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Abstract

We study two-dimensional Hamiltonian systems of the form

(∗) y′(x) = zJH(x)y(x), x ∈ [s−, s+),

where the Hamiltonian H is locally integrable on [s−, s+) and nonnegative,

and J :=
(

0 −1
1 0

)
. The spectral theory of the equation changes depending

on the growth of H towards the endpoint s+; the classical distinction
into the Weyl alternatives ‘limit point’ or ‘limit circle’ case. A refined
measure for the growth of a limit point Hamiltonian H can be obtained
by comparing with H-polynomials. This growth measure is concretised
by a number ∆(H) ∈ N0 ∪ {∞} and appeared first in connection with
a Pontryagin space analogue of the equation (∗). It is known that the
growth restriction ‘∆(H) < ∞’ has some striking consequences on the
spectral theory of the equation; in many respects, the case ‘limit point
but still ∆(H) <∞’ is similar to the limit circle case.

In general, the number ∆(H) is given in a rather implicit way, difficult
to handle and not suitable for concrete calculations. In the present paper
we provide a more accessible way to compute ∆(H) for some particular
classes of Hamiltonians which occur in connection with Sturm-Liouville
equations and Krĕın strings.
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1 Introduction

We consider two-dimensional Hamiltonian systems of differential equations of
the form

y′(x) = zJH(x)y(x), x ∈ [s−, s+) , (1.1)

where y is a 2-vector valued function, the Hamiltonian H takes real and non-
negative 2×2-matrices as values and is locally integrable on [s−, s+), J denotes

the signature matrix J :=
(

0 −1
1 0

)
, and z is a complex number (the eigenvalue

parameter). Equations of this form appear in natural sciences, for example as
natural generalizations of Sturm-Liouville equations, see, e.g., [Re], [GKM], [At].
A vast literature is devoted to the study of operator models for the equation
(1.1) and their spectral properties from different perspectives, see, e.g., [GK],
[O], [dB2], [SN1], [SN2], [HS], [S]. Special emphasis, when studying problems
of the kind, is put on inverse spectral problems, e.g., [K], [M2], [Ra].

The spectral properties of the equation (1.1) highly depend on the growth of
the Hamiltonian H towards the endpoint s+. The decisive distinction is between
Weyl’s limit circle and limit point cases, i.e., whether the integral

∫ s+
s−

trH(x) dx

is finite or infinite. For example, if the limit circle case prevails, solutions
possess boundary values at s+, the spectrum of the problem is discrete, and
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the sequences of positive and negative eigenvalues, (λ+
n ) and (λ−n ), respectively,

have regular asymptotics. In fact, the limits lim n
λ+
n

and lim n
λ−n

exist in [0,∞)

and coincide. On the other hand, if the limit point case takes place, continuous
spectrum may occur.

In connection with the study of equations with singular potential, a gen-
eralization of the equation (1.1) and its operator model to an indefinite (Pon-
tryagin space) setting was proposed in [KW/IV]. A corresponding version of
Weyl’s theory, including direct and inverse spectral theorems, was established
in [KW/V, KW/VI]. In this generalization the Hamiltonian H is allowed to
have a finite number of inner singularities. In addition, a finite number of scalar
parameters may be specified which tell how passing a singularity influences
the solution. At a singularity, the Hamiltonian function H is not anymore lo-
cally integrable (justifying the terminology ‘singularity’), however, its growth is
restricted. First, locally at a singularity, a certain compactness condition is re-
quired; resolvents should be of Hilbert-Schmidt class. Second, the rate of growth
of H towards a singularity, measured by means of a number ∆(H) ∈ N ∪ {∞}
which is obtained by comparing with ‘H-polynomials’, should be finite.

Viewing the theory from a slightly different perspective, one may say the
following:

Let H be a Hamiltonian as in (1.1) which is in the limit point case at
s+. Assume that selfadjoint realizations of the equation have resol-
vents of Hilbert-Schmidt class, and that the number ∆(H) is finite.
Then H can be prolongued to an indefinite Hamiltonian h in the
sense of [KW/IV]. Moreover, this indefinite Hamiltonian h may be
chosen to be in the limit circle case at its right endpoint.

Though h is indefinite, the presence of the limit circle case has similar conse-
quences on the spectral theory of the operator model associated with h as known
from the classical case. This, in turn, has consequences for the Hamiltonian H
we started with in the above quoted statement. Among them the following
facts:

– Solutions of the equation (1.1) have ‘H-polynomially’-regularized bound-
ary values at s+ (this is shown in the forthcoming manuscript [LaWo3]).

– Eigenvalues are distributed asymptotically according to lim n
λ+
n

= lim n
λ−n
∈

[0,∞) (this –and more– is shown in [W1, Theorem 4.8]).

Note here that, since H is in the limit point case, actual boundary values at
s+ do not always exist, and that the information on the distribution of eigen-
values which is immediately obtained from the compactness assumption is only∑

1
|λ±n |2+ε

<∞, ε > 0.

An illustrative example (though, in some sense, being a toy example) occurs
in connection with the Bessel equation.

1.1 Example. The Bessel equation is the Sturm-Liouville equation

−u′′(x) +
ν2 − 1

4

x2
u(x) = λu(x), x > 0

Here ν is a parameter ν > 1
2 and λ is the eigenvalue parameter. Obviously, both

endpoints 0 and ∞ are singular endpoints.
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Rewriting this equation as a first-order-system, making a substitution in the
independent variable, and setting α := 2ν − 1, λ = z2, yields a Hamiltonian
system (1.1) with

Hα(x) :=

(
x−α 0

0 xα

)
, x > 0 .

At the endpoint∞ always the limit point case prevails. Contrasting this, at the
endpoint 0 the limit point case appears if and only if α ≥ 1. We are interested
in a finer analysis of the behaviour at 0, hence, let us isolate this part of the
equation: Set

H̃α(x) :=

(
(1− x)−α 0

0 (1− x)α

)
, x ∈ [0, 1) .

It turns out that the Hamiltonian H̃α always satisfies the Hilbert-Schmidt con-
dition, and that always ∆(H̃α) <∞, in fact

∆(H̃α) =
⌊α+ 1

2

⌋
. (1.2)

Hence, via Pontryagin space theory, we obtain information on the behaviour of
solutions and spectrum of the systems with Hamiltonian H̃α, and thereby gain
knowledge about the behaviour of the Bessel equation at its singular endpoint
0.

This example of course only illustrates a method. A systematic treatment is
given in the forthcoming paper [LaWo3]. The connection of the Bessel equation
itself with the theory of indefinite Hamiltonian systems is worked out in detail
in the forthcoming manuscript [LaWo4].

The questions appear how to recognize from a given Hamiltonian H whether or
not the Hilbert-Schmidt property holds, and whether or not the number ∆(H)
is finite. The first question was answered in [KW1]: Resolvents are of Hilbert-
Schmidt type, if and only if a certain double integral involving the entries of
H converges. The number ∆(H), however, can at present only be computed
in a quite implicit way, namely from its actual definition, cf. Definition 2.19.
Our aim in the present paper is to provide a more explicit method to compute
∆(H) (and, in particular, to decide whether ∆(H) is finite) for some special
classes of Hamiltonians. To be precise, we study Hamiltonians of diagonal form
and Hamiltonians of (inverse) Stieltjes type1. For these classes we describe an
inductive process to compute ∆(H), see Theorems 3.7 and 5.2.

From a practical viewpoint, the established inductive way to compute ∆(H)
may on first sight seem only a slight improvement compared with the original
definition. But, actually, it turns out to be very useful: For example, using
Theorem 3.7 only a couple of lines are needed to obtain (1.2)2, whereas proving
this relation by going back to the original definition requires several pages of
tedious computations.

From the viewpoint of applications, the classes of Hamiltonians under consid-
eration are often sufficient. As for diagonal Hamiltonians: Each Sturm-Liouville
equation can be rewritten as a system (1.1) with H being diagonal. For equa-
tions without a potential term, in particular for equations in impedance form,

1For the definition of these classes see Definition 2.6.
2Compare with Step 2 of Example 3.15, where we elaborate a similar toy example.
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this is immediate; for equations in Schrödinger form, a suitable Liouville trans-
form has to be applied (again we refer to the forthcoming manuscript [LaWo3]).
As for (inverse) Stieltjes type Hamiltonians: Each Krĕın string can immediately
be rewritten as a system (1.1) with H being of inverse Stieltjes type; using the
mass function of its dual string it can be rewritten as a system (1.1) with a
Stieltjes type Hamiltonian (these transformations can be found in [KWW2]).

Let us point out an interesting connection with the recent work [FL]. In this
paper a generalised Nevanlinna function is associated with a Sturm-Liouville
equation having a singular potential of a certain form. It turns out that the
negative index of this generalised Nevanlinna function is nothing but the number
∆(H̃) for the Hamiltonian constructed from the potential in the same manner
as in Example 1.1. The proof of this fact, however, is nontrivial and requrires
to combine results from [LaWo3] and [KW/IV].

We close this introduction with a brief description of the organisation and
content of the manuscript.

Table of contents

1. Introduction p.1

2. Preliminaries and supplements about Hamiltonian systems p.5

3. Diagonal Hamiltonians p.21

4. Decomposition into even and odd parts p.30

5. Stieltjes type Hamiltonians p.37

6. Appendix A: A Pontryagin space approach to Theorem 4.1 p.48

Section 2 has mainly preliminary character. One, we set up our notation, and re-
call the classical theory as well as some more specific constructions and theorems
up to the extend needed for the present exposition. Two, we provide several
supplements and technical lemmas for later reference. After this preparation, in
Section 3, we set off for the first main result of the paper: Theorem 3.7, where
we show how to compute ∆(H) for a diagonal Hamiltonian H.

The class of diagonal Hamiltonians is closely related with the classes of
(inverse) Stieltjes type Hamiltonians. In fact, (the operator model of) a diagonal
Hamiltonian H can be decomposed in two parts, the ‘even’ and ‘odd’ parts of H.
It is known that the even part corresponds to a Hamiltonian of Stieltjes type,
the odd part to one of inverse Stieltjes type, and also converse constructions
are available. This interaction between the classes of Hamiltonians often gives
the possibility to transfer results, so also in the case of the ‘growth measure
∆’. Our aim in Section 4 is to work out quantitatively the relation between
the respective numbers ∆, cf. Theorem 4.1. Besides its intrinsic interest, this
theorem is a major tool later on. The proposed proof is mainly elementary, by
establishing and exploiting an instance of symmetry on the level of polynomials.
The origin of the growth measure ∆, however, lies in Pontryagin space theory.
Hence, we find it interesting that a (slightly weaker) version of Theorem 4.1
can also be deduced in a more structural but less elementary way from some
theorems about indefinite Hamiltonians, cf. Theorem A.1. Since it is not within
the scope of the present manuscript to dive into the indefinite world, we present
this alternative approach as a supplement in an appendix.
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In Section 5, we turn to (inverse) Stieltjes type Hamiltonians, and establish
the second main result of the paper: The recursive computation method Theo-
rem 5.2. Its proof relies on Theorem 4.1, which is used to reduce to Theorem 3.7.

2 Preliminaries and supplements about Hamil-
tonian systems

This section has mainly preliminary character. We set up our notation, recall
the known theory up to the required extent, and provide some supplements
needed in the later sections. It is divided into several subsections according to
the following schedule:

a. Hamiltonian systems and their operator models. We recall definitions and
basic facts.
b. Weyl theory. We recall the definition of the Weyl coefficient associated with
a Hamiltonian system.
c. The operators IH and ÅH . Sometimes it is practical to work with a
particular selfadjoint realization of the equation (1.1).
d. Compactness properties. We define and study Neumann-von Schatten class
properties.
e. H-polynomials; the number ∆(H). We define the main object of our
present interest: The number ∆(H) which provides a measure for the growth
of the Hamiltonian H.
f. Decomposition of diagonal Hamiltonians into even and odd parts.
Hamiltonians of diagonal form and their operator model can be decomposed
into two parts. These parts correspond to Stieltjes- and inverse Stieltjes type
Hamiltonians, respectively.
g. A lemma on general inverses. We provide a general statement which is
frequently used. For example it is needed to justify the application of the
substitution rule in some integrals when measures are not absolutely
continuous.

a. Hamiltonian systems and their operator models.

Let us explicitly state the definition of a Hamiltonian as we use it in the present
text. Denote by ξφ the vector

ξφ :=

(
cosφ

sinφ

)
.

2.1 Definition. A Hamiltonian H is a function defined on some interval
[s−, s+), −∞ < s− < s+ ≤ +∞, which takes real 2 × 2-matrices as values,
and has the following properties:

(Ham1) Each entry of H is (Lebesgue-to-Borel) measurable and locally
integrable on [s−, s+).

(Ham2) We have H(x) ≥ 0 almost everywhere on [s−, s+).

(Ham3) The function H does not vanish on any set of positive measure.
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(Ham4) The Hamiltonian H is not of the form

H(x) = trH(x) · ξφξTφ , x ∈ [s−, s+) a.e. , (2.1)

with some constant φ ∈ R.

The requirements (Ham3) and (Ham4) are put to simplify the treatment tech-
nically. As it is shown, e.g., in [WW2, Proposition 4.2], (Ham3) is no loss in
generality. The requirement (Ham4) is of course a restriction, but it is only a
trivial case which is ruled out.

Intervals where the Hamiltonian is of the particularly simple form (2.1) play
a special role: Let (α, β) ⊆ [s−, s+). Then we call (α, β) an H-indivisible
interval of type φ ∈ R, if

H(x) = trH(x) · ξφξTφ , x ∈ (α, β) a.e.

In this case the number
∫ β
α

trH(x) dx ∈ [0,∞] is called the length of this indi-
visible interval. Clearly, if two indivisible intervals have nonempty intersection,
their types must coincide (up to integer multiples of π) and their union is again
indivisible. Hence, each indivisible interval is contained in a maximal indivisible
interval.

The equation (1.1) gives rise to an operator model which consists of a Hilbert
space, a maximal differential relation in this space, and boundary value maps.
First, the space and operator:

2.2 Definition. Let H be a Hamiltonian defined on the interval [s−, s+). If
f, g : [s−, s+) → C2 are measurable functions, then we write f =H g, if Hf =
Hg a.e. Clearly, the relation =H is an equivalence relation.

We denote by L2(H) the linear space of all =H -equivalence classes f̂ of
measurable functions f : [s−, s+)→ C2, which satisfy:

(L2)
∫ s+

s−

f(t)∗H(t)f(t) dt <∞ .

(C) If (α, β) is H-indivisible of type φ, then ξTφ f is constant a.e. on (α, β).

An inner product is defined on L2(H) as

(f̂ , ĝ)H :=

∫ s+

s−

g(t)∗H(t)f(t) dt, f̂ = [f ]=H , ĝ = [g]=H .

A linear relation Tmax(H) acting in L2(H) is defined as

Tmax(H) :=
{

(f̂ ; ĝ) ∈ L2(H)× L2(H) : f̂ = [f ]=H , ĝ = [g]=H with

f absolutely continuous, f ′ = JHg a.e. on [s−, s+)
}
.

Moreover, we set Tmin(H) := Tmax(H)∗.

Unless necessary, we suppress the explicit distinction between =H -equivalence
classes and their representatives. Let us recall that, due to our requirement
(Ham4), for each (f̂ ; ĝ) ∈ Tmax(H) there exists a unique absolutely continuous
representative with f ′ = JHg, cf. [HSW, Lemma 3.5].
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The operator theoretic properties of Tmax(H), in particular also the defini-
tion of boundary value maps, depend on the growth of H towards its endpoints.
One says that Weyl’s limit circle case prevails, if the entries of H are even
integrable on [s−, s+]. Equivalently, this means that∫ s+

s−

trH(x) dx <∞ .

Otherwise, one speaks of Weyl’s limit point case. In order to shorten language,
we use the (also common) terminology ‘regular’ and ‘singular’, instead of ‘Weyl’s
limit circle case’ and ‘Weyl’s limit point case’.

To each element of Tmax(H) boundary values can be assigned at the end-

point s−. In fact, if (f̂ ; ĝ) ∈ Tmax(H), then there exists a unique absolutely

continuous representative f of f̂ , and this representative has an absolutely con-
tinuous extension to [s−, s+). If H is regular, also at the endpoint s+ boundary
values can be assigned. In this case, the absolutely continuous representative
has an absolutely continuous extension to all of [s−, s+], cf. [HSW, Lemma 3.5].

2.3 Definition. Let H be a Hamiltonian defined on the interval [s−, s+).

Case H regular: We define ΓH,1,ΓH,2 : Tmax(H)→ C2 as

ΓH,1(f ; g) :=

(
f1(s−)

f1(s+)

)
, ΓH,2(f ; g) :=

(
−f2(s−)

f2(s+)

)
, (f ; g) ∈ Tmax(H) ,

where we understand by f = (f1, f2)T the unique representative which is
absolutely continuous on [s−, s+].

Case H singular: We define ΓH,1,ΓH,2 : Tmax(H)→ C as

ΓH,1(f ; g) := f1(s−), ΓH,2(f ; g) := −f2(s−), (f ; g) ∈ Tmax(H) ,

where we understand by f = (f1, f2)T the unique representative which is
absolutely continuous on [s−, s+).

In the next statement we summarize some essential properties of this operator
model. Proofs of these facts can be found, e.g., in [HSW].

2.4 Theorem. Let H be a Hamiltonian defined on the interval [s−, s+).

(i) The space L2(H) endowed with the inner product (., .)H is a Hilbert space.

(ii) The linear relation Tmin(H) is a closed symmetric operator. The linear
relation Tmax(H) is closed.

Case H regular: The operator Tmin(H) is completely nonselfadjoint, entire3,
and has defect index (2, 2). The triple 〈C2; ΓH,1,ΓH,2〉 is an (ordinary)
boundary triplet4 for Tmax(H).

Case H singular: The operator Tmin(H) is completely nonselfadjoint and has
defect index (1, 1). Canonical selfadjoint extensions of Tmin(H) have simple
spectrum. The triple 〈C; ΓH,1,ΓH,2〉 is an (ordinary) boundary triplet for
Tmax(H).

3In the sense of M.G.Krĕın, see, e.g., [GG, §2.5].
4For the definition of boundary triplets and some theory see, e.g., [DHMS, Definition 3.13]

and the references therein.
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Of course, ‘changes of scale’ in the equation (1.1) will not affect the spectral
theory of the associated differential relation. The notion of ‘changes of scale’,
however, needs to be defined rigorously.

2.5 Definition. Let H1 and H2 be two Hamiltonians defined on respective
intervals [s1

−, s
1
+) and [s2

−, s
2
+). Then H1 and H2 are called reparameterizations

of each other, if there exists an absolutely continuous and increasing bijection
ϕ : [s2

−, s
2
+)→ [s1

−, s
1
+) with ϕ−1 also being absolutely continuous, such that

H2(x) = H1(ϕ(x)) · ϕ′(x), x ∈ [s2
−, s

2
+) .

In this case, we write H1 ∼ H2.

Clearly, the relation ‘∼’ is an equivalence relation. Moreover, it is not difficult
to show that H1 ∼ H2 implies that the corresponding boundary triplets are
isomorphic, see, e.g., [WW2, Theorem 3.8] for a general account on reparame-
terizations.

Notational convention: Unless specified differently, the symbol ‘H’ denotes
a Hamiltonian defined on an interval [s−, s+).

Let us now define the classes of Hamiltonians which we deal with in the present
paper. It is clear what is meant by a diagonal Hamiltonian, namely, H is said
to be diagonal, if its off-diagonal entries vanish a.e..

Notational convention: Unless explicitly specified differently, we write a di-
agonal Hamiltonian H as

H(x) =

(
h1(x) 0

0 h2(x)

)
.

2.6 Definition. We call H of Stieltjes type, if there exists a nonincreasing
function φ : [s−, s+)→ [0, π2 ], such that

H(x) = trH(x) · ξφ(x)ξ
T
φ(x), x ∈ [s−, s+) a.e. (2.2)

We call H of inverse Stieltjes type, if there exists a nonincreasing function
φ : [s−, s+)→ [−π2 , 0], such that (2.2) holds.

Recall that a function q is said to belong to the Stieltjes class, if

(S1) q is analytic in C \ [0,∞);

(S2) q(x) > 0 for x ∈ (−∞, 0);

(S3) Im q(z) ≥ 0 for z ∈ C+.

Some properties of this class of functions, including integral representations,
were established in [KK1].

b. Weyl theory.
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Denote by WH(x; z), x ∈ [s−, s+), the unique solution of the initial value prob-
lem {

∂
∂xWH(x; z)J = zWH(x; z)H(x), x ∈ [s−, s+),

WH(s−; z) = I.

We refer to WH(x, z) as the fundamental solution for H, though, strictly speak-
ing, it is the transposed of the fundamental solution of (1.1). For each fixed
x ∈ [s−, s+), the function WH(x, .) is an entire matrix function of finite expo-
nential type. Each entry wij(x, .) of WH(x, .) is of bounded type in the upper
and lower half-planes, and its exponential type can be computed as∫ x

s−

√
detH(t) dt , (2.3)

cf. [dB1, Theorem X].
If H is regular, the limit WH(s+, z) := limx↗s+ WH(x, z) exists locally uni-

formly on C. We refer to WH(s+, z) as the monodromy matrix of H. It is again
an entire function of finite exponential type, and the formula (2.3) holds also for
‘x = s+’. The monodromy matrix governs the spectral theory of the differential
relation associated with H, in fact, all spectral functions can be constructed
explicitly from WH(s+, z).

Let us further discuss the singular case. In this case, the spectral theory of
the operator model associated with H is governed by the Weyl coefficient qH
associated with H. Classically, this function is constructed by means of Weyl’s
limit point procedure: Write again WH(x; .) = (wij(x; .))2

i,j=1. Then, for each
τ ∈ R ∪ {∞}, the limit

lim
x↗s+

w11(x; z)τ + w12(x; z)

w21(x; z)τ + w22(x; z)
=: qH(z)

exists locally uniformly on C \R, and its value does not depend on τ . Thereby,
for τ =∞, we understand the quotient as w11(t; z)/w21(t; z).

Alternatively, qH can be obtained as the Weyl m-function of the boundary
triplet associated with H; sometimes this viewpoint is more practical.

The Weyl coefficient qH associated with a singular Hamiltonian H is a func-
tion belonging to the Nevanlinna class and not equal to a real constant, i.e. it
satisfies

(N1) qH is analytic in C \ R;

(N2) qH(z) = qH(z) for z ∈ C \ R;

(N3) Im qH(z) > 0 for z ∈ C+.

It is a fundamental result due to de Branges that, conversely, for each function
q of Nevanlinna class, there exists (up to reparameterization) one and only one
singular Hamiltonian H such that q is the Weyl coefficient of H, cf. [dB2], or
[W1] for a more explicit presentation.

The significance of the function qH for the spectral theory of the operator
model associated withH is that it gives rise to a Fourier transform of L2(H) onto
a space L2(σ) (or L2(σ)⊕ C if H starts with an indivisible interval of type 0).
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Namely, by choosing for σ the measure in the Herglotz integral representation
of qH , and using the transformation f 7→ f̂ given as

f̂(z) :=

∫ s+

s−

(0, 1)WH(x; z)H(x)f(x) dx ,

when f ∈ L2(H) has compact support in [s−, s+).
Items (ii) and (iii) of the next result motivate the choice of terminology in

Definition 2.6. These items follow from [W2] together with [WW1]; we skip
details. Item (i) is a classical fact, and can be found, e.g., in [dB2, §47].

2.7 Proposition.

(i) The Weyl coefficient qH of H is an odd function, if and only if H is
diagonal.

(ii) The Weyl coefficient qH of H belongs to the Stieltjes class, if and only if
H is of Stieltjes type.

(iii) The function − 1
qH

belongs to the Stieltjes class, if and only if H is of
inverse Stieltjes type.

c. The operators IH and ÅH .

Clearly, the resolvents of selfadjoint extensions of Tmin(H) can be expressed as
integral operators.

2.8 Definition. We denote by IH the operator whose domain dom IH consists
of all measurable functions f : [s−, s+)→ C2 with

Hf ∈ L1
loc([s−, s+)) ,

and which acts as

(IHf)(x) :=

∫ x

s−

JH(t)f(t) dt .

The following properties of IH are obvious.

2.9 Lemma.

(i) We have L∞loc([s−, s+)) ⊆ dom IH .

(ii) For each f ∈ dom IH , the function IHf is absolutely continuous on
[s−, s+). In particular, for each f ∈ dom IH , all iterates IkHf , k ∈ N,
are defined.

(iii) For each f ∈ dom IH , the function IHf satisfies (C).

It is often useful to work with a particular selfadjoint extension of Tmin(H).

2.10 Lemma. Assume that H is singular, and that 0 is a point of regular type
of Tmin(H).

(i) Let A be a selfadjoint extension of Tmin(H) such that 0 ∈ ρ(A). Then

(A−1f)(x) = (IHf)(x) + Γ(H)(A−1f ; f) . (2.4)
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(ii) There exists a unique angle φ(H) ∈ [0, π), such that ξφ(H) ∈ L2(H).

Denote by ÅH the selfadjoint extension defined by the boundary condition

Γ(H)ÅH = span{ξφ(H)+π
2
} .

(iii) We have 0 ∈ ρ(ÅH). The value of Γ(H)(Å−1
H f ; f) can be computed as

Γ(H)(Å−1
H f ; f) =

(
− lim
x↗s+

ξTφ(H)+π
2

(IHf)(x)
)
ξφ(H)+π

2
.

Proof. Both functions A−1f and IHf are absolutely continuous on [s−, s+) and
have derivative JHf . Hence, they differ only by a constant. Evaluating the
limit x↘ s− gives (2.4).

Since 0 is a point of regular type for Tmin(H), a selfadjoint extension A of
Tmin(H) satisfies either 0 ∈ ρ(A) or 0 ∈ σp(A). Moreover, since the defect index
of Tmin(H) equals (1, 1), the second case takes place for exactly one extension A0,
and dim kerA0 = 1. However, kerTmax(H) ⊆ C2. The assertion in (ii) follows.
Moreover, we see that the extension A0 is given by the boundary condition

Γ(H)A0 = span{ξφ(H)} .

To obtain the formula asserted in (iii), we multiply (2.4) with ξTφ(H)+π
2

from

the left. Since ξφ(H)+π
2

= −ξφ(H)J and Γ(H)(Å−1
H f ; f) = αξφ(H)+π

2
with some

α ∈ C, this gives

−ξTφ(H)J(Å−1
H f) = ξTφ(H)+π

2
(IHf) + α .

Applying [HSW, Theorem 3.6] with(
ξφ(H); 0

)
,
(
Å−1
H f ; f

)
∈ Tmax(H) ,

shows that the left side of this relation tends to 0 as x increases to s+. q

d. Compactness properties.

We denote the ideal of all compact operators by S∞. For each p ∈ (0,∞) we
denote by Sp the Neumann-von Schatten class of all compact operators whose
s-numbers belong to `p.

2.11 Definition. Let p ∈ (0,∞]. We say that H has the property Sp, if for
some (and hence for each) selfadjoint extension A of Tmin(H), and for one (and
hence for all) points z ∈ ρ(A)

(A− z)−1 ∈ Sp .

In the present context, mainly the cases ‘p = ∞’, ‘p = 2’, and ‘p = 1’ appear.
For these we also use the terminology ‘compact resolvents’, ‘Hilbert-Schmidt
property’, and ‘trace class property’, respectively. Notice that, by isomorphy of
boundary triplets, the fact whether or not a Hamiltonian H has the property
Sp does not depend on the choice of parameterization.

In general, it is an open problem to characterize validity of the property Sp

in terms of the Hamiltonian H itself. To the best of our knowledge, this problem
has been solved only for the case ‘p = 2’5. The result reads as follows:

5For the case ‘p = ∞’ some necessary and some sufficient conditions which are not too far
apart from each other are stated without a proof in [K].
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2.12 Theorem. Let H be a Hamiltonian defined on the interval I = (s−, s+)
which is regular at s− and singular at s+, and set G(x) :=

∫ x
s−
H(t) dt. Then H

has the Hilbert-Schmidt property if and only if there exists an angle φ(H) ∈ [0, π)
with ∫ s+

s−

ξTφ(H)H(t)ξφ(H) dt <∞ , (2.5)∫ s+

s−

ξTφ(H)+π
2
G(t)ξφ(H)+π

2
ξTφ(H)H(t)ξφ(H) dt <∞ . (2.6)

A proof for trace normed Hamiltonians, i.e. Hamiltonians with trH(x) ≡ 1
defined on (0,∞), is given [KW1]. Each Hamiltonian can be brought to this
form with a reparameterization, see, e.g., [WW2, Proposition 4.2]. It remains
to notice that the conditions (2.5) and (2.6) do not depend on the choice of a
parameterization: Assume thatH1 andH2 are Hamiltonians defined on intervals
I1 = (s1

−, s
1
+) and I2 = (s2

−, s
2
+), respectively, which are related as H2(x) =

H(ϕ(x))ϕ′(x) with some increasing bijection ϕ : I2 → I1 such that ϕ and ϕ−1

are absolutely continuous. Then, for each φ ∈ [0, π),∫ s2+

s2−

ξTφH2(y)ξφ dy =

∫ s2+

s2−

ξTφH1(ϕ(y))ξφ · ϕ′(y) dy =

∫ s1+

s1−

ξTφH1(x)ξφ dx .

Similarly,∫ s2+

s2−

ξTφ+π
2
G2(y)ξφ+π

2
ξTφ Ĥ2(y)ξφ dy =

∫ s1+

s1−

ξTφ+π
2
G1(x)ξφ+π

2
ξTφH1(x)ξφ dx ,

where Gi, i = 1, 2, is defined correspondingly as Gi(t) :=
∫ t
si−
Hi(s) ds.

For a regular Hamiltonian validity of Sp is related to the growth of its
fundamental solution as an entire function, whereas for a singular Hamiltonians
it is related to the distribution of the poles of the Weyl coefficient qH . These
are well-known facts, however, let us make the connection explicit.

2.13 Proposition. The following hold:

(i) Assume that H is singular, and let qH be the Weyl coefficient of H. Then
H has the property S∞ if and only if qH is meromorphic in the whole
plane. In this case, H has the property Sp if and only if

∑
1
|λn|p < ∞,

where (λn) denotes the sequence of poles of qH .

(ii) Assume that H is regular. Then H has the property S∞. Let WH(s+, z)
be the monodromy matrix of H. If ρ ≥ 0, and one entry of WH(s+; .) is
an entire function of order ρ, then H has the property Sp whenever p > ρ.

Proof.
Item (i): The Weyl coefficient qH is a Q-function of a certain selfadjoint ex-
tension Å of Tmin(H), see, e.g., [HSW, Theorem 4.3]. Thus the set of its poles
equals the spectrum of Å, remember here that Tmin(H) is completely nonselfad-
joint. For more details see the argument carried out in the proof of [KW1,
Theorem 3.1].
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Item (ii): Assume that one entry of WH(s+; .) has order ρ. By [BP], see also
[BW, Proposition 2.3], the entries of WH(s+; .) all have the same order. In
particular, w21(s+; .) is an entire function of order ρ.

The function w11(s+;z)
w21(s+;z) is a Q-function of some selfadjoint extension A of

Tmin(H), and its poles coincide with the zeros of w21(s+; z). We see that the
spectrum of A equals the sequence of zeros of some entire function of order ρ.
Hence, the convergence exponent of this sequence does not exceed ρ. q

The next statement turns to be out useful. To simplify language, we agree on
the following convention: If H is a function of the form (2.1), possibly with
s− = s+ (i.e., with empty domain), we say that H has the property Sp for each
p ∈ (0,∞].

2.14 Proposition. Let p ∈ (0,∞], s0 ∈ [s−, s+), and denote H− := H|[s−,s0)

and H+ := H|[s0,s+). Then H has the property Sp if and only if both H+ and
H− have.

Proof.

Step 1; The core argument: Consider the case that

? H does not end indivisibly towards s− or towards s+.

? s0 is not inner point of some indivisible interval.

Then we have L2(H) = L2(H−)⊕ L2(H+), and

Tmin(H−)⊕ Tmin(H+) ⊆ Tmin(H) .

Let A− and A+ be selfadjoint extensions of Tmin(H−) and Tmin(H+), respec-
tively, and set Å := A− ⊕ A+. Then the resolvents of A belong to Sp if and
only if the resolvents of both, A− and A+, have this property.

Let A be a selfadjoint extension of Tmin(H), and let z ∈ ρ(A) ∩ ρ(Å). Then
(A−z)−1 is a finite dimensional perturbation of (Å−z)−1, and hence (A−z)−1 ∈
Sp if and only if (Å− z)−1 ∈ Sp.

Step 2; Indivisible ends: Let us first consider the case that (s−, s0) is maximal
indivisible. If H is regular at s−, then L2(H) = L2(H|(s−,s+))⊕C and Tmin(H)
is a one-dimensional extension of Tmin(H|(s0,s+)). Hence, H has the property Sp

if and only if H|(s0,s+) has. If H is singular at s−, then L2(H) = L2(H|(s−,s+))
and Tmin(H) is a one-dimensional extension of Tmin(H|(s0,s+)). Again, H has
the property Sp if and only if H|(s0,s+) has.

Next, consider the case that (s−, s0) is (not necessarily maximal) indivisible.
Denote by s′0 the right endpoint of the maximal indivisible interval with left
endpoint s−. By what we just showed, the following equivalences hold:

H has Sp ⇐⇒ H|(s′0,s+) has Sp ⇐⇒ H|(s0,s+) has Sp

The case that (s0, s+) is indivisible is settled in the same way.

Step 3; The general case: Denote by sr− the right endpoint of the maximal
indivisible interval with left endpoint s−, by sl+ the left endpoint of the maximal
indivisible interval with right endpoint s+, and by sl0 and sr0 the left and right
endpoints of the maximal indivisible interval which contains s0 in its closure.
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By what we showed in Steps 1 and 2, we have the following equivalences:

H has Sp ⇐⇒ H|(sr−,sl+) has Sp ⇐⇒ H|(sr−,sl0), H|(sl0,sl+) have Sp ⇐⇒

⇐⇒ H|(s−,s0), H|(sr0,sl+) have Sp ⇐⇒ H|(s−,s0), H|(s0,s+) have Sp

q

We can now deduce that some kinds of Hamiltonians always enjoy certain
Neumann-von Schatten class properties.

2.15 Proposition. Assume that H is regular or ends with an indivisible interval
towards s+. Then

(i) H has the property Sp whenever p > 1.

(ii) If H has the trace-class property, then detH vanish a.e.

Assume in addition that H is of (inverse) Stieltjes type. Then

(iii) H has the property Sp whenever p > 1
2 .

Proof.
Item (i): If H is regular, its monodromy matrix if of finite exponential type,
in particular, of order 1. If H is singular but ends indivisibly towards s+, its
Weyl coefficient can be written as the quotient of two entire functions with finite
exponential type. This shows (i).

Item (ii): Assume that H has the trace-class property, and let s0 ∈ [s−, s+).
Then H|[s−,s0) also has the trace-class property. Let wij(x, z) be the entries of
the monodromy matrix of H|[s−,s0). Then, using (2.3) and [Bo, Chapter 8], we
obtain that the sequence of positive zeros (λn) of wij(s0, .) satisfies

lim
n

n

λn
=

1

π

∫ s0

s−

√
detH(t) dt .

Convergence of the series
∑
n

1
λn

thus implies that detH(x) = 0, x ∈ [s−, s0)
a.e. Since s0 was arbitrary, the assertion (ii) follows.

Item (iii): Consider the case that H is regular, and let W be its monodromy
matrix. Appending an indivisible interval of type φ(s+) and infinite length gives
a singular Hamiltonian H̃ which is again of (inverse) Stieltjes type. The Weyl
coefficient qH̃ belongs to the (inverse) Stieltjes class, in particular is analytic
on C \ [0,∞). However, qH̃ = W ? cotφ(s+). Since the poles of W ? cotφ(s+)
interlace with the poles of W ?∞, the right lower entry of W has at most one
pole on (−∞, 0). An application of [KWW1, Proposition 3.12] yields that the
order of W cannot exceed 1

2 . It follows that H has the property Sp whenever
p > 1

2 .
Assume that H is singular and ends indivisible towards s+. Let s0 ∈ [s−, s+)

be such that (s0, s+) is maximal indivisible, and consider the regular Hamilto-
nian H̃ := H|[s−,s0). Then H̃ is of Stieltjes type, and the above proved shows

that H̃ has the property Sp for all p > 1
2 . By Proposition 2.14, H inherits

this. q
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Combining Proposition 2.14 with Proposition 2.15, it follows that certain
Neumann-von Schatten class properties are local properties at the singular end-
point.

2.16 Corollary. Let s0 ∈ [s−, s+) and p ∈ (0,∞].

(i) If p > 1, the Hamiltonian H has the property Sp if and only if H|[s0,s+)

has.

(ii) Assume that H is of (inverse) Stieltjes type. If p > 1
2 , the Hamiltonian H

has the property Sp if and only if H|[s0,s+) has.

2.17 Remark. Let us notice that the fact that the Hilbert-Schmidt property is
a local property, reflects in the conditions (2.5) and (2.6): Let s0, s

′
0 ∈ [s−, s+)

and let G̃ be any original function of H. Then H satisfies (2.5) and (2.6), if and
only if it satisfies∫ s+

s0

ξTφ(H)H(t)ξφ(H) dt <∞ ,∫ s+

s′0

ξTφ(H)+π
2
G̃(t)ξφ(H)+π

2
ξTφ(H)H(t)ξφ(H) dt <∞ .

To see this, first note that we may substitute the interval (s−, s+) of integration
by (s0, s+) and (s′0, s+), respectively, since the respective integrands are locally
integrable functions on [s−, s+). Second, the functions G̃ and G, and hence
also ξTφ(H)+π

2
G̃(t)ξφ(H)+π

2
and ξTφ(H)+π

2
G(t)ξφ(H)+π

2
, differ only by an additive

constant. In conjunction with (2.5), we therefore may substitute G by G̃ in
(2.6), and obtain an equivalent set of conditions.

e. H-polynomials; the number ∆(H).

We consider functions which are related to the differential relation Tmax(H) in
the same way as polynomials are related to d

dx . Denote by C2[z] the polynomial
ring in one indeterminate over the ring C2, and by Ac([s−, s+)) the space of
absolutely continuous functions on [s−, s+).

2.18 Definition. Let γH : C2[z]→ Ac([s−, s+)) be the map which acts as

γH

( n∑
k=0

(
αk
βk

)
zk
)

:=

n∑
k=0

IkH
(
αk
βk

)
.

We refer to each function of this form as an H-polynomial, and denote the set
of all H-polynomials as Pol(H).

2.19 Definition. For N ∈ N0 set

PN :=
{(α

β

)
∈ C2 : There exist

(
αk
βk

)
, k = 0, . . . , N − 1, such that

INH
(
α

β

)
+

N−1∑
k=0

IkH
(
αk
βk

)
∈ L2(H)

}
.

Then we define a number ∆(H) ∈ N0 ∪ {∞} as

∆(H) := inf
{
N ∈ N0 : dimPN = 2

}
,

where we understand the infimum of the empty set as ∞.
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In general not much can be said about the behaviour of the spaces PN . However,
putting some hypothesis on H, they behave regularly. The next lemma is shown
in [KW/IV, §3] under the more restrictive hypothesis of the Hilbert-Schmidt
property. However, inspecting the proofs given there, shows that what is really
needed is only existence of a selfadjoint extension of Tmin(H) having 0 in its
resolvent set; we will not repeat details of the proof.

2.20 Lemma. Assume that H is singular, and that 0 is a point of regular type
of Tmin(H).

(i) We have PN ⊆ PN+1, N ∈ N0. In particular, the set {N ∈ N0 : dimPN =
2} is either empty or the interval [∆(H) + 1,∞).

(ii) Let N ∈ N0, then ξφ(H) ∈ PN . Thus dimPN = 2 if and only if ξφ ∈ PN
for some φ 6≡ φ(H) mod π.

(iii) Assume that ∆(H) <∞. Then there exist unique real constants ωk, k ∈ N,
such that

wn := InHξφ(H)+π
2

+

n−1∑
k=0

ωn−kIkHξφ(H)+π
2
∈ L2(H), n ≥ ∆(H) . (2.7)

For each n ≥ ∆(H), we have wn+1 = Å−1
H wn.

We use the right side of (2.7) to define functions wn also for n < ∆(H), so that

wn = InHξφ(H)+π
2

+

n−1∑
k=0

ωn−kIkHξφ(H)+π
2
∈ L2(H), n ∈ N0 . (2.8)

2.21 Remark. Let us state explicitly that the number ∆(H) does not depend
on the choice of parameterization: If H1 ∼ H2, then ∆(H1) = ∆(H2). This is
seen easily by making a change of variables in the integral defining IH ; similar
as in [KW/IV, Lemma 2.4, Remark 3.19].

One may say:

The number ∆(H) provides a comparatively fine measure for the
growth of H towards the endpoint s+.

For the purpose of illustration, let us mention the following two facts:

(i) The Hamiltonian H is regular if and only if ∆(H) = 0; this is obvious.

(ii) If H is singular and ends with an indivisible interval towards s+, then
∆(H) = 1; this is shown in [KW/IV, Lemma 3.2].

Also, remember Example 1.1.
The following fact sheds significant light on the meaning of ∆(H). This

result is rather deep and proved in [LaWo2].

2.22 Theorem. Let H be singular, and assume that selfadjoint extensions of
Tmin(H) have compact resolvents of Hilbert-Schmidt class, and that ∆(H) <∞.
Denote by wn the functions (2.8).
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Then, whenever z ∈ C and ψ(x; z) is a solution of the differential equation

y′(x) = zJH(x)y(x), x ∈ (s−, s+) ,

the limits

lim
x↗s+

ξTφ(H)ψ(x; z) =: ρ

lim
x↗s+

∆(H)∑
l=0

zlwl(x)∗J
(
ψ(x; z)− ρ

2∆(H)−l∑
k=∆(H)+1

zkwk(x)
)

exist.

Clearly, the value ρ is a directional boundary value of the solution ψ(x; z) at
the singular endpoint s+. The second limit is, in some sense, a polynomially
regularized boundary value at s+.

2.23 Remark. It is an interesting fact that finiteness of the number ∆(H) influ-
ences compactness properties. For example it follows from [W1, Theorem 4.8]
(or on combining [LaWo1, Theorem 5.1] with [KW/III, Theorem 7.4]), that

H satisfies S2 ∧∆(H) <∞ ⇒ H satisfies Sp, p > 1

In fact, one can see by inspecting the proofs in [KW/IV] that in this implication
the hypothesis that H satisfies S2 can be weakened to the requirement that it
has compact resolvents. Tracing all proofs, however, is elaborate and actually
not so simple, and has nowhere been done explicitly. Thus we will not use the
mentioned fact in the present paper; we state it just as another illustration of
the power of ‘∆(H) <∞’.

It is an open question whether in general, or under the hypothesis that 0 is
a point of regular type for Tmin(H), the condition ‘∆(H) <∞’ already implies
that H has compact resolvents.

f. Diagonal Hamiltonians and their decomposition into even and
odd parts.

Diagonal Hamiltonians behave much simpler than arbitrary ones. One reason is
that many computations greatly simplify when off-diagonal entries are absent.
Another reason is the presence of symmetry: Denote by iH the map which acts
on 2-vector valued functions as

iH

(
f1

f2

)
:= J

(
f1

f2

)
=

(
−f1

f2

)
. (2.9)

The following fact is seen by a simple computation; we skip explicit proof.

2.24 Lemma. Let H be diagonal. Then iH induces an isometric isomorphism
of L2(H) onto itself.

Since iH is an isometric involution of L2(H) onto itself, for each diagonal Hamil-
tonian H, we obtain orthogonal projections

P ev
H :=

1

2

(
I + iH)|L2(H), P od

H :=
1

2

(
I − iH)|L2(H) .
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These projections satisfy kerP ev
H = ranP od

H and kerP od
H = ranP ev

H . We set

L2(H)ev := ranP ev
H , L2(H)od := ranP od

H ,

explicitly,

L2(H)ev =
{(f1

f2

)
∈ L2(H) : f1 = 0 a.e.

}
,

L2(H)od =
{(f1

f2

)
∈ L2(H) : f2 = 0 a.e.

}
.

Then we have the orthogonal decomposition L2(H) = L2(H)ev[+̇]L2(H)od.
The spaces L2(H)ev and L2(H)od can be identified with model spaces of some

Hamiltonians. To explain this, we need to recall some notation. We denote

v̌(t) :=

∫ t

s−

h1(x) dx, v̂(t) :=

∫ t

s−

h2(x) dx, t ∈ [s−, s+] , (2.10)

and let ρ̂ and ρ̌ be the left-continuous right inverses of v̂ and v̌, respectively.

[s−, s+]

v̂
&&

v̂ ◦ ρ̂ = id

[0,
∫ s+
s−

h2(x) dx]

ρ̂

ff [s−, s+]

v̌
&&

v̌ ◦ ρ̌ = id

[0,
∫ s+
s−

h1(x) dx]

ρ̌

ff

Explicitly, this is

ρ̂(y) := inf
{
x ∈ [s−, s+) : v̂(x) = y

}
, y ∈ [0, v̂(s+)) ,

ρ̌(y) := inf
{
x ∈ [s−, s+) : v̌(x) = y

}
, y ∈ [0, v̌(s+)) .

Moreover, we denote by Θev
H and Θod

H the maps acting on 2-vector valued func-
tions as

Θev
H

(
f1

f2

)
:=

(
0

(v̌ ◦ ρ̂ ◦ v̂)(f1 ◦ v̂) + (f2 ◦ v̂)

)
,

Θod
H

(
f1

f2

)
:=

(
(f1 ◦ v̌)− (v̂ ◦ ρ̌ ◦ v̌)(f2 ◦ v̌)

0

)
.

2.25 Definition. Let H be diagonal. Then we set

Iev :=



[0,
∫ s+
s−

h2(x) dx) , H regular at s+

[0,
∫ s+
s−

h2(x) dx) , H singular at s+,∫ s+
s−

(1 + v̌(x)2)h2(x) dx =∞
[0,∞) , H singular at s+,∫ s+

s−
(1 + v̌(x)2)h2(x) dx <∞

Iod :=



[0,
∫ s+
s−

h1(t) dt) , H regular at s+

[0,
∫ s+
s−

h1(t) dt) , H singular at s+,∫ s+
s−

(1 + v̂(t)2)h1(t) dt =∞
[0,∞) , H singular at s+,∫ s+

s−
(1 + v̂(t)2)h1(t) dt <∞
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and let Hev and Hod be the Hamiltonians

Hev(x) :=



(
(v̌ ◦ ρ̂)(x)2 (v̌ ◦ ρ̂)(x)

(v̌ ◦ ρ̂)(x) 1

)
, x ∈ [0,

∫ s+
s−

h2(t) dt)

(
1 0

0 0

)
, x ∈ Iev, x ≥

∫ s+
s−

h2(t) dt

Hod(x) :=



(
1 −(v̂ ◦ ρ̌)(x)

−(v̂ ◦ ρ̌)(x) (v̂ ◦ ρ̌)(x)2

)
, x ∈ [0,

∫ s+
s−

h1(t) dt)

(
0 0

0 1

)
, x ∈ Iod, x ≥

∫ s+
s−

h1(t) dt .

Note that the Hamiltonians Hev and Hod are regular or singular if and only if H
has the respective property. This is forced by appending the indivisible interval
with infinite length as in the respective second lines of the definition of Hev and
Hod, if necessary.

The following facts are shown in [KWW2]. To be precise, the below item (i)
is [KWW2, Theorem 4.2], and item (ii) follows by inspecting the construction
of the various spaces, isomorphisms, and relations between them, starting from
[KWW2, (4.24)].

2.26 Theorem. Let H be a diagonal Hamiltonian.

(i) Assume that H is singular at s+, and let qH , qHev , and qHod denote the
Weyl coefficients of H, Hev, and Hod, respectively. Then

qHod(z) = zqHev(z), qH(z) = zqHev(z2) =
1

z
qHod(z2) . (2.11)

(ii) Assume that
∫ s+
s−

(1 + v̌(x)2)h2(x)dx = ∞, and let f : Iev → C2 be a

measurable function. Then f ∈ L2(Hev) if and only if Θev
Hf ∈ L2(H).

The map Θev
H induces an isometric isomorphism

Θev
H : L2(Hev)→ L2(H)ev .

(iii) Assume that
∫ s+
s−

(1 + v̂(x)2)h1(x)dx = ∞, and let f : Iod → C2 be a

measurable function. Then f ∈ L2(Hod) if and only if Θod
H f ∈ L2(H).

The map Θod
H induces an isometric isomorphism

Θod
H : L2(Hod)→ L2(H)od .

We may thus say that the constellation of Hamiltonians

H
uuu JJJ

Hev Hod

corresponds to the constellation of Nevanlinna functions

zq(z2)

rrr NNN

q(z) zq(z)
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and we have the decomposition

L2(H)ev L2(Hev)
Θev
Hoo

L2(H) =iH ?? [+̇]

L2(H)od L2(Hod)
Θod
H

oo
(2.12)

The class of Hamiltonians which arise as Hev or Hod for some diagonal Hamil-
tonian can be identified.

The items (ii) and (iii) are then immediate from the relation (2.11) and
[KK1].

2.27 Theorem. Let H be a singular diagonal Hamiltonian.

(i) The Hamiltonian Hev is of Stieltjes type. Conversely, if H̃ is a Hamilto-
nian of Stieltjes type, then there exists a diagonal Hamiltonian H, such
that H̃ ∼ Hev.

(ii) The Hamiltonian Hod is of inverse Stieltjes type. Conversely, if H̃ is a
Hamiltonian of inverse Stieltjes type, then there exists a diagonal Hamil-
tonian H, such that H̃ ∼ Hod.

g. A lemma on general inverses.

In the course of the exposition, we will frequently make use of the following
elementary statement.

2.28 Lemma. Let v : [a1, b1) → [a2, b2) be a continuous, nondecreasing, and
surjective function, and let ρ : [a2, b2) → [a1, b1) be the left-continuous right
inverse of v, explicitly this is

ρ(y) := inf
{
x ∈ [a1, b1) : v(x) = y

}
, y ∈ [a2, b2) .

(i) The function ρ is strictly increasing and conv(ran ρ) = [a1, b1), where
‘conv’ denotes the convex hull.

(ii) Let x ∈ [a1, b1) and y ∈ [a2, b2). Then

y ≤ v(x) ⇐⇒ ρ(y) ≤ ρ(v̂(x)) ⇐⇒ ρ(y) ≤ x

(iii) For each y ∈ [a2, b2) the function v is constant on [ρ(y), ρ(y+)].

(iv) For each x ∈ (a1, b1),

lim
x′↗x

[
inf ρ−1

(
(x′,∞)

)]
= v(x) .

(v) Assume in addition that v is absolutely continuous, and denote by v′ a
function which coincides a.e. with its derivative. Then the set{

x ∈ (a1, b1) : (ρ ◦ v)(x) 6= x
}
\
{
x ∈ (a1, b1) : v′(x) = 0

}
has Lebesgue measure zero.
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Proof.
Item (i): Let y1, y2 ∈ [a2, b2). If ρ(y1) ≤ ρ(y2), then

y1 = v(ρ(y1)) ≤ v(ρ(y2)) = y2 .

It follows that ρ is strictly increasing. Next, clearly, a1 = ρ(a2) ∈ ran ρ. Let
x ∈ [a1, b1) be given. Then we can choose y ∈ [a2, b2) with y > v(x). Assuming
ρ(y) ≤ x would imply y = v(ρ(y)) ≤ v(x). Hence, we must have ρ(y) > x, and
this shows that x ∈ conv(ran ρ).

Item (ii): If y ≤ v(x), then ρ(y) ≤ ρ(v(x)). Since always ρ(v(x)) ≤ x, the latter
inequality implies that ρ(y) ≤ x. From this inequality, applying v, we obtain
y = v(ρ(y)) ≤ v(x).

Item (iii): Let x ∈ [ρ(y), ρ(y+)]. Then, for each y′ ∈ [a2, b2), y′ > y, thus
x ∈ [ρ(y), ρ(y′)]. This implies that

y = v(ρ(y)) ≤ v(x) ≤ v(ρ(y′)) = y′ .

It follows that v(x) = y.

Item (iv): Let z ∈ R and w ∈ ρ−1([z,∞)). Then ρ(w) ≥ z, and hence w ≥ v(z).
Thus also inf ρ−1([z,∞)) ≥ v(z). Using continuity of v, it follows that for each
x ∈ [a1, b1)

lim
x′↗x

[
inf ρ−1

(
(x′,∞)

)]
≥ lim
x′↗x

[
inf ρ−1

(
[x′,∞)

)]
≥ lim
x′↗x

v(x′) = v(x) .

Let x, x′ ∈ [a1, b1) with x′ < x, and assume that s ∈ [a1, b1) with v(s) >
v(x′). Then ρ(v(s)) > x′, and hence v(s) ∈ ρ−1((x′,∞)). Using continuity and
surjectivity of v, it follows that

inf ρ−1
(
(x′,∞)

)
≤ inf

{
v(s) : s ∈ [a1, b1), v(s) > v(x′)

}
= v(x′) ,

and hence
lim
x′↗x

[
inf ρ−1

(
(x′,∞)

)]
≤ lim
x′↗x

v(x′) = v(x) .

Item (v): Consider now the case that in addition v is absolutely continuous.
To simplify notation think of v and ρ as extended to b1 and b2, respectively,
by v(b1) := b2 and ρ(b2) := b1. The set {x ∈ (a1, b1] : (ρ ◦ v)(x) 6= x} can be
written as the disjoint union{

x ∈ (a1, b1] : (ρ ◦ v)(x) 6= x
}

=
⋃̇
i

(αi, βi]

taken over all intervals such that [αi, βi] are the maximal intervals with
nonempty interior where v is constant. Clearly, the number of these inter-
vals is at most countable. On the interior of each such interval, the derivative
of v exists and is equal to zero. Hence, v′(x) = 0 on each interval a.e., and the
assertion follows. q

3 Diagonal Hamiltonians

In this section we investigate Hamiltonians of diagonal form. We establish a
recursive method to compute ∆(H) for such Hamiltonians, see Theorem 3.7
below, which is the first main result of the present paper.
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a. Consequences of diagonality for IH and wn.

First, a simple observation; we skip explicit proof.

3.1 Lemma. Let H be a diagonal Hamiltonian.

(i) The type of an H-indivisible interval can only be 0 or π
2 .

(ii) The space L2(H) consists of all functions f =
(
f1
f2

)
such that

f1∈L2(h1(x)dx), f1 constant a.e. on indivisible intervals of type 0,

f2∈L2(h2(x)dx), f2 constant a.e. on indivisible intervals of type
π

2
.

Next, some facts which are the basis for many simplifications.

3.2 Lemma. Let H be diagonal, singular, and assume that 0 is a point of
regular type of Tmin(H).

(i) We have φ(H) ∈ {0, π2 }.

(ii) The operator IH acts as

(
IH
(
f1

f2

))
(x) =

∫ x

s−

(
−f2(t)h2(t)

f1(t)h1(t)

)
dt,

(
f1

f2

)
∈ dom IH . (3.1)

(iii) Consider the case that φ(H) = 0. Then

(
Å−1
H

(
f1

f2

))
(x) = −

(∫ x
s−
f2(t)h2(t)dt∫ s+

x
f1(t)h1(t)dt

)
,

(
f1

f2

)
∈ L2(H) , (3.2)

in particular,∫ x

s−

f2(t)h2(t)dt ∈ L2(h1(x)dx),

∫ s+

x

f1(t)h1(t)dt ∈ L2(h2(x)dx) .

(3.3)
The analogous statement holds in the case that φ(H) = π

2 .

Proof. We have∫ s+

s−

ξTφH(t)ξφ dt = cos2 φ

∫ s+

s−

h1(t) dt+ sin2 φ

∫ s+

s−

h2(t) dt .

Since H is singular and trH(t) = h1(t) + h2(t), we must have
∫ s+
s−

hj(t) dt =

∞ for at least one j ∈ {1, 2}. Hence, if there exists a number φ with∫ s+
s−

ξTφH(t)ξφ dt < ∞, then either φ = 0 or φ = π
2 . This shows (i). To see

item (ii), it is enough to note that

JH(t) =

(
−h2(t) 0

0 h1(t)

)
.
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To establish (iii), we use Lemma 2.10 and compute

(
Å−1
H

(
f1

f2

))
(x) =

=

∫ x

s−

(
−f2(t)h2(t)

f1(t)h1(t)

)
dt− lim

x↗s+

[(0

1

)T ∫ x

s−

(
−f2(t)h2(t)

f1(t)h1(t)

)
dt
]

=

=−
(∫ x

s−
f2(t)h2(t)dt∫ s+

x
f1(t)h1(t)dt

)
.

q

If H is of diagonal form, validity of the Hilbert-Schmidt property can be checked
in a very simpler way. Using Lemma 3.2, (i), one can easily deduce the following
statement from Theorem 2.12; we skip explicit proof.

3.3 Lemma. Let H be a diagonal Hamiltonian. Then H has the Hilbert-
Schmidt property, if and only if

s+∫
s−

h1(x) dx <∞ and
s+∫
s−

( x∫
s−

h2(t) dt
)
h1(x) dx <∞

or
s+∫
s−

h2(x) dx <∞ and
s+∫
s−

( x∫
s−

h1(t) dt
)
h2(x) dx <∞

3.4 Remark. For diagonal Hamiltonians, also the compactness property can be
characterized in an explicit way. The following fact is stated (without a proof)
in [K]: Let H be a diagonal Hamiltonian. Then H has the property S∞ if and
only if one of the following two conditions holds:

(i)
∫ s+
s−

h1(x) dx <∞ and limx→s+

( ∫ s+
x

h1(t) dt ·
∫ x
s−
h2(t) dt

)
= 0.

(ii)
∫ s+
s−

h2(x) dx <∞ and limx→s+

( ∫ s+
x

h2(t) dt ·
∫ x
s−
h1(t) dt

)
= 0.

The presence of symmetry concretised by the map iH defined in (2.9) also has
consequences on the functions wn.

3.5 Lemma. Let H be diagonal and singular. Assume that 0 is a point of
regular type of Tmin(H) and that ∆(H) <∞. Moreover, let ωk and wn be as in
Lemma 2.20, (iii). Then

ωk = 0, k ∈ 2N− 1 and iHwn = (−1)nwn, n ∈ N0 .

Proof. We restrict explicit proof to the case that φ(H) = 0. The case that
φ(H) = π

2 is treated in the same way.
Since

iH ◦ IH = −IH ◦ iH , (3.4)

it follows that the functions

g := w∆ + iHw∆ =

∆∑
k=0

(1 + (−1)k)ω∆−kIkH
(

0

1

)
= 2

∆∑
k=0
k even

ω∆−kIkH
(

0

1

)
,
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h := w∆ − iHw∆ =

∆∑
k=0

(1− (−1)k)ω∆−kIkH
(

0

1

)
= 2

∆∑
k=0
k odd

ω∆−kIkH
(

0

1

)
,

both belong to L2(H). If ∆(H) is odd, the minimality property of ∆(H) implies
that the coefficients ωl which appear in g must vanish. Similarly, if ∆(H) is
even, the coefficients ωl which appear in h vanish. Let ∆′ denote the largest
odd integer less than or equal to ∆(H), then

ω1 = ω3 = · · · = ω∆′ = 0 .

It follows from (3.1) that the upper component of wn, n ∈ {0, . . . ,∆(H)} ∩
(2N), vanishes identically, whereas for n ∈ {0, . . . ,∆(H)} ∩ (2N − 1) the lower
component of wn vanishes identically. An inductive argument using (3.2) yields
the assertion.

The second formula is immediate from (3.4). q

b. Computation of ∆(H).

The central notion in our recursive procedure is the following operator.

3.6 Definition. Assume that H is diagonal. We denote by ΛH the operator
whose domain dom ΛH consists of all measurable functions f : [s−, s+) → C
with

fh2 ∈ L1
loc([s−, s+)),

∫ x

s−

f(t)h2(t)dt ∈ L1(h1(x)dx) ,

and which acts as

(ΛHf)(x) :=

∫ s+

x

(∫ t

s−

f(s)h2(s)ds
)
h1(t)dt, x ∈ [s−, s+), f ∈ dom ΛH .

(3.5)

3.7 Theorem. Let H be a singular diagonal Hamiltonian defined on the interval
[s−, s+), and write

H(x) =

(
h1(x) 0

0 h2(x)

)
, x ∈ [s−, s+) .

Assume that has the Hilbert-Schmidt property, and satisfies φ(H) = 0. Then,
for each n ∈ N, the iterate ΛnH1 is defined. Set

N := sup
{
n ∈ N0 : ΛnH1 6∈ L2(h2(x)dx)

}
∈ N0 ∪ {∞} . (3.6)

Then ∆(H) <∞ if and only if N <∞. In this case

∆(H) =

{
2N + 1 ,

∫ x
0

(ΛNH1)(t)h2(t)dt ∈ L2(h1(x)dx)

2N + 2 ,
∫ x

0
(ΛNH1)(t)h2(t)dt 6∈ L2(h1(x)dx)

(3.7)

and

w2n=

(
0

ΛnH1

)
, w2n+1 =

(∫ x
s−

(ΛnH1)(t)h2(t)dt

0

)
, n ∈ N0 . (3.8)

3.8 Remark.
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(i) The set {n ∈ N0 : ΛnH1 6∈ L2(h2(x)dx)} is an interval which contains 0.
This will follow from Lemma 3.10 below.

(ii) If φ(H) equals π
2 instead of 0 in Theorem 3.7, then an analogous state-

ment holds true. This can be seen by applying the above stated result
with the Hamiltonian −JHJ . The resulting theorem reads the same as
Theorem 3.7 above, only with h1 and h2 exchanged.

The proof of Theorem 3.7 is split into several lemmata. First, some general
(and obvious) properties of the operator ΛH ; we skip details.

3.9 Lemma.

(i) Whenever f ∈ dom ΛH , the function ΛHf is absolutely continuous on
(s−, s+) and

lim
x↗s+

(ΛHf)(x) = 0 .

(ii) If f ∈ dom ΛH is nonnegative, then ΛHf is nonnegative and nonincreas-
ing.

(iii) If f, g ∈ dom ΛH are real-valued and f ≤ g, then ΛHf ≤ ΛHg.

(iv) The domain of ΛH is closed with respect to complex conjugation, and

ΛH(f) = ΛHf, f ∈ dom ΛH .

(v) ΛHf is constant on indivisible intervals of type π
2 .

From now on, for the rest of this subsection, fix a Hamiltonian H with the
properties assumed in the theorem.

3.10 Lemma.

(i) We have L∞([s−, s+)) ⊆ dom ΛH . The restriction of ΛH to L∞([s−, s+))
maps L∞([s−, s+)) into L∞([s−, s+)) ∩Ac([s−, s+)). We have

‖ΛH |L∞([s−,s+))‖ ≤
∫ s+

s−

(∫ x

s−

h2(t)dt
)
h1(x)dx .

(ii) Let f ∈ L2(h2(x)dx) and assume that f is constant a.e. on each indivisible
interval of type π

2 . Then f ∈ dom ΛH and(
0

ΛHf

)
= Å−2

H

(
0

f

)
.

In particular, ΛHf ∈ L2(h2(x)dx).

Proof. For the proof of (i), let a measurable and bounded function f : [s−, s+)→
C be given. Then, clearly, fh2 ∈ L1

loc([s−, s+)). Moreover, we can estimate∫ s+

s−

∣∣∣ ∫ t

s−

f(s)h2(s)ds
∣∣∣h1(t)dt ≤

∫ s+

s−

∫ t

s−

|f(s)|h2(s)ds h1(t)dt ≤

≤ ‖f‖∞
∫ s+

s−

(∫ x

s−

h2(t)dt
)
h1(x)dx <∞ .

(3.9)
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This shows that f ∈ dom ΛH . For each x ∈ [s−, s+)

|ΛHf(x)| =
∣∣∣ ∫ s+

x

(∫ t

s−

f(s)h2(s)ds
)
h1(t)dt

∣∣∣ ≤ ∫ s+

s−

∣∣∣ ∫ t

s−

f(s)h2(s)ds
∣∣∣h1(t)dt ,

and, together with (3.9), this shows the required bound for the operator norm
of ΛH |L∞([s−,s+)). The fact that ΛHf is absolutely continuous has already been
noticed in Lemma 3.9.

We come to the proof of (ii). If f ∈ L2(h2(x)dx), then for each T ∈ [s−, s+)∫ T

s−

|f(t)|h2(t) dt ≤
(∫ T

s−

|f(t)|2h2(t) dt
) 1

2
(∫ T

s−

h2(t) dt
) 1

2

<∞ ,

i.e. fh2 ∈ L1
loc([s−, s+)).

Under the present hypothesis on f , the function
(

0
f

)
belongs to L2(H). We

conclude from (3.3) that f ∈ dom ΛH . Remember here that h1(x)dx is a finite
measure. Applying (3.2) twice, gives

(
Å−2
H

(
0

f

))
(x) =−

(
Å−1
H

(∫ t
s−
f(s)h2(s)ds

0

))
(x) =

=

(
0∫ s+

x

∫ t
s−
f(s)h2(s)ds h1(t)dt

)
=

(
0

ΛHf

)
.

q

Lemma 3.10, (i), already implies that each iterate ΛnH1, n ∈ N, is defined.
Lemma 3.10, (ii), implies that {n ∈ N0 : ΛnH1 ∈ L2(h2(x)dx)} is either empty
or the interval [N + 1,∞).

3.11 Lemma. For each n ∈ N the limit

λn := lim
x↘s−

(ΛnH1)(x) (3.10)

exists and is finite. We have(
0

ΛnH1

)
= I2n

H

(
0

1

)
+

n−1∑
k=0

λn−kI2k
H

(
0

1

)
, n ∈ N0 . (3.11)

Proof. An inductive application of Lemma 3.9, (ii), shows that ΛnH1 is nonnega-
tive and nonincreasing. Hence, the limit (3.10) exists. Referring to Lemma 3.10,
(i), it is finite.

We use induction on n to show (3.11). For n = 0 this relation is obvious.
Assume (3.11) holds for some n ∈ N0. Applying (3.1) twice gives

(I2
H

(
0

ΛnH1

)
)(x) = −

∫ x

s−

∫ t

s−

(
0

ΛnH1(s)

)
h2(s)ds h1(t)dt =

=

∫ s+

x

∫ t

s−

(
0

ΛnH1(s)

)
h2(s)ds h1(t)dt−

∫ s+

s−

∫ t

s−

(
0

ΛnH1(s)

)
h2(s)ds h1(t)dt =

=

(
0

(Λn+1
H 1)(x)

)
− λn+1

(
0

1

)
.

Thus (3.11) holds also for n+ 1. q
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We denote by 1J the characteristic function of the set J .

3.12 Lemma. Let a number n ∈ N0 and a measurable function f : [s−, s+)→ C
which is constant a.e. on each indivisible interval of type π

2 be given. As-
sume that f · 1[s−,T ) ∈ L2(h2(t)dt), T ∈ [s−, s+), that f ∈ dom ΛnH , and
ΛnHf ∈ L2(h2(x)dx). Moreover, assume that the limit limx↗s+ f(x) exists and
is nonzero. Then ∆(H) ≤ 2n.

Proof. We start with a preliminary observation: Let T ∈ [s−, s+), assume that
g · 1[s−,T ) ∈ L2(h2(x)dx), that g is constant a.e. on each indivisible interval
of type π

2 , and that g ∈ dom ΛnH . Then ΛnHg ∈ L2(h2(x)dx) if and only if
ΛnH(g · 1(T,s+)) ∈ L2(h2(x)dx). This follows from Lemma 3.10, (ii), since

ΛnH(g · 1(T,s+)) = ΛnHg − ΛnH(g · 1[s−,T )) .

Now let a function f as in the statement of the lemma be given. Remembering
Lemma 3.9, (iv), we may without loss of generality assume that f is real valued.
Moreover, since multiplying f with a nonzero constant does not influence the
hypothesis, we may assume that limx↗s+ f(x) > 1.

Choose T ∈ [s−, s+) such that f(x) ≥ 1, x ∈ (T, s+). As we have observed
above, ΛnH(f ·1(T,s+)) ∈ L2(h2(x)dx). Monotonicity of ΛH , cf. Lemma 3.9, (iii),
gives

0 ≤ ΛnH(1(T,s+))) ≤ ΛnH(f · 1(T,s+)) .

Note here that 1(T,s+) ∈ L∞([s−, s+)), and hence certainly belongs to dom ΛnH .
We conclude that ΛnH1 ∈ L2(h2(x)dx), and (3.11) together with Lemma 2.20,
(ii), implies that 2n ≥ ∆(H). q

Proof (of Theorem 3.7). If N < ∞, Lemma 3.11 together with Lemma 2.20,
(ii), implies that ∆(H) ≤ 2N+2. We will show in the following that ∆(H) <∞
implies (3.7) and (3.8).

First, a general observation: Let n ∈ N0. By Lemma 3.5 the function w2n

is given as

w2n = I2n
H

(
0

1

)
+
n−1∑
l=0

ω2(n−l)I2l
H

(
0

1

)
. (3.12)

Hence, using (3.11), we find

w2n =

(
0

ΛnH1 +
∑n−1
k=0 αkΛkH1

)
, (3.13)

with some constants α0, . . . , αn−1.

Now we establish the first formula in (3.8) for the index n0 :=
[∆(H)+1

2

]
.

Assume on the contrary that one of the constants α0, . . . , αn0−1 in (3.13) is
nonzero, and let k0 ∈ {0, . . . , n0−1} be smallest index with this property. Then
we have (

0

Λk0H
[
Λn−k0H 1 +

∑n−1
k=k0

αkΛk−k0H 1
]) = w2n ∈ L2(H) .

Since limx↗s+ [Λn0−k0
H 1 +

∑n0−1
k=k0

αkΛk−k0H 1] = αk0 6= 0, Lemma 3.12 implies
that ∆(H) ≤ 2k0. However, 2k0 ≤ 2n0 − 2 ≤ ∆(H)− 1, and we have reached a
contradiction. It follows that α0 = · · · = αn0−1 = 0.
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We come to the case n < n0 in the first formula in (3.8). Since 2n0 − 2 <
∆(H), it follows from (3.11) and (3.12) that ω2k = λk, k ≤ n0. Using once more
(3.11), this shows that w2n = ΛnH1.

Assume now that n > n0. Then it follows from Lemma 2.20, (iii), and
Lemma 3.10 that

w2n = Å
−2(n−n0)
H w2n0 = Å

−2(n−n0)
H

(
0

Λn0

H 1

)
=

(
0

ΛnH1

)
.

We see that (3.8) holds for all n ∈ N0. The second part of (3.8) follows since,
by Lemma 3.5, we have w2n+1 = IHw2n, n ∈ N0.

It remains to show (3.7). By (3.8), we have ΛnH1 ∈ L2(h2(x)dx) if and only
if 2n ≥ ∆(H). Thus 2N < ∆(H) ≤ 2N +2. The formula (3.7) now follows with
the help of (3.1). q

c. An example.

The formula (3.7) for ∆(H) might at first sight seem equally useless as its
original definition. But actually it turns out to be quite practical, especially
when it comes to practical computations or perturbation arguments. The basis
for this is the following observation, whose proof is immediate; we skip details.

3.13 Lemma. Let h1, h2 and ĥ1, ĥ2 be measurable functions, defined and lo-
cally integrable on an interval [s−, s+), and let operators Λ and Λ̂ be defined
correspondingly by the formula (3.5). Assume that

0 ≤ h1 ≤ ĥ1, 0 ≤ h2 ≤ ĥ2 .

Then, whenever f ∈ dom Λ, f̂ ∈ dom Λ̂, and 0 ≤ f ≤ f̂ , we have

Λf ≤ Λ̂f̂ .

The same holds of course with h1 and h2 exchanged, i.e. suited to the case
‘φ(H) = π

2 ’.

3.14 Corollary. Let H and Ĥ be two singular diagonal Hamiltonians defined
on the interval [s−, s+), and assume that H(t) ≤ Ĥ(t). If Ĥ has the Hilbert-
Schmidt property, so does H. In this case, we have φ(H) = φ(Ĥ) and ∆(H) ≤
∆(Ĥ).

Proof. It is obvious that the integrals in Lemma 3.3 depend monotonically on
the nonnegative functions h1, h2. Hence Ĥ having the Hilbert-Schmidt property
implies that H also has. Clearly, in this case, φ(H) = φ(Ĥ).

Assume now that Ĥ has the Hilbert-Schmidt property, and for definite-
ness that φ(Ĥ) = 0 (the case that φ(Ĥ) = π

2 is treated in the same way).

The functions Λn1 and Λ̂n1 are always nonnegative. It follows by induc-
tion that Λn1 ≤ Λ̂n1 for all n ∈ N0. From this we obtain that also always∫ x
s−

(Λn1)(t)h2(t)dt ≤
∫ x
s−

(Λ̂n1)(t) ĥ2(t)dt.

Hence, if we have Λ̂n1 ∈ L2(ĥ2(x)dx) then also Λn1 ∈ L2(h2(x)dx), and if∫ x
s−

(Λ̂n1)(t) ĥ2(t)dt ∈ L2(ĥ1(x)dx) then
∫ x
s−

(Λn1)(t)h2(t)dt ∈ L2(h1(x)dx). q
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This observation allows us to exploit (3.7) and obtain examples of Hamiltonians
with arbitrary fast growth concerning the scale of measurement concretised by
the number ∆(H). We use a slightly different example than Example 1.1, since
we also want to show that despite validity of S2 the number ∆(H) may be equal
to ∞. The computations needed to establish (2.1), however, are similar.

3.15 Example. Consider the Hamiltonians defined on the interval [0, 1) by

Hα(x) :=

(
1 0
0 1

(1−x)α

)
, α ∈ R ,

and

H2−(x) :=

(
1 0

0 1−ln(1−x)
(1−x)2[3−ln(1−x)]3

)
Obviously, the constant

(
1
0

)
is square integrable with respect to these Hamilto-

nians. We will show

value of α H.-S. ∆(H)

α < 1 regular yes 0

α ∈
(
2− 1

n , 2−
1

n+1

)
, n ∈ N singular yes n

α = 2− singular yes ∞
α ≥ 2 singular no

Step 1: The fact that Hα is regular or singular at s+ depending whether α < 1
or α > 1, respectively, is obvious (all inequalities for α include the case ‘α = 2−’
in the obvious way). Next, we have∫ t

0

(1− s)−α ds =
1

−α+ 1
− (1− t)−α+1

−α+ 1
, a 6= 1 ,

∫ t

0

1− ln(1− s)
(1− s)2[3− ln(1− s)]3

ds =
1

9
− 1

(1− t)[3− ln(1− t)]2
.

Hence the condition of Lemma 3.3 for the Hilbert-Schmidt property holds if and
only if α < 2.

Step 2. Computation of ∆(Hα) for α < 2, α 6= 2−: Put α′ := 2 − α. A
computation shows that, whenever b+ α′ 6= 0, 1,

ΛHα
(
(1− s)b

)
(x) =

(1− x)b+α
′

(b+ α′)(b+ α′ − 1)
+

1− x
b+ α′ − 1

.

Since we have (1 − s)c ∈ L2(h2(x)dx) if and only if c > 1−α′
2 , the second sum-

mand certainly belongs to L2(h2(x)dx). Since ΛHαL
2(h2(x)dx) ⊆ L2(h2(x)dx),

we obtain inductively that with some nonzero constants γm,

ΛmHα
(
(1− s)b

)
(x) ∈ γm(1− x)b+mα

′
+ L2(h2(x)dx), m ∈ N ,

provided b+ kα′ 6= 0, 1, k ∈ N. We conclude that

Λm−1
Hα

1 6∈ L2(h2(x)dx),ΛmHα1 ∈ L2(h2(x)dx), α ∈
(
2− 1

2m− 1
, 2− 1

2m+ 1

)
.
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Since φ(Hα) = 0 and, by our computation of Å−1
H in (3.2), the operator f 7→∫ x

0
f(t)h2(t)dt maps L2(h2(x)dx) into L2(h1(x)dx), we obtain∫ x

0

Λm−1
Hα

1(t)h2(t)dt ∈ γ′m(1− x)mα
′−1 + L2(h1(x)dx) ,

and hence∫ x

0

Λm−1
Hα

1(t)h2(t)dt ∈ L2(h1(x)dx), α ∈
(
2− 1

2m− 1
, 2− 1

2m

)
,

∫ x

0

Λm−1
Hα

1(t)h2(t)dt 6∈ L2(h1(x)dx), α ∈
(
2− 1

2m
, 2− 1

2m+ 1

)
.

Step 3. Computation of ∆(Hα) for α = 2−: For every α < 2 we have

lim
t↗1

(
1− ln(1− t)

(1− t)2[3− ln(1− t)]3
/ 1

(1− t)α

)
= +∞ .

Hence for every α < 2 there exists Tα ∈ [0, 1) such that Hα(t) ≤ H2−(t),
t ∈ [Tα, 1). By [KW/IV, Lemma 3.12] and Corollary 3.14, we thus have

∆(H2−) = ∆(H2−|[T,1)) ≥ ∆(Hα|[T,1)) = ∆(Hα) ,

and conclude that ∆(H2−) =∞.

4 Decomposition into even and odd parts

Our aim in this section is to prove the following theorem which relates the
number ∆(H) with ∆(Hev) and ∆(Hod) for a diagonal Hamiltonian H. Here
Hev and Hod are the ‘even’ and ‘odd’ parts of H, cf. Definition 2.25.

4.1 Theorem. Let H be a singular diagonal Hamiltonian defined on the interval
[s−, s+), and assume that 0 is a point of regular type for Tmin(H). Then

∆(H) <∞ ⇐⇒ ∆(Hev) <∞ ⇐⇒ ∆(Hod) <∞ .

In this case, we have

∆(Hev) =



[
∆(H)+1

2

]
, φ(H) = 0[

∆(H)
2

]
, φ(H) = π

2 , ∆(H) ≥ 2

1 , φ(H) = π
2 , ∆(H) = 1

∆(Hod) =



[
∆(H)

2

]
, φ(H) = 0, ∆(H) ≥ 2

1 , φ(H) = 0, ∆(H) = 1[
∆(H)+1

2

]
, φ(H) = π

2

.
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4.2 Remark. The Weyl coefficient associated with a Hamiltonian is a Q-function
of the minimal operator induced by a certain canonical selfadjoint extension, cf.
[HSW, Theorem 4.3]. Hence, the point 0 is a point of regular type for the
minimal operator, if and only if the Weyl coefficient is meromorphic in some
neighbourhood of 0.

We conclude from Theorem 2.26, (i), that 0 is a point of regular type for a
diagonal Hamiltonian H, if and only if it is for Hev, and if and only if it is for
Hod. In particular, the hypothesis of the theorem implies that Lemma 2.20 is
available.

We first settle the cases that Hev ends with an indivisible interval of type 0
or Hod ends indivisibly of type π

2 . This is a consequence of the following fact,
remember that Hamiltonians which end indivisibly have ‘∆ = 1’.

4.3 Lemma. We have ∆(H) = 1 if and only if one of the following two alter-
natives occurs (v̂ and v̌ are as in (2.10)):

(i)
∫ s+
s−

(1 + v̂(x)2)h1(x)dx <∞;

(ii)
∫ s+
s−

(1 + v̌(x)2)h2(x)dx <∞.

Proof. Using Lemma 3.2, we compute

IH
(

0

1

)
=

(
−
∫
s−
xh2(t) dt

0

)
= −

(
v̂(x)

0

)
,

and similarly

IH
(

1

0

)
=

(
0

−
∫
s−
xh1(t) dt

)
=

(
0

v̌(x)

)
.

Assume that (i) holds. Then φ(H) = 0. By Lemma 3.1, we have IH
(

0
1

)
∈ L2(H),

and hence ∆(H) ≤ 1. However, since H is singular, in any case ∆(H) ≥ 1. In
the same way, validity of (ii) implies ∆(H) = 1.

Conversely, assume that ∆(H) = 1. Consider the case that φ(H) = 0. Then,
due to Lemma 3.5, we must have IH

(
0
1

)
∈ L2(H). Thus (i) holds. If φ(H) = π

2 ,
in the same way (ii) follows. q

From now on, for the rest of this section, assume that∫ s+

s−

(1 + v̂(x)2) dx =

∫ s+

s−

(1 + v̌(x)2) dx =∞ ,

so that Theorem 2.26, (ii) and (iii), are available.
In order to relate the numbers ∆(H),∆(Hev),∆(Hod), we need to under-

stand the relationship between H-polynomials on the one hand, and Hev- and
Hod-polynomials on the other. To this end, we realize a decomposition analo-
gous to (2.12) on the level of polynomials.

4.4 Definition. Define a map iPol : C2[z]→ C2[z] as

iPol

( n∑
l=0

(
αl
βl

)
zl
)

:=

n∑
l=0

(
(−1)l+1αl
(−1)lβl

)
zl .
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Clearly, iPol is an involutory bijection of C2[z] onto itself. Hence, we obtain
projections P ev

Pol and P od
Pol by setting

P ev
Pol :=

1

2

(
I + iPol

)
, P od

Pol :=
1

2

(
I − iPol

)
.

These projections satisfy ranP ev
Pol = kerP od

Pol and ranP od
Pol = kerP ev

Pol. Set

C2[z]ev := ranP ev
Pol, C2[z]od := ranP od

Pol ,

explicitly,

C2[z]ev =
{ n∑
l=0

(
αl
βl

)
zl ∈ C2[z] : αl = 0, l even, βl = 0, odd

}
,

C2[z]od =
{ n∑
l=0

(
αl
βl

)
zl ∈ C2[z] : αl = 0, l odd, βl = 0, l even

}
.

One can appropriately identify C2[z]ev and C2[z]od with C2[z]:

4.5 Lemma. Define maps

Θev
Pol

( n∑
l=0

(
αl
βl

)
zl
)

:=

=

(
0

β0

)
+

(
α0

0

)
z +

(
0

β1

)
z2 + . . .+

(
0

βn

)
z2n +

(
αn
0

)
z2n+1 ,

Θod
Pol

( n∑
l=0

(
αl
βl

)
zl
)

:=

=

(
α0

0

)
+

(
0

β0

)
z +

(
α1

0

)
z2 + . . .+

(
αn
0

)
z2n +

(
0

βn

)
z2n+1 .

Then Θev
Pol and Θod

Pol map C2[z] linearly and bijectively onto C2[z]ev or C2[z]od,
respectively.

Using the pictogram analogous to (2.12), we thus are in the situation

ranP ev
Pol C2[z]

Θev
Poloo

C2[z]=iPol ?? +̇

ranP od
Pol C2[z]

Θod
Pol

oo

The following lemmata contain the basic computations needed for the proof of
Theorem 4.1. They show that the decompositions into even and odd parts on
the level of polynomials and of Hamiltonians are compatible.

4.6 Lemma. Let H be a singular diagonal Hamiltonian.

(i) We have the commuting diagrams:

dom IH
iH //

IH
��

dom IH

IH
��

dom IH −iH
// dom IH

C2[z]
iPol //

γH

��

C2[z]

γH

��
Pol(H)

iH

// Pol(H)

In particular, iH maps Pol(H) into itself.
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(ii) Let p ∈ C2[z]. If p ∈ ranP ev
Pol, then γHp ∈ ranP ev

H . If p ∈ ranP od
Pol, then

γHp ∈ ranP od
H .

(iii) Let p ∈ C2[z]. Then γHp ∈ L2(H) if and only if γHP
ev
Polp ∈ L2(H)ev and

γHP
ev
Polp ∈ L2(H)od.

Proof. For the proof of the first diagram in (i), let
(
f1
f2

)
∈ dom IH be given.

Then (
IH iH

(
f1

f2

))
(x) =

(
IH
(
−f1

f2

))
(x) =

∫ x

s−

(
−f2(t)h2(t)

−f1(t)h1(t)

)
dt =

=− iH

∫ x

s−

(
−f2(t)h2(t)

f1(t)h1(t)

)
dt = −

(
iHIH

(
f1

f2

))
(x) .

For the second diagram let p =
∑n
l=0

(
αl
βl

)
zl ∈ C2[z] be given, and compute

γH iPolp =γH

( n∑
l=0

(
(−1)l+1αl
(−1)lβl

)
zl
)

=

n∑
l=0

IlH
(

(−1)l+1αl
(−1)lβl

)
=

=

n∑
l=0

(−1)lIlH iH

(
αl
βl

)
=

n∑
l=0

iHIlH
(
αl
βl

)
= iHγHp .

Items (ii) and (iii) follow immediately: If p ∈ ranP ev
Pol (or p ∈ ranP od

Pol), then

P od
H γHp = γHP

od
Polp = 0

(
P ev
H γHp = γHP

ev
Polp = 0, respectively

)
.

If γHp ∈ L2(H), then

γHP
ev
Polp = P ev

H γHp ∈ L2(H)ev and γHP
od
Polp = P od

H γHp ∈ L2(H)od .

The converse holds since γHp = γHP
ev
Polp+ γHP

od
Polp. q

4.7 Lemma. Let H be a singular diagonal Hamiltonian, and set sev+ := sup Iev

and sod+ := sup Iod. Then we have the commuting diagrams:

L1
loc([0, sev+ ))

IHev //

Θev
H

��

L1
loc([0, sev+ ))

Θev
H

��
L1

loc([s−, s+))
(IH)2

// L1
loc([s−, s+))

L1
loc([0, sod+ ))

I
Hod //

Θod
H

��

L1
loc([0, sod+ ))

Θod
H

��
L1

loc([s−, s+))
(IH)2

// L1
loc([s−, s+))

Proof. We are going to provide evidence for the left diagram; the right diagram
is treated in the same way.

Let
(
f1
f2

)
∈ L1

loc([0, sev+ )) be given. Applying (3.1) gives, for x ∈ (s−, s+),[
IHΘev

H

(
f1

f2

)]
(x) =

(
−
∫ x
s−

[
(v̌ ◦ ρ̂ ◦ v̂)(t)(f1 ◦ v̂)(t) + (f2 ◦ v̂)(t)

]
h2(t)dt

0

)
,

and in turn[
(IH)2Θev

H

(
f1

f2

)]
(x) =

=

(
0

−
∫ x
s−

( ∫ t
s−

[
(v̌ ◦ ρ̂ ◦ v̂)(u)(f1 ◦ v̂)(u) + (f2 ◦ v̂)(u)

]
h2(u)du

)
h1(t)dt

)
.
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Integrating by parts, we obtain

[
(IH)2Θev

H

(
f1

f2

)]
(x)=



0

− v̌(x)
(∫ x

s−

[
(v̌ ◦ ρ̂ ◦ v̂)(u)(f1 ◦ v̂)(u) + (f2 ◦ v̂)(u)

]
h2(u)du

)
+

+

∫ x

s−

[
(v̌ ◦ ρ̂ ◦ v̂)(t)(f1 ◦ v̂)(t) + (f2 ◦ v̂)(t)

]
h2(t) · v̌(t) dt


By Lemma 2.28, (v),∫ x

s−

[
(v̌ ◦ ρ̂ ◦ v̂)(t)(f1 ◦ v̂)(t) + (f2(t) ◦ v̂)

]
h2(t) · v̌(t) dt =

=

∫ x

s−

[
(v̌ ◦ ρ̂ ◦ v̂)(t)(f1 ◦ v̂)(t) + (f2(t) ◦ v̂)

]
h2(t) · (v̌ ◦ ρ̂ ◦ v̂)(t) dt ,

and hence we can further rewrite the above expression for (IH)2Θev
H

(
f1
f2

)
as

[
(IH)2Θev

H

(
f1

f2

)]
(x)=



0

− v̌(x)
(∫ v̂(x)

0

[
(v̌ ◦ ρ̂)(s)f1(s) + f2(s)

]
ds
)

+

+

∫ v̂(x)

0

[
(v̌ ◦ ρ̂)(r)f1(r) + f2(r)

]
(v̌ ◦ ρ̂)(r) dr


In order to compute Θev

HIHev

(
f1
f2

)
, let y ∈ Iev, y ≤ v̂(s+). Then[

IHev

(
f1

f2

)]
(y) =

∫ y

0

(
−(v̌ ◦ ρ̂)(t)f1(t)− f2(t)

(v̌ ◦ ρ̂)(t)2f1(t) + (v̌ ◦ ρ̂)(t)f2(t)

)
dt ,

and hence, for x ∈ (s−, s+),

[
Θev
HIHev

(
f1

f2

)]
(x) =



0

v̌(x) ·
∫ v̂(x)

0

[
− (v̌ ◦ ρ̂)(t)f1(t)− f2(t)

]
dt+

+

∫ v̂(x)

0

[
(v̌ ◦ ρ̂)(t)2f1(t) + (v̌ ◦ ρ̂)(t)f2(t)

]
dt

 .

This shows that the left diagram commutes. q

4.8 Lemma. Let H be a singular diagonal Hamiltonian. Then we have the
commuting diagrams:

C2[z]

Θev
Pol --

γHev

��

C2[z]ev

γH

��

(Θev
Pol)
−1

ll

Pol(Hev)
Θev
H

// Pol(H)

C2[z]

Θod
Pol --

γ
Hod

��

C2[z]od

γH

��

(Θod
Pol)
−1

ll

Pol(Hod)
Θod
H

// Pol(H)
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Proof. We consider the left diagram. First, we check the desired relation for a
constant polynomial p(z) =

(
α
β

)
: We have

γHΘev
Pol

(
α

β

)
=

(
0

β

)
+ IH

(
α

0

)
=

(
0

β

)
+

(
0∫ x

s−
αh1(t) dt

)
=

(
0

β + αv̌

)
,

and, on the other hand,

Θev
HγHev

(
α

β

)
= Θev

H

(
α

β

)
=

(
0

v̌α+ β

)
.

Next, we extend this knowledge to polynomials of higher degree. The following
diagrams obviously commute:

C2[z]
Θev

Pol //

·z
��

C2[z]
γH //

·z2
��

PolH

(IH)2

��
C2[z]

Θev
Pol

// C2[z]
γH
// PolH

C2[z]
γHev //

·z
��

Pol(Hev)

IHev

��
C2[z]

γHev
// Pol(Hev)

Assume now that the asserted diagram has already been shown for some poly-
nomial p, i.e. that γHΘev

Pol(p(z)) = Θev
HγHev(p(z)). Then we can combine the

above diagrams with Lemma 4.7, and compute

Θev
HγHev(z · p(z)) =Θev

HIHevγHev(p(z)) = (IH)2Θev
HγHev(p(z)) =

=(IH)2γHΘev
Pol(p(z)) = γHΘev

Pol(z · p(z))

i.e. the asserted diagram holds also for the polynomial z · p(z).
Since the asserted diagram has been shown to hold for constants, it now

follows that it holds for all monomials. By linearity, thus, it holds for all poly-
nomials.

The fact that the right diagram commutes is shown in the same way. q

After these preparations, we can now give the proof of Theorem 4.1.

Proof (of Theorem 4.1). Let H be given according to the assumptions of the
theorem. We can switch between the cases ‘φ(H) = 0’ and ‘φ(H) = π

2 ’ by
passing from H to −JHJ since

(−JHJ)ev = Hod, (−JHJ)od = Hev .

Hence, we may restrict explicit proof to the case that ‘φ(H) = 0’.

Step 1; The numbers φ(Hev) and φ(Hod): Since we assume that φ(H) = 0, we
have

∫ s+
s−

h1(t) dt <∞ and
∫ s+
s−

h2(t) dt =∞. Thus Iev = (0,∞) and the second

case in the definition of Hev does not appear. This shows that(
0

1

)
6∈ L2(Hev) ,

i.e. φ(Hev) 6= π
2 . Next, Iod either equals (0,

∫ s+
s−

h1(t) dt) or (0,∞). However, if

the second case takes place, Hod ends indivisibly of type π
2 . Hence, in any case,(

1

0

)
∈ L2(Hod) ,
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i.e. φ(Hod) = 0.
We conclude that, in order to determine any of ∆(H), ∆(Hev), or ∆(Hod),

it is enough to investigate polynomials whose leading coefficient is equal to
(

0
1

)
.

Step 2; A preliminary computation: Let p ∈ C2[z] with even degree and leading
coefficient

(
0
1

)
. Then the polynomial P ev

Polp has the same degree as p and also

leading coefficient
(

0
1

)
. Consider the polynomial

pe := (Θev
Pol)
−1P ev

Polp .

Then we have deg pe = deg p
2 and the leading coefficient of pe equals

(
0
1

)
. Simi-

larly, if p ∈ C2[z] has odd degree and leading coefficient
(

0
1

)
, then the polynomial

po := (Θod
Pol)
−1P od

Polp

has degree deg p−1
2 and leading coefficient

(
0
1

)
.

Step 3; Assume that ∆(H) <∞: Let n1 be the smallest even integer such that
n1 ≥ ∆(H) and n2 the smallest odd integer such that n2 ≥ ∆(H), and consider
the polynomials

p1(z) :=

(
0

1

)
zn1 +

n1−1∑
l=0

ωn1−l

(
0

1

)
zl, p2(z) :=

(
0

1

)
zn2 +

n2−1∑
l=0

ωn2−l

(
0

1

)
zl ,

where ωl are as in Lemma 2.20, (iii). Then we have

γHpj = wnj ∈ L2(H), j = 1, 2 .

Let p1,e and p2,o be defined from p1 and p2, respectively, as in Step 1. Using
the above lemmata, we obtain

Θev
HγHevp1,e = Θev

HγHev(Θev
Pol)
−1P ev

Polp1 = γHP
ev
Polp1 =

= P ev
H γHp1 = P ev

Hwn1 ∈ L2(H) ,

Θod
H γHodp2,o = Θod

H γHod(Θod
Pol)
−1P od

Polp2 = γHP
od
Polp2 =

= P od
H γHp2 = P od

H wn2
∈ L2(H) .

This implies that

∆(Hev) ≤ n1

2
, ∆(Hod) ≤ n2 − 1

2
.

If ∆(H) is even, we have n1 = ∆(H) and n2 = ∆(H) + 1, whereas, if ∆(H) is
odd, n1 = ∆(H) + 1 and n2 = ∆(H). Hence,

∆(Hev) ≤

{∆(H)
2 , ∆(H) even

∆(H)+1
2 , ∆(H) odd

}
=
[∆(H) + 1

2

]
(4.1)

∆(Hod) ≤

{∆(H)
2 , ∆(H) even

∆(H)−1
2 , ∆(H) odd

}
=
[∆(H)

2

]
(4.2)
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Step 4; Assume that ∆(Hev) <∞: Choose a polynomial p ∈ C2[z] with degree
∆(Hev) and leading coefficient

(
0
1

)
, such that γHevp ∈ L2(Hev). Then

γHΘev
Polp = Θev

HγHevp ∈ L2(H) ,

and we conclude that

∆(H) ≤ deg Θev
Polp = 2∆(Hev) <∞ .

This implies

∆(Hev) ≥


∆(H)

2 , ∆(H) even

∆(H)+1
2 , ∆(H) odd

The reverse inequality has been shown in Step 2, and (4.1) follows.

Step 5; Assume that ∆(Hod) < ∞: Now choose a polynomial p ∈ C2[z] with
deg p = ∆(Hod) whose leading coefficient equals

(
0
1

)
and which has the property

that γHodp ∈ L2(Hod). Then

γHΘod
Polp = Θod

H γHodp ∈ L2(H) ,

and hence
∆(H) ≤ deg Θod

Polp = 2∆(Hod) + 1 <∞ .

The reverse inequality in (4.2) follows. q

5 Stieltjes type Hamiltonians

Theorem 4.1 can be used to transfer the method to compute ∆ with help of
an operator ‘Λ’ as established in Theorem 3.7 to the class of (inverse) Stieltjes
Hamiltonians.

5.1 Definition. Let H be a Hamiltomian which is of the form

H(x) = trH(x) · ξφ(x)ξ
T
φ(x), x ∈ [s−, s+) , (5.1)

with some function φ of bounded variation.
We denote by ΛH the operator whose domain dom ΛH consists of all mea-

surable functions f : [s−, s+)→ C with

f ∈ L1
loc

(
[s−, s+)

)
,

∫ x

s−

f(ξ) trH(ξ) dξ ∈ L1(|dφ|) ,

and which acts as

(ΛHf)(x) =

∫
[x,s+)

(∫ ξ

s−

f(s) trH(s) ds
)
|dφ(ξ)|, x ∈ [s−, s+), f ∈ dom ΛH .

We should say it explicitly that we consciously introduced a double meaning
to the symbol ΛH : Depending whether H is diagonal, or of the form (5.1), the
operator ΛH is given as in Definition 3.6 or as in Definition 5.1 above.

In the present paper, we deal with (inverse) Stieltjes type Hamiltonians. For
such, the function φ can be chosen to be nonincreasing, and then |dφ| = d(−φ).
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Investigation of the more general case, that the function φ in (5.1) is of bounded
variation, will be subject of forthcoming work.

The present section is devoted to the proof of the following result, which is
the analogue of Theorem 3.7 for (inverse) Stieltjes type Hamiltonians.

5.2 Theorem. Let H be a singular Hamiltonian which is of (inverse) Stieltjes
type, and write H(x) = trH(x) · ξφ(x)ξ

T
φ(x) with a nonincreasing function φ

taking values in [0, π2 ] ([−π2 , 0], respectively). Assume that H has the trace-class
property.

Then, for each n ∈ N, the iterate ΛnH1 is defined. Set

N := sup
{
n ∈ N0 : ΛnH1 6∈ L2(trH(x)dx)

}
∈ N0 ∪ {∞} . (5.2)

Then ∆(H) <∞ if and only if N <∞, and in this case

∆(H) = N + 1 .

5.3 Remark. The set {n ∈ N0 : ΛnH1 6∈ L2(trH(x)dx)} is an interval contain-
ing 0. This will follow from Remark 3.8, since in the course of the proof of
Theorem 5.2 it turns out that it is equal to the corresponding set (3.6) for an
appropriate diagonal Hamiltonian.

The proof of this theorem is somewhat elaborate, and we present it in several
subsections. In the first we establish the result for the case that H is of Stielt-
jes type and φ(s+) := limx→s+ φ(x) > 0. This is the core of the proof. In
subsections which follow, we show how the general case can be reduced to this
one.

a. The case that φ(s+) > 0.

Throughout this subsection let H be a singular Hamiltonian of the form (5.1)
with φ being nonincreasing, taking values in [0, π2 ], and satisfying φ(s+) >
0. Then, actually, φ(x) ∈ [φ(s+), π2 ], x ∈ [s−, s+). The method to prove
Theorem 5.2 is to associate a diagonal Hamiltonian Hd with H, relate the
corresponding operators ΛH and ΛHd , and use Theorem 3.7 and Theorem 4.1.

Step 1: The Hamiltonian Hd; employing Theorems 3.7 and 4.1.

Let Hd be a singular diagonal Hamiltonian with Hev
d ∼ H. Existence of a

Hamiltonian with these properties is ensured by Theorem 2.27, (i). Denote the
domain of definition of Hd by [sd−, s

d
+), and write (as usual)

Hd(y) =

(
h1(y) 0

0 h2(y)

)
, y ∈ [sd−, s

d
+) .

Moreover, let v̂, ρ̂, v̌, ρ̌ be as in the definition of Hev
d and Hod

d , cf. the paragraph
preceeding Definition 2.25.

Since φ(s+) > 0, in particular, the Hamiltonian H does not end with an
indivisible interval of type 0 towards s+. Its reparameterization Hev

d shares this
property, and we conclude that

Iev = [0, v̂(sd+)),

∫ sd+

sd−

(1 + v̌(y)2)h2(y) dy =∞ .
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In particular, the function h2 cannot vanish a.e. on any interval of the form
(sd+ − ε, sd+). This means that v̂ is not constant on any interval of this form,
and hence maps [sd−, s

d
+) surjectively onto [0, v̂(sd+)). Lemma 2.28, (i), gives

sup
t∈[0,v̂(sd+))

ρ̂(t) = sd+ . (5.3)

Let ψ be an absolutely continuous increasing bijection of [s−, s+) onto [0, v̂(sd+))
with ψ−1 also being absolutely continuous, such that(

Hev
d ◦ ψ

)
(x)ψ′(x) = H(x), x ∈ [s−, s+) .

Comparing the right lower entries, we obtain

ψ′(x) = trH(x) sin2 φ(x) , (5.4)

and hence

ψ(x) =

∫ x

s−

trH(ξ) sin2 φ(ξ) dξ, x ∈ [s−, s+) a.e.

Comparing the right upper entries, we now obtain

(v̌ ◦ ρ̂)(t) = cot(φ ◦ ψ−1)(t), t ∈ [0, v̂(sd+)) a.e. (5.5)

Remember here that trH(x) is a.e. positive.
Since φ(s+) > 0, we obtain from (5.3) and (5.5) that

v̌(sd+) = lim
t→v̂(sd+)

(v̌ ◦ ρ̂)(t) = lim
t→v̂(sd+)

cot(φ ◦ ψ−1)(t) = cotφ(s+) <∞ ,

i.e.
∫ sd+
sd−

h1(y) dy < ∞. This means that φ(Hd) = 0. Moreover, since Hd is

singular, it follows that v̂(sd+) =∞.
Let ΛHd be the operator defined in (3.5), and set

Nd := sup
{
n ∈ N0 : ΛnHd 6∈ L

1(h2(y)dy)
}
.

By Theorem 3.7, the number ∆(Hd) is either equal to 2Nd + 1 or 2Nd + 2
(naturally including the case that Nd =∞). Since H and Hev

d are reparameter-
izations of each other, we have ∆(H) = ∆(Hev

d ), cf. Remark 2.21. Theorem 4.1
implies that

∆(H) =
[∆(Hd) + 1

2

]
.

Regardless whether ∆(Hd) equals 2Nd + 1 or 2Nd + 2, thus ∆(H) = Nd + 1.

Step 2: Rewriting Hd.

If λ is any function, we denote by Cλ the composition operator f 7→ f ◦ λ.

5.4 Lemma. We have

(i) The operator Cv̂ induces an isometry of L∞([0,∞)) into L∞([sd−, s
d
+)).

The operator Cρ̂ induces a surjective contraction of L∞([sd−, s
d
+)) onto

L∞([0,∞)). Moreover, Cρ̂ ◦ Cv̂ = id.
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(ii) The operators Cψ and Cψ−1 are mutually inverse isometric bijections be-
tween L∞([0,∞)) and L∞([s−, s+)).

(iii) Whenever f is a measurable function with values in [0,∞] (and being
defined on the appropriate interval), we have

b∫
a

(Cv̂f)(y)h2(y) dy =

v̂(b)∫
v̂(a)

f(t) dt,

v̂(b)∫
v̂(a)

(Cρ̂f)(t) dt =

b∫
a

f(y)h2(y) dy .

The same relations hold if f is a measurable complex valued function, such
that in the relation under consideration one (and hence also the other)
integrand is integrable.

(iv) Whenever f is a measurable function with values in [0,∞] (and being
defined on the appropriate interval), we have∫ ψ(b)

ψ(a)

f(t) dt =

∫ b

a

(Cψf)(x) trH(x) sin2 φ(x) dx ,

∫ ψ(b)

ψ(a)

(Cψ−1f)(t) dt =

∫ b

a

f(x) trH(x) sin2 φ(x) dx, .

The same relations hold if f is a measurable complex valued function, such
that in the relation under consideration one (and hence also the other)
integrand is integrable.

Proof. We show (i): Since v̂ maps [sd−, s
d
+) surjectively onto [0,∞), we have

sup
y∈[sd−,s

d
+)

f(v̂(y)) = sup
t∈[0,∞)

f(t) ,

i.e. Cv̂ is isometric. Clearly, supt∈[0,∞) f(ρ̂(t)) ≤ supy∈[sd−,s
d
+) f(y), i.e. Cρ̂ is

contractive, and (f ◦ v̂) ◦ ρ̂ = f .
For (ii), it is enough to remember that ψ and ψ−1 are mutually inverse

bijections between [s−, s+) and [0,∞).
We come to the proof of (iii). The function v̂ is absolutely continuous, andf

v̂′ = h2. Hence, the substitution rule applies and the first relation follows.
Applying this with the function Cρ̂f yields∫ v̂(b)

v̂(a)

(Cρ̂f)(t) dt =

∫ b

a

[
Cv̂(Cρ̂f)

]
(y)h2(y) dy .

However, by Lemma 2.28, (v), the set of all points with [Cv̂(Cρ̂f)](y) 6= f(y)
and h2(y) 6= 0 has Lebesgue measure zero. Hence,∫ b

a

[
Cv̂(Cρ̂f)

]
(y)h2(y) dy =

∫ b

a

f(y)h2(y) dy .

Finally, remembering (5.4), the first relation in (iv) follows by applying the
substitution rule with the absolutely continuous function ψ. The second relation
follows by applying the first with Cψ−1f . q
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5.5 Definition. We denote by Ξ1 the operator whose domain dom Ξ1 consists
of all measurable functions f : [s−, s+)→ C with

f ∈ L1
loc([0,∞)),

∫ t

0

f(r) dr ∈ L1
(
d(v̌ ◦ ρ̂)(t)

)
,

and which acts as

(Ξ1f)(t) :=

∫
[t,∞)

(∫ τ

0

f(r) dr
)
d(v̌ ◦ ρ̂)(t), t ∈ [0,∞), f ∈ dom Ξ1 .

We denote by Ξ2 the operator whose domain dom Ξ2 consists of all measurable
functions f : [s−, s+)→ C with

f trH sin2 φ ∈ L1
loc([s−, s+)),

∫ x

s−

f(s) trH(s) sin2 φ(s) ds ∈ L1
(
δ(x)|dφ(x)|

)
,

where

δ(x) :=


1

sin2 φ(x)
, φ continuous at x

cotφ(x+)−cotφ(x−)
φ(x−)−φ(x+) , otherwise

and which acts as

(Ξ2f)(t) :=

∫
[x,s+)

(∫ ξ

s−

f(s) trH(s) sin2 φ(s) ds
)
δ(ξ)|dφ(ξ)|,

t ∈ [s−, s+), f ∈ dom Ξ2 .

5.6 Proposition. We have

L∞([0,∞)) ⊆ dom Ξ1, Ξ1

(
L∞([0,∞))

)
⊆ L∞([0,∞)) ,

L∞([s−, s+)) ⊆ dom Ξ2, Ξ2

(
L∞([s−, s+))

)
⊆ L∞([s−, s+)) .

For each n ∈ N the following diagram commutes

L∞([sd−, s
d
+))

ΛnHd //

Cρ̂

��

L∞([sd−, s
d
+))

Cρ̂

��
L∞([0,∞))

Ξn1

//

Cψ

��

Cv̂

DD

L∞([0,∞))

Cψ

��
L∞([s−, s+))

Ξn2

//

Cψ−1

DD

L∞([s−, s+))

Cψ−1

CC

that is,
Cρ̂ ◦ ΛnHd = Ξn1 ◦ Cρ̂, f ∈ L∞([sd−, s

d
+)), n ∈ N.

Cρ̂ ◦ ΛnHd ◦ Cv̂ = Ξ1, n ∈ N
(5.6)

Cψ ◦ Ξn1 = Ξn2 ◦ Cψ, f ∈ L∞([0,∞)), n ∈ N . (5.7)
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Proof (of (5.6)). Let a measurable function f : [sd−, s
d
+)→ [0,∞] be given. We

are going to apply the general form of the substitution rule as provided in [T].
Let us match notation: We use [T, Corollary 5.2] with the functions ‘µ̄, ν̄, ḡ’
given as (t ∈ [0,∞) fixed)

µ̄(τ) :=

{
sd− , τ < 0

ρ̂(τ) , 0 ≤ τ

ν̄(η) :=


0 , η < sd−
v̌(η) , sd− ≤ η < sd+
v̌(sd+) , sd+ ≤ η

ḡ(η) :=


0 , η < ρ̂(t)∫ v̂(η)

0
(Cρ̂f)(r) dr , ρ̂(t) ≤ η < sd+

0 , sd+ ≤ η

Thereby, the last cases in the definitions of ν̄ and ḡ occur only if sd+ < ∞. By
Lemma 2.28, (iv), the function ‘ιµ̄’ defined in [T, (5.3)] is equal to

ιµ̄(y) = (ρ̂ ◦ v̂)(y), y ∈ R .

Remembering Lemma 2.28, (ii), (v), Lemma 5.4, and that v̂ and v̌ are absolutely
continuous with derivatives h2 and h1, respectively, we obtain

sd+∫
ρ̂(t)

( η∫
sd−

f(u)h2(u)du
)
h1(η)dη =

sd+∫
ρ̂(t)

( η∫
sd−

(f ◦ ρ̂ ◦ v̂)(u)h2(u)du
)
h1(η)dη =

=

sd+∫
ρ̂(t)

( v̂(η)∫
0

(Cρ̂f)(r) dr
)
dv̌(η) =

∫
[sd−,s

d
+)

χ[ρ̂(t),sd+)(η)
( v̂(η)∫

0

(Cρ̂f)(r) dr
)
dv̌(η) =

=

∫
[sd−,s

d
+)

χ[ρ̂(t),sd+)((ρ̂ ◦ v̂)(η))
( v̂((ρ̂◦v̂)(η))∫

0

(Cρ̂f)(r) dr
)
dv̌(η) =

=

∫
conv ran µ̄

(ḡ ◦ ιµ̄)(η) dν̄(η) =

∫
R

(ḡ ◦ µ̄)(τ) d(ν̄ ◦ µ̄)(τ) =

=

∫
[0,∞)

χ[ρ̂(t),sd+)(ρ̂(τ))
( v̂(ρ̂(τ))∫

0

(Cρ̂f)(r) dr
)
d(v̌ ◦ ρ̂)(τ) =

=

∫
[0,∞)

χ[t,∞)(τ)
( τ∫

0

(Cρ̂f)(r) dr
)
d(v̌◦ ρ̂)(τ) =

∫
[t,∞)

( τ∫
0

(Cρ̂f)(r) dr
)
d(v̌◦ ρ̂)(τ) .

(5.8)
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The application of the substitution rule [T, Corollary 5.2] is justified since the
integrand is nonnegative.

Next, let f ∈ L∞([0,∞)) be given. Then, trivially, also f ∈ L1
loc([0,∞)).

Moreover, Cv̂|f | = |Cv̂f | ∈ L∞([sd−, s
d
+)), and by Lemma 3.10, (i), thus Cv̂|f | ∈

dom ΛHd . In particular,∫ η

sd−

(Cv̂|f |)(u)h2(u)du ∈ L1(h1(η)dη) .

Using the computation (5.8) with the nonnegative function Cv̂|f | and t = 0,
shows that ∫

[0,∞)

(∫ τ

0

|f(r)| dr
)
d(v̌ ◦ ρ̂)(τ) <∞ .

Hence, also
∫ τ

0
f(r) dr ∈ L1(d(v̌ ◦ ρ̂)(τ)), and we see that f ∈ dom Ξ1.

Finally, let f ∈ L∞([sd−, s
d
+)). Redoing the calculation (5.8), the application

of the substitution rule now being justified since integrands are integrable, gives

(Cρ̂ ◦ ΛHd)(f) = (Ξ1 ◦ Cρ̂)(f) . (5.9)

Multiplying this equation with Cv̂ from the right, gives

Cρ̂ ◦ ΛHd ◦ Cv̂ = Ξ1 . (5.10)

Moreover, by Lemma 2.28, (v), we have

ΛHd ◦ Cv̂ ◦ Cρ̂ = ΛHd .

Now we use induction on n to show (5.6). The case ‘n = 1’ is just (5.9) and
(5.10). Let n ≥ 2, then

Cρ̂ ◦ ΛnHd =
(
Cρ̂ ◦ Λn−2

Hd

)
◦ ΛHd ◦ ΛHd =

(
Cρ̂ ◦ Λn−2

Hd

)
◦
(
ΛHd ◦ Cv̂ ◦ Cρ̂

)
◦ ΛHd =

=
(
Cρ̂ ◦ Λn−1

Hd
◦ Cv̂

)
◦
(
Cρ̂ ◦ ΛHd

)
= Ξn−1

1 ◦
(
Ξ1 ◦ Cρ̂

)
= Ξn1 ◦ Cρ̂ .

This is the first of the required relations. Again multiplying with Cv̂ from the
right, gives the second. q

Proof (of (5.7)). Since Cψ and Cψ−1 are mutually inverse bijections, it is
enough to show that

Cψ ◦ Ξ1 = Ξ2 ◦ Cψ . (5.11)

Let x ∈ [s−, s+) be fixed. The function ψ : [x, s+)→ [ψ(x),∞) is a continuous
and strictly increasing bijection, and hence maps half-open intervals to half-open
intervals. This implies that the image of the measure d cotφ under ψ is equal
to d(cotφ ◦ ψ−1). Moreover, ψ is absolutely continuous and ψ′ = trH sin2 φ.
Remembering that v̌ ◦ ρ̂ = cotφ ◦ ψ−1, cf. (5.5), we can thus compute

∫
[ψ(x),∞)

( τ∫
0

f(r) dr
)
d(v̌◦ρ̂)(τ) =

∫
[ψ(x),∞)

( ψ−1(τ)∫
s−

(f◦ψ)(s)ψ′(s) ds
)
d(v̌◦ρ̂)(τ) =

=

∫
[x,∞)

( ξ∫
s−

(Cψf)(x) trH(s) sin2 φ(s) ds
)
d cotφ(ξ) . (5.12)
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Now we argue similar as in the above ‘proof of the first half’: The relation (5.12)
holds for any nonnegative measurable function f defined on [0,∞). From this,
and the fact that L∞([0,∞)) ⊆ dom Ξ1, we obtain that L∞([s−, s+)) ⊆ dom Ξ2.
Now the computation (5.12) can be carried out for each f ∈ L∞([0,∞)) being
justified by integrability.

The integral on the left side of (5.12) is nothing but (Cψ◦Ξ1)(f). We have to
further consider the right side. The function cotx is continuously differentiable
on [φ(s+), φ(s−)], in particular, its derivative is bounded on this interval. By
the intermediate value theorem, thus

cotφ(x′)− cotφ(x) ≤ C(φ(x)− φ(x′)), s− ≤ x < x′ < s+ ,

where C := supx∈[φ(s+),φ(s−)] | ddx cotx|. It follows that d cotφ is absolutely
continuous with respect to |dφ|. The symmetric derivative of d cotφ with respect
to |dφ| exists for every x ∈ (s−, s+), in fact it computes as

lim
r↘0

d[cotφ]([x− r, x+ r])

|dφ|([x− r, x+ r])
= lim
r↘0

cotφ(x+ r+)− cotφ(x− r−)

φ(x− r−)− φ(x+ r+)
= δ(x) .

However, the symmetric derivative is a Radon-Nikodym derivative, i.e.
d[cotφ] = δ · |dφ|, see, e.g., [Be, Proposition 10.2]. Hence, the right side of
(5.12) is equal to (Ξ2 ◦ Cψ)(f). The relation (5.11) follows. q

Step 3: Completing the proof.

In order to translate the definition of the number Nd into the language of ΛH ,
we still need to relate Ξ2 with ΛH .

For nonnegative functions f, g, we write f � g, if there exist constants
c, c′ > 0 with cg ≤ f ≤ c′g.

5.7 Lemma. Let f, g ∈ L∞([s−, s+)) and assume that f � g. Then

Ξ2f � ΛHg .

Proof. Set c0 := sinφ(s+). Then c0 > 0 and

c0 ≤ sinφ(x) ≤ 1, 1 ≤ δ(x) ≤ 1

c20
, x ∈ [s−, s+) .

To obtain the estimate for δ at points of discontinuity of φ, we again used the
intermediate value theorem.

Let c, c′ > 0 be such that cg ≤ f ≤ c′g. Then

(Ξ2f)(x) =

∫
[x,s+)

(∫ ξ

s−

f(s) trH(s) sin2 φ(s) ds
)
δ(ξ)|dφ(ξ)|

 ≤
c′

c20

∫
[x,s+)

( ∫ ξ
s−
g(s) trH(s) ds

)
|dφ(ξ)|

≥ cc0
∫

[x,s+)

( ∫ ξ
s−
g(s) trH(s) ds

)
|dφ(ξ)|

q
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Using this lemma, we obtain inductively that

Ξn2f � ΛnHf, f ∈ L∞([s−, s+)), n ∈ N .

Now it is easy to complete the proof of Theorem 5.2. Let n ∈ N0. Then

ΛnH1 � Ξn2 1 = (Ξn2 ◦ Cψ ◦ Cρ̂)(1) = (Cψ ◦ Cρ̂)(ΛnHd1) .

By Lemma 5.4, we thus have

ΛnHd1 ∈ L2(h2(y)dy) ⇐⇒ ΛnH1 ∈ L2(trH(x) sin2 φ(x)dx)

However, since sin2 φ is bounded above and away from zero, the latter condition
is equivalent to ΛnH1 ∈ L2(trH(x)dx). We arrive at the conclusion that

Nd = sup
{
n ∈ N0 : ΛnH1 6∈ L2(trH(x)dx)

}
= N ,

and hence that ∆(H) = N + 1. The proof of Theorem 5.2 for the considered
case is complete. ,

b. Locality at the singular endpoint.

Throughout this subsection let H be a Hamiltonian as in Theorem 5.2.
We know from [KW/IV, Lemma 3.12] that the number ∆(H) is a local

property at the endpoint s+, meaning that

∆(H) = ∆(H|[s0,s+))

whenever s0 ∈ [s−, s+) and (s0, s+) is not indivisible (just to ensure (Ham4)).
Moreover, by Corollary 2.16, (ii), the trace-class property is a local property at
the endpoint s+. Now we show that also the number N defined in (5.2) is a
local property at s+.

5.8 Lemma.

(i) The function V (x) := |dφ|([x, s+)) belongs to L1(trH(x)dx).

(ii) We have L1(trH(x)dx) ⊆ dom ΛH .

(iii) ΛH induces a bounded linear operator of L1(trH(x)dx) into itself.

Proof. We have dom ΛH = dom Ξ2, and hence L∞([s−, s+)) ⊆ dom ΛH . In
particular, 1 ∈ dom ΛH , and hence∫

[s−,s+)

(∫ x

s−

trH(ξ) dξ
)
|dφ(x)| <∞ .

Using Fubini’s theorem, we obtain

∞ >

∫
[s−,s+)

( x∫
s−

trH(ξ) dξ
)
|dφ(x)| =

=

∫
[s−,s+)

( ∫
[s−,s+)

χ[s−,x](ξ) trH(ξ)dξ
)
|dφ(x)| =

=

∫
[s−,s+)

( ∫
[s−,s+)

χ[ξ,s+](x) |dφ(x)|
)

trH(ξ)dξ =

∫
[s−,s+)

V (ξ) trH(ξ)dξ .
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This shows (i). Since |dφ| is a finite measure, item (ii) is obvious. To show
(iii), we estimate (‖.‖1 denotes the norm in L1(trH(x)dx))

∣∣(ΛHf)(x)
∣∣ ≤ ∫

[x,s+)

(∫ ξ

s−

|f(s)| trH(s)ds
)
|dφ(ξ)| ≤ ‖f‖1V (x) ,

and hence
‖ΛHf‖1 ≤ ‖V ‖1 · ‖f‖1 .

q

5.9 Proposition. Let s0 ∈ [s−, s+), and set H̃ := H|[s0,s+). Then, for each
n ∈ N0, we have

ΛnH1 ∈ L1(trH(x)dx) ⇐⇒ Λn
H̃

1 ∈ L1(tr H̃(x)dx) .

Hence, the numbers N and Ñ defined as in (5.2) for H and H̃, respectively,
coincide.

Proof. Denote by ρ and ι the restriction map and the embedding map defined
as

ρ : f 7→ f |[s0,s+), f ∈ L∞([s−, s+)) ,

(ιf)(x) :=

{
0 , s− ≤ x < s0

f(x) , s0 ≤ x < s+

, f ∈ L∞([s0, s+)) .

Then, clearly, ρι = id and ιρ acts as multiplication with the indicator function
χ[s−,s+). It follows that

(ιρ− id)f = −χ[s−,s0)f, f ∈ L∞([s−, s+)) ,

and hence that

(ιρ− id)
(
L∞([s−, s+))

)
⊆ L1(trH(x)dx) . (5.13)

Moreover, we have

f ∈ L1(trH(x)dx) ⇐⇒ ρf ∈ L1(tr H̃(x)dx), f ∈ L∞([s−, s+)) ,

f ∈ L1(tr H̃(x)dx) ⇐⇒ ιf ∈ L1(trH(x)dx), f ∈ L∞([s0, s+)) .

In order to relate ΛnH and Λn
H̃

, we first observe that ΛH̃ = ρΛHι: Let f ∈
L∞([s0, s+)), then for each x ∈ [s0, s+)

[ΛH(ιf)](x) =

∫
[x,s+)

(∫ ξ

s−

(ιf)(s) trH(s)ds
)
|dφ(ξ)| =

=

∫
[x,s+)

(∫ ξ

s0

f(s) tr H̃(s)ds
)
|dφ(ξ)| = (ΛH̃f)(x) .

Next, we use induction on n to show that(
Λn
H̃
− ρΛnHι

)(
L∞([s0, s+))

)
⊆ L1(tr H̃(x)dx), n ∈ N . (5.14)
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The case ‘n = 1’ is trivial, since actually ΛH̃−ρΛHι = 0. Let n ≥ 2, and assume
that (5.14) holds for n− 1. We can write

Λn
H̃

=ΛH̃Λn−1

H̃
=

=ρΛHιΛ
n−1

H̃
− ρΛHιρΛn−1

H ι+ +ρΛHιρΛn−1
H ι− ρΛHΛn−1

H ι+ ρΛnHι =

=ρΛHι
[
Λn−1

H̃
− ρΛn−1

H ι
]

+ ρΛH
[
ιρ− id

]
Λn−1
H ι+ ρΛnHι .

The first summand maps L∞([s0, s+)) into L1(tr H̃(x)dx) by the inductive hy-
pothesis. The second summand has the same property by (5.13). In total, (5.14)
follows for the number n under consideration.

Consider the function 1 ∈ L∞([s−, s+)). Then ρ1 = 1 ∈ L∞([s0, s+)). We
obtain

Λn
H̃

(ρ1) ∈
(
ρΛnHι

)
(ρ1) + L1(tr H̃(x)dx) =

=ρΛnH1 + ρΛnH [ιρ− id](1) + L1(tr H̃(x)dx) =

=ρΛnH1 + L1(tr H̃(x)dx) ,

and hence

Λn
H̃

(ρ1) ∈ L1(tr H̃(x)dx) ⇐⇒ ρΛnH1 ∈ L1(trH(x)dx)

⇐⇒ ΛnH1 ∈ L1(trH(x)dx) .

q

c. Invariance with respect to shift of angle.

Let H be a Hamiltonian of the form (5.1) with φ being of bounded variation.
Moreover, let α ∈ R, and consider the Hamiltonian

H̃(x) := trH(x) · ξφ(x)+αξ
T
φ(x)+α, x ∈ [s−, s+) .

It is obvious that ΛH̃ = ΛH , and that the numbers N and Ñ defined as in (5.2)

for H and H̃, respectively, coincide.
Let Nα denote the matrix

Nα :=

(
cosα sinα
− sinα cosα

)
Then H̃ = N−αHNα. By [KW/IV, Remark 2.28], the boundary triplets associ-
ated with H̃ and H are isomorphic. In fact, the map $ : f 7→ N−αf induces a
unitary operator of L2(H) onto L2(H̃) which intertwines Tmax(H) and Tmax(H̃),
and transforms boundary values correspondingly by multiplication with N−α.

It follows that, for each p ∈ (0,∞], the Hamiltonian H̃ has the property Sp

if and only if H has. Moreover, 0 is a point of regular type for Tmin(H̃) if and
only if it is for Tmin(H), and in this case φ(H̃) = φ(H) + α. Next, we have
IH̃ ◦$ = $ ◦ IH , and hence (n ∈ N0, αk ∈ C)

n∑
k=1

αkIkH̃ξφ(H̃)+π
2

=

n∑
k=1

αkIkH̃ξφ(H)+α+π
2

=

=

n∑
k=1

αkIkH̃$ξφ(H)+π
2

= $
( n∑
k=1

αkIkH̃ξφ(H)+π
2

)
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Thus, the function
∑n
k=1 αkIkH̃ξφ(H̃)+π

2
belongs to L2(H̃) if and only the func-

tion
∑n
k=1 αkIkH̃ξφ(H)+π

2
belongs to L2(H). We conclude that ∆(H̃) = ∆(H).

d. Reduction of the general case.

Let a Hamiltonian H as in Theorem 5.2 be given.
We first settle the case that H ends with an indivisible interval, say (s0, s+),

towards s+. Then ∆(H) = 1, cf. [KW/IV, Lemma 3.2]. On the other hand, the
function φ is constant on (s0, s+), and hence

(ΛHf)(x) = 0, f ∈ dom ΛH , x ∈ (s0, s+) .

In particular, ΛnH1 ∈ L2(trH(x)dx), n ∈ N, and hence N = 0. We see that the
asserted equality ‘∆(H) = N + 1’ indeed holds true.

Now assume that H does not end indivisibly towards s+. Choose s0 ∈
(s−, s+) such that φ(s0) − φ(s+) < π

4 , and consider the Hamiltonian ((Ham4)
being ensured since (s0, s+) cannot be indivisible)

H̃(x) := trH(x) · ξφ(x)−φ(s+)+π
4
ξTφ(x)−φ(s+)+π

4
, x ∈ [s0, s+) .

Then H̃ is a singular Hamiltonian of Stieltjes type whose angle function has a
nonzero limit. By subsection a., the assertion of Theorem 5.2 is true for H̃, i.e.

∆(H̃) = Ñ + 1

where Ñ is defined by (5.2) for H̃.
However, by what we showed in subsections b. and c., ∆(H̃) = ∆(H) and

Ñ = N .

Appendix A. A Pontryagin space approach to
Theorem 4.1

A weaker version of Theorem 4.1 can be proved in a different, less elementary but
more structural, way by using Pontryagin space methods. Since the origin of the
number ∆(H) lies in the indefinite theory, we believe this alternative approach
provides interesting structural insight, and is thus worth being presented.

A.1 Theorem. Let H be a singular diagonal Hamiltonian defined on the in-
terval [s−, s+), and assume that H has the Hilbert-Schmidt property. Then the
following are equivalent:

(i) H satisfies S2 and ∆(H) <∞.

(ii) Hev satisfies S2 and ∆(Hev) <∞.

(iii) Hod satisfies S2 and ∆(Hod) <∞.

In this case, the relations between ∆(H), ∆(Hev), and ∆(Hod), given in Theo-
rem 4.1 hold true.

A.2 Remark.
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(i) The difference between Theorem A.1 and Theorem 4.1 is obvious: In The-
orem 4.1 it is only assumed that 0 is a point of regular type for Tmin(H),
i.e. that qH is meromorphic in some neighbourhood of 0. In the above
statement the, much stronger, Hilbert-Schmidt property is required, i.e. it
is assumed that qH is meromorphic throughout the whole plane, and that
the sequence of its poles is sufficiently sparse.

(ii) The Pontryagin space theory employed in the proof of the above state-
ment given below is not known to be available in the general situation of
Theorem 4.1. Although, according to Remark 2.23, the assumption could
be weakened to H having compact resolvents.

(iii) In the formulation of this result one statement is hidden, which is worth
being mentioned explicitly: Assume that H is of (inverse) Stieltjes type.
Then

H satisfies S2 ∧∆(H) <∞ ⇒ H satisfies Sp, p >
1

2

This follows using Remark 2.23, and the relation (2.11) between Weyl
coefficients.

Throughout the following, we use without further notice the theory of indefinite
Hamiltonians as developed in [KW/IV]–[KW/VI]. Some, more specific, tools
from the ‘indefinite world’ enter in the form of statements taken from [KWW1]
and [W1], and the below Lemma A.4. Making the present exposition self-
contained would require to include a detailed introduction to these notions and
results. This is, in our opinion, beyond the scope of the present paper. Hence,
we content ourself with providing detailed references to definitions and theorems
in the mentioned sources. Moreover, in order to mimimize distracting technical
labour, we restrict explicit proof to a certain particular situation which features
the core ideas.

Situation under consideration:

We assume in addition to the hypothesis of the theorem that s+∞, φ(H) = π
2 ,

and that
∫ s+
s−

(1 + v̌(x)2)h2(x) dx =∞. We proof the required relations between

∆(H) and ∆(Hev).

A.3 Remark. Why is this the core case?

? Of course, s+ <∞ can always be achieved with a reparameterization, so
this requirement is no loss of generality.

? If
∫ s+
s−

(1 + v̌(x)2)h2(x) dx < ∞ we have obtained the required assertions

by simple and explicit inspection, cf. Lemma 4.3.

? The relation between ∆(H) and ∆(Hod) can be understood with the same
methods; only slight modifications are necessary.

? Once the case that φ(H) = π
2 is completely settled, the case that φ(H) =

0 can be deduced by passing from H to −JHJ ; a standard reduction
technique.

Before we come to the actual proof, we collect some preliminary facts.
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Some preliminaries:

First, some consequences of our additional hypothesis: Since φ(H) = π
2 and H

is singular, we have

v̌(s+) =

∫ s+

s−

h1(x) dx =∞, v̂(s+) =

∫ s+

s−

h2(x) dx <∞ .

Since
∫ s+
s−

(1 + v̌(x)2)h2(x) dx = ∞, we have Iev = [0, v̂(s+)), and hence this

interval is bounded. Moreover, divergence of the integral implies that, in par-
ticular, h2 cannot vanish on any interval of the form (s+ − ε, s+). Hence, v̂
maps [s−, s+) surjectively onto [0, v̂(s+)), and Lemma 2.28, (i), gives

lim
t↗v̂(s+)

ρ̂(t) = s+ .

Since Iev is bounded, we have
(

0
1

)
∈ L2(Hev), i.e. φ(Hev) = π

2 . Moreover, we
have

lim
t↗v̂(s+)

(v̌ ◦ ρ̂)(t) = lim
x↗s+

v̌(x) =∞ .

By [WW1, Theorem 3.9], this implies that

lim
z↗0

qHev(z) =∞ ,

i.e. qHev has a pole at 0.
Second, a lemma about indefinite Hamiltonians h. The fact that this state-

ment holds true can be seen from their structure theory; we skip explicit proof.
For the definition of general Hamiltonians and their monodromy matrices see
[KW/IV, Definition 8.1] and [KW/V, Proposition 4.29, Definition 4.3]. For
the definition of the notion of negative index ‘ind−’ for the occuring types of
functions, see, e.g., [KW/V, Definition 2.17] for scalar functions and [KW/V,
Definition 2.1] for matrix functions.

A.4 Lemma. Let h be a regular general Hamiltonian with ind− h > 0, and
let W := ω(B(h)) be its monodromy matrix. Then ind−(W ?∞) = 0 if and
only if h has only one singularity and is indivisible of type 0 on the right of
the singularity. In this case, the function W ?∞ is the Weyl coefficient of the
Hamiltonian function of h to the left of the singularity.

Now we are ready for the proof of the theorem.

Proof (of equivalence ‘(i)⇔ (ii)’). Assume (i). Then the collection of data

n = 1, s−, s+, s+ + 1

H(x), x ∈ [s−, s+), H1(x) :=
1

(x− s+)2
ξ0ξ

T
0 , x ∈ (s+, s+ + 1]

ö1 := 0, b1,1 := 0, d1,0 = · · · = d1,2∆(H)−1 := 0

E := {s−, s+ + 1}

constitutes a regular general Hamiltonian h. Let W be the monodromy matrix
of h, then by the above lemma W ?∞ = qH .
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Consider the function W̃ := T√W defined as in [KWW1, Definition 3.1],

and let h̃ be a regular general Hamiltonian whose monodromy matrix equals W̃ ;
existence follows from [KWW1, Theorem 3.2] and the Inverse Spectral Theorem
[KW/VI, 1.3]. Then, by [KWW1, Lemma 3.3, (3.4)],

z(W̃ ?∞)(z2) = (W ?∞)(z) = qH(z) .

This implies that W̃ ?∞ = qHev . If we had ind− W̃ = 0, this relation would
imply that Hev ends with an indivisible interval of type 0, which it does not.
Hence, ind− W̃ > 0, and the above lemma yields that h̃ has only one singularity,
and that the Weyl coefficient of the Hamiltonian function of h̃ to the left of its
singularity equals qHev . Thus, Hev is a reparameterization of the Hamiltonian
function of h̃ to the left of the singularity, and hence satisfies ∆(Hev) <∞.

Conversely, assume (ii). In essence, we reverse the above procedure. Con-
sider the regular general Hamiltonian h̃ given by the data

n = 1, 0, v̂(s+), v̂(s+) + 1

Hev(x), x ∈ [0, v̂(s+)), H1(x) :=
1

(x− s+)2
ξ0ξ

T
0 , x ∈ (v̂(s+), v̂(s+) + 1]

ö1 := 0, b1,1 := 0, d1,0 = · · · = d1,2∆(Hev)−1 := 0

E := {0, v̂(s+) + 1}

and let W̃ be its monodromy matrix. Then W̃ ?∞ = qHev.
Consider the function W := T2,0W̃ defined as in [KWW1, Definition 3.1],

then T√W = W̃ , cf. [KWW1, Lemma 3.3, (iii)]. Let h be a regular gen-
eral Hamiltonian whose monodromy matrix equals W . We have ind−W ≥
ind− W̃ > 0 and

(W ?∞)(z) = z(W̃ ?∞)(z2) = zqHev(z2) = qH(z) .

By the above lemma, this general Hamiltonian has only one singularity, and the
Weyl coefficient of the Hamiltonian function of h to the left of the singularity
equals qH . As before it follows that ∆(H) <∞. q

In order to establish the relation between the quantities ∆(H) and ∆(Hev),
assuming they are finite, we employ [W1, Corollary 4.10]; the case we use is in
essence [LaWo1, Theorem 5.1].

Proof (of the formula relating ∆(H) with ∆(Hev)). Denote the sequences of
poles of qHev by (λk), and assume that this sequence is arranged increasingly,
i.e.

0 = λ0 < λ1 < λ2 < λ3 < . . .

Then the sequence (γk) of poles of qH is nothing but

γ0 = 0, γ±k = ±
√
λk, k ≥ 1 .

Set

Ã(z) :=z
∏
k≥1

(
1− z

λk

)
,

A(z) :=z
∏
k 6=0

(
1− z

γk

)
= z

∏
k≥1

(
1− z2

λk

)
,
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and consider the conditions (on positive integers Ñ ,N)

ĨÑ :=
∑
k∈N

λ−2Ñ
k

1

Ã′(λk)2|Res(qHev , λk)|
<∞ , (A.1)

IN :=
∑
k∈N

λ−Nk
1

A′(
√
λk)2|Res(qH ,

√
λk)|

<∞ . (A.2)

Then [W1, Corollary 4.10] says that (remember that qH is odd)

∆(Hev) =

{
1 , (A.1) holds for Ñ = 1

min
{
Ñ ∈ N : (A.1) holds for Ñ

}
− 1 , otherwise

(A.3)

∆(H) =

{
1 , (A.2) holds for N = 1

min
{
N ∈ N : (A.2) holds for N

}
− 1 , otherwise

(A.4)

We compute

Res(qHev , λk) = lim
z→λk

(z − λk)qHev(z) =

= lim
z→λk

(
√
z −

√
λk)(
√
z +

√
λk)

qH(
√
z)√
z

= 2 Res(qH ,
√
λk) .

Next, Ã(z2) = zA(z), and hence 2zÃ′(z2) = A(z) + zA′(z). For z =
√
λk, thus

2Ã′(λk) = A′(
√
λk) .

Hence, the fraction in one summand of the series in (A.1) is just double the
fraction in the corresponding summand of the series in (A.2). Hence, (A.1)
holds for some Ñ if and only if (A.2) holds for 2Ñ . Combining this with (A.3)
and (A.4), it is easily seen that

∆(Hev) =

{
1 , ∆(H) = 1[∆(H)

2

]
, otherwise

and this is the required formula. q
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[KWW1] M.Kaltenbäck, H.Winkler, H.Woracek: Singularities of generalized
strings, Oper. Theory Adv. Appl. 163 (2006), 191–248.
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