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Abstract

A Krĕın string is (essentially) a pair S[L,m] where 0 < L ≤ ∞ and
m : [0, L) → [0,∞) is nondecreasing. Each string gives rise to an operator
model, the Krĕın-Feller differential operator −DmDx acting in the space
L2(dm). This operator has a selfadjoint realization which is nonnega-
tive. Provided that L + limx→L m(x) < ∞, this realization has discrete
spectrum and, when (λn) denotes the sequence of positive eigenvalues
arranged increasingly, then

lim
n√
λn

=
1

π

∫ L

0

√

m′(x) dx .

We show that for a class of strings defined by a weaker growth restriction
the spectrum is discrete, the integral on the right side is still finite, and
the asymptotic behaviour of the eigenvalues is determined by the above
formula.
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1 Introduction

A Krĕın string is a pair, we denote it as S[L,m], which consists of a num-
ber L with 0 < L ≤ ∞ and a nonnegative and nondecreasing left-continuous
function defined on (−∞, L] (or (−∞,∞) if L = ∞) which is equal to 0 on
(−∞, 0]. Without loss of generality, we assume that m is not constant in any
neighbourhood of L. Thereby, the number L models the length of the string,
and m its mass-distribution. A string S[L,m] is called regular (or ‘short’ in the
terminology of [DK]), if both numbers L and m(L) := limxրL m(x) are finite.
Otherwise, it is called singular (or ‘long’).

A string S[L,m] gives rise to an operator model, namely the Krĕın-Feller
differential operator −DmDx acting in the space L2(dm). The eigenvalue equa-
tion of one of its selfadjoint realizations can be written as an integral boundary
value problem in the form

{

y′(x) +
∫

[0,x]
zy(u) dm(u) = 0, x ∈ (−∞, L) ,

y′(0−) = 0, and y(L) = 0 if L+m(L) < ∞ ,
(1.1)

where z ∈ C is the eigenvalue parameter. The operator −DmDx arises when
Fourier’s method is applied to the partial differential equation

∂

∂m(s)

(

∂v(s, t)

∂s

)

− ∂2

∂t2
v(s, t) = 0 .
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Concerning physical interpretation, this equation describes the vibrations of an
inhomogenous string with a free left endpoint, being stretched with unit tension
on the interval [0, L), and whose total mass on the interval [0, x] equals m(x).

The spectrum of the Krĕın-Feller operator associated with a string S[L,m]
is fully described by one analytic function, its principle Titchmarsh-Weyl coef-
ficient qS . In fact, a Fourier transform can be constructed which maps −DmDx

to multiplication in L2(µS), where µS is the measure in the representation of
qS as a Cauchy integral.

The principles of the theory of strings, including direct and inverse spectral
theorems, were established by M.G.Krĕın in the early 1950’s, cf. [Kr3]† , see
also [KaKr]1. For a presentation from a slightly different viewpoint we refer to
[DK].

Computing the asymptotics of eigenvalues by means of an integral involving
mass-function or potential is a commonly done. Consider, for example, the case
that S[L,m] is a regular string. Then the spectrum of −DmDx is discrete. If
(λn) denotes the sequence of positive eigenvalues arranged in increasing order,
then2

lim
n√
λn

=
1

π

∫ L

0

√

m′(x) dx (1.2)

Validity of this formula is a classical result which dates back to a paper of
M.G.Krĕın, cf. [Kr2]† , see also [KaKr, 11.8◦]† . It can be derived from a
general formula computing the exponential type of the fundamental solution
of a two-dimensional Hamiltonian system3. This approach has been used in
[GKr, Theorem 8.1] where a complete proof of (1.2) is presented. A more direct
method to compute exponential type for the de Branges space associated with
a regular string, and thereby establish (1.2), is presented in [DK, §6.3(6)].

The formula (1.2) has been extended to a certain class of singular strings
in a paper by I.S.Kac: In [Ka1, Theorem 5]† it is stated that, under certain
growth and smoothness assumptions on S[L,m], the formula

lim
n√
λn

=
2

π

∫ L

0

1
√

m′
+(x) +

√

m′
−(x)

dm(x) (1.3)

holds where m′
+ and m′

− denote the one-sided derivatives of m. See also [BB],
where this formula was established under a stronger smoothness assumption.
For equations of the form −y′′(x) = zV (x)y(x) the corresponding result has
been shown for a wide range of potentials in [NS]. See also [BLS], where in addi-
tion some other forms of equations are studied. The difference to the presently
studied equation is that the string equation not only involves a pure second
derivative −DxDx but the derivative −DmDx. Of course, under some smooth-
ness conditions equations of these forms can be tranformed into each other by
performing a Liouville transform (one certainly sufficient condition being that
m is absolutely continuous and m′ is positive a.e.). However, if m behaves sin-
gularly (meaning compared to Lebesgue measure), making a Liouville transform

†When a citation is marked with a dagger, this means that it contains the mentioned
statement without a proof.

1For the reason of physical interpretation, in this paper the principle Titchmarsh-Weyl
coefficient is called ‘coefficient of dynamic compliance’.

2The limit of a finite sequence is tacitly understood as 0.
3Also a classical result, see, e.g., [Kr1], [dB1, Theorem X], or [GKr, Ch.VI, (6.5)].
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is not possible. Also one should say that, due to the form of the Liouville trans-
form, it is by no means clear how conditions on the mass-distribution m reflect
in conditions on the corresponding potential V and vice versa.

In the present paper we show that the formula (1.2), including finiteness of
the integral on its right side, is valid for a class of singular strings defined by a
pure growth condition. See Definition 3.1 and Definition 3.2 for the definition of
the class under consideration, and Theorem 3.5 for the result itself. Our proof
proceeds via Pontryagin space theory and mimicks the mentioned approach via
Hamiltonian systems: The crucial idea is that for a string S[L,m] belonging to
the considered class the function zqS(z

2) can be written as the quotient of two
entire functions which are entries of the fundamental solution of a Hamiltonian
system with an inner singularity. Then the recent result [LW, Theorem 4.1] is
applied to compute the exponential type of these entire functions. Finally, some
computations and routine complex analysis lead to the desired formula.

2 Some notation and facts

In the present paper, we use without further notice the classical theory of two-
dimensional Hamiltonian systems

y′(x) = zJH(x)y(x), x ∈ [s−, s+) , (2.1)

with H being positive semidefinite and locally integrable on [s−, s+). Here J

denotes the signature matrix J :=
(

0 −1
1 0

)

, and z is a complex parameter, the

eigenvalue parameter. For notation and a compilation of the basic properties of
Hamiltonian systems (in particular Weyl theory) from an up-to-date viewpoint,
we refer the reader to [HSW]. A more classical reference would be, e.g., [GKr].

a. Strings vs. Hamiltonian systems.

Strings and Hamiltonian systems are related in various ways; we use the follow-
ing fact established, e.g., in [KWW].

2.1 Proposition. Let a string S[L,m] be given. Denote µ(x) := x + m(x),
then the Lebesgue measure dx and the Borel measure dm are both absolutely
continuous with respect to dµ. We define a Hamiltonian Hd on the interval
Id := [0,∞) as

Hd(x) :=



























(

dx
dµ

(x) 0

0 dm
dµ

(x)

)

, x ∈ ranµ

(

0 0

0 1

)

, x ∈ [0,∞) \ ranµ

Then the Weyl coefficient qHd
of the Hamiltonian system

y′(x) = zJHd(x)y(x), x ∈ [0,∞) ,

and the principal Titchmarsh-Weyl coefficient qS of S[L,m] are related as

qHd
(z) = zqS(z

2) . (2.2)
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Conversely, each diagonal Hamiltonian H =
(

h1 0
0 h2

)

defined on some interval

[s−, s+) gives rise to a string. Denote

v̌(t) :=

∫ t

s−

h1(x) dx, v̂(t) :=

∫ t

s−

h2(x) dx, t ∈ [s−, s+] ,

and let ρ̂ and ρ̌ be the left-continuous right inverses of v̂ and v̌, respectively.
Explicitly, this is

ρ̂(y) := inf
{

x ∈ [s−, s+] : v̂(x) = y
}

, y ∈ [0, v̂(s+)], (2.3)

ρ̌(y) := inf
{

x ∈ [s−, s+] : v̌(x) = y
}

, y ∈ [0, v̌(s+)] . (2.4)

Then the pair consisting of L := v̌(s+) and m(x) := (v̂ ◦ ρ̌)(x), x ∈ [0, L],
constitutes a string.

The fact that these constructions are converse to each other, follows by com-
paring [KWW, §4], in particular the relations ‘(4.1)-(4.3)’ and ‘(4.4),(4.6),(4.8)’,
with the notation introduced above.

b. Hamiltonian systems with inner singularities.

The classical theory of the ‘positive definite’ equation (2.1), can be generalized to
an indefinite (Pontryagin space) setting. In [KW/IV] this more general situation
is introduced and studied, and an operator model acting in a Pontryagin space
is constructed; direct and inverse spectral theorems are established in [KW/V]
and [KW/VI]. Thereby:

⋆ The Hamiltonian H is permitted to have a finite number of inner singulari-
ties (inner points of [s−, s+) where H is not locally integrable). Such points
contribute to the equation by means of interface conditions connecting be-
fore and after the singularity as well as by an action concentrated in the
singularity.

⋆ The class of Nevanlinna functions (appearing as the totally of all Weyl coef-
ficients of equations (2.1) with singular right endpoint) is subsituted by the
class N<∞ of generalized Nevanlinna functions in the sense of [KL].

⋆ The class of J-contractive entire matrix functions (appearing as monodromy
matrices of equations (2.1) with regular right endpoint) is substituted by the
class M<∞ of all entire matrix functions for which the kernel

HW (w, z) :=
W (z)JW (w)∗ − J

z − w

has a finite number of negative squares.

⋆ The fundamental matrix solution W (x; z), x ∈ [s−, s+), of the equation (2.1)
is substituted by a maximal chain Wh of matrices belonging to the class
M<∞ (for the definition of this class, see, e.g., [KW/V, §3.a, §3.b]).

The formal definition of a ‘general Hamiltonian’ is rather complicated and would
require more preparation, cf. [KW/IV, Definition 8.1]. In view of our present
needs, we content ourselves with the following intuitive description of a regular
general Hamiltonian h: It is given by the data
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1. Points s−, s+ ∈ R ∪ {+∞}, s− < s+; the interval on which the system acts.
Points σ1, . . . , σn ∈ (s−, s+) with s− < σ1 < . . . < σn < s+; the singularities
of the system.

2. Hamiltonians Hi defined on [s−, σ1), (σi, σi+1), and (σn, s+], respectively,
which are integrable up to s− and s+, but are not integrable towards the
singularities. Locally at singularities, the functions Hi are subject to certain
growth restrictions, weaker than integrability. To unify notation, we set

H(x) :=











H1(x) , x ∈ [s−, σ1)

Hi(x) , x ∈ (σi, σi+1), i = 1, . . . , n− 1

Hn+1(x) , x ∈ (σn, s+]

3. Numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n; these
numbers model a contribution to the equation which is concentrated at the
singularity.

4. Numbers di,0, . . . , di,2∆i−1 ∈ R, where ∆i is a measure for the growth of
H towards the singularity σi; these numbers model the local interaction
between the Hamiltonians before and after the singularity. A finite subset
E = {s0, . . . , sN+1} of {s−, s+}∪

⋃n
i=0(σi, σi+1); the points of this set in the

vicinity of a singularity make quantitatively precise what ‘local interaction’
means.

One can picture the situation as follows:

s0

q

σ0

sN+1

q

σn+1× × ×
σ1 σ2 σn

s1 s2 s3 sN

H0 H1 H2 Hn−1 Hn

d1j
!

 

ö1

b1j

d2j
!

 

ö2

b2j

dnj

!

 

ön

bnjh :

With a regular general Hamiltonian there is associated a family Wh(x; z), x ∈
[s−, s+] \ {σ1, . . . , σn}, of entire matrix functions belonging to the class M<∞,
cf. [KW/V, Definition 5.3]. This family Wh is a solution of the differential
equation

{

∂
∂x

Wh(x; z)J = zWh(x; z)H(x), x ∈ [s−, s+] \ {σ1, . . . , σn}
Wh(s−; z) = I,

cf. [KW/V, Corollary 5.6]. Note that the above equation is an initial value prob-
lem only on the interval [s−, σ1), hence Wh is determined by the Hamiltonian
function H only on this interval; how to ‘jump over singularities’ depends on
the other parameters of h. In analogy with the classical case (no singularities),
we refer to the family Wh as the fundamental solution associated with h, and
to Wh(s+; .) as the monodromy matrix of h.

With each singularity σi of h there is associated a function qi of class N<∞,
the intermediate Weyl coefficient of h at σi. It is defined as (τ ∈ R ∪ {∞})

qi(z) := lim
x→σi

Wh(x; z) ⋆ τ , (2.5)
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where we denote (Wh(x; z) = (Wh,ij(x; z))
2
i,j=1)

Wh(x; z) ⋆ τ :=
Wh,11(x; z)τ +Wh,12(x; z)

Wh,21(x; z)τ +Wh,22(x; z)
.

The fact that the limit (2.5) exists and represents a function of class N<∞ is
[KW/III, Proposition 5.1, Theorem 5.6].

A basic tool for the present considerations is the following statement which
has been established in [LW, Theorem 4.1]. It says that the formula to compute
exponential type af a monodromy matrix, which is known from the classical
case, remains valid also in the indefinite situation.

2.2 Theorem. Let h be a regular general Hamiltonian, and let Wh(s+; .) =
(Wh,ij(s+; .))

2
i,j=1 be the monodromy matrix of h. Then the entries Wh,ij(s+; .)

are entire functions of finite exponential type. Their exponential types
etWh,ij(s+; .), i, j = 1, 2, are all equal and can be computed from h by means of
the formula

etWh,ij(s+; .) =

∫ s+

s−

√

detH(x) dx .

Writing this formula includes the statement that the integral on the right side
is finite.

3 Eigenvalue asymptotics

The class of strings under consideration in the present paper is defined by a,
recursively computable, growth condition.

3.1 Definition. Let S[L,m] be a string.

(i) Assume that L = ∞. We denote by Θm the operator whose domain
domΘm consists of all measureable functions f : [0,∞) → C with

f ∈ L1
loc([0,∞)),

∫ x

0

f(t) dt ∈ L1(dm) ,

and which acts as

(Θmf)(x) :=

∫

[x,∞)

(

∫ ξ

0

f(s) ds
)

dm(ξ), x ∈ [0,∞), f ∈ domΘm .

(ii) Assume that L < ∞. We denote by ΘL the operator whose domain
domΘL consists of all measureable functions f : [0, L) → C with

f ∈ L1
loc(dm),

∫ x

0

f(t) dm(t) ∈ L1(dx) ,

and which acts as

(ΘLf)(x) :=

∫ L

x

(

∫

[0,ξ)

f(s) dm(s)
)

dξ, x ∈ [0, L), f ∈ domΘL .

�
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3.2 Definition. Let S[L,m] be a string. We say that S[L,m] is of Pontryagin
type, if one of the following holds:

(i) L = ∞,
∫∞

0
x dm(x) < ∞, and for some n ∈ N0 we have Θn

m1 ∈
L2([0,∞)).

(ii) L < ∞,
∫ L

0
m(x) dx < ∞, and for some n ∈ N0 we have Θn

L1 ∈ L2(dm).

�

3.3 Remark. According to [WW, Remark 2.23] and [KaKr, 11.9◦], the respec-
tive first conditions in Definition 3.2 could be substituted by the much weaker
conditions limx→∞ x(m(∞)−m(x)) = 0 in (i), and limx→L(L− x)m(x) = 0 in
(ii). The relevant part of this remark, however, is based on a reasoning which
has not been carried out in detail (and is far beyond the scope of the present
manuscript). Hence, we do not use it in our present exposition. �

It is obvious that each regular string satisfies (ii), in fact, with n = 0. However,
the class of Pontryagin type strings also contains many singular strings. For
example, if L < ∞ and

∫ s+

s−
m(x)2 dx < ∞, then (ii) holds with n = 1. An

illustrative concrete example is the following (modelled after [WW, Example
3.15]).

3.4 Example. Let
α ∈ (1, 2) \

{

4n+1
2n+1 : n ∈ N

}

,

set
L := 1, m(x) := (1− x)1−α − 1, x ∈ [0, 1) ,

and consider the string S[L,m]. Clearly,
∫ L

0
m(x) dx < ∞. Moreover, a straight-

forward induction shows that

(Θn
L1)(x) ∈ span

(

{

(1− x)2n−nα
}

∪
{

(1− x)β : β ≥ 1
}

)

, n ∈ N .

From this it follows that Θn
L1 ∈ L2(dm) if and only if α < 4n+1

2n+1 , and hence

α ∈ min{n ∈ N : Θn
L1 ∈ L2(dm)}

(1, 5
3 ) 1

( 53 ,
9
5 ) 2

( 95 ,
13
7 ) 3
...

...

�

The result we are aiming for in the present paper, can now be formulated and
proved.

3.5 Theorem. Let S[L,m] be a string of Pontryagin type, and denote by (λn)
the (finite or infinite) sequence of positive eigenvalues of the Krĕın-Feller dif-
ferential operator −DmDx. Then

lim
n√
λn

=
1

π

∫ L

0

√

m′(x) dx ,
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with the integral on the right side being finite. In particular, the asymptotic be-
haviour of the sequence of eigenvalues depends only on the absolutely continuous
part of m.

The proof of this result is a, to our taste appealing, application of Pontryagin
space theory. The idea is to ‘prolongue’ the generically singular Hamiltonian
Hd associated with S[L,m] to a regular indefinite Hamiltonian h in such a way
that exponential type can be computed from m and determines the asymptotics
of the poles of qS .

Proof (of Theorem 3.5; The core argument). Due to the conditions in Defini-
tion 3.2, at least one of L < ∞ and m(L) < ∞ holds. If both of these numbers
are finite, the string is regular, and hence the assertion of the theorem reduces
to the classical case. Thus we may for the rest of the proof assume that either
L < ∞,m(L) = ∞ or L = ∞,m(L) < ∞.

Write Hd =
(

h1 0
0 h2

)

. If L < ∞, we have
∫∞

0
h1(x) dx < ∞. If m(L) < ∞,

we have
∫∞

0
h2(x) dx < ∞. In the first case, set φ(Hd) := 0, in the second

φ(Hd) :=
π
2 .

For technical reasons, choose a reparameterization H̃d of Hd which is defined
on the interval (0, 1). Let h+ be a positive and locally integrable function on

(1, 2] with
∫ 2

1
h+(x) dx = ∞, and denote by H+ the function (here we denote

ξφ := (cosφ, sinφ)T )

H+(x) := h+(x)ξφ(Hd)+
π
2
ξTφ(Hd)+

π
2
, x ∈ (1, 2] .

Moreover, set s0 := inf{x ∈ [0, 1] : H̃d|(x,1) = tr H̃dξφ(Hd)+
π
2
ξTφ(Hd)+

π
2

}.
By [WW, Theorems 6.4 and 4.1], the following data constitutes a regular

general Hamiltonian h:

n = 1, s− = 0, σ1 = 1, s+ = 2, H̃d, H+, ö = 0, bj = 0, dj = 0,

E :=
{

{0, 2} , s0 = 1

{0, s0, 2}, s0 < 1

0

q

s−

2

q

s+×
σ1=1

H̃d H+

dj
!

 

ö

bjh :

Denote by Wh(x; z), x ∈ [0, 2], the fundamental solution of h. Since H̃d is just
a reparameterization of Hd, the intermediate Weyl coefficient q1 of h at the
singularity 1 can be computed as (τ ∈ R ∪ {∞} arbitrary)

q1(z) = lim
xր1

Wh(x; z) ⋆ τ = qHd
(z) .

On the other hand, the function q1 can also be obtained as a limit from above.
Since we chose the Hamiltonian H+ in a very simple form, this limit can be
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computed easily from the monodromy matrix of h. In fact, sinceWh is a solution
of the differential equation ∂

∂x
Wh(x; z)J = zWh(x; z)H+(x), x ∈ (1, 2],

Wh(x; z) = Wh(2; z) ·











(

1 −l(x)z

0 1

)

, φ(Hd) =
π
2

(

1 0

l(x)z 1

)

, φ(Hd) = 0

where l(x) :=
∫ 2

x
h+(t) dt. We obtain that (remember that the value of the limit

in the definition of a Weyl coefficient is independent of the choice of parameter
τ)

q1(z) = lim
xց1

Wh(x; z) ⋆

{

∞ , φ(Hd) =
π
2

0 , φ(Hd) = 0
=







Wh(2;z)11
Wh(2;z)21

, φ(Hd) =
π
2

Wh(2;z)12
Wh(2;z)22

, φ(Hd) = 0

This shows that the poles of qHd
coincide with the zeros of either Wh(2; z)21 or

Wh(2; z)22.
Consider the entire function

A(z) :=

{

Wh(2; z)21 , φ(Hd) =
π
2

Wh(2; z)22 , φ(Hd) = 0

The exponential type of A can be computed as

etA =

∫ 1

0

√

det H̃d(t) dt+

∫ 2

1

√

detH+(t) dt =

∫ ∞

0

√

detHd(x) dx , (3.1)

cf. Theorem 2.2. ❑

The rest is routine; we follow the proof of the regular case. However, since this
is not accurately elaborated in the existing literature, we provide the necessary
arguments in detail.

Proof (of Theorem 3.5; Finishing arguments).

Step 1; Some complex analysis: The function A is an entire function which takes
real values along the real axis, and has no zeros off the real axis. Moreover, it
is of bounded type in both half planes C

+ and C
−, for an explicit argument

see, e.g., [LW, Proposition 2.7]. By [dB2, Problem 34], it is of Polya class, and
hence [dB2, Theorem 7] implies that A is a canonical product. Since A is of
bounded type in C

+, the condition (I) formulated in [B, p.137] holds. Hence
[B, Theorem 8.21], together with [RR, Theorems 6.18 and 6.15], gives

lim
r→∞

n(r)

r
=

2

π
lim

y→+∞

1

y
log |A(iy)| = 2

π
etA ,

where we denote n(r) := #{z ∈ C : A(z) = 0, |z| ≤ r}.
Since Hd is diagonal, the Weyl coefficient qHd

is an odd function, see, e.g.,
[dB2, Problem 181]. In particular, its poles are located symetrically with respect
to the origin. We conclude that

n(r) := 2 · #{x > 0 : A(x) = 0, x ≤ r}+
{

0 , φ(Hd) = 0

1 , φ(Hd) =
π
2
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Denote by (xn) the sequence of poles of qHd
located on the positive real half-axis

and arranged increasingly. Referring, e.g., to [B, Lemma 1.5.1], we then have

lim
n→∞

n

xn

=
1

2
lim
r→∞

n(r)

r
.

Consider the sequence (λn) of nonzero eigenvalues of −DmDx arranged increas-
ingly. The relation (2.2) shows that λn = x2

n. Putting together the above
relations with (3.1), we see that

lim
n√
λn

=
1

π

∫ ∞

0

√

detHd(x) dx . (3.2)

Step 2; Rewriting the integral: We write Hd =
(

h1 0
0 h2

)

and use the notation

introduced in §2.a. Moreover, we assume without loss of generality that h1(x) =
0 whenever x belongs to the closure of an indivisible interval4 of type π

2 ; this
can always be achieved by redefining Hd on a set of Lebesgue measure zero.

Consider the function g : [0, L] → [0,∞] defined as

g(y) :=

{

√

h2(ρ̌(y))
h1(ρ̌(y))

, h1(ρ̌(y)) 6= 0,

0 , h1(ρ̌(y)) = 0.

Then, clearly, g is measurable and nonnegative. Since v̌ : [0,∞] → [0, L] is
absolutely continuous, surjective, and v̌′ = h1 a.e., we have

∫ L

0

g(y) dy =

∫ ∞

0

(g ◦ v̌)(x)h1(x) dx . (3.3)

To further rewrite this integral, consider a point x ∈ (0,∞) such that h1(x) 6= 0.
Then x does not belong to the closure of an indivisible interval of type π

2 , and
hence (ρ̌ ◦ v̌)(x) = x. It follows that

(g ◦ v̌)(x)h1(x) =

√

h2(ρ̌(v̌(x)))

h1(ρ̌(v̌(x)))
· h1(x) =

√

h2(x)h1(x) . (3.4)

If x ∈ (0,∞) is such that h1(x) = 0, this equality trivially holds. Hence,
∫ ∞

0

(g ◦ v̌)(x)h1(x) dx =

∫ ∞

0

√

h2(x)h1(x) dx =

∫ ∞

0

√

detHd(x) dx .

Step 3; Computing m′(x): Set

M̂ :=
{

x ∈ (0,∞) : v̂′(x) does not exist, or v̂′(x) 6= h2(x)
}

,

M̌ :=
{

x ∈ (0,∞) : v̌′(x) does not exist, or v̌′(x) 6= h1(x)
}

,

Ě :=
{

y ∈ (0, L) : ρ̌′(y) does not exist
}

,

and A := v̌(M̂) ∪ v̌(M̌) ∪ Ě. This is a Lebesgue zero set, since v̌ and v̂ are
absolutely continuous, have derivatives a.e. equal to h1 and h2, respectively,
and ρ̌ is monotone.

4An interval (a, b) is called indivisible for a Hamiltonian H, if H is of the form h(x)ξφξ
T
φ
,

x ∈ (a, b) a.e., with some scalar function h(x) and an angle φ which is independent of x. If
(a, b) is indivisible, φ is called the type of (a, b).
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Let y ∈ (0, L) \ A be fixed. Then, note that ρ̌ is injective and certainly
continuous at y,

lim
y′→y

v̂(ρ̌(y′))− v̂(ρ̌(y))

ρ̌(y′)− ρ̌(y)
= h2(ρ̌(y)) ,

lim
y′→y

y′ − y

ρ̌(y′)− ρ̌(y)
= lim

y′→y

v̌(ρ̌(y′))− v̌(ρ̌(y))

ρ̌(y′)− ρ̌(y)
= h1(ρ̌(y)) .

Since y 6∈ Ě, we must have h1(ρ̌(y)) > 0. It follows that

m′(y) = (v̂ ◦ ρ̌)′(y) = h2(ρ̌(y))

h1(ρ̌(y))
= g(y)2 .

Together with (3.3) and (3.4), thus

∫ ∞

0

√

detHd(x) dx =

∫ L

0

√

m′(y) dy .

By (3.2), the desired formula follows. ❑
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