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Abstract: In the early 1950’s M.G.Krein characterised those entire functions
which are an entry of some Nevanlinna matrix, and those pairs of entire functions
which are a row of some such matrix. In connection with Pontryagin space versions
of Krein’s theory of entire operators and de Branges’ theory of Hilbert spaces of
entire functions, an indefinite analogue of Nevanlinna matrices plays a role. In this
paper we extend the mentioned characterisations to the indefinite situation and
investigate the geometry of associated reproducing kernel Pontryagin spaces.
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1 Introduction

We call an entire 2×2-matrix valued function W (z) = (wij(z))
2
i,j=1 a Nevanlinna

matrix, if it is normalized by W (0) = I, its entries take real values on the real
line, detW (z) = 1, z ∈ C, and (C+ denotes the open upper half-plane)

Im
w11(z)t+ w12(z)

w21(z)t+ w22(z)
≥ 0, z ∈ C+, t ∈ R ∪ {∞} . (1.1)

It is well-known that, equivalently, one could require that W (0) = I, wij(z) =

wij(z), detW (z) = 1, and that the reproducing kernel (J denotes the signature

matrix J :=
(
0 −1
1 0

)
)

HW (w, z) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ C , (1.2)

is positive definite1,2. This says that the class of Nevanlinna matrices coincides
with the class of (normalized) entire (iJ)-inner 2×2-matrix functions, see, e.g.,
[AD08]. Often in the literature the entries of a Nevanlinna matrix are required
to be transcendental entire functions, e.g. in [Akh61, Definition 2.4.3]. We do
not include this condition.

Nevanlinna matrices play a fundamental role in many places of functional
and complex analysis. Let us mention the following, of course interrelated, in-
stances.

` M.G.Krein’s theory of entire operators: there they appear as resolvent matri-
ces in the description of all spectral functions, see, e.g., [GG97, Theorem 7.2].
` L.de Branges’ theory of Hilbert spaces of entire functions: there they are used
to characterise whether a de Branges space is invariant under forming difference

‡The author gratefully acknowledges the support of the Austrian Science Fund (FWF),
project I 1536–N25, and the Russian Foundation for Basic Research (RFBR), project 13-01-
91002-ANF.

1For z = w the expression HW (w, z) has to be interpreted appropriately as a derivative.
2The kernel HW (w, z) is called positive definite, if for each L ∈ N, z1, . . . , zL ∈ C, and

a1, . . . , aL ∈ C2, the quadratic form
∑L
i,j=1 a

∗
jHW (zj , zi)ai · ξiξj is positive semidefinite.
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quotients, or to characterise isometric inclusions of spaces, see, e.g., [dB68, The-
orem 27, Theorems 33/34].
` Direct and inverse spectral problems for two-dimensional canonical systems:
there they appear as fundamental solution matrix, and are represented as multi-
plicative integrals in the sense of V.P.Potapov, see, e.g., [GK67, Chapter VI.1],
[AD08, Introduction, Theorem 4.13].

The theorems which hold for Nevanlinna matrices in the above contexts have
implications for a number of concrete problems. For example they can be used
to describe the solution set of a continuation problem of a positive definite
function from an interval. Or, they can be used to describe spectral functions
of certain differential operators. For these and other applications, see, e.g.,
[GG97, Theorems 3.1.6 and 3.2.6], [AD98], [KK68, §3.Fundamental Theorem],
[KL14]. The -probably- most intensively studied subject where Nevanlinna ma-
trices play a role is the power moment problem. Literature on this topic starts
with a historical paper of T.J.Stieltjes from 1894, and ranges from the classical
work of H.Hamburger, R.Nevanlinna and M.Riesz from the 1920’s to very recent
contributions, e.g., [BP94, Ber95, Ped09].

A question which appears naturally is which entire functions may occur
as an entry of some Nevanlinna matrix, or (especially when having in mind
de Branges’ theory) which pairs of entire functions may serve as a row of some
Nevanlinna matrix. These questions were completely answered by M.G.Krein
in the early 1950’s, cf. [Kre52, §3.Theorems A,B,C]3.

In the theory of indefinite inner product spaces a generalisation of the notion
of a Nevanlinna matrix occurs. Namely a certain class of entire matrix func-
tions, we speak of M<∞, where the positivity requirement for the kernel HW

is weakened; for details see Definition 2.4 below.
Matrices of the class M<∞ are of similar significance in Pontryagin space

theory, as Nevanlinna matrices are in Hilbert space theory. In connection with
entire operators see [KL78, Satz 6.9], in connection with de Branges spaces see
[KW99a, Proposition 10.3, Theorem 12.2], and in connection with canonical
systems see [KW10, 1.3]. Also various applications are found, e.g., to indefi-
nite power moment problems, cf. [KL79, KL80], the continuation problem of a
hermitian indefinite function from an interval, cf. [GL74, KL85, KW98b], or to
the spectral theory of certain differential operators with singular potentials, cf.
[Wor12], [LW].

Our aim in the present paper is to establish the analogues of Krein’s The-
orems A,B,C for the class M<∞, and to describe in detail the geometry of
reproducing kernel Pontryagin spaces generated by matrices W ∈ M<∞ with
one prescribed row or entry. Our main results are Theorems 3.1, 3.4, and 3.5,
being the full indefinite analogues of Krein’s Theorems A,B,C, and Theorems
4.2 and 4.3 where we investigate geometric structure.

The proof of Theorems 3.1, 3.4, and 3.5 is neither too difficult nor too
labourious. They can be shown with some Pontryagin space arguments and some
standard complex analysis using our previous (involved, but readily available)
work [Wor11]. Nevertheless, we regard these results themselves as valuable; the

3Up to our knowledge the relevant paper of Krein has not been translated to english. For
the convenience of the reader, we will formulate his results in detail, cf. Theorems 2.1, 2.2,
and 2.3 below. A proof of Theorem B can be found in [Akh61, Ch.3,p.133,№12], see also the
more detailed and slightly more general exposition [BP95, Theorems 3.6,5.1].
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beautifully round up the picture of the indefinite theory. Our method of proof
uses the interplay of Nevanlinna function theory and the theory of de Branges-
Pontryagin spaces. This approach seems to be new also in the positive definite
case. In particular, when specialised to the positive definite case, our results
provide (probably) new proofs of Krein’s Theorems A,B,C.

Matters are getting much more involved in Theorems 4.2 and 4.3. In order
to analyse the geometric structure of corresponding reproducing kernel spaces,
we show one structure result about indefinite canonical systems and employ
several facts from this theory.

Concerning the presentation of the article, one comment is in order. The
core content is arranged in two sections. These are Sections 3 and 4. In the
first, we prove the indefinite analogues of Krein’s theorems. In the latter, we
carry out the mentioned analysis of geometric structure. In view of the amount
of notions and results required from previous work, it turned out impossible
to provide a fully self-contained exposition within an acceptable page range.
Hence, we decided for a clear division: All auxiliary notation and knowledge
needed for the proof of Theorems 3.1, 3.4, and 3.5 in Section 3 is provided in
the preliminary Section 2.2. All what is required in Section 4 from the theory of
indefinite canonical systems is clearly and extensively referenced, but otherwise
used without further notice. We will comment on this in more detail in the
notice on page 19.

2 Preliminaries

First, in Subsection 2.1, we state the classical theorems in detail. Then, in
Subsection 2.2, we provide a selection of auxiliary notation and results.

2.1 Krein’s Theorems A,B,C

In the below formulations we already include our normalisation W (0) = I.
Let us moreover remark that Krein used the term “special matrix”, whereas
nowadays it is more common to speak of Nevanlinna matrices4.

First, a description of all pairs of entire functions which appear as the second
row of some Nevanlinna matrix. Thereby, we call an entire function real, if it
takes real values along the real line.

2.1 Theorem ([Kre52, §3.Theorem A]). Let F and G be two real entire func-
tions with (F (0), G(0)) = (0, 1). Then there exists a Nevanlinna matrix W such
that (F,G) = (0, 1)W , if and only if the following conditions (i)–(iv) hold.

(i) F and G have no common zeros, and all zeros of F and G are real and
simple.

(ii) Im G(z)
F (z) ≥ 0 for all z ∈ C+.

(iii) The nonzero zeros αn of F and βn of G satisfy∑
n

1

|F ′(αn)G(αn)|α2
n

<∞,
∑
n

1

|F (βn)G′(βn)|β2
n

<∞ .

4The term “Nevanlinna matrix” was probably first used in [Akh61], and is motivated since
such matrices appear in Nevanlinna’s parameterisation of the solutions of a power moment
problem.
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(iv) The function 1
FG has an expansion

1

F (z)G(z)
=
c−1
z

+ c0 +
∑
n

1

F ′(αn)G(αn)

[ 1

z − αn
+

1

αn

]
+

+
∑
n

1

F (βn)G′(βn)

[ 1

z − βn
+

1

βn

]
,

with some c−1, c0 ∈ R.

Second, a description of all entire functions which appear as an entry of some
Nevanlinna matrix.

2.2 Theorem ([Kre52, §3.Theorem B]). Let F be a real entire function with
F (0) = 0 or F (0) = 1. Then there exists a Nevanlinna matrix W such that F
is an entry of W , if and only if all zeros of F are real and simple, the nonzero
zeros αn of F satisfy ∑

n

1

|F ′(αn)|α2
n

<∞ ,

and the function 1
F has an expansion

1

F (z)
=
c−1
z

+ c0 +
∑
n

1

F ′(αn)

[ 1

z − αn
+

1

αn

]
,

with some c−1, c0 ∈ R.

Third, thinking of the left lower entry of some Nevanlinna matrix being fixed,
a description of all entire functions which form together with this function the
second row of some (other) Nevanlinna matrix.

2.3 Theorem ([Kre52, §3.Theorem C]). Let F be a real entire functions with
F (0) = 0, and assume that F is subject to the conditions of Theorem 2.2. In
order that a real entire function G, G(0) = 1, forms together with F the second
row of some Nevanlinna matrix, it is necessary and sufficient that the functions
F and G satisfy the following conditions (i)–(iii).

(i) F and G have no common zeros, and all zeros of G are real and simple.

(ii) Im G(z)
F (z) ≥ 0 for all z ∈ C+.

(iii)
∑
n

1

|F ′(αn)G(αn)|α2
n

<∞.

The analogous statement holds when we regard G as fixed and F as varying.

In [Kre52, §3.Theorem C] actually a different condition is stated, and it is
remarked afterwards that this condition is in turn equivalent to the one we
state here. However, this equivalence is immediate. Hence, we repeat only
one of the conditions (and chose the one which is more suitable in the present
context).
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2.2 Some classes of analytic and meromorphic functions

We recall some terminology and present some (mainly) well-known facts from
complex analysis and Pontryagin space theory.

To start with, let us give the definition of the main players in the present
paper: matrices of class M<∞.

2.4 Definition. Let W = (wij)
2
i,j=1 be a 2×2-matrix valued function and let

κ ∈ N0. We write W ∈Mκ if the following conditions hold.

(M1) The entries wij of W are real entire functions.

(M2) detW (z) = 1 for z ∈ C, and W (0) = I.

(M3) The reproducing kernel HW defined in (1.2) has κ negative squares5.

Moreover, we set

M<∞ :=
⋃
κ∈N0

Mκ ,

and write ind−W = κ to express that W ∈Mκ. ♦

As we already said in the introduction, the classM0 is nothing but the class of
all Nevanlinna matrices.

2.5 Remark. For the present considerations it is more practical to use the in-
definite version of the definition of Nevanlinna matrices via the reproducing
kernel HW , rather than the indefinite version of the initially stated classical
definition of Nevanlinna matrices the fractional linear transformations. As in
the positive definite case, these two approaches are equivalent, see, e.g., [Kal02,
Proposition 2.3, Theorem 6.1]. ♦

It is an important fact that the class M<∞ is closed with respect to taking
products. In fact,

ind−(W1W2) ≤ ind−W1 + ind−W2, W1,W2 ∈M<∞ , (2.1)

cf. [KW11, Lemma 2.10].

2.6. Polynomial matrices: Examples for matrices of class M<∞ are obtained
from polynomials. Let p be a real polynomial without constant term. Then we
have

Wp :=

(
1 p
0 1

)
∈M<∞ , (2.2)

and (n := deg p, an leading coefficient of p, and bxc denotes the largest integer
not exceeding x)

ind−

⌊n
2

⌋
+

{
1 , n odd, an < 0

0 , otherwise
.

This fact is well-known; an explicit reference is, e.g., [KW11, Proposition 2.8].
If W is a real 2×2-matrix polynomial with W (0) = I and detW = 1, then

W belongs to M<∞ and can be factorized into a product of “rotations” of
elementary factors of the form (2.2). This is shown in [ADL04, Theorem 3.1],
for a purely algebraic approach see [KW06, Theorem 3.1]. ♦

5By this we mean that κ is the maximal number of negative squares of quadratic forms∑L
i,j=1 a

∗
jHW (zj , zi)ai · ξiξj with L ∈ N, z1, . . . , zL ∈ C, and a1, . . . , aL ∈ C2.
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2.7. Changing roles of rows and columns: Each of the classes Mκ, κ ∈ N0, is
invariant under the transformations(

w11 w12

w21 w22

)
7→
(
w22 −w21

−w12 w11

)
,

(
w11 w12

w21 w22

)
7→
(
w11 −w21

−w12 w22

)
,

(
w11 w12

w21 w22

)
7→
(
w22 w12

w21 w11

)
,

see, e.g., [KWW06, Lemma 2.3]. Hence, a pair (F,G) is the second row of
some matrix W ∈ M<∞, if and only if (G,−F ) is the first row or if and only
(−F,G)T is the second column or if and only if (G,F )T is the first column of
some matrix W ∈M<∞. ♦

Next, we discuss some facts from classical complex analysis.

2.8. Entire functions of Cartwright class: An entire function is said to be of
Cartwright class if it is of finite exponential type, i.e., satisfies

lim sup
|z|→∞

1

|z|
log |F (z)| <∞ ,

and if ∫ ∞
−∞

log+ |F (x)|
1 + x2

dx <∞ .

Functions of Cartwright class are well-behaved concerning their growth and
distribution of zeros, see, e.g., [Lev80, V.4.Theorem 11]. In the present context
the following is important: Assume that F is of Cartwright class, and that all
but finitely many zeros of F are real and simple. Denote by (αn) the sequence
of all nonzero real and simple zeros of F , let (γj) be the remaining nonzero zeros
(with multiplicities dj ∈ N), and let d0 ∈ N0 be the multiplicity of 0 as a zero
of F . Moreover, denote by α+

n and α−n the sequences of positive or negative,
respectively, elements of (αn) arranged according to increasing modulus. Then

(i) the limits6 limn
n
α+
n

and limn
n
α−n

exist in [0,∞) and are equal;

(ii) the limit limR→∞
∑
|αn|≤R

1
αn

exists in R;

(iii) the function F has the representation

F (z) =
F (d0)(0)

d0!
zd0 ·

∏
j

(
1− z

γj

)dj
· lim
R→∞

∏
|αn|≤R

(
1− z

αn

)
. (2.3)

However, in general these properties do not imply Cartwright class. ♦

2.9. Meromorphic functions of bounded type: Let f be a function which is
meromorphic in the half-plane C+. Then we say that f is of bounded type in
this half plane, if it can be written as the quotient of two functions which are
analytic and bounded in this half-plane.

The set of all functions of bounded type in C+ is a field. Two simple but
important examples are the following.

6We tacitly understand the limit of a finite sequence to be equal to zero.
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(i) Each rational function is of bounded type in C+. This follows since the
constant function 1 and the function (z− i)−1 (obviously) have this prop-
erty.

(ii) Each function which is analytic in C+ and has nonnegative imaginary part
throughout this half-plane is of bounded type. To see this consider the
fractional linear transformation L(z) := (z − i)(z + i)−1. It is analytic
in C \ {−i} and maps the closed half-plane C+ onto the closed unit disk.
If q is analytic with Im q ≥ 0 throughout C+, then L ◦ q is analytic and
bounded in C+. Now we obtain the representation

q = L−1 ◦ (L ◦ q) = i
1 + (L ◦ q)
1− (L ◦ q)

of q as the quotient of two bounded analytic functions7.

Functions of bounded type in the lower half-plane C− are defined in the same
way, and enjoy analogous properties. This follows by conformally invariance.

♦

2.10. Analytic functions of bounded type: If F is analytic in C+, a more intrinsic
characterisation of the property to be of bounded type reads as follows, cf.
[RR94, Theorem 3.20]: An analytic function F in C+ is of bounded type if and
only if the subharmonic function log+ |F (z)| has a harmonic majorant in C+.

Let us finally turn to entire functions. It is an important result due to
M.G.Krein that an entire function is of Cartwright class, if and only if its re-
strictions to C+ and C− are both of bounded type in the respective half-plane.
Moreover, if F is of bounded type in both half-planes, then the exponential type
of F can be computed as

max
{

lim
y→+∞

1

y
log+ |F (iy)|, lim

y→−∞

1

|y|
log+ |F (iy)|

}
. (2.4)

For these facts see [Kre47, Theorems 3 and 2] or, e.g., [RR94, Theorems 6.17
and 6.18]. ♦

Finally, we recall some notions and results from the indefinite world; among
them generalized Nevanlinna functions and de Branges-Pontryagin spaces.
These include the most important tools for our present work, and are prob-
ably the least commonly known of our required prerequisits.

2.11. Generalized Nevanlinna functions: A function q which is meromorphic
in C \ R is called a generalized Nevanlinna function, if q(z) = q(z) and the
reproducing kernel (ρ(q) denotes the domain of holomorphy of q)

Nq(w, z) :=
q(z)− q(w)

z − w
, z, w ∈ ρ(q) ,

has a finite number of negative squares. The set of all generalized Nevanlinna
functions is denoted as N<∞. If q ∈ N<∞, then we write ind− q for the actual
number of negative squares of the kernel Nq, and set

Nκ :=
{
q ∈ N<∞ : ind− q = κ

}
, κ ∈ N0 .

7Functions with nonnegative imaginary part throughout the half-plane are even outer, cf.
[RR94, V.Examples and Addenda 1.].
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It is a historical result8 that a function q belongs to N0 if and only if it is
analytic throughout C \ R, satisfies q(z) = q(z) and Im q(z) ≥ 0 for z ∈ C+.

Simple examples of generalized Nevanlinna functions are rational functions.
Each rational function q with real coefficients belongs to the class N<∞, and
ind− q cannot exceed the maximal degree of numerator and denominator of q
(this is a well-known fact; a short and explicit proof can be found, e.g., in [Wor97,
Theorem 1]). If q is a polynomial, it is easy to compute ind− q explicitly: we
have (n := deg q, an leading coefficient of q)

ind−

⌊n
2

⌋
+

{
1 , n odd, an < 0

0 , otherwise

see, e.g., [KL77, Lemma 3.3] (applied with σ = 0).
Let us mention that the class N<∞ is closed with respect to sums, in fact,

ind−(q1 + q2) ≤ ind− q1 + ind− q2.
It is a deep result shown in [KL77, Satz 3.1] that functions of class N<∞ have

an integral representation analogous to the Herglotz integral representation of
functions with nonnegative imaginary part.

Finally, recall that all but finitely poles of a generalized Nevanlinna function
are real, simple, and have negative residuum. This follows from the mentioned
integral representation or, alternatively, from the multiplicative representation
of a generalized Nevanlinna function stated in 2.13 below. ♦

2.12. Computing negative index: If q ∈ N<∞, one can give a formula for
ind− q based on the structure of the poles of q and on the asymptotic growth
of the measure in its integral representation towards certain critical points, cf.
[KL77, Satz 3.4]. For our present needs the following estimate is sufficient: Let
q ∈ N<∞ and assume that q is meromorphic in the whole plane. Denote by
(αn) the sequence of all real and simple poles of q with negative residuum, let
(γj) be the remaining poles (with multiplicities dj ∈ N), and set

δj :=

{
1 , dj odd, limz→γj (z − γj)djq(z) > 0

0 , otherwise
.

Then

ind− q ≥
∑
γj∈R

(⌊dj
2

⌋
+ δj

)
+

∑
Im γj>0

dj+

+ min
{
m ∈ N0 :

∑
n

|Res(q;αn)|
1 + α

2(m+1)
n

<∞
}
. (2.5)

Sometimes, especially when dealing with functions which are meromorphic in
the whole plane, it is practical not to refer to [KL77, Satz 3.4] directly. A
useful method for “counting negative squares” is to employ [KL77, Satz 1.13]
to split into a sum with one summand well-behaved at∞ and one well-behaved
off ∞. The negative index of the first summand then can be computed using
[KL81, Theorem 3.5] and [Lan86], and for the second summand by using [KL77,
Lemma 3.3].

8It can be traced back as far as to some work of G.Herglotz from 1911.
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Let us also explicitly mention the following corollary: Let q ∈ Nκ be mero-
morphic in C. Then all but at most 2κ poles of q are real and simple and have
negative residuum. Moreover, if (αn) denotes the sequence of all real and simple
poles of q with negative residuum, then∑

n

|Res(q;αn)|
1 + α

2(κ+1)
n

<∞ . (2.6)

Using to the sources mentioned above, one can also show the following more re-
fined statement: Let q ∈ N<∞ be meromorphic in C, and denote the number on
the right side of (2.5) by κ0(q). Then (we denote by R[z] the set of polynomials
with real coefficients){

ind−(q + p) : p ∈ R[z], p(0) = 0
}

=
[
κ0(q),∞

)
∩ N0 . (2.7)

♦

2.13. Multiplicative representations of q ∈ N<∞: The following important mul-
tiplicative representation of a generalized Nevanlinna function has been estab-
lished independently in [DLLS00, Corollary] and [DHdS99, Theorem 3.3]: Let
a function q ∈ N<∞ be given. Then there exist relatively prime polynomials
p, p̃ whose zeros are all located in the closed upper half-plane, and a function
q ∈ N0, such that (we denote f#(z) := f(z))

q(z) =
p̃(z)p̃#(z)

p(z)p#(z)
q0(z) . (2.8)

Also a converse holds, cf. [DHdS99, Proposition 3.2]: Let p, p̃ and q0 be as above,
then the function q in (2.8) belongs to Nκ with κ := max{deg p,deg p̃}.

As a consequence of this representation we see that each generalized Nevan-
linna function is of bounded type (in both half-planes C+ and C−). ♦

2.14. Indefinite Hermite-Biehler functions: We say that an entire function E
belongs to the indefinite Hermite-Biehler class HB<∞, if it is normalized by
E(0) = 1, the functions E and E# have no common zeros, and the reproducing
kernel

KE(w, z) := i
E(z)E(w)− E#(z)E(w)

2π(z − w)
, z, w ∈ C ,

has a finite number of negative squares. Again we denote the actual number of
negative squares of this kernel by ind−E, and write HBκ for all functions with
ind−E = κ.

The class HB0 is a classical object: It consists of all entire functions with
E(0) = 1, which are such that E and E# have no common zeros, and satisfy

|E(z)| ≤ |E(z)|, z ∈ C+ .

Thus is nothing but the class of all Hermite-Biehler functions (somtimes also
called “de Branges functions”) as studied, e.g., in [dB68], [Lev80, Chapter VII].

Let E ∈ HB<∞. Then the reproducing kernel KE generates a Pontryagin
space of entire functions, cf. [ADRdS97, Theorem 1.1.3]. We denote this space
as P(E), and refer to it as the de Branges–Pontryagin space associated with E.
For the theory of such spaces, see [KW99a]. If ind−E = 0, this notion coincides
with the classical concept of de Branges’ Hilbert spaces of entire functions, cf.
[dB68]. ♦
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2.15. Functions associated to a de Branges–Pontryagin spaces: A central con-
cept for our present purposes is the notion of functions N -associated to a
de Branges space: For E ∈ HB<∞ and N ∈ N, we set

AssocN P(E) := P(E) + zP(E) + . . .+ zNP(E) .

The following statements are crucial tools for our present considerations.
First, the fact whether or not AssocN P(E) contains a real and zerofree

element is related to existence of matrices W ∈ M<∞ whose first row equals
(A,B) where

A :=
1

2
(E + E#), B :=

i

2
(E − E#) .

Namely, we have

1 ∈
⋃
N∈N

AssocN P(E) ⇔ ∃W ∈M<∞ : (1, 0)W = (A,B) .

This is shown in [KW99a, Proposition 10.3] and [Wor11, Proposition 6.1], where
the first reference covers the case N = 1 and the second the case N > 1.

The second major result is [Wor11, Theorem 3.2]. To recall this, we need to
introduce some notation. For E ∈ HB<∞ and ϕ ∈ R, set

Sϕ(z) :=
1

2i

(
eiϕE(z)− e−iϕE#(z)

)
.

Denote by (αϕ,n) the sequence of all nonzero real and simple zeros of Sϕ
such that the residuum of S−1ϕ Sϕ+π

2
at this point is negative, set σϕ,n :=

−Res
(
S−1ϕ Sϕ+π

2
;αϕ,n

)
, let (γϕ,j) be the remaining nonzero zeros (multiplic-

ities denoted as dϕ,j ∈ N), and let dϕ,0 ∈ N0 be the multiplicity of 0 as a zero
of Sϕ. Moreover, denote by α+

ϕ,n and α−ϕ,n the sequences of positive or nega-
tive, respectively, elements of (αϕ,n) arranged according to increasing modulus.
Finally, set

Fϕ(z) = zdϕ,0 ·
∏
j

(
1− z

γϕ,j

)dϕ,j
· lim
R→∞

∏
|αϕ,n|≤R

(
1− z

αϕ,n

)
,

provided the product converges.
Now [Wor11, Theorem 3.2] says the following. Assume that dimP(E) =∞

and let N ∈ N. Then AssocN P(E) contains a real and zerofree functions, if
and only if for some ϕ ∈ R the above data satisfies the conditions (i) and (ii)
of 2.8 and ∑

n

|αϕ,n|−2N
1

|F ′ϕ(αϕ,n)|2σϕ,n
<∞ .

If AssocN P(E) contains a real and zerofree function, then these conditions hold
for all ϕ ∈ R, and the function F−1ϕ Sϕ is the (up to scalar multiples) unique
real zerofree element of

⋃
M∈N AssocM P(E).

If dimP(E) < ∞, then always Assoc1 P(E) contains a real and zerofree
function. In fact, P(E) is of the form

P(E) =
{
U(z)p(z) : p ∈ C[z],deg p < dimP(E)

}
,

with U being real and zerofree, see, e.g., [Wor11, Remark 3.3]. ♦
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2.16. Relations between M<∞, N<∞, HB<∞: There is a variety of (analytic
and geometric) relations between the classes M<∞, N<∞, and HB<∞, as well
as between the respective reproducing kernel space. In the present paper the
following facts are used.

(i) Let W = (wij)
2
i,j=1 ∈Mκ. Then

w11

w21
,
w12

w22
,
w12

w11
,
w22

w21
∈
⋃
κ′≤κ

Nκ′ ,

see, e.g., [KWW06, Corollary 2.10] or [KL78].

(ii) Let F,G be real and entire functions, F (0) = 1, G(0) = 0, which have no
common zeros, and set E := F − iG. Then (κ ∈ N0)

E ∈ HBκ ⇐⇒ G

F
∈ Nκ ,

see, e.g., [KW99a, Remark 5.2].

(iii) Let us explicitly point out the following fact, which follows by combining
items (i) and (ii). If W ∈ M<∞, then E+ := w11 − iw12, E− := w22 +
iw21 ∈ HB<∞, and ind−E+, ind−E− ≤ ind−W .

♦

3 The indefinite analogues of Krein’s theorems

First, we give the indefinite analogue of Theorem 2.2. Thereby, we include an
additional item (III), because it provides an easier accessible condition on F
and because it makes the proof more transparent.

3.1 Theorem. Let F be a real entire function with F (0) = 0 or F (0) = 1.
Then the following are equivalent.

(I) There exists a matrix W ∈M<∞ such that F is an entry of W .

(II) Denote by (αn) the (finite or infinite) sequence of all nonzero real and
simple zeros of F . Then

∃N ∈ N :
∑
n

1

|F ′(αn)| · |αn|N+1
<∞ , (3.1)

and the function 1
F has the expansion

1

F (z)
= R(z) +

∑
n

1

F ′(αn)

[ 1

z − αn
+

1

αn
+

z

α2
n

+ . . .+
zN−1

αNn

]
, (3.2)

with some rational function R.

(III) (a) All but finitely many zeros of F are real and simple.

Denote by (αn) the sequence of all nonzero real and simple zeros of F ,
let (γj) be the remaining nonzero zeros (with multiplicities dj ∈ N), and
let d0 ∈ N0 be the multiplicity of 0 as a zero of F . Moreover, denote by
α+
n and α−n the sequences of positive or negative, respectively, elements of

(αn) arranged according to increasing modulus. Then

11



(b) The limits9 limn
n
α+
n

and limn
n
α−n

exist in [0,∞) and are equal.

(c) The limit limR→∞
∑
|αn|≤R

1
αn

exists in R.

(d) The function F has the representation

F (z) =
F (d0)(0)

d0!
zd0 ·

∏
j

(
1− z

γj

)dj
· lim
R→∞

∏
|αn|≤R

(
1− z

αn

)
.

(e) We have

∃ N ∈ N, σn > 0 :∑
n

σn
|αn|N+1

<∞,
∑
n

1

σn|F ′(αn)|2 · |αn|N+1
<∞ . (3.3)

The proof of this result requires some preparation. First, we provide a variant
of [Kre47, Theorem 4], see also [Lev80, V.6.Theorem 13].

3.2 Lemma. Let (αn) be a (finite or infinite) sequence of pairwise distinct and
nonzero real numbers, let (τn) be a corresponding sequence of real numbers, let
N ∈ N, and let R be a rational function. Assume that∑

n

∣∣∣ τn

αN+1
n

∣∣∣ <∞ , (3.4)

and consider the function10

f(z) :=R(z) +
∑
n

τn

[ 1

z − αn
+

1

αn
+

z

α2
n

+ . . .+
zN−1

αNn

]
=

=R(z) + zN
∑
n

τn
αNn (z − αn)

. (3.5)

Then the meromorphic functions f |C+ and f |C− are of bounded type in the re-
spective half-planes.

Krein’s theorem [Kre47, Theorem 4] is much stronger in the sense that also
nonreal points αn satisfying the Blaschke-condition are permitted. On the other
hand, it is assumed a priori that f is the inverse of an entire function, i.e., has
no zeros. In the above variant this is not required.

Proof (of Lemma 3.2). We rewrite

f(z) = R(z) + zN−1
( ∑
τnα

N−1
n <0

τn

αN−1n

[ 1

z − αn
+

1

αn

]
−

−
∑

τnα
N−1
n >0

−τn
αN−1n

[ 1

z − αn
+

1

αn

])
.

Each of the two sums is analytic in C+, and has nonnegative imaginary part
throughout this half-plane. Thus it is of bounded type, cf. 2.9, (ii). q

9Again we tacitly understand the limit of a finite sequence to be equal to zero.
10Due to (3.4) the sum converges locally uniformly off the points αn. It represents a

meromorphic function in C, whose poles are all simple and located at the points αn.
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Second, a variant of an argument which is around (at least) since the basic
paper [Kre47], and repeatedly appears more or less explicitly in the literature
(e.g., [dB59, Lemma 2], [BP95, Lemma 6.3], or [Bak98, Theorem 3.1]). The
formulation taylored to our present needs reads as follows.

3.3 Lemma. Let F be a real entire function of Cartwright class, such that all
but finitely many zeros of F are real and simple, and such that (3.1) holds. Then
1
F has an expansion (3.2).

Proof. The function F is of bounded type in C+ and C−. Due to its represen-
tation (2.3), we have lim|y|→∞ |F (iy)| =∞.

Choose N ∈ N according to (3.1), and consider the function

H(z) :=
∑
n

1

F ′(αn)

[ 1

z − αn
+

1

αn
+

z

α2
n

+ . . .+
zN−1

αNn

]
.

By Lemma 3.2, H is of bounded type in C+ and C−. By bounded convergence
(remember (3.5)), we have lim|y|→∞ |y|−(N+1)|H(iy)| = 0.

Let R0 be the sum of all principal parts of the Laurent expansions of 1
F at

poles different from the points αn. Then R0 is rational, hence of bounded type,
and lim|y|→∞R0(iy) = 0.

The function L := 1
F −R0−H is entire, of bounded type in C+ and C−, and

satisfies lim|y|→∞ |y|−(N+1)|L(iy)| = 0. Referring to Krein’s theorem [RR94,
Theorem 6.18], cf. (2.4), we obtain that L is of minimal exponential type. The
Phragmen-Lindelöf principle (e.g., in the form [Lev80, I.14.Corollary] adapted
with an appropriate power) implies that L is a polynomial of degree at most N .
We see that 1

F admits an expansion (3.2). q

The equivalence of (II) and (III) in Theorem 3.1 is now nearly obvious.
The implication “(I)⇒ (III)” is deduced with mainly standard methods, and
“(III)⇒ (I)” is established with help of [Wor11].

Proof (of Theorem 3.1). If F is a polynomial, each of (I), (II), and (III), holds.
Thereby, (II) and (III) are trivial, for (I) remember 2.6. Hence, throughout the
proof we may assume that F is transcendental.

Step 1; “(II)⇒(III)”: Only the poles of R may give rise to nonreal poles, or to
poles with multiplicity greater than 1 of 1

F . Thus (a) holds. Lemma 3.2 together
with Krein’s theorem recalled in 2.10 gives that F is of Cartwright class. Hence,
(b), (c), and (d) hold, cf. 2.8. Choose N ∈ N according to (3.1) and set

σn :=
1

|F ′(αn)|
.

Then (3.3) is immediate from (3.1).

Step 2; “(III)⇒(II)”: Choose N, σn according to (3.3). Since x + 1
x ≥ 1 for all

x > 0, writing the relations (3.3) in the form∑
n
σn|F ′(αn)| · 1

|F ′(αn)||αn|N+1 <∞,
∑
n

1
σn|F ′(αn)| ·

1
|F ′(αn)||αn|N+1 <∞ ,

13



yields (3.1). It has been shown in [LW02, Lemma 5.5]11, that (a)–(d) in conjunc-
tion with (3.1) imply that F is of Cartwright class. Now Lemma 3.3 guarantees
(3.2).

Step 3; “(I)⇒(III)”: We restrict explicit proof to the case that F (0) = 1; the
case “F (0) = 0 ” is treated in the same way. Moreover, by 2.7, we may restrict
to considering the left upper entry of a matrix of class M<∞.

Let W ∈ M<∞ be given, set κ := ind−W , and consider the function F :=
w11. By [LW13a, Proposition 2.7]12, this function is of Cartwright class and
hence satisfies (b)–(d), cf. 2.8.

The functions w12

F and −w21

F both belong to
⋃
κ′≤κNκ′ , cf. 2.16. Since F

and w12 (and F and w21, respectively) have no common zeros, (a) follows, cf.
2.11. Moreover, by (2.6),∑

n

∣∣∣w12(αn)

F ′(αn)

∣∣∣ 1

|αn|2(κ+1)
<∞,

∑
n

∣∣∣w21(αn)

F ′(αn)

∣∣∣ 1

|αn|2(κ+1)
<∞ .

Set N := 2κ+ 1 and σn :=
∣∣w12(αn)
F ′(αn)

∣∣. Then the first relation in (3.3) holds. We

have
1 = detW (αn) = −w12(αn)w21(αn) (3.6)

and hence ∣∣∣w21(αn)

F ′(αn)

∣∣∣ =
1

σn|F ′(αn)|2
.

Thus also the second relation in (3.3) holds.

Step 4; “(III)⇒(I)”: Again we restrict explicit proof to the case that F (0) = 1.
Choose N ∈ N and σn > 0 such that (3.3) holds. Set

q0(z) :=
∑
n

σn
|αn|N−1

[ 1

αn − z
− 1

αn

]
+
∑
j:γj∈R
dj odd

[ 1

γj − z
− 1

γj

]
,

p(z) :=
∏
γj∈R

(z − γj)b
dj
2 c ·

∏
Im γj>0

(z − γj)dj ,

q(z) :=
1

p(z)p#(z)
· q0(z), G(z) := F (z)q(z) ,

M := N +
∑
γj∈R

⌊dj
2

⌋
+

∑
Im γj>0

dj .

The function q0 is well-defined by convergence of the first sum in (3.3), and
meromorphic in the whole plane. Moreover, it belongs to N0. It follows that
q ∈ N<∞, cf. 2.13. We have

Res(q;αn) =
−σn
|αn|N−1

· 1

|p(αn)|2
,

and therefore

lim
n→∞

|Res(q;αn)|
σn

· |αn|
2M

|αn|N+1
= 1 . (3.7)

11Probably this fact has a longer history, but we are not aware of another explicit reference.
12For asymptotically well-behaved matrices W this also follows by combining [KL78,

Satz 4.2] with [KL78, §6.2].
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The functions F and G have no common zero and G(0) = 0. By what we
recalled in 2.16,

E := F − iG ∈ HB<∞ .

Using (3.7), convergence of the second sum in (3.3) implies that∑
n

α−2Mn

1

|F ′(αn)|2|Res(q;αn)|
<∞ .

Remembering our present hypothesis (b) and (c), we see that [Wor11, Theo-
rem 3.2] is applicable with the function E and the angle “ϕ = π

2 ”, cf. 2.15.
Using (d), it follows that 1 ∈ AssocM P(E). Now [Wor11, Proposition 6.1], cf.
2.15, provides a matrix W ∈M<∞ with (1, 0)W = (F,G). q

Let us now proceed to the indefinite versions of Theorems 2.1 and 2.3.

3.4 Theorem. Let F and G be two real entire functions with (F (0), G(0)) =
(0, 1). Then there exists a matrix W ∈ M<∞ such that (F,G) = (0, 1)W , if
and only if the following conditions (α)–(δ) hold.

(α) F and G have no common zeros, and all but finitely many zeros of F and
G are real and simple.

(β) The reproducing kernel

NG
F

(w, z) :=
1

z − w

(
G(z)

F (z)
− G(w)

F (w)

)
has a finite number of negative squares.

(γ) The sequences (αn) and (βn) of all nonzero real and simple zeros of F and
G, respectively, satisfy

∃N ∈ N :∑
n

1

|F ′(αn)G(αn)||αn|N+1
<∞,

∑
n

1

|F (βn)G′(βn)||βn|N+1
<∞ .

(δ) The function 1
FG has the expansion

1

F (z)G(z)
= R(z)+

+
∑
n

1

F ′(αn)G(αn)

[ 1

z − αn
+

1

αn
+

z

α2
n

+ . . .+
zN−1

αNn

]
+

+
∑
n

1

F (βn)G′(βn)

[ 1

z − βn
+

1

βn
+

z

β2
n

+ . . .+
zN−1

βNn

]
,

with some rational function R.

3.5 Theorem. Let F be an entire function with F (0) = 0, and assume that F
is of Cartwright class. In order that a real entire function G, G(0) = 1, forms
together with F the second row of some matrix W ∈ M<∞, it is necessary
and sufficient that the conditions (α) and (β) of Theorem 3.4 and the following
condition (γ′) holds.
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(γ′) The sequence (αn) of all nonzero real and simple zeros of F satisfies

∃N ∈ N :
∑
n

1

|F ′(αn)G(αn)||αn|N+1
<∞ .

The analogous statement holds when we regard G as fixed and F as varying.

In the positive definite case this result contains a slight improvement of Theo-
rem 2.3; the a priori hypothesis on F is slightly weakened.

3.6 Remark. Following the presentation in [Kre52], we have formulated The-
orems 3.4 and 3.5 for (F,G) being the second row (or the left lower element,
respectively) of some matrix W ∈ M<∞. From 2.7 it is obvious that corre-
sponding statements hold for the first row, or the first or the second column,
instead of the second row. ♦

The proof of Theorems 3.4 and 3.5 is carried out using essentially the same
arguments as in the proof of Theorem 3.1.

Proof (of Theorems 3.4 and 3.5). For necessity assume that W ∈ M<∞ is
given, and consider (F,G) := (0, 1)W . The condition (α) follows since
detW = 1 and G

F ∈ N<∞, cf. 2.11. Condition (β) holds by 2.16. By [Wor11,
Proposition 6.1], cf. 2.15, there exists M ∈ N with 1 ∈ AssocM P(E) where
E := G + iF (apply 2.7 to switch lower and upper row). Applying [Wor11,
Theorem 3.2], cf. 2.15, with the function E and the angle “ϕ = π

2 ” gives∑
n

1

|F ′(αn)G(αn)||αn|2M
=
∑
n

α−2Mn

1

|F ′(αn)|2|Res
(
G
F ;αn

)
|
<∞ .

This is (γ′) with N := 2M − 1. Using the angle “ϕ = 0”, gives∑
n

1

|F (βn)G′(βn)||βn|2M
=
∑
n

|βn|−2M
1

|G′(βn)|2|Res
(
− F

G ;βn
)
|
<∞ ,

and we see that even (γ) holds. By [LW13a, Proposition 2.7], the functions F
and G are of Cartwright class. Hence, also FG is of Cartwright class. Due to
(γ), the hypothesis required to apply Lemma 3.3 is satisfied, and (δ) follows.

For sufficiency assume that F and G are given and satisfy the hypothesis of
either Theorem 3.4 or of Theorem 3.5. In the latter case, F is of Cartwright
class directly from the hypothesis. In the first case, we use Krein’s theorem (or
Lemma 3.2) to conclude that the function FG is of bounded type in C+ and
C−. The function G

F belongs to N<∞, and thus has the same property, cf. 2.13.
It follows that F 2 is of Cartwright class, and hence also F is. Again using (β)
we see that also G is of Cartwright class. From (α) and (β),

E := G+ iF ∈ HB<∞ ,

cf. 2.16, (ii). By (γ′) (hence also by the stronger condition (γ)) the hypothesis
necessary to apply [Wor11, Theorem 3.2] with E and “ϕ = π

2 ” is fullfilled,
cf. 2.15. Now [Wor11, Proposition 6.1], cf. 2.15, provides us with a matrix
W ∈ M<∞ such that (G,−F ) = (1, 0)W . It remains to apply 2.7 in order to
pass to the lower row. q
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4 On the geometry of reproducing kernel spaces

Consider a matrix W ∈ M<∞. Then the reproducing kernel HW (w, z) defined
in (1.2) generates a reproducing kernel Pontryagin space K(W ) whose elements
are 2-vector valued entire functions. This space is obtained as the Pontryagin
space completion of the linear space

span
{
HW (w, .)

(
α

β

)
: w ∈ C, α, β ∈ C

}
which is endowed with an inner product [., .] defined by linearity and[

HW (w, .)

(
α

β

)
, HW (w′, .)

(
α′

β′

)]
:=

(
α′

β′

)∗
HW (w, .)

(
α

β

)
,

w, w′ ∈ C, α, β, α′, β′ ∈ C ,

see, e.g., [ADRdS97, Theorem 1.1.3]. Basic theorems on spaces K(W ), their
relation with de Branges–Pontryagin spaces on the one hand, and their rela-
tion with the spectral theory of entire operators on the other, can be found in
[KW99a], [KW99b] for the first, and in [KW98a], [KL78] for the latter. Stan-
dard literature dealing with the positive definite case, is, e.g., [dB68] or [GG97],
[KL14].

4.1. The subspaces K±(W ): Let W ∈ M<∞. In the structure theory of the
space K(W ) certain subspaces play a role. Namely (here “cls” stands for “closed
linear span”)

K+(W ) := cls
{
HW (w, .)

(
1

0

)
: w ∈ C

}
,

K−(W ) := cls
{
HW (w, .)

(
0

1

)
: w ∈ C

}
.

As we have observed in 2.16, the functions E+ := w11 − iw12 and E− := w22 +
iw21 belong to HB<∞. Hence, they generate de Branges–Pontryagin spaces
P(E+) and P(E−). Denote by π+ the projection of a vector function onto its
first component, i.e., π+ :

(
F
G

)
7→ F . It is shown in [KW99a, Lemma 8.6] that

π+|K+(W ) maps K+(W ) isometrically and surjectively onto P(E+). Moreover,

we have ker(π+|K(W )) = K+(W )⊥. In particular,

ker(π+|K+(W )) = K+(W )◦ .

The analogous statements hold for the second row of W , i.e., with “+” every-
where replaced by “−”, and π− being the projection onto the second component.

♦

The geometry ofK+(W ) andK−(W ) as closed subspaces of the Pontryagin space
K(W ) has consequences for the structure theory of W . For instance, two crucial
result in this context are [KW99b, Theorem 5.7] and [Wor11, Lemma 6.3].

In the spirit of the present paper the following question appears naturally:

Which values may the quantities

ind−K(W ), ind−K−(W ), dimK−(W )◦

take when W varies through all matrices having a prescribed second
row (or one prescribed entry in this row)?
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In the below two theorems we give the answer. First, we regard the second row
as prescribed.

4.2 Theorem. Let F and G be entire functions which are subject to the condi-
tions of either Theorem 3.4 or Theorem 3.5, so that there exist matrices of class
M<∞ which have (F,G) as their second row. Denote by (αn) the sequence of
all nonzero real and simple zeros of F . Then the following statements hold true.

(i) We have{
ind−K(W ) : W ∈M<∞, (0, 1)W = (F,G)

}
=
[

ind−
G

F
+ dimK−(W )◦ , ∞

)
∩ N0 .

(ii) For each W ∈M<∞ with (0, 1)W = (F,G) we have

ind−K−(W ) = ind−
G

F
.

(iii) For each W ∈M<∞ with (0, 1)W = (F,G) we have

dimK−(W )◦ = min
{
M ∈ N0 :

∑
n

1

|F ′(αn)G(αn)||αn|2(M+1)
<∞

}
.

Second, we regard the left lower entry as prescribed. A corresponding result
holds, if we fix the right lower entry; we do not give details.

4.3 Theorem. Let F , F (0) = 0, be an entire function which satisfies one (and
hence each) condition of Theorem 3.1, so that there exist matrices of classM<∞
which have F as their left lower entry. Let notation “αn, γj , dj, etc.” be as in
Theorem 3.1, and set

ν := min
{
N ∈ N0 :

∑
n

1

|F ′(αn)| · |αn|N+1
<∞

}
,

δ :=
(⌊d0

2

⌋
+
{
1, d0 odd, F (d0)(0) > 0

0, otherwise

})
+
∑
γj∈R

⌊dj
2

⌋
+

∑
Im γj>0

dj .

Then the following statements hold.

(i) If W ∈M<∞ with (0, 1)W
(
1
0

)
= F , then

ind−K(W ) ≥ ind−K−(W ) + dimK−(W )◦ ≥ δ + ν − 1 , (4.1)

ind−K−(W ) ≥ δ . (4.2)

(ii) If α, β, γ ∈ N0 satisfy

α ≥ β + γ ≥ δ + ν − 1, β ≥ δ , (4.3)

then there exists W ∈M<∞ such that

(0, 1)W

(
1

0

)
= F ,

ind−K(W ) = α, ind−K−(W ) = β, dimK−(W )◦ = γ .
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Let us immediately point out one interesting consequence of this theorem: Since,
in the first relation in (4.3) only the sum β + γ appears, one can trade negative
index against dimension of degeneracy.

4.4 Corollary. Let F , F (0) = 0, be an entire function which satisfies one (and
hence each) condition of Theorem 3.1, so that there exist matrices of classM<∞
which have F as their left lower entry. Then there exist matrices W1,W2 ∈
M<∞ such that

(0, 1)W1

(
1

0

)
= F, ind−K−(W1) = δ .

(0, 1)W2

(
1

0

)
= F, dimK−(W2)◦ = 0 .

The choice of W2 can be made such that K−(W2) = K(W2).

The rest of this section is devoted to the proof of these results.

�

Notice: In the following discussion we extensively use terminology and results
from the theory of indefinite canonical systems and maximal chains of matrices.
We refer the reader who wishes to dive into the details to [Wor11, §4], [LW13b,
§2], or (the most exhaustive reference) [KW11, §2, §3]. There all definitions and
a review of most relevant theorems can be found. Detailed references will be
provided throughout the subsequent text.

To the reader who is not interested in details we suggest to skip Propo-
sition 4.5, believe in Theorem 4.2, (i), and proceed directly to the proofs of
Theorem 4.2, (ii) and (iii), and Theorem 4.3 and its corollary, which start on
page 24. To make the dependencies precise:

Theorem 4.2, (ii) and (iii),
Theorem 4.3, Steps 1,2,
Corollary 4.4

Proofs can be read without further
prerequisits

Proposition 4.5,
Theorem 4.2, (i)

Requires familiarity with indefinite
canonical systems

Theorem 4.3, Step 3
No further prerequisits required,
but uses Theorem 4.2, (i)

In this context we must say it very clearly that the theory of indefinite canonical
systems has entered through the backdoor from the very beginning. The proofs
in our previous work [Wor11] depend highly on this theory. Only, the theorems
required from [Wor11] in the present paper can be formulated without using
such notions (and this we did in 2.15). ♦

Throughout the following we agree on a generic notation: if p is a polynomial
with real coefficients and without constant term, we denote by P the matrix

P (z) :=

(
1 p
0 1

)
.

Let W ∈ M<∞. Then we know from [KW99a, Corollary 9.8] that the totality
of all matrices of classM<∞ which have the same second row as W is given as{

W̃ ∈M<∞ : (0, 1)W̃ = (0, 1)W
}

=
{
PW : p ∈ R[z], p(0) = 0

}
. (4.4)
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If K−(W )◦ = {0}, then the spaces K(PW ) are accessible to explicit computa-
tion. On the other hand, if K−(W ) degenerates, this is not anymore the case and
things are getting more involved. In the following we describe what it means to
pass from W to PW in terms of the associated general Hamiltonians. Thereby,
we focus on the more difficult case that K−(W )◦ 6= {0}. We also include the
limit point situation (which means to work with Weyl coefficients instead of
matrices of class M<∞).

4.5 Proposition. Let h be a general Hamiltonian ([KW11, Definition 3.35])
given by data13

σ0, . . . , σn+1, H0, . . . ,Hn, öi, bi,j , di,j , i = 1, . . . , n, E .

Assume that n ≥ 2, that (σ0, σ1) is indivisible of type 0 ([KW11, p.259]), and
that σ1 is not left endpoint of an indivisible interval. Let h′ be another general
Hamiltonian, and assume that h and h′ are either both regular or both singular
([KW11, Definition 3.35,(3.4)]). Then, with (i), (iir), (iis) as written out below:
if h is regular we have “ (i)⇔ (iir)”, and if h is singular we have “ (i)⇔ (iis)”.

(i) The general Hamiltonians h and h′ differ only in their data part at their
first singularity. Precisely formulated, by this we mean that there exists
a reparameterization ([KW11, Remark 3.38]) of h′ which is given by the
data

σ0, . . . , σn+1, H0, . . . ,Hn, ö′i, b
′
i,j , d

′
i,j , i = 1, . . . , n, E , (4.5)

where
ö′i = öi, b

′
i,j = bi,j , d

′
i,j = di,j for i = 2, . . . , n . (4.6)

(iir) There exists p ∈ R[z], p(0) = 0, such that the monodromy matrices (this
are the matrices “ω(B(h))” in [KW11, Theorem 5.1,Proposition 4.29], cf.
[KW11, top of p.226]) W and W ′ of h and h′ are related as W ′ = PW .

(iis) There exists p ∈ R[z], p(0) = 0, such that the Weyl coefficients ([KW11,
Definition 5.2]) qh and qh′ of h and h′ are related as qh′ = qh + p.

In the proof we use the following lemma.

4.6 Lemma. Let W ∈ M<∞ with K−(W )◦ 6= {0}, and let p ∈ R[z],
p(0) = 0. Let ω be a finite maximal chain going down from W ([KW11, Defi-
nition 3.7,3.1]), and denote its domain by [σ0, σn+1] \ {σ1, . . . , σn}. Moreover,
set

ωp(x) :=

{
ω(x) , x ∈ [σ0, σ1)

Pω(x) , x ∈ (σ1, σn+1] \ {σ2, . . . , σn}
.

Then ωp is a finite maximal chain going down from PW .

Proof. By [Wor11, Lemma 6.3] (applied with −JWJ) the interval [σ0, σ1) in ω
is indivisible of type 0 and σ1 is not left endpoint of an indivisible interval.

Since PW ∈ M<∞, cf. 2.6 and (2.1), there exists a finite maximal chain
going down from PW ([KW11, 3.9,p.253]). Let ω′ be one such. By [LW13a,

13We agree that böi+1 = 0 unless indivisible intervals ([KW11, p.259]) adjoin to both sides
of σi.
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5.16 (p.310)], this chain starts with an indivisible interval of infinite length and
type 0, and its first singularity is not left endpoint of an indivisible interval. By
[LW13a, Lemma 5.7] there exists an endsection of ω′ which is a reparameteri-
sation ([KW11, Definition 3.4]) of Pω|(σ1,σn+1]\{σ2,...,σn}. The left endpoint of
this endsection is a singularity of ω′ since (notation “t” as in [KW11, Defini-
tion 2.1,(2.0)])

lim
x↘σ1

t[Pω(x)] = t[P ] + lim
x↘σ1

t[ω(x)] = −∞ .

The intermediate Weyl coefficient ([KW03, p.284,Proposition 5.1]) of ω at its
first singularity σ1 is equal to the constant ∞, and ω′ has the same property.
We have (notation “?” as in [KW11, p.246])

lim
x↘σ1

[
(Pω(x)) ? τ

]
= P ?

(
lim
x↘σ1

[ω(x)) ? τ ]
)

= P ?∞ =∞, τ ∈ R ∪ {∞} .

Hence the left endpoint of the mentioned endsection of ω′ must be the first
singularity of ω′ (argue, e.g., as in [KW11, Proposition 3.10]). It follows that ω′

and ωp are related by a reparameterisation, in particular, ωp is a finite maximal
chain. q

4.7 Corollary. Let ω be a maximal chain ([KW11, Definition 3.1]) defined on
[σ0, σn+1) \ {σ1, . . . , σn}, and assume that [σ0, σ1) is indivisible of type 0 and
that σ1 is not left endpoint of an indivisible interval. Moreover, let p ∈ R[z],
p(0) = 0, and set

ωp(x) :=

{
ω(x) , x ∈ [σ0, σ1)

Pω(x) , x ∈ (σ1, σn+1) \ {σ2, . . . , σn}
.

Then ωp is a maximal chain. The Weyl coefficients ([KW11, Definition 3.5])
qω and qωp of ω and ωp, respectively, are related as

qωp = qω + p .

Proof. Apply Lemma 4.6 to each beginning section of ω (and argue using
[KW11, Remark 3.15]). q

Proof (of Proposition 4.5). First assume (i), i.e. that h and h′ differ only in their
data part at their first singularity. Without loss of generality, we may assume
that the parameterisation of h′ is chosen such that it is given by data (4.5) with
(4.6). Let ω and ω′ be the (finite) maximal chains constructed from h and h′

(as in [KW11, Definition 5.3]). Since the Hamiltonian functions of h and h′

coincide, [KW11, Corollary 5.6] implies

ω|[σ0,σ1) = ω′|[σ0,σ1) , (4.7)

ω(x)−1ω(y) = ω′(x)−1ω′(y), σ1 < x ≤ y, x, y ∈ domω . (4.8)

We are going to define two more general Hamiltonians h̃ and h̃′. Set s1 :=
min(E ∩ (σ1, σ2)), choose ψ ∈ R such that s1 is not right endpoint of an indi-
visible interval of type ψ, and set

H̃1(x) :=

{
H1(x) , x ∈ (σ1, s1]

(cosψ, sinψ)T (cosψ, sinψ) , x ∈ (s1,∞)
.
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Now we define h̃ and h̃′ as the sets of data

h̃ : σ0, σ1,∞, H0, H̃1, ö1, b1,j , d1,j , {σ0, s1,∞}

h̃′ : σ0, σ1,∞, H0, H̃1, ö′1, b
′
1,j , d

′
1,j , {σ0, s1,∞}

Since h̃ and h, and h̃′ and h′, respectively, coincide to the left of s1, we have

ω̃|[σ0,s1]\{σ1} = ω|[σ0,s1]\{σ1}, ω̃′|[σ0,s1]\{σ1} = ω′|[σ0,s1]\{σ1} . (4.9)

We apply [LW13b, Corollary 5.9] with h̃ and h̃′. This provides us with a poly-
nomial p ∈ R[z], p(0) = 0, such that the Weyl coefficients qh̃ and qh̃′ of h̃ and

h̃′, respectively, are related as

qh̃′ = qh̃ + p .

Consider the maximal chain ω̃p defined as in Corollary 4.7 starting from ω̃.
Then the Weyl coefficient qω̃p is equal to qω̃ + p, and it follows that

qω̃p = qω̃ + p = qh̃ + p = qh̃′ = qω̃′ .

Hence, ω̃p and ω̃′ are reparameterisations of each other ([KW11, 3.6,p.251]).
Let α be an increasing bijection of [σ0,∞) \ {σ1} onto itself, such that ω̃p =

ω̃′ ◦ α. The interval [s1,∞) is maximal indivisible in the chain ω̃′, and in the
chain ω̃, hence also in ω̃p. It follows that α(s1) = s1, and hence (remember
(4.9))

ω′(s1) = ω̃′(s1) = ω̃p(s1) = Pω̃(s1) = Pω(s1) .

Using (4.8), it follows that

ω′(y) = Pω(y), y ≥ s1, y ∈ domω .

If h is regular, we may evaluate at y = σn+1 and obtain that monodromy
matrices are related as W ′ = PW . If h is singular, we pass to the limit y ↗ σn+1

and obtain that Weyl coefficients are related as qh′ = qh + p.
Second, assume that h (and hence also h′) is regular, and that the corre-

sponding monodromy matrices are related as W ′ = PW with some p ∈ R[z],
p(0) = 0. Let ω and ω′ be the finite maximal chains associated with h and h′

(as in [KW11, Definition 5.3]). Moreover, let ωp be the finite maximal chain
defined as in Lemma 4.6. Then (σn+1 and σ′n′+1 denote the maximum of the
domains of ω and ω′, respectively)

ωp(σn+1) = Pω(σn+1) = PW = W ′ = ω′(σ′n+1) .

It follows that ωp and ω′ are reparameterisations of each other ([KW11,
3.9,p.253]). Let hp denote the regular general Hamiltonian constructed from
ωp (as in [KW10, §2,§3] using the same splitting points E as in h). Then hp and
h′ are reparameterisations of each other ([KW10, 1.3,p.514]).

From the definition of ωp we have

ωp(x) = ω(x), x ∈ [σ0, σ1) ,

ωp(x)−1ωp(y) = ω(x)−1ω(y), σ1 < x ≤ y, x, y ∈ domω .
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Hence, the Hamiltonian functions of hp and h all coincide and the data parts
öi, bi,j , di,j for i > 1 also coincide (apply [KW11, 3.6,3.9] and notice that no
proper reparameterisation is possible).

Finally, consider the case that h (and hence also h′) is singular, and that the
corresponding Weyl coefficients are related as qh′ = qh + p with some p ∈ R[z],
p(0) = 0. In this case the required form of h′ follows with word-by-word the
same argument as above, only using to Corollary 4.7 instead of Lemma 4.6 and
the references for existence, uniqueness, etc., for maximal chains instead of finite
maximal chains. We skip the details. q

Having available this result on general Hamiltonians we are ready for the proof
of Theorem 4.2. We start with the proof of item (i), which actually is the hard
part where Proposition 4.5 is needed.

Proof (of Theorem 4.2, (i)). By our a priori hypothesis on F and G, we may
choose a matrix W ∈M<∞ with (0, 1)W = (F,G). As we have readily noticed,
cf. (4.4), the task is to consider all matrices of the form PW with p ∈ R[z],
p(0) = 0.

Assume first that K−(W )◦ = {0}. Then, by [KW99a, Proposition 10.3,
Corollary 10.4], there exists a matrix W1 with (0, 1)W1 = (0, 1)W and
K−(W1) = K(W1). Since W1 is of the form P1W with some p1 ∈ R[z], p1(0) = 0,
we have {

PW1 : p ∈ R[z], p(0) = 0
}

=
{
PW : p ∈ R[z], p(0) = 0

}
.

The general Hamiltonian whose monodromy matrix equals W1 does not
start with an indivisible interval of type 0 ([KW99b, Lemma 7.5], [Wor11,
Lemma 6.3]). Hence, we have ([KW11, Proposition 3.17])

ind−(PW1) = ind− P + ind−W1 .

Remembering what we said in 2.6 and (2.1), thus{
ind− PW1 : p ∈ R[z], p(0) = 0

}
=
[

ind−W1 , ∞
)
∩ N0 .

However, ind−W1 = ind−K−(W1) = ind−
G
F .

Assume now that K−(W )◦ 6= {0}. Consider a general Hamiltonian h whose
monodromy matrix equals W , and denote the data h is composed of as in (4.12).
Then, by [Wor11, Lemma 6.3], (σ0, σ1) is indivisible of type 0 and σ1 is not left
endpoint of an indivisible interval. By Proposition 4.5, the totality of general
Hamiltonians with monodromy matrices PW , p ∈ R[z], p(0) = 0, is given (up to
reparameterisation) by all sets of data (4.5) subject to (4.6). We have ([KW11,
Proposition 4.29])

ind− PW =

n∑
i=1

(
∆i+

⌊
ö′i
2

⌋)
+
∣∣{1 ≤ i ≤ n : ö′i odd, b′i,1 > 0

}∣∣ =

=

(
∆1+

⌊
ö′1
2

⌋)
+

{
1 , ö′1 odd, b′1,1 > 0

0 , otherwise
+

+

n∑
i=2

(
∆i+

⌊
öi
2

⌋)
+
∣∣{2 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣ .
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Since ö′1, b
′
1,j , d

′
1,j may be chosen arbitrarily, it follows that{

ind− PW : p ∈ R[z], p(0) = 0
}

=

=

[
∆1 +

n∑
i=2

(
∆i+

⌊
öi
2

⌋)
+
∣∣{2 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣ , ∞) ∩ N0 .

By [Wor11, Lemma 6.3], we have

∆1 = dimK−(W )◦ .

Consider the matrix revW ([KW11, Definition 2.6]). The general Hamiltonian
rev h ([KW11, Definition 3.40]) ends with an indivisible interval of infinite length
and type 0, and hence (revW ) ?∞ is the intermediate Weyl coefficient of rev h
at the singularity −σ1. It follows that ([KW11, Theorem 5.1])

ind−
[
(revW ) ?∞] =

n∑
i=2

(
∆i+

⌊
öi
2

⌋)
+
∣∣{2 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣ .
However, as a short computation shows, (revW1) ?∞ = −GF , and we obtain

n∑
i=2

(
∆i+

⌊
öi
2

⌋)
+
∣∣{2 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣ = ind−
G

F
.

q

The proof of items (ii) and (iii) in Theorem 4.2 is again more elementary.

Proof (of Theorem 4.2, (ii) and (iii)). Item (ii) follows since the projection π−
maps K−(W ) surjectively and isometrically onto P(G+ iF ). In fact, using 2.16,
(ii), we obtain

ind−K−(W ) = ind− P(G+ iF ) = ind−(G+ iF ) = ind−
G

F
.

We come to item (iii). By our a priori hypothesis on F and G there exist ma-
trices W ∈M<∞ such that (0, 1)W = (F,G). Hence, 1 ∈

⋃
N∈N AssocN P(G+

iF ), cf. 2.15. If 1 ∈ Assoc1 P(G + iF ), set N0 := 0. Otherwise, let N0 be the
unique positive integer with

1 ∈ AssocN0+1 P(G+ iF ) \AssocN0 P(G+ iF ) .

Then, by [Wor11, Proposition 6.1] and [KW99a, Proposition 10.3], we have

dimK−(W )◦ = N0, W ∈M<∞, (0, 1)W = (F,G) .

Applying [Wor11, Theorem 3.2], cf. 2.15, with E := G + iF and the angle
“ϕ = 0”, gives that∑

n

1

|F ′(αn)G(αn)||αn|2(N0+1)
<∞ but

∑
n

1

|F ′(αn)G(αn)||αn|2N0
=∞ .

q
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For the proof of Theorem 4.3, we need a preparatory lemma which contains
a refinement of the argument used in the proof of Theorem 3.1, Steps 3,4 14.
Thereby, we denote by df the divisor of a meromorphic function f , i.e., df (w)
is the minimal integer n such that the n-th coefficient in the Laurent expansion
of q at w is nonzero (see, e.g., [Rem98, Ch.3,§1.1]).

4.8 Lemma. Let F be as in Theorem 4.3. Then the assignement

q 7→ Fq

establishes a bijection between the sets{
q ∈ N<∞ : q meromorphic in C,

−min{dq, 0} = dF , lim
z→0

[F (z)q(z)] = 1, (4.10)

∃M ∈ N0 :
∑
n

1

|F ′(αn)|2 · |Res(q;αn)| · |αn|2(M+1)
<∞

}
and {

G entire : ∃W ∈M<∞ with (0, 1)W = (F,G)
}
. (4.11)

Thereby, for each q in the set (4.10) and each W ∈ M<∞ with (0, 1)W =
(F, Fq),

ind−K−(W ) = ind− q , (4.12)

dimK−(W )◦ = min
{
M ∈ N0 :

∑
n

1

|F ′(αn)|2 · |Res(q;αn)| · |αn|2(M+1)
<∞

}
.

(4.13)

Proof. Since F satisfies the conditions in Theorem 3.1, F is of Cartwright class,
all but finitely many zeros of F are real and simple, and (3.1) holds.

Let q be an element of the set (4.10), and set G := Fq. Our aim is to
apply Theorem 3.5. The function G is entire, has no common zeros with F ,
and satisfies G(0) = 1. The zeros of G coincide with the zeros of q including
multiplicities. Since q ∈ N<∞, all but finitely many zeros of G are real and
simple, cf. 2.11. Clearly, GF = q ∈ N<∞. Moreover, we have

Res(q;αn) =
G(αn)

F ′(αn)
,

and hence (with some appropriate N ′ ∈ N)∑
n

1

|F ′(αn)G(αn)||αn|N ′
<∞ .

14At this point our presentation contains a slight redundancy. Accurately tracing back the
logic of the proofs, one sees that one could skip a part of Steps 3,4 in the proof of Theorem 3.1
and substitute it by the corresponding argument from Lemma 4.8. For the following reason we
decided to arrange matters in this way, and accept a slight repetition. We find it interesting
that a proof of the pure existence statement Theorem 3.1, (I), is not only technically simpler
but can be carried out by using much coarser methods compared to what is required to
get hands on negative indices and dimensions of degeneracy. The argument in the proof
of Lemma 4.8 is not “just the same, only more complicated” as the argument carried out
in the proof of Theorem 3.1, Step 3,4; for instance there we construct the function q in a
multiplicative way, we use the trick (3.6), and we refer only to the rough estimate (2.6).
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Alltogether, Theorem 3.5 applies and provides us with a matrix W ∈ M<∞
such that (0, 1)W = (F,G). Hence, the assignment q 7→ Fq indeed maps (4.10)
into (4.11). Clearly, it is injective.

Assume that G is entire and (F,G) = (0, 1)W for some W ∈ M<∞. The
function q := G

F is meromorphic in C and satisfies −min{dq, 0} = dF since F
and G have no common zeros. Moreover, limz→0[F (z)q(z)] = G(0) = 1. Due to
Theorem 3.4, (β), we have q ∈ N<∞. Finally, Theorem 3.4, (γ), shows that q
belongs to the set (4.10). Thus q 7→ Fq mapst (4.10) surjectively onto (4.11).

The formulas (4.12) and (4.13) are immediate from Theorem 4.2, (ii) and
(iii). q

Proof (of Theorem 4.3).
Step 1: Assume that W ∈M<∞ with (0, 1)W

(
1
0

)
= F is given. Set

G := (0, 1)W

(
0

1

)
, q :=

G

F
,

m0 := min
{
m ∈ N0 :

∑
n

|Res(q;αn)|
|αn|2(m+1)

<∞
}
,

M0 := min
{
M ∈ N0 :

∑
n

1

|F ′(αn)|2|Res(q;αn)||αn|2(M+1)
<∞

}
.

Then M0 = dimK−(W )◦, cf. (4.13). We use (2.5) to estimate ind− q. To this
end we have to match notation: the “set of points γj” in the present notation
is a subset of the “set of points γj” in 2.12, and the “set of points αn” in 2.12 is
a subset of the present “set of points αn”. However, they differ only by finitely
many points, namely the real and simple poles of q with positive residuum and
the pole at 0. We conclude that the minimum in (2.5) equals m0. Moreover,
the numer δ0 in (2.5) is nonzero if and only if d0 is odd and F (d0)(0) is positive.
Thus we obtain that the sum in the first line of (2.5) is not less than δ, and it
follows that

ind−K−(W ) + dimK−(W )◦ = ind− q + dimK−(W )◦ ≥ δ +m0 +M0 .

By the Schwarz inequality in `2, we have∑
n

1

|F ′(αn)||αn|m0+M0+2
≤

≤
(∑

n

|Res(q;αn)|
|αn|2(m0+1)

) 1
2
(∑

n

1

|F ′(αn)|2|Res(q;αn)||αn|2(M0+1)

) 1
2

<∞ .

This shows that m0 + M0 + 1 ≥ ν, and the second inequality in (4.1) follows.
The first inequality in (4.1) is obvious, and (4.2) follows from (2.5) by dropping
the summands δj (not δ0) and the minimum.

Step 2: Let β, γ ∈ N0 be given according to (4.3), and set

τn :=
|αn|β−δ−γ

|F ′(αn)|
.

Then∑
n

τn
|αn|2([β−δ]+1)

=
∑
n

1

|F ′(αn)||αn|β−δ+γ+2
=
∑
n

1

|F ′(αn)|2τn|αn|2(γ+1)
.
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Due to (4.3), we have β−δ+γ+2 ≥ ν+1, and hence the middle series converges.
Set

σn :=

{
τn , τn ≤ 1

|F ′(αn)|2|αn|2γ
1

|F ′(αn)|2|αn|2γ , otherwise
.

Then σn ≤ τn, and hence ∑
n

σn
|αn|2([β−δ]+1)

<∞ .

Remembering that β − δ ≥ 0 by (4.3), thus

m0 := min
{
m ∈ N0 :

∑
n

σn
|αn|2(m+1)

<∞
}
≤ β − δ .

Since σn|F ′(αn)|2|αn|2γ ≤ 1, we have∑
n

1

|F ′(αn)|2σn|αn|2γ
=∞ .

On the other hand,

1

|F ′(αn)|2σn|αn|2(γ+1)
=

{
1

|F ′(αn)|2τn|αn|2(γ+1) , τn ≤ 1
|F ′(αn)|2|αn|2γ

1
|αn|2 , otherwise

.

By Theorem 3.1, (III.b), the convergence exponent of the sequence (αn)n cannot
exceed 1. Hence∑

n

1

|F ′(αn)|2σn|αn|2(γ+1)
≤
∑
n

1

|F ′(αn)|2τn|αn|2(γ+1)
+
∑
n

1

|αn|2
<∞ ,

and we conclude that

min
{
M ∈ N0 :

∑
n

1

|F ′(αn)|2σn|αn|2(M+1)
<∞

}
= γ .

Set

q0(z) :=
[F (d0)(0)

d0!

]−1 1

zd0
+

+
∑
γj∈R

1

(γj − z)dj
+

∑
Im γj>0

( 1

(γj − z)dj
+

1

(γj − z)dj
)

+

+
∑
n

σn

( 1

αn − z
− 1

αn
− . . .− z2m0

α2m0+1
n

)
.

Since β ≥ δ +m0, there exists a polynomial p ∈ R[z], p(0) = 0, such that

ind−(q0 + p) = β ,

cf. (2.7). Now Lemma 4.8, applied with q0 + p, provides us with a matrix
W ∈M<∞ such that

(0, 1)W

(
1

0

)
= F, ind−K−(W ) = β, dimK−(W )◦ = γ . (4.14)
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Step 3: Let, in addition to β and γ as in Step 2, also a number α ∈ N0 with
α ≥ β + γ be given. Choose W ∈ M<∞ with (4.14). Then Theorem 4.2, (i),
applied with the functions F and G := (0, 1)W

(
0
1

)
, provides us with a (possibly

different) matrix W̃ ∈M<∞ such that

(0, 1)W̃ = (0, 1)W, ind−K(W̃ ) = α .

Since the quantities “ind−K−(W )” and “dimK−(W )◦” depend only on the
second row of a matrix, we have

ind−K−(W̃ ) = β, dimK−(W̃ )◦ = γ .

Clearly, (0, 1)W̃
(
1
0

)
= F . q

Finally, the proof of Corollary 4.4.

Proof (of Corollary 4.4). We apply Theorem 4.3, (ii). Choosing α := δ+ ν− 1,
β := δ, γ := ν − 1, we obtain W1 ∈M<∞ with

(0, 1)W1

(
1

0

)
= F, ind−K−(W ) = δ .

Choosing α := δ + ν − 1, β := δ + ν − 1, γ := 0, we obtain W2 ∈M<∞ with

(0, 1)W2

(
1

0

)
= F, dimK−(W2)◦ = 0 .

It is easy to alter W2 so to achieve that “K−(W2) = K(W2)”. We apply [KW99b,
Theorem 5.7, (iii)] with some parameter τ , say τ := 0. This provides us with a
real polynomial p having the properties stated there. An application of [KW99b,
Theorem 5.7, (ii)] with the matrix and parameter

W̃2 := PW2, τ := 0 ,

yields that K−(W̃2) = K(W̃2). Clearly, the left lower entry of W̃2 equals F . q
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