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Abstract: An almost Pontryagin space A is an inner product space which admits a
direct and orthogonal decomposition of the form A = A>[+̇]A≤ with a Hilbert space
A> and a finite-dimensional negative semidefinite space A≤. A reproducing kernel
almost Pontryagin space is an almost Pontryagin space of functions (defined on some
nonempty set and taking values in some Krein space), with the property that all
point evaluation functionals are continuous. We adress two problems.

1◦ In the presence of degeneracy, it is not possible to reproduce function values as
inner products with a kernel function in the usual way. We obtain a natural
substitute for a kernel function, and study the relation between spaces and kernel
functions in detail.

2◦ Given an inner product space L of functions, does there exist a reproducing kernel
almost Pontryagin space A which contains L isometrically? We characterise those
spaces for which the answer is “yes”. We show that, in case of existence, there is a
unique such space A which contains L isometrically and densely. Its geometry, in
particular its degree of degeneracy, is an important invariant of L. It plays a role in
connection with Krein’s formula describing generalised resolvents and, thus, in
several concrete problems related with the extension theory of symmetric operators.
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1 Introduction

A reproducing kernel Hilbert space is a Hilbert space whose elements are func-
tions, and which has the property that all point evaluation functionals are con-
tinuous. This type of spaces appears in many branches of mathematics, e.g.,
in functional analysis, complex analysis, statistics, etc., and plays an important
role. As prominent examples, let us mention the Hardy space on the upper
half-plane H2(C+) and its shift-coinvariant subspaces (model subspaces, in par-
ticular de Branges spaces), cf. [Koo98a; Nik02; Bra68], the Dirichlet space D on
the unit disk, cf. [Ros06; Arc+11], or the Bergman space, cf. [DS04]. A (small)
selection of literature about theory and application of reproducing kernel Hilbert
spaces, ranging from classical papers to recent work, is [Aro50; Yao67; Dym89;
Par97; BT04; HSS08]

Within the theory of indefinite inner product spaces, reproducing kernel
Pontryagin spaces play a similarly important role. Examples are de Branges
Pontryagin spaces (which appear in the study of canonical systems with in-
ner singularities or Schrödinger equations with strongly singular potentials), cf.
[KW99a; KW10; FL10; LWb], or generalised Dirichlet spaces (which appear in
the theory of univalent functions), cf. [RR94, §7.5-6]. Again, there is a vast
literature; a (again small) selection of literature being [Sor75; DR96; Alp+97;
CG97; Alp01; BKR04; HO04; ADL07; Ghe13].

‡This work was supported by the Austrian Science Fund (FWF), project I 1536–N25, and
the Russian Foundation for Basic Research (RFBR), project 13-01-91002-ANF.
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In some contexts subspaces of reproducing kernel spaces appear naturally
(prominently, in the theory of de Branges spaces). It is obvious that continu-
ity of point evaluations is inherited by subspaces. However, a subspace of a
Pontryagin space need not be a Pontryagin space. Provided it is closed, the
obstacle is possible presence of degeneracy, i.e., existence of nonzero elements
of the subspace which are orthogonal to the whole subspace. Each Pontrya-
gin space which is not a Hilbert space has nontrivial closed and degenerated
subspaces. Even more, in many situations degenerated subspaces contain cru-
cial information about the structure of the space (as illustrated, e.g., by the
constructions in [KW10, §2.b]).

In the present paper we axiomatically consider the kind of spaces described
above: possibly degenerated closed subspaces of reproducing kernel Pontryagin
spaces. We call this type of spaces reproducing kernel almost Pontryagin spaces.
Thereby we allow the elements of the space to be Krein space valued functions.
Our aim is to settle two questions which appear in this context. The first is
existence of kernel functions, and the second existence of reproducing kernel
space completions. Let us explain these problems in some more detail. Thereby
we use some general vocabulary from the theory of reproducing kernel spaces
and indefinite inner product spaces. The reader who is not familiar with this
language will find the relevant definitions in §2 below.

Problem I. Kernel functions. At the very basis of the theory of reproducing
kernel spaces lies the fact that a reproducing kernel Hilbert- or Pontryagin space
A can be fully described by a single function of two variables, its reproducing
kernel. Namely (e.g., let A be a reproducing kernel Hilbert space of complex-
valued functions defined on some set M), there exists a unique function K :
M × M → C such that function values of elements of A are reproduced by
means of the formula

K(η, ·) ∈ A, η ∈M,

f(η) =
[
f,K(η, ·)

]
A, f ∈ A, η ∈M.

(1.1)

Here we denote by K(η, ·) the function ζ 7→ K(η, ζ), ζ ∈ M , and by [·, ·]A the
inner product of the space A.

When degeneracy is permitted there appears an obvious problem:

If A is degenerated, then there cannot exist a kernel K with (1.1). For if f ∈ A
with [f, g]A = 0, g ∈ A, then from (1.1) it follows that f = 0.

We show that this problem can be resolved in a certain sense. Given a reproduc-
ing kernel almost Pontryagin space A (of functions defined on some nonempty
set and taking values in some Krein space), there exist functions K (we call
them almost reproducing kernels), such that reproduction of function values is
established by a formula very close to (1.1). This formula is a finite-dimensional
perturbation of (1.1), cf. (3.1). The existence result we show, cf. Theorem 3.2,
is a generalisation and refinement of [KWW05, Proposition 5.3] (and its proof
runs along the same lines). Each almost reproducing kernel of A is a hermi-
tian kernel with finite negative index. The Pontryagin space generated by it
coincides with A as a linear space and topologically, and its inner product is a
finite-dimensional perturbation of the inner product of A.
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Conversely, we show that each hermitian kernel with finite negative index
generates an infinite family of reproducing kernel almost Pontryagin spaces, cf.
Definition 3.7 and Proposition 3.8. The proof of this fact is geometric and uses
knowledge from the Pontryagin space situation.

Contrasting the nondegenerated situation, almost reproducing kernel Pon-
tryagin spaces on the one hand and almost reproducing kernels on the other are
not anymore in a one-to-one correspondence. The results mentioned above are
accompanied by a detailed description of the relation between kernel functions
on the one hand and reproducing kernel spaces on the other. For a comprehen-
sively formulated summary see p.19.

. The results concerning reproduction of function values are presented in
Section 3 of this paper.

Problem II. Reproducing kernel space completions. In the investigation
of various topics the following question appears. Given a positive semidefinite
inner product space whose elements are functions, is its Hilbert space comple-
tion a reproducing kernel Hilbert space? Depending whether the answer to this
question is “yes” or “no”, the objects under investigation enjoy very different
properties. Interestingly, also if the Hilbert space completion is not a reproduc-
ing kernel space, there may exist reproducing kernel almost Pontryagin spaces
which isometrically contain the given inner product space as a dense subspace.
The reason for this phenomenon is that requiring continuity of point evaluations
may force presence of degeneracy. The fact whether or not such reproducing
kernel almost Pontryagin spaces exist again has consequences on the problem.

A typical example of a concrete topic where existence of reproducing kernel
completions plays a key role is the Hamburger moment problem. Given a posi-
tive measure, one can build a certain positive semidefinite inner product space.
Depending whether or not its Hilbert space completion is a reproducing kernel
space, the measure is indeterminate or determinate. Existence of a reproducing
kernel almost Pontryagin space containing this inner product space isometrically
is related to finiteness of index of determinacy (a notion which was studied in
[BD95] and following papers). A thorough discussion of this topic is elaborate
and beyond the scope of this paper; it will be presented in the forthcoming
manuscript [LWa].

The question under consideration at present is the abstract one:

Given a (not necessarily positive definite) inner product space L of functions,
does there exist a reproducing kernel almost Pontryagin space which contains
L isometrically as a dense subspace (we speak of a reproducing kernel space
completion) ?

We answer this question in Theorem 4.1. The proof of this theorem relies on
the theory of almost Pontryagin space completions as developed in [SW12].
Besides the obvious condition of finiteness of negative index of L, there appear
two other relevant conditions, see Theorem 4.1, (B) and (C). Though looking
similar on first sight, their roles are clearly distinguished: (C) is responsible for
well-definedness and (B) for continuity of point evaluations.

An important feature is that, in case of existence, the reproducing kernel
space completion is unique. The dimension of its isotropic part is an intrinsic
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quantity associated with the given inner product space. In applications, its
value reflects in properties of the concrete problem.

The main characterisation Theorem 4.1 is accompanied by Proposition 4.8
and Proposition 4.9 where we provide an (often generic) example, and show
that one may restrict to subspaces which possess a certain density property.

. The results concerning reproducing kernel space completions are presented
in Section 4 of this paper.

The present paper is a continuation of our investigation of the geometry of al-
most Pontryagin spaces undertaken in [KWW05] and [SW12]. In the same time
it is a preparation for future work. It lays the foundations for our forthcoming
manuscripts [Wor] (where we deal with the operator theoretic concept of direct-
ing functionals and discuss the special case of de Branges space completions),
and, building further upon this, [LWa] (where we present a new –and more
general– approach to the index of determinacy of a measure).

Almost Pontryagin spaces can be viewed as a “mildly degenerated” version
of Pontryagin spaces. Recently, a similar mildly degenerated version of Krein
spaces (termed almost Krein spaces) occured and was studied in the context of
basicity properties of selfadjoint operators, cf. [AS07]. We do not attempt at
present to investigate “reproducing kernel almost Krein spaces”. The reason
being that reproducing kernel Krein spaces were thoroughly studied (see, e.g.,
[Ghe13]), and it turned out that the situation is much more complex than in
the Pontryagin space case. Also, up to the best of our knowledge, a systematic
treatment of the geometry of almost Krein spaces is not yet available. Alto-
gether, at present, there seems little hope to obtain complete and satisfactory
results about reproducing kernels in this general situation; of course, this is a
potential direction of future research.

Besides the already mentioned Sections 3 and 4, which form the core of the
paper, the manuscript contains a short preliminary section (Section 2) and an
appendix. In Section 2 we recall the definition of almost Pontryagin spaces and
define the central notion of reproducing kernel almost Pontryagin space of Krein
space valued functions on a nonempty set, cf. Definition 2.4. Moreover, we recall
some known facts from the nondegenerated (Pontryagin space) situation. In the
appendix we prove some statements concerning the basic theory of almost Pon-
tryagin spaces. These are general facts which are needed in the present paper,
but are not yet available in the literature. Some are straightforward generali-
sations of well-known results from Pontryagin space theory. More noticeable is
the perturbation result Proposition A.9, which is a most practical tool. This
result has already appeared (and was extensively used) in a special situation, cf.
[KW99a, Theorem 3.3]. Here we provide a general version and give a geometric
proof of it. This is based on Lemma A.10 which contains a topological property
and is interesting in its own right. The appendix closes with some supplements
to the theory of almost Pontryagin space completions.

2 Continuity of point evaluations

Standard literature on indefinite inner product spaces is [Bog74], [IKL82], or
[AI89]. We use without further notice the notion of a Pontryagin space and
basic results about Pontryagin spaces as found in [IKL82, Chapter 1] (notice
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that in this book the roles of positive and negative subspaces are switched
compared to what is common nowadays).

2.1. Notation from Linear Algebra: An inner product space is a pair 〈L, [·, ·]L〉
consisting of a linear space L over the scalar field C and an inner product [·, ·]L
on L. If no confusion can occur, we drop explicit notation of the inner product,
and speak of an inner product space L. Inner products are denoted by rounded
or square brackets and have attached a subscript specifying on which space they
are defined or how they are built, e.g., (·, ·)K is an inner product on a space K.

Let L be an inner product space. A subspace N of L is called negative, if
[x, x] < 0, x ∈ N \{0}. The negative index of L is the (possibly infinite) number

ind− L := sup
{

dimN : N negative subspace of L
}
∈ N0 ∪ {∞}.

Note that we do not distinguish between different cardinalities of infinity. This
notice applies always, in particular whenever we speak of the dimension of a
subspace.

We denote by L◦ the isotropic part of L, that is the linear subspace

L◦ := L ∩ L⊥ =
{
x ∈ L : [x, y]L = 0, y ∈ L

}
.

The dimension ind0 L := dimL◦ ∈ N0 ∪ {∞} is called the degree of degeneracy
of L. We call L nondegenerated if ind0 L = 0 and degenerated if ind0 L > 0.

♦

Let us now recall the definition of an almost Pontryagin space. The below given
axiomatic way of defining this type of spaces was introduced in [KWW05] where
we also started a systematic investigation of the properties of such spaces. The
type of spaces itself of course appeared much earlier, one may say ever since
Pontryagin spaces were studied. However, with a few exception, they did not
receive much attention until recently. To say some historical words, existence
of discontinuous isometric and bijective linear operators was observed at an
early stage in the 1960’s (an accessible reference being [IKL82, Example 6.1]),
and basicity properties of selfadjoint operators were studied in [Azi72]. More
recent literature is [LMT96] were degenerated spaces appear in the study of
operator pencils, [KW99b] were a version of Krein’s resolvent formula is proved,
and [PT09] were selfadjoint operators were studied and used to investigate the
Klein–Gordon equation.

2.2 Definition. We call a triple 〈A, [·, ·]A,O〉 an almost Pontryagin space, if
A is a linear space, [·, ·]A is an inner product on A, and O is a topology on A,
such that the following axioms hold.

(aPs1) The topology O is a Hilbert space topology on A (i.e., it is induced
by some inner product which turns A into a Hilbert space).

(aPs2) The inner product [·, ·]A is O-continuous (i.e., it is continuous as a
map of A × A into C where A × A carries the product topology
O ×O and C the euclidean topology).

(aPs3) There exists an O-closed linear subspace M of A with finite codi-
mension in A, such that 〈M, [·, ·]A|M×M〉 is a Hilbert space.
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Let 〈A, [·, ·]A,O〉 and 〈B, [·, ·]B, T 〉 be two almost Pontryagin spaces, then we
call a map ψ : A → B an isomorphism if ψ is a linear bijection of A onto B, is
isometric w.r.t. [·, ·]A and [·, ·]A, and homeomorphic w.r.t. O and T . ♦

Unless necessary we do not notate the inner product [·, ·]A and the topology
O explicitly, and speak of an almost Pontryagin space A. When speaking of
topological properties like convergence or Cauchy-sequences in an almost Pon-
tryagin space, we also say w.r.t. the norm of A, meaning w.r.t. some norm
inducing the topology of A. Of course, there are many such norms, but each
two are equivalent. Finally, note that for each almost Pontryagin space A it
holds that ind−A <∞ and ind0A <∞.

To have a more concrete picture of almost Pontryagin space, recall the fol-
lowing facts. Thereby, the equivalence of (i) and (ii) is shown in [KWW05,
Proposition 2.5], and the equivalence of (i) and (iii) is contained in [KWW05,
Propositions 3.1, 3.2].

2.3 Theorem ([KWW05]). Let A be a linear space, let [·, ·]A be an inner product
on A, and let O be a Hilbert space topology on A. Then the following statements
are equivalent.

(i) 〈A, [·, ·]A,O〉 is an almost Pontryagin space.

(ii) We have ind0A < ∞. The space A can be decomposed as the direct and
orthogonal sum

A = A+[+̇]A−[+̇]A◦,

with a finite dimensional negative subspace A− and an O-closed subspace
A+ such that 〈A+, [·, ·]A|A+×A+

〉 is a Hilbert space.

(iii) There exists a Pontryagin space which contains A as a closed subspace
and has the property that [·, ·]A and O coincide with the Pontryagin space
inner product and topology restricted to A.

As a corollary we see that an inner product space is a Pontryagin space, if and
only if it is nondegenerated and there exists a topology O which turns A into an
almost Pontryagin space, cf. [KWW05, Corollary 2.7]. Moreover, if 〈A, [·, ·]A,O〉
is a positive definite almost Pontryagin space, then 〈A, [·, ·]A〉 is a Hilbert space
and the topology induced on A by [·, ·]A equals O.

In this context, let us point out that a nondegenerated inner product space
A may carry at most one topology O so that it becomes an almost Pontryagin
space. In the presence of degeneracy this uniqueness property is lost, see, e.g.,
[IKL82, Example 6.1] or [KWW05, Lemma 2.8].

The objects of our study in this paper are almost Pontryagin spaces of func-
tions where point evaluations are continuous. To fix notation: Let M be a
nonempty set and let K be a Krein space. For each η ∈M , we denote

χη :

{
KM → K
f 7→ f(η)

and speak of the point evaluation functional at η. Moreover, for each a ∈ K and
η ∈M we set

χη,a :

{
KM → C
f 7→ (f(η), a)K

6



2.4 Definition. Let M be a nonempty set and let K be a Krein space. We call
an almost Pontryagin space 〈A, [·, ·]A,O〉 a reproducing kernel almost Pontrya-
gin space of K-valued functions on M , if

(RKS1) The elements of A are K-valued functions on M , and the linear
operations of A are given by pointwise addition and scalar multi-
plication.

(RKS2) For each η ∈ M the point evaluation functional χη|A : A → K
is continuous w.r.t. the topology O on A and the Krein space
topology on K.

We denote the set of all reproducing kernel almost Pontryagin spaces of K-valued
functions on M as RKS(K,M). ♦

At this place the usage of the term “reproducing kernel almost Pontryagin space”
it is not justified by anything but analogy to the nondegenerated case. We will
see in §3 that there is indeed a good reason to use this terminology, namely exis-
tence of a substitute for the reproducing kernel in the nondegenerated situation
(namely, almost reproducing kernels).

2.5 Remark. We specified in (RKS2) that continuity is understood w.r.t. the
Krein space topology of K. This may be replaced by the (a priori weaker)
requirement that χη is continuous w.r.t. the weak topology of K: An almost
Pontryagin space 〈A, [·, ·],O〉 is a reproducing kernel almost Pontryagin space
of K-valued functions on M if and only if it satisfies (RKS1) and

(RKS2’) For each a ∈ K and η ∈M we have χη,a ∈ A′.

To see this, follow the argument in the first paragraph of the proof of [Alp+97,
Theorem 1.1.2]: Denote by T the norm topology and by Tw the weak topology
of K. Clearly, O-to-Tw– continuity of χη implies that the graph of χη is, as a
subset of A×K closed w.r.t. O×Tw. Since Tw is coarser than the norm topology,
it follows that it is also closed w.r.t. O × T . Now the Closed Graph Theorem
implies that χη is O-to-T – continuous. ♦

2.6 Remark. The topology of a reproducing kernel almost Pontryagin space is
uniquely determined by its inner product. This is an immediate consequence of
[KWW05, Proposition 2.9] applied with the point separating family {χη,a : a ∈
K, η ∈M}.

Hence, the property of being a reproducing kernel almost Pontryagin space is
a property of the inner product space alone. We thus may say without ambiguity
that an inner product space is (or is not) a reproducing kernel almost Pontryagin
space. ♦

The Pontryagin space case

Let us very briefly revisit the well-known nondegenerated case, and recall some
notions and facts needed in the sequel.

First, the notion of a hermitian kernel.

2.7 Definition. Let M be a nonempty set and let K be a Krein space. A
function K : M ×M → KK is called a K-valued hermitian kernel on M , if

K(η, ζ) ∈ B(K), K(η, ζ)∗ = K(ζ, η), η, ζ ∈M.
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Here B(K) denotes the set of all continuous linear operators on K, and .∗ denotes
the Krein space adjoint. We denote the set of all K-valued hermitian kernels on
M by K(K,M).

If K is a K-valued hermitian kernel on M , we denote by ind−K ∈ N0∪{∞}
the supremum of the numbers of negative squares of quadratic forms

Q(ξ1, . . . , ξm) :=

m∑
i,j=1

(
K(ηi, ηj)ai, aj

)
Kξiξj , m ∈ N0, ai ∈ K, ηi ∈M,

and refer to ind−K as the negative index of K. ♦

The fact that the topological dual space of a Pontryagin space is exhausted
by the functionals [·, y]A, y ∈ A, leads to the following result, cf. [Alp+97,
Theorem 1.1.2].

2.8 Theorem (e.g., [Alp+97]). Let M be a nonempty set, let K be a Krein
space, and let A be a reproducing kernel Pontryagin space of K-valued functions
on M . Then there exists a unique function K : M ×M → KK, such that

K(η, ·)a ∈ A, a ∈ K, η ∈M,(
f(η), a

)
K =

[
f,K(η, ·)a

]
A, f ∈ A, a ∈ K, η ∈M. (2.1)

This function is a K-valued hermitian kernel on M , and ind−K = ind−A.

The unique function K whose existence is ensured by the above theorem is
called the reproducing kernel of A.

Also a converse result holds, cf. [Alp+97, Theorem 1.1.3]. The proof is
established by taking the Pontryagin space completion of a certain inner product
space generated from the given kernel.

2.9 Theorem (e.g., [Alp+97]). Let M be a nonempty set, let K be a Krein
space, and let K be a K-valued hermitian kernel on M with ind−K < ∞.
Then there exists a unique reproducing kernel Pontryagin space A of K-valued
functions on M , such that K is the reproducing kernel of A.

Another way of dealing with of reproducing kernel Pontryagin (or Krein-) spaces
is via Kolmogoroff decompositions. See, e.g., the decomposition of K in [Alp+97,
Theorem 1.1.2], or [CG97] for the Krein space case. In degenerated spaces, this
approach seems problematic; at least there are serious obstacles originating in
the fact that adjoint operators cannot be well-defined as soon as degeneracy is
present.

3 Reproduction of function values

As we already explained in the introduction, the traditional formula (2.1) cannot
hold if A is degenerated. Hence, we need to define in which sense we wish
to understand reproduction of function values in a reproducing kernel almost
Pontryagin space. Of course, the formula to be invented should reduce to the
classical one if the space is nondegenerated. Experience gives the hint to use
particular finite rank perturbations. Compare, e.g., with the method used in
[KW99a, Theorem 3.3] or, specifically, with the treatment of the scalar-valued
case in [KWW05, Proposition 5.3].

8



3.1 Definition. Let M be a nonempty set, let K be a Krein space, and let A
be a reproducing kernel almost Pontryagin space of K-valued functions on M .
We call a function K : M ×M → KK an almost reproducing kernel of A, if it
satisfies the following axioms.

(aRK1) K is a K-valued hermitian kernel on M .

(aRK2) For each a ∈ K and η ∈M the function K(η, ·)a belongs to A.

(aRK3) There exists data δ = ((ai)
n
i=1; (ηi)

n
i=1; (γi)

n
i=1) ∈ Kn ×Mn × Rn

where n := ind0A, such that

(f(η), a)K =
[
f,K(η, ·)a

]
A +

n∑
i=1

γi · χηi,ai(f)χηi,ai(K(η, ·)a),

f ∈ A, a ∈ K, η ∈M. (3.1)

♦

Note that (aRK3) is only meaningful in presence of (aRK2). Hence, whenever
we refer to (aRK3) or to (3.1), we tacitly assume that (aRK2) holds.

The requirement that n = ind0A in (aRK3) is made to ensure that the
perturbation is not unnecessarily large. A formula of the form (3.1) may hold
also for larger values of n (with all γi being nonzero), however, one must allow
at least ind0A summands additional to [f,K(η, ·)a]A so that (3.1) can possibly
hold, cf. Lemma 3.4, (i).

ê In the following we investigate in detail the relation between reproducing kernel almost Pon-
tryagin spaces on the one hand and almost reproducing kernels on the other. In abstract
terms, we consider a relation Ξ between the set of “hermitian kernels plus data δ” on the
one hand and the set of “reproducing kernel almost Pontryagin spaces” on the other. At the
end of this section (see p.19) we return to this —abstract, but comprehensive and clean—
viewpoint, and indicate what the proven statements mean in terms of Ξ. We recommend the
reader to visit this summary already during the presentation.

Denote by Ξ the relation between the sets K(K,M)×
⋃
n∈N0

(
Kn×Mn×Rn

)
and RKS(K,M)

defined as

Ξ :=
{(

(K; δ);A
)

: K is almost reproducing kernel of A with data δ in (3.1)
}
.

Our first result about almost reproducing kernels is that each reproducing kernel
almost Pontryagin space possesses many almost reproducing kernels. The scalar-
valued case was studied previously in [KWW05, Proposition 5.3], where we
showed existence of one almost reproducing kernel. There the essence of the
proof was to reduce to the Hilbert space case by a cleverly chosen perturbation
of the inner product. The proof of the below theorem further exploits this idea.
Additional arguments are necessary, since we allow Krein space valued functions
as elements of the space and include some refinements to control the variety of
choices of almost reproducing kernels.

3.2 Theorem. Let M be a nonempty set, let K be a Krein space, and let A
be a reproducing kernel almost Pontryagin space of K-valued functions on M .
Moreover, let n ∈ N0, (ai)

n
i=1 ∈ Kn and (ηi)

n
i=1 ∈Mn, and assume that

A◦ ∩
n⋂
i=1

kerχηi,ai = {0}. (3.2)
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Then there exists a closed and nowhere dense subset Ω of Rn with the fol-
lowing property: For each tuple (γi)

n
i=1 ∈ Rn \ Ω there exists a K-valued

hermitian kernel on M such that the formula (3.1) holds with the data δ =
((ai)

n
i=1; (ηi)

n
i=1; (γi)

n
i=1).

For the value n := ind0A a choice of (ai)
n
i=1 and (ηi)

n
i=1 can be made such

that (3.2) holds. For each such choice, we obtain a family of almost reproducing
kernels of A.

Proof. If n = 0 we necessarily have A◦ = {0}, and may refer to Theorem 2.8.
Note here that for n = 0 the index set in both, the sum in (3.1) and the
intersection in (3.2) is empty. Hence, assume throughout the proof that n > 0.

Step 1; Appropriate choice of inner product: Choose a Hilbert space inner prod-
uct (·, ·)A which induces the topology of A, and let G be the Gram operator of
[·, ·]A w.r.t. (·, ·)A. Since 0 is an isolated point of the spectrum ofG (or belongs to
its resolvent set), we may choose δ ∈ (0, 1] with σ(G)∩(−δ, 0) = σ(G)∩(0, δ) = ∅.

We pass to an equivalent Hilbert space inner product which is more suitable
for our needs. To this end, set (E denotes the spectral measure of G)

P+ := E([δ,∞)), P0 := E({0}), P− := E((−∞,−δ]).

Due to our choice of δ, we have P+ + P0 + P− = I. Consider the bounded and
selfadjoint operator

Q := GP+ + P0 −GP−.

It holds that (remember that δ ≤ 1)

(Qx, x)A =(GP+x, P+x)A + (P0x, P0x)A − (GP−x, P−x)A ≥
≥δ(P+x, P+x)A + δ(P0x, P0x)A + δ(P−x, P−x)A = δ(x, x)A, x ∈ A,

i.e., Q is strictly positive. Hence, the inner product

(x, y) := (Qx, y)A, x, y ∈ A,

is equivalent to (·, ·)A.
The Gram operator H of [·, ·]A w.r.t. (·, ·) is given as

H = Q−1G = Q−1(GP+ +GP−) =

= Q−1
(
Q+ (2GP− − P0)

)
= I +Q−1(2GP− − P0)︸ ︷︷ ︸

=:R

.

Observe that dim(ranR) <∞.

Step 2; Admissible values of γ: Assume that (ai)
n
i=1 ∈ Kn and (ηi)

n
i=1 ∈ Mn

are given and satisfy (3.2).
Let L : M ×M → B(K) be the reproducing kernel of the reproducing kernel

Hilbert space 〈A, (·, ·)〉, cf. Theorem 2.8. For γ = (γi)
n
i=1 ∈ Cn we denote by

Aγ the finite rank operator defined as

Aγx :=

n∑
i=1

γi · χηi,ai(x)L(ηi, ·)ai =

n∑
i=1

γi ·
(
x, L(ηi, ·)ai

)
· L(ηi, ·)ai, x ∈ A,

10



and set
Bγ := H +Aγ = I + (R+Aγ), γ = (γi)

n
i=1 ∈ Cn.

The operator H is (·, ·)-selfadjoint. Moreover, we have (here .∗ denotes the
(·, ·)-adjoint)

Aγ = (Aγ)∗, Bγ = (Bγ)∗ where γ = (γi)
n
i=1. (3.3)

We are aiming to show existence of values γ ∈ Rn for which Bγ is boundedly
invertible.

Set B := kerR ∩
⋂n
i=1 kerχηi,ai , and consider the orthogonal decomposition

A = B (+̇)B(⊥)

of A. For x ∈ B we have Bγx = x, in particular, Bγ(B) ⊆ B, γ ∈ Cn. Using
(3.3), it follows that also Bγ(B(⊥)) ⊆ B(⊥), γ ∈ Cn. We conclude that the
operator Bγ can be written as the block operator matrix

Bγ =

(
I|B 0
0 Bγ|B(⊥)

)
:
B

(+̇)
B(⊥)

−→
B

(+̇)
B(⊥)

This shows that 0 ∈ ρ(Bγ) if and only if 0 ∈ ρ(Bγ|B(⊥)).
Since R is a finite rank operator, the space B(⊥) is finite dimensional. Thus

0 ∈ ρ(Bγ|B(⊥)) if and only if Bγ|B(⊥) is injective. Consider a point γ ∈ (C+)n

(here C+ denotes the open upper half-plane). If x ∈ kerBγ|B(⊥) , then

(Hx, x) + (Aγx, x) = (Bγx, x) = 0.

The number (Hx, x) is real, hence it follows that Im(Aγx, x) = 0. However,

Im(Aγx, x) =

n∑
i=1

Im γi ·
∣∣χηi,ai(x)

∣∣2,
and it follows that x ∈

⋂n
i=1 kerχηi,ai . In particular, Aγx = 0, and hence

Hx = Bγx − Aγx = 0. This says that x ∈ A◦, and now our hypothesis (3.2)
implies that x = 0. The analogous argument applies if γ ∈ (C−)n (where C−
denotes the open lower half-plane). We conclude that

0 ∈ ρ(Bγ|B(⊥)), γ ∈ (C+)n ∪ (C−)n.

Consider the determinant

p(γ1, . . . , γn) := det
(
Bγ|B(⊥)

)
, γ ∈ Cn.

Then p is a polynomial in the complex variables γ1, . . . , γn, in particular, p is
analytic on all of Cn. Since p does not vanish identically, the zero set of p cannot
contain any relatively open subset of Rn, see, e.g., [Sol]. Clearly, the set

Ω :=
{
γ ∈ Rn : p(γ1, . . . , γn) = 0

}
is closed. Thus, Ω is nowhere dense.
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Step 3; Construction of kernel functions: Let γ ∈ Rn \ Ω, then 0 ∈ ρ(Bγ). We
set

k(η, a) := B−1
γ

(
L(η, ·)a

)
∈ A, a ∈ K, η ∈M,

and define K : M ×M → KK as

K(η, ζ)a := k(η, a)(ζ), a ∈ K, ζ, η ∈M.

Obviously, it holds that K(η, ·)a = k(η, a) ∈ A, a ∈ K, η ∈M .
We have (here norms are understood w.r.t. (·, ·))

‖K(η, ζ)a‖ ≤ ‖χζ‖ · ‖k(η, a)‖ ≤ ‖χζ‖ · ‖B−1
γ ‖ · ‖L(η, ·)a‖︸ ︷︷ ︸

=‖χη,a‖

≤

≤ ‖χζ‖ · ‖B−1
γ ‖ · ‖χη‖ · ‖a‖, a ∈ K, η, ζ ∈M.

This shows that K maps M ×M into B(K). Since B−1
γ is selfadjoint, we have(

K(η, ζ)∗a, b
)
K =

(
a,K(η, ζ)b

)
K =

(
L(ζ, ·)a, k(η, b)

)
=

=
(
L(ζ, ·)a,B−1

γ L(η, ·)b
)

=
(
B−1

γ L(ζ, ·)a, L(η, ·)b
)

=

=
(
k(ζ, a), L(η, ·)b

)
=
(
K(ζ, η)a, b

)
K, a, b ∈ K, η, ζ ∈M.

This shows that K(η, ζ)∗ = K(ζ, η), η, ζ ∈M , and we see that K is a hermitian
kernel.

Validity of (3.1) follows by computation using the definitions and the fact
that Bγ is selfadjoint. Namely, for each f ∈ A and a ∈ K, η ∈M we have[

f,K(η, ·)a
]
A =

(
Hf,K(η, ·)a

)
=
(
f,BγK(η, ·)a︸ ︷︷ ︸

=L(η,·)a

)
−
(
Aγf,K(η, ·)a

)
=

=(f(η), a)K −
n∑
i=1

γi · χηi,ai(f)
(
L(ηi, ·)ai,K(η, ·)a

)
K︸ ︷︷ ︸

=χηi,ai (K(η,·)a)

.

Consider now the case that n = ind0A. Then, since the family {χη,a : a ∈ K, η ∈
M} is point separating, we can inductively construct elements a1, . . . , an ∈ K
and η1, . . . , ηn ∈ M which satisfy (3.2). Namely: As a first step choose f ∈
A◦ \ {0} and η1 ∈ M,a1 ∈ K with χη1,a1(f) 6= 0. Then dim(A ∩ kerχη1,a1) =
dimA◦ − 1. For the inductive step assume that m < n and that η1, . . . , ηm ∈
M and a1, . . . , am ∈ K are given with dim(A◦ ∩

⋂m
i=1 kerχηi,ai) = dimA◦ −

m. Choose f ∈ (A◦ ∩
⋂m
i=1 kerχηi,ai) \ {0} and ηm+1 ∈ M,am+1 ∈ K with

χηm+1,am+1
(f) 6= 0. Then dim(A◦ ∩

⋂m+1
i=1 kerχηi,ai) = dimA◦ − (m+ 1). q

3.3 Remark. Let us comment on the variety of possible choices of δ. Firstly, as
we see from the inductive argument in the last part of the proof, often “most”
choices of (ai)

n
i=1 ∈ Kn, (ηi)ni=1 ∈ Mn will have the required property (3.2);

think for instance of the case when the elements of A are analytic functions. Of
course, this is just a vague statement.

Secondly, and more precisely, we can obtain knowledge about the exceptional
set Ω. Namely, whenever γ : C → Cn is a polynomial curve which intersects
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(C+)n∪(C−)n, then γ(C)∩Ω is finite and (here degγ denotes that degree of the
polynomial curve γ, meaning the maximum degree of its component functions)

#
(
γ(C) ∩ Ω

)
≤ degγ ·

(
ind−A+ ind0A+ n

)
.

To see this, notice that q : ξ 7→ det
(
Bγ(ξ)|B(⊥)

)
is a polynomial whose degree

does not exceed degγ · dimB(⊥). However, we can estimate dimB(⊥) as

dimB(⊥) = codimB ≤ codim(kerR) + codim
( n⋂
i=1

kerχηi,ai

)
=

= dim(ranR) + n ≤ ind−A+ ind0A+ n.

Since q does not vanish identically, the number of its zeros is finite and bounded
by its degree.

Observe that, if the polynomial γ has real coefficients, then with finitely
many exceptions γ(R) consists of admissible values for (γi)

n
i=1. ♦

It is easy to see that validity of (3.1) implies (3.2). Moreover, it can be charac-
terised geometrically whether or not the perturbation term in (3.1) has minimal
number of summands (i.e., whether or not we speak of an almost reproducing
kernel).

3.4 Lemma. Let A be a reproducing kernel almost Pontryagin space of K-
valued functions on M , and let K be a K-valued hermitian kernel on M . Let
n ∈ N0 and δ ∈ Kn×Mn×Rn, and assume that the formula (3.1) holds. Then
the following statements hold.

(i) We have

A◦ ∩
n⋂
i=1
γi 6=0

kerχηi,ai = {0}, (3.4)

in particular, n ≥ ind0A.

(ii) Set L := span{K(η, ·)a : a ∈ K, η ∈M}, then

A◦ ⊆ L⊥ ⊆ span
{
K(ηi, ·)ai : γi 6= 0

}
.

(iii) The following conditions are equivalent.

(a) It holds that n = ind0A.

(b) The set {K(ηi, ·)ai : i = 1, . . . , n} is a basis of A◦.
(c) We have (here δij denotes the Kronecker-Delta)

γi 6= 0, i = 1, . . . , n and
(
K(ηj , ηi)aj , ai

)
K = δij

1

γi
, i, j = 1, . . . , n.

(3.5)

Proof. To show (3.4), assume that f ∈ A◦ ∩
⋂n
i=1

{
kerχηi,ai : γi 6= 0

}
. Then,

by (3.1), it holds that (f(η), a)K = 0, a ∈ K, η ∈ M , and hence f = 0. From
(3.4) we obtain

dimA◦ ≤ dim
(
A
/

n⋂
i=1
γi 6=0

kerχηi,ai

)
≤ n.
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Also item (ii) is rather straightforward from (3.1). First, notice that

χηi,ai(K(η, ·)a) =
(
K(η, ηi)a, ai

)
K =

(
a,K(ηi, η)ai

)
K.

Now (3.1) yields that, for each f ∈ L⊥,

(
f(η), a

)
K =

n∑
i=1

γi · χηi,ai(f)
(
K(ηi, η)ai, a

)
K, a ∈ K, η ∈M.

From this we have

f =

n∑
i=1

γi · χηi,ai(f)K(ηi, ·)ai =

n∑
i=1
γi 6=0

γi · χηi,ai(f)K(ηi, ·)ai, f ∈ L⊥. (3.6)

We come to the proof of item (iii). Assume that (a) holds. Then, from the
already proved item (ii), we must have

A◦ = span
{
K(ηi, ·)ai : i = 1, . . . , n, γi 6= 0

}
.

This implies that the set written on the right side must contain n linearly inde-
pendent elements. Thus γi 6= 0, i = 1, . . . , n, and {K(ηi, ·)ai : i = 1, . . . , n}
is linearly independent. We see that (b) holds. The converse implication
“(b)⇒(a)” is of course trivial.

Assume next that (b) holds. Then (3.6) yields the representation

K(ηj , ·)aj =

n∑
i=1

γi · χηi,ai(K(ηj , ·)aj) ·K(ηi, ·)ai.

By linear independence, thus,

γi · χηi,ai(K(ηj , ·)aj) = δij , i, j = 1, . . . , n.

This implies (3.5).
Finally, assume that (3.5) holds. Substituting in (3.1) gives

[
f,K(ηj , ·)aj

]
A = (f(ηj), aj)K︸ ︷︷ ︸

=χηj,aj (f)

−
n∑
i=1

γi·χηi,ai(f)χηi,ai(K(ηj , ·)aj)︸ ︷︷ ︸
=δij

1
γ i

= 0, f ∈ A,

i.e., K(ηj , ·)aj ∈ A◦, j = 1, . . . , n. Consider the map

Λ :

{
KM → Cn
f 7→

(
χηi,ai(f)

)n
i=1

(3.7)

Then
Λ
(

span
{
K(ηi, ·)ai : i = 1, . . . , n

})
= Cn,

and hence {K(ηi, ·)ai : i = 1, . . . , n}must be linearly independent. Since dimA◦
cannot exceed n by (i), we see that (b) holds. q

Next, we determine those hermitian kernels which may appear as almost repro-
ducing kernels of some reproducing kernel almost Pontryagin space. It is not
a surprise that finiteness of negative index is the decisive factor. The crucial
construction for the proof is to mimick the formula (3.1) on an abstract level.
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3.5 Definition. Let M be a nonempty set, let K be a Krein space, and let
K be an K-valued hermitian kernel on M . Moreover, let data n ∈ N0 and
δ = ((ai)

n
i=1; (ηi)

n
i=1; (γi)

n
i=1) ∈ Kn ×Mn × Rn be given.

We denote by F(K,M) the space of all K-valued functions on M with finite
support, i.e.,

F(K,M) :=
{
f : M → K : {ζ ∈M : f(ζ) 6= 0} is finite

}
,

and define linear functionals

φi :

{
F(K,M) → C

f 7→
∑
ζ∈M

(
K(ζ, ηi)f(ζ), ai

)
K

, i = 1, . . . , n.

Next, we define a sesquilinear form [·, ·]K,δ : F(K,M)×F(K,M)→ C as

[f, g]K,δ :=
∑
ζ,η∈M

(
K(ζ, η)f(ζ), g(η)

)
K −

n∑
i=1

γi · φi(f)φi(g), f, g ∈ F(K,M).

♦

From the fact that K is a hermitian kernel, it is obvious that [·, ·]K,δ is an inner
product on F(K,M).

Two inner products [·, ·]K,δ1 and [·, ·]K,δ2 may coincide. For example, this is
certainly the case if δk = ((aki )nki=1; (ηki )nki=1; (γki )nki=1), k = 1, 2, and there exists a
bijection

σ :
{
i ∈ {1, . . . , n1} : γ1

i 6= 0
}
→
{
i ∈ {1, . . . , n2} : γ2

i 6= 0
}

with
a1
i = a2

σ(i), η
1
i = η2

σ(i), γ
1
i = γ2

σ(i) whenever γ1
i 6= 0.

A particular role is played by the inner product [·, ·]K,∅ where ∅ is the unique
element of K0 ×M0 × R0. Explicitly,

[f, g]K,∅ =
∑
ζ,η∈M

(
K(ζ, η)f(ζ), g(η)

)
K, f, g ∈ F(K,M).

Comparing with the definition of the negative index of a hermitian kernel, we
see that

ind−K = ind−〈F(K,M), [·, ·]K,∅〉.

Let us introduce one more notation. We denote by δη,a ∈ F(K,M) the function
defined as

δη,a(ζ) :=

{
a , ζ = η

0 , otherwise
, a ∈ K, η ∈M.

Clearly,

δη,a+b = δη,a + δη,b, δη,αa = αδη,a, a, b ∈ K, α ∈ C, η ∈M,

F(K,M) = span{δη,a : a ∈ K, η ∈M}.

Necessity of finiteness of negative index in order to be an almost reproducing
kernel now follows.
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3.6 Proposition. Let M be a nonempty set, let K be a Krein space, and let
A be a reproducing kernel almost Pontryagin space of K-valued functions on
M . Moreover, let K be a K-valued hermitian kernel on M , let n ∈ N0 and
δ ∈ Kn ×Mn × Rn, and assume that the formula (3.1) holds with this data.
Then

ind−K ≤ ind−A+ n.

Proof. Consider the linear map ι : F(K,M)→ A which is defined as

ι(f) :=
∑
ζ∈M

K(ζ, ·)f(ζ), f ∈ F(K,M). (3.8)

From the definition of [·, ·]K,δ and (3.1), clearly

[K(ζ, ·)b,K(η, ·)a]A = (K(ζ, η)b, a)K−
n∑
i=1

γi·χηi,ai(K(ζ, ·)b)χηi,ai(K(η, ·)a) =

= [δζ,b, δη,a]K,δ, a, b ∈ K, η, ζ ∈M.

This implies that ι is isometric, and it follows that

ind−〈F(K,M), [·, ·]K,δ〉 ≤ ind−A.

On the linear subspace L :=
⋂n
i=1 kerφi of A the inner products [·, ·]K,δ and

[·, ·]K,∅ coincide. Since codimL ≤ n, it follows that∣∣ ind−K − ind−〈F(K,M), [·, ·]K,δ〉
∣∣ ≤ n.

Together, we obtain ind−K ≤ ind−A+ n. q

For sufficiency, we again mimick the formula (3.1); this time on a concrete level.

3.7 Definition. Let M be a nonempty set, let K be a Krein space, and let K
be a K-valued hermitian kernel on M with ind−K < ∞. Moreover, let data
n ∈ N0 and δ ∈ Kn ×Mn × Rn be given.

Denote by 〈AK , J·, ·KK〉 the unique reproducing kernel Pontryagin space with
reproducing kernel K, cf. Theorem 2.9, and define a sesquilinear form J·, ·KK,δ :
AK ×AK → C as

Jf, gKK,δ := Jf, gKK −
n∑
i=1

γi · χηi,ai(f)χηi,ai(g), f, g ∈ AK . (3.9)

♦

Obviously, J·, ·KK,δ is an inner product on AK . We denote the inner product
space 〈AK , J·, ·KK,δ〉 as AK,δ.

3.8 Proposition. Let M be a nonempty set, let K be a Krein space, and let
K be a K-valued hermitian kernel on M with ind−K <∞. Moreover, let data
n ∈ N0 and δ ∈ Kn ×Mn × Rn be given. Then the following statements hold.

(i) The inner product space AK,δ is a reproducing kernel almost Pontryagin
space. Its almost Pontryagin space topology coincides with the Pontryagin
space topology of AK,∅ = 〈AK , J·, ·K〉K .
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(ii) The formula (3.1) holds in AK,δ with K and δ. In particular, we have
ind0AK,δ ≤ n.

(iii) We have ind0AK,δ = n if and only if

γi 6= 0, i = 1, . . . , n and
(
K(ηj , ηi)aj , ai

)
K = δij

1

γi
, i, j = 1, . . . , n.

Proof. Consider the space AK endowed with the inner product J·, ·KK,δ and
with the Pontryagin space topology O of AK,∅. The inner product Jf, gKK,δ is
a finite rank perturbation of Jf, gKK,∅ in the sense of Lemma A.8. This yields
that 〈AK , J·, ·KK,δ,O〉 is an almost Pontryagin space. Since the space has not
changed topologically, point evaluations are continuous.

Validity of (3.1) is built in the definition. Namely, by the reproducing kernel
property of K in AK , we have from (3.9)

(f(η), a)K = Jf,K(η, ·)aKK =

= Jf,K(η, ·)aKK,δ +

n∑
i=1

γi · χηi,ai(f)χηi,ai(K(η, ·)a), f ∈ AK .

The statement in (iii) is immediate from Lemma 3.4, (iii). q

After having settled existence questions (of kernels for a given space and of
spaces for a given kernel), we turn to uniqueness. First, we show uniqueness of
kernels for given space and data δ.

3.9 Proposition. Let M be a nonempty set, let K be a Krein space, and let A
be a reproducing kernel almost Pontryagin space of K-valued functions on M .
Moreover, set n := ind0A, and let δ ∈ Kn ×Mn × Rn.

Then there exists at most one almost reproducing kernel K of A such that
(3.1) holds for K with δ.

Proof. Let K1 and K2 be almost reproducing kernels of A such that (3.1) holds
for K1 and K2 with δ = ((ai)

n
i=1; (ηi)

n
i=1; (γi)

n
i=1). Consider the map Λ defined

in (3.7). Lemma 3.4, (i), shows that Λ|A◦ is injective. By Lemma 3.4, (iii), we
have Kl(ηi, ·)ai ∈ A◦, i = 1, . . . , n, l = 1, 2, and Λ(K1(ηi, ·)ai) = Λ(K2(ηi, ·)ai),
i = 1, . . . , n. It follows that

K1(ηi, ·)ai = K2(ηi, ·)ai, i = 1, . . . , n.

From this we have

χηi,ai(K1(η, ·)a) =
(
K1(η, ηi)a, ai

)
K =

(
a,K1(ηi, η)ai

)
K =

(
a,K2(ηi, η)ai

)
K =

=
(
K2(η, ηi)a, ai

)
K = χηi,ai(K2(η, ·)a), i = 1, . . . , n, a ∈ K, η ∈M.

Now (3.1) yields

[
f,K1(η, ·)a

]
A = (f(η), a)K −

n∑
i=1

γi · χηi,ai(f)χηi,ai(K1(η, ·)a) =

=
[
f,K2(η, ·)a

]
A, f ∈ A, a ∈ K, η ∈M.

It follows that K1(η, ·)a − K2(η, ·)a ∈ A◦, a ∈ K, η ∈ M . Injectivity of Λ|A◦
implies that K1(η, ·)a = K2(η, ·)a. q
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Second, we show uniqueness of the space for given kernel and data δ. In the
proof, we utilise the theory of almost Pontryagin space completions as developed
in [SW12]; for the relevant statements see the appendix (p.36ff).

3.10 Proposition. Let M be a nonempty set, let K be a Krein space, and let K
be a K-valued hermitian kernel on M with ind−K < ∞. Moreover, let n ∈ N0

and δ ∈ Kn ×Mn × Rn.
Then there exists at most one reproducing kernel almost Pontryagin space A

such that K is an almost reproducing kernel of A with the data δ in (3.1).

Proof. Let A be a reproducing kernel almost Pontryagin space, assume that
(3.1) holds with K and δ and that n = dimA◦. Consider the subspace L :=
span{K(η, ·)a : a ∈ K, η ∈M}. Then, by Lemma 3.4, (ii), (iii), we have

L⊥ = A◦ ⊆ L.

Using Lemma A.6, (iii), it follows that L is dense in A.
Consider the map ι : F(K,M) → A defined in (3.8). Then, as substi-

tuting in the definitions shows, ι is an isometry of 〈F(K,M), [·, ·]K,δ〉 onto L.
Hence, we may consider 〈ι,A〉 as an almost Pontryagin space completion of
〈F(K,M), [·, ·]K,δ〉.

Since {χηi,ai : i = 1, . . . , n} is point separating on A◦, Proposition A.3, (ii),
yields

A′ =
{

[·, y]A : y ∈ A
}

+ span
{
χηi,ai : i = 1, . . . , n

}
.

Remembering Lemma A.13, thus

ι∗(A′) = 〈F(K,M), [·, ·]K,δ〉′ + span{ωi : i = 1, . . . , n}, (3.10)

where ωi : F(K,M)→ C are the functionals acting as

ωi(f) :=
∑
ζ∈M

(
K(ζ, ηi)f(ζ), ai

)
K, f ∈ F(K,M), i = 1, . . . , n.

The central observation is that the right side of (3.10) of course depends on K
and δ, but does not depend on A.

Assume now that A1 and A2 are two reproducing kernel almost Pontryagin
spaces which have K as an almost reproducing kernel with the data n and δ in
(3.1).

By what we proved above, ι∗(A′1) = ι∗(A′2). Theorem A.15 provides us
with a linear and isometric homeomorphism ϕ : A1 → A2 such that ϕ ◦ ι = ι.
It follows that ϕ(f) = f , f ∈ L, i.e., for each η ∈ M the restrictions of the
continuous maps χη ◦ ϕ and χη to the subspace L of A1 coincide. Since L is
dense, these maps coincide on all of A1. From this, we have

ϕ(f) = f, f ∈ A1,

and hence that A1 and A2 are equal. q
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ê The relation Ξ (defined on p.9) is the graph of a function which maps

dom Ξ =
{

(K; δ) ∈ K(K,M)×
⋃
n∈N0

(
Kn×Mn×Rn

)
:

ind−K <∞, γi 6= 0,
(
K(ηj , ηi)aj , ai

)
K = δij

1

γi

}
surjectively onto RKS(K,M). Here well-definedness is Proposition 3.10, the description of
the domain is Proposition 3.8 for “⊇” together with Lemma 3.4, (iii), and Proposition 3.6
for “⊆”, and surjectivity is Theorem 3.2.

Let A ∈ RKS(K,M) be fixed. In order to describe the inverse image Ξ−1({A}), we set
n := ind0A and denote by π0, π1, and π2 the projections

π0 : K(K,M)×
(
Kn×Mn×Rn

)
→ K(K,M),

π1 : K(K,M)×
(
Kn×Mn×Rn

)
→ Kn×Mn,

π2 : K(K,M)×
(
Kn×Mn×Rn

)
→ Rn.

Then it holds that

Ξ−1
(
{A}

)
∩ π−1

1

(
{((ai)ni=1; (ηi)

n
i=1)}

)
6= ∅ ⇐⇒ A◦ ∩

n⋂
i=1

kerχηi,ai = {0}

If the set on the left side is nonempty, then

Rn \ π2
(

Ξ−1
(
{A}

)
∩ π−1

1

(
{((ai)ni=1; (ηi)

n
i=1)}

))
is contained in a closed and nowhere dense subset of Rn. For each ((ai)

n
i=1; (ηi)

n
i=1; (γi)

n
i=1)

we have

#
(

Ξ−1
(
{A}

)
∩ (π1 × π2)−1

(
{((ai)ni=1; (ηi)

n
i=1; (γi)

n
i=1)}

))
≤ 1.

Here the implication “⇐” and the second statement is Theorem 3.2, the implication “⇒” is
Lemma 3.4, (i), and the last statement is Proposition 3.9.

In order to apply Proposition 3.8 to construct reproducing kernel almost Pon-
tryagin spaces with a presecribed kernel, one has to find δ such that (3.5) is
satisfied. As a rule of thumb, this is not difficult. To illustrate this vague
statement, let us consider an example.

3.11 Example. Let a > 0. The Paley-Wiener space PWa is the space of all entire
functions of exponential type at most a which are square integrable along the
real axis. By a theorem of Paley and Wiener (see, e.g., [Koo98b, Chapter III.D]),
PWa is nothing but the set of Fourier transforms of square integrable functions
supported on the interval [−a, a]. If endowed with the L2(R)-inner product, i.e.,
with

(f, g) :=

∫
R
f(t)g(t) dt, f, g ∈ PWa,

PWa becomes a reproducing kernel Hilbert space (of complex valued functions
on C). Its reproducing kernel Ka(η, ζ) is given as (for ζ = η this expression has
to be interpreted as a derivative which is possible by analyticity)

Ka(η, ζ) =
sin[a(ζ − η)]

π(ζ − η)
, ζ, η ∈ C.

This is a classical result; a proof from the reproducing kernel space perspective
is given, e.g., in [Bra68, Theorem 16].

Let us now start from the kernel function Ka, and attempt to apply Propo-
sition 3.8. It is easy to find suitable points ηi. In fact, for arbitrary n ∈ N,
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we simply choose pairwise different points η1, . . . , ηn contained in an arithmetic
sequence α+ 2π

a Z where α ∈ R. Then

Ka(ηi, ηj) =
1

π
δij , i, j = 1, . . . , n.

We see that for each n ∈ N there exists a reproducing kernel almost Pontryagin
space A(n) with ind0A(n) = n, such that Ka is an almost reproducing kernel
of A(n).

Let us note that the same argument can be carried out for any (infinite
dimensional) de Branges space in the sense of [KWW05, Definition 6.4]. ♦

4 Reproducing kernel space completions

In this section we investigate the second problem posed in the introduction.
The question “Given an inner product space L whose elements are functions,
does there exist a reproducing kernel almost Pontryagin space which contains
L isometrically and densely ? ” can be answered as follows.

4.1 Theorem. Let M be a nonempty set, let K be a Krein space, and let L
be an inner product space of K-valued functions on M (with linear operations
acting as pointwise addition and scalar multiplication).

There exists a reproducing kernel almost Pontryagin space which contains L
isometrically, if and only if L satisfies the following conditions (A), (B), (C).

(A) ind− L <∞.

(B) There exist N ∈ N, (ai)
N
i=1 ∈ KN , and (ηi)

N
i=1 ∈MN , such that the follow-

ing implication holds. If (fn)n∈N is a sequence of elements of L with

lim
n→∞

[fn, fn]L = 0, lim
n→∞

[fn, g]L = 0, g ∈ L,

lim
n→∞

χηi,ai(fn) = 0, i = 1, . . . , N,

then limn→∞ χη,a(fn) = 0, a ∈ K, η ∈M .

(C) If (fn)n∈N is a sequence of elements of L with

lim
n,m→∞

[fn − fm, fn − fm]L = 0, lim
n→∞

[fn − fm, g]L = 0, g ∈ L,

lim
n→∞

χη,a(fn) = 0, a ∈ K, η ∈M,
(4.1)

then limn→∞[fn, g]L = 0, g ∈ L.

If (A), (B) and (C) hold, then there exists a unique reproducing kernel almost
Pontryagin space which contains L isometrically as a dense linear subspace.

Before we come to the proof, let us comment on the conditions (A), (B), (C).
The role of the condition (A) is of course clear; without having finite negative
index there is no chance for L to be contained in any almost Pontryagin space.
Conditions (B) and (C) are less obvious. Informally speaking, (B) is responsible
for continuity and (C) is responsible for well-definedness of point evaluation
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maps. This picture will become mathematically precise in the course of the
proof.

The proof of Theorem 4.1 proceeds in three steps. First, we show sufficiency
of (A), (B), (C), second we show the uniqueness statement, and finally necessity
is established. The essential tool for the proof is the theory of almost Pontryagin
space completions.

Proof (of Theorem 4.1, sufficiency). Assume that L satisfies (A), (B), and (C).
Since L has finite negative index, we can choose an almost Pontryagin space
completion (ι,B) of L with

ι∗(B′) = L′ + span
{
χηi,ai |L : i = 1, . . . , N

}
.

Moreover, we denote by χ̃ηi,ai the unique functional in B′ with ι∗(χ̃ηi,ai) =
χηi,ai |L.

For each element f ∈ ker ι we have

[f, f ]L = [ιf, ιf ]B = 0, [f, g]L = [ιf, ιg]B = 0, g ∈ L,
χηi,ai(f) = χ̃ηi,ai(f) = 0, i = 1, . . . , N.

Our assumption (B) applied with the constant sequence (f)n∈N yields that
χη,a(f) = 0, a ∈ K, η ∈ M . This just means that f = 0, and we conclude
that ι is injective.

Set λη,a := χη,a ◦ ι−1 : ran ι→ C, a ∈ K, η ∈M . We are going to show that
λη,a is bounded w.r.t. the norm of B. Let (xn)n∈N be a sequence in ran ι with
limn→∞ xn = 0 in the norm of B. Set fn := ι−1xn, then

lim
n→∞

[fn, fn]L = lim
n→∞

[xn, xn]B = 0,

lim
n→∞

[fn, g]L = lim
n→∞

[xn, ιg]B = 0, g ∈ L,

lim
n→∞

χηi,ai(fn) = lim
n→∞

χ̃ηi,ai(xn) = 0, i = 1, . . . , N.

It follows from (B) that

lim
n→∞

λη,a(xn) = lim
n→∞

χη,a(fn) = 0, a ∈ K, η ∈M.

This shows that indeed λη,a is bounded w.r.t. the norm of B. Let χ̃η,a ∈ B′ be
the unique extension of λη,a to a continuous functional on B. Notice that this
terminology is not in conflict with what we had above: When χ̃ηi,ai denotes
the functional introduced in the first paragraph of this proof, then ληi,ai =
χ̃ηi,ai |ran ι. Hence, this functional is the unique extension of ληi,ai .

Clearly, we have ι∗(χ̃η,a) = χη,a|L, a ∈ K, η ∈M , and thus

ι∗(B′) = L′ + span
{
χη,a|L : a ∈ K, η ∈M

}
. (4.2)

Keep η ∈M fixed. For x ∈ B consider the linear functional ψx on K defined as

ψx(a) := χ̃η,a(x), a ∈ K.

We show that ψx is continuous. Since χ̃η,a ∈ B′, the map x 7→ ψx is continuous
w.r.t. the topology of B in its domain and the topology of pointwise convergence
in its range. Since ran ι is dense in B, thus, each functional ψx is the pointwise
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limit of a sequence of functionals of the form ψιf , f ∈ L. However, for each
f ∈ L we have

ψιf (a) = χ̃η,a(ιf) = χη,a(ιf) =
(
a, f(η)

)
K, a ∈ K,

and hence ψιf ∈ K′. It follows, using the Principle of Uniform Boundedness,
that ψx ∈ K′, x ∈ B.

Since every continuous linear functional on a Krein space can be represented
as an inner product, a map ψ : B → KM is well-defined by requiring(

(ψx)(η), a
)
K = χ̃η,a(x), x ∈ B, a ∈ K, η ∈M. (4.3)

Let us show that kerψ ⊆ B◦. Assume that x ∈ B with ψx = 0, then
χ̃η,a(x) = 0, a ∈ K, η ∈ M . Choose a sequence (fn)n∈N of elements fn ∈ L
with limn→∞ ιfn = x. Then, in particular, (ιfn)n∈N is a Cauchy sequence in
the norm of B, and it follows that

lim
n,m→∞

[fn − fm, fn − fm]L = lim
n,m→∞

[ιfn − ιfm, ιfn − ιfm]B = 0,

lim
n→∞

[fn − fm, g]L = lim
n→∞

[ιfn − ιfm, ιg]B = 0, g ∈ L.

Moreover, since χ̃η,a ∈ B′,

lim
n→∞

χη,a(fn) = lim
n→∞

χ̃η,a(ιfn) = χ̃η,a(x) = 0, a ∈ K, η ∈M.

Our hypothesis (C) implies that

[x, ιg]B = lim
n→∞

[ιfn, ιg]B = lim
n→∞

[fn, g]L = 0, g ∈ L.

Since ran ι is dense in B, it follows that x ∈ B◦.
SetA := ranψ. We use PropositionA.7 to makeA into an almost Pontryagin

space. Then the map ψ becomes continuous, open, and isometric. Using the
defining property (4.3) of ψ, we obtain that for each f ∈ L(

f(η), a
)
K = χη,a(f) = χ̃η,a(ιf) =

(
(ψ(ιf))(η), a

)
K, a ∈ K, η ∈M.

This just says that (ψ ◦ ι)(f) = f , f ∈ L. We see that L is contained in A.
Since ψ and ι are both isometric, the set-theoretic inclusion map of L into A
(being equal to ψ ◦ ι) is also isometric.

It remains to show that A is a reproducing kernel almost Pontryagin space.
However, again referring to (4.3), we have for each a ∈ K and η ∈M

B
χ̃η,a //

ψ

��

C

A
χη,a|A

88ppppppppppppp

Since χ̃η,a is continuous and A carries the final topology w.r.t. ψ, it follows that
χη,a|A is continuous. q

Next, observe that (A), (B), (C) ensure existence of a reproducing kernel almost
Pontryagin space which contains L isometrically and densely. In fact, the space
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constructed in the above part of the proof has this property. This follows since
ψ is surjective and open and ι(L) is dense in B. Moreover, generally, if we have
any reproducing kernel almost Pontryagin space which contains L isometrically,
the closure of L in this space is again a reproducing kernel almost Pontryagin
space and contains L isometrically and densely.

We continue with a general observation.

4.2 Remark. Let A be a reproducing kernel almost Pontryagin space which
contains L isometrically as a dense subspace. Then the pair 〈⊆,A〉, where “⊆”
denotes the set-theoretic inclusion map of L into A, is an almost Pontryagin
space completion of L. The family F := {χη,a|A : a ∈ K, η ∈M} ⊆ A′ is point
separating, and hence in particular point separating on A◦. By Proposition A.3,
(ii), it follows that

A′ =
{

[·, y]A : y ∈ A
}

+ span
{
χη,a|A : a ∈ K, η ∈M

}
. (4.4)

Clearly, we have ⊆∗(χη,a|A) = χη,a|L. Remembering Lemma A.13, we obtain

⊆∗(A′) = L′ + span
{
χη,a|L : a ∈ K, η ∈M

}
. (4.5)

♦

Proof (of Theorem 4.1, uniqueness statement). Let A1 and A2 be two repro-
ducing kernel almost Pontryagin spaces which contain L isometrically and
densely. As a consequence of (4.5), the completions 〈⊆,A1〉 and 〈⊆,A2〉 are
isomorphic, cf. Theorem A.15. Let ω be a linear and isometric homeomorphism
ω : A1 → A2 with

L
⊆

~~}}
}}
}}
}} ⊆

  A
AA

AA
AA

A

A1 ω
// A2

Then ω(f) = f , f ∈ L, and hence[
χη,a|A2

◦ ω
]∣∣
L =

[
χη,a|A1

]∣∣
L, a ∈ K, η ∈M.

Since point evaluations are continuous in both spaces A1 and A2, it follows that
χη,a|A2 ◦ ω = χη,a|A1 . Hence, ω(f) = f for all f ∈ A1. This just says that
A1 and A2 are equal (since ω is isometric and homeomorphic, they are equal as
almost Pontryagin spaces). q

Proof (of Theorem 4.1, necessity). Assume that we are given a reproducing ker-
nel almost Pontryagin space A which contains L isometrically and, w.l.o.g.,
densely. Then, clearly, ind− L ≤ ind−A <∞. From (4.5) we conclude that

dim
([
L′ + span{χη,a|L : a ∈ K, η ∈M}

]/
L′
)

= ind0A <∞. (4.6)

Set N := ind0A, and choose (ai)
N
i=1 ∈ KN and (ηi)

N
i=1 ∈MN , such that

L′ + span
{
χη,a|L : a ∈ K, η ∈M

}
= L′ + span

{
χηi,ai |L : i = 1, . . . , N

}
. (4.7)

Let us show that the implication in (B) holds with this choice of N , (ai)
N
i=1 ∈

KN , and (ηi)
N
i=1 ∈ MN . Let (fn)n∈N be a sequence having the properties
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stated in the hypothesis of (B). By (4.4) and (4.7), the family {χηi,ai |L : i =
1, . . . , N} acts point separating on A◦, cf. Remark A.4. Hence, we may apply
Proposition A.5, (i), with the subset L and the family {χηi,ai : i = 1, . . . , n},
and conclude that limn→∞ fn = 0 in the norm of A. Continuity of χη,a|A now
gives limn→∞ χη,a(fn) = 0, a ∈ K, η ∈M .

We show that the implication in (C) holds. Let (fn)n∈N be a sequence of
elements of L with the properties stated in the hypothesis of (C). Then, by
Proposition A.5, (ii), applied with the subset L and the family {χη,a : a ∈
K, η ∈ M}, the sequence (fn)n∈N is a Cauchy-sequence in the norm of A. By
completeness there exists x ∈ A with limn→∞ fn = x in the norm of A. Since

χη,a(x) = lim
n→∞

χη,a(fn) = 0,

we have x = 0. In particular, limn→∞[fn, g]A = 0, g ∈ A, and hence (again, in
particular) the conclusion in (C) holds. q

The conditions (B) and (C) of Theorem 4.1 can be reformulated in a more
geometric way.

4.3 Proposition. Let M be a nonempty set, let K be a Krein space, and let
L be an inner product space of K-valued functions on M with ind− L < ∞.
Consider the conditions (here T (L′) denotes the topology on L′ introduced in
Definition A.16)

(B′) dim
([
L′ + span{χη,a|L : a ∈ K, η ∈M}

]/
L′
)
<∞;

(C′) L′ ∩ span{χη,a|L : a ∈ K, η ∈M} is T (L′)-dense in L′.

Then the following implications/equivalences hold:

(B)⇔ (B′) (C′)⇒ (C) (B′) ∧ (C)⇒ (C′)

4.4 Corollary. In Theorem 4.1 we may, separately or simultaneously, substitute
(B) by (B′) and (C) by (C′). q

Proof (of Proposition 4.3).

(B)⇒(B′): This has already been shown in the proof of sufficiency in Theo-
rem 4.1. Namely, since the argument up to (4.2) does not use (C).

(B′)⇒(B): This has in essence been shown in the proof of necessity in Theo-
rem 4.1. Namely, choose an almost Pontryagin space completion 〈ι,A〉 with

ι∗(A′) = L′ + span
{
χη,a|L : a ∈ K, η ∈M

}
, (4.8)

and proceed as after (4.6). Note here that (4.4) holds by the choice of 〈ι,A〉,
when χη,a|A is substituted by (ι∗|A′)−1(χη,a|L).

(C′)⇒(C): Choose a Pontryagin space completion 〈ι,A〉 of L, and set

M := L′ ∩ span
{
χη,a|L : a ∈ K, η ∈M

}
, N := (ι∗|A′)−1

(
M
)
.

Since ι∗|A′ is a homeomorphism of A′ with its norm topology onto L′ with
T (L′), the space N is dense in A′. Let (fn)n∈N be a sequence in L subject
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to (4.1). Then (ιfn)n∈N is a Cauchy-sequence in the norm of A, cf. [IKL82,
Theorem 2.4]. Set x := limn→∞(ιfn), then[

(ι∗|A′)−1φ
]
(x) = lim

n→∞

[
(ι∗|A′)−1φ

]
(ιfn) = lim

n→∞
φ(fn) = 0, φ ∈M.

Since N is dense, this implies that x = 0. In turn, we have limn→∞[fn, g]L =
limn→∞[ιfn, ιg]A = 0, g ∈ L.

(B′)∧(C)⇒(C′): Again choose an almost Pontryagin space completion 〈ι,A〉
of L with (4.8), and set χ̃η,a := (ι∗|A′)−1(χη,a|L), a ∈ K, η ∈ M . We claim
that the annihilator of span{χ̃η,a : a ∈ K, η ∈ M} w.r.t. the canonical duality
between A and A′ is equal to {0}. Assume that x ∈ A with χ̃η,a(x) = 0, a ∈ K,
η ∈M , and choose a sequence (fn)n∈N in L with limn→∞(ιfn) = x in the norm
of A. Then (fn)n∈N satisfies (4.1), and (C) implies that

[x, ιg]A = lim
n→∞

[ιfn, ιg]A = lim
n→∞

[fn, g]L = 0, g ∈ L.

It follows that x = 0, and our claim is established. We conclude that span{χ̃η,a :
a ∈ K, η ∈M} is σ(A′,A)-dense in A′. Since A is reflexive, it follows that this
linear span is also norm-dense in A′.

Set N := ind0A, and choose (ai)
n
i=1 ∈ KN and (ηi)

n
i=1 ∈ MN such that

(4.7) holds. Then (for the notation Ao see (A.6))

A′ = Ao+̇ span
{
χ̃ηi,ai : i = 1, . . . , n

}
.

Let P be the projection of A′ onto Ao with kernel span{χ̃ηi,ai : i = 1, . . . , n}.
Then ranP is closed by Proposition A.1 and kerP is closed by finite-
dimensionality. Hence, P is continuous. Being continuous and surjective, P
maps dense sets of A′ onto dense sets of Ao. Clearly,

P
(

span
{
χ̃η,a : a ∈ K, η ∈M

})
= Ao ∩ span

{
χ̃η,a : a ∈ K, η ∈M

}
=

= (ι∗|A′)−1
(
L′ ∩ span

{
χη,a|L : a ∈ K, η ∈M

}
.

Since ι∗|Ao is a homeomorphism, validity of (C′) follows. q

Let L be a space of K-valued functions on M and assume that L has a re-
producing kernel completion. Then, generically, there exist many reproducing
kernel almost Pontryagin spaces which contain L isometrically but not neces-
sarily densely. Let us briefly comment on this fact.

4.5 Lemma. Let L be a space of K-valued functions on M , assume that L
has a reproducing kernel completion, and denote it by A. Let B be an almost
Pontryagin space which contains A isometrically as a closed subspace with finite
codimension. Provided that dim(B/A) ≤ dim(KM/A), there exists an isomor-
phic copy of B which is a reproducing kernel almost Pontryagin space and which
contains A isometrically as a closed subspace with finite codimension.

Proof. Set n := dim(B/A), and choose elements x1, . . . , xn ∈ B and g1, . . . , gn ∈
KM which are linearly independent modulo A (in B and in KM , respectively).
Then we can define a map ψ : B → KM by linearity and

ψ(f) := f, f ∈ A, ψ(xi) := gi, i = 1, . . . , n.
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Clearly, ψ maps B injectively into KM . Set B̃ := ranψ, and define an almost
Pontryagin space structure on B̃ by means of Proposition A.7. Then ψ becomes
an isomorphism. We know that for each a ∈ K and η ∈M the functional χη,a|A
is continuous. Since A is a closed subspace of B̃ with finite codimension, its
extension χη,a|B̃ is again continuous. q

Theorem 4.1 justifies the following definition.

4.6 Definition. Let M be a nonempty set, let K be a Krein space, and let L be
an inner product space of K-valued functions on M . Assume that there exists
a reproducing kernel almost Pontryagin space which contains L isometrically.
Then we refer to the unique reproducing kernel almost Pontryagin space which
contains L isometrically and densely as the reproducing kernel space completion
of L. We denote the degree of degeneracy of this space as ∆(L). ♦

The number ∆(L) is an important structural constant associated with L. As
we saw in the proof of necessity, cf. (4.6), we have

∆(L) = dim
([
L′ + span{χη,a|L : a ∈ K, η ∈M}

]/
L′
)
<∞

An alternative way to compute ∆(L), proceeds in terms of the condition (B).
The following fact is seen by revisiting the proof of Theorem 4.1.

4.7 Proposition. Let L be a space of K-valued functions on M and assume that
L has a reproducing kernel space completion. Then ∆(L) is the minimum of all
numbers N such that (B) holds with N ∈ N0 and some choice of (ai)

N
i=1 ∈ KN ,

(ηi)
N
i=1 ∈MN .

Proof. To see this, assume first that (B) holds with N and some data (ai)
N
i=1 ∈

KN , (ηi)
N
i=1 ∈ MN . We can use this data in the proof of sufficiency. Remem-

bering (4.2) and the construction of A as an isometric image of B, yields

∆(L) = ind0A ≤ ind0 B = N.

Conversely, revisit the proof of necessity. There we saw that (B) holds for an
appropriate choice of ∆(L) many functionals χηi,ai |L; see (4.7) and the argument
following it. q

A sufficient condition for existence of a Pontryagin space completion occurs
when the space L is connected with an L2-space of a pure point measure. For
simplicity, we restrict considerations to the scalar-valued case.

4.8 Proposition. Let L be an inner product space of complex-valued functions
on a set M . Assume that there exists a pure point measure µ defined on the σ-
algebra of all subsets of M , points η1, . . . , ηn ∈M and numbers γ1, . . . , γn ∈ R,
such that each element of L is square integrable w.r.t. µ and

[f, g]L =

∫
M

f(λ)g(λ) dµ(λ) +

n∑
i=1

γif(ηi)g(ηi), f, g ∈ L. (4.9)

Then the conditions (A) and (C) hold. If, in addition, we find λ1, . . . , λm ∈M
and Cη > 0, η ∈M , with

|f(η)|2 ≤ Cη
(∫

M

|f(λ)|2 dµ(λ) +

m∑
j=1

|f(λj)|2
)
, f ∈ L, η ∈M, (4.10)
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then also the condition (B) holds.

Proof. From the representation (4.9), we see that the inner product [·, ·]A is
positive semidefinite on the subspace

⋂n
i=1 ker(χηi |A). This subspace has finite

codimension, and hence ind− L < ∞. Assume now that a sequence (fn)n∈N of
elements of L is given which satisfies

lim
n,m→∞

[fn − fm, fn − fm]L = 0, lim
n→∞

χη(fn) = 0, η ∈M.

Then (4.9) implies that

lim
n,m→∞

∫
M

|fn − fm|2 dµ = 0.

Hence, there exists f ∈ L2(µ) such that limn→∞ fn = f in the norm of L2(µ).
Since µ is a pure point measure, convergence in L2(µ) implies pointwise con-
vergence on suppµ. The pointwise limit of the sequence (fn)n∈N, however, is
equal to 0. It follows that f = 0 µ-a.e. Using again the representation (4.9) of
the inner product on L, we see that limn→∞[fn, g]L = 0 for all g ∈ L.

Assume in addition that (4.10) holds. Consider the space

B := L2(µ)× Cn × Cm

endowed with the product topology. Clearly, B contains the Hilbert space L2(µ)
as a closed subspace with finite codimension. Note that the product topology
is induced by the Hilbert space inner product(

(h; (αi)
n
i=1; (βi)

m
j=1), (h′; (α′i)

n
i=1; (β′j)

m
j=1)

)
B :=

=

∫
M

h(λ)h′(λ) dµ +

n∑
i=1

αiα′i +

m∑
j=1

βjβ′j .

We endow B with the inner product

[
(h; (αi)

n
i=1; (βi)

m
j=1), (h′; (α′i)

n
i=1; (β′j)

m
j=1)

]
B :=

∫
M

h(λ)h′(λ) dµ +

n∑
i=1

γiαiα′i.

Clearly, this inner product is continuous w.r.t. the topology of B, and a Hilbert
space inner product on L2(µ). We conclude that B is an almost Pontryagin
space.

Define a map ι : L → B as

ι(f) :=
(
f ; (f(ηi)

n
i=1; (f(λj)

m
j=1

)
, f ∈ L.

By our definition of [·, ·]B, this map is isometric. Hence, 〈ι,Clos(ran ι)〉 is an
almost Pontryagin space completion of L. From (4.10) we see that ι is injective.
The composition (χη|L) ◦ ι−1 is a linear functional on ran ι, and by (4.10) it is
bounded w.r.t. the norm induced by (·, ·)B. Hence, it has an extension χ̃η ∈
[Clos(ran ι)]′. Clearly, ι∗(χ̃η) = χη|L. We obtain

dim
([
L′ + span{χη|L : η ∈M}

]/
L′
)
≤ dim

(
ι∗([Clos(ran ι)]′)

/
L′
)
<∞.

From the argument in the proof of Theorem 4.1, necessity, we obtain that (B)
holds. q
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We close this section with showing a practical result which increases applicabil-
ity of Theorem 4.1. Namely, sometimes one has much better control on some
subspace of an inner product space L than on L itself. The following statement
says that, concerning completions, it is possible to restrict to subspaces which
are in some sense dense. Of course this fact is not a surprise, however, its proof
is not obvious.

4.9 Proposition. Let M be a nonempty set, let K be a Krein space, and let L
and L0 be inner product spaces of K-valued functions on M such that L contains
L0 isometrically. Assume that the following density condition holds: For each
f ∈ L there exists a sequence (fn)n∈N, fn ∈ L0, with

lim
n→∞

[fn, fn]L = lim
n→∞

[fn, f ]L = [f, f ]L,

lim
n→∞

χη,a(fn) = χη,a(f), a ∈ K, η ∈M.
(4.11)

Then L has a reproducing kernel space completion if and only if L0 has one. If
L and L0 have reproducing kernel space completions, then they are equal.

Proof. One implication is obvious. Namely, each reproducing kernel almost
Pontryagin space which isometrically contains L also isometrically contains L0.
Hence existence of a reproducing kernel space completion of L implies existence
of one for L0.

For the proof of the converse assume that A is the reproducing kernel space
completion of L0. We are thus in the situation

L A
L0

⊇ ⊆

By Proposition A.9, applied with the family {χη,a : a ∈ K, η ∈ M}, there exist
η1, . . . , ηn ∈ M and a1, . . . , an ∈ K, such that the inner product (by possibly
changing the values of ai, we may assume that the constant γ obtained from
Proposition A.9 is equal to 1)

(f, g)A = [f, g]A +

n∑
i=1

χηi,ai(f)χηi,ai(g), f, g ∈ A,

is a Hilbert space scalar product on A (and induces the topology of A). We
define an inner product on L by the same formula, i.e.,

Jf, gKL := [f, g]L +

n∑
i=1

χηi,ai(f)χηi,ai(g), f, g ∈ L.

Since A contains L0 isometrically, we have

(f, g)A = Jf, gKL, f, g ∈ L0.

If f ∈ L, choose a sequence (fn)n∈N, fn ∈ L0, with (4.11). Then

Jf, fKL = [f, f ]L +

n∑
i=1

∣∣χηi,ai(f)
∣∣2 =

= lim
n→∞

(
[fn, fn]L0

+

n∑
i=1

∣∣χηi,ai(fn)
∣∣2) = lim

n→∞
(fn, fn)A ≥ 0.
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Due to (4.11), we have limn→∞[fn − f, fn − f ]L = 0, and in turn limn→∞Jfn −
f, fn − fKL = 0. Since J·, ·KL is positive semidefinite, the triangle inequality
applies, and we obtain

(fn − fm, fn − fm)
1
2

A = Jfn − fm, fn − fmK
1
2

L ≤

≤ Jfn − f, fn − fK
1
2

L + Jf − fm, f − fmK
1
2

L → 0, n,m→∞.

Let g ∈ A be such that limn→∞ fn = g in the norm of A. Since point evaluations
are continuous on A, we obtain

χη,a(g) = lim
n→∞

χη,a(fn) = χη,a(f), a ∈ K, η ∈M,

i.e., g = f . This already shows that L ⊆ A. By continuity of the inner product,
we moreover have

[f, f ]A = lim
n→∞

[fn, fn]L0 = [f, f ]L.

Using the polar identity, thus, L is contained isometrically in A. Since L ⊇ L0

and L0 is dense in A, also L is dense in A. Hence, A is the reproducing kernel
completion of L. q

Appendix A. Some supplements to the theory
of almost Pontryagin spaces

In this appendix we provide some general results about almost Pontryagin spaces
which are used in the present paper but are not yet available in the literature.
The first couple of them (Proposition A.1 – Proposition A.7) are simple and in
essence straighforward generalisations of well-known Pontryagin space results.
Proposition A.9 and Lemma A.10 are more involved. They contain a practical
perturbation method and provide a geometric proof for it. In the last part
of this appendix we recall the notion of almost Pontryagin space completions,
those results about such completions which are used in the present context, and
provide some supplements on this topic. In order to keep the presentation clean
and mainly self-contained, we try to minimize the number of results imported
from the literature.

Geometry of almost Pontryagin spaces and their duals

We frequently use the weak-star topology on the topological dual A′ of A, and
the weak topology on A itself. If necessary, the topology to which a notion
(like closedness, continuity, etc.) refers, is made explicit by prepending “w-” or
“w∗-”, respectively. Recall that we speak of “convergence in the norm of A”,
meaning convergence w.r.t. some norm inducing the topology of A.

The first object which we investigate is the topological dual of an almost
Pontryagin space. It is well-known that the topological dual space A′ of a
Pontryagin space A is exhausted by the functionals [·, y]A, y ∈ A, see, e.g.,
[IKL82, Lemma 5.1]. In the presence of degeneracy, this is not anymore the
case; this family of functionals is not even point separating. However, the dual
of an almost Pontryagin space is not much larger than that. The argument
which shows this already appeared in the proof of [SW12, Lemma 6.5] (and is
in fact a general “Banach-space argument”).
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A.1 Proposition. Let A be an almost Pontryagin space. Then the linear sub-
space {[·, y]A : y ∈ A} of A′ is w∗-closed, and

dim
(
A′
/
{[·, y]A : y ∈ A}

)
= ind0A.

Proof. Consider the Pontryagin space A/A◦ and let π : A → A/A◦ be
the canonical projection, cf. [KWW05, Proposition 3.5]. Moreover, let π′ :
(A/A◦)′ → A′ be the adjoint of π. Since π is surjective, in particular, the
range of π is closed. By the Closed Range Theorem, thus ranπ′ is a w∗-closed
subspace of A′. Since π is isometric we have

π′
(
[·, πy]A/A◦

)
= [·, y]A, y ∈ A.

Now the fact that π is surjective yields

π′
(
(A/A◦)′

)
=
{

[·, y]A : y ∈ A
}
, (A.1)

and hence {[·, y]A : y ∈ A} is a w∗-closed subspace of A′. To compute the
codimension of {[·, y]A : y ∈ A}, we use closedness and the fact that kerπ =
A◦ is finite dimensional. From this it follows that (here (kerπ)⊥ denotes the
annihilator of kerπ in A′)

A′
/
{[·, y]A : y ∈ A} = A′

/
ranπ′ = A′

/
(kerπ)⊥ ∼= (kerπ)′ ∼= kerπ = A◦.

q

Informally speaking, the proof of the above proposition relies on the fact that
the almost Pontryagin space A differs from the Pontryagin space A/A◦ only by
“something finite-dimensional”. Let us exploit this idea further.

To formulate the below results, we introduce one notation.

A.2 Definition. Let A be an almost Pontryagin space, and let F be a family
of continuous linear functionals on A. Then we say that F is point separating
on A◦, if

A◦ ∩
⋂
ϕ∈F

kerϕ = {0}.

♦

A.3 Proposition. Let A be an almost Pontryagin space, and let F ⊆ A′ be
point separating on A◦. Denote by π : A → A/A◦ the canonical projection.
Then the following statements hold.

(i) The topology of A is the initial topology with respect to the family of maps

{π : A → A/A◦} ∪
{
ϕ : A → C, ϕ ∈ F

}
. (A.2)

Here A/A◦ is understood to be endowed with its Pontryagin space topology
(and C with the euclidean topology).

(ii) The topological dual A′ of A is given as

A′ =
{

[·, y]A : y ∈ A
}

+ spanF . (A.3)
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Proof. Denote by O the topology of the almost Pontryagin space A, and by T
the initial topology induced on A by the family (A.2). Note that, since F is
point separating on A◦, and kerπ = A◦, the topology T is Hausdorff. Moreover,
since π as well as each ϕ ∈ F is continuous w.r.t. O, we certainly have T ⊆ O.

Since dimA◦ < ∞, we may choose a T -closed subspace B of A such that
A = B+̇A◦. Then 〈A, T 〉 is homeomorphic to 〈B, T |B〉× 〈A◦, T |A◦〉. Clearly, B
is also O-closed, and hence 〈A,O〉 is homeomorphic to 〈B,O|B〉 × 〈A◦,O|A◦〉.

By the Open Mapping Theorem π|B is a homeomorphism of 〈B,O|B〉 onto
A/A◦. Hence, O|B is the initial topology on B w.r.t. the one-element family
{π : A → A/A◦}. This implies that O|B is coarser than T |B. Together with
the fact that T ⊆ O, thus, O|B = T |B. Since dimA◦ < ∞, and both of O|A◦
and T |A◦ are Hausdorff, we also have O|A◦ = T |A◦ . In total, O = T .

We come to the proof of (ii). Denote the linear space on the right side of
(A.3) by G. Since by Proposition A.1

dim
(
G
/
{[·, y]A : y ∈ A}

)
≤ dim

(
A′
/
{[·, y]A : y ∈ A}

)
<∞,

and {[·, y]A : y ∈ A} is w∗-closed, also G is w∗-closed.
Assume on the contrary that the equality (A.3) does not hold, so that

we have “)” in (A.3). The Hahn-Banach Theorem provides us with a w∗-
continuous functional on A′ which annihilates G but does not vanish identically.
Since every w∗-continuous functional is point evaluation at a point of A, we
obtain an element x ∈ A \ {0} with ψ(x) = 0, ψ ∈ G. From this it follows first
that x ∈ A◦ and then by the hypothesis on F that x = 0. We have reached a
contradiction. q

A.4 Remark. Note that, if F ⊆ A′ satisfies (A.3), then F must be point sepa-
rating on A◦. This follows since A′ is point separating, and A◦ is annihilated
by {[·, y]A : y ∈ A}. ♦

Next, we turn to convergence and Cauchy-property of sequences. From (A.3) we
readily see that a sequence (xn)n∈N in an almost Pontryagin space A converges
weakly to an element x ∈ A, if and only if

lim
n→∞

[xn, y]A = [x, y]A, y ∈ A, lim
n→∞

ϕ(xn)→ ϕ(x), ϕ ∈ F ,

provided F ⊆ A′ is point separating on A◦.
The next result shows that also convergence in the norm of A (or being a

Cauchy-sequence w.r.t. the norm of A) can be characterised in a similar fash-
ion. For the nondegenerated case this is a standard fact, see, e.g., [IKL82,
Theorem 2.4].

A.5 Proposition. Let A be an almost Pontryagin space, let L ⊆ A be a subset
with ClosA[spanL] = A, and let F ⊆ A′ be point separating on A◦. Moreover,
let (xn)n∈N be a sequence in A and x ∈ A.

(i) It holds that limn→∞ xn = x in the norm of A, if and only if

lim
n→∞

[xn, y]A = [x, y]A, y ∈ L, lim
n→∞

[xn, xn]A = [x, x]A,

lim
n→∞

ϕ(xn) = ϕ(x), ϕ ∈ F .
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(ii) The sequence (xn)n∈N is a Cauchy-sequence in the norm of A, if and only
if

lim
n,m→∞

[xn − xm, y]A = 0, y ∈ L, lim
n,m→∞

[xn − xm, xn − xm]A = 0,

lim
n→∞

ϕ(xn − xm) = 0, ϕ ∈ F .

Proof. Necessity is obvious. To show sufficiency, assume that the conditions
stated in (i) are satisfied. The crucial point is that, by Proposition A.3, (i), the
topology of A is the initial topology w.r.t. the family {π} ∪ F . For item (i), it
thus suffices to show that

lim
n→∞

π(xn) = π(x) and lim
n→∞

ϕ(xn) = ϕ(x), ϕ ∈ F .

The second condition is written explicitly in the hypothesis. To see the first,
since π is isometric, we have

lim
n→∞

[πxn, πy]A/A◦ = [πx, πy]A/A◦ , y ∈M,

lim
n→∞

[πxn, πxn]A/A◦ = [πx, πx]A/A◦ .

An application of [IKL82, Theorem 2.4, (i)] gives limn→∞ π(xn) = π(x) in the
norm of A/A◦.

The proof of item (ii) is established in the same way, referring to [IKL82,
Theorem 2.4, (ii)]. q

We continue with some geometric facts. Again, the corresponding results in the
Pontryagin space case are well-known, see, e.g., [IKL82, Theorem 3.2] for (i),
and [IKL82, p.25, Corollary 2] for (ii), and [IKL82, Theorem 3.1] for (iii).

A.6 Lemma. Let 〈A, [·, ·]A,O〉 be an almost Pontryagin space, and let B be an
O-closed subspace of A.

(i) If B is nondegenerated, then B is orthocomplemented (i.e., B + B⊥ = A).

(ii) If B is positive definite, then 〈B, [·, ·]A|B×B〉 is a Hilbert space and the
topology induced on B by [·, ·]A|B×B is equal to O|B.

(iii) If B⊥ = A◦ ⊆ B, then B = A.

Proof. Assume that B is nondegenerated. We reduce to the Pontryagin space
case. Denote by π : A → A/A◦ the canonical projection, and remember that
π maps closed subspaces to closed subspaces, cf. [KWW05, Proposition 3.5].
Then π(B) is a closed and nondegenerated subspace of A/A◦, and hence

π(B)[+̇]π(B)⊥ = A/A◦.

It follows that
π−1

(
π(B)

)
[+]π−1

(
π(B)⊥

)
= A.

However, π−1
(
π(B)

)
= B+A◦ and π−1

(
π(B)⊥

)
= B⊥+A◦. Since A◦ ⊆ B⊥, it

follows that B[+]B⊥ = A.
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Assume that B is positive definite. Since B is closed, 〈B, [·, ·]A,O|B〉 is an
almost Pontryagin space. The present assertion now follows from the notice
after Theorem 2.3 (uniqueness of topology).

Finally, if B⊥ = A◦ then we have π(B)⊥ = {0} in the space A/A◦. Since
π(B) is closed, this implies that π(B) = A/A◦, cf. [IKL82, Theorem 3.1]. From
A◦ ⊆ B, it now follows that B = A. q

We have discussed a couple of constructions which can be carried out with
almost Pontryagin spaces in [KWW05, Proposition 3.1, Proposition 3.5]. Let
us provide a reformulation of the second mentioned result which is sometimes
smoother to apply.

A.7 Proposition. Let 〈A, [·, ·]A,O〉 be an almost Pontryagin space, let L be
a linear space, and let ψ : A → L be a linear map with kerψ ⊆ A◦. Set
B := ranψ and let T be the final topology w.r.t. ψ. Then an inner product [·, ·]B
is well-defined by

[ψ(x), ψ(y)]B := [x, y]A, x, y ∈ A,

the triple 〈B, [·, ·]B, T 〉 is an almost Pontryagin space, and the map ψ is a linear,
isometric, continuous, and open surjection of A onto B.

Proof. Apply [KWW05, Proposition 3.5] with “R := kerψ”, and notice that
ψ : A → B factorises into a bijection after the canonical projection. q

A perturbation method

Another simple way of constructing new almost Pontryagin spaces from a given
one is by finite rank perturbations of the inner product. This method has been
applied extensively in our study of de Branges spaces, specifically see [KW99a,
Theorem 3.3]. The following lemma provides a general formulation.

A.8 Lemma. Let 〈A, [·, ·]A,O〉 be an almost Pontryagin space, and let
ϕ1, . . . , ϕn ∈ A′ and γ1, . . . , γn ∈ R. Define an inner product J·, ·KA on A
as

Jx, yKA := [x, y]A +

n∑
i=1

γiϕi(x)ϕi(y), x, y ∈ A.

Then 〈A, J·, ·KA,O〉 is an almost Pontryagin space.

Proof. Since ϕi ∈ A′, the inner product J·, ·KA is continuous w.r.t. O. Choose
an O-closed linear subspace M of A with finite codimension in A, such that
〈M, [·, ·]A|M×M〉 is a Hilbert space. Then the subspace

N :=M∩
n⋂
i=1

kerϕi

is an O-closed subspace of A and in turn a closed subspace of the Hilbert space
〈M, [·, ·]A|M×M〉. Clearly, the inner products [·, ·]A and J·, ·KA coincide on N ,
and hence 〈N , J·, ·KA|N×N 〉 is a Hilbert space. Clearly, the codimension of N in
A is finite; it cannot exceed the codimension of M by more than n. q

The next proposition contains a strong converse version.
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A.9 Proposition. Let 〈A, [·, ·]A,O〉 be an almost Pontryagin space, and let
F ⊆ A′ be point separating. Then there exist ϕ1, . . . , ϕn ∈ F such that for all
sufficiently large values of γ ∈ R the space A becomes a Hilbert space with the
inner product

(x, y)A := [x, y]A + γ

n∑
i=1

ϕi(x)ϕi(y), x, y ∈ A.

The Hilbert space topology induced by (·, ·)A on A is equal to O.

We give a geometric proof based on a compactness argument. A different proof
(proceeding via Gram operators) could be extracted from the proof of [KW99a,
Theorem 3.3]. However, to our taste, the presently proposed intrinsic approach
is more appealing. It is based on the following interesting topological property.

A.10 Lemma. Let 〈A, [·, ·]A,O〉 be an almost Pontryagin space. Then each set

A≤r :=
{
x ∈ A : [x, x]A ≤ r

}
, r ∈ R,

is w-closed.

Notice that the set A≤r considered in this lemma is generically not convex; for
geometric intuition think of R3 with [(x1;x2;x3), (y1; y2; y3)] := x1y1 − x2y2 −
x3y3.

Proof (of Lemma A.10). Choose a direct and orthogonal decomposition A =
A+[+̇]B where A+ is closed and positive definite, and B is negative semidefinite
(and hence finite dimensional). Existence of such a decomposition is obvious
from Theorem 2.3, (ii). Moreover, denote by P the projection of A onto A+

with kernel B, and set

A+
r :=

{
x ∈ A+ : [x, x]A ≤ r

}
, r ∈ R.

Since the inner product [·, ·]A is positive definite on A+, the triangle inequality
holds, and therefore A+

r is convex. Since A+
r is O-closed, it is thus also w-

closed. The operator P : A → A+ is O-to-O|A+
–continuous, and hence also

w-to-w–continuous. It follows that for each r ∈ R the set{
x ∈ A : [Px, Px]A ≤ r

}
= P−1(A+

r )

is w-closed. In other words, the function ν1 : A → R acting as x 7→ [Px, Px]A
is w-lower semicontinuous. The operator I − P : A → B is again w-to-w–
continuous. Since dimB <∞, it is also w-to-O|B–continuous. Thus the function
ν2 : A → R acting as x 7→ [(I −P )x, (I −P )x]A is w-continuous. It follows that
ν1 + ν2 is w-lower semicontinuous. However, (ν1 + ν2)(x) = [x, x]A, x ∈ A, and
hence for each r ∈ R the set

A≤r =
{
x ∈ A : (ν1 + ν2)(x) ≤ r

}
is w-closed. q
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Proof (of Proposition A.9). Choose subspace A+ and A− of A, such that A+

is closed and positive definite, that A− is negative definite, and that A =
A+[+̇]AA−[+̇]AA[◦]A . Let P+ and P− be the projections with ranP± = A± and
kerP± = A∓[+̇]AA[◦]A , and set P0 := I−P+−P−. Choose a norm ‖.‖0 onA[◦]A ,

and let ‖.‖ denote the norm ‖x‖ := ([P+x, P+x]A − [P−x, P−x]A + ‖P0x‖20)
1
2 ,

x ∈ A.
Let Ffin denote the set of all finite subsets of F . Our aim is to show that

there exists a set M ∈ Ffin with

[x, x]A > 0, x ∈
[ ⋂
ϕ∈M

kerϕ
]∖
{0}. (A.4)

For each M ∈ Ffin set

C(M) :=
[ ⋂
ϕ∈M

kerϕ
]
∩
{
x ∈ A : [x, x]A ≤ 0}

∩
{
x ∈ A : 1 + 2[P−x, P−x]A − ‖P0x‖2 ≤ 0

}
∩
{
x ∈ A : ‖x‖ ≤ 1

}
.

The first set in this intersection is trivially weakly closed, the second is weakly
closed by Lemma A.10. The projections P− and P0 are continuous w.r.t. O and
hence also weakly continuous. Since their ranges are finite-dimensional, this
implies that the function x 7→ 2[P−x, P−x]A − ‖P0x‖2 is weakly continuous.
Hence, also the third set is weakly closed. By the Banach-Alaoglu Theorem the
last set in the intersection is weakly compact. Together, we see that C(M) is
weakly compact.

Clearly, it holds that C(M1)∩C(M2) = C(M1∪M2). Assume on the contrary
that for every M ∈ Ffin the set C(M) is nonempty. Then the family {C(M) :
M ∈ Ffin} has the finite intersection property, and hence

⋂
M∈Ffin

C(M) 6= ∅.
However, ⋂

M∈Ffin

C(M) ⊆
⋂
ϕ∈F

kerϕ = {0} ,

but the point 0 belongs to none of the sets C(M). We have reached a contra-
diction and conclude that there exists M0 ∈ Ffin such that C(M0) = ∅.

Let us show that the set M0 has the properties (A.4). Assume on the con-
trary that

⋂
ϕ∈M0

kerϕ contains a nonzero element x with [x, x]A ≤ 0. Then the
choice of x can be made such that in addition ‖x‖ = 1. From the computation

1 = ‖x‖2 = [P+x, P+x]A − [P−x, P−x]A + ‖P0x‖20
= [x, x]A − 2[P−x, P−x]A + ‖P0x‖20 ≤ −2[P−x, P−x]A + ‖P0x‖20

it follows that x ∈ C(M0), and we have reached a contradiction.
Write M0 = {ϕ1, . . . , ϕn} and set

B :=

n⋂
j=1

kerϕj .

Then B is closed and positive definite. Lemma A.6 shows that B is orthocom-
plemented and that [·, ·]A|B×B induces the topology O|B on B.
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Consider the seminorm on A defined as

p(x) :=
( n∑
j=1

|ϕj(x)|2
) 1

2

, x ∈ A.

Then p(x) = 0, x ∈ B, and p|B[⊥]A is a norm on B[⊥]A . Since dimB[⊥]A <∞, this
norm induces the topology O|B[⊥]A (both being equal to the euclidean topology).
The function x 7→ [x, x]A is continuous on B[⊥]A , and hence bounded on the
unit ball of p|B[⊥]A . Thus, for sufficiently large γ > 0 we have∣∣[x, x]A

∣∣ < γp(x)2, x ∈ B[⊥]A \ {0}.

Consider the scalar product on A defined as

(x, y)A := [x, y]A + γ

n∑
j=1

ϕj(x)ϕj(y), x, y ∈ A.

If x ∈ A, we write x = y + z with y ∈ B and z ∈ B[⊥]A and compute

(x, x)A = [y, y]A +
(

[z, z]A + γp(y + z)2
)
.

However, p(y) = 0, and hence p(y + z) = p(z). Now it follows that (x, x)A ≥ 0,
with equality if and only if y = z = 0.

On the subspace B, apparently, the inner products [., .]A and (., .)A coincide.
Since A is the direct sum of the closed subspaces B and B[⊥], and (., .)A induces
the restriction of O on each of these subspaces, (., .)A induces O on A. q

Almost Pontryagin space completions

Almost Pontryagin space completions play a central role in the present paper.
In this part of the appendix, we recall the required notions and facts as given
in [SW12, §6], and provide some supplements. Completions in the almost Pon-
tryagin space context have been studied previously in [KWW05, §4], some ideas
are going back to [JLT92].

A.11 Definition. Let L be an inner product space. We call a pair 〈ι,A〉 an
almost Pontryagin space completion of L, if A is an almost Pontryagin space,
and ι is a linear and isometric map of L onto a dense subspace of A.

Let 〈ιi,Ai〉, i = 1, 2, be two almost Pontryagin space completions of L.
We say that 〈ι1,A1〉 and 〈ι2,A2〉 are isomorphic, if there exists a linear and
isometric homeomorphism ϕ of A1 onto A2 with ϕ ◦ ι1 = ι2. ♦

It is easy to see that an inner product space L has an almost Pontryagin space
completion if and only if ind− L < ∞, cf. [SW12, Remark 6.4]. The totality
of all almost Pontryagin space completions of L can be described via linear
functionals on L; we recall this result in Theorem A.15 below. Before that, we
introduce some more terminology.

An inner product space with finite negative index carries a very particular
topology which is induced by a seminorm constructed intrinsically from the inner
product, cf. [Bog74, Theorem I.11.7, Chapter IV.6]. This topology is called the
decomposition majorant of L. It is not necessarily a Hausdorff topology, in fact,
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the intersection of all neighbourhoods of zero equals L◦. The seminorm used
to construct this topology is not unique, however, the topology itself is. It is
characterised by a minimality property of its Hausdorff quotient, cf. [Bog74,
§IV.6]

For a linear space V, we denote by V∗ its algebraic dual space, i.e., the
linear space of all linear functionals on V. If V1 and V2 are linear spaces and
φ : V1 → V2 is a linear map, we denote by φ∗ : V∗2 → V∗1 its algebraic dual map,
i.e., the map acting as

φ∗(ψ) := ψ ◦ φ, ψ ∈ V∗2 .

A.12 Definition. Let L be an inner product space with ind− L < ∞. We
denote by L′ the linear space of all linear functionals on L which are bounded
w.r.t. the decomposition majorant of L. ♦

Let us point out in this place that, whenever 〈ι,A〉 is an almost Pontryagin
space completion of a space L, the map ι∗|A′ is injective (a consequence of the
fact that ran ι is dense).

A description of L′ generalising the connection pointed out in [SW12, Re-
mark 6.7] is the following.

A.13 Lemma. Let L be an inner product space with ind− L <∞, and let 〈ι,A〉
be an almost Pontryagin space completion of L. Then

L′ =
{
x 7→ [ιx, y]A : y ∈ A

}
.

Proof. Let π : A → A/A◦ be the canonical projection. Then 〈π ◦ ι,A/A◦〉 is
a Pontryagin space completion of L. Using [SW12, Remark 6.7] and (A.1), we
obtain

L′ = (π ◦ ι)∗
(
(A/A◦)′

)
= ι∗

({
[·, y]A : y ∈ A

})
=
{
x 7→ [ιx, y]A : y ∈ A

}
.

q

It is also not difficult to give an intrinsic description of L′.

A.14 Lemma. Let L be an inner product space with ind− L < ∞, and let
ϕ ∈ L∗. Then ϕ ∈ L′ if and only if for each sequence (xn)n∈N of elements of L
which satisfies

lim
n→∞

[xn, x]L = 0, x ∈ L, lim
n→∞

[xn, xn]L = 0, (A.5)

it holds that limn→∞ ϕ(xn) = 0.

Proof. Let 〈ι,A〉 be a Pontryagin space completion of L. For necessity, assume
that there exists y ∈ A with ϕ(x) = [ιx, y]A, x ∈ L. If (xn)n∈N is a sequence in
L with (A.5), then the sequence (ιxn)n∈N converges to 0 in the norm of A, cf.
[IKL82, Theorem 2.4]. It follows that limn→∞ ϕ(xn) = limn→∞[ιxn, y]A = 0.

Conversely, assume that the stated implication holds true. Since ran ι is
dense in A and A is nondegenerated, we have ker ι = L◦. Hence, for each
x ∈ ker ι, the hypothesis (A.5) of the stated implication is fullfilled for the
constant sequence (x)n∈N, and it follows that ϕ(x) = 0. We conclude that
ker ι ⊆ kerϕ. Thus there exists a linear map ψ : ran ι→ C with ψ ◦ ι = ϕ. We
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claim that ψ is bounded w.r.t. the norm of A. Let (yn)n∈N be a sequence of
elements of ran ι with limn→∞ yn = 0 in the norm of A. Choose xn ∈ L with
yn = ιxn, then

lim
n→∞

[xn, x]L = lim
n→∞

[yn, ιx]A = 0, x ∈ L, lim
n→∞

[xn, xn]L = lim
n→∞

[yn, yn]A = 0.

It follows that limn→∞ ψ(yn) = limn→∞ ϕ(xn) = 0, and this establishes our
claim. Being a bounded functional defined on a subspace of the Pontryagin space
A, ψ has a representation [·, y]A with some y ∈ A. Thus ϕ = ι∗([·, y]A) ∈ L′. q

We can now state a description of all almost Pontryagin space completions of a
given inner product space with finite negative index.

A.15 Theorem (see [SW12, Theorem 6.8]). Let L be an inner product space
with ind− L <∞. The set of all isomorphy classes of almost Pontryagin space
completions of L corresponds bijectively to the set of all linear subspaces of L∗
which contain L′ with finite codimension. This correspondence is established by
the map

〈ι,A〉 7→ ι∗(A′),
and we have dim

(
ι∗(A′)/L′

)
= ind0A.

Next we aim at topologising the linear space L′. It trivially carries the topol-
ogy of pointwise convergence, i.e., the weak topology σ(L′,L). However, this
topology is usually too coarse. A more useful one is the following.

A.16 Definition. Let L be an inner product space with ind− L < ∞, and let
〈ι,A〉 be a Pontryagin space completion of L. We denote by T (L′) the final
topology on L′ w.r.t. the map ι∗|A′ : A′ → L′ where A′ is endowed with its
norm topology. ♦

We need to show that T (L′) is well-defined. The following lemma says a bit
more than that. Thereby, for an almost Pontryagin space A, we set

Ao :=
{

[·, y]A : y ∈ A
}
. (A.6)

Note that Ao = A′ if and only if A is a Pontryagin space, cf. Proposition A.1.

A.17 Lemma. Let L be an inner product space with ind− L < ∞. For an
almost Pontryagin space completion 〈ι,A〉 of L, let T〈ι,A〉 be the final topology

on L′ w.r.t. the map ι∗|Ao : Ao → L′ where Ao is endowed with the norm topology
inherited from A′.

The topology T〈ι,A〉 is independent of the choice of 〈ι,A〉. In particular,
T (L′) is well-defined and coincides with T〈ι,A〉 for any 〈ι,A〉. Moreover, T (L′)
is a Hilbert space topology.

Proof. Let 〈ι1,A1〉 and 〈ι2,A2〉 be almost Pontryagin space completions of L.
Denote by πi : Ai → Ai/A◦i , i = 1, 2, the canoncial projection. Then 〈πi ◦
ιi,Ai/A◦i 〉, i = 1, 2, are Pontryagin space completions of L, and hence are
isomorphic. Let Φ : A1/A◦1 → A2/A◦2 be a linear and isometric homeomorphism
with

A1

π1

��

Lι1oo ι2 // A2

π2

��
A1/A◦1 Φ

// A2/A◦2
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Passing to adjoints, and remembering (A.1) yields

A′1 ⊇ ranπ′1 = Ao1
ι∗1 // L′ Ao2 = ranπ′2 ⊆ A′2

ι∗2oo

(A1/A◦1)′

π′1

OO

(A2/A◦2)′
Φ′

oo

π′2

OO

By the Open Mapping Theorem, π′2 is open (as a map onto its range). Hence,
the map ι∗2 ◦ π′2 is a continuous and open surjection of (A2/A◦2)′ endowed with
its norm topology onto 〈L′, T〈ι2,A2〉〉. In the same way, ι∗1 ◦π′1◦Φ′ is a continuous
and open surjection of (A2/A◦2)′ onto 〈L′, T〈ι1,A1〉〉. By the above diagram these
two maps coincide, and it follows that T〈ι1,A1〉 = T〈ι2,A2〉.

It remains to show that T (L′) is a Hilbert space topology. However, the norm
topology of A and hence also the one of A′ is such. Since Ao is a closed subspace
of A′ and ι∗|Ao is a homeomorphism of Ao onto 〈L′, T (L′)〉, this property is
inherited by T (L′). q

Acknowledgement: I sincerely thank the anonymous referee for his/her at-
tentive reading and valuable suggestions.
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[AI89] T.Ya. Azizov and I.S. Iohvidov. Linear operators in spaces with
an indefinite metric. Pure and Applied Mathematics (New York).
Translated from the Russian by E. R. Dawson, A Wiley-Interscience
Publication. Chichester: John Wiley & Sons Ltd., 1989, pp. xii+304.

[Alp+97] D. Alpay et al. Schur functions, operator colligations, and reproduc-
ing kernel Pontryagin spaces. Vol. 96. Operator Theory: Advances
and Applications. Basel: Birkhäuser Verlag, 1997, pp. xii+229.
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