

? B
π0

��

Φ̃′η // C

B
Φ̃0,η

??��������

commutes on ran ιB since

Φ̃′η ◦ ιB = Φ(·, η) = Φ̃0,η ◦ ι0 = (Φ̃0,η ◦ π0) ◦ ιB. (4.13)

By continuity it thus commutes on all of B. This yields

kerπ0 ⊆
⋂

η∈Ω\R

ker Φ̃′η = {0}

and we see that 〈ιB,B〉 and 〈ι0,A0〉 are isomorphic. Thus, item (iii) of the
present lemma holds.

To show item (ii), let 〈ιC , C〉 be an arbitrary completion with Theorem 4.10,
(i), and let πC : C → A0 be surjective, continuous, and open with ιC = ι0 ◦ πC .
Then, again using (4.13) and continuity, we obtain Φ̃C,η = Φ̃0,η ◦ πC . It follows
that ⋂

η∈Ω\R

ker Φ̃C,η = π−1
C

( ⋂
η∈Ω\R

ker Φ̃0,η

)
= π−1

C ({0}) ⊆ C◦.

q

It is now easy to deduce Theorem 4.10.
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Proof of Theorem 4.10. Clearly, a strong Ω-directing functional is also an Ω-
directing functional. We are going to apply Theorem 4.3 with M := Ω \ R. By
means of Corollary 4.12, the present assumption (i) implies that Theorem 4.3,
(i), is satisfied.

To show that Theorem 4.3, (ii), holds, we use the argument from the proof
of Proposition 4.6, (ii). Consider the completion 〈ι0,A0〉 with (4.12). Choose
η1, . . . , ηm ∈ Ω \ R such that {Φ(·, ηi) : i = 1, . . . ,m} is linearly independent
and

A′0 = Ao0+̇ span{Φ̃0,ηi : i = 1, . . . ,m},
and denote by P the corresponding projection of A′0 onto Ao0. Then

Ao0 ∩ span{Φ̃0,ηi : η ∈ Ω \ R} = P
(

span{Φ̃0,ηi : η ∈ Ω \ R}
)
.

The fact that
⋂
η∈Ω\R ker Φ̃0,η = {0} means that span{Φ̃0,ηi : η ∈ Ω \ R} is

dense in A′0, whence its image under P is dense in Ao0. Passing to L′ with the
isomorphism ι∗0 yields that indeed Theorem 4.3, (ii), is satisfied. q

4.14 Remark. Condition (i) in Theorem 4.10 is an assumption on nonreal points
η. Contrasting this, (ii) actually corresponds to assumptions on real points
(also if it does not look like this): instead of (ii) we could equally well use
assumptions on real points in the definition of a directing functional similar as
in Definition 1.5.

Proving this fact would require a sufficiently general version of Theorem 1.6,
namely, for linear relations in almost Pontryagin spaces. Such a version is not yet
available, and establishing it is beyond the scope of the present paper. However,
for the positive definite case the necessary machinery would be available. ♦

The above remark leads to a proof of Proposition 1.9.

Proof of Proposition 1.9. Let 〈ι,A〉 be the Hilbert space completion of L. By
our present assumption the relation T := ClosA×A(ι × ι)(S) has defect index
(1, 1) and mulT = {0}. By Lemma 4.11, therefore, Φ(·, η) ∈ ι∗(A′), η ∈ Ω \ R.
Since A is positive definite we have C\R ⊆ r(T ). The assumptions of Lemma 3.8
are fullfilled, and we find a lifting Ψ : A × Ω → C with the properties stated
there. By (4.9) we have r=(T,Ψ) ⊇ Ω \ R.

Now use Theorem 1.6: Let µ be a positive Borel measure on R such that

[x, y]L =

∫
R

Φ(x, t)Φ(y, t) dµ(t), x, y ∈ L.

If (xn)n∈N is a sequence in L such that limn→∞ ιxn = x in A, then (Φ(xn, ·))n∈N
is a Cauchy-sequence in L2(µ). However, by continuity of Ψ(·, η),

lim
n→∞

Φ(xn, η) = lim
n→∞

Ψ(ιxn, η) = Ψ(x, η), η ∈ Ω.

Thus limn→∞Φ(xn, ·) = Ψ(x, ·) in L2(µ). It follows that

[x, y]A =

∫
R

Ψ(x, t)Ψ(y, t) dµ(t), x, y ∈ A. (4.14)

Now consider x ∈
⋂
η∈Ω\R ran(T − η). Then Ψ(x, η) = 0, η ∈ Ω \ R, and hence

also for η ∈ R. The relation (4.14) yields x = 0.
The proof is finished by referring to Theorem 4.10 and (2.11) (or to the

correct version of [GG97, Theorem II.8.5]).

q
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5 Ω-space completions

The purely geometric version of an Ω-space reads as:

5.1 Definition. Let Ω be an open and nonempty subset of C. We call an
inner product space L an Ω-inner product space, if it satisfies the following
axioms.

(Ω-IP1) The elements of L are analytic functions on Ω.

(Ω-IP2) supp dL is a discrete subset of Ω.

(Ω-IP3) There exists η ∈ C \ R such that η, η ∈ Ω, dL(η) = dL(η) = 0, and

∀ ξ ∈ {η, η} ∀ f ∈ L, f(ξ) = 0 :
f(ζ)

ζ − ξ
∈ L.

(Ω-IP4) There exists η ∈ C \ R such that (Ω-IP3) holds and

∀ f, g ∈ L, f(η) = g(η) = 0 :[ζ − η
ζ − η

f(ζ),
ζ − η
ζ − η

g(ζ)
]
L

=
[
f(ζ), g(ζ)

]
L.

♦

For an Ω-inner product space L the following question appears naturally:

Provided L has a reproducing kernel space completion, is this com-
pletion an Ω-space ?

It is a consequence of Theorem 4.3 that the answer is affirmative.

5.2 Proposition. Let Ω ⊆ C be open and nonempty, and let L be an Ω-
inner product space with ind− L < ∞. Then L has a reproducing kernel space
completion if and only if there exists a subset M of Ω which has accumulation
points in each component of Ω\R and is such that (i), (ii) of Theorem 4.3 hold.

If L has a reproducing kernel space completion, then this completion is an
Ω-space.

Proof. By (Ω-IP3) and (Ω-IP4) the multiplication operator S(L) is the inverse
Caley-transform of an isometry, hence symmetric. We show that the map

Φ(f, η) := f(η), f ∈ L, η ∈ Ω, (5.1)

is an Ω-directing functional for the multiplication operator S(L). The properties
(Ωdf1), (Ωdf2) are obvious, and (Ωdf3’) holds since r⊆(S(L),Φ) = Ω. From (Ω-
IP3) we have η, η ∈ r⊇(S(L),Φ), in particular (Ωdf3”) holds. Finally, (Ωdf4)
holds by (Ω-IP2).

The map ΦL acts as the identity: ΦL(f) = Φ(f, ·) = f . The assertion now
follows at once from Theorem 4.3 and Proposition 4.6. q

With each space which possesses a reproducing kernel space completion a struc-
tural constant is associated.
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5.3 Definition. Let Ω be a nonempty set, L ⊆ CΩ an inner product space,
and assume that L has a reproducing kernel space completion (say A). Then
we denote

∆(L) := ind0A.

♦

In general it is a difficult task to compute ∆(L), and no effective algorithm is
known. Recall [Wor14, Proposition 4.7]: The number ∆(L) is the minimum of
all numbers n ∈ N such that there exists an n-element subset L ⊆ Ω with

∀ (fn)n∈N, fn ∈ L :

limn→∞[fn, fn]L = 0

limn→∞[fn, g]L = 0, g ∈ L
limn→∞ fn(η) = 0, η ∈ L

 =⇒ lim
n→∞

fn(η) = 0, η ∈ Ω
(5.2)

In general it may happen that (5.2) holds for some subsets with ∆(L) elements,
but does not hold for some others with the same cardinality. Ω-inner product
spaces are in this respect better behaved.

5.4 Proposition. Let Ω ⊆ C be open and assume that Ω ∩ R 6= ∅. Let L
be an Ω-inner product space and assume that L has a reproducing kernel space
completion. Then there exists a discrete subset Z of Ω which is symmetric w.r.t.
the real line and contains at most 2 ind− L nonreal points, such that (5.2) holds
for all L ⊆ C \ Z, |L| ≥ ∆(L).

5.5 Remark. This result has some computational significance. Let n ∈ N be
given. Then we can decide whether or not ∆(L) ≤ n by testing (5.2) for
(ind− L+ 1) many pairwise disjoint n-element subsets of C+. Of course, ∆(L)
remains far from effectively computable, simply because (5.2) itself involves the
universal quantifiers over the infinite sets of all sequences (fn)n∈N and all points
η ∈ Ω. ♦

In the proof of Proposition 5.4 we use the following fact.

5.6 Lemma. Let Ω ⊆ C be open and assume that Ω ∩ R 6= ∅. Let B be an
Ω-space and assume that B◦ 6= {0}. Then there exists a function g ∈ B, such
that

B◦ =
{
p(ζ)g(ζ) : p ∈ C[ζ],deg p < ind0 B

}
, | supp dg ∩ C±| ≤ ind− B.

If Ω = Ω#, B = B#, and .# is anti-isometric, then g can be chosen such that
g = g#.

Proof. Our aim is to apply [KW99b, Proposition 1] with the multiplication
operator S(B). This requires to check the regularity assumptions [KW99b,
(2.3),(2.4)]. The first is obvious. To show the second choose f ∈ B◦ \ {0}. By
Remark 2.20, supp df is a discrete subset of Ω. Thus we find η± ∈ Ω∩C± with
f(η±) 6= 0. However, ran(S(B)− η±) = kerχη± |B, and it follows that

ran(S(B)− η±) + span{f} = B.
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Now [KW99b, Proposition 1] furnishes us with a basis {g1, . . . , gind0 B} of B◦
having the property that (gi; gi+1) ∈ S(B), i = 1, . . . , ind0 B − 1. This just
means that gi+1(ζ) = ζgi(ζ), whence

B◦ =
{
p(ζ)g1(ζ) : p ∈ C[ζ],deg p < ind0 B

}
. (5.3)

If η is a zero of g, then B◦ ⊆ ran(S(B)−η), and hence ran(S(B)/B◦−η) 6= B/B◦.
Thus, each zero of g belongs to the spectrum of S(B)/B◦. However, σ(S(B)/B◦)
may contain at most ind− B/B◦ = ind− B many points in the open upper or
lower half-plane, cf. [DS87a, p.162, Corollary].

Assume now that B◦ is invariant under the involution .# and that this in-
volution is anti-isometric. Then also B◦ is invariant under .#, and we find a

polynomial q with g#
1 = qg1. However,

∣∣ g#
1 (ξ)
g1(ξ)

∣∣ = 1, ξ ∈ R, and it follows that q

is identically equal to some unimodular constant. Passing from g1 to a suitable
(unimodular) scalar multiple, say h, we can thus achieve that h# = h. Clearly,
(5.3) remains valid with h instead of g1. q

Proof of Proposition 5.4. Let B be the reproducing kernel space completion of
L. Then B is an Ω-space and ind− B = ind− L. Observe that (5.2) is getting
stronger when L gets smaller. Hence, it is enough to construct Z such that (5.2)
holds for each ∆(L)-element subset of Ω \ Z.

Choose g ∈ B◦ according to Lemma 5.6, and set Z := {η ∈ Ω : g(η) = 0}.
Let η1, . . . , η∆(L) be pairwise different points of Ω\Z. Due to the description of
B◦ in Lemma 5.6, the family {χηi |B : i = 1, . . . ,∆(L)} is point separating on B◦.
By [Wor14, Proposition A.5] the hypothesis in (5.2) implies that limn→∞ fn = 0
in the norm of B. Continuity of point evaluations now yields limn→∞ fn(η) = 0,
η ∈ Ω. q

Finally, we turn to the case that Ω = C which deserves particular attention. As
in the classical case of universal directing functionals we are led to embeddings
into de Branges spaces.

Recall the definition of a de Branges space, including the purely geometric
variant:

5.7 Definition. We call an inner product space L a de Branges inner product
space, if it is a C-inner product space, is invariant under the involution f 7→ f#,
and [

f#, g#
]
L = [g, f ]L, f, g ∈ L.

If L is actually a C-space subject to the above, then we speak of a de Branges
space. ♦

Combining Proposition 5.2 with Proposition 4.8 yields:

5.8 Corollary. Let L be a de Branges inner product space. If L has a repro-
ducing kernel space completion, then this completion is a de Branges space.

Proof. The C-directing functional (5.1) is obviously real w.r.t. to .#. q

For the positive definite case, i.e., when L and its completion B are required
to be positive definite, this is well-known. In fact, it is a classical fact going
back (at least) to work of M.Riesz on the power moment problem, cf. [Rie23]; a
rather general approach is given by L.Pitt in [Pit76].
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In [Wor14, Proposition 4.8] we gave a sufficient condition for an inner product
space of functions to have a reproducing kernel space completion. For de Branges
inner product spaces this condition is also necessary, in fact, one can say a bit
more.

5.9 Proposition. Let L be a de Branges inner product space which has a re-
producing kernel space completion. Then there exists a positive Borel measure µ
on R with discrete support, a nonnegative integer n, points η1, . . . , ηn ∈ R and
γ > 0, such that

(i) each element f ∈ L is square integrable w.r.t. µ, and

[f, g]L =

∫
R
f(ζ)g(ζ) dµ− γ

n∑
i=1

f(ηi)g(ηi), f, g ∈ L;

(ii) for each η ∈ C the point evaluation functional χη|L is continuous w.r.t.
the L2(µ)-norm on L.

Proof. Let B be the reproducing kernel space completion of L. By Corollary 5.8,
B is a de Branges space. The family {χη : η ∈ R} is point separating, hence
[Wor14, Proposition A.9] provides points η1, . . . , ηn ∈ R and γ > 0, such that
the inner product

(f, g)L := [f, g]L + γ

n∑
i=1

f(ηi)g(ηi), f, g ∈ B,

turns B into a Hilbert space and induces the topology of B. Moreover, 〈B, (·, ·)B〉
is a de Branges–Hilbert space (which is seen by elementary computation or
reference to [KW99a, Lemma 3.2]).

Due to [Bra68, Theorem 22], there exists a positive Borel measure µ on R
with discrete support, such that

(f, g)B =

∫
R
f(λ)g(λ) dµ, f, g ∈ B.

By the definition of (·, ·)B the formula required in (i) holds. Since B is a
de Branges space if endowed with the L2(µ)-norm, point evaluations are con-
tinuous w.r.t. this norm. q

Appendix A. Preservation of analyticity

In this appendix we provide explicit proofs for Theorem 2.15 and Lemma 2.16.

Proof of Theorem 2.15(i). This is a general analyticity argument which works
since the set Λ := {ζ ∈ ρ(A) : [a(ζ), y]K 6= 0} is open and dense in C. We give
the general argument.

Let Λ ⊆ C be open and dense and let F ∈ H(Λ,C∞). Consider the set

O :=
{
O ⊆ C : O open, O ⊇ Λ, ∃FO ∈ H(O,C∞) : FO|Λ = F

}
,

and set Λ∗ :=
⋃
{O : O ∈ O}. If O1, O2 ∈ O with corresponding extensions FO1

and FO2
, then Λ is dense in O1∩O2 and by continuity FO1

|O1∩O2
= FO2

|O1∩O2
.

43



Thus a function F ∗ : Λ∗ → C∞ exists with F ∗|O = FO, O ∈ O. Since all O ∈ O
are open and F ∗|O ∈ H(O,C∞), it follows that F ∗ ∈ H(Λ∗,C∞). Thus the set
Λ∗ belongs to O. Clearly, it is the largest element of O. q

Item (ii) is the crucial part of Theorem 2.15. It relies on H.Langer’s spectral
theorem for definitisable selfadjoint operators and estimates of subharmonic
functions.

Proof of Theorem 2.15(ii).

Step 1: The essence is to estimate expressions [(A− ζ)−1a, b]K where ζ ∈ ρ(A)
and a, b ∈ K. To this end we employ the functional calculus for A as developed
in [Lan65, §I.7] (see [Lan82], and [DS87b] for an extention to linear relations).
For practical reasons, we use the formulation given in [KP15]. Let p be a real
definitising polynomial for A, ζ0 ∈ ρ(A) ∩ C+ and set

q(ζ) := p(ζ)(ζ − ζ0)− deg p(ζ − ζ0)− deg p.

Now let V, and T : V → K, and E, be the Hilbert space, the bounded operator,
and the V-spectral measure constructed in [KP15, Theorem 7.19]. The identity

1

z − ζ
=
−1

q(ζ)

q(z)− q(ζ)

z − ζ
+ q(z) · 1

q(ζ)(z − ζ)

together with the identity in [Lan82, top of p.26] yields the representation of
the resolvent of A as

(A−ζ)−1 =
1

p(ζ)

2 deg p−1∑
j=0

Djζ
j+

1

q(ζ)

∫
R

1

ξ − ζ
dET+a,T+b(ξ), ζ ∈ ρ(A), (A.1)

where Dj are appropriate bounded operators, T+ denotes the Krein space ad-
joint of T , and ET+a,T+b is the measure

ET+a,T+b(∆) :=
(
E(∆)T+a, T+b

)
V , ∆ ⊆ R Borelset.

The formula (A.1) allows to estimate∣∣∣ log
∣∣[(A− ζ)−1a, b]K

∣∣∣∣∣ ≤ ∣∣ log |p(ζ)|
∣∣+

+

∣∣∣∣ log
∣∣∣ 2 deg p−1∑

j=0

[Dja, b]Kζ
j +(ζ− ζ0)deg p(ζ− ζ0)deg p

∫
R

1

ξ − ζ
dET+a,T+b(ξ)

∣∣∣ ∣∣∣∣.
The integral on the right side is a function of bounded type in both half-planes
C+ and C−, see, e.g., [GG97, Lemma I.4.4], and polynomials also have this prop-
erty. Thus [GG97, Lemma I.4.3] yields (λ2 denotes the 2-dimensional Lebesgue
measure) ∫

C

∣∣ log |[(A− ζ)−1a, b]K|
∣∣

(1 + |ζ|)4
dλ2(ζ) <∞. (A.2)

Note here that C \ ρ(A) is a Lebesgue zero set.
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A more explicit estimate can be given for log+ |[(A− ζ)−1a, b]K|. We have

log+
∣∣[(A−ζ)−1a, b]K

∣∣ ≤ ∣∣ log |p(ζ)|
∣∣+

2 deg p−1∑
j=0

(
log+

∣∣[Dja, b]K
∣∣+ j log+ |ζ|

)
+ log+

∣∣(ζ − ζ0)deg p(ζ − ζ0)deg p
∣∣+ log+

∣∣∣ ∫
R

1

ξ − ζ
dET+a,T+b(ξ)

∣∣∣
+ (2 deg p+ 1) log 2.

We have |[Dja, b]K| ≤ ‖Dj‖ · ‖a‖K · ‖b‖K, where ‖ · ‖ is the operator norm
corresponding to ‖·‖K. The total variation of ET+a,T+b does not exceed ‖T+‖2 ·
‖a‖K · ‖b‖K. Using [GG97, Lemma I.4.5] to estimate the area integral of the
term involving the integral, provides us with constants c1, c2 > 0 such that∫

C

log+ |[(A− ζ)−1a, b]K|
(1 + |ζ|)4

dλ2(ζ) ≤ c1 log+
(
‖a‖K · ‖b‖K

)
+ c2. (A.3)

Step 2: We show that the family F is locally bounded in Ω. Let η0 ∈ Ω,
and choose a closed disk Ur(η0) = {ζ ∈ C : |ζ − η0| ≤ r} which is entirely
contained in Ω. The function WΘx,y is analytic in Ω, and hence log+ |WΘx,y|
is subharmonic. This implies that for η ∈ D r

2
(η0)

log+
∣∣(WΘx,y)(η)

∣∣ ≤ 4

πr2

∫
D r

2
(η)

log+
∣∣(WΘx,y)(ζ)

∣∣ dλ2(ζ)

≤ 4(1 + r + |η0|)4

πr2

∫
D r

2
(η)

log+ |(WΘx,y)(ζ)|
(1 + |ζ|)4

dλ2(ζ)

≤ 4(1 + r + |η0|)4

πr2

[ ∫
D r

2
(η)

log+ |W (ζ)|
(1 + |ζ|)4

dλ2(ζ)

+

∫
C

∣∣ log |[a(ζ), y]K|
∣∣

(1 + |ζ|)4
dλ2(ζ) +

∫
C

log+ |[a(ζ), x]K|
(1 + |ζ|)4

dλ2(ζ)

]
.

Note here that C \ {ζ ∈ ρ(A) : [a(ζ), y]K 6= 0} is a Lebesgue zero set. Plugging
(A.2), (A.3), and further estimating yields constants c′1, c

′
2 > 0 such that

log+
∣∣(WΘx,y)(η)

∣∣ ≤ c′1 log+ ‖x‖K + c′2, η ∈ D r
2
(η0).

We see that the functions in F are uniformly bounded on the disk D r
2
(η0). q

Item (iii) is a simple consequence of (ii).

Proof of Theorem 2.15(iii). Choose W as in (ii). Let xn ∈ M, n ∈ N, x ∈ K,
and assume that limn→∞ xn = x. Then

lim
n→∞

(WΘxn,y)(η) = (WΘx,y)(η), η ∈ ρ(A), [a(η), y]K 6= 0. (A.4)
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The sequence (xn)n∈N is bounded in the norm of K, and by item (ii) the
family {WΘxn,y : n ∈ N} ⊆ H(Ω) is normal. Vitali’s theorem yields that
limn→∞WΘxn,y exists in H(Ω); let us denote this limit by G. By (A.4) we have

G(η) = (WΘx,y)(η), η ∈ ρ(A), [a(η), y]K 6= 0,

and hence G
W is a meromorphic continuation of Θx,y to Ω. Clearly, d G

W
≥

−dW = d. Thus x ∈M. q

Finally, we give a proof of Lemma 2.16.

Proof of Lemma 2.16. Linearity of Φ(·, η) is easy to see: For each x, y ∈ X and
α, β ∈ C, the analytic functions

Φ(αx+ βy, ·) and αΦ(x, ·) + βΦ(y, ·)

coincide on L. Since L has an accumulation point in Ω and Ω is connected, they
coincide everywhere.

We come to the proof of continuity of ΦX (which is the main assertion).
Consider the map

κ :

{
X → X ×H(Ω)
x 7→

(
x,Φ(x, ·)

)
As we just saw, this map is linear. The space H(Ω), and hence also X ×H(Ω),
is a complete metrisable topological vector space. We are going to apply the
Closed Graph Theorem, cf. [Sch71, III.2.3 Theorem]. Let xn ∈ X , x ∈ X , with
limn→∞ xn = x, and assume that limn→∞Φ(xn, ·) = f in H(Ω). Then

f(η) = lim
n→∞

Φ(xn, η) = Φ(x, η), η ∈ L.

Since L accumulates, this implies that f = Φ(x, ·). Thus the graph of κ is
closed, and we infer that κ is continuous. The map ΦX equals π2 ◦ κ, where
π2 : X × H(Ω) is the projection onto the second component. Hence, ΦX is

continuous. Since point evaluations of derivatives χ
(l)
η are continuous on H(Ω)

and ∂l

∂ηl
Φ(·, η) = χ

(l)
η ◦ ΦX , it follows that ∂l

∂ηl
Φ(·, η) ∈ X ′.

Let K be a compact subset of Ω. The family {Φ(·, η) : η ∈ K} is a pointwise
bounded subfamily of X ′. By the Principle of Uniform Boundedness, cf. [Sch71,
III.4.2 Theorem], it is equicontinuous. Thus we find ε > 0 such that (dX denotes
a metric on X which establishes that X is a complete metrisable topological
vector space)

|Φ(x, η)| = |Φ(x, η)− Φ(0, η)| ≤ 1, dX (x, 0) ≤ ε, η ∈ K.

This shows that supx∈M supη∈K |Φ(x, η)| ≤ 1
ε supx∈M dX (x, 0). q
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die eng mit der Theorie hermitescher Operatoren im Raume Πκ

zusammenhängen. II. Verallgemeinerte Resolventen, u-Resolventen
und ganze Operatoren”. In: J. Funct. Anal. 30.3 (1978), pp. 390–
447.

[Kle10] M. Kleinert. “Models for cyclic definitisable selfadjoint operators in
Krein spaces”. PhD thesis. Vienna University of Technology, 2010.
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