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Abstract

The two-dimensional Hamiltonian system

(∗) y
′(x) = zJH(x)y(x), x ∈ (a, b),

where the Hamiltonian H takes non-negative 2 × 2-matrices as values,

and J :=
(

0 −1
1 0

)

, has attracted a lot of interest over the past decades.

Special emphasis has been put on operator models and direct and inverse
spectral theorems. Weyl theory plays a prominent role in the spectral
theory of the equation, relating the class of all equations (∗) to the class
N0 of all Nevanlinna functions via the construction of Titchmarsh–Weyl
coefficients.

In connection with the study of singular potentials, an indefinite (Pon-
tryagin space) analogue of equation (∗) was proposed, where the ‘general
Hamiltonian’ is allowed to have a finite number of inner singularities. Di-
rect and inverse spectral theorems, relating the class of all general Hamil-
tonians to the class N<∞ of all generalized Nevanlinna functions, were
established.

In the present paper, we investigate the spectral theory of general
Hamiltonians having a particular form, namely, such which have only one
singularity and the interval to the left of this singularity is a so-called
indivisible interval. Our results can comprehensively be formulated as
follows.

– We prove direct and inverse spectral theorems for this class, i.e.
we establish an intrinsic characterization of the totality of all
Titchmarsh–Weyl coefficients corresponding to general Hamiltoni-
ans of the considered form.

– We determine the asymptotic growth of the fundamental solution
when approaching the singularity.

– We show that each solution of the equation has ‘polynomially regu-
larized’ boundary values at the singularity.

Besides the intrinsic interest and depth of the presented results, our mo-
tivation is drawn from forthcoming applications: the present theorems
form the core for our study of Sturm–Liouville equations with two sin-
gular endpoints and our further study of the structure theory of general
Hamiltonians (both to be presented elsewhere).
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1 Introduction

In order to explain our present results and their significance, we need to re-
call the theory of positive definite and indefinite Hamiltonian systems up to
a certain extent. We thus divide this introductory section into five parts: in
the first two parts, we recall the required notions and facts, then we discuss in
detail the present theorems, our motivation, and the organisation of the present
manuscript.

Two-dimensional positive definite Hamiltonian systems.

Consider a Hamiltonian system of the form

y′(x) = zJH(x)y(x), x ∈ (a, b), (1.1)

where (a, b) is some (possibly unbounded) interval, z is a complex parameter,

J :=
(

0 −1

1 0

)
and H is a 2× 2-matrix-valued locally integrable function defined

on (a, b) which takes real non-negative values and does not vanish on any set of
positive measure. The function H is called the Hamiltonian of the system (1.1).

Hamiltonian systems have been intensively analysed via various approaches.
Operator methods were used, e.g. in [AD], [dB], [GK], [GM], [HSW], [K1]–[K4],
[KL4], [O], [S].

With the system (1.1) a Hilbert space L2(H) and a (maximal) differential
operator Tmax(H) acting in this space are associated (actually, Tmax(H) may
be a linear relation, i.e. a multi-valued operator). This viewpoint goes back
to [K1]. Our standard reference is [HSW] where the matters are laid out in a
modern language. We recall the basic facts needed in the present paper in §2.c
below.

The spectral properties of Tmax(H) highly depend on the growth of H to-
wards the endpoints a and b. One says that Weyl’s limit circle case prevails for
H at a (or at b) if for one (and hence for all) x0 ∈ (a, b),

x0∫

a

trH(x) dx <∞

(
or

b∫

x0

trH(x) dx <∞

)
, (1.2)

and one speaks of Weyl’s limit point case at a (or at b) if the respective integral
diverges. It follows from the non-negativity of H(x) that H is in the limit circle
case at a if and only if all entries of H are integrable at a, i.e. a is a regular
endpoint. This is also equivalent to the fact that all solutions of (1.1) are in
L2(H).

Assume that a is finite and that H is in the limit circle case at a and in the
limit point case at b. Then a complex-valued function: its Titchmarsh–Weyl
coefficient qH is associated withH, which is constructed as follows. Let θ(x; z) =
(θ1(x; z), θ2(x; z))

T and ϕ(x; z) = (ϕ1(x; z),ϕ2(x; z))
T be the solutions of (1.1)

with initial values

θ(a; z) =

(
1

0

)
, ϕ(a; z) =

(
0

1

)
,

so that the matrix function

WH(x; z) :=

(
θ1(x; z) θ2(x; z)

ϕ1(x; z) ϕ2(x; z)

)
(1.3)
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is (the transpose of) the fundamental solution of (1.1). The limit point condition
at b implies that, for each z ∈ C \ R, there exists a unique number qH(z) ∈ C

such that
θ(· ; z)− qH(z)ϕ(· ; z) ∈ L2(H).

The function qH is called Titchmarsh–Weyl coefficient. Alternatively, it can be
obtained as the limit (for τ ∈ R ∪ {∞})

qH(z) = lim
xրb

θ1(x; z)τ + θ2(x; z)

ϕ1(x; z)τ +ϕ2(x; z)
, (1.4)

which exists locally uniformly on C \ R and does not depend on τ . The
Titchmarsh–Weyl coefficient qH belongs to the Nevanlinna class N0, i.e. it is
analytic on C \ R, satisfies qH(z) = qH(z), z ∈ C \ R, and

Im z · Im qH(z) ≥ 0, z ∈ C \ R. (1.5)

It plays a prominent role in the spectral theory of the system (1.1). For example,
it generates, via its Herglotz integral representation, a spectral measure µH and
a Fourier transform from L2(H) onto L2(µH). The Inverse Spectral Theorem
by L. deBranges (see, e.g. [dB] and [Wi1]) states that the assignment

H 7−→ qH (1.6)

sets up a bijective correspondence between the set of all Hamiltonians of the
considered kind (up to reparameterization, i.e. changes of the independent vari-
able) and the Nevanlinna class N0. In view of this fact it is an obvious task to
try to translate properties of H into properties of qH . However, the mentioned
Inverse Spectral Theorem is quite involved and (in general) non-constructive.
Thus it is usually far from easy to find correspondences between properties of
H and qH . For the purpose of illustration let us give two theorems of this type.

The Titchmarsh–Weyl coefficient qH belongs to the Stieltjes class (i.e. it has
an analytic continuation to C\ [0,∞) and takes non-negative values on (−∞, 0))
if and only if the Hamiltonian H is of the form (where ξα := (cosα, sinα)T )

H(x) = h(x) · ξφ(x)ξ
T
φ(x), x ∈ (a, b) a.e., (1.7)

with real-valued functions h(x), φ(x) such that h is non-negative, locally inte-
grable and positive a.e. on [a, b) and φ is non-increasing with φ(x) ∈ [0, π2 ] for
x ∈ (a, b); see, e.g. [WW, Corollary 3.2]. This result can be seen as a direct and
inverse spectral theorem: The ‘direct part’ is that the Titchmarsh–Weyl coeffi-
cient of a Hamiltonian of the form (1.7) belongs to the Stieltjes class, and the
‘inverse part’ that the Hamiltonian corresponding to a Stieltjes class function is
indeed of the form (1.7).

A second result of this type is the following: the Hamiltonian H starts with
an indivisible interval of type 0, i.e.

H(x) = h(x) · ξ0ξ
T
0 =

(
h(x) 0

0 0

)
, x ∈ (a, a+ ε) a.e.,

for some ε > 0 and some locally integrable, non-negative function h on (a, a+ε)

if and only if limyր∞
qH(iy)

iy
> 0; see, e.g. [Wi1, Lemma 3.1].
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This characterization of ‘limyր∞
qH(iy)

iy
> 0’ is a simple instance of a general

intuitive idea, namely, that the behaviour of qH at infinity corresponds to the
behaviour of H at its left endpoint. Another, more involved, instance of the
same principle can be found in [WW].

The Pontryagin space analogue.

In the theory of operators in spaces with an indefinite inner product an extension
of the class N0 appeared and has proved to be useful: the so-called generalized
Nevanlinna class N<∞; see, e.g. [KL1], [KL2]. Thereby, instead of analytic
functions, one considers meromorphic functions on C\R and replaces condition
(1.5) by requiring that the Nevanlinna kernel has a finite number of negative
squares, cf. Definition 2.1 below. The extension of N0 to N<∞ on the right-
hand side of (1.6) corresponds to admitting certain Hamiltonian systems with a
finite number of singularities on the left-hand side. Very roughly speaking, we
may imagine a Hamiltonian system of this kind with a general Hamiltonian h

as follows:

h :

σ0

H0

×
 

b1j
ö1

σ1
!
d1j

H1

×

 

b2j
ö2

σ2
!
d2j

H2 Hn−1

×

 

bnj

ön

σn
!
dnj

Hn

σn+1

where Hi are classical Hamiltonians which are not integrable on any side of the
singularities σ1, . . . , σn, i.e. they are in Weyl’s limit point case, where the data
öi, bij describe what happens to a solution when passing through the singularity,
and the data dij describe a ‘local interaction’ of the potential to the left and to
the right of the singularity. We say that the general Hamiltonian h is regular if
Hn is in the limit circle case at σn+1. Otherwise, h is called singular.

For the purpose of explaining our present results we prefer to content our-
selves in this introduction with the above given imprecise and intuitive ‘defini-
tion’ of a general Hamiltonian. The reader who is seeking for logically consistent
ordering should read 2.16–Definition 2.18 before proceeding. However, the pre-
cise definition is quite long and involved1. More explanations are given in the
paragraphs below Definition 2.18.

For a general Hamiltonian h an operator model consisting of a Pontryagin
space boundary triple (P(h), T (h),Γ(h)) was constructed, where P(h) is a Pon-
tryagin space, T (h) is the maximal operator (or linear relation) and Γ(h) are
boundary mappings; see [KW/IV]. Analogues ωh and qh of the fundamental
solution WH and the Titchmarsh–Weyl coefficient qH were constructed, and a
Fourier transform onto a space generated by a distribution φh instead of a mea-
sure µH was defined. An Inverse Spectral Theorem was proved which states
that the assignment

h 7−→ qh

1Unfortunately, at present, we do not know a smoother way to introduce the notion of
general Hamiltonians.
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sets up a bijective correspondence between the set of all singular general Hamil-
tonians (up to reparameterization) and the generalized Nevanlinna class N<∞;
see [KW/V], [KW/VI]. The ‘inverse’ part of this theorem, i.e. that for each
q ∈ N<∞ there exists an essentially unique general Hamiltonian h with q = qh
is similarly involved and non-constructive as the corresponding result in the clas-
sical (positive definite) case. In the indefinite situation even the direct problem,
i.e. the construction of the Titchmarsh–Weyl coefficient qh for given h, is in
general non-constructive.

A different approach towards understanding Hamiltonian systems with inner
singularities was proposed in [RS1], [RS2]. There 2m×2m-systems were studied
with the method of operator identities. This leads to constructive constructions
for certain classes of systems. In the positive definite setting, this method has
a longer history, see [S] and the references cited therein.

Main results.

We investigate the following class(es) of general Hamiltonians.

1.1 Definition. Let α ∈ [0, π). We say that a singular general Hamiltonian h

belongs to the class Hα if

(gHo.s.) h has exactly one singularity, i.e. is defined on a set of the form
(σ0, σ1) ∪ (σ1, σ2);

(gHα) H0(x) = h0(x) · ξαξTα , x ∈ (σ0, σ1) a.e.,

where again ξα = (cosα, sinα)T . �

The results we are aiming for can be divided into three major themes; the below
named theorems are the main results of the present paper.

A direct and inverse spectral theorem (Theorem 3.1). We show that a general
Hamiltonian h belongs to the class Hα if and only if its Titchmarsh–Weyl coeffi-
cient qh assumes the value cotα at infinity with maximal possible multiplicity2.

This result can be viewed as a far reaching generalization of the above stated

characterization of ‘limyր∞
qH(iy)

iy
> 0’. It is a direct and inverse spectral the-

orem: the ‘direct part’ being that the Titchmarsh–Weyl coefficient of a general
Hamiltonian of class Hα has the mentioned growth property, and the ‘inverse
part’ that the general Hamiltonian corresponding to a generalized Nevanlinna
function with this property indeed belongs to the class Hα.

For the proof of this Theorem 3.1 we analyse the multi-valued part of a cer-
tain self-adjoint realization and use a classical result which connects the struc-
ture of the algebraic eigenspace at ∞ with the growth of the Q-function.

It is interesting to notice that the class of generalized Nevanlinna functions
that appears in the present context as totality of Titchmarsh–Weyl coefficients
has already frequently appeared independently in earlier work; see, e.g. [DeHS],
[DLS], [DKuS], [DLSZ], [DLuS1], [DLuS2], [DLuS3] and the references therein.
A posteriori, this is no surprise; in our forthcoming work [LW3], we shall obtain
a structural explanation.

Asymptotic behaviour of the fundamental solution at a singularity (Theorems 4.1
and 4.21). Let h ∈ Hα and consider the fundamental solution ωh of the sys-
tem. We show that three of the four entries of ωh (if rotated appropriately

2For the precise formulation of this terminology see Definition 2.2 and Definition 2.3.
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according to the angle α) pass continuously through the singularity, and we
determine precisely the rate of growth of the fourth entry. This is Theorem 4.1,
the most involved and elaborate result of the paper. Its proof is based on an
inductive procedure to reduce the negative index and on some classical results
from complex analysis, in particular, the theory of de Branges spaces of entire
functions.

Using the knowledge about Hα we can deduce a continuity result for the fun-
damental solution of an arbitrary general Hamiltonian h. Namely that, for each
singularity of h, one row of ωh (again, ωh should be rotated appropriately) passes
continuously through the singularity. Also, we determine the rate of growth of
the other entries of ωh. This is Theorem 4.21; the proof uses some complex
analysis and some standard methods from the theory of general Hamiltonians.

A noteworthy corollary for the classical ‘positive definite’ theory is that,
for a certain kind of Hamiltonians H, the limit (1.4) defining the Titchmarsh–
Weyl coefficient qH exists locally uniformly on the domain of analyticity of qH
including intervals of the real line. The general formulation is Corollary 4.22.

Regularized boundary values (Theorems 5.1 and 5.2). Let h ∈ Hα and let ψ(· ; z)
be a solution of the corresponding differential equation (1.1) to the right of the
singularity. We show that the projection of ψ(· ; z) onto a certain direction
(depending on the value of α) attains a boundary value at the singularity and
that the projection onto the orthogonal direction can be regularized with ‘H-
polynomials’ so that it attains a boundary value, cf. Theorem 5.1. We show
that there exists a unique solution for which regularization is not necessary,
cf. Theorem 5.2. The proof of these results relies heavily on the usage of a
function space model for the boundary triple associated with h (and, of course,
the continuity result Theorem 4.1).

These results have two important corollaries which shed significant light on
the behaviour of the system and at the influence of a singularity: first, Corollary
5.7, which provides a fairly explicit way to compute the fundamental solution
and the Titchmarsh–Weyl coefficient (i.e. to solve the direct spectral problem);
second, Corollary 5.9, which shows explicitly how the data part of h concentrated
in the singularity and the respective local interaction parameters influence the
Titchmarsh–Weyl coefficient.

Motivation and forthcoming applications.

A major motivation to study general Hamiltonians of the class Hα is that exactly
this kind of general Hamiltonians appear when one investigates the spectral
theory of classical (positive definite) Hamiltonian systems with two singular
endpoints. In fact, this was the origin of our studies (where we first realized
the significance of the class Hα). Thereby the basic idea is simple. Let H be a
Hamiltonian, say, on (0,∞), which is in the limit point case at both endpoints.
Assume that appropriate growth restrictions towards the endpoint 0 are satisfied
(so to enable the following construction). We identify H as a part of a general
Hamiltonian h of the class Hα by setting σ1 = 0, σ2 = ∞, H1 = H, and
choosing the remaining data of h arbitrary. Knowledge about h will then lead
to knowledge about H, i.e. the Pontryagin space theory built up in this paper
can be used to obtain knowledge about this positive definite situation. More
specifically, it is the basis for theorems asserting existence of singular boundary
values, existence of Fourier transforms and inverse spectral theorems. These
results will be presented in the forthcoming paper [LW3].

6



Examples of systems where the above described strategy works occur when
considering Sturm–Liouville equations with singular potentials. As a simple
example consider the Bessel equation. Using an appropriate Liouville transfor-
mation and rewriting the equation as a 2×2-system one obtains a Hamiltonian
system with Hamiltonian (γ is an appropriate real number ≥ 1)

H(x) =

(
xγ 0
0 x−γ

)
, x ∈ (0,∞).

One can check that this Hamiltonian satisfies the requirements needed for an
application of the above method; details will be laid out in [LW3].

Besides this application to the theory of singular differential equations, the
present results can be used to understand the structure of singularities and their
influence on the solutions of the system in more detail. Intuitively speaking, the
reason for this is that a singularity of an arbitrary general Hamiltonian behaves
like the singularity of a general Hamiltonian of class Hα when approaching it
from one side (either from the left or from the right). Local interaction between
the two sides is more involved to capture but can be handled by similar methods
as used in the present manuscript. As a typical application of this principle,
one can provide a method to solve the direct spectral problem for an arbitrary
general Hamiltonian in a more constructive way (by means of integrating posi-
tive definite Hamiltonian systems). Details are not yet worked out and will be
presented elsewhere.

Finally, it must be said that we find the presented theorems deep and in-
teresting on their own right: partial continuity of the fundamental solution at
a singularity is a striking and powerful property, the explained direct and in-
verse spectral theorem is a perfect instance of the mentioned intuitive principle
that the behaviour of the Titchmarsh–Weyl coefficient at infinity is connected
with the behaviour of the Hamiltonian at its left endpoint, the formula show-
ing the influence of the parameters of the singularity on the Weyl coefficient is
beautifully explicit and simple, etc.

Organisation of the manuscript.

In Section 2 we set up some notation and recall the definitions of the generalized
Nevanlinna class, its subclasses under consideration and general Hamiltonians.
Moreover, we provide some facts about the model associated with a general
Hamiltonian and some useful tools. After this, the manuscript is naturally
divided into sections according to the above explained themes.

Table of contents

1. Introduction p.2

2. Some preliminaries and supplements p.8

3. Characterisation of Titchmarsh–Weyl coefficients p.27

4. Partial continuity of the fundamental solution p.32

5. Regularized boundary values p.59
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2 Some preliminaries and supplements

Let us first fix some notation that is used throughout the paper. Set

J :=

(
0 −1

1 0

)
, ξφ :=

(
cosφ

sinφ

)
, (2.1)

and denote by C
+ the open upper half-plane, i.e. C+ := {z ∈ C : Im z > 0} and

by N and N0 the set of positive and non-negative integers, respectively. For a
2× 2-matrix M = (mij)

2
i,j=1 and a scalar τ ∈ C we define the fractional linear

transformation M ⋆ τ as

M ⋆ τ :=





m11τ +m12

m21τ +m22
, τ ∈ C,

m11

m21
, τ = ∞.

(2.2)

It is easy to see that M ⋆ (N ⋆ τ) = (MN) ⋆ τ if N is another 2× 2-matrix.
The rest of this section is divided into subsections as follows. In §2.a and §2.b

we recall definitions and properties of certain classes of holomorphic functions.
In §2.c the notion of boundary triples is recalled in a form that is used in
the paper. Properties of classical (positive definite) Hamiltonian systems are
reviewed in §2.d, whereas in §2.e the definition of general Hamiltonians is given.
In §2.f a certain class of general Hamiltonians with one singularity is studied and
a function space operator model is described in detail. Finally, in §2.g rotation
isomorphism are recalled, a technical tool which is used in later proofs.

a. The generalized Nevanlinna class.

We recall the definition of the class N<∞ of generalized Nevanlinna functions.

2.1 Definition. Let q be a complex-valued function and let κ ∈ N0. We write
q ∈ Nκ if

(N1) q is real (meaning q(z) = q(z)) and meromorphic on C \ R;

(N2) with D denoting the domain of holomorphy of q, the Nevanlinna
kernel (for z = w this formula should be interpreted appropriately as
a derivative)

Nq(w, z) :=
q(z)− q(w)

z − w
, z, w ∈ D,

has κ negative squares on D. The latter means that for every choice
of n ∈ N and z1, . . . , zn ∈ D the matrices (Nq(zi, zj))

n
i,j=1 have at

most κ negative eigenvalues and for at least one choice of n and zi
the matrix has exactly κ negative eigenvalues.

We agree that the constant function with value ∞ belongs to N0. Further, we
set

N<∞ :=
⋃

κ∈N0

Nκ

and write ind− q = κ to express that q ∈ N<∞ belongs to Nκ. The set N<∞ is
called the class of generalized Nevanlinna functions. �
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It is a classical result that the class N0 \ {∞} consists of those functions
q that are holomorphic on C \ R, are real and satisfy Im z · Im q(z) ≥ 0 for
z ∈ C \ R. This fact goes back to as far as [H] or [P].

A generalized Nevanlinna function cannot grow arbitrarily fast towards ∞.
In fact, for each q ∈ Nκ, the limit

lim
z→̂i∞

q(z)

z2κ+1
exists and is in [0,∞).

Here →̂ denotes a non-tangential limit, i.e. a limit inside a sector of the form
{z ∈ C : arg ∈ [α, π − α]} with α ∈ (0, π2 ). This fact was shown, e.g. in [L].
Even more precise knowledge about the power growth of generalized Nevanlinna
functions is available. Using the canonical factorization established in [DLLS],
one can easily deduce that, for each q ∈ Nκ, there exists a unique non-negative
integer n, not exceeding κ, such that

lim
z→̂i∞

q(z)

z2n+1
∈ [0,∞) but lim

z→̂i∞

q(z)

z2n−1
∈ (−∞, 0) ∨ lim

z→̂i∞

∣∣∣ q(z)
z2n−1

∣∣∣ = ∞.

In the present paper the subclass of N<∞ appears which consists of all functions
having, in this sense, maximal possible growth at infinity, i.e. n = κ.

2.2 Definition. For κ ∈ N we denote by N
(∞)
κ the set of all functions q ∈ Nκ

such that

lim
z→̂i∞

q(z)

z2κ−1
∈ (−∞, 0) or lim

z→̂i∞

∣∣∣ q(z)
z2κ−1

∣∣∣ = ∞, (2.3)

where →̂ again denotes the non-tangential limit. Moreover, we set

N
(∞)
<∞ :=

⋃

κ∈N

N (∞)
κ .

�

The classN
(∞)
<∞ previously appeared in many papers in the context of Sturm–

Liouville equations with singular endpoints or singular perturbations, see, e.g.
[DS], [FL], [KuLu] and the papers mentioned in the Introduction.

Slightly more generally, we also consider the subclasses of N<∞ of all func-
tions which attain a certain value τ ∈ R at∞ with maximal possible multiplicity.
Related notions were considered, e.g. in [BL, Definition 3.9].

2.3 Definition. Let τ ∈ R. We denote by N
(τ)
κ the set of all functions q ∈ Nκ

such that
1

τ − q(z)
∈ N (∞)

κ .

Further, we set

N
(τ)
<∞ :=

⋃

κ∈N

N (τ)
κ .

�

Note that q ∈ Nκ implies that 1
τ−q

∈ Nκ.

9



2.4 Remark. Let κ ∈ N and τ ∈ R. Then a function q ∈ Nκ belongs to N
(τ)
κ if

and only if
lim

z→̂i∞
z2κ−1

(
q(z)− τ

)
∈ [0,∞).

�

The class N
(∞)
<∞ admits an operator theoretic interpretation. In the language

of [KL3] and [L], the condition (2.3) means that ∞ is a generalized pole of non-
positive type with degree of non-positivity equal to ind− q. Equivalently, one can
say that q has a generalized pole of non-positive type at∞ with maximal possible
degree of non-positivity permitted by the negative index and, consequently, no
finite generalized poles of non-positive type. More precisely, the statement in
the following lemma is true, which follows, e.g. from [L, Theorem 3.2] and which
is used in Section 3. Recall that the algebraic eigenspace at infinity of a linear
relation A in a Pontryagin space P is the set of all elements of Jordan chains
at ∞, where a Jordan chain at ∞ is a sequence of vectors g0, . . . , gn ∈ P with
g0 = 0 such that (gi−1; gi) ∈ A for all i = 1, . . . , n.

2.5 Lemma. Let q ∈ Nκ. Moreover, let A be a self-adjoint relation in a
Pontryagin space (P, [ · , · ]) and v ∈ P such that

q(z) = q(z0) + (z − z0)
[(
I + (z − z0)(A− z)−1

)
v, v
]
, z ∈ ρ(A), (2.4)

where z0 ∈ ρ(A) is fixed and assume that this representation is minimal, i.e.

P = c.l.s.
{(
I + (z − z0)(A− z)−1

)
v : z ∈ ρ(A)

}

where c.l.s. stands for ‘closed linear span’. Then

q ∈ N (∞)
κ ⇐⇒ ν∞(A) = κ

where ν∞(A) is the degree of non-positivity of ∞, i.e. the maximal dimension
of a non-positive A−1-invariant subspace of the algebraic eigenspace at infinity
of A.

b. Some classes of entire functions.

In this subsection we recall several classes of scalar and matrix-valued entire
functions, which are needed in the proofs in later sections. Note that an entire
function is called real if f(z) = f(z) for all z ∈ C. Moreover, we set f#(z) :=
f(z). First we recall the definition of the Pólya class; for details see, e.g. [dB,
Section 7].

2.6 Definition. An entire function f belongs to the Pólya class if

(P1) f has no zeros in the upper half-plane C
+;

(P2) f satisfies |f(z)| ≥ |f(z)| for z ∈ C
+;

(P3) for each fixed x ∈ R the function y 7→ |f(x+ iy)| is non-decreasing on
(0,∞).

�

Let us next consider functions of bounded type; see, e.g. [RR, Definition 3.15
and Theorem 3.20] or [dB, Section 8].
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2.7 Definition. A function that is analytic in the upper half-plane C
+ is said

to be of bounded type if it can be written as a quotient f(z) = p(z)/q(z) of
two analytic functions which are bounded throughout C+ and where q is not
identically equal to 0. �

According to [dB, Problem 24] it is possible to choose p and q such that q
has no zeros in C

+. One can define bounded type in the lower half-plane in a
similar way.

2.8 Remark.

(i) A function from N<∞ is of bounded type in the upper and lower half-
planes; see, e.g. [KW/I, Proposition 2.4].

(ii) According to [dB, Problem 34] an entire function f that satisfies |f(z)| ≥
|f(z)| for z ∈ C

+ and is of bounded type in the upper half-plane belongs
to the Pólya class. In particular, a real entire function that is of bounded
type in the upper half-plane belongs to the Pólya class.

�

Next we recall a generalization of Hermite–Biehler functions, namely func-
tions belonging to the class HBκ. When E : D → C is an analytic function
defined on some open subset D of the complex plane, we define a kernel KE as

KE(w, z) :=
i

2
·
E(z)E(w)− E#(z)E#(w)

z − w
, z, w ∈ D.

For z = w this formula has to be interpreted appropriately as a derivative, which
is possible by analyticity. For more details see, e.g. [KW/V, §2.e].

2.9 Definition. Let E be a complex-valued function defined on C and let
κ ∈ N0. We write E ∈ HBκ if

(HB1) E is entire;

(HB2) E and E# have no common non-real zeros;

(HB3) the kernel KE has κ negative squares on C.

We use the notation
HB<∞ :=

⋃

κ∈N0

HBκ

and write ind−E = κ to express that a function E ∈ HB<∞ belongs to HBκ.
The class HB<∞ is called the indefinite Hermite–Biehler class. �

It is a classical result that an entire function E belongs to the class HB0 if
and only if either it is a constant multiple of a real entire function which has
no non-real zeros, or it satisfies |E(z)| > |E(z)| for z ∈ C

+. For details see, e.g.
[Le, Chapter 7].

By means of the reproducing kernel KE , each function E ∈ HB<∞ gener-
ates a Pontryagin space P(E) which consists of entire functions. This space is
referred to as the deBranges Pontryagin space generated by E; see [ADRS] and
[KW/I].
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The indefinite Hermite–Biehler class is related to the generalized Nevanlinna
class: let E(z) ∈ HB<∞ and write E = A− iB with the real entire functions

A :=
1

2
(E + E#), B :=

i

2
(E − E#).

Then q = B
A

belongs to N<∞ with ind− q = ind−E. This follows from the
relation

KE(w, z) = A(z)Nq(w, z)A(w), z, w ∈ C, A(z), A(w) 6= 0.

Finally in this subsection, let us define a class of matrix-valued entire func-
tions. Functions from this class appear later as fundamental solutions of general
Hamiltonians. When W is an entire 2× 2-matrix-valued function that satisfies
W (z)JW (z)∗ = J for z ∈ C, then a kernel HW is defined by

HW (w, z) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ C,

where J is as in (2.1). For z = w this formula has to be interpreted appropriately
as a derivative.

2.10 Definition. Let W = (wij)
2
i,j=1 be a 2×2-matrix-valued function and let

κ ∈ N0. We write W ∈ Mκ if

(M1) the entries wij of W are real entire functions;

(M2) detW (z) = 1 for z ∈ C, and W (0) = I;

(M3) the kernel HW has κ negative squares on C.

Note that the conditions (M1) and (M2) together imply thatW (z)JW (z)∗ = J .
Moreover, we set

M<∞ :=
⋃

κ∈N0

Mκ

and write ind−W = κ to express that W ∈ Mκ.

Define a map t : M<∞ → R by

t(W ) := tr
(
W ′(0)J

)
= w′

12(0)− w′
21(0) (2.5)

for W = (wij)
2
i,j=1 ∈ M<∞. This map t is used, e.g. to measure the growth of

the unbounded entry of the fundamental solution of an indefinite Hamiltonian.
�

Each matrix W ∈ M<∞ generates, by means of the kernel HW , a repro-
ducing kernel Pontryagin space K(W ) whose elements are 2-vector-valued entire
functions; see, e.g. [ADRS] and [KW/V, §2.a].

If W = (wij)
2
i,j=1 ∈ M<∞, then the function E(z) := w11(z) − iw12(z)

belongs to HB<∞ with ind−E ≤ ind−W , which follows from the relation

KE(w, z) = (1, 0)HW (w, z)

(
1

0

)
z, w ∈ C;

12



cf. [KW/V, §2.e]. Hence w12

w11
belongs to N<∞.

c. Boundary triples.

Let us also recall the notion of boundary triples as introduced in [KW/IV,
Definition 2.7]. This definition is slightly different from but related to the one
in [DeM].

2.11 Definition. A triple (P, T,Γ) is called a boundary triple if

(i) (P, [·, ·]) is a Pontryagin space, which carries a conjugate linear and anti-
isometric involution · : P → P;

(ii) T is a closed linear relation in P that is real, i.e.

(f ; g) ∈ T ⇐⇒ (f ; g) ∈ T ;

(iii) Γ ⊆ T × (C2 × C
2) is a closed linear relation with domΓ = T , which is

compatible with the involution · : P → P in the sense that

(
(f ; g); (a; b)

)
∈ Γ ⇐⇒

(
(f ; g); (a; b)

)
∈ Γ;

(iv) the following abstract Green identity holds:

[g, u]− [f, v] =

(
c

d

)∗(
J 0
0 −J

)(
a

b

)

when
(
(f ; g); (a; b)

)
,
(
(u; v); (c; d)

)
∈ Γ;

(v) ker Γ = T ∗.

�

In applications, e.g. to differential operators, often the relation T in a bound-
ary triple (P, T,Γ) is the maximal relation, e.g. the differential operator with
no boundary conditions imposed; it is the adjoint of a symmetric relation. The
relation Γ often maps the functions in the domain of T (or more precisely, pairs
in the relation T ) onto the boundary values at the left and/or right endpoint
of the interval or linear combinations of them. The abstract Green identity is
then nothing else than a classical Green or Lagrange identity, which follows from
integration by parts. In the next subsection a boundary triple associated with
a classical (positive definite) Hamiltonian system is recalled. Note that a, b, c, d
in the abstract Green identity are 2-vectors.

Two boundary triples (P, T,Γ), (P̃ , T̃ , Γ̃) are called isomorphic if there exists
a pair (̟,φ) (which is then called an isomorphism) such that

(i) ̟ is an isometric isomorphism from P onto P̃ that is compatible with the
respective involutions in the sense that ̟(x) = ̟(x) for x ∈ P;

(ii) φ is an isometric isomorphism from
(
C

2 × C
2,
((

J 0
0 −J

)
·, ·
))

onto itself;

(iii) (̟ ×̟)(T ) = T̃ ;

(iv) Γ̃ ◦ (̟ ×̟)|T = φ ◦ Γ.
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2.12 Remark. For certain boundary triples one can construct a matrix function ω
from the class Mκ and an isometric isomorphism Ξ from P onto the reproducing
kernel space K(ω) such that the symmetric operator T ∗ corresponds to the
operator of multiplication by the independent variable in the space K(ω); for
details see [KW/V, Definition 4.3 and Theorem 4.19]. This construction is
related to Krein’s representation of entire operators. �

d. More facts about Hamiltonian systems.

A function H : (a, b) → R2×2, where (a, b) is an interval with −∞ ≤ a < b ≤ ∞,
is called a Hamiltonian if

the values of H are real non-negative matrices and the function H is

locally integrable and does not vanish on any set of positive measure.
(2.6)

In connection with the differential equation (1.1) one often considers also the
matrix differential equation

∂

∂x
W (x; z)J = zW (x; z)H(x), x ∈ (a, b), (2.7)

where W (x; z) is a 2 × 2-matrix for x ∈ (a, b), z ∈ C. If a ∈ R and (1.1) is in
the limit circle case at a (recall the definition from the Introduction), then the
differential equation (2.7) together with the initial condition W (a; z) = I has
a unique solution, which we denote by WH , cf. (1.3). The rows of WH satisfy
the differential equation (1.1) and y(x) = [(a1, a2)WH(x; z)]T is a solution of
(1.1) satisfying the initial conditions y(a) = (a1, a2)

T . Moreover, if WH,x1
(x; z)

denotes the solution of (2.7) satisfying the initial condition WH,x1
(x1; z) = I

with some x1 ∈ (a, b), then

WH(x; z) =WH(x1; z)WH,x1
(x; z)

for x ∈ [x1, b).

2.13. Properties of WH . Assume that (1.1) is in the limit circle case at a. For
fixed x ∈ (a, b) the matrix function WH(x; · ) belongs to the class M0, where
M0 was defined in Definition 2.10. If one combines Theorems 38, 27 and 25 in
[dB], then it follows that the entries WH(x; · )ij , i, j = 1, 2, of WH(x; · ) are of
bounded type in the upper half-plane, and since the functions are real, also in
the lower half-plane. By Remark 2.8 (ii) this implies that WH(x; · )ij belongs
to the Pólya class. Since WH(x; 0)12 = WH(x; 0)21 = 0, it follows from [dB,
Lemma 1 in §1.7] that

WH(x; z)12
z

and
WH(x; z)21

z
(2.8)

are also from the Pólya class. Moreover, the function E(z) := WH(x; z)11 −
iWH(x; z)12 belongs to the Hermite–Biehler class HB0. Hence E induces a

de Branges Hilbert space P(E) of entire functions and WH(x;· )12
WH(x;· )11

∈ N0; see §2.b

and [dB]. �

If H is in the limit point case at b, then, with the notation (2.2), the
Titchmarsh–Weyl coefficient qH for (1.1) (as defined in (1.4)) can be written as

qH(z) = lim
xրb

WH(x; z) ⋆ τ, z ∈ C \ R,
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for τ ∈ R ∪ {∞}, where the limit exists locally uniformly in C \ R and is
independent of τ .

With t from (2.5) we have

t
(
WH(x2; · )

)
− t
(
WH(x1; · )

)
=

x2∫

x1

trH(x)dx (2.9)

for a ≤ x1 < x2 < b as can easily be seen.

2.14. Indivisible intervals. An interval (α, β) ⊆ (a, b) is called H-indivisible of
type φ if

H(x) = h(x)ξφξ
T
φ , x ∈ (α, β),

where ξφ is defined in (2.1) and h is a locally integrable function that is positive
almost everywhere; see, e.g. [K2]. If (α, β) is H-indivisible, then, for α < x1 <
x2 < β,

WH(x1; z)
−1WH(x2; z) =W(l,φ)(z)

where

W(l,φ)(z) :=

(
1− lz sinφ cosφ lz cos2 φ

−lz sin2 φ 1 + lz sinφ cosφ

)
(2.10)

and

l =

∫ x2

x1

h(x)dx.

The number
∫ β

α
h(x)dx =

∫ β

α
trH(x)dx is called the length of the indivisible

interval (α, β), which is infinite exactly when H is singular at α or β. �

2.15. The maximal relation Tmax(H). With a Hamiltonian H a maximal linear
relation (i.e. a multi-valued operator), Tmax, can be associated as follows (for
details see, e.g. [KW/IV, §2]). First we recall the definition of the space L2(H):
it is the space of measurable functions f defined on (a, b) with values in C2

which satisfy
∫ b

a
f∗Hf < ∞ and have the property that ξTφ f is constant on

every indivisible interval of type φ, factorized with respect to the equivalence
relation =H where

f =H g ⇐⇒ H(f − g) = 0 a.e.

In the space L2(H) the maximal relation Tmax(H) is defined as

Tmax(H) :=
{
(f ; g) ∈

(
L2(H)

)2
: ∃ representatives f̂ , ĝ of f, g such that

f̂ is locally absolutely continuous and f̂ ′ = JHĝ a.e. on (a, b)
}
.

�

Sometimes we need Green’s identity in the following form: if f and u are abso-
lutely continuous functions on [x1, x2] where a < x1 < x2 < b and g, v are such
that

f ′ = JHg, u′ = JHv, a.e. on (x1, x2),

then
x2∫

x1

u∗Hg −

x2∫

x1

v∗Hf = u(x1)
∗Jf(x1)− u(x2)

∗Jf(x2); (2.11)
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see [KW/IV, Remark 2.20].
With a Hamiltonian H defined on an interval (a, b) also a boundary relation

Γ(H) ⊆ L2(H)2× (C2)2 for Tmax(H) is associated: a pair
(
(f ; g); (c; d)

)
belongs

to Γ(H) if and only if there exists a representative f̂ of f that is absolutely
continuous such that

c =

{
f̂(a) if H is regular at a,

0 if H is singular at a,
d =

{
f̂(b) if H is regular at b,

0 if H is singular at b.

For details see, e.g. [KW/IV, Theorems 2.18 and 2.19].

Let us also recall some properties of Hamiltonian systems which are con-
nected with the behaviour of H at an endpoint. They are needed in the defini-
tion of general (indefinite) Hamiltonians in §2.e.

2.16. Hilbert–Schmidt resolvents. Let H be a Hamiltonian defined on some in-
terval (a, b).

(i) We say that H satisfies the condition (HS−) if for one (and hence for all)
x0 ∈ (a, b) the resolvents of self-adjoint extensions of (Tmax(H|(a,x0)))

∗, i.e.
self-adjoint restrictions of Tmax(H|(a,x0)), are Hilbert–Schmidt operators.
Similarly, we say that (HS+) holds for H if for one (and hence for all)
x0 ∈ (a, b) the resolvents of self-adjoint extensions of (Tmax(H|(x0,b)))

∗ are
Hilbert–Schmidt operators, cf. [KW/IV, §2.3.a].

(ii) It follows, with an obvious change of variable, from [KW/IV, Theorem
2.27] that these properties can be characterized explicitly in terms of H.
Namely, H satisfies (HS−) if and only if there exists a number φ ∈ R such
that for one (and hence for all) x0 ∈ (a, b)

(I−φ) x0∫

a

ξTφHξφ <∞,

where ξφ is defined in (2.1);

(HS−
φ) with M(x) :=

∫ x

x0
H(y) dy,

∣∣∣∣∣∣

x0∫

a

ξTφ+π
2
Mξφ+π

2
ξTφHξφ

∣∣∣∣∣∣
<∞.

If H is in the limit point case at a and satisfies (HS−), then the number
φ ∈ [0, π) such that (I−φ ) and (HS−φ ) hold is uniquely determined; in this
case we denote this unique φ by φ−(H). Clearly, φ−(H) does not depend
on the choice of the cutting point x0.

The property (HS+) is characterized by corresponding conditions (I+φ ),

(HS+φ ). The unique angle φ is denoted by φ+(H) in this case and again
does not depend on x0.
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Let us explicitly consider the case φ = 0; the conditions (I−0 ) and (HS−0 )
read as follows:

(I−0 ) :

x0∫

a

h11(x)dx <∞,

(HS−0 ) :

x0∫

a

x0∫

x

h22(t)dt h11(x)dx <∞.

For (I−π
2

), (HS−π
2

) one has to swap h11 and h22.

If (a, c), with some c ∈ (a, b), is an indivisible interval of type φ and H
is in the limit point case at a, then (I−φ−π

2

) and (HS−φ−π
2

) are satisfied but

(I−φ′), (HS
−
φ′) are not when φ− π

2 − φ′ /∈ πZ.

�

2.17. Some growth condition. Let H be a Hamiltonian defined on some interval
(a, b) which satisfies (HS−) and fix a point x0 ∈ (a, b). Denote by I the operator
f 7→

∫ x

x0
JH(t)f(t) dt. Then there exist unique numbers ρk ∈ R, k ∈ N0, such

that ρ0 = 1 and

n∑

k=0

ρn−kI
kξφ−(H) ∈ L2(H|(a,x0)), n ∈ N0;

see [KW/IV, Corollary 3.5]. If ξφ−(H) is replaced by ξφ−(H)+π
2
, this is no longer

true for all n ∈ N0. We denote by ∆−(H) ∈ N0 ∪ {∞} the number

∆−(H) := inf
{
n ∈ N0 : ∃ω0, . . . , ωn ∈ C such that ω0 6= 0 and

n∑

k=0

ωn−kI
kξφ−(H)+π

2
∈ L2(H|(a,x0))

}
,

where the infimum of the empty set is infinity.
The number ∆−(H) measures in a certain sense the growth of H towards a;

for example ∆−(H) = 0 means that H is in the limit circle case at a because
then all constant vectors are in L2(H|(a,x0)), i.e. H is integrable at a. If (a, c)
is an indivisible interval for some c ∈ (a, b) and H is in the limit point case at
a, then ∆−(H) = 1.

An illustrative toy example occurs in connection with the Bessel equation as
mentioned in the Introduction. One can show that

Hγ(x) =

(
xγ 0

0 x−γ

)
, x ∈ (0,∞),

satisfies (I−0 ) and (HS−0 ), and hence (HS−), and one has ∆−(Hγ) =
⌊
γ+1
2

⌋
.

Assume that ∆−(H) < ∞ and let x0 ∈ (a, b). Then there exist unique

17



absolutely continuous functions wl, l ∈ N0, defined on (a, b) such that

w0 ≡ ξφ−(H)+π
2
,

w′
l+1 = JHwl, l ∈ N0,

wl(x0) ∈ span{ξφ−(H)+π
2
}, l ∈ N0,

wl|(a,x0) ∈ L2(H|(a,x0)), l ≥ ∆−(H).

(2.12)

Note that w0, . . . ,w∆−(H)−1 do not belong to L2(H|(a,x0)). It was shown in
[KW/IV, Lemma 3.12 (i)] that ∆−(H) does not depend on the choice of the
cutting point x0 ∈ (a, b); the functions wl of course do depend on x0. The func-
tions w0, . . . ,w2∆−(H) are used, e.g. to construct regularized boundary values
in Theorem 5.1.

For a Hamiltonian H that satisfies (HS+) a number ∆+(H) is defined in a
similar manner. �

e. General Hamiltonians in detail.

In this subsection we give the definition of a general Hamiltonian as in [KW/IV,
§8]. This definition is somewhat elaborate, and we give some explanations after
the definition.

2.18 Definition. A general Hamiltonian h is a collection of data of the following
kind:

(i) n ∈ N0, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1,

(ii) Hamiltonians Hi : (σi, σi+1) → R
2×2 for i = 0, . . . , n, which satisfy (2.6),

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with
bi,1 6= 0 when öi ≥ 1,

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R where ∆i := max{∆+(Hi−1),∆−(Hi)} for
i = 1, . . . , n, (note that ∆i will be finite by condition (H3) below),

(v) a finite subset E of {σ0, σn+1} ∪
⋃n

i=0(σi, σi+1),

which is assumed to be subject to the following conditions:

(H1) The Hamiltonian H0 is in the limit circle case at σ0. If n ≥ 1, then
Hi is in the limit point case at σi for i = 1, . . . , n, and at σi+1 for
i = 0, . . . , n− 1.

(H2) None of the intervals (σi, σi+1), i = 1, . . . , n − 1, is indivisible2. If
n ≥ 1 and Hn is in the limit point case at σn+1, then also (σn, σn+1)
is not indivisible.

(H3) The Hamiltonian H0 satisfies (HS+) if n ≥ 1; Hi satisfies (HS−)
and (HS+) for i = 1, . . . , n − 1, and Hn satisfies (HS−). We have
∆i <∞, i = 1, . . . , n.

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

2The interval (σ0, σ1) may be indivisible.
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(H5) Let i ∈ {1, . . . , n}. If both Hi−1 and Hi end with an indivisible
interval towards σi, then d1 = 0. If, in addition, bi,1 = 0, then
d0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) 6= ∅ for i = 1, . . . , n − 1. If Hn

is in the limit point case at σn+1, then also E ∩ (σn, σn+1) 6= ∅.
Moreover, E contains all endpoints of indivisible intervals of infinite
length which lie in

⋃n
i=0(σi, σi+1).

(E2) No point of E is an inner point of an indivisible interval.

The common value of φ+(Hi−1) and φ−(Hi) is denoted by φi.
The general Hamiltonian h is called regular or singular if Hn is in the limit

circle case or in the limit point case, respectively, at σn+1. Moreover, we set

ind− h :=

n∑

i=1

(
∆i +

⌊
öi
2

⌋)
+
∣∣{1 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣. (2.13)

�

It is probably helpful to have a more intuitive picture of general Hamiltonians
than their precise definition. We may say that a general Hamiltonian models
a canonical system on [σ0, σn+1) whose Hamiltonian is allowed to have finitely
many inner singularities (these are the points σ1, . . . , σn), and which is in the
limit circle or limit point case at σn+1 depending whether h is regular or singular.
However, H does not behave too badly at its inner singularities in the sense of
(H3).

A singularity itself contributes to the canonical system in two ways. The first
one is a contribution concentrated inside the singularity; passing the singularity
influences a solution, which is modelled by the parameters öi, bij . Actually,
elements in the model space in which an operator acts can be considered as
a combination of functions and distributions concentrated in the singularities.
The parameters öi and bij are needed for the interplay of the functions and the
distributions. The functions themselves have also a singular component, namely
a linear combination of w0, . . . ,w∆i−1; here the parameters dij and condition
(H4) are used for interface conditions at the singularities.

The set E consists of points that split
⋃n

i=0(σi, σi+1) into smaller pieces
each containing at most one singularity. We can picture the situation as follows
(E = {s0, . . . , sN+1}):

h :

σ0
q

s0

H0

s1

×

 

b1j
ö1

σ1
!
d1j

φ+(H0)
q

φ−(H1)

H1

s2 s3

×

 

b2j
ö2

σ2
!
d2j

φ+(H1)
q

φ−(H2)

H2 Hn−1

sN

×

 

bnj

ön

σn
!
dnj

φ+(Hn−1)
q

φ−(Hn)

Hn

σn+1

q

sN+1

The numbers dij depend on sk in the sense that, if the sk are moved, then the
dij have to be changed in order to obtain an isomorphic model. Moreover, the

19



number of constants dij needed for a fixed i depends on the behaviour of H in
the neighbourhood of σi, namely one needs 2∆i constants. On the other hand,
the öi and bij can be chosen independently of the behaviour of H and they do
not change when the sk are moved.

With a general Hamiltonian h a boundary triple (P(h), T (h),Γ(h)) can be
associated, whose definition is quite involved; see [KW/IV]. The Pontryagin
space P(h), which has negative index ind− h, is obtained as a completion and
therefore not very accessible. For a special case we shall consider a more concrete
realization of the model space and the maximal relation T (h). In [KW/IV,
Definition 8.5] a mapping ψ(h) was defined that maps an element F in P(h)
onto some measurable function defined on

⋃n
i=0(σi, σi+1), which represents the

‘function part’ of F .
Analogously to the classical positive definite case where the fundamental

solution WH can be associated with the Hamiltonian H one can define a ‘fun-
damental solution’ ωh for an indefinite Hamiltonian h where ωh(x; z) is a 2× 2-
matrix for every x ∈ [σ0, σ1) ∪

⋃n
i=1(σi, σi+1) and z ∈ C. For fixed z it satisfies

the differential equation (2.7) on every interval between the singularities and
one has ωh(σ0; z) = I for every z ∈ C. Moreover, for fixed x, ωh(x; · ) is an
entire function belonging to the class M<∞ such that x 7→ ind− ωh(x; · ) is
non-decreasing, constant between the singularities and

max

{
ind− ωh(x; · ) : x ∈ [σ0, σ1) ∪

n⋃

i=1

(σi, σi+1)

}
= ind− h.

The definition of ωh is quite involved, in particular, how one can jump over a
singularity; for details see [KW/V, Definition 5.3]. The function ωh is called
maximal chain if h is singular and finite maximal chain if h is regular.

In the case when the indefinite Hamiltonian h is singular one can define the
Titchmarsh–Weyl coefficient qh in a similar way as in the positive definite case:

qh(z) := lim
xրσn+1

ωh(x; z) ⋆ τ, z ∈ C \ R,

with τ ∈ R ∪ {∞}; the limit exists locally uniformly on C \ R with respect to
the chordal metric on the Riemann sphere C, defines a meromorphic function
on C\R, and the limit is independent of τ . The Titchmarsh–Weyl coefficient qh
belongs to the class Nκ where κ = ind− h; see [KW/VI, Theorem 1.4]. At the
interior singularities σ1, . . . , σn one can define intermediate Weyl coefficients,
qh,σi

, by

qh,σi
(z) := lim

x→σi

ωh(x; z) ⋆ τ, z ∈ C \ R, i = 1, . . . , n, (2.14)

again for τ ∈ R ∪ {∞}. It is an essential and non-trivial fact that the limits
from both sides of the singularity coincide; see [KW/III, Theorem 5.6].

2.19. Splitting of general Hamiltonians. On working with general Hamiltonians
one often uses a splitting-and-pasting process. Let us briefly recall how a general
Hamiltonian h can be split into smaller parts. Let h be given by the data

σ0, . . . , σn+1, H0, . . . , Hn, öi, bij , dij , i = 1, . . . , n, E,
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and let s ∈
⋃n

i=0(σi, σi+1) be not inner point of an indivisible interval. Then
a splitting of h into two general Hamiltonians, h�s and hs�, can be defined.
Namely, h�s is given by the data (k is such that σk < s < σk+1)

σ0, . . . , σk, s, H0, . . . , Hk|(σk,s),

öi, bij , dij , i = 1, . . . , k − 1, ök, bkj , d̃kj , (E ∩ [σ0, s]) ∪ {s},

where the numbers d̃kj depend on the location of s, cf. [KW/V, Definition 3.47].
The general Hamiltonian hs� is given by data

s, σk+1, . . . , σn+1, Hk|(s,σk+1), Hk+1, . . . , Hn,

ök+1, bk+1,j , d̃k+1,j , öi, bij , dij , i = k + 2, . . . , n, (E ∩ [s, σn+1]) ∪ {s},

where again d̃k+1,j depend on the location of s.
If s = σk, we let h�s be given by

h�s : σ0, . . . , σk, H0, . . . , Hk−1,

öi, bij , dij , i=1, . . . , k − 1, (E ∩ [σ0, σk]) ∪ {σk}.

These notions have been studied in detail in [KW/V]. In particular, it was
shown that splitting of general Hamiltonians gives rise to splitting of operator
models, and it is compatible with fundamental solutions. In particular, the
model space P(h) is isomorphic to P(h�s) [+̇]P(hs�), where [+̇] denotes a direct
and orthogonal sum in the Pontryagin space P(h). Elements in T (h) can be
identified with sums of elements from P(h�s) and P(hs�) where boundary values
of the latter have to coincide at s. For details see [KW/V, §3.c/e, §5.d].

For P = P(h�s) an ‘isomorphism Ξ’ as in Remark 2.12 can be constructed.
It is an isomorphism from P(h�s) onto K(ωh(s)) and denoted by Ξs. �

f. A boundary triple for a certain regular general Hamiltonian.

As mentioned above, the construction of the boundary triple (P(h), T (h),Γ(h))
is quite complicated and not easy to use. For singular general Hamiltonians
with one singularity a more explicit form of this model, i.e. a boundary triple

(
m

P(h),
m

T (h),
m

Γ(h)) that is isomorphic to the original one, was constructed in
[LW2]. This form turned out to be more convenient for some purposes and
is more intuitive in the sense that P(h) is a finite-dimensional extension of a
natural function space and T (h) is a finite-dimensional perturbation/extension
of a natural differential operator in this function space.

In the present paper we use a variant of this model for regular general Hamil-
tonians of the class Hπ

2
.

2.20. Particular form of h. Let h ∈ Hπ
2
be given by the data

σ0, σ1, σ2, H0, H1, ö, bj , dj , E,

such that σ1 is not left endpoint of an indivisible interval, σ2 <∞, E = {σ0, σ2},
and bö+1 = 0. �

Note that φ+(H0) = 0 because of (gHπ
2
) and therefore also φ−(H1) = 0.

Since ∆+(H0) = 1, we have ∆ := ∆1 = ∆−(H1). Further, denote by H
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the function defined as H0 on (σ0, σ1) and as H1 on (σ1, σ2) and let L2(H) =
L2(H0)⊕L

2(H1). Moreover, let wl, l ∈ N0, be the unique absolutely continuous
functions defined on [σ0, σ1) ∪ (σ1, σ2] with the properties that

w0 =

(
0

1

)
, w′

l+1 = JHwl, l ∈ N0, (2.15)

wl(σ0),wl(σ2) ∈ span

{(
0

1

)}
, l ∈ N0, (2.16)

wl ∈ L2(H), l ≥ ∆; (2.17)

cf. (2.12). Then {w0, . . . ,w∆−1} is linearly independent modulo L2(H) by
[KW/IV, Lemma 3.6]. We define the function space

L2
∆(H) := L2(H) +̇ span

{
wk : k = 0, . . . ,∆− 1

}

and the differential operator T∆,max(H) (or, more precisely, its graph) by

T∆,max(H) :=
{
(f ; g) ∈ L2

∆(H)× L2
∆(H) : ∃ f̂ absolutely continuous

representative of f s.t. f̂ ′ = JHg
}
.

Now we can define a boundary triple (
m

P(h),
m

T (h),
m

Γ(h)) which will turn out to
be isomorphic to the original model (P(h), T (h),Γ(h)).

2.21 Definition. Let h be a general Hamiltonian of the form described in 2.20.

Then
m

P(h),
m

T (h) and
m

Γ(h) are defined as follows.

The base space
m

P(h). Set

m

P(h) := L2
∆(H)× C

∆ × C
ö.

Elements of
m

P(h) are generically written as F = (f ; ξ,α) with ξ = (ξj)
∆−1
j=0 and

α = (αj)
ö
j=1 or G = (g;η,β) with η = (ηj)

∆−1
j=0 and β = (βj)

ö
j=1. Note that the

case ö = 0 is allowed.
By the definition of L2

∆(H) and the fact that w0, . . . ,w∆−1 are linearly
independent modulo L2(H), for given f, g ∈ L2

∆(H), there exist unique scalars
λl, µl, l = 0, . . . ,∆− 1, such that

f̃ := f −
∆−1∑

l=0

λlwl, g̃ := g −
∆−1∑

l=0

µlwl ∈ L2(H). (2.18)

The inner product on
m

P(h). If ö > 0, define numbers c1, . . . , cö recursively by

c1b1 = −1;

k∑

j=1

cjbk−j = 0, k = 2, . . . , ö. (2.19)

On
m

P(h) an inner product is defined by

[F,G] = (f̃ , g̃)L2(H) +
∆−1∑

k=0

λkηk +
∆−1∑

k=0

ξkµk +
ö∑

k,l=1

ck+l−öαkβl
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for F and G as above.

The maximal relation
m

T (h). Let F = (f ; ξ,α), G = (g;η,β) ∈
m

P(h) and λl, µl

be the scalars as above. Then (F ;G) ∈
m

T (h) if and only if

(i) (f ; g) ∈ T∆,max(H)

(which implies that µk = λk+1, k = 0, . . . ,∆− 2);

(ii) for all k = 0, . . . ,∆− 2,

ξk = ηk+1 +
1

2
µ∆−1d∆+k +

1

2
λ0dk +

(
wk+1(σ2)

)
2
f(σ2)1;

(iii)

ξ∆−1 =

∫ σ2

σ1

(w∆)
∗Hg̃ +

1

2

∆−1∑

l=0

λldl+∆−1 + µ∆−1d2∆−1

+
(
w∆(σ2)

)
2
f(σ2)1 −

{
β1, ö > 0,

0, ö = 0;

(iv) if ö > 0, then

αj = µ∆−1bö−j+1 +

{
βj+1, j = 1, . . . , ö− 1,

0, j = ö.
(2.20)

Here f(σ2) denotes the value of the unique absolutely continuous representative
with f ′ = JHg (remember here that (σ1, σ2) is not indivisible).

The boundary operator
m

Γ(h). The boundary relation is actually an operator.

Let (F ;G) ∈
m

T (h), write F = (f ; ξ,α), G = (g;η,β) and let λl, µl be as in
(2.18). Then

m

Γ(h)(F ;G) :=




η0 + f(σ2)1 +

1

2

∆−1∑
l=0

µldl

λ0


 ; f(σ2)


 . (2.21)

�

The two components of
m

Γ(h)(F ;G) can be interpreted as boundary values at
the left and right endpoints σ0 and σ2, respectively; we denote these by πl ◦
m

Γ(h)(F ;G) and πr ◦
m

Γ(h)(F ;G). The two components of πl ◦
m

Γ(h)(F ;G) are

denoted by πl,1 ◦
m

Γ(h)(F ;G) and πl,2 ◦
m

Γ(h)(F ;G).

2.22 Proposition. Let h be a general Hamiltonian of the form 2.20. Then the

boundary triples (P(h), T (h),Γ(h)) and (
m

P(h),
m

T (h),
m

Γ(h)) are isomorphic.

Proof. Let h̃ be the general Hamiltonian that is given by the data

σ0, σ1,∞, H̃0 := H0, H̃1(t) :=

{
H1(t), t ∈ (σ1, σ2),

I, t ∈ [σ2,∞),

ö, bj , dj , E := {σ0, σ2,∞}.
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Then h̃ is of the form considered in [LW2]. Moreover, the boundary triple

(
m

Pσ2
(h̃),

m

Tσ2
(h̃),

m

Γσ2
(h̃)), which was defined in [LW2, Definition 2.14], is iso-

morphic to (P(h̃), T (h̃),Γ(h̃)) by definition, and has been described explicitly
in [LW2, Theorem 2.15]. Note, however, that there is a typo in [LW2, Theo-
rem 2.15 (v)], namely, there should be a plus sign instead of a minus sign in
front of µ∆−1, as in (2.20). Let

m

ισ2
:= ι̊σ2

◦ ισ2
be the isomorphism from P(h̃)

onto
m

Pσ2
(h̃) where ι̊σ2

and ισ2
were defined in [LW2, §2].

The following diagram is commutative

P(h̃)

m

ισ2

��

̟
// P(h) [+̇]L2(H|(σ2,∞))

m

ι [+̇] id
��

m

Pσ2
(h̃)

m

̟

//
m

P(h) [+̇]L2(H|(σ2,∞))

(2.22)

where ̟ was defined in [KW/IV, Proposition 8.11],
m

ι := ι̊ ◦ ι with

ι : P(h) → L2(H)× C
∆ × C

∆ × C
ö

as in [KW/IV, (4.9) and (4.10)] and

ι̊ : L2(H)× C
∆ × C

∆ × C
ö → L2

∆(H)× C
∆ × C

ö

(f ; ξ, λ,α) 7→

(
f +

∆−1∑

k=0

λkwk; ξ,α

)
,

and
m

̟ acts as

m

̟ : F 7→ (f |(σ1,σ1)∪(σ1,σ2); ξ, α) [+̇] f |(σ2,∞), F = (f ; ξ, α) ∈
m

Pσ2
(h̃).

The definition of
m

P(h) and [LW2, Theorem 2.15] show that

(F̃ ; G̃) ∈
m

Tσ2
(h̃) ⇐⇒

(F̃�σ2
; G̃�σ2

) ∈
m

T (h), (f̃ |(σ2,∞); g̃|(σ2,∞)) ∈ Tmax(H|(σ2,∞)),

f̃ continuous at σ2

(2.23)

where F̃ = (f̃ ; ξ,α), G̃ = (g̃;η,β) and F̃�σ2
:= (f̃ |(σ1,σ1)∪(σ1,σ2); ξ, α). In this

case,

πl ◦
m

Γ(h)(F̃�σ2
; G̃�σ2

) = πl ◦
m

Γσ2
(h̃)(F̃ ; G̃),

πr ◦
m

Γ(h)(F̃�σ2
; G̃�σ2

) = πl ◦ Γ(H|(σ2,∞))(f̃ |(σ2,∞); g̃|(σ2,∞)) = f(σ2).

(2.24)

Choose (f1; g1), (f2; g2) ∈ Tmax(H|(σ2,∞)) with f1(σ2) =
(
1
0

)
and f2(σ2) =

(
0
1

)
.

Now let F = (f ; ξ, α), G = (g; η, β) ∈
m

P(h) be given and assume that

(F ;G) ∈
m

T (h). Then we set

f̃ := fχ(σ0,σ1)∪(σ1,σ2) + f(σ2)1f1 + f(σ2)2f2,

g̃ := gχ(σ0,σ1)∪(σ1,σ2) + f(σ2)1g1 + f(σ2)2g2,
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and
F̃ := (f̃ ; ξ, α), G̃ := (g̃; η, β).

By (2.23), we have (F̃ ; G̃) ∈
m

Tσ2
(h̃). Hence

(
(
m

ι [+̇] id)−1 × (
m

ι [+̇] id)−1
)
(F̃ ; G̃) ∈ (̟ ×̟)(T (h̃))

by the commutativity of the diagram in (2.22), and it follows that (
m

ι ×
m

ι)−1(F ;G) ∈ T (h). This shows that
(
m

ι
−1

×
m

ι
−1) m

T (h) ⊆ T (h). Moreover,

Γ(h)
(
(
m

ι
−1

×
m

ι
−1

)(F ;G)
)
=

m

Γ(h)(F ;G)

by (2.24). The reverse inclusion
(
m

ι
−1

×
m

ι
−1) m

T (h) ⊇ T (h) is seen in a similar

way. Hence the boundary triples (P(h), T (h),Γ(h)) and (
m

P(h),
m

T (h),
m

Γ(h)) are
isomorphic. ❑

2.23 Remark. If one defines a mapping
m

ψ(h) by
m

ψ(h)F := f where F = (f ; ξ;α)

is as above, then it follows from the definition of ψ(h) that
m

ψ(h)◦
m

ι = ψ(h) where
m

ι is as in the previous proof. �

g. Rotation isomorphisms.

We consider general Hamiltonians of the class Hα on the one hand, and functions

from the class N
(cotα)
<∞ for α ∈ [0, π) on the other. A rotation isomorphism is a

tool which allows us to restrict explicit proofs to one particular value of α. Such
isomorphisms exist on all levels (Hamiltonians, functions, fundamental solutions
etc.), and the corresponding constructions are compatible with each other.

Let us now give the definitions, cf. [KW/V, Definition 2.4]. For α ∈ R set

Nα :=

(
cosα sinα

− sinα cosα

)
.

2.24 Definition. Let α ∈ R.

(i) If M is a 2× 2-matrix, set

	αM := NαMN−1
α .

(ii) Application of ‘	α’ to matrix functions is always understood pointwise,
e.g.

(	αH)(x) :=	α

(
H(x)

)
, (	αωh)(x; z) :=	α

(
ωh(x; z)

)
.

(iii) If q(z) is a scalar function, set

	α q(z) := Nα ⋆ q(z).

(iv) If h is a general Hamiltonian given by the data

σi, Hi, öi, bij , dij , E,

let 	α h be the general Hamiltonian given by

σi, 	αHi, öi, bij , dij , E.
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Some practical computational rules have been collected after [KW/V, Defini-
tion 2.4] and in [KW/V, (2.16), (2.24), (3.1)].

Some compatibility properties of the operations ‘	α’ on the different levels
are, for example,

ω	αh =	αωh and q	αh =	α qh ,

cf. [KW/V, Lemma 5.14].

2.25 Lemma. Let H be a Hamiltonian defined on an interval (a, b), let β ∈ R,
and set H̃ :=	βH. Then H satisfies (HS−) if and only if H̃ does. In this case,

φ−(H̃) = φ−(H)− β.
Assume that H (and thus also H̃) satisfies (HS−). Then ∆−(H̃) = ∆−(H).

If ∆−(H) (and thus also ∆−(H̃)) is finite, and wl, w̃l, l ∈ N0, denote the
corresponding functions (2.12), then w̃l = Nβwl, l ∈ N0.

Proof. We have fTHf = (Nβf)
T (	β H)(Nβf), and hence the map f 7→ Nβf

is an isometric isomorphism from L2(H|(a,x0)) onto L
2(H̃|(a,x0)). In particular,

(I−α ) for H ⇐⇒ (I−α−β) for 	βH.

As in the definition of the condition (HS−α ) let M be an anti-derivative of H
and M̃ an anti-derivative of H̃. If M and M̃ are defined by integrating from
the same reference point, then M̃ =	βM , and hence

ξTα+π
2
Mξα+π

2
= (Nβξα+π

2
)T (	βM)(Nβξα+π

2
) = ξT(α−β)+π

2
M̃ξ(α−β)+π

2
.

Thus also
(HS−α ) for H ⇐⇒ (HS−α−β) for 	βH

and φ−(H̃) = φ−(H)−β. Assume thatH satisfies (HS−) and that ∆−(H) <∞.
Let wl, l ∈ N0, be the unique functions with (2.12), and set

vl := Nβwl, l ∈ N0.

Then

v0 = ξφ−(H)+π
2
−β = ξφ−(H̃)+π

2

,

vl|(a,x0) ∈ L2(H̃|(a,x0)), l ≥ ∆−(H),

vl(x0) ∈ span{ξφ−(H)+π
2
−β}, l ∈ N0,

and

v′l+1 = Nβw
′
l+1 = NβJHwl = JNβHN

−1
β (Nβwl) = JH̃vl.

It follows that ∆−(H̃) ≤ ∆−(H), and hence, in particular, ∆−(H̃) < ∞. Ap-
plying the above argument and the rotation 	−β starting from H̃ we obtain

∆−(H) ≤ ∆−(H̃). Moreover, we see that the functions vl, l ∈ N0, satisfy (2.12)
for H̃. ❑
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In the present context it is important to know how the classes Hα and

N
(cotα)
<∞ , respectively, transform under application of a rotation isomorphism.

2.26 Lemma. Let h ∈ Hα, and let β ∈ R. Then 	β h ∈ Hα−β.

Proof. It is obvious from the definition of 	β h that the property (gHo.s.) is
inherited. Since h satisfies (gHα), we can write

H0(x) = h0(x) · ξαξ
T
α , x ∈ (σ0, σ1),

with some scalar function h0. It follows that

	βH0(x) = h0(x) · (Nβξα)(Nβξα)
T = h0(x) · ξα−βξ

T
α−β ,

and hence 	β h satisfies (gHα−β). ❑

2.27 Lemma. Let β ∈ R. Then q ∈ N
(∞)
<∞ if and only if 	β q ∈ N

(− cot β)
<∞ .

Proof. The case when β ∈ πZ is trivial. So let us assume that β /∈ πZ. We have

(	β q)(z) =
cosβ · q(z) + sinβ

− sinβ · q(z) + cosβ
=

cotβ · q(z) + 1

−q(z) + cotβ

and therefore

1

− cotβ − (	β q)(z)
=

−q(z) + cotβ

q(z) cotβ − cot2 β −
(
q(z) cotβ + 1

)

=
1

1 + cot2 β
·
(
q(z)− cotβ

)
.

Hence

	β q ∈ N
(− cot β)
<∞ ⇐⇒

1

− cotβ− 	β q
∈ N

(∞)
<∞ (by definition)

⇐⇒
1

1 + cot2 β
·
(
q − cotβ

)
∈ N

(∞)
<∞

⇐⇒ q ∈ N
(∞)
<∞ .

❑

3 Characterisation of Titchmarsh–Weyl coeffi-

cients

In this section we identify the properties (gHo.s.), (gHα) (defined in Definition
1.1 in the introduction) as being equivalent to the fact that the Titchmarsh–

Weyl coefficient belongs to the class N
(τ)
<∞ where τ = cotα. This result is a

typical instance of the intuition that the behaviour of the Hamiltonian at its
left endpoint relates to the behaviour of the Titchmarsh–Weyl coefficient at ∞.

3.1 Theorem. Let h be a singular general Hamiltonian with ind− h > 0 and
let α ∈ [0, π). Then h ∈ Hα if and only if its Titchmarsh–Weyl coefficient qh

belongs to the class N
(cotα)
<∞ .
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We first prove the statement for α = 0, in which case the class under consid-

eration is N
(∞)
<∞ . The required statement for other values of α then follows easily

by applying rotation isomorphisms. The method used for the proof is purely
operator-theoretic: the desired equivalence follows, with the help of some Q-
function theory, from the computation of the algebraic eigenspace of a certain
linear relation A at infinity, which is discussed in Lemma 3.2 below. For this
we recall some concepts and notations. Let S(h) := ker(πl ◦ Γ(h)) be the closed
symmetric operator whose adjoint is T (h), where T (h) is the maximal linear
relation in the boundary triple (P(h), T (h),Γ(h)) associated with h, and let A
be the self-adjoint extension of S(h) defined by A := ker(πl,1 ◦ Γ(h)). In other
words, the self-adjoint relation A is obtained from T (h) by imposing a boundary
condition at the regular left endpoint σ0 (formally f1(σ0) = 0); no boundary
condition is needed at the singular endpoint σ2.

A given indefinite Hamiltonian can be decomposed into a finite number of
‘elementary indefinite Hamiltonians’ and positive definite Hamiltonians using
the splitting points in the set E, where elementary indefinite Hamiltonians con-
tain exactly one singularity; see [KW/IV, §4] and 2.19. Unless dimP(hi) = 1,
the model Pontryagin space corresponding to such an elementary indefinite
Hamiltonian hi contains elements δ0, . . . , δ∆i−1+öi such that the pairs (δk−1; δk),
k = 1, . . . ,∆i−1+ öi, are contained in the maximal relation T (hi); see [KW/IV,
Definitions 4.5 and 4.11 and Proposition 4.17 (iv)]. If at least on one side of
the singularity H is just one indivisible interval of infinite length, then also
(0; δ0) ∈ T (hi) by [KW/IV, (4.14) in Definition 4.11].

In the following lemma a connection between the algebraic eigenspace of
A at infinity and the behaviour of H at σ0 is established. In particular, this
algebraic eigenspace at infinity depends on the fact whether h starts with an
indivisible interval of type 0 at σ0 and the length of this indivisible interval.

3.2 Lemma. Let h be a singular general Hamiltonian with κ := ind− h > 0,
and let h be given by the data n, σ0, . . . , σn+1, H0, . . . , Hn, öi, bi,1, . . . , bi,öi+1,
di,0, . . . , di,2∆i−1. Let A be as above and denote by EA(∞) the algebraic
eigenspace of A at infinity.

(a) If h does not start with an indivisible interval of type 0, then EA(∞) = {0},
i.e. A is an operator.

(b) Assume that h starts with a maximal indivisible interval of type 0 of finite
positive length and let s0 be the right endpoint of this interval. Moreover,
decompose P(h) as P(h) = P(h�s0) [+̇]P(hs0�). Then EA(∞) = P(h�s0).

(c) Assume that h starts with an indivisible interval of type 0 of infinite length
and that σ1 is left endpoint of a maximal indivisible interval (which also
must be of type 0) and let s0 be the right endpoint of this interval. Moreover,
decompose P(h) as P(h) = P(h�s0) [+̇]P(hs0�). Then EA(∞) = P(h�s0).

(d) Assume that h starts with an indivisible interval of type 0 with infinite length
and that σ1 is not left endpoint of an indivisible interval. Choose a point
s0 ∈ (σ1, σ2) that is not inner point of an indivisible interval, and decompose
P(h) as P(h) = P(h�s0) [+̇]P(hs0�). Then

EA(∞) = span{δ0, . . . , δ∆1+ö1−1} ⊆ P(h�s0).
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Moreover, in the cases (b), (c) and (d) the algebraic eigenspace EA(∞) is spanned
by one maximal Jordan chain of A at infinity and the dimension of a maximal
A−1-invariant non-positive subspace is equal to ind− h�s0 .

Proof. Let us first prove the statements in (a)–(d). Assume that mulA 6= {0},
i.e. that there exists an element (0; g) ∈ T (h), g 6= 0, with πl,1Γ(h)(0; g) = 0.
Since S(h) is an operator, we must have πl,2Γ(h)(0; g) 6= 0. Hence [KW/V,
Lemma 3.37] implies that h starts with an indivisible interval of type 0. This
shows that the implication in (a) is true.

Next assume that h is of the form as described in (b) or (c) and let s0 be the
point specified there. Set

A(hs0�) := ker(πl,1 ◦ Γ(hs0�)), S1(h�s0) := ker((πl,1 × πr) ◦ Γ(h�s0)),

and let P�s0 and Ps0� be the orthogonal projections according to the decompo-
sition P(h) = P(h�s0) [+̇]P(hs0�).

We shall show that

EA(∞) =
⋃

n∈N

mulS1(h�s0)
n. (3.1)

First note that S1(h�s0) ⊆ A, and hence the inclusion ‘⊇’ holds trivially since
EA(∞) =

⋃
n∈N

mulAn. Conversely, let g0 := 0 and g1, . . . , gn ∈ P(h) be given
such that

(gl−1; gl) ∈ A, l = 1, . . . , n. (3.2)

Then, trivially, (P�s0gl−1;P�s0gl) ∈ S1(h�s0)
∗ and (Ps0�gl−1;Ps0�gl) ∈ T (hs0�).

By the construction of the boundary relation Γ(h�s0), we have πl,1 ◦ Γ(h�s0) =
πr,1 ◦ Γ(h�s0); see [KW/IV, Definition 4.5]. Hence

πl,1 ◦ Γ(hs0�)(Ps0�gl−1;Ps0�gl) = πr,1 ◦ Γ(h�s0)(P�s0gl−1;P�s0gl) = 0

for l = 1, . . . , n, and therefore (Ps0�gl−1;Ps0�gl) ∈ A(hs0�). Since hs0� does
not start with an indivisible interval of type 0, this implies that Ps0�gl = 0,
l = 1, . . . , n. If hs0� is not just one indivisible interval of infinite length, it
follows that

πr ◦ Γ(h�s0)(P�s0gl−1;P�s0gl) = πl ◦ Γ(hs0�)(Ps0�gl−1;Ps0�gl) = 0,

and hence that (P�s0gl−1;P�s0gl) ∈ S1(h�s0). If hs0� is just one indivisible
interval of type α of infinite length, then α /∈ πZ and

πr ◦ Γ(h�s0)(P�s0gl−1;P�s0gl) ∈ πl ◦ Γ(hs0�)(Ps0�gl−1;Ps0�gl) = span{Jξα}.

However, πr ◦Γ(h�s0)(P�s0gl−1;P�s0gl) ∈ span
{(

0
1

)}
and α /∈ πZ, and thus again

(P�s0gl−1;P�s0gl) ∈ S1(h�s0). This shows that the inclusion ‘⊆’ in (3.1) holds.
The Hamiltonian h�s0 is either positive definite and consists of just one

indivisible interval (namely in case (b)), or (namely in case (c)) its rotation
	π

2
h�s0 is an elementary indefinite Hamiltonian of kind (B) or (C); see [KW/IV,

§4]. In each of these cases, inspection of the definition of Γ(h�s0) shows that

⋃

n∈N

mulS1(h�s0)
n = P(h�s0).
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Together with (3.1) this shows the assertions in (b) and (c).
To prove (d), assume that (σ0, σ1) is indivisible of type 0 and σ1 is not left

endpoint of an indivisible interval. Our aim is to show that, independently of
the choice of s0, relation (3.1) holds. The inclusion ‘⊇’ is of course again trivial.
For the converse inclusion, let g0 := 0 and g1, . . . , gn ∈ P(h) be given such
that (3.2) holds. Choose s1 ∈ (σ1, s0) such that s1 is not left endpoint of an
indivisible interval of type 0 and that dimK(ωh(s1, · )

−1ωh(s0, · )) > n, where the
reproducing kernel space K(W ) for a matrix function W is defined in §2.b. The
choice of s1 is possible because (σ1, σ2) does not start with an indivisible interval
at σ1. Next, choose s2 ∈ (σ1, s1) such that dimK(ωh(s2, · )

−1ωh(s1, · )) > n.
Since ((

ψ(h)gl−1

)
|(s2,s0);

(
ψ(h)gl

)
|(s2,s0)

)
∈ Tmax(H1|(s2,s0)),

we obtain from [KW/IV, Lemma 2.23] that gl−1(s1) = 0, l = 1, . . . , n. This
gives (Ps1�gl−1;Ps1�gl) ∈ S(hs1�). However, S(hs1�) is an operator, and hence
Ps1�gl = 0, l = 1, . . . , n. We see that (gl−1; gl) ∈ S1(h�s1) ⊆ S1(h�s0), and hence
that (3.1) holds.

In order to compute
⋃

n∈N
mulS1(h�s0)

n, note first that

δ0, . . . , δ∆1+ö1−1 ∈
⋃

n∈N

mulS1(h�s0)
n

by the properties of the δk; see the paragraphs before this lemma. Hence it
suffices to show that the dimension of

⋃
n∈N

mulS1(h�s0)
n cannot exceed ∆1+ö1.

Let again (gl−1; gl) ∈ S1(h�s0), l = 1, . . . , n, g0 = 0, be given. For z ∈ C denote
by χ(z) the defect elements of S1(h�s0), i.e. χ(z) ∈ ker(S1(h�s0)

∗ − z), with
πl ◦ Γ(h�s0)(χ(z); zχ(z)) =

(
0
1

)
. Then

[gl, χ(z)] = z[gl−1, χ(z)], l = 1, . . . , n,

and hence, by induction, gl ⊥ span{χ(z) : z ∈ C}, l = 1, . . . , n. Applying the
isomorphism Ξs0 , as defined at the end of §2.e, from P(h�s0) onto K(ωh(s0)), we
find that Ξs0gl ∈ kerπ−, where π− is the projection onto the second component.
However, we know from [Wo, Lemma 6.3 (proof, subcase 3b)] that dimkerπ− =
∆1 + ö1. As we noted above, this estimate suffices to complete the proof of
statement (d).

Let us now prove the last statements. If dim EA(∞) = 1 in (b) or (c), these
are trivial. Otherwise, in case (b) or (c), the algebraic eigenspace EA(∞) is
spanned by the Jordan chain

δ0, . . . , δö1 ,
1

b1,1

(
p0 −

ö1+1∑

l=2

b1,lδ2+ö1−l

)
;

see [KW/IV, Definition 4.5]. In case (d), EA(∞) is spanned by the Jordan
chain δ0, . . . , δ∆1+ö1−1 as we have seen above. In both cases the Gram matrix
of EA(∞) with respect to one of these Jordan chains has Hankel form, namely,
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(with c1,j as in (2.19))




0 · · · c1,1
... . .

. ...
c1,1 · · · ∗


 or




0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · c1,1
...

...
... . .

. ...
0 · · · 0 c1,1 · · · c1,ö1




in cases (b) and (c) and case (d), respectively, where the first matrix is of size
ö1 + 2 and second matrix of size ∆1 + ö1. The dimension of a maximal A−1-
invariant non-positive subspace is equal to the size of the maximal negative semi-
definite square sub-matrix of the Gram matrix located at the top left corner.
Such a maximal sub-matrix is either the zero matrix or a matrix that has zeros
apart from one negative entry at the bottom right corner. Since such an entry
at the bottom right corner is c1,1, in cases (b) and (c) the maximal size of such
a negative semi-definite sub-matrix is equal to

⌊
ö1 + 2

2

⌋
+

{
1 if ö1 + 2 is odd and c1,1 < 0

0 otherwise

}

=

⌊
ö1
2

⌋
+ 1 +

{
1 if ö1 is odd and b1,1 > 0

0 otherwise

}
= ind− h�s0

according to (2.13) since ∆1 = 1 in this case. Similarly, for the case (d) the
dimension of a maximal A−1-invariant non-positive subspace is equal to

∆1 +

⌊
ö1
2

⌋
+

{
1 if ö1 is odd and b1,1 > 0

0 otherwise

}
= ind− h�s0 ,

which finishes the proof. ❑

Proof (of Theorem 3.1; Case α = 0). We use the same notation as in the above
lemma. By [KW/V, Proposition 5.19] the Titchmarsh–Weyl coefficient qh of
h is a Q-function of S(h) generated by A. Moreover, S(h) is completely non-
self-adjoint by [KW/IV, Theorem 8.6], and hence A is minimal. Thus qh has a
minimal representation of the form (2.4) in terms of A and hence we can apply
Lemma 2.5, i.e. the asymptotics of qh at infinity reflects precisely the geometric
structure of EA(∞).

First assume that qh ∈ N
(∞)
κ . If h does not start with an indivisible interval

of type 0, then limz→̂i∞
1
z
qh(z) = 0 by [KW/V, Proposition 6.1], which is a

contradiction to the assumption that q ∈ N
(∞)
κ . If h starts with an indivisible

interval of type 0 and finite (positive) length l, then limz→̂i∞
1
z
qh(z) = l ∈

(0,∞), which is again a contradiction. Hence h starts with an indivisible interval
of type 0 of infinite length, i.e. (gH0) is satisfied. By Lemmas 2.5 and 3.2, we
have ind−(h) = κ = ν∞(A) = ind−(h�s0), where s0 is as in Lemma 3.2. This
implies that σ1 is the only singularity of h (since each singularity contributes at
least one negative square), i.e. (gHo.s.) is satisfied.

Now assume that (gH0) and (gHo.s.) are satisfied. It follows from (gH0) that
in Lemma 3.2 either case (c) or (d) occurs. Hence ν∞(A) = ind−(h�s0). The
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assumption (gHo.s.) implies that ind−(h�s0) = ind−(h) = κ. By Lemma 2.5 it

follows that qh ∈ N
(∞)
κ . ❑

Proof (of Theorem 3.1; General values of α). Let a singular general Hamilto-
nian with ind− h > 0 be given which satisfies (gHo.s.), and let α ∈ (0, π).

By Lemma 2.26, h satisfies (gHα) if and only if the general Hamiltonian 	α h

satisfies (gH0). We have q	αh = Nα ⋆ qh. By Lemma 2.27, qh ∈ N
(cotα)
<∞ if and

only if q	αh ∈ N
(∞)
<∞ .

Using the already proved case ‘α = 0’ of Theorem 3.1 we conclude that h

satisfies (gHα) if and only if qh ∈ N
(cotα)
<∞ . ❑

4 Partial continuity of the fundamental solution

Let α ∈ [0, π) and h ∈ Hα. Our aim in this section is to show that, after
an appropriate rotation, three entries of the (finite) maximal chain of matrices
associated with h are continuous at the singularity of h.

4.1 Theorem. Let α ∈ [0, π) and h ∈ Hα. Moreover, let ωh be the (finite)
maximal chain of matrices associated with h, and set th(x) := t(ωh(x; · )), where
t is defined in (2.5). Then the following limit relations hold locally uniformly
on C:

(limα)

lim
xցσ1

ξTα−π
2
ωh(x; z)ξα−π

2
= lim

xցσ1

ξTαωh(x; z)ξα = 1,

lim
xցσ1

ξTα−π
2
ωh(x; z)ξα = 0;

(lim′

α) lim
xցσ1

ξTαωh(x; z)ξα−π
2

|th(x)| · z
= 1.

4.2 Remark.

(i) Note that the quotient on the left-hand side of (lim′
α) is an entire function

in z since the numerator is zero for z = 0. Expressions like this have to
be interpreted as derivatives in the following.

(ii) The limit relations in (limα) and (lim′
α) hold trivially when x approaches

σ1 from the left. This follows since

ωh(x; z) = N∗
α−π

2

(
1 0

−th(x)z 1

)
Nα−π

2

for x ∈ [σ0, σ1) and hence

ξTα−π
2
ωh(x; z)ξα−π

2
= ξTαωh(x; z)ξα = 1, ξTα−π

2
ωh(x; z)ξα = 0,

ξTαωh(x; z)ξα−π
2

−th(x) · z
= 1

for x ∈ [σ0, σ1). Therefore (limα) indeed expresses continuity at σ1.
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(iii) By (2.9) we have

th(x) = th(x0)−

x0∫

x

trH(t)dt

for any x0 ∈ (σ1, σ2) and, since H is in limit point case at σ1, thus th(x) →
−∞ as xց σ1. Hence

lim
t→σ1

∣∣ξTαωh(x; z)ξα−π
2

∣∣ = ∞

locally uniformly on C \ {0}.

(iv) For α = π
2 the relations (limα) and (lim′

α) read as follows:

(limπ
2
) lim

xցσ1

ωh(x; z)11 = lim
xցσ1

ωh(x; z)22 = 1, lim
xցσ1

ωh(x; z)12 = 0;

(lim′
π
2
) lim

xցσ1

ωh(x; z)21
|th(x)| · z

= 1.

�

The proof of Theorem 4.1 is quite elaborate. We divide the remainder of this
section into several subsections according to the following plan:

a. We provide/recall some preliminary facts, among them a normal family
argument for Pólya class functions.

b. We establish the asymptotics of the fundamental solution of positive definite
canonical systems of a particular kind.

c. We derive that (limπ
2
) already implies finer asymptotics of ωh(x; z).

d. We carry out an inductive process to establish Theorem 4.1 for α = π
2 .

e. We apply rotation isomorphisms to obtain the asserted limit relations for
arbitrary values of α.

f. We prove a continuity result for the fundamental solution of an arbitrary
general Hamiltonian.

a. Preliminary observations.

In order to justify a later application of [dB, Theorem 41], we need the following
elementary reformulation of (I−0 ) and (HS−0 ).

4.3 Lemma. Let h11 and h22 be locally integrable non-negative functions on
an interval (a, x0]. Assume that

∫ x0

a
h11(x) dx < ∞, set α(x) :=

∫ x

a
h11(t) dt,

and let γ(x) be an anti-derivative of h22 that is absolutely continuous on each
compact interval contained in (a, x0], e.g. γ0(x) :=

∫ x

x0
h22(t) dt. Then

x0∫

a

α(x) dγ(x) <∞ ⇐⇒

x0∫

a

|γ(x)| dα(x) <∞. (4.1)

In this case, lim
xցa

α(x)γ(x) = 0.
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Proof. The measure dα is finite on (a, x0], and the measure space 〈(a, x0], dγ〉
(the σ-algebra is the Borel algebra) is σ-finite since h22 is locally inte-
grable. Moreover, the function χ{y≤x}(x, y)h11(y)h22(x) is measurable and non-
negative. Hence the application of Fubini’s theorem is justified, and we obtain

x0∫

a

α(x) dγ0(x) =

x0∫

a

( x∫

a

h11(y) dy

)
h22(x) dx

=

x0∫

a

( x0∫

y

h22(x) dx

)
h11(y) dy =

x0∫

a

(
− γ0(y)

)
dα(y).

(4.2)

Any anti-derivative γ of h22 as in the statement of the lemma differs from γ0
only by an additive constant. The integral on the left-hand side of (4.1) does
not depend on the choice of γ. Since

∫ x0

a
dα(x) < ∞ and γ is non-decreasing,

also finiteness/infiniteness of the integral on the right-hand side of (4.1) does
not depend on the choice of γ.

Assume that the integrals in (4.1) are finite. Let x ∈ (a, x0). Since α and γ
are both locally absolutely continuous on (a, x0], we may integrate by parts to
obtain

x0∫

x

α(t) dγ0(t) = −α(x)γ0(x)−

x0∫

x

γ0(t) dα(t), x ∈ (a, x0].

Passing to the limit xց a and remembering (4.2), we find that α(x)γ0(x) tends
to 0. Again this property is inherited by any other anti-derivative γ. ❑

We shall use a normal family argument, which appeared already in the proof
of [dB, Theorem 41]. Denote by P the set of all real entire functions F that
belong to the Pólya class. Moreover, for c > 0, set

Pc :=
{
F ∈ P : F (0) = 1, |F ′(0)| ≤ c, |F ′′(0)| ≤ c

}
.

4.4 Lemma. For each c > 0 the class Pc is a normal family, i.e. every sequence
of functions from Pc contains a subsequence that converges uniformly on compact
sets. Moreover, ⋂

c>0

Pc = {1}.

Proof. By [dB, Problems 10 and 13] each function F ∈ P with F (0) = 1 satisfies
the estimate

log |F (z)| ≤ F ′(0)Re z +
1

2

(
F ′(0)2 − F ′′(0)

)
|z|2, z ∈ C.

Hence each class Pc is locally uniformly bounded and by Montel’s theorem
normal.

Assume that F ∈
⋂

c>0 Pc; then F
′(0) = F ′′(0) = 0. By the above estimate,

F is bounded by 1 throughout C, and hence constant. However, F (0) = 1, and
thus F must be identically equal to 1. ❑
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4.5 Lemma. Let (Fn)n∈N be a sequence of functions Fn ∈ P with Fn(0) = 1,
n ∈ N. If, for some real number β, we have

lim
n→∞

F ′
n(0) = β, lim

n→∞
F ′′
n (0) = β2,

then lim
n→∞

Fn(z) = eβz locally uniformly on C.

Proof. Consider the functions Gn(z) := Fn(z)e
−βz; then

G′
n(0) = F ′

n(0)− β, G′′
n(0) = F ′′

n (0)− 2βF ′
n(0) + β2.

Hence limn→∞G′
n(0) = limn→∞G′′

n(0) = 0.
For some appropriate c > 0 we have {Gn : n ∈ N} ⊆ Pc, and hence the

sequence (Gn)n∈N has accumulation points with respect to locally uniform con-
vergence. Let G be any such accumulation point. Then G′(0) = G′′(0) = 0, and
hence G ∈

⋂
c>0 Pc and, by Lemma 4.4, G is identically equal to 1. Therefore

we can conclude that limn→∞Gn = 1 locally uniformly. ❑

b. Asymptotics for a class of positive definite Hamiltonians.

In this subsection we consider the class of positive definite Hamiltonians H
satisfying the following two properties (let (a, b) be the domain of H):

(G1) the Hamiltonian H satisfies (I−0 ) and (HS−0 ), and the interval (a, b) is
not indivisible;

(G2) for one (and hence for all) x0 ∈ (a, b) the limit

lim
sցa

x0∫

s

h12(x) dx

exists and is finite.

Note that, if H is in the limit circle case at a and (a, b) is not indivisible, then
these conditions are trivially satisfied.

For each s ∈ (a, b) let Wst(z) be the unique solution of

d

dt
Wst(z)J = zWst(z)H(t), t ∈ (a, b), Wss(z) = I,

and write

Wst(z) =:

(
Ast(z) Bst(z)

Cst(z) Dst(z)

)
. (4.3)

Set

α(x) :=

x∫

a

h11(t) dt, β(x) := lim
sցa

x∫

s

h12(t) dt, (4.4)

and let γ be some absolutely continuous anti-derivative of h22.
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4.6 Remark.

(i) The condition (G2) implies that limtցa β(t) = 0. To see this, let ε > 0 be
given. Choose t0 ∈ (a, b); then there exists δ > 0 such that

∣∣∣∣

t0∫

s

h12(x) dx− β(t0)

∣∣∣∣ < ε, s ∈ (a, t0], s− a < δ.

Let t ∈ (a, t0], t− a < δ and s ∈ (a, t], then

∣∣∣∣

t∫

s

h12(x) dx

∣∣∣∣ =
∣∣∣∣

t0∫

s

h12(x) dx−

t0∫

t

h12(x) dx

∣∣∣∣ < 2ε.

Passing to the limit sց a gives |β(t)| ≤ 2ε.

(ii) The assumption (HS−0 ) implies that

x∫

a

|γ(t)|dα(t) <∞ for all x ∈ (a, b)

and hence, by Lemma 4.3,

x∫

a

α(t)dγ(t) <∞ for all x ∈ (a, b)

and
lim
xցa

α(x)γ(x) = 0.

�

Denote by a+ the maximal number in [a, b) such that (a, a+) is an indivisible
interval of type π

2 . Then

α(x)

{
= 0, x ∈ (a, a+],

> 0, x ∈ (a+, b),

and in particular, limxցa+
α(x) = 0. The matrix function

m(x) :=

(
α(x) β(x)

β(x) γ(x)

)

satisfies m(t) − m(s) =
∫ t

s
H(x) dx, and hence is non-decreasing and locally

absolutely continuous on (a, b).

4.7. Existence of Åt and B̊t. By the definition of a+ the Hamiltonian H does not
start with an indivisible interval of type π

2 at the left endpoint of the interval
(a+, b). Hence all hypotheses of [dB, Theorem 41] are satisfied (with the half-
line (0,∞) replaced by the interval (a+, b)). An application of this theorem
provides us with families Åt and B̊t, t ∈ (a+, b), of real entire functions which
have the following properties:
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(a) For each t ∈ (a+, b) the function Åt − iB̊t has no real zeros and belongs to
the Hermite–Biehler class HB0 and the Pólya class. Moreover, Åt(0) = 1
and B̊t(0) = 0.

(b) We have

d

dt

(
Åt(z), B̊t(z)

)
J = z

(
Åt(z), B̊t(z)

)
H(t), t ∈ (a+, b). (4.5)

(c) limtցa+
Åt = 1 and limtցa+

B̊t = 0 locally uniformly on C.

(d) Åt = limsցa+
Ast and B̊t = limsցa+

Bst locally uniformly on C.

For (c) remember Remark 4.6 (i). Item (d) follows from the construction in the
proof of [dB, Theorem 41]. Moreover, the functions Åt and B̊t are uniquely
determined by the properties (a), (b) and (c). �

4.8 Remark. If H is in the limit circle case at a+, then (Åt(z), B̊t(z)) is the
unique solution of (4.5) satisfying the initial condition (Åa+

(z), B̊a+
(z)) = (1, 0).

�

The key steps in the present context are the next two lemmas where we
determine the asymptotics of B̊t, Cst and Dst.

4.9 Lemma. Assume that H satisfies (G1), (G2), and let a+ ∈ [a, b) be the
maximal number such that (a, a+) is indivisible of type π

2 . Then

lim
tցa+

B̊t(z)

zα(t)
= 1 (4.6)

locally uniformly in C.

Proof. Consider the functions Ast and Bst defined in (4.3). By 2.13 the function
Bst belongs to the Pólya class, and by 4.7 (d) therefore also B̊t belongs to the

Pólya class. By [dB, Lemma 7.1] the same is true for B̊t(z)
z

.
In order to apply Lemma 4.5 we compute the derivatives of Ast and Bst with

respect to z at 0. For s, t ∈ (a, b), s < t, the function x 7→ (Asx, Bsx), x ∈ [s, t],
satisfies the differential equation (1.1) with Hamiltonian H|(s,t), and takes the
value (1, 0) for x = s. Hence

Bst(z) = z

t∫

s

Asx(z) dα(x) + z

t∫

s

Bsx(z) dβ(x), s < t < b, (4.7)

1−Ast(z) = z

t∫

s

Asx(z) dβ(x) + z

t∫

s

Bsx(z) dγ(x), s < t < b. (4.8)

Note that H|(s,t) is in the limit circle case at both endpoints.
Dividing these equations by z, letting z tend to 0 and observing that

Wst(0) = I, we obtain

B′
st(0) = α(t)− α(s), A′

st(0) = β(s)− β(t).
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If we divide (4.8) by z, differentiate with respect to z and evaluate at z = 0,
then we obtain

−
A′′

st(0)

2
=

(
1−Ast(z)

z

)′

(0) =

t∫

s

A′
sx(0) dβ(x) +

t∫

s

B′
sx(0) dγ(x)

=

t∫

s

[
β(s)− β(x)

]
dβ(x) +

t∫

s

[
α(x)− α(s)

]
dγ(x)

= −
1

2

[
β(s)− β(t)

]2
+

t∫

s

α(x) dγ(x)− α(s)
[
γ(t)− γ(s)

]
.

Equation (4.7) gives

B′′
st(0)

2
=

(
Bst(z)

z

)′

(0) =

t∫

s

A′
sx(0) dα(x) +

t∫

s

B′
sx(0) dβ(x)

=

t∫

s

[
β(s)− β(x)

]
dα(x) +

t∫

s

[
α(x)− α(s)

]
dβ(x)

= β(s)
[
α(t)− α(s)

]
−

t∫

s

β(x) dα(x) +
[
α(x)− α(s)

]
β(x)

∣∣∣∣
t

x=s

−

t∫

s

β(x) dα(x)

=
[
β(s) + β(t)

]
·
[
α(t)− α(s)

]
− 2

t∫

s

β(x) dα(x).

It follows that

lim
sցa+

(
Bst(z)

z

)′

(0) = β(t)α(t)− 2

t∫

a+

β(x) dα(x),

and, with the Mean Value Theorem for the evaluation of the integral, that

lim
tցa+

[
1

α(t)
lim

sցa+

(
Bst(z)

z

)′

(0)

]
= 0. (4.9)

Dividing (4.7) by z, differentiating twice and evaluating at z = 0, we obtain

(
Bst(z)

z

)′′

(0) =

t∫

s

A′′
sx(0) dα(x) +

t∫

s

B′′
sx(0) dβ(x).
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The first summand equals

t∫

s

A′′
sx(0) dα(x)

=

t∫

s

([
β(s)− β(x)

]2
− 2

x∫

s

α(y) dγ(y) + 2α(s)
[
γ(x)− γ(s)

])
dα(x)

=

t∫

s

[
β(s)−β(x)

]2
dα(x)− 2

t∫

s

x∫

s

α(y) dγ(y)dα(x) + 2α(s)

t∫

s

[
γ(x)−γ(s)

]
dα(x),

the second one

t∫

s

B′′
sx(0) dβ(x) = 2

t∫

s

([
β(s) + β(x)

]
·
[
α(x)− α(s)

]
− 2

x∫

s

β(y) dα(y)

)
dβ(x)

=

t∫

s

[
α(x)− α(s)

]
· 2
[
β(s) + β(x)

]
dβ(x)− 4

t∫

s

x∫

s

β(y) dα(y) dβ(x)

=
[
β(s) + β(t)

]2[
α(t)− α(s)

]
−

t∫

s

[
β(s) + β(x)

]2
dα(x)

− 4

t∫

s

[
β(t)− β(y)

]
β(y)dα(y).

Using the Bounded Convergence Theorem, we conclude that (note here that
|γ(x)− γ(s)| ≤ 2max{|γ(t)|, |γ(s)|}, x ∈ (s, t))

lim
sցa+

(
Bst(z)

z

)′′

(0) =

t∫

a+

β(x)2 dα(x)− 2

t∫

a+

x∫

a+

α(y) dγ(y) dα(x)

+ β(t)2α(t)−

t∫

a+

β(x)2 dα(x)− 4

t∫

a+

[
β(t)− β(y)

]
β(y) dα(y),

and, again using the Mean Value Theorem, we obtain

lim
tցa+

[
1

α(t)
lim

sցa+

(
Bst(z)

z

)′′

(0)

]
= 0. (4.10)

Let

Ft(z) :=
B̊t(z)

zα(t)
.

Since B̊′
t(0) = limsցa+

B′
st(0) = α(t) and

(
B̊t(z)

z

)′

(0) = lim
sցa+

(
Bst(z)

z

)′

(0),

(
B̊t(z)

z

)′′

(0) = lim
sցa+

(
Bst(z)

z

)′′

(0),
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it follows from (4.9) and (4.10) that

Ft(0) = 1, lim
tցa+

F ′
t (0) = 0, lim

tցa+

F ′′
t (0) = 0.

By Lemma 4.5 this implies that limtցa+
Ft(z) = 1 locally uniformly on C, which

is (4.6). ❑

4.10 Lemma. Assume that H satisfies (G1), (G2).

(i) The limit
lim
sցa

D′
st(0)

exists for every t ∈ (a, b), and

lim
tցa

lim
sցa

D′
st(0) = 0.

(ii) If lim
sցa

γ(s) 6= 0, then

lim
sցa

1

γ(s)
D′′

st(0)

exists for every t ∈ (a, b) and

lim
tցa

lim
sցa

1

γ(s)
D′′

st(0) = 0.

(iii) Let

Ĩ := {t ∈ (a, b) : t is not right endpoint of an indivisible interval

of type 0}.

Then there exists a non-decreasing function c(t), t ∈ Ĩ, with lim
tցinf Ĩ

c(t) = 0

such that
Cst(z)(

γ(s)− γ(t)
)
z
∈ Pc(t), a < s < t, t ∈ Ĩ . (4.11)

Proof. For s, t ∈ (a, b), s < t, the function x 7→ (Csx, Dsx) satisfies the differen-
tial equation (1.1) with Hamiltonian H|(s,t), and takes the value (0, 1) for x = s.
Hence

Dst(z)− 1 = z

t∫

s

Csx(z) dα(x) + z

t∫

s

Dsx(z) dβ(x), s < t < b,

−Cst(z) = z

t∫

s

Csx(z) dβ(x) + z

t∫

s

Dsx(z) dγ(x), s < t < b.

Note that H|(s,t) is in the limit circle case at both endpoints. Dividing the first
integral equation by z and letting z → 0 we easily see that

D′
st(0) = β(t)− β(s), C ′

st(0) = γ(s)− γ(t), (4.12)
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and hence that

lim
sցa

D′
st(0) = β(t), lim

tցa
lim
sցa

D′
st(0) = 0,

which is (i). Moreover,

D′′
st(0)

2
=

(
Dst(z)− 1

z

)′

(0) =

t∫

s

C ′
sx(0) dα(x) +

t∫

s

D′
sx(0) dβ(x)

=

t∫

s

[
γ(s)− γ(x)

]
dα(x) +

t∫

s

[
β(x)− β(s)

]
dβ(x)

= γ(s)
[
α(t)− α(s)

]
−

t∫

s

γ(x) dα(x) +
1

2

[
β(t)− β(s)

]2
.

Under the assumption that limsցa γ(s) 6= 0, it follows that

lim
sցa

1

γ(s)
D′′

st(0) = 2α(t)− lim
yցa

(
1

γ(y)

)[
2

t∫

a

γ(x)dα(x) +
(
β(t)

)2
]
.

Note that the integral exists by Remark 4.6 (ii). If we now let tց a, we obtain

lim
tցa

lim
sցa

1

γ(s)
D′′

st(0) = 0.

Hence (ii) is proved.
Finally, we show (iii). By (2.8) the function

z 7→
Cst(z)(

γ(s)− γ(t)
)
z

is in the Pólya class. To estimate Cst, we compute

−
C ′′

st(0)

2
= −

(
Cst(z)

z

)′

(0) =

t∫

s

C ′
sx(0) dβ(x) +

t∫

s

D′
sx(0) dγ(x)

=

t∫

s

[
γ(s)− γ(x)

]
dβ(x) +

t∫

s

[
β(x)− β(s)

]
dγ(x)

=
[
γ(s)− γ(t)

]
·
[
β(t)− β(s)

]
+ 2

t∫

s

[
β(x)− β(s)

]
dγ(x).

If t ∈ Ĩ, then γ(t) > γ(s) and hence
∣∣∣∣
(

Cst(z)(
γ(s)− γ(t)

)
z

)′

(0)

∣∣∣∣

≤
∣∣β(t)− β(s)

∣∣+ 4

γ(t)− γ(s)
sup

x∈(a,t]

|β(x)|

t∫

s

dγ(x) ≤ 6 sup
x∈(a,t]

|β(x)|.

(4.13)
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Next,

−

(
Cst(z)

z

)′′

(0) =

t∫

s

C ′′
sx(0) dβ(x) +

t∫

s

D′′
sx(0) dγ(x).

The first summand can be written as

t∫

s

C ′′
sx(0) dβ(x) = −2

t∫

s

[
γ(s)− γ(x)

]
·
[
β(x)− β(s)

]
dβ(x)

− 4

t∫

s

x∫

s

[
β(y)− β(s)

]
dγ(y) dβ(x).

The first integral on the right-hand side of this relation equals

t∫

s

[
γ(s)− γ(x)

]
·
[
β(x)− β(s)

]
dβ(x)

=
[
γ(s)− γ(t)

][β(t)− β(s)
]2

2
−

t∫

s

[
β(x)− β(s)

]2

2
dγ(x),

the second one

t∫

s

x∫

s

[
β(y)− β(s)

]
dγ(y) dβ(x) =

t∫

s

[
β(t)− β(y)

]
·
[
β(y)− β(s)

]
dγ(y).

Hence, for t ∈ Ĩ, we obtain the estimate

∣∣∣∣∣
1

γ(t)− γ(s)

t∫

s

C ′′
sx(0) dβ(x)

∣∣∣∣∣ ≤ 8 sup
x∈(a,t]

|β(x)|2.

Next we compute

t∫

s

D′′
sx(0) dγ(x) = 2

t∫

s

γ(s)
[
α(x)− α(s)

]
dγ(x)

− 2

t∫

s

x∫

s

γ(y) dα(y) dγ(x) +

t∫

s

[
β(x)− β(s)

]2
dγ(x).

The first integral on the right-hand side equals

2γ(s)

t∫

s

α(x) dγ(x)− 2γ(s)α(s)

t∫

s

dγ(x)

= 2
[
γ(s)− γ(t)

]
t∫

s

α(x) dγ(x) + 2γ(t)

t∫

s

α(x) dγ(x)− 2γ(s)α(s)
[
γ(t)− γ(s)

]
.
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Hence, for t ∈ Ĩ, (we use that α is monotonic increasing)

∣∣∣∣∣
1

γ(s)− γ(t)

t∫

s

D′′
sx(0) dγ(x)

∣∣∣∣∣

≤ 2

t∫

s

α(x) dγ(x) +
2|γ(t)|

γ(t)− γ(s)

t∫

s

α(x) dγ(x) + 2 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+
2

γ(t)− γ(s)

t∫

s

t∫

s

|γ(y)| dα(y) dγ(x) + 4 sup
x∈(a,t]

|β(x)|2

≤ 2

t∫

s

α(x) dγ(x) +
2|γ(t)|

γ(t)− γ(s)

t∫

s

α(t) dγ(x) + 2 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+ 2

t∫

s

|γ(y)| dα(y) + 4 sup
x∈(a,t]

|β(x)|2

≤ 2

t∫

a

α(x) dγ(x) + 4 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣+ 2

t∫

a

|γ(y)| dα(y) + 4 sup
x∈(a,t]

|β(x)|2.

Putting these estimates together we obtain

∣∣∣∣
(

Cst(z)(
γ(s)− γ(t)

)
z

)′′

(0)

∣∣∣∣ ≤ 2

t∫

a

α(x) dγ(x) + 4 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+ 2

t∫

a

|γ(y)| dα(y) + 12 sup
x∈(a,t]

|β(x)|2.

(4.14)

It follows from (4.12), (4.13) and (4.14) that, for t ∈ Ĩ and s ∈ (a, t),

Cst(z)(
γ(s)− γ(t)

)
z
∈ Pc(t)

for a certain function c(t), which can be chosen to be non-decreasing. Let
a′ := inf Ĩ. If a′ > a, then (a, a′) is a maximal indivisible interval of type 0. In
this case H must be in the limit circle case at a by (G1), and we have β(t) = 0
and γ(t) = 0 for t ∈ [a, a′], which implies that we can choose c(t) such that
c(t) → 0 as t ց a′. If a′ = a, then it follows from Remark 4.6 that we can
choose c(t) such that c(t) → 0 as tց a. ❑

Note that the assertion (4.11) has a different meaning depending whether
H is in the limit point or limit circle case at a. In the limit point case it limits
the growth of Cst, whereas in the limit circle case it determines the speed of
convergence. More precisely, for the latter case the following is true.
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4.11 Corollary. Let H be a Hamiltonian on (a, b) which is in the limit circle
case at a and does not start with an indivisible interval of type 0 at a, and write

ωH(t; z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)

Then

lim
tցa

Ct(z)

C ′
t(0) · z

= 1

locally uniformly on C.

Proof. Wemay pass to the limit sց a in (4.11), observe that C ′
t(0) = γ(a)−γ(t)

and apply Lemma 4.5. ❑

c. Asymptotics for a class of general Hamiltonians.

Let h ∈ Hπ
2
and denote by H the Hamiltonian function of h on the interval

(σ1, σ2). Then H is in limit point case at σ1 and it satisfies (G1) unless (σ1, σ2)
is indivisible (which cannot happen if h is a singular general Hamiltonian). In
order to shorten notation we write again

ωh(t; z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)
, (4.15)

and
∂

∂z
ωh(t; z)J

∣∣
z=0

=:

(
α(t) β(t)

β(t) γ(t)

)
. (4.16)

Explicitly, this is

α(t) = B′
t(0), β(t) = −A′

t(0) = D′
t(0), γ(t) = −C ′

t(0) (4.17)

and th(t) = α(t)+γ(t). It is easy to see that ∂
∂z
ωh(t; z)J

∣∣
z=0

is an anti-derivative
of H(t) and hence

α′ = h11, β′ = h12, γ′ = h22.

Moreover, if Ast, Bst, Cst, Dst are as in (4.3), then

ωh(s; z)
−1ωh(t; z) =

(
Ast(z) Bst(z)

Cst(z) Dst(z)

)
.

It follows that
(
A′

s(0) B′
s(0)

C ′
s(0) D′

s(0)

)
+

(
A′

st(0) B′
st(0)

C ′
st(0) D′

st(0)

)
=

(
A′

t(0) B′
t(0)

C ′
t(0) D′

t(0)

)
.

4.12 Remark.

(i) It will turn out later that H also satisfies (G2), cf. Corollary 4.20, but at
the present stage this is not known.
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(ii) If H satisfies (G2), then the functions α and β defined by (4.16) may differ
from the functions defined in (4.4) by additive constants.

(iii) Since −A′
t(0) is an anti-derivative of h12, locally uniform existence of the

limit limtցσ1
At implies (G2). If we assume that limtցσ1

At = 1 and
limtցσ1

Bt = 0, then the functions α, β in (4.16) coincide with those from
(4.4).

�

First we show a geometric lemma.

4.13 Lemma. Let h ∈ Hπ
2
. Then, for t ∈ (σ1, σ2), the function At − iBt is of

bounded type in the upper half-plane and belongs to the Hermite–Biehler class
and to the Pólya class.

Proof. As usual the case when σ1 is left endpoint of an indivisible interval can be
treated explicitly. Let σ+ be the maximal number in (σ1, σ2) such that (σ1, σ+)
is indivisible. The type of this indivisible interval is equal to π

2 , and hence, by
the construction of ωh in [KW/V], we have

ωh(σ+; z) =

(
1 0

p(z) 1

)

with some polynomial p. It follows that

At = 1, Bt = 0, t ∈ (σ1, σ+],

At = Aσ+t, Bt = Bσ+t, t ∈ [σ+, σ2).

The functions Aσ+t and Bσ+t are the solutions of the positive definite Hamil-
tonian system with Hamiltonian H|(σ+,σ2) satisfying the initial condition
(Aσ+

(z), Bσ+
(z)) = (1, 0). Hence, for t ∈ [σ+, σ2), the function Aσ+t − iBσ+t

belongs to the Hermite–Biehler class HB0, is of bounded type and belongs to
the Pólya class; see 2.13. For t ∈ (σ1, σ+) the assertion is trivial.

Assume now that σ1 is not left endpoint of an indivisible interval. Fix a point
t0 ∈ (σ1, σ2) which is not inner point of an indivisible interval. Consider the
isomorphism Ξt0 : P�t0 → K(ωh(t0; · )) as discussed at the end of §2.e. Moreover,
denote by π+ and π− the projections from K(ωh(t0; · )) onto its upper and lower
components, respectively. By [Wo, Lemma 6.3 (proof, subcase 3b)] and the
construction of Ξt0 in [KW/V] we have

Ξt0

(
span

{
δ0, . . . , δ∆+ö−1

})
= kerπ+,

and, as, e.g. noted in [KW/I, Lemma 8.6],

P(At0 − iBt0)
∼= (kerπ+)

⊥/(kerπ+)
◦.

And application of Lemma 3.2 (d) to 	π
2
h with s0 = t0 gives (using the same

notation as there)
EA(∞) = span

{
δ0, . . . , δ∆+ö−1

}
.

By Lemma 3.2 the space EA(∞) contains a non-positive subspace with dimension
ind− h, i.e. a maximal non-positive subspace of P�t0 . Applying Ξt0 we obtain
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that (kerπ+)
⊥ is positive semi-definite, and hence that P(At0 − iBt0) is positive

definite. This implies that the function At0 − iBt0 belongs to the Hermite–
Biehler class; see [KW/I, Theorem 5.3].

Since kerπ+ 6= {0}, we have kerπ− = {0}. Hence, by [KW/I, Proposition
10.3], the constant function 1 is associated with the space P(Dt0 + iCt0). This
implies thatDt0 and Ct0 are of bounded type in the upper half-plane; see [KW/I,

§2 and §3]. Since
At0

Ct0

and
Bt0

Dt0

belong to the generalized Nevanlinna class N<∞,

and thus are of bounded type, this property is inherited by At0 and Bt0 . By
[dB, Problem 34], therefore At0 − iBt0 belongs to the Pólya class. From this
one can now also easily obtain the assertion for inner points of an indivisible
interval. ❑

Next, we establish the knowledge of the asymptotics of ωh(t; · ) that is needed
in the inductive process.

4.14 Lemma. Let h ∈ Hπ
2
and assume additionally that

lim
tցσ1

At(z) = 1, lim
tցσ1

Bt(z) = 0 (4.18)

locally uniformly on C. For each t0 ∈ (σ1, σ2) with γ(t0) < 0 (which certainly
is the case whenever t0 is sufficiently close to σ1),

{
Ct(z)

γ(t)z
: t ∈ (σ1, t0]

}
(4.19)

is a normal family. Moreover,

lim
tցσ1

Dt(z) = 1 (4.20)

locally uniformly on C. Let σ+ ∈ [σ1, σ2) be the maximal number such that
(σ1, σ+) is indivisible. Then

lim
tցσ+

Bt(z)

zα(t)
= 1. (4.21)

Moreover,
Bt(z)Ct(z)

z2
= O

(
α(t)γ(t)

)
as tց σ1 (4.22)

locally uniformly in z, and hence the left-hand side of (4.22) tends to 0 as
tց σ1.

Proof. The case when σ1 is left endpoint of an indivisible interval, i.e. when
σ1 > σ1, is again easy to settle. The type of (σ1, σ+) must be equal to π

2 , and
hence

ωh(t; z) =

(
1 0

p(z)− l(t)z 1

)
, t ∈ (σ1, σ+),

with some polynomial p and some non-decreasing function l(t) satisfying
limsցσ1

l(s) = −∞, cf. [KW/V, Proposition 4.31]. We have

γ(t) = −C ′
t(0) = l(t)− p′(0),
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and it follows that

lim
tցσ1

Ct(z)

γ(t)z
= lim

tցσ1

p(z)− l(t)z(
l(t)− p′(0)

)
z
= −1;

in particular, the family (4.19) is normal. Moreover, Dt = 1, t ∈ (σ1, σ+), and
hence the limit relation (4.20) is trivial. Relation (4.21) follows from Remark 4.8
and Lemma 4.9 since σ+ is a regular endpoint and Aσ+

= 1, Bσ+
= 0. Finally,

relation (4.22) is trivial since Bt(z) = 0 for t ∈ (σ1, σ+).
Assume from now on that σ1 is not left endpoint of an indivisible interval.

Fix a point t0 ∈ (σ1, σ2) that is not inner point of an indivisible interval and let
t ∈ (σ1, t0] be given. Then

ωh(t; z) = ωh(t0; z)
[
ωh(t; z)

−1ωh(t0; z)
]−1

,

i.e.
(
At Bt

Ct Dt

)
=

(
At0 Bt0

Ct0 Dt0

)(
Dtt0 −Btt0

−Ctt0 Att0

)

=

(
At0Dtt0 −Bt0Ctt0 −At0Btt0 +Bt0Att0

Ct0Dtt0 −Dt0Ctt0 −Ct0Btt0 +Dt0Att0

)
.

(4.23)

In particular,

Ct(z)

γ(t)z
=
Ct0(z)

z
·
Dtt0(z)

γ(t)
−Dt0(z)

Ctt0(z)(
γ(t)− γ(t0)

)
z

(
1−

γ(t0)

γ(t)

)
. (4.24)

As we have noted in Remark 4.12, our assumption (4.18) implies that H satisfies
(G2). Thus the application of Lemma 4.10 is justified, which implies that the
first and second derivatives evaluated at z = 0 of the terms on the right-hand
side of (4.24) are bounded when tց σ1. Moreover,

Ct(z)

γ(t)z

∣∣∣
z=0

=
C ′

t(0)

γ(t)
= −1

by (4.17). Hence −Ct(z)
γ(t)z ∈ Pc for some positive c and therefore the family in

(4.19) is normal by Lemma 4.4.
Consider the family (At(z), Bt(z)), t ∈ (σ1, σ2). By Lemma 4.13, the func-

tion At − iBt is of bounded type in the upper half-plane and belongs to the
Hermite–Biehler class HB0 and to the Pólya class. Clearly, (At, Bt) is a solu-
tion of the canonical system with Hamiltonian H. We see that (At, Bt) shares
the properties (a), (b) and (c) of (Åt, B̊t) in 4.7. By the uniqueness part of [dB,
Theorem 41] it follows that

At = Åt, Bt = B̊t, t ∈ (σ1, σ2).

The limit in (4.21) is now nothing else but the limit computed in Lemma 4.9.
Moreover, using (4.21) and the local boundedness of the left-hand side of (4.24)
we find that

Bt(z)Ct(z)

z2
= α(t)γ(t) ·

Bt(z)

zα(t)
·
Ct(z)

zγ(t)
= O

(
α(t)γ(t)

)

as t ց σ1. This together with Lemma 4.3 implies that Bt(z)Ct(z) → 0 as
tց σ1. Since AtDt −BtCt = 1, it follows that limtցσ1

Dt = 1. ❑
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d. The inductive process.

In the following let h be a singular general Hamiltonian that is either positive
definite or indefinite from the class Hπ

2
. As above write

ωh(t; z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)
.

With this notation the conditions (limπ
2
) and (lim′

π
2
) read as follows

(limπ
2
) lim

tցσ1

At(z) = lim
tցσ1

Dt(z) = 1, lim
tցσ1

Bt(z) = 0;

(lim′
π
2
) lim

tցσ1

Ct(z)

|α(t) + γ(t)| · z
= 1,

where α, β and γ are as in (4.16). If h is indefinite, then qh ∈ N
(0)
<∞; otherwise

qh ∈ N0.
We shall apply the same inductive process as in [KW/II]. To this end it is

necessary to investigate the transformations of chains employed in this process.
In the following four lemmas we give the necessary supplements to the results
in [KW/II, §10].

4.15 Lemma. Let h be a singular general Hamiltonian that is either positive
definite or indefinite from the class Hπ

2
satisfying (limπ

2
). Then

ind−

( 1

z2
qh(z)

)
= ind− qh(z) + 1.

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient
1
z2 qh(z). Then h̃ is indefinite, belongs to Hπ

2
and satisfies (limπ

2
) and (lim′

π
2
).

Proof. Set κ := ind− h. The function 1
z2 qh(z) is a generalized Nevanlinna func-

tion, and ind−
1
z2 qh(z) ≤ κ+ 1. However, we have

lim
z→̂i∞

z2κ+1 ·
1

z2
qh(z) = lim

z→̂i∞
z2κ−1 · qh(z) ∈ [0,∞);

if h is positive definite this is trivial, otherwise it follows from Theorem 3.1
and Remark 2.4. Thus 1

z2 qh(z) has a generalized zero of non-positive type with
degree of non-positivity at least κ+ 1 at ∞, and therefore ind−

1
z2 qh ≥ κ+ 1.

Let h̃ be the singular general Hamiltonian with qh̃(z) =
1
z2 qh(z). By Theorem

3.1, we already know that h̃ ∈ Hπ
2
. We compute the maximal chain ωh̃ explicitly

and then read off the required properties. Set αt := −β(t)α(t) − 1
2B

′′
t (0) and

let s0 ∈ [σ1, σ2) (or s0 ∈ [σ0, σ1) if κ = 0) be maximal such that (σ1, s0) (or
(σ0, s0), respectively) is indivisible of type π

2 . Define a function ω̃ by

ω̃(t; z) :=








1

z2
0

0 1


ωh(t; z)




0 −α(t)z

z

α(t)
1 +

αt

α(t)
z


 , t ∈ (s0, σ2),

[
lim
tրσ2

ω̃(t; z)
]
·



1

(
1

σ2 + 1− t
− 1

)
z

0 1


 , t ∈ (σ2, σ2 + 1)

if lim
tրσ2

ω̃(t; z) exists,
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if κ > 0, and in the same way with σ2 replaced by σ1 if κ = 0.
It was shown in [KW/II, Lemma 10.5] that the chain (ω̃(t; z))t>s0 is an

end section of ωh̃. Computing ω̃(t; z) explicitly for t ∈ (s0, σ2) (t ∈ (s0, σ1),
respectively) gives

ω̃(t; z) =




Bt(z)

zα(t)
−α(t)

At(z)

z
+
Bt(z)

z2
+

αt

α(t)

Bt(z)

z

zDt(z)

α(t)
−α(t)zCt(z) +Dt(z) +

αt

α(t)
zDt(z)


 .

Let notation involving a tilde have its obvious meaning. Differentiating C̃t with
respect to z, we find that γ̃(t) = − 1

α(t) . Hence

lim
tցs0

th̃(t) = lim
tցs0

(
α̃(t) + γ̃(t)

)
= −∞

since α̃(t) is non-decreasing, and thus (ω̃(t; z))t>s0 exhausts the last connected
component of the chain ωh̃. Moreover,

lim
tցs0

ω̃(t; z) ⋆∞ = lim
tցs0

Bt(z)

z2Dt(z)
= 0

by the assumption (limπ
2
) for h, and hence the intermediate Weyl coefficient of

ωh̃ at the singularity located at the infimum of the last connected component of
its domain is equal to 0. It follows that the part of ωh̃ to the left of its singularity
is just one indivisible interval of type π

2 and infinite length.
Referring to Lemma 4.14 (or Lemma 4.9 in the case when κ = 0) we obtain

lim
tցs0

Ãt(z) = lim
tցs0

Bt(z)

zα(t)
= 1,

lim
tցs0

αt

α(t)
= lim

tցs0

(
−β(t)−

(
Bt(z)

zα(t)

)′∣∣∣
z=0

)
= 0.

From this we get limtցs0 B̃t(z) = 0. Using limtցs0 α(t)γ(t) = 0 and the fact
that the family in (4.19) is a normal family, we see that

lim
tցs0

D̃t(z) = lim
tցs0

(
−α(t)γ(t)z2

Ct(z)

γ(t)z
+Dt(z) +

αt

α(t)
zDt(z)

)
= 1.

Hence h̃ satisfies (limπ
2
), which by Remark 4.12 implies that limtցs0 α̃(t) = 0.

Finally,
C̃t(z)

γ̃(t)z
= −Dt(z),

and hence

lim
tցs0

C̃t(z)

|th̃(t)|z
= lim

tցs0

C̃t(z)

|α̃(t) + γ̃(t)|z
= lim

tցs0

C̃t(z)

−γ̃(t)z
= 1,

which is (lim′
π
2
) for h̃. ❑

49



4.16 Lemma. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class Hπ

2
satisfying (limπ

2
). Then

ind−

( 1

z2 + 1
qh(z)

)
= ind− qh(z) + 1.

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient
1

z2+1qh(z). Then h̃ is indefinite, belongs to Hπ
2
and satisfies (limπ

2
) and (lim′

π
2
).

Proof. Set κ := ind− h. For the same reason as in the proof of Lemma 4.15
the function 1

z2+1qh(z) is a generalized Nevanlinna function with negative index

κ+ 1, and h̃ ∈ Hπ
2
.

Again let us compute the maximal chain ωh̃ explicitly. Let s0 ∈ [σ1, σ2) (or
s0 ∈ [σ0, σ1) if κ = 0) be maximal such that (σ1, s0) (or (σ0, s0), respectively)

is indivisible of type π
2 . Set Rt := Re Bt(i)

At(i)
and Jt := Im Bt(i)

At(i)
. Note that Jt > 0

for t > s0 since for such values of t the function Bt

At
is a non-constant positive

definite Nevanlinna function (i.e. from the class N0) by Lemma 4.13, cf. 2.13.
Define a function ω̃ by the following formulae: if κ > 0, let

ω̃(t; z) :=





(
1

z2+1 0

0 1

)
ωh(t; z)


1−zRt

Jt
−zJt(1+

R2
t

J2
t

)

z
Jt

1+zRt

Jt


, t ∈ (s0, σ2),

[
lim
tրσ2

ω̃(t; z)
]
·W(l(t),φ)(z), t ∈ (σ2, σ2 + 1)

if lim
tրσ2

ω̃(t; z) exists,

where l(t) := 1
σ2+1−t

− 1, φ := −Arccot
(
limtրσ2

Rt

)
and W(l,φ) was defined in

(2.10); if κ = 0, use the same formulae with σ2 replaced by σ1.
We know from [KW/II, Lemma 10.8] that the chain (ω̃(t; z))t>s0 is an end

section of ωh̃. Let us again compute ω̃(t; z) explicitly for t ∈ (s0, σ2):

ω̃(t; z) =




1
z2+1

[
(

1− zRt
Jt

)

At(z) +
z

Jt
Bt(z)

]
1

z2+1

[
−zJt

(

1 +
R

2
t

J2
t

)

At(z)+

+
(

1 + zRt
Jt

)

Bt(z)

]

(1− zRt

Jt
)Ct(z) +

z
Jt
Dt(z) −zJt

(

1 + Rt
Jt

)

Ct(z) +
(

1 + zRt
Jt

)

Dt(z)


.

From the assumption (limπ
2
), Lemma 4.14 (in the case when h is indefinite),

Remark 4.8 and Lemma 4.9 (in the case when h is definite) it follows that

lim
tցσ1

Bt(z)

α(t)At(z)
= z,

which implies that limtցσ1

1
α(t) (Rt + iJt) = i and hence

lim
tցσ1

Rt

α(t)
= 0, lim

tցσ1

Jt
α(t)

= 1, lim
tցσ1

Rt

Jt
= 0. (4.25)

If we differentiate C̃t with respect to z and set z = 0, we obtain

γ̃(t) = γ(t)−
1

Jt
. (4.26)
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Hence limtցσ1
th̃(t) = −∞, and we conclude that (ω̃(t; z))t>σ1

exhausts the
last connected component of the chain ωh̃. The relations in (4.25) imply that

limtցσ1
B̃t(z) = 0. We can write

D̃t = −z2α(t)γ(t)
Jt
α(t)

(
1 +

Rt

Jt

)
Ct

γ(t)z
+

(
1 + z

Rt

Jt

)
Dt.

This together with Lemma 4.3, Lemma 4.14 and the relations in (4.25) implies
that limtցσ1

D̃t(z) = 1. In particular, the intermediate Weyl coefficient of ωh̃

at σ1 is equal to 0. Next, we compute

lim
tցσ1

(1 + z2)Ãt(z) = lim
tցσ1

[(
1− z

Rt

Jt

)
At(z) +

z

Jt
Bt(z)

]

= lim
tցσ1

[
At(z)− z

Rt

Jt
At(z) + z2

α(t)

Jt

Bt(z)

zα(t)

]
= 1 + z2.

By analyticity, thus limtցσ1
Ãt(z) = 1. As in the previous lemma we therefore

have limtցσ1
α̃(t) = 0 by Remark 4.12. Finally, using (4.26), (4.25), Lemma 4.3

and Lemma 4.14 we obtain

lim
tցσ1

C̃t(z)

|th̃(t)|z
= lim

tցσ1

1∣∣α̃(t) + γ(t)− 1
Jt

∣∣z

[(
1− z

Rt

Jt

)
Ct(z) +

z

Jt
Dt(z)

]

= lim
tցσ1

1∣∣α(t)α̃(t) + α(t)γ(t)− α(t)
Jt

∣∣

[
α(t)γ(t)

(
1− z

Rt

Jt

)
Ct(z)

γ(t)z
+
α(t)

Jt
Dt(z)

]

= 1,

which shows that (lim′
π
2
) is valid for h̃. ❑

4.17 Lemma. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class Hπ

2
satisfying (limπ

2
), (lim′

π
2
). Moreover, let

a ∈ R. Then ind− qh(z + a) = ind− qh(z).

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient
qh(z + a); then ind− h̃ = ind− h. If h is indefinite, then h̃ belongs to Hπ

2
and

satisfies (limπ
2
), (lim′

π
2
).

Proof. The fact that ind− qh(z + a) = ind− qh(z) is trivial. Hence, in the case
that h is positive definite, there is nothing to prove.

Consider the case when ind− h > 0. The multiplicity of ∞ as a generalized
zero of non-positive type of the function qh(z+a) is the same as its multiplicity

of qh. Thus h̃ ∈ Hπ
2
.

We claim that on the last component of its domain the maximal chain ωh̃ is
(up to a reparameterization) given by

ω̃(t; z) := ωh(t; z + a)ωh(t; a)
−1, t ∈ (σ1, σ2).

The facts that all matrices ω̃(t; · ) appear in the last component of the chain
ωh̃ and that limtրσ2

th̃(t) = +∞ have been shown in [KW/II, Lemma 10.2]. In

51



order to see that ω̃ exhausts the last component of ωh̃, it is sufficient to show
that the limit limtցσ1

ω̃(t; · ) does not exist. Let ν ∈ R ∪ {∞} be given; then

ω̃(t; z) ⋆ ν = ωh(t; z + a) ⋆
(
ωh(t; a)

−1 ⋆ ν
)
.

Since ωh(t; a)
−1 ⋆ ν ∈ R ∪ {∞},

lim
tցσ1

ω̃(t; z) ⋆ ν = 0.

In particular, it does not depend on the value of ν; thus h̃ is in the limit point
case and therefore the limit limtցσ1

ω̃(t; · ) cannot exist. We also see that the
intermediate Weyl coefficient at σ1 is equal to 0, and conclude that left of σ1
the chain ωh̃ consists of just one indivisible interval of type π

2 .
Explicitly, ω̃(t; z) equals

(
Dt(a)At(z + a)− Ct(a)Bt(z + a) −Bt(a)At(z + a) +At(a)Bt(z + a)

Dt(a)Ct(z + a)− Ct(a)Dt(z + a) −Bt(a)Ct(z + a) +At(a)Dt(z + a)

)

for t ∈ (σ1, σ2). Our assumption that h satisfies (limπ
2
) immediately implies

that limtցσ1
B̃t = 0. By Lemma 4.14 applied to h, we have

lim
tցσ1

Ct(a)Bt(z + a) = 0, lim
tցσ1

Bt(a)Ct(z + a) = 0,

and hence
lim
tցσ1

Ãt(z) = lim
tցσ1

D̃t(z) = 1.

We need to consider C̃t(z). First note that limtցσ1

Ct(z)
zγ(t) = −1 (which

is true by the assumption (lim′
π
2
)) implies that limtցσ1

Ct(z)
γ(t) = −z, and

hence limtցσ1

C′

t(z)
γ(t) = −1. Moreover, Ct(a)

γ(t) is bounded by Lemma 4.14, and

limtցσ1
D′

t(t) = 0 because of the assumption (limπ
2
). Hence

lim
tցσ1

γ̃(t)

γ(t)
= lim

tցσ1

−C ′
t(0)

γ(t)
= lim

tցσ1

[
−Dt(a)

C ′
t(a)

γ(t)
+
Ct(a)

γ(t)
D′

t(a)

]
= 1.

It follows that

lim
tցσ1

−C̃t(z)

|th̃(t)|
= lim

tցσ1

C̃t(z)

γ̃(t)
= lim

tցσ1

C̃t(z)

γ(t)

= lim
tցσ1

[
Dt(a)

Ct(z + a)

γ(t)
−
Ct(a)

γ(t)
Dt(z + a)

]

= −(z + a) + a = −z,

which implies (lim′
π
2
) for h̃. ❑

4.18 Lemma. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class Hπ

2
satisfying (limπ

2
), (lim′

π
2
). Moreover, let

r > 0. Then ind− qh(rz) = ind− qh(z).

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient
qh(rz); then ind− h̃ = ind− h. If h is indefinite, then h̃ belongs to Hπ

2
and

satisfies (limπ
2
), (lim′

π
2
).
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Proof. Again the fact that ind− qh(rz) = ind− qh(z) is trivial, and therefore we
have nothing to prove if ind− h = 0.

Assume that ind− h > 0. The multiplicity of ∞ as a generalized zero of
non-positive type of the function qh(rz) is the same as its multiplicity of qh.

Thus h̃ ∈ Hπ
2
.

The same arguments as in Lemma 4.17 show that ωh̃ is, on the last compo-
nent of its domain, given by

ω̃(t; z) := ωh(t; rz), t ∈ (σ1, σ2);

see also [KW/II, Lemma 10.1]. The required limit relations of ωh̃ are immediate
from this formula. ❑

Now we are ready to finish the proof of Theorem 4.1 in the case α = π
2 .

Proof (of Theorem 4.1, case α = π
2 ). By prolonging h if necessary, we may as-

sume, without loss of generality, that h is singular. Assume that it is from the
class Hπ

2
. Then, by Theorem 3.1, qh has a generalized zero of non-positive type

of multiplicity κ := ind− qh at ∞. Thus, it cannot have any zeros in C \ R or
generalized zeros of non-positive type on R. By the corollary in [DLLS] we have

qh(z) =

[ κ∏

l=1

(z − al)(z − al)

]−1

· q0(z),

where a1, . . . , aκ denote the poles of qh in C+ and the generalized poles of non-
positive type on R (according to their multiplicities) and where q0 is from N0.

We see that the function qh can be produced starting from q0 (multiplied
by a positive constant) and applying a finite sequence of the transformations
studied above. The Hamiltonian corresponding to q0 is positive definite, i.e.
it is in limit circle case at its left endpoint and hence satisfies (limπ

2
) trivially.

By Lemmas 4.15–4.18 the properties (gHo.s.), (gHπ
2
) and (limπ

2
), (lim′

π
2
) are

inherited in each step of the induction process. Thus they hold for the maximal
chain associated with qh. ✌

4.19 Remark. If H does not start with an indivisible interval at σ1, then it
follows from (4.21) and (lim′

π
2
) that

lim
tցσ1

Bt(z)Ct(z)

z2α(t)γ(t)
= 1

locally uniformly on C. �

Let us return to the fact already announced in Remark 4.12 (i).

4.20 Corollary. Let H be a Hamiltonian defined on an interval (a, b) which
satisfies the conditions (I−0 ), (HS

−
0 ) and ∆−(H) <∞. Then (G2) holds.

Proof. Set

H0(x) := (x− a)−2ξπ
2
ξTπ

2
, x ∈ (a− 1, a); ö := 0, b1 := 0, dj := 0.
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Since H satisfies (I−0 ), (HS
−
0 ) and ∆−(H) <∞, the data

a− 1, a, b, H0, H, ö, bj , dj , E := {a− 1, b}

constitutes a general Hamiltonian h ∈ Hπ
2
. By Theorem 4.1 we have

limtցa ξ
T
0 ωh(t; z)ξ0 = 1 locally uniformly on C. Now (G2) follows from Re-

mark 4.12 (iii). ❑

e. General values of α ∈ [0, π).

Let α ∈ [0, π) and a general Hamiltonian h ∈ Hα be given. It follows from
Lemma 2.26 that the general Hamiltonian 	α−π

2
h belongs to Hπ

2
. By the

already proved case ‘α = π
2 ’ of Theorem 4.1 we have

lim
tցσ1

ξT0 ω	α−
π
2
h(t)ξ0 = lim

tցσ1

ξTπ
2
ω	α−

π
2
h(t)ξπ

2
= 1,

lim
tցσ1

ξT0 ω	α−
π
2
h(t)ξπ

2
= 0.

(4.27)

However,
ω	α−

π
2
h =	α−π

2
ωh = Nα−π

2
ωhN

∗
α−π

2

and
N∗

α−π
2
ξ0 = ξα−π

2
, N∗

α−π
2
ξπ

2
= ξα.

Substituting in (4.27), gives

lim
tցσ1

ξTα−π
2
ωh(t)ξα−π

2
= lim

tցσ1

ξTαωh(t)ξα = 1, lim
tցσ1

ξTα−π
2
ωh(t)ξα = 0,

and this is (limα). The relation (lim′
α) follows in the same way. This concludes

the proof of Theorem 4.1 also for arbitrary values of α.

f. A continuity result for general Hamiltonians of arbitrary form.

We can deduce an interesting continuity result for the fundamental solution of
an arbitrary general Hamiltonian.

4.21 Theorem. Let h be a general Hamiltonian with ind− h > 0 given by the
data

σ0, . . . , σn+1, Hi, öi, bij , dij , E.

Moreover, let ωh(x; z) be the (finite) maximal chain associated with h and set

th(x) := t
(
ωh(x; · )

)
, φi := φ−(Hi), i = 1, . . . , n.

For each i = 1, . . . , n, there exist real polynomials pi, qi and real and entire
functions ei, fi such that the following statements hold.

(i) For each i = 1, . . . , n, the polynomials pi and qi satisfy pi(0) = qi(0) = 1,
have no common zeros and no real zeros. Each pi and qi has even degree
which does not exceed 2 ind− h�σi

.

(ii) For each i = 1, . . . , n, the functions ei and fi satisfy ei(0) = 1 and fi(0) =
0 and have no common zeros. They are of bounded type in C

+ and belong
to the Pólya class (in particular, they have no non-real zeros).
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(iii) The intermediate Weyl coefficient qh,σi
of h at the singularity σi is repre-

sented as the quotient

qh,σi
(z) =

qi(z)fi(z)

pi(z)ei(z)
.

(iv) The following limit relations hold locally uniformly on C:

lim
x→σi

ξTφi+
π
2
ωh(x; z)ξφi+

π
2
= pi(z)ei(z),

lim
x→σi

ξTφi
ωh(x; z)ξφi+

π
2
= qi(z)fi(z),

lim
x→σi

ξTφi+
π
2
ωh(x; z)ξφi

−th(x)
= zpi(z)ei(z),

lim
x→σi

ξTφi
ωh(x; z)ξφi

−th(x)
= zqi(z)fi(z).

Proof. Let i ∈ {1, . . . , n} be fixed. By appropriately prolonging h if necessary,
we can achieve that h is singular. Of course, prolonging h does not influence
the limits under consideration. Moreover, using rotation isomorphisms in the
routine way we see that it is enough to consider the case that φi = 0. If i = 1
and the interval (σ0, σ1) is indivisible, then the assertions follow immediately
from Theorem 4.1 with p1(z) = q1(z) = e1(z) = 1, f1(z) = 0; note that in this
case qh,σ1

(z) = 0. Hence in the following we assume that h�σi
is not just one

indivisible interval.

Step 1: existence of limits from above.
Set

H̃0(x) := (x− σi)
−2ξπ

2
ξTπ

2
, x ∈ (σi − 1, σi),

H̃1(x) := Hi(x), x ∈ (σi, σi+1),

˜̈o := 0, b̃1 := 0, d̃j := 0,

and choose a point s0 ∈ (σi, σi+1) which is not inner point of an indivisible
interval. Then the data

σi − 1, σi, σi+1, H̃0, H̃1, ˜̈o, b̃1, d̃j , E := {σi − 1, s0, σi+1}

constitutes a general Hamiltonian h̃ ∈ Hπ
2
.

Choose x0 ∈ (σi, σi+1), and set

M(z) := ωh(x0; z)ωh̃(x0; z)
−1, (4.28)

so that ωh(x0; z) = M(z)ωh̃(x0; z). Since ωh and ωh̃ both satisfy the canonical
differential equation with Hamiltonian H1 on the interval (σi, σi+1), we have

ωh(y; z)
−1ωh(x; z) = ωh̃(y; z)

−1ωh̃(x; z), x, y ∈ (σi, σi+1).

It follows that
ωh(x; z) =M(z)ωh̃(x; z), x ∈ (σi, σi+1). (4.29)
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Explicitly, ωh(x; z) has the form



m11(z)ωh̃(x; z)11+m12(z)ωh̃(x; z)21 m11(z)ωh̃(x; z)12+m12(z)ωh̃(x; z)22

m21(z)ωh̃(x; z)11+m22(z)ωh̃(x; z)21 m21(z)ωh̃(x; z)12+m22(z)ωh̃(x; z)22




where M(z) = (mij(z))
2
ij=1. By Theorem 4.1 we have (locally uniformly on C)

lim
xցσi

ωh̃(x; z)11 = lim
xցσi

ωh̃(x; z)22 = lim
xցσi

ωh̃(x; z)21

−th̃(x)z
= 1,

lim
xցσi

ωh̃(x; z)12 = 0,

and hence (again locally uniformly on C)

lim
xցσi

ωh(x; z)12 = m12(z), lim
xցσi

ωh(x; z)22 = m22(z),

lim
xցσi

ωh(x; z)11
−th̃(x)

= zm12(z), lim
xցσi

ωh(x; z)21
−th̃(x)

= zm22(z).
(4.30)

Since th̃ and th are both anti-derivatives of trH, they differ only by a constant,
and hence

lim
xցσi

th̃(x)

th(x)
= 1.

This shows the existence of the limits in (iv) from above. It follows that the
intermediate Weyl coefficient qh,σi

can be computed as follows:

qh,σi
(z) = lim

xցσi

ωh(x; z) ⋆ 0 =
m12(z)

m22(z)
. (4.31)

Step 2: the functions pi, qi and ei, fi.
Since the entries of ωh(x0; z) and ωh̃(x; z) are real, entire and of bounded type

in C
+, also the functions m12 and m22 possess these properties. Moreover, since

detM(z) = 1, they cannot have common zeros. Finally, since M(0) = I, we
have m12(0) = 0 and m22(0) = 1.

The function qh,σi
belongs to the generalized Nevanlinna class N<∞, and

ind− qh,σi
= ind− h�σi

. Hence the total multiplicity of poles (or zeros) of qh,σi

in C
+ does not exceed ind− h�σi

. Denote by dm12
(w) the multiplicity of w as a

zero of m12, let dm22
(w) be defined correspondingly, and set

pi(z) :=
∏

w∈C
+:

m22(w)=0

[(
1−

z

w

)(
1−

z

w

)]dm22
(w)

, ei(z) :=
m22(z)

pi(z)
,

qi(z) :=
∏

w∈C
+:

m12(w)=0

[(
1−

z

w

)(
1−

z

w

)]dm12
(w)

, fi(z) :=
m12(z)

qi(z)
.

Clearly, the polynomials pi and qi have all properties stated in (i), and the
functions ei and fi have the properties (ii) (Pólya class is a consequence of
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bounded type). The assertion (iii) is just (4.31). The limits in (iv), when x
approaches σi from above, are just (4.30).

Step 3: existence of limits from below.

Set V :=
(
1 0
0 −1

)
, and

Ȟ0(x) := (x+ σi)
−2ξπ

2
ξTπ

2
, x ∈ (−σi−1,−σi),

Ȟ1(x) := V Hi−1(−x)V, x ∈ (−σi,−σi−1),

ˇ̈o := 0, b̌1 := 0, ďj := 0.

If i > 1, choose a point s0 ∈ (σi−1, σi) which is not inner point of an indivisible
interval. For i = 1, set s0 := σ0. Then the data

−σi − 1,−σi,−σi−1, Ȟ0, Ȟ1, ˇ̈o, b̌1, ďj , E := {−σi − 1,−s0,−σi−1}

constitutes a general Hamiltonian ȟ ∈ Hπ
2
.

The functions ωh(x; z) and V ωȟ(−x; z)
−1V are both solutions of the canon-

ical differential equation with Hamiltonian H1. Hence, setting (with some fixed
x0 ∈ (σi−1, σi))

N(z) := ωh(x0; z)
[
V ωȟ(−x0; z)

−1V
]−1

we have
ωh(x; z) = N(z)[V ωȟ(−x; z)

−1V
]
, x ∈ (σi−1, σi). (4.32)

Explicitly, this relation reads as

ωh(x; z)=

(
n11(z)ωh̃

(−x;z)22+n12(z)ωh̃
(−x;z)21 n11(z)ωh̃

(−x;z)12+n12(z)ωh̃
(−x;z)11

n21(z)ωh̃
(−x;z)22+n22(z)ωh̃

(−x;z)21 n21(z)ωh̃
(−x;z)12+n22(z)ωh̃

(−x;z)11

)
.

Theorem 4.1 gives

lim
xց−σi

ωȟ(x; z)11= lim
xց−σi

ωȟ(x; z)22= lim
xց−σi

ωȟ(x; z)21

−tȟ(x)z
=1, lim

xց−σi

ωȟ(x; z)12=0,

and hence (note that limxցσi

tȟ(x)

th(−x) = 1),

lim
xրσi

ωh(x; z)12 = n12(z), lim
xրσi

ωh(x; z)22 = n22(z),

lim
xրσi

ωh(x; z)11
−th(x)

= zn12(z), lim
xրσi

ωh(x; z)21
−th(x)

= zn22(z).

Step 4: equality of limits from above and below.
For the same reason as in Steps 1 and 2 above, the functions n12 and n22 are
real, entire, of bounded type, satisfy n12(0) = 0, n22(0) = 1, have no common
zeros, and represent the intermediate Weyl coefficient as the quotient

qh,σi
(z) =

n12(z)

n22(z)
.
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Hence we may factorize

n22(z) = pi(z)ěi(z), n12(z) = qi(z)f̌i(z),

where pi and qi are the polynomials defined in Step 2, and where the functions
ěi and f̌i also have the properties formulated in (ii) and (iii) for ei and fi.

Because of the assumption that h�σi
is not just an indivisible interval, the

functions ei, ěi, fi, f̌i are not identically equal to zero. Since they have only real
zeros, belong to the Pólya class, are real, and are of bounded type, they can be
represented as the products

ei(z) = lim
R→∞

∏

ei(x)=0

|x|≤R

(
1−

z

x

)dei
(x)

, ěi(z) = lim
R→∞

∏

ěi(x)=0

|x|≤R

(
1−

z

x

)děi
(x)

,

fi(z) = z lim
R→∞

∏

fi(x)=0

|x|≤R

(
1−

z

x

)dfi
(x)

, f̌i(z) = z lim
R→∞

∏

f̌i(x)=0

|x|≤R

(
1−

z

x

)df̌i
(x)

,

cf. [Le, Theorem V.11]. However, m12(z)
m22(z)

= n12(z)
n22(z)

, and hence the absence of

common zeros implies that the functions ei and ěi, or fi and f̌i, respectively,
have the same zeros including multiplicities. Thus

ei = ěi, fi = f̌i,

i.e. the limits in (iv) from above and below coincide. ❑

In (2.14) the intermediate Weyl coefficient qh,σi
at a singularity σi was de-

fined as a limit for non-real z. In the next corollary it is shown that this limit
exists also for certain real z and coincides with the analytic continuation of
qh,σi

(z).

4.22 Corollary. Let h be a general Hamiltonian and σi be one of its singulari-
ties. Further, let qh,σi

be the intermediate Weyl coefficient of h at σi and let P
be the set of all poles of qh,σi

. Then, for each τ ∈ R ∪ {∞}, the relation

qh,σi
(z) = lim

x→σi

ωh(x; z) ⋆ τ (4.33)

holds on C \ (P ∪ {0}) where the limit exists locally uniformly on this set (for
τ = cot(φi +

π
2 ) even on C \ P where φi is as in Theorem 4.21).

Proof. For z 6= 0 this is an immediate consequence of the fact that the limits in
Theorem 4.21 (iv) exist locally uniformly on all of C. Next we consider the case
z = 0. For z = 0 the right-hand side of (4.33) is equal to

lim
x→σi

ωh(x; 0) ⋆ τ = lim
x→σi

I ⋆ τ = τ.

To calculate qh,σi
(0), replace the part of h to the right of σi by an indivisible

interval (σi, x0) of type φi +
π
2 which is regular at x0. Let us call this new

general Hamiltonian h̃. For x ∈ (σi, x0) we have

ωh̃(x; z) = ωh̃(x0; z)W(l(x),φi+
π
2
)(z)
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where l(x) is some positive function of x and W(l,φ)(z) is defined in (2.10). Set
φ′ = φi +

π
2 . Then

ωh̃(x; z) ⋆ cotφ
′ = ωh̃(x0; z)W(l(x),φ′)(z) ⋆ cotφ

′

= ωh̃(x0; z) ⋆

(
1− l(x)z sinφ′ cosφ′

)
cotφ′ + l(x)z cos2 φ′

−l(x)z sin2 φ′ cotφ′ + 1 + l(x)z sinφ′ cosφ′

= ωh̃(x0; z) ⋆ cotφ
′.

Hence

qh,σi
(z) = lim

xրσi

ωh(x; z) ⋆ cotφ
′ = lim

xրσi

ωh̃(x; z) ⋆ cotφ
′

= lim
xցσi

ωh̃(x; z) ⋆ cotφ
′ = ωh̃(x0; z) ⋆ cotφ

′.

For z = 0 we obtain

qh,σi
(0) = ωh̃(x0; 0) ⋆ cotφ

′ = I ⋆ cotφ′ = cot
(
φi +

π

2

)
.

Hence the relation in (4.33) with z = 0 is valid if and only if τ = cot(φi+
π
2 ). ❑

Note that the exception of the point 0 for τ 6= cot(φi +
π
2 ) in Corollary 4.22

is actually necessary as is seen from the proof.

5 Regularized boundary values

In this section we prove the existence of regularized boundary values and the
existence of a distinguished solution of (1.1) for which the limit towards the sin-
gularity exists. These results are then used to calculate the fundamental solution
for a given Hamiltonian in the class Hα, and to determine how the Titchmarsh–
Weyl coefficient changes when the parameters ö, bj and dj are changed. For
P(h), Γ(h) and ψ(h) see §2.e.

5.1 Theorem (Existence of regularized boundary values). Let h ∈ Hα

be given by the data

σ0, σ1, σ2, H0, H1, ö, bj , dj , E = {s0, . . . , sn},

with min(E ∩ (σ1, σ2)) = s1. Assume that bö+1 = 0 in the case when σ1 is not
left endpoint of an indivisible interval. Moreover, set ∆ := ∆−(H1), and denote
by wl, l ∈ N0, the unique absolutely continuous functions on (σ1, σ2) with (cf.
(2.12))

w0 ≡ ξα, w′
l+1 = JH1wl, l ∈ N0,

wl(s1) ∈ span{ξα},

wl

∣∣
(σ1,s1)

∈ L2(H|(σ1,s1)), l ≥ ∆.

Let z ∈ C and ψ be a solution of the Hamiltonian system

y′(x) = zJH1(x)y(x), x ∈ (σ1, σ2). (5.1)

59



Then the boundary value

rbvrψ := lim
xցσ1

ξTαψ(x), (5.2)

and the regularized boundary value

rbvs(z)ψ := lim
xցσ1

[ ∆∑

l=0

zl
(
wl(x)

)T
J

(
ψ(x)− rbvrψ ·

2∆−l∑

k=∆+1

zkwk(x)

)]

+ rbvrψ

( 2∆∑

l=1

zldl−1 −
ö∑

l=0

z2∆+lbö+1−l

) (5.3)

exist. Set
rbv(z)ψ := rbvs(z)ψ · ξα−π

2
+ rbvrψ · ξα.

For each z ∈ C and a ∈ C
2 there exists a unique solution ψ of (5.1) with

rbv(z)ψ = a.
Moreover, for given ψ as above let F be the unique element in P(h) such

that (F ; zF ) ∈ Tmax(h) and ψ(h)F = ψ. Then

rbv(z)ψ = πl ◦ Γ(h)(F ; zF ). (5.4)

5.2 Theorem (Existence of a distinguished solution). Let h be a general
Hamiltonian as in Theorem 5.1. Let z ∈ C and ψ be a solution of (5.1). Then

lim
xցσ1

ξTαψ(x) = ξTα rbv(z)ψ. (5.5)

For z 6= 0 the following are equivalent:

(i) limxցσ1
ξTα−π

2
ψ(x) exists;

(ii) rbv(z)ψ ∈ span{ξα−π
2
};

(iii) rbvrψ = 0;

(iv) ψ
∣∣
(σ1,s1)

∈ L2(H|(σ1,s1)).

In this case,
lim

xցσ1

ψ(x) = rbv(z)ψ. (5.6)

5.3 Remark. The case ‘z = 0’ is indeed exceptional. For z = 0 all solutions of
(5.1) are constant functions. Moreover, the right-hand side of (5.3) reduces to
rbvs(0)ψ = limxցσ1

ξTα−π
2
ψ(x) and hence

rbv(0)ψ = lim
xցσ1

ψ(x).

Therefore (i) is satisfied for all solutions of (5.1) but (ii)–(iv) are satisfied only
for multiples of the constant function ξα−π

2
. �

According to condition (E2) in Definition 2.18 the interval (σ1, s1) is either a
maximal indivisible interval of type α or σ1 is not left endpoint of an indivisible
interval. We first settle the case when α = π

2 and (σ1, s1) is an indivisible
interval.
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Proof (of Theorems 5.1 and 5.2 when α = π
2 and (σ1, s1) is indivisible).

In this case we have to consider the elementary Hamiltonian on (σ0, σ1)∪(σ1, s1),
which is of kind (B) or (C); see [KW/IV, Definition 4.1]. By this definition we
have d1 = 0. Since α = π

2 , we can write

H0(x) =

(
0 0

0 h0(x)

)
, x ∈ (σ0, σ1); H1(x) =

(
0 0

0 h1(x)

)
, x ∈ (σ1, s1),

with real-valued functions h0, h1 which are locally integrable on [σ0, σ1) and
(σ1, s1], respectively, but not integrable at σ1. According to [KW/V, Corol-
lary 4.32] we have

ωh(s1; z) =

(
1 0

−zd0 + z2bö+1 + . . .+ zö+2b1 1

)
,

and with

ℓ−(x) :=

∫ x

σ0

h0(t)dt, x ∈ [σ0, σ1), and ℓ+(x) :=

∫ s1

x

h1(t)dt, x ∈ (σ1, s1],

we therefore obtain

ωh(x; z) =





(
1 0

−ℓ−(x) 1

)
, x ∈ [σ0, σ1),

(
1 0

z
(
ℓ+(x)− d0

)
+ z2bö+1 + . . .+ zö+2b1 1

)
, x ∈ (σ1, s1].

An arbitrary solution ψ of (5.1) is a linear combination of the rows of ωh, i.e.
with arbitrary a = (a1, a2)

T ∈ C
2,

ψ(x) = a1

(
ωh(x; z)11

ωh(x; z)12

)
+ a2

(
ωh(x; z)21

ωh(x; z)22

)

=





(
a1 − a2ℓ−(x)

a2

)
, x ∈ [σ0, σ1),



a1 + a2

(
z
(
ℓ+(x)− d0

)
+

ö∑

l=0

zl+2bö+1−l

)

a2


 , x ∈ (σ1, s1].

For the calculation of the regularized boundary values we need w0, w1 and w2;
note that ∆ = 1 since we have indivisible intervals on both sides of σ1. On the
interval (σ1, s1] we have

w0(x) =

(
0

1

)
, w1(x) =

(
ℓ+(x)

0

)
, w2(x) = 0.

For rbvrψ we obtain
rbvrψ = lim

xցσ1

ψ2(x) = a2.
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The expression in (5.3) yields

rbvs(z)ψ = lim
xցσ1

[
w0(x)

∗J
(
ψ(x)− a2z

2w2(x)
)
+ zw1(x)

∗Jψ(x)

]

+ a2

(
zd0 −

ö∑

l=0

zl+2bö+1−l

)

= lim
xցσ1

[(
w0(x) + zw1(x)

)∗
Jψ(x)

]
+ a2

(
zd0 −

ö∑

l=0

zl+2bö+1−l

)

= lim
xցσ1

(
ψ1(x)− zℓ+(x)ψ2(x)

)
+ a2

(
zd0 −

ö∑

l=0

zl+2bö+1−l

)

= a1 − a2zd0 + a2

ö∑

l=0

zl+2bö+1−l + a2

(
zd0 −

ö∑

l=0

zl+2bö+1−l

)

= a1.

Hence rbv(z)ψ = (a1, a2)
T , which shows that for every a ∈ C

2 we have a
unique solution ψ of (5.1) with rbv(z)ψ = a. So all assertions of Theorem
5.1 are proved (relation (5.4) follows from the very definition of ωh in [KW/V,
Lemma 4.1, Definition 4.3]).

Equation (5.5) in Theorem 5.2 is valid since both sides are equal to a2;
note that ξα = (0, 1)T . It is easy to see that the statements (i) to (iv) are all
equivalent to the fact that a2 = 0. Finally, if a2 = 0, then both sides of (5.6)
are equal to a1. ❑

Now we turn to the proof of Theorem 5.1 in the case when σ1 is not left
endpoint of an indivisible interval. The core of the proof is the following lemma,
where we rewrite formula (2.21) for a defect element.

5.4 Lemma. Let h be a regular general Hamiltonian of the form 2.20. Let

z ∈ C, F = (f ; ξ,α) ∈
m

P(h) and assume that (F ; zF ) ∈
m

T (h). Moreover, let wl

be as in (2.15)–(2.17), and let λl be the unique scalars such that

f̃ := f −
∆−1∑

l=0

λlwl ∈ L2(H|(σ1,σ2)).

Then the limit

L := lim
xցσ1

[ ∆∑

l=0

zl
(
wl(x)

)∗
J

(
f(x)− λ0

2∆−l∑

k=∆+1

zkwk(x)

)]

exists, and

πl ◦
m

Γ(F ; zF ) =



L+ λ0

(
2∆∑
l=1

zldl−1 −
ö∑

l=1

z2∆+lbö+1−l

)

λ0


 . (5.7)
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Proof. We use Proposition 2.22 and Definition 2.21 with the element (F ; zF ),
i.e. g = zf , ηl = zξl, βl = zαl, and, consequently, µl = zλl.

Step 1: computation of β1.
It follows from Definition 2.21 (i) that λk+1 = µk = zλk, k = 0, . . . ,∆− 2, and
hence

λk = zkλ0, µk = zk+1λ0, k = 0, . . . ,∆− 1.

If ö > 0, we obtain from Definition 2.21 (iv) that

αö = z∆λ0b1,

αj = z∆λ0bö−j+1 + zαj+1, k = 1, . . . , ö− 1.

By induction,

αk = λ0

(
z∆bö−k+1 + z∆+1bö−k + . . .+ z∆+ö−kb1

)
, k = 1, . . . , ö,

and hence

β1 = zα1 = λ0

ö∑

l=1

z∆+lbö+1−l.

In order to unify notation, we set β1 := 0 when ö = 0.

Step 2: computation of η0.
We shall show by induction that, for k = 0, . . . ,∆− 1,

ξk = z∆−k

σ2∫

σ1

(w∆)
∗Hf̃ +

∆−k−1∑

l=0

zl
(
wk+l+1(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆−1∑

l=0

zldk+l +

∆−k−1∑

l=0

z∆+ld∆+l+k −
ö∑

l=1

z2∆+l−k−1bö+1−l

)
.

(5.8)

For k = ∆− 1 we obtain from Definition 2.21 (iii) that

ξ∆−1 =

σ2∫

σ1

(w∆)
∗Hzf̃ +

1

2

∆−1∑

l=0

zlλ0dl+∆−1 + z∆λ0d2∆−1

+
(
w∆(σ2)

)
2
f(σ2)1 − β1

= z

σ2∫

σ1

(w∆)
∗Hf̃ +

(
w∆(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆−1∑

l=0

zldl+∆−1 + z∆d2∆−1 −
ö∑

l=1

z∆+lbö+1−l

)
,

which is (5.8) for k = ∆ − 1. Let k ∈ {0, . . . ,∆ − 2} and assume that (5.8) is
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true for k replaced by k + 1. Then, by Definition 2.21 (ii),

ξk = zξk+1 +
1

2
z∆λ0d∆+k +

1

2
λ0dk +

(
wk+1(σ2)

)
2
f(σ2)1

= z∆−k

σ2∫

σ1

(w∆)
∗Hf̃ +

∆−k−2∑

l=0

zl+1
(
wk+l+2(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆−1∑

l=0

zl+1dk+l+1 +
∆−k−2∑

l=0

z∆+l+1d∆+l+k+1 −
ö∑

l=1

z2∆+l−k−1bö+1−l

)

+
1

2
z∆λ0d∆+k +

1

2
λ0dk +

(
wk+1(σ2)

)
2
f(σ2)1

= z∆−k

σ2∫

σ1

(w∆)
∗Hf̃ +

∆−k−1∑

l=1

zl
(
wk+l+1(σ2)

)
2
f(σ2)1 +

(
wk+1(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆∑

l=1

zldk+l +
1

2
dk +

1

2
z∆d∆+k +

∆−k−1∑

l=1

z∆+ld∆+l+k

−
ö∑

l=1

z2∆+l−k−1bö+1−l

)

= z∆−k

σ2∫

σ1

(w∆)
∗Hf̃ +

∆−k−1∑

l=0

zl
(
wk+l+1(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆−1∑

l=0

zldk+l + z∆d∆+k +
∆−k−1∑

l=1

z∆+ld∆+l+k

−
ö∑

l=1

z2∆+l−k−1bö+1−l

)
,

which is equal to the right-hand side of (5.8). Thus (5.8) holds for all k ∈
{0, . . . ,∆− 1}, and it follows that

η0 = zξ0

= z∆+1

σ2∫

σ1

(w∆)
∗Hf̃ +

∆−1∑

l=0

zl+1
(
wl+1(σ2)

)
2
f(σ2)1

+ λ0

(
1

2

∆−1∑

l=0

zl+1dl +

∆−1∑

l=0

z∆+l+1d∆+l −
ö∑

l=1

z2∆+lbö+1−l

)
.

Step 3: first component of the left boundary value.
By (2.21) the first component of the boundary value at the left endpoint σ0 is
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equal to

(
πl ◦

m

Γ(F ; zF )
)
1
= η0 + f(σ2)1 +

1

2

∆−1∑

l=0

zl+1λ0dl

= z∆+1

σ2∫

σ1

(w∆)
∗Hf̃ +

∆∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1

+ λ0

(
∆−1∑

l=0

zl+1dl +

∆−1∑

l=0

z∆+l+1d∆+l −
ö∑

l=1

z2∆+lbö+1−l

)

= z∆+1

σ2∫

σ1

(w∆)
∗Hf̃ +

∆∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1 (5.9)

+ λ0

(
2∆∑

l=1

zldl−1 −
ö∑

l=1

z2∆+lbö+1−l

)
. (5.10)

Step 4: removing the integral term.
Take an arbitrary x ∈ (σ1, σ2) and apply Green’s identity (2.11) to the inter-
val (x, σ2):

z∆+1

σ2∫

x

(w∆)
∗Hf̃ +

∆∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1 (5.11)

= z∆
σ2∫

x

(w∆)
∗H

(
zf − λ0

∆−1∑

k=0

zk+1wk

)
+

∆∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1

= z∆

[ σ2∫

x

(w∆−1)
∗H

(
f − λ0

∆−1∑

k=0

zk+1wk+1

)

+
(
w∆(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+1wk+1(x)

)

−
(
w∆(x0)

)∗
J

(
f(σ2)− λ0

∆−1∑

k=0

zk+1wk+1(σ2)

)]
+

∆∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1

= z∆−1

σ2∫

x

(w∆−1)
∗H

(
zf − λ0

∆−1∑

k=0

zk+2wk+1

)

+ z∆
(
w∆(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+1wk+1(x)

)
+

∆−1∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1
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= z∆−1

[ σ2∫

x

(w∆−2)
∗H

(
f − λ0

∆−1∑

k=0

zk+2wk+2

)

+
(
w∆−1(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+2wk+2(x)

)

−
(
w∆−1(σ2)

)∗
J

(
f(σ2)− λ0

∆−1∑

k=0

zk+2wk+2(σ2)

)]

+ z∆
(
w∆(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+1wk+1(x)

)
+

∆−1∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1

= z∆−2

σ2∫

x

(w∆−2)
∗H

(
zf − λ0

∆−1∑

k=0

zk+2wk+2

)

+ z∆−1
(
w∆−1(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+2wk+2(x)

)

+ z∆
(
w∆(x)

)∗
J

(
f(x)− λ0

∆−1∑

k=0

zk+1wk+1(x)

)
+

∆−2∑

l=0

zl
(
wl(σ2)

)
2
f(σ2)1.

Proceeding inductively, we obtain that the expression in (5.11) equals

∆∑

l=0

zl
(
wl(x)

)∗
J

(
f(x)− λ0

2∆−l∑

k=∆+1−l

zkwk(x)

)
. (5.12)

Step 5: finishing the proof.
Since J∗ = −J , we have

(
wl(x)

)∗
Jwk(x) +

(
wk(x)

)∗
Jwl(x) = 0

for k, l ∈ N0. Hence

∆∑

l=0

∆∑

k=∆+1−l

(
wl(x)

)∗
Jwk(x) =

∑

1≤k,l≤∆

∆+1≤k+l≤2∆

(
wl(x)

)∗
Jwk(x)

=
1

2

∑

1≤k,l≤∆

∆+1≤k+l≤2∆

((
wl(x)

)∗
Jwk(x) +

(
wk(x)

)∗
Jwl(x)

)
= 0,

which, together with (5.12), implies that the expression in (5.11) is equal to

∆∑

l=0

zl
(
wl(x)

)∗
J

(
f(x)− λ0

2∆−l∑

k=∆+1

zkwk(x)

)
.
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Since the integral in (5.9) exists, we can take the limit as xց σ1, which shows
that

(
πl ◦

m

Γ(F ; zF )
)
1
= lim

xցσ1

∆∑

l=0

zl
(
wl(x)

)∗
J

(
f(x)− λ0

2∆−l∑

k=∆+1

zkwk(x)

)

+ λ0

(
2∆∑

l=1

zldl−1 −
ö∑

l=1

z2∆+lbö+1−l

)
.

Together with (2.21), the assertion of the lemma follows. ❑

We also use the following consequence of Theorem 4.1.

5.5 Lemma. Let h be a regular general Hamiltonian of the form 2.20. Let

z ∈ C, F = (f ; ξ,α) ∈
m

P(h), and assume that (F ; zF ) ∈
m

T (h). Let wl and λl be
as in Lemma 5.4. Then

λ0 = lim
xցσ1

f(x)2.

Proof. Let G1 = (g1; ξ1,α1), G2 = (g2; ξ2,α2) be the unique elements with

(G1; zG1), (G2; zG2) ∈
m

T (h),

πl ◦
m

Γ(G1; zG1) =

(
1

0

)
, πl ◦

m

Γ(G2; zG2) =

(
0

1

)
.

Then, by the definition of ωh in [KW/V], we have

ωh(x; z) =

(
g1(x)1 g1(x)2

g2(x)1 g2(x)2

)
.

By Theorem 4.1, thus

lim
xցσ1

g1(x)2 = 0, lim
xցσ1

g2(x)2 = 1.

If F is any defect element, then F can be written as a linear combination
F = a1G1 + a2G2. The numbers a1, a2 can be obtained by means of boundary
values; in fact, we have

a1 = πl,1 ◦
m

Γ(F ; zF ), a2 = πl,2 ◦
m

Γ(F ; zF ).

Remembering (5.7) we obtain

λ0 = πl,2 ◦
m

Γ(F ; zF ) = a2 = lim
xցσ1

f(x)2.

❑

Proof (of Theorem 5.1 when α = π
2 and (σ1, s1) is not indivisible).

Let the general Hamiltonian h be given according to the formulation of the
theorem and let z ∈ C and ψ be a solution of (5.1). Consider the general
Hamiltonian h�s1 , i.e. the general Hamiltonian given by the data

σ0, σ1, s1, H0, H1|(σ1,s1), ö, bj , dj , E = {σ0, s1}.
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Then h�s1 is of the form 2.20. Let F = (f ; ξ,α) ∈
m

P(h�s1) be the unique

element such that (F ; zF ) ∈
m

T (h�s1) and πr ◦
m

Γ(h�s1)(F ; zF ) = ψ(s1). Denote
the unique absolutely continuous representative of f again by f . Then f and ψ
are both absolutely continuous functions on (σ1, s1] which satisfy the differential
equation (5.1) and take the same boundary value at s1. Thus

f |(σ1,s1] = ψ|(σ1,s1] (5.13)

and hence
m

ψ(h)(F ) = ψ, where
m

ψ(h) is as in Remark 2.23. Lemmas 5.5 and 5.4
imply that the limits (5.2) and (5.3) exist and that

rbv(z)ψ = πl ◦
m

Γ(h�s1)(F ; zF ), (5.14)

which shows (5.4).

Next let a ∈ C
2 be given. There exists (F ; zF ) ∈

m

T (h�s1) with πl ◦
m

Γ(h�s1)(F ; zF ) = a. Write F = (f ; ξ,α); then f is a solution of (5.1) which has
the required regularized boundary value. For uniqueness, let z ∈ C and assume
that ψ and ψ̃ are two solutions of (5.1) with

rbv(z)ψ = rbv(z)ψ̃ =: a.

Since the defect element (F ; zF ) ∈
m

T (h�s1) whose boundary value at s1 equals
a is unique, it follows from (5.13) that ψ = ψ̃. ❑

As usual, the proof for general values of α is carried out by applying rotation
isomorphisms.

Proof (of Theorem 5.1, general values of α ∈ [0, π)). Let h ∈ Hα, z ∈ C and let
ψ be a solution of (5.1). The general Hamiltonian h̃ :=	α−π

2
h is in Hπ

2
. The

function
ψ̃(x) := Nα−π

2
ψ(x)

is a solution of (5.1) with H1 replaced by H̃1 :=	α−π
2
H1.

We have
ξTαψ(x) = ξTαN

T
α−π

2
·Nα−π

2
ψ(x) = ξTπ

2
ψ̃(x),

and hence rbvr ψ̃ = rbvrψ. Since w̃l = Nα−π
2
wl and N∗

α−π
2
JNα−π

2
= J , we

also have rbvs(z)ψ̃ = rbvs(z)ψ.
The fact that ξα and ξα−π

2
are linearly independent implies that, for each

given a ∈ C2, there exists a unique solution ψ with rbv(z)ψ = a.
Finally, it follows from (5.14) that

πl ◦
m̃

Γ(F̃ ; zF̃ ) = rbv(z)ψ̃ = rbvs(z)ψ̃ · ξ0 + rbvr ψ̃ · ξπ
2
.

Moreover,

πl ◦
m̃

Γ(F ; zF ) = Nπ
2
−α

[
πl ◦

m̃

Γ(F̃ ; zF̃ )
]
= rbvs(z)ψ̃ · ξα−π

2
+ rbvr ψ̃ · ξα

and hence
πl ◦

m

Γ(F ; zF ) = rbv(z)ψ.

Observing Remark 2.23 we obtain (5.4). ❑
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We come to the proof of Theorem 5.2. It relies mainly on Theorem 4.1.

Proof (of Theorem 5.2). By the usual rotation argument, we can restrict the
explicit proof to the case when α = π

2 .
Let z ∈ C and let a solution ψ be given. Set

ψr(x; z) :=
[
(1, 0)ωh(x; z)

]T
, ψs(x; z) :=

[
(0, 1)ωh(x; z)

]T
, x ∈ (σ1, σ2).

Then ψr(· ; z) and ψs(· ; z) are linearly independent solutions of (5.1), and thus
each given solution ψ can be written as a linear combination ψ = a1ψr(· ; z) +
a2ψs(· ; z). As we have already noted in the proof of Lemma 5.5,

rbv(z)ψ =

(
a1
a2

)
.

By Theorem 4.1 we have

lim
xցσ1

ψr(x; z) =

(
1

0

)
, lim

xցσ1

ψs(x; z)2 = 1

and
lim

xցσ1

ψs(x; z)1 = ∞ if z 6= 0,

which implies (5.5). Moreover, we see that the equivalence ‘(i) ⇔ (ii)’ holds
true since both of (i) and (ii) are equivalent to ‘a2 = 0’. In this case we also
have (rbv(z)ψ1 = limxցσ1

(ψ(x))1, which, together with (5.5), is (5.6). The
equivalence (ii) ⇔ (iii) is trivial.

In order to establish the equivalence with (iv), we have to assume that z 6= 0
and we distinguish the cases when z is real and when it is non-real. Assume
first that z /∈ R. Green’s identity (2.11) applied on the interval (x, s1) gives

2i Im z

s1∫

x

ψ(t)∗H(t)ψ(t) dt = ψ(x)∗Jψ(x)−ψ(s1)
∗Jψ(s1).

Hence the implication ‘(i) ⇒ (iv)’ holds, and we conclude that ψr(· ; z) satisfies
(iv). However, any two solutions of (5.1) that satisfy (iv) are linearly dependent.
Thus each solution with (iv) must be a scalar multiple of ψr(· ; z), and hence
satisfies (i). We therefore see that also the converse implication ‘(iv) ⇒ (i)’
holds.

Consider now the case that z ∈ R. Assume that ψ ∈ L2(H|(σ1,s1)). Since
H|(σ1,s1) satisfies (HS−), the minimal operator in L2(H|(σ1,s1)) is entire. Hence
we can choose a family ψw ∈ L2(H|(σ1,s1)) which is defined and analytic in some
open neighbourhood U of z and solves the equation (5.1) with z replaced by w.
Let a1(w) and a2(w) be the unique functions such that

ψw = a1(w)ψr(· ;w) + a2(w)ψs(· ;w).

Comparing boundary values at s1 we obtain that

ψw(s1) = a1(w)ψr(s1;w) + a2(w)ψs(s1;w).
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Since the boundary map is continuous, ψw(s1) depends analytically on w. As
ψr and ψs are linearly independent, this implies that also a1(w) and a2(w) are
analytic functions. By the already proved case ‘z /∈ R’, we have a2(w) = 0 for
w ∈ U\R. Thus also a2(w) = 0 for w ∈ U∩R and therefore ψ is a scalar multiple
of ψr(· ; z), which implies that ψ satisfies (i). Hence the implication (iv) ⇒ (i)
holds. For the converse remember that the minimal operator in L2(H|(σ1,s1))
has deficiency index (1, 1) and is an entire operator. Therefore we know that
there exists a non-trivial solution in L2(H|(σ1,s1)). By the above considerations,
we know that such a solution must be a scalar multiple of ψr(· ; z), which implies
that ψr(· ; z) ∈ L2(H|(σ1,s1)). This proves the implication (i) ⇒ (iv) also in the
case when z ∈ R. ❑

5.6 Remark. Let h be as in Theorem 5.1 and h̃ a reparameterization of h in the
sense of [KW/V, Remark 3.38]. Then qh̃ = qh. Hence h̃ again belongs to Hα by
Theorem 3.1, and there exists an isomorphism of the form (̟, id × id) of the

corresponding boundary triples by [KW/V, Remark 3.39]. Denote by r̃bv(z) the

generalized boundary value as in Theorem 5.1 for h̃. Then r̃bv(z) ψ̃ = rbv(z)ψ
whenever ψ = ψ(h)F , ψ̃ = ψ(h̃)F̃ and ̟F = F̃ . �

As a corollary we obtain a construction of the fundamental solution and the
Titchmarsh–Weyl coefficient that is exactly analogous to the classical (positive
definite) case.

5.7 Corollary (Computation of the fundamental solution). Let h be a
singular general Hamiltonian as in Theorem 5.1 and let

θ(x; z) =
(
θ1(x; z), θ2(x; z)

)T
, ϕ(x; z) =

(
ϕ1(x; z),ϕ2(x; z)

)T

be the unique solutions of (5.1) with

rbv(z)θ(· ; z) =

(
1

0

)
, rbv(z)ϕ(· ; z) =

(
0

1

)
.

Then

ωh(x; z) =

(
θ1(x; z) θ2(x; z)

ϕ1(x; z) ϕ2(x; z)

)
, x ∈ (σ1, σ2).

The Titchmarsh–Weyl coefficient qh can be obtained as the limit (which is inde-
pendent of τ ∈ R ∪ {∞})

qh(z) = lim
xրσ2

θ1(x; z)τ + θ2(x; z)

ϕ1(x; z)τ +ϕ2(x; z)

or as the unique function with

θ(· ; z)− qh(z)ϕ(· ; z)
∣∣
(s1,σ2)

∈ L2(H1|(s1,σ2)),

where s1 ∈ (σ1, σ2).

Proof. For a solution ψ of (5.1) the vector rbv(z)ψ is exactly the boundary value
at σ0 of the defect element (F ; zF ) with f |(σ1,σ2) = ψ (where F = (f ; ξ, α)).
Hence the asserted formula for ωh is merely its definition. The statements about
the Titchmarsh–Weyl coefficient are immediate. ❑
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5.8 Remark. Viewing the above formulae from a slightly different point, leads
to the following way to compute ωh which may sometimes be more practical.

Let x ∈ (σ1, σ2), and let θ̂(· ; z) and ϕ̂(· ; z) be the solutions of (5.1) with

θ̂(x; z) =

(
1

0

)
, ϕ̂(x; z) =

(
0

1

)
.

Then
ωh(x; z)

T =
(
rbv(z)θ̂; rbv(z)ϕ̂

)−1
.

�

We close this section with answering the question how the Titchmarsh–Weyl
coefficient of a general Hamiltonian h ∈ Hα transforms when the data part
‘ö, bj , dj ’ of h is altered but the Hamiltonian function H1 is kept fixed (note
that H0 is, up to reparameterization, the same for all general Hamiltonians in
the class Hα). This generalizes the case ‘(σ0, σ1) indivisible’ of a previous result
in [LW1] to higher negative indices. In [LW1, Theorem 5.4] we answered the
corresponding question for general Hamiltonians with ind− h = 1 (not neces-
sarily satisfying (gHα)). However, the case when (σ0, σ1) is indivisible already
there played a special role, cf. [LW1, Corollary 5.5].

For simplicity, we restrict our attention to the case that α = 0. As usual, the
corresponding versions for other values of α ∈ [0, π) can be deduced by applying
rotation isomorphisms. Note that in [LW1, Corollary 5.5] the case α = π

2 was
considered; in this situation one has to replace qh by − 1

qh
and qh0

by − 1
qh0

in

the corollary below.

5.9 Corollary. Let h be a general Hamiltonian h ∈ H0 which is given by the
data

σ0, σ1, σ2, H0, H1, ö, bj , dj , E,

where bö+1 = 0 when σ1 is not left endpoint of an indivisible interval, and denote
by h0 the general Hamiltonian given by

σ0, σ1, σ2, H0, H1, ö0 := 0, b0,1 := 0, d0,j := 0, E.

Then

qh(z) = qh0
(z) +

2∆∑

l=1

zldl−1 −
ö∑

l=1

z2∆+lbö+1−l.

Proof. We use Corollary 5.7 to compute ωh and ωh0
. Let ϕ(· ; z) and θ(· ; z)

be the solutions of (5.1) whose regularized boundary values with respect to the
general Hamiltonian h are equal to

rbvh(z)θ(· ; z) =

(
1

0

)
, rbvh(z)ϕ(· ; z) =

(
0

1

)
,

i.e.

rbvhr θ(· ; z) = 1, rbvhs (z)θ(· ; z) = 0,

rbvhr ϕ(· ; z) = 0, rbvhs (z)ϕ(· ; z) = −1.
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Since rbvr is given as a limit of the function itself (the data ö, bj , dj do not enter
the formula), we have

rbvh0

r ϕ(· ; z) = rbvhr ϕ(· ; z) = 0, rbvh0

r θ(· ; z) = rbvhr θ(· ; z) = 1.

The functions wl also do not depend on the data ö, bj , dj , which implies that

rbvhs (z)ϕ(· ; z) = lim
xցσ1

[ ∆∑

l=0

zl
(
wl(x)

)∗
Jϕ(x; z)

]
= rbvh0

s (z)ϕ(· ; z).

Set

p(x) :=

2∆∑

l=1

zldl−1 −
ö∑

l=1

z2∆+lbö+1−l

and
ϕ0(· ; z) := ϕ(· ; z), θ0(· ; z) := θ(· ; z)− p(z)ϕ(· ; z).

Then

rbvh0(z)ϕ0(· ; z) = rbvh0(z)ϕ(· ; z) = rbvh(z)ϕ(· ; z) =

(
0

1

)
,

rbvh0

r θ0(· ; z) = rbvhr θ0(· ; z) = rbvhr θ(· ; z)− p(z) rbvhr ϕ(· ; z) = 1

and

rbvh0

s (z)θ0(· ; z) = rbvh0

s (z)θ(· ; z)− p(z) rbvh0

s (z)ϕ(· ; z)

= lim
xցσ1

[
∆∑

l=0

zl
(
wl(x)

)∗
J

(
θ(x; z)−

2∆−l∑

k=∆+1

zkwk(x)

)]
+ p(z)

= rbvhs (z)θ(· ; z) = 0,

i.e. rbvh0(z)θ0(· ; z) =
(
1
0

)
. Hence the fundamental solutions ωh and ωh0

are
given by

ωh(x; z) =

(
θ1(x; z) θ2(x; z)

ϕ1(x; z) ϕ2(x; z)

)
,

ωh0
(x; z) =

(
θ1(x; z)− p(z)ϕ1(x; z) θ2(x; z)− p(z)ϕ2(x; z)

ϕ1(x; z) ϕ2(x; z)

)
.

It follows that

qh0
(z) = lim

xրσ2

ωh0
(x; z) ⋆∞ = lim

xրσ2

θ1(x; z)− p(z)ϕ1(x; z)

ϕ1(x; z)

= lim
xրσ2

θ1(x; z)

ϕ1(x; z)
− p(z) = qh(z)− p(z),

which implies the asserted formula. ❑
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ory Adv. Appl. 96, Birkhäuser Verlag, Basel 1997.

[AD] D.Z.Arov, H.Dym: J-inner matrix functions, interpolation and inverse
problems for canonical systems I. Foundations, Integral Equations Operator
Theory 29 (1997), 373–454.

[BL] J. Behrndt, A. Luger: An analytic characterization of the eigenvalues of
self-adjoint extensions, J. Funct. Anal. 247 (2007), 607–640.

[dB] L. de Branges: Hilbert Spaces of Entire Functions, Prentice-Hall, London
1968.

[DeHS] V.Derkach, S.Hassi, H. de Snoo: Asymptotic expansions of generalized
Nevanlinna functions and their spectral properties, Oper. Theory Adv. Appl.
175 (2007), 51–88.

[DeM] V.A.Derkach, M.M.Malamud: Generalized resolvents and the boundary
value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991),
1–95.

[DKuS] A.Dijksma, P.Kurasov, Yu. Shondin: High order singular rank one per-
turbations of a positive operator, Integral Equations Operator Theory 53
(2005), 209–245.

[DLLS] A.Dijksma, H. Langer, A. Luger, Yu. Shondin: A factorization result for
generalized Nevanlinna functions of the class Nκ, Integral Equations Operator
Theory 36 (2000), 121–125.

[DLS] A.Dijksma, H. Langer, Yu. Shondin: Rank one perturbations at infinite
coupling in Pontryagin spaces, J. Funct. Anal. 209 (2004), 206–246.

[DLSZ] A.Dijksma, H. Langer, Yu. Shondin, C. Zeinstra: Self-adjoint operators
with inner singularities and Pontryagin spaces, Oper. Theory Adv. Appl. 118
(2000), 105–175.

[DLuS1] A.Dijksma, A. Luger, Yu. Shondin: Minimal models for N
∞
κ -functions,

Oper. Theory Adv. Appl. 163 (2006), 97–134.

[DLuS2] A.Dijksma, A. Luger, Yu. Shondin: Approximation of N
∞
κ -functions. I.

Models and regularization, Oper. Theory Adv. Appl. 188 (2009), 87–112.

[DLuS3] A.Dijksma, A. Luger, Yu. Shondin: Approximation of N∞
κ -functions. II.

Convergence of models, Oper. Theory Adv. Appl. 198 (2010), 125–169.

[DS] A.Dijksma, Yu. Shondin: Singular point-like perturbations of the Bessel op-
erator in a Pontryagin space, J. Differential Equations 164 (2000), 49–91.

[FL] C.Fulton, H. Langer: Sturm–Liouville operators with singularities and
generalized Nevanlinna functions, Complex Anal. Oper. Theory 4 (2010),
179–243.

73



[GK] I. Gohberg, M.G.Krein: Theory and Applications of Volterra Operators in
Hilbert Space, Translations of Mathematical Monographs, AMS. Providence,
Rhode Island, 1970.

[GM] L.Golinskii, I.Mikhailova: Hilbert spaces of entire functions as a J-theory
subject, Oper. Theory Adv. Appl. 95 (1997), 205–251.

[HSW] S.Hassi, H. de Snoo, H.Winkler: Boundary-value problems for two-dimen-
sional canonical systems, Integral Equations Operator Theory 36 (2000), 445–
479.

[HL] S.Hassi, A. Luger: Generalized zeros and poles of Nκ functions: on the
underlying spectral structure, Methods Funct. Anal. Topology 12 (2006), 131–
150.
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[KW/I] M.Kaltenbäck, H.Woracek: Pontryagin spaces of entire functions I, In-
tegral Equations Operator Theory 33 (1999), 34–97.
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