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The subclasses N (∞)
κ of the classes Nκ of generalized Nevanlinna functions appear in the context of Pontryagin

space models, where they correspond to model relations having a particular spectral behaviour. Applications
are found, for instance, in the investigation of differential expressions with singular coefficients. We study rep-
resentations of N (∞)

κ -functions as Cauchy-type integrals in a distributional sense and characterize the class of
distributions occurring in such representations. We make explicit how the Pontryagin space model of an N (∞)

κ -
function is related to the multiplication operator in the L2-space of the measure which describes the action of
the representing distribution away from infinity. Moreover, we determine the distributional representations of a
pair of functions associated with a symmetric generalized Nevanlinna function.
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1 Introduction

A function q is said to belong to the Nevanlinna classN0 if it is analytic in C\R, satisfies q(z) = q(z), z ∈ C\R,
and

Im q(z) · Im z ≥ 0, z ∈ C \ R.

This class of functions has been intensively studied in various contexts of analysis. For instance, it plays an
important role in the spectral theory of symmetric and self-adjoint operators in a Hilbert space or in classical
problems like the power moment problem.

A fact which lies at the very core of the subject is that a function q ∈ N0 can be represented as a Cauchy-type
integral. This result goes back to the early stages of modern analysis; it is commonly attributed to the work of
G. Herglotz from the 1910s.

Theorem 1.1 (Herglotz integral representation) A function q belongs to the Nevanlinna classN0 if and only
if it can be represented as

q(z) = a+ bz +

∫
R

( 1

t− z
− t

1 + t2

)
dµ(t), z ∈ C \ R, (1.1)

where a ∈ R, b ≥ 0, and µ is a positive Borel measure on the real line with∫
R

dµ(t)

1 + t2
<∞. (1.2)

In many applications to differential operators the measure µ plays the role of a spectral measure.
In the theory of spaces with an indefinite metric, in particular in the spectral theory of symmetric and self-

adjoint operators in a Pontryagin space, an indefinite analogue of the class N0 occurs.
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Definition 1.2 A function q is said to belong to the generalized Nevanlinna class N<∞ if it is meromorphic
in C \ R, satisfies q(z) = q(z), z ∈ ρ(q) (where ρ(q) denotes the domain of analyticity of q), and the kernel

Kq(w, z) :=
q(z)− q(w)

z − w
, z, w ∈ ρ(q),

has a finite number of negative squares. By this we mean that the supremum of the numbers of negative squares
of quadratic forms (n ∈ N and z1, . . . , zn ∈ ρ(q))

Q(ξ1, . . . , ξn) :=

n∑
i,j=1

Kq(zj , zi)ξiξj

is finite.
If q ∈ N<∞, we denote by ind− q the actual number of negative squares of Kq , that is, the maximum of the

numbers of negative squares of forms Q(ξ1, . . . , ξn), n ∈ N, z1, . . . , zn ∈ ρ(q). Moreover, we set

Nκ :=
{
q ∈ N<∞ : ind− q = κ

}
.

A systematic study of the classN<∞ was given by M. G. Kreı̆n and H. Langer in [39] and subsequent papers.
Over the years a vast literature accumulated, dealing in particular with Kreı̆n’s resolvent formula, boundary triples
and Weyl functions, or analytic properties and operator representations. To mention just a few out of the recent
literature, we refer to [1, 2, 3, 6, 8, 12, 26, 30, 36].

A central result is the integral representation of generalized Nevanlinna functions given in [39, Satz 3.1],
which is the indefinite analogue of the Herglotz integral representation (1.1). Using the work [31] on distribu-
tional models for cyclic self-adjoint operators in a Pontryagin space, one obtains a distributional form of this
integral representation. This fact is mentioned in [31, Introduction, p. 253], established in full generality in [35,
Corollary 3.5] and refined in [33, Proposition 5.4].

In various contexts, in particular in connection with spectral properties of operator models for differential
operators, subclasses of N0 and their indefinite analogues occur, for instance, the Kac subclasses, see, e.g. [27],
or the Stieltjes class, see, e.g. [34].

A class that is specific to the indefinite situation is the class N (∞)
<∞ (which is sometimes denoted by N ∞<∞ in

the literature). Functions in this class are characterized by, in a certain sense, maximal possible growth at infinity;
we recall its precise definition in Definition 3.5 below. They are also characterized by the property that infinity is
the only generalized pole of non-positive type (see Remark 3.6 below).

Functions from the class N (∞)
<∞ typically appear as singular Weyl functions of problems with singular per-

turbations. For abstract models see we refer to [7, 11, 14]; for differential equations with singular coefficients
(fast growing potentials or derivatives of δ-distributions) see, e.g. [10, 18, 22, 23, 38, 43, 45]; for perturbations
with infinite coupling see [13]. Other abstract operator models for N (∞)

<∞ -functions based on reproducing kernel
Pontryagin spaces were studied in [15, 16, 17].

This class N (∞)
<∞ lies in the focus of our present study. Our aim is to investigate representations of functions

in this class with distributions (or more precisely distributional densities) on R = R ∪ {∞}, continuing the line
of research from [31], [35, Corollary 3.5], [33, Proposition 5.4]. The main results in the present paper are

1. Theorem 3.9, where we characterize those distributions appearing in representations of N (∞)
<∞ -functions

(these distributions behave like measures on R and only the behaviour at∞ is more complicated);

2. Theorem 4.4, where we determine the representing distributions of functions q+ and q− naturally associated
with a symmetric generalized Nevanlinna function, paying particular attention to the case when q ∈ N (∞)

<∞ ;

3. Theorem 5.3, where we make explicit the connection between the “measure part” of the representing distri-
bution, the algebraic eigenspace at∞ of the corresponding self-adjoint relation (for which∞ is in general
a singular critical point), and the multiplication operator in a certain L2-space.
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Besides their intrinsic interest, these results are an essential tool for our forthcoming work on direct and inverse
spectral theorems for two-dimensional canonical systems and Sturm–Liouville equations with two singular end-
points. These theorems will be presented in [44], and they rely heavily on the present results. In particular,
the results from Theorem 3.9 are used to construct spectral measures for such canonical systems and to prove a
connection between the growth of the spectral measure at∞ and the growth of the Hamiltonian of the canonical
system. The construction of a corresponding Fourier transform relies heavily on Theorem 5.3. Further, The-
orem 4.4 is used to relate the spectral measures of canonical systems with diagonal Hamiltonians to those of
certain Sturm–Liouville equations.

Let us briefly outline the organization of the manuscript. In Section 2 we undertake a systematic study of the
class F{∞} of distributional densities on R that behave like measures on R. We include this material to provide
the reader with a polished form of the analytic setup and the representation theorem itself, which cannot be found
elsewhere. In the following three sections we formulate and prove our main results. Thereby Section 3 is devoted
to the actual representations ofN (∞)

<∞ -functions, in Section 4 we investigate the symmetric case, and in Section 5
we turn to the operator-theoretic aspects.

We aim to keep proofs as elementary as possible. This is not always the most efficient approach. However, we
believe that clearly isolating what has to be imported and being detailed in what has to be done is for the benefit
of the reader, and hence find it worth to proceed in this way1. We add some more detailed notices on alternative
ways of proof in the course of the exposition.

2 The class F{∞} of distributional densities

When Ω is an open subset of Rn, the space of test functions, D(Ω), and its dual, the space of distributionsD′(Ω),
are studied in many textbooks. We refer, for example, to [5], [21] or [28], and take this theory for granted. The
notion of distributions and distributional densities on a manifold seems to be much less standard. Our reference
is the classic book [29]; an intrinsic geometric approach can be found in [25].

The manifold that appears in the context of representations of generalized Nevanlinna functions is R :=
R ∪ {∞}, the one-point compactification of R. We consider R as a C∞-manifold in the usual way via the charts
(here, and in the following, we understand 1

∞ := 0 and 1
0

:=∞)

Λ0 :

{
R \ {∞} → R,

x 7→ x,
Λ∞ :

 R \ {0} → R,

x 7→ 1

x
.

We want to emphasize the viewpoint of linear functionals and hence work with distributional densities rather than
distributions. Let us recall the definition from [29, p. 145] (we formulate it only for the particular manifold R
using the particular charts Λ0 and Λ∞).

Definition 2.1 A distributional density φ on R is a pair (φ0,φ∞) where φ0 and φ∞ belong toD′(R) and are
related by the transformation law2

φ∞(f) = φ0

(
f ◦ (Λ∞ ◦ Λ−1

0 )
)
, f ∈ D(R), 0 /∈ supp f. (2.1)

We denote the set of all distributional densities on R by D̃′(R).
Throughout this paper, we drop the explicit notation of Λ0 and consider the auxiliary Euclidean space R as a

subset of the manifold R.
Each distributional density φ induces a linear functional on C∞(R) in a canonical way: choose a partition of

unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover {R \ {∞}, R \ {0}} of R, and define

φ(g) := φ0

(
χ0g

)
+ φ∞

(
(χ∞g) ◦ Λ−1

∞
)
, g ∈ C∞(R). (2.2)

Due to the transformation law (2.1), this definition is independent of the choice of χ0, χ∞.

1 In this context, we should mention that in the earlier literature on the subject proofs are often not carried out in detail.
2 On comparing (2.1) with the requirement [29, (6.3.4)], one may wonder why the factor “| detψ′|” disappeared. In fact, it did not. This

is due to the definition of “f∗” in [29]; the example [29, 6.1.3] may be enlightening.
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Remark 2.2 Let φ = (φ0,φ∞) ∈ D̃′(R). It is another consequence of the transformation law (2.1) that both
distributions φ0 and φ∞ have finite order. To see this, choose N0, N∞ ∈ N0 and C0, C∞ > 0 such that

|φ0(f)| ≤ C0‖f‖[−2,2],N0
, f ∈ D(R), supp f ⊆ [−2, 2],

|φ∞(f)| ≤ C∞‖f‖[−1,1],N∞ , f ∈ D(R), supp f ⊆ [−1, 1];

here, for a compact subset K of R and n ∈ N0, we set

‖f‖K,n := max
{

sup
x∈K
|f (k)(x)| : k = 0, . . . , n

}
, f ∈ D(R).

Choose a partition of unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover {(−2, 2),R \ [−1, 1]} of R, and
set N := max{N0, N∞}. Then, for each T ≥ 2, we find a constant CT > 0 such that, for f ∈ D(R) with
supp f ⊆ [−T, T ],

|φ0(f)| ≤ |φ0(χ0f)|+
∣∣φ∞((χ∞f) ◦ Λ−1

∞
)∣∣

≤ C0‖χ0f‖[−2,2],N0
+ C∞‖(χ∞f) ◦ Λ−1

∞ ‖[−1,1],N∞ ≤ CT ‖f‖[−T,T ],N .

The dependence on T arises from the derivatives of the map Λ∞. This estimate shows that ordφ0 ≤ N ;
here we denote by “ordφ0” the order of the distribution φ0 in the classical sense; see, e.g. [28]. The fact that
ordφ∞ ≤ N is seen in the same way.

Let us introduce the order of a distributional density:

ordφ := max{ordφ0, ordφ∞}, φ = (φ0,φ∞) ∈ D̃′(R).

In connection with generalized Nevanlinna functions, a subset F(R) of D̃′(R) appears, which is defined in
Definition 2.3 (iii) below. Thereby, we call a distribution φ ∈ D′(R) real if it assigns real values to real-valued
test functions.

Definition 2.3

(i) Let φ ∈ D′(R) and let M ⊆ R be an open set. Then we say that φ is a positive measure on M if there exists
a positive (possibly unbounded) Borel measure µ on M such that

φ(f) =

∫
M

f dµ for all f ∈ D(R) with supp f ⊆M.

Here, and in the rest of the paper, we include in the notion of a Borel measure the requirement that compact
sets have finite measure.

(ii) Let φ = (φ0,φ∞) ∈ D̃′(R) and let M ⊆ R be an open set. We say that φ is a positive measure on M if
φ0 is a positive measure on M ∩ R and φ∞ is a positive measure on Λ∞(M \ {0}).

(iii) Let φ = (φ0,φ∞) ∈ D̃′(R). We say that φ belongs to F(R) if φ0 and φ∞ are real and there exists a finite
subset F ⊆ R such that φ is a positive measure on R \ F .

(iv) If φ ∈ F(R), we denote by s(φ) the smallest of all sets F such that φ is a positive measure on R \ F .

To justify item (iv) of this definition, note that φ being a positive measure on R \F1 and R \F2 implies that φ is
a positive measure on R \ (F1 ∩ F2). Moreover, note that a measure µ as in (i) is uniquely determined by φ.

The subclass F{∞} of F(R), which is defined below, is one of the central objects in our present study.

Definition 2.4 We denote by F{∞} the set of all φ = (φ0,φ∞) ∈ D̃′(R) that are a positive measure on R.
If φ ∈ F{∞}, we denote by µφ the unique positive Borel measure on R that satisfies

φ0(f) =

∫
R
f(x)

dµφ(x)

1 + x2
, f ∈ D(R). (2.3)
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Remark 2.5 On first sight, introducing the factor (1 + x2)−1 in the definition of µφ may seem artificial, but
in fact it is not. First, this density is necessary in order to include the Herglotz integral representation of N0-
functions into our framework (cf. (1.2)); we give more details in Example 3.4. Second, we want to have the same
Stieltjes-type inversion formula as in the positive definite case, cf. (3.7). Third, from the viewpoint of manifold
theory adding this density means to pass from distributional densities to distributions, cf. [29, p. 145].

Note that, for each φ = (φ0,φ∞) ∈ F{∞}, we have ordφ0 = 0 and therefore ordφ = ordφ∞.
We also use another characteristic of φ ∈ F{∞} related to the order, namely

ord′φ := min

{
ordψ : ψ = φ+

N∑
k=0

akδ
(k)
∞ , N ∈ N0, ak ∈ R

}
; (2.4)

here we denote by δ(k)
∞ the kth derivative of the Dirac distribution density concentrated at the point∞, i.e.

δ(k)
∞ := (0, δ

(k)
0 ) ∈ D̃′(R),

where δ0 is the standard Dirac distribution at 0 and δ(k)
0 its kth derivative.

Lemma 2.6 Let φ = (φ0,φ∞) ∈ F{∞}. Then there exists a constant C > 0 such that

|φ∞(f)| ≤ C‖f‖supp f,ord′ φ, f ∈ D(R), 0 /∈ supp f. (2.5)

P r o o f. Choose ψ of the form φ+
∑N
k=0 akδ

(k)
∞ with some N ∈ N0 and ak ∈ R such that ordψ = ord′φ.

Moreover, choose a partition of unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover {(−2, 2),R \ [−1, 1]} of
R. Then we find a constant C∞ > 0 such that, for each f ∈ D(R) with 0 /∈ supp f ,

|φ∞(f)| ≤
∣∣φ0

(
(χ∞f) ◦ Λ∞

)∣∣+ |φ∞(χ0f)︸ ︷︷ ︸
=ψ∞(χ0f)

|

≤ ‖f‖[−1,1],0

∫
[−1,1]

dµφ(x)

1 + x2
+ C∞‖f‖[−2,2],ordψ∞ .

Of course, using the transformation law (2.2) we also find an estimate

|φ∞(f)| ≤ Cε‖f‖supp f,0, f ∈ D(R), [−ε, ε] ∩ supp f = ∅.

In contrast to (2.5), here the constant Cε depends on ε.
The class of measures that may appear as µφ with some φ ∈ F{∞} turns out to be the one that is introduced

in the following definition.

Definition 2.7 Let µ be a scalar-valued positive Borel measure on the real line. Then we say that µ belongs
to the class M if there exists a number n ∈ N0 such that∫

R

dµ(x)

(1 + x2)n+1
<∞. (2.6)

If µ ∈M, we denote by ∆(µ) the minimal non-negative integer n such that (2.6) holds.

In the next theorem we make the relation between F{∞} and M explicit.

Theorem 2.8 The following statements hold.

(i) Let µ ∈M. Then there exists a distributional density φ ∈ F{∞} with µφ = µ.
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(ii) Let φ ∈ F{∞}. Then µφ ∈M and

ord′φ = min

{
n ∈ N0 :

∫
R

dµφ(x)

(1 + |x|)n+2
<∞

}
. (2.7)

In particular,

∆(µφ) =

⌊
ord′φ+ 1

2

⌋
≤
⌊

ordφ+ 1

2

⌋
; (2.8)

here bxc denotes the largest integer less than or equal to x.

(iii) Let φ ∈ F{∞} and ψ ∈ D̃′(R). Then ψ ∈ F{∞} and µψ = µφ if and only if there exist N ∈ N and
a0, . . . , aN ∈ R with

ψ = φ+

N∑
k=0

akδ
(k)
∞ . (2.9)

é Notice: Analogues of some parts of this theorem are stated (mostly without proofs) in [31] and, somewhat
more elaborate, in [37]. However, there one works in the vicinity of a finite point instead of∞ and with compactly
supported distributions. Instead of carrying out the techniques necessary to reduce to the (anyway not explicitly
given) arguments in [31], we prefer to give self-contained proofs for all assertions. ♦

Before we come to the proof of the theorem, we show a lemma, which is also used in later sections. The
procedure of defining a distributional density connected with a given measure from M is similar to a standard
method of defining distributions associated with certain non-integrable functions.

Lemma 2.9 Let µ ∈M and let n ∈ N0 such that∫
R

dµ(x)

(1 + |x|)n+2
<∞. (2.10)

Moreover, let χ0, χ∞ ∈ C∞(R) be a partition of unity subordinate to the open cover {(−2, 2),R \ [−1, 1]}.
Define

φ0(f) :=

∫
R
f(x)

dµ(x)

1 + x2
,

φ∞(f) :=

∫
R\{0}

[
f
( 1

x

)
− χ∞(x)

n−1∑
k=0

f (k)(0)

k!

( 1

x

)k] dµ(x)

1 + x2

(2.11)

for f ∈ D(R). Then φ = (φ0,φ∞) ∈ F{∞}, µφ = µ and ordφ ≤ n.

P r o o f. First we show that the integral in the definition of φ∞ is well defined and represents a distribution.
Let f ∈ D(R). For small values of x, the second summand in the integral is not present and we obtain the
immediate estimate∫

[−1,1]\{0}

∣∣∣∣f( 1

x

)
− χ∞(x)

n−1∑
k=0

f (k)(0)

k!

( 1

x

)k∣∣∣∣ dµ(x)

1 + x2
≤ ‖f‖∞

∫
[−1,1]\{0}

dµ(x)

1 + x2
. (2.12)

For large values of x, we use Taylor’s theorem to estimate∫
R\(−2,2)

∣∣∣∣f( 1

x

)
− χ∞(x)

n−1∑
k=0

f (k)(0)

k!

( 1

x

)k∣∣∣∣ dµ(x)

1 + x2

≤ ‖f (n)‖∞ ·
1

n!

∫
R\(−2,2)

1

|x|n
· dµ(x)

1 + x2
.

(2.13)
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The integral on the right-hand side converges because of (2.10). On the remaining intervals (−2,−1) and (1, 2)
we have the straightforward estimate∫

(−2,2)\[−1,1]

∣∣∣∣f( 1

x

)
− χ∞(x)

n−1∑
k=0

f (k)(0)

k!

( 1

x

)k∣∣∣∣ dµ(x)

1 + x2

≤
(
‖f‖∞ +

n−1∑
k=0

‖f (k)‖∞
k!

) ∫
(−2,2)\[−1,1]

dµ(x)

1 + x2
.

(2.14)

Putting together (2.12), (2.13) and (2.14) we obtain that φ∞ is a distribution, and that ordφ∞ ≤ n. Since,
clearly, ordφ0 = 0, we have ordφ ≤ n.

Next we show the transformation rule (2.1). Let f ∈ D(R) with 0 /∈ supp f be given. Then f (k)(0) = 0,
k ≥ 0, and hence (remember that we suppress the notation of Λ0)

φ∞(f) =

∫
R\{0}

f
( 1

x

) dµ(x)

1 + x2
=

∫
R\{0}

[
f ◦ Λ∞

]
(x)

dµ(x)

1 + x2
= φ0

(
f ◦ Λ∞

)
.

Thus we have φ ∈ F{∞}. It follows from the definition of φ0 that µφ = µ.

Proof of Theorem 2.8. Item (i) follows immediately from Lemma 2.9.
Next we prove (iii). If ψ is of the form (2.9), then

ψ =
(
φ0,φ∞ +

N∑
k=0

akδ
(k)
0

)
,

and hence ψ ∈ F{∞} and µψ = µφ.
For the converse, assume that ψ = (ψ0,ψ∞) ∈ F{∞} and µψ = µφ. This clearly implies that ψ0 = φ0.

Moreover, for each function f ∈ D(R) with 0 /∈ supp f , we have

φ∞(f) = φ0

(
f ◦ Λ∞

)
= ψ0

(
f ◦ Λ∞

)
= ψ∞(f).

Thus supp(φ∞−ψ∞) ⊆ {0}, and it follows thatφ∞−ψ∞ =
∑N
k=0 akδ

(k)
0 with someN ∈ N and a0, . . . , aN ∈

R. This shows that φ and ψ are related by (2.9).

Finally, we come to the proof of (ii). Let again χ0, χ∞ ∈ C∞(R) be a partition of unity subordinate to the
open cover {(−2, 2),R \ [−1, 1]}. Moreover, choose a function ψ ∈ C∞(R) such that

ψ|(−∞,1) = 0, ψ|(2,∞) = 1, ψ(x) ∈ [0, 1], x ∈ R.

Set n := ord′φ and, for each T ≥ 4, define

fT (x) :=

χ
∞(x) · 1

xn
· ψ
(
T

x

)
, x ∈ R \ {0},

0, x = 0.

Then fT ∈ C∞(R) and

supp fT ⊆ [1, T ], fT |[2,T2 ] =
1

xn
, fT (x) ≥ 0, x ∈ R.

By Lemma 2.6 there exists a constant C > 0 such that

|φ∞(g)| ≤ C‖g‖[0,1],n, g ∈ C∞(R) with supp g ⊆ (0, 1].
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Since supp[fT ◦ Λ∞] ⊆ [ 1
T , 1], it follows that∫

[2,T2 ]

1

xn
· dµφ(x)

1 + x2
≤
∫
R
fT (x)

dµφ(x)

1 + x2
= φ0(fT )

= φ∞
(
fT ◦ Λ∞

)
≤ C‖fT ◦ Λ∞‖[0,1],n. (2.15)

In order to estimate the last expression, we write explicitly:

[fT ◦ Λ∞](x) = χ∞
( 1

x

)
· xn · ψ(Tx), x ∈ supp[fT ◦ Λ∞],

which clearly implies that ‖fT ◦ Λ∞‖∞ ≤ 1. Next we compute, for k = 1, . . . , n and x ∈ [ 1
T , 1],

[fT ◦ Λ∞](k)(x) =
∑
i,j,l≥0
i+j+l=k

(
k

i, j, l

)[
di

dxi
χ∞
( 1

x

)] n!

(n− j)!
xn−j · T lψ(l)(Tx).

Since χ∞|[2,∞) = 1, we have

dj

dxj
χ∞
( 1

x

)
= 0, x <

1

2
, j ≥ 1.

Thus

c1 := sup

{∣∣∣ dj

dxj
χ∞
( 1

x

)∣∣∣ : x ∈ (0, 1], j = 0, . . . , n

}
<∞.

Since ψ|[2,∞) = 1 and ψ|(−∞,1] = 0, we have

ψ(l)(x) = 0, x ∈ R \ (1, 2), l ≥ 1.

Using the fact that ‖ψ‖∞ = 1 we obtain

c2 := sup
{
|ψ(l)(x)| : x ∈ R, l = 0, . . . , n

}
<∞.

Moreover, ψ(l)(Tx) = 0 for x ≥ 2
T , l ≥ 1, and hence

∣∣xn−j T lψ(l)(Tx)
∣∣ ≤ ( 2

T

)n−j
T lc2 = 2n−jc2T

l+j−n, x ∈
[ 1

T
, 1
]
, l ≥ 1.

Since l + j = k − i ≤ k ≤ n, we have T l+j−n ≤ 1.
Putting together these estimates we can deduce that, for k = 1, . . . , n and x ∈

[
1
T , 1

]
,

∣∣[fT ◦ Λ∞](k)(x)
∣∣ ≤ c1n! ·

[ ∑
i,j,l≥0
i+j+l=k

(
k

i, j, l

)]
·max{1, 2nc2}.

The right-hand side of (2.15) is therefore bounded independently of T . This shows that∫
[2,∞)

1

xn
· dµφ(x)

1 + x2
<∞.

The same argument applies on the negative semi-axis, and we see that∫
R

dµφ(x)

(1 + |x|)2+n
<∞.
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It follows that µφ ∈M and that the inequality “≥” in (2.7) holds.
For the reverse inequality, define a distributional density ψ as in Lemma 2.9 with µ replaced by µφ and n

minimal so that (2.10) holds. Then µψ = µφ and hence, by the already proved item (iii), φ and ψ differ only by
a term

∑N
k=0 akδ

(k)
∞ . This, together with Lemma 2.9 and the definition of ord′φ in (2.4), shows that

ord′φ ≤ ordψ ≤ n.

The relation (2.8) is immediate from (2.7).

Remark 2.10 If µ ∈ M and n ∈ N0 is minimal such that (2.10) is valid, then the distributional density φ
from Lemma 2.9 satisfies

ordφ = ord′φ = n;

this follows from the last part of the proof of Theorem 2.8.

3 Representations of N (∞)
κ -functions

The class F(R) can be used to represent functions in N<∞. Let us recall this fact in the formulation of [33,
Proposition 5.4]. For this we need some more notation. First, we denote by R(z) the set of all rational functions
with real coefficients. Second, for each z ∈ C \ R, let βz : R→ C be defined by

βz(x) :=


1 + xz

x− z
, x ∈ R,

z, x =∞.
(3.1)

Clearly, (
βz ◦ Λ−1

∞
)
(x) =

x+ z

1− xz
, x ∈ R,

and we see that βz ∈ C∞(R) for each z ∈ C \ R.

Theorem 3.1 ([33]) Let φ ∈ F(R) and r ∈ R(z). Then the function

q(z) := r(z) + φ(βz) (3.2)

belongs to N<∞.
Conversely, let q ∈ N<∞ be given. Then there exist unique φ ∈ F(R) and r ∈ R(z) such that

(i) the representation (3.2) holds;

(ii) r is analytic on R and r(z) = O(1) as |z| → ∞.

Definition 3.2 Let φ ∈ F(R) and r ∈ R(z) be given. Then we write qr,φ for the expression on the right-hand
side of (3.2); if r = 0, we just write qφ.

Let q ∈ N<∞ be given. Then we write rq and φq for the unique r ∈ R(z) and φ ∈ F(R), respectively, such
that (i) and (ii) in Theorem 3.1 hold.

Remark 3.3 Since βi(x) = i for all x ∈ R, we have qφ(i) = φ(βi) = iφ(1R) ∈ iR when φ ∈ F(R); here
1R denotes the constant function on R with value 1.

For the purpose of illustration let us elaborate on the case when q ∈ N0 and make explicit the relation between
the Herglotz integral representation (1.1) and the distributional representation (3.2).

Copyright line will be provided by the publisher



10 M. Langer and H. Woracek: Distributional representations of N (∞)
κ -functions

Example 3.4 Let µ be a positive Borel measure on R with∫
R

dµ(x)

1 + x2
<∞ (3.3)

and let a ∈ R and b ≥ 0. Define a distributional density φ = (φ0,φ∞) ∈ F{∞} as in Lemma 2.9 with the given
measure µ and the number n = 0. Note that, since n = 0, the partition of unity does not enter the formulae in
(2.11). Now, set

ψ := φ+ bδ∞.

Let χ0, χ∞ ∈ C∞(R) be some partition of unity subordinate to the open cover
{
R \ {∞},R \ {0}

}
. Then we

obtain from (2.2) and (2.11) that

ψ(βz) = φ0(χ0βz) + φ∞
(
(χ∞βz) ◦ Λ−1

∞
)

+ b(χ∞βz)(∞)

=

∫
R
χ0(x)βz(x)

dµ(x)

1 + x2
+

∫
R\{0}

χ∞(x)βz(x)
dµ(x)

1 + x2
+ bz

=

∫
R

1 + xz

x− z
· dµ(x)

1 + x2
+ bz = bz +

∫
R

( 1

x− z
− x

1 + x2

)
dµ(x).

To fully match (1.1) with (3.2), it remains to notice that a real rational function that has the properties in Theo-
rem 3.1 (ii) and has no non-real poles (which holds for N0-functions) must be equal to a real constant.

The subclass N (∞)
<∞ of N<∞, which is defined below, is the central object in the rest of the paper.

Definition 3.5 Let q ∈ N<∞. Then we say that q ∈ N (∞)
<∞ if

lim
z→̂i∞

q(z)

z2κ−1
∈ (−∞, 0) or lim

z→̂i∞

∣∣∣∣ q(z)z2κ−1

∣∣∣∣ =∞, (3.4)

where κ := ind− q. Here we denote by →̂ the non-tangential limit towards i∞.
Moreover, we set N (∞)

κ :=
{
q ∈ N (∞)

<∞ : ind− q = κ
}

, κ ∈ N0.
The significance in this definition is not that the asymptotic relation (3.4) holds with some κ, but that it holds
exactly with κ = ind− q. In fact, (3.4) always holds with some κ ∈ Z, κ ≤ ind− q.

Remark 3.6 The origin of the class N (∞)
<∞ lies in a spectral property of corresponding operator models, and

also the choice of notation is explained by this fact. Namely, using the language of [40] and [42]3, a generalized
Nevanlinna function q belongs to the class N (∞)

<∞ if and only if the point∞ is a generalized pole of non-positive
type with the maximal possible multiplicity, namely ind− q.

The multiplicities of generalized poles of non-positive type in R and the multiplicities of poles located in
C+ together sum up to ind− q, cf. [40, Theorem 3.5]. Hence a generalized Nevanlinna function q belongs
to N (∞)

<∞ if and only if q neither has finite generalized poles of non-positive type nor non-real poles. Using
the analytic characterization [42, Theorem 3.1] of generalized poles of non-positive type, we thus obtain the
following equivalence for q ∈ N<∞:

q ∈ N (∞)
<∞ ⇐⇒

q has no non-real poles and

lim
z→̂x

(z − x)q(z) ∈ (−∞, 0] for every x ∈ R.

Using the analytic characterization [42, Theorem 3.2] of the multiplicity of a generalized pole of non-positive
type, we see that, for a function q ∈ N (∞)

<∞ , the negative index ind− q can be recovered from the asymptotics of
q at i∞; namely, ind− q is the unique number κ ∈ N0 such that (3.4) holds and

lim
z→̂i∞

q(z)

z2κ+1
= 0.

3 As common in the recent literature, we substitute the terminology “negative type” in these references by “non-positive type”.
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Let us recall some properties of N (∞)
<∞ -functions. Thereby, we denote by R[z] the set of all polynomials in the

variable z with real coefficients. The proof is immediate from what we said above; we skip the details.

Lemma 3.7 We have N0 = N (∞)
0 ⊆ N (∞)

<∞ and R[z] ⊆ N (∞)
<∞ . If q1, q2 ∈ N (∞)

<∞ , then also q1 + q2 ∈ N (∞)
<∞

and

ind−(q1 + q2) ≤ max
{

ind− q1, ind− q2

}
.

In this relation strict inequality may occur only if ind− q1 = ind− q2 and for both functions the second relation
in (3.4) holds.

An example where the strict inequality in the previous lemma occurs is q1(z) = z2 + z, q2(z) = −z2.

Remark 3.8 A function q belongs to N (∞)
<∞ if and only if it can be written as

q(z) = (z2 + 1)mq0(z) + p(z) (3.5)

where m ∈ N0, q0 ∈ N0 and p ∈ R[z]; see, e.g. [13].

In the next theorem we show in detail that functions of the class N (∞)
<∞ correspond precisely to distributional

densities of the class F{∞}. In its formulation remember the notation in Definition 3.2.

Theorem 3.9 The classes N (∞)
<∞ , F{∞} and M are related as follows.

(i) Let φ = (φ0,φ∞) ∈ F{∞} and r ∈ R; then qr,φ ∈ N (∞)
<∞ . Moreover, define the functions

gT (x) := xordφχ0(Tx), x ∈ R,

where χ0 denotes a C∞(R)-function with suppχ0 ⊆ (−2, 2), χ0|[−1,1] = 1 and χ0(x) ∈ [0, 1], x ∈ R.
Then

ind− qr,φ =

⌊
ordφ

2

⌋
+

{
0 if ordφ is even and lim

T→∞
φ∞(gT ) ≥ 0,

1 otherwise.
(3.6)

The limit on the right-hand side of (3.6) always exists.

(ii) Let q ∈ N (∞)
<∞ . Then φq ∈ F{∞} and rq is a real constant: rq = Re q(i). The measure µφq can be

recovered by means of Stieltjes’ inversion formula: for each compact interval [a, b] ⊆ R,

µφq

(
[a, b]

)
=

1

π
lim
δ↘0

lim
ε↘0

∫ b+δ

a−δ
Im q(x+ iε) dx. (3.7)

For the mass at a point c ∈ R one has

µφq

(
{c}
)

= − lim
z→̂c

(z − c)q(z), (3.8)

where z→̂c denotes the non-tangential limit.

(iii) Let φ ∈ F{∞} and ψ ∈ D̃′(R). Then ψ ∈ F{∞} and µφ = µψ if and only if p := qφ − qψ is a real
polynomial with Re p(i) = 0.

(iv) Let q1, q2 ∈ N (∞)
<∞ . Then µφq1

= µφq2
if and only if q1 − q2 is a real polynomial.

(v) Let µ ∈M. Then{
ind− qφ : φ ∈ F{∞}, µφ = µ

}
=
{
n ∈ N0 : n ≥ ∆(µ)

}
.
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To shorten notation, we sometimes write

µq := µφq
for q ∈ N (∞)

<∞ . (3.9)

é Notice: For the reader with experience in the theory of Pontryagin space operator models, some of these
assertions are of course not surprising. Indeed, for some parts, a proof alternative to the one given below could
proceed via analysing the operator model. It would require to put together knowledge (explicitly and implicitly)
contained in [42], [31] and [35]. We prefer to give an approach as elementary as possible for all parts of the
theorem; all we need to know about the operator model is what we summarized in Remark 3.6. ♦

Proof of Theorem 3.9. To start with, let φ = (φ0,φ∞) ∈ F{∞} and r ∈ R be given, and let us show that
qr,φ ∈ N (∞)

<∞ . Clearly, this function has no non-real poles. Let x0 ∈ R, choose T > 0 such that |x0| < T , and
choose a partition of unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover{

(−2T, 2T ),R \ [−T, T ]
}
.

Then we have

qr,φ(z) = r + φ0

(
χ0βz

)
+ φ∞

(
(χ∞βz) ◦ Λ−1

∞
)
.

The second summand can be written as

φ0

(
χ0βz

)
=

∫
(−2T,2T )

βz(t) · χ0(t)
dµφ(t)

1 + t2

and hence belongs to the class N0. The first and third summands are analytic on C \ [−T, T ]. Thus the point
x0 is not a generalized pole of non-positive type for any of the summands, and hence also not for their sum. We
conclude that qr,φ has no finite generalized poles of non-positive type, and hence belongs to the class N (∞)

<∞ .

We come to the proof of (ii). Let q ∈ N (∞)
<∞ be given and consider the representation q(z) = rq(z) + φq(βz)

guaranteed by Theorem 3.1. Since q has no non-real poles, the function rq is a real constant. Moreover, rq =
Re q(i) because φq(βi) ∈ iR by Remark 3.3.

We have to show that φq ∈ F{∞}. To this end, let φ0,φ∞ so that φq = (φ0,φ∞) and let T > 0 be such that
s(φq) \ {∞} ⊆ (−T, T ). Choose a partition of unity χ0, χ∞ ∈ C∞(R) that is subordinate to the open cover
{(−T − 1, T + 1),R \ [−T, T ]} and set

q0(z) := φ0

(
χ0βz

)
, q∞(z) := φ∞

(
(χ∞βz) ◦ Λ−1

∞
)
,

so that q = q0 + q∞. The function q∞ is analytic on some neighbourhood of [−T, T ], and hence, for every
x0 ∈ [−T, T ],

lim
z→̂x0

(z − x0)q0(z) = lim
z→̂x0

(z − x0)q(z) ∈ (−∞, 0]

since q has no finite generalized poles of non-positive type. The function q0 itself is analytic in C \ suppχ0, and
it follows that

lim
z→̂x0

(z − x0)q0(z) = 0 for x0 ∈ (−∞,−T − 1] ∪ [T + 1,∞).

The relations β(n)
z (x) = (−1)nn!(1 + z2)(x− z)−(n+1), n ≥ 1, (here differentiation is with respect to x) imply

that

sup
y≥1
‖βiy‖suppχ0,ordφ0

<∞.
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Moreover,

lim
y→+∞

1

y
q0(iy) = 0.

Let x0 ∈ (−T −1,−T )∪ (T, T + 1). Choose ε > 0 with [x0−2ε, x0 + 2ε] ⊆ (−T −1,−T )∪ (T, T + 1), and a
partition of unity χ̃0, χ̃∞ ∈ C∞(R) subordinate to the open cover {(x0−2ε, x0 +2ε),R\ [x0−ε, x0 +ε]}. Then
the function (χ̃∞χ0φ0)(βz) is analytic in a neighbourhood of [x0 − ε, x0 + ε]. Since φ is a positive measure on
(−T − 1,−T ) ∪ (T, T + 1), say µ, we have

(χ̃0χ0φ0)(βz) =

∫
R
βz(x) · χ̃0(x)χ0(x)dµ(x),

and hence

lim
z→̂x0

(z − x0)q0(z) = lim
z→̂x0

(z − x0)(χ̃0χ0φ0)(βz) = −µ({x0}) ∈ (−∞, 0].

Altogether, we see that the function q0 has no generalized poles of non-positive type. Clearly, it also has no
non-real poles, and it follows that q0 ∈ N0. Thus we find a positive measure σ supported in [−T −1, T + 1] such
that

φ0

(
χ0βz

)
= q0(z) =

∫
R
βz(x) dσ(x).

Since a compactly supported distribution is uniquely determined by its Cauchy transform (see, e.g. [5, Theo-
rem 2.3.3]), it follows that φ0 is a measure on (−T, T ) and equals σ there. Letting T tend to infinity we can
deduce that φ0 is a positive measure on R.

The fact that µφq
can be recovered by means of the Stieltjes inversion formula in (3.7) was proved in [33,

Lemma 5.5]. On comparing the present formulation with this reference, remember that we included the density
1

1+x2 in the definition of µφq . Formula (3.8) can be proved in a similar way as [33, Lemma 5.5] by choosing a
partition of unity and reducing to the positive definite case. This completes the proof of (ii).

Next, we show item (iii). Consider the function β̌z := βz ◦ Λ−1
∞ , i.e.

β̌z(x) =
x+ z

1− xz
, x ∈ R.

A simple computation gives (again differentiation is with respect to x)

β̌z(0) = z, β̌(n)
z (0) = (1 + z2)n!zn−1, n ∈ N.

We see that {β̌(n)
z (0) : n ∈ N0} is a basis for the real vector space{
bmz

m + . . .+ b1z + b0 : m ∈ N0, bj ∈ R, b0 + b2 + . . . = 0
}

=
{
p ∈ R[z] : Re p(i) = 0

}
.

Hence a function p is a real polynomial with Re p(i) = 0 if and only if it can be represented as

p(z) =

( N∑
k=0

akδ
(k)
∞

)
(βz)

with some N ∈ N0 and a0, . . . , aN ∈ R. Now the assertion follows from Theorem 2.8 (iii) and the uniqueness
statement in the converse part of Theorem 3.1.

Item (iv) follows immediately from (iii) and the representations qi(z) = rqi + qφqi
(z), i = 1, 2, with rqi ∈ R.

For the proof of (v), let µ ∈M be given and set ∆ := ∆(µ). Consider the function

q(z) := (1 + z2)∆

∫
R
βz(x)

dµ(x)

(1 + x2)∆+1
. (3.10)
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The integral term belongs to the class N0 and hence has no generalized poles of non-positive type. It follows
that also q has no finite generalized poles of non-positive type. Clearly, q has no non-real poles, and hence
q ∈ N (∞)

<∞ . Let a, b ∈ R with a < b, choose T > 0 such that [a, b] ⊆ (−T, T ), and choose a partition of unity
χ0, χ∞ ∈ C∞(R) subordinate to the open cover{

(−2T, 2T ),R \ [−T, T ]
}
.

Using βz(t) = ( 1
t−z −

t
1+t2 )(1 + t2) we can rewrite q as follows

q(z) = (1 + z2)∆

∫
R

1

t− z
· χ

0(t)dµ(t)

(1 + t2)∆

− (1 + z2)∆

∫
R

t

1 + t2
· χ

0(t)dµ(t)

(1 + t2)∆
+ (1 + z2)∆

∫
R
βz(t)

χ∞(t)dµ(t)

(1 + t2)∆+1
.

The second and third summands are analytic in a neighbourhood of (−T, T ). The integral in the first summand
is a Cauchy integral of a finite measure. Using (3.7) and the Stieltjes–Lifšic inversion formula (e.g. as in [24,
Theorem 1.2.4]) we obtain

µφq

(
[a, b]

)
=

1

π
lim
δ↘0

lim
ε↘0

∫ b+δ

a−δ
Im q(x+ iε) dx

=
1

π
lim
δ↘0

lim
ε↘0

∫ b+δ

a−δ
Im

[(
1 + (x+ iε)2

)∆ ∫
R

1

t− (x+ iε)
· χ

0(t)dµ(t)

(1 + t2)∆

]
dx

=

∫
[a,b]

(1 + x2)∆ · χ
0(x)dµ(x)

(1 + x2)∆
= µ

(
[a, b]

)
.

Since a and b were arbitrary, this shows that µφq
= µ. Moreover, Re q(i) = 0 and hence q = qφq

. By the already
proved item (iii) we have{

qφ : φ ∈ F{∞}, µφ = µ
}

=
{
q + p : p ∈ R[z], Re p(i) = 0

}
.

The negative index of a function of the form q + p with q from (3.10) and p ∈ R[z] was computed in [39,
Lemma 3.3], namely, write p(z) = bmz

m + . . .+ b1z + b0 with bm 6= 0 if p 6= 0 and set m = −1 if p = 0; then

ind−(q + p) = max

{
∆,

⌊
m+ 1

2

⌋}
−

{
1, m > 2∆, m odd, bm > 0,

0, otherwise.
(3.11)

From this formula it is obvious that ind−(q + p) covers the set {n ∈ N0 : n ≥ ∆} when p varies through all real
polynomials with Re p(i) = 0.

Finally, we turn to the formula (3.6) for the negative index. Clearly, it is enough to consider the case when
r = 0. Let φ ∈ F{∞} be given and set ∆ := ∆(µφ). Moreover, fix a partition of unity χ0, χ∞ ∈ C∞(R)

subordinate to the open cover {(−2, 2),R \ [−1, 1]}.
Set n := ord′φ. By Theorem 2.8 (ii), n satisfies (2.10). Hence we can apply Lemma 2.9 with µ replaced by

µφ. This yields a distributional density, which we call ψ. Then µψ = µφ and, by Remark 2.10, we have

ordψ = n = ord′φ.

Set again β̌z(t) := βz
(

1
t

)
. A short computation shows that

β̌z

( 1

x

)
−
n−1∑
k=0

β̌(k)(0)

k!

( 1

x

)k
= (1 + z2)zn−1 1

xn−1
· 1

x− z
, x ∈ R \ {0}.
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Hence

qψ(z) = ψ(βz) = ψ0(χ0βz) +ψ∞
(
(χ∞βz) ◦ Λ−1

∞
)

=

∫
R
βz(x)

χ0(x) dµφ(x)

1 + x2
+ (1 + z2)zn−1

∫
R\{0}

1

x− z
· χ
∞(x) dµφ(x)

xn−1(1 + x2)
.

Using the dominated convergence theorem for each of the integrals we obtain

lim
y→+∞

1

yn+1
qψ(iy) = 0. (3.12)

Consider the function q defined by (3.10) with µ replaced by µφ. The integral in (3.10) belongs to the class N0

and (obviously) has no linear term in its Herglotz integral representation, which implies that

lim
y→+∞

1

y2∆+1
q(iy) = 0. (3.13)

Since Re q(i) = 0, we can write q(z) = θ(βz) with some θ ∈ F{∞}. As µθ = µφ = µψ by the previous part of
the proof, it follows from Theorem 2.8 (iii) that there exist N,M ∈ N0 ∪ {−1} and ak, bk ∈ R such that

φ = θ+

N∑
k=0

akδ
(k)
∞ , ψ = θ+

M∑
k=0

bkδ
(k)
∞ , (3.14)

where we set N = −1 and a0 = 0 if the sum in the expression for φ is not present, and otherwise, we choose N
such that aN 6= 0; in a similar way M and bM are chosen. From this we obtain the following representations:

qφ(z) = q(z) + a0z +

N∑
k=1

ak(1 + z2)k!zk−1, (3.15)

qψ(z) = q(z) + b0z +

M∑
k=1

bk(1 + z2)k!zk−1. (3.16)

The number 2∆ equals either ord′φ or ord′φ+ 1 depending whether ord′φ is even or odd. The relation (3.16),
together with (3.12) and (3.13), implies that M ≤ 2∆ − 1. Using (3.15) and again [39, Lemma 3.3], cf. (3.11),
we obtain

ind− qφ = max

{
∆,

⌊
N

2

⌋
+ 1

}
−

{
1, N ≥ 2∆, N even, aN > 0,

0, otherwise.
(3.17)

We have to relate the right-hand side to the order of φ. From (3.14) we have

φ = ψ+

N∑
k=0

akδ
(k)
∞ −

M∑
k=0

bkδ
(k)
∞ , (3.18)

and (2.8) implies that

ordψ = ord′φ ∈ {2∆− 1, 2∆}. (3.19)

Moreover,

N ≤ ordφ (3.20)

since otherwise, we would have M ≤ 2∆− 1 ≤ ordψ ≤ ordφ < N , which contradicts (3.18). The following
implications give some preliminary information about ordφ:

N ≤ 2∆− 1 =⇒ ordφ = ordψ, (3.21)

N ≥ 2∆ =⇒ ordφ = N. (3.22)
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To show (3.21), assume that N ≤ 2∆ − 1 and ordφ 6= ordψ; then ordφ > ordψ ≥ 2∆ − 1 ≥ M,N ,
which contradicts (3.18). Likewise, to show (3.22), assume that N ≥ 2∆ and ordφ 6= N ; then, by (3.20),
N > ordφ ≥ ordψ and N ≥ 2∆ > M , which again is a contradiction to (3.18).

Next we consider the limit limT→∞φ∞(gT ) that appears on the right-hand side of (3.6). Note that

δ
(k)
0 (gT ) = (−1)kδ0

(
g

(k)
T

)
=

{
(−1)kk! if k = ordφ,

0 otherwise.

Since n = ord′φ ≤ ordφ, the regularizing term in the formula for φ∞ in (2.11) is not present if we apply ψ∞
to gT , and hence

ψ∞(gT ) =

∫
R\{0}

1

xordφ
χ0
(T
x

)dµφ(x)

1 + x2
.

The dominated convergence theorem implies that this expression tends to 0 as T → ∞. From this and (3.18) it
follows that

lim
T→∞

φ∞(gT ) = lim
T→∞

(
N∑
k=0

akδ
(k)
0 (gT )−

M∑
k=0

bkδ
(k)
0 (gT )

)

= (−1)NN !aNδN,ordφ − (−1)MM !bMδM,ordφ,

(3.23)

where δi,j denotes the usual Kronecker delta.
In order to show (3.6), we distinguish two cases. First, assume that N < ordφ. Then N ≤ 2∆− 1 by (3.22),

and hence
⌊
N
2

⌋
+ 1 ≤ ∆. This, together with (3.17), implies that

ind− qφ = max

{
∆,

⌊
N

2

⌋
+ 1

}
= ∆

and hence ordφ = ordψ by (3.21). From the relations N ≤ 2∆ − 1 and (3.21) we obtain that ordφ = ordψ,
and hence, with (3.19),

ind− qφ = ∆ =

{
ordφ

2 if ordφ is even,
ordφ+1

2 otherwise,

=

⌊
ordφ

2

⌋
+

{
0 if ordφ is even,

1 otherwise.

If ordφ is even, then M,N ≤ 2∆− 1 < ordφ and therefore limT→∞φ∞(gT ) = 0, which completes the proof
of (3.6) in the case when N < ordφ.

Second, assume that N = ordφ (note that N > ordφ is excluded by (3.20)). Then⌊
N

2

⌋
+ 1 =

⌊
ordφ

2

⌋
+ 1 ≥

⌊
ordψ

2

⌋
+ 1 ≥

⌊
2∆− 1

2

⌋
+ 1 = ∆

by (3.19). Now it follows from (3.17) that

ind− qφ =

⌊
ordφ

2

⌋
+

{
0, N ≥ 2∆, N even, aN > 0,

1, otherwise.

If N is even, then N = ordφ ≥ ordψ ≥ 2∆ − 1 and hence N ≥ 2∆, M < ordφ and limT→∞φ∞(gT ) =
N !aN . Therefore

N ≥ 2∆, N even, aN > 0 ⇐⇒ N even, aN > 0

⇐⇒ ordφ even, lim
T→∞

φ∞(gT ) ≥ 0.

This completes the proof of (3.6) also in the case when N = ordφ.
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é Notice: In connection with the proof of item (v) and the relation (3.6) again one observation is in order. We
use the function qψ to compute the order and the function q to compute the negative index. Therefore we have to
relate these two functions, which is done in (3.16). Alternatively, one could carry out an argument modelled after
the proof of [39, Lemma 3.3] (which is elementary) to show an analogue of the formula (3.11) for qψ in place
of q. Yet alternatively, one could proceed (with the usual technical efforts of switching the roles of 0 and∞ and
reducing to compactly supported distributions) via the operator model constructed in [31], appeal to the formula
for negative index of spaces in [31, Theorem 2.5] and to the relation with negative index of functions provided in
[35, Corollary 3.5]. ♦

4 Distributional densities associated with symmetric Nκ-functions

We call a generalized Nevanlinna function q ∈ N<∞ symmetric if it is an odd function, i.e. q(−z) = −q(z).
Further, we call a distributional density φ = (φ0,φ∞) symmetric if both φ0 and φ∞ annihilate all odd test
functions. The following fact was shown in [33, Theorem 5.9 (ii)].

Theorem 4.1 ([33]) Let q ∈ N<∞, and let r ∈ R(z) and φ ∈ F(R) be the unique data in the distributional
representation (3.2). Then q is symmetric if and only if r is odd and φ is symmetric.

If q ∈ N<∞ is symmetric, then two functions q+ and q− are well defined by

q+(z2) = zq(z), q−(z2) =
q(z)

z
. (4.1)

In the positive definite case, symmetric Nevanlinna functions appear in the spectral theory of Kreı̆n strings. The
functions q± then belong to the Stieltjes class (or inverse Stieltjes class, respectively). From a function-theoretic
point of view, these functions were studied in [32, §5]; an operator-theoretic interpretation (splitting of the model
space) was (implicitly) given in [4] and was exploited, e.g. for the study of Gaussian processes in [20].

Let us return to the indefinite case. It was shown in [33, Proposition 3.2] that, for symmetric q ∈ N<∞, the
functions q+ and q− also belong to the class N<∞ and that

ind− q = ind− q+ + ind− q−.

In Theorem 4.4 below we determine the distributional representations of q+ and q− explicitly in terms of the
representation of q. These formulae are closely related to the integral representations obtained in [32] (for Stieltjes
class functions), in [39] (for functions of the class N+

κ ) and in [9] (for operator-valued functions with spectral
gaps).

Before we formulate and prove Theorem 4.4, we show two preparatory results on distributional densities φ
where we introduce the decomposition of φ corresponding to the construction of q±. For this, we define the
functions

h0(t) :=


1 + t2

1 + t4
, t ∈ R,

0, t =∞,
h1(t) :=


t2(1 + t2)

1 + t4
, t ∈ R,

1, t =∞.
(4.2)

Clearly, h0, h1 ∈ C∞(R) and

h1

(1

t

)
= h0(t), t ∈ R. (4.3)

Moreover, for a real-valued function g ∈ C∞(R) that satisfies lim|x|→∞ |g(x)| = ∞, we denote by Cg the
operator of composition with g, i.e. [Cg(f)](x) = f(g(x)), x ∈ R, for f ∈ D(R). Then, for each distribution
φ ∈ D′(R), also the map φ ◦ Cg belongs to D′(R). If g ∈ C∞(R), then one can define Cg(f) in a similar way
for f ∈ C∞(R), so that Cg(f) ∈ C∞(R). Moreover, set τ(t) := t2, t ∈ R, and extend it to R by τ(∞) =∞.
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Lemma 4.2 Let φ = (φ0,φ∞) ∈ D̃′(R). Then φ+ := (φ+
0 ,φ

+
∞) and φ− := (φ−0 ,φ

−
∞) belong to D̃′(R)

where

φ+
0 := (h1φ0) ◦ Cτ , φ+

∞ := (h0φ∞) ◦ Cτ ,

φ−0 := (h0φ0) ◦ Cτ , φ−∞ := (h1φ∞) ◦ Cτ .
(4.4)

Their action on C∞(R) as linear functionals is given by

φ+(f) = φ
(
h1Cτ (f)

)
, φ−(f) = φ

(
h0Cτ (f)

)
, f ∈ C∞(R), (4.5)

and we have suppφ± ⊆ [0,∞) ∪ {∞}.

P r o o f. As we noticed before the lemma, the components of φ+ and φ− are distributions on R. We have to
check the transformation law (2.1). To this end, let f ∈ D(R) with 0 /∈ supp f be given. Then, with (4.3), we
have

φ+
0 (f ◦ Λ∞) = (h1φ0)[f ◦ Λ∞ ◦ τ ] = φ0

[
h1 · (f ◦ τ ◦ Λ∞)

]
= φ0

[(
h0 · (f ◦ τ)

)
◦ Λ∞

]
= φ∞

[
h0 · (f ◦ τ)

]
= (h0φ∞)[f ◦ τ ] = φ+

∞(f).

The validity of the transformation law for φ− is seen in the same way.
For the proof of (4.5), choose a partition of unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover {R \

{∞},R \ {0}}. Set χ̃0 = χ0 ◦ τ , χ̃∞ = χ∞ ◦ τ . Then χ̃0, χ̃∞ ∈ C∞(R) is a partition of unity subordinate to
the same open cover. This, together with

φ+
0

(
χ0f

)
= (h1φ0)

[
(χ0 ◦ τ) · (f ◦ τ)

]
= φ0

[
h1 · χ̃0 · (f ◦ τ)

]
,

φ+
∞
(
(χ∞f) ◦ Λ−1

∞
)

= (h0φ∞)
[
(χ∞f) ◦ Λ−1

∞ ◦ τ
]

= (h0φ∞)
[
(χ∞f) ◦ τ ◦ Λ−1

∞
]

= (h0φ∞)
[(
χ̃∞ · (f ◦ τ)

)
◦ Λ−1
∞
]

= φ∞

[
h0 ·

((
χ̃∞ · (f ◦ τ)

)
◦ Λ−1
∞

)]
= φ∞

[(
h1 · χ̃∞ · (f ◦ τ)

)
◦ Λ−1
∞
]
,

yields

φ+(f) = φ+
0 (χ0f) + φ+

∞
(
(χ∞f) ◦ Λ−1

∞
)

= φ0

[
χ̃0 · h1 · (f ◦ τ)

]
+ φ∞

[(
χ̃∞ · h1 · (f ◦ τ)

)
◦ Λ−1
∞
]

= φ
[
h1 · (f ◦ τ)

]
.

The second relation in (4.5) is seen in the same way.
If supp f ⊆ (−∞, 0), then Cτ (f) vanishes identically, and hence φ±(f) = 0. This implies that suppφ± ⊆

[0,∞) ∪ {∞}.

In the next lemma we consider the case when φ belongs to the class F{∞} and relate the corresponding
measures.

Lemma 4.3 Let φ ∈ F{∞}. Then also φ+,φ− ∈ F{∞}, and the measures µφ, µφ+ and µφ− are related as
follows (τ : R→ R denotes again the map τ(t) := t2 and µτφ the corresponding image measure):

µφ+ � µτφ,
dµφ+

dµτφ
(t) = t · 1(0,∞), (4.6)

µφ− � µτφ,
dµφ−

dµτφ
(t) = 1[0,∞), (4.7)

Copyright line will be provided by the publisher



mn header will be provided by the publisher 19

where, e.g. 1(0,∞) denotes the characteristic function of (0,∞).
Assume, in addition, that µφ is absolutely continuous with respect to the Lebesgue measure λ on some interval

(a, b) with 0 ≤ a < b. Then µφ+ and µφ− are absolutely continuous with respect to λ on the interval (a2, b2),
and

dµφ+

dλ
(t) =

√
t

dµφ
dλ

(√
t
)
,

dµφ−

dλ
(t) =

1√
t
· dµφ

dλ

(√
t
)
,

t ∈ (a2, b2). (4.8)

P r o o f. Write φ = (φ0,φ∞) and let f ∈ D(R). Then

φ+
0 (f) = φ0

(
h1 · (f ◦ τ)

)
=

∫
R
h1(s)f(s2)

dµφ(s)

1 + s2

=

∫
R

s2

1 + s4
f(s2) dµφ(s) =

∫
τ(R)

t

1 + t2
f(t) dµτφ(t)

=

∫
R
f(t) · t · 1(0,∞)

dµτφ(t)

1 + t2
,

and

φ−0 (f) = φ0

(
h0 · (f ◦ τ)

)
=

∫
R
h0(s)f(s2)

dµφ(s)

1 + s2

=

∫
R

1

1 + s4
f(s2) dµφ(s) =

∫
τ(R)

1

1 + t2
f(t) dµτφ(t)

=

∫
R
f(t) · 1[0,∞)

dµτφ(t)

1 + t2
.

Assume now that µφ is absolutely continuous with respect to λ on (a, b) where 0 ≤ a < b. Let c, d be arbitrary
such that a ≤ c < d ≤ b. It follows from (4.6) that

µφ+

(
(c, d)

)
=

∫
(c,d)

tdµτφ(t) =

∫
τ−1((c,d))

s2 dµφ(s)

= 2

∫
(
√
c,
√
d)

s2 dµφ(s) = 2

∫
(
√
c,
√
d)

s2 dµφ
dλ

(s) ds

= 2

∫
(c,d)

t
dµφ
dλ

(√
t
) dt

2
√
t

=

∫
(c,d)

√
t

dµφ
dλ

(√
t
)
dt,

which implies the first relation in (4.8). The second relation is shown in a similar way.

Let us note explicitly that, in the situation of the above lemma, suppµτφ ⊆ [0,∞). Hence, we could also write
dµφ+(s) = sdµτφ(s) and µφ− = µτφ.

The next theorem provides the distributional representations for the functions q± in terms of the representation
of a function q from the class N<∞.

Theorem 4.4 Let q ∈ N<∞ be symmetric and let q(z) = r(z) + φ(βz) with r ∈ R(z) and φ ∈ D̃′(R) be
its distributional representation (3.2). Moreover, let q+ and q− be the functions defined in (4.1). Then the unique
distributional representations of q+ and q− are

q+(λ) = r+(λ) + φ+(βλ), q−(λ) = r−(λ) + φ−(βλ),
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where φ+ and φ− are defined as in Lemma 4.2 and

r+(λ) :=
√
λ r
(√
λ
)
− φ(h0), r−(λ) :=

r
(√
λ
)

√
λ

+ φ(h0)

with h0 as in (4.2).
Assume, in addition, that q ∈ N (∞)

<∞ . Then q+, q− ∈ N (∞)
<∞ , and the corresponding measures satisfy

dµq+
dµτq

(t) = t · 1(0,∞),
dµq−
dµτq

(t) = 1[0,∞), (4.9)

where we use the notation from (3.9) and where τ : R → R denotes again the map τ(t) := t2 and µτq the
corresponding image measure of µq .

P r o o f. Set β̂z(t) := βz(−t). Since φ is symmetric, we have φ(βz) = φ(β̂z). Hence, we may express q+ as
follows

q+(z2) = zq(z) = zr(z) +
z

2

(
φ(βz) + φ(β̂z)

)
= zr(z) + φ

(z
2

(
βz + β̂z

))
.

For t ∈ R we have

z

2

(
βz(t) + β̂z(t)

)
=
z

2

(
1 + tz

t− z
+

1− tz
−t− z

)
=
z2(1 + t2)

t2 − z2

=
t2(1 + t2)

1 + t4
βz2(t2)− 1 + t2

1 + t4
= h1(t)Cτ

(
βz2
)
(t)− h0(t),

and this relation extends also to t =∞. Hence

q+(z2) = zr(z) + φ
(
h1Cτ (βz2)

)
− φ(h0) =

[
zr(z)− φ(h0)

]
+ φ+(βz2),

which shows the required representation of q+. The representation of q− is proved in a similar way.
Note that the function

√
λ r(
√
λ) is rational and symmetric with respect to R since r is rational, symmetric

with respect to R and odd. Moreover, we have r(z) = O
(

1
z

)
when |z| → ∞, and hence the function

√
λ r(
√
λ)

remains bounded at infinity.
If q ∈ N (∞)

<∞ , then r must vanish identically (as an odd and constant function), and φ ∈ F{∞}. Thus also φ+

and φ− belong to F{∞} by Lemma 4.3, and the corresponding rational summands in the representations of q+

and q− are constant. This shows that q+ and q− belong toN (∞)
<∞ . The relations in (4.9) follow directly from (4.6)

and (4.7).

5 The operator model associated with φ ∈ F{∞}

With a distributional densityφ ∈ F(R) a model space and an operator are associated; see [31], [35]. Let us recall
the definitions for the present case of interest, that is, for φ ∈ F{∞}.

We denote by Bp(φ), p ∈ [1,∞), the linear space of all complex-valued functions f on R for which there
exists a T > 0 such that

f |R\[−T,T ] ∈ C
∞(R \ [−T, T ]

)
and f |(−2T,2T ) ∈ Lp

(dµφ(x)

1 + x2

)
.

The action of a distributional densityφ ∈ F{∞} extends naturally fromC∞(R) to B1(φ). Namely, if f ∈ B1(φ),
choose T > 0 as above and a partition of unity χ0, χ∞ ∈ C∞(R) subordinate to the open cover {(−2T, 2T ),R\
[−T, T ]}. Then

φ(f) :=

∫
(−2T,2T )

χ0(x)f(x)
dµφ(x)

1 + x2
+ φ∞

(
(χ∞f) ◦ Λ−1

∞
)

is well defined, does not depend on the partition of unity, and φ is a linear functional on B1(φ).
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Definition 5.1 Let φ ∈ F{∞} be given. Then we define an inner product [ · , · ]φ on B2(φ) by

[f, g]φ := φ
(
fg
)
, f, g ∈ B2(φ).

The Pontryagin space completion of the inner product space 〈B2(φ), [ · , · ]φ〉 (which exists as shown in the
references named above) is the model space associated with φ and is denoted by Π(φ).

The linear relation

Aφ := Clos
{

(f ; g) ∈ B2(φ)2 : g(t) = tf(t), t ∈ R
}

is the model relation associated with φ. Here “Clos” denotes the closure in Π(φ)×Π(φ).
It was shown in [35, Proposition 3.1] that Aφ is self-adjoint and has non-empty resolvent set. Moreover, the

point∞ is the only possible critical point of Aφ and, at the same time, the only possible point of non-positive
type of Aφ. The use of the terminology “model relation” originates from the fact that φ can be recovered from
the spectral function of Aφ by a type of Stieltjes inversion formula. Moreover, the function qφ is a Q-function
of Aφ.

We denote by mul(Anφ) the multi-valued part of the relation Anφ and set

EAφ
(∞) :=

∞⋃
n=1

mul(Anφ) ⊆ Π(φ).

Remark 5.2 Let φ ∈ F{∞} and denote by EAφ
(∞)◦ the isotropic part of EAφ

(∞). Then

dim
(
EAφ

(∞)◦
)

= ∆(µφ). (5.1)

In particular, we see that the point∞ is a singular critical point of Aφ if and only if ∆(µφ) > 0.
The relation (5.1) follows from the explicit form of the model operator given in [31, §3.2] with the help of the

transformation “Inv” from [35, §2] to exchange the roles of 0 and∞. It can also be deduced from the Stieltjes
inversion formula (3.7) and [13, Theorem 4.2], where it was shown that the minimal possible m in (3.5) is equal
to dim(EAφ

(∞)◦).
It is an important fact that the model relation Aφ is closely related to the multiplication operator Mx by the

independent variable in the space L2
(
(1 + x2)−1dµφ(x)

)
; the next theorem contains the precise statement. Its

proof is not difficult, given the knowledge from [35, Proposition 3.1].
Theorem 5.3 Let φ ∈ F{∞} be given. Then the map

id :
{
f ∈ B2(φ) : supp f ⊆ R

}
→ L2

(dµφ(x)

1 + x2

)
extends to an isometric, continuous and surjective map (orthogonal companions are understood w.r.t. the indefi-
nite inner product [ · , · ]φ)

ψ(φ) : EAφ
(∞)⊥ → L2

(dµφ(x)

1 + x2

)
.

Moreover, (
ψ(φ)× ψ(φ)

)(
Aφ ∩ (EAφ

(∞)⊥)2
)

= Mx

where Mx denotes the graph of the operator of multiplication by the independent variable.

P r o o f. Set

LN :=
{
f ∈ B2(φ) : supp f ⊆ [−N,N ]

}
, N ∈ N,

L :=
⋃
N∈N
LN , A := ClosL.
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It follows from the definitions of the inner product in B2(φ) and the measure µφ that the identity maps L
isometrically onto a dense subspace of L2

(
(1 + x2)−1dµφ(x)

)
. It therefore extends to a continuous, isometric

and surjective map from A onto L2
(
(1 + x2)−1dµφ(x)

)
, cf. [46, Proposition 2.1]; we denote this extension by

ψ(φ).
Denote by E the spectral family associated with Aφ; see, e.g. [41]. Since the only possible critical point

of Aφ and the only possible point of non-positive type of Aφ is ∞, the spectral projector E(∆) is defined for
every bounded Borel set. The space LN is complete with respect to [ · , · ]φ and hence a closed subspace of
Π(φ). By [35, Proposition 3.1] we have E([−N,N ])f = 1[−N,N ] · f , f ∈ B2(φ), where 1[−N,N ] denotes
the characteristic function of [−N,N ]. Hence E([−N,N ])B2(φ) = LN . Since LN is closed, it follows that
ranE([−N,N ]) = LN . We conclude that

L =
⋃
N∈N

ranE
(
[−N,N ]

)
,

and hence that A = EAφ
(∞)⊥. This shows the first assertion.

Denote by M (N)
x the multiplication operator in the space LN , which clearly has non-empty resolvent set and

satisfies Aφ ∩ L2
N ⊇ M

(N)
x . Since each space LN is invariant under resolvents of Aφ, also Aφ ∩ L2

N has
non-empty resolvent set, and hence

Aφ ∩ L2
N = M (N)

x .

Again, since LN is invariant under resolvents of Aφ, we have(
ψ(φ)× ψ(φ)

)(
Aφ ∩ A2

)
= Clos

( ⋃
N∈N

(
ψ(φ)× ψ(φ)

)(
Aφ ∩ L2

N

))
.

Here the closure is taken in L2
(
(1 + x2)−1dµφ(x)

)
. As we have seen above, the right-hand side of the above

relation is further equal to

Clos
( ⋃
N∈N

M (N)
x

)
= Mx,

and the second assertion follows.
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