
SUMS, COUPLINGS, AND COMPLETIONS

OF ALMOST PONTRYAGIN SPACES

HENK DE SNOO AND HARALD WORACEK

Abstract. An almost Pontryagin space can be written as the direct and or-
thogonal sum of a Hilbert space, a finite-dimensional anti-Hilbert space, and
a finite-dimensional neutral space. In this paper orthogonal sums of almost
Pontryagin spaces and completions to almost Pontryagin spaces are studied.

1. Introduction

The notion of an almost Pontryagin space was introduced in [5] as a generaliza-
tion of the more familiar notion of a Pontryagin space; cf. [2], [3]. A Pontryagin
space is an inner product space which can be written as the direct and orthog-
onal sum of a Hilbert space and a finite dimensional anti-Hilbert space, whereas
an almost Pontryagin space can be written as the direct and orthogonal sum of
a Hilbert space, a finite-dimensional anti-Hilbert space, and a finite-dimensional
neutral space. Almost Pontryagin spaces appear, sometimes implicitly, in [7], [8],
[9], [10]. The introduction of these more general objects was motivated by several
classical interpolation and extrapolation problems. Here is an example that may
be illuminating; cf. [6]. Let the continuous function f : [−2a, 2a] → C be hermit-

ian, in the sense that f(−t) = f(t), with κ negative squares, so that the kernel
f(t − s), s, t ∈ (−a, a) has κ negative squares. Then f has exactly one contin-
uous hermitian extension to R with κ negative squares or it has infinitely many
continuous hermitian extensions to R with κ negative squares. In the latter case
f has also infinitely many continuous hermitian extensions to R with κ1 negative
squares for every κ1 ≥ κ. This result originates from the usual operator theoretic
considerations involving the Pontryagin space induced by the problem. However, in
the first case of the alternative it turns out that there exists a number 0 < ∆ ≤ ∞
such that f has no continuous hermitian extensions to R with κ1 negative squares
for κ < κ1 < κ + ∆, and infinitely many continuous hermitian extensions to R

with κ1 negative squares for κ1 ≥ κ + ∆. This addition to the case where f has
a unique extension originates from operator theoretic considerations involving an
almost Pontryagin space induced by the problem.

The present paper continues the study of almost Pontryagin spaces, begun in
[5], providing the tools for studying exit space extensions of isometric operators in
almost Pontryagin spaces. This requires the notions of sums and orthogonal cou-
plings of almost Pontryagin spaces. An elementary construction for inner product
structures is presented; the discussion becomes more involved when almost Pon-
tryagin spaces are allowed. Furthermore, the present paper contains a discussion
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of almost Pontryagin space completions of inner product spaces. Such completions
have been investigated in [5]; with some basic ideas going back to [4]. In these
papers the existence of completions was shown, and it was seen that completions
are related to linear functionals. The present paper provides a complete treatment
of this topic. As a byproduct an alternative proof is provided of the uniqueness
part in [5, Proposition 4.4], where a more ‘basis dependent’ approach was used.
Furthermore, a partial ordering on the set of all almost Pontryagin spaces is in-
troduced and its properties are studied. The above topics are treated with specific
applications in mind; however it is felt that the general geometric theory is also of
independent interest.

The contents of the paper are as follows. In Section 2 some preliminary facts
about almost Pontryagin spaces are recalled. Section 3 is concerned with direct (but
not necessarily orthogonal) sums of general inner product spaces. The orthogonal
coupling of inner product spaces is treated in Section 4. In Section 5 it is shown
how to associate a Pontryagin space with a given almost Pontryagin space. Almost
Pontryagin space completions are treated in Section 6.

2. Preliminaries on almost Pontryagin spaces

An inner product space is a pair (L, [·, ·]) consisting of a linear space L over C

and an inner product [., .] on L; the inner product being a sesquilinear form, linear
in the first entry and anti-linear in the second entry. Usually the inner product
[., .] is not mentioned explicitly. The negative index of an inner product space L is
defined as

ind− L := sup
{

dimN : N negative subspace of L
}
∈ N0 ∪ {∞} ,

where a subspace N of L is called negative, if [x, x] < 0, x ∈ N \{0}. Moreover, L◦

denotes the isotropic part of L, i.e. L◦ := L ∩ L⊥, and ind0 L := dimL◦ is called
the degree of degeneracy of L. The inner product space L is called nondegenerated
if ind− L = 0; otherwise L is called degenerated.

Definition 2.1. An almost Pontryagin space is a triple 〈A, [., .], T 〉 consisting of a
linear space A, an inner product [., .] on A, and a topology T on A, such that

(aPs1) T is a Banach space topology on A;
(aPs2) [., .] is T -continuous;
(aPs3) There exists a T -closed linear subspace M of A with finite codimension

such that 〈M, [., .]〉 is a Hilbert space.

Usually, as with the inner product [., .], the topology T is not mentioned explicitly
and one speaks of an almost Pontryagin space. Note that the subspace M in (aPs3)
is complemented in the Banach space A. By means of the open mapping theorem
one can easily deduce that the topology T is actually induced by some Hilbert space
inner product on A.

Remark 2.2. In order to provide a more concrete picture of almost Pontryagin
spaces, recall the following facts [5, Proposition 2.5].

(i) Let A be an almost Pontryagin space. Then there exist closed subspaces A+

and A− of A such that 〈A+, [., .]〉 is a Hilbert space, 〈A−,−[., .]〉 is a negative
subspace with dimA− = ind−A <∞, and

A = A+[+̇]A−[+̇]A◦ ,
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where ‘[+̇]’ denotes a direct and orthogonal sum.
(ii) Let 〈A+, [., .]+〉 be a Hilbert space, let 〈A−, [., .]−〉 be a finite dimensional

negative inner product space, and let A0 be a finite dimensional linear space.
Let A0 be endowed with the euclidean topology and let A+ and A− carry
their natural topologies induced by the inner product. Define a linear space
A as

A := A+ ×A− ×A◦ ,

with an inner product on A as

[
(x+, x−, x0), (y+, y−, y0)

]
:= [x+, y+]+ + [x−, y−],

(x+, x−, x0), (y+, y−, y0) ∈ A ,

provided with the product topology of A+, A−, and A0. Then A is an almost
Pontryagin space.

Remark 2.3. Pontryagin spaces form a subclass of almost Pontryagin spaces. In
fact, if 〈A, [., .], T 〉 is an almost Pontryagin space, then 〈A, [., .]〉 is a Pontryagin
space if and only if ind0 A = 0. Conversely, let 〈A, [., .]〉 be a Pontryagin space.
If T denotes the natural topology of A, then 〈A, [., .], T 〉 is an almost Pontryagin
space. These facts have been shown in [5, Corollary 2.7].

Definition 2.4. Let A1 and A2 be almost Pontryagin spaces. Then a linear map
φ : A1 → A2 is said to be isometric if [φx, φx] = [x, x] for all x ∈ A1 or, equivalently,
[φx, φy] = [x, y] for all x, y ∈ A1. Moreover, a map φ : A1 → A2 is called a
morphism from A1 to A2 if it is linear, isometric, continuous, and maps closed
subspaces of A1 onto closed subspaces of A2. A morphism φ : A1 → A2 is said to
be an isomorphism if there exists a morphism ψ : A2 → A1, such that ψ ◦φ = idA1

and φ ◦ ψ = idA2
.

Remark 2.5. The following basic results concerning almost Pontryagin spaces will
be needed; see [5, §3].

(i) Let L1 and L2 be inner product spaces, and let φ : L1 → L2 be linear and
isometric. Then φ−1

(
[ranφ]◦

)
= L◦

1. In particular, kerφ ⊆ L◦
1. Hence, if L1

is nondegenerated, then φ is injective.
(ii) Let A1 and A2 be Pontryagin spaces with ind− A1 = ind−A2, and let φ :

A1 → A2 be a map. Then φ is a morphism if and only if φ is linear and
isometric.

(iii) Let A1 and A2 be almost Pontryagin space and let φ : A1 → A2 be a map.
If φ is linear, isometric, continuous and surjective, then φ is a morphism.

(iv) Let A1 and A2 be almost Pontryagin space and let φ : A1 → A2 be a map.
Then φ is an isomorphism if and only if φ is linear, isometric, continuous, and
bijective.

(v) Let A be an almost Pontryagin space and let A0 be a closed subspace of A.
Then A0 is, with the inner product and topology naturally inherited from A,
an almost Pontryagin space. The set-theoretic inclusion map ⊆: A0 → A is a
morphism.

(vi) Let A be an almost Pontryagin space and let B be a linear subspace of A◦.
Then A/B is an almost Pontryagin space, with the inner product and topology
naturally inherited from A. The canonical projection π : A → A/B is a
morphism.
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(vii) Let A1 and A2 be almost Pontryagin space and let φ : A1 → A2 be a mor-

phism. Then there exits a unique isomorphism φ̃ : A1/kerφ → ranφ, such
that

A1
φ //

π

��

A2

A1/kerφ
φ̃

// ranφ

⊆

OO

3. Direct sums of inner product spaces

Consider an inner product space L and two linear subspaces L1,L2 of L. Then
L1 and L2 are themselves inner product spaces, namely with the inner product
inherited from L. Each element x1 ∈ L1 gives rise to a linear functional on L2,
namely by [., x1]L : x2 7→ [x2, x1]L. Moreover, the map

(3.1) c :

{
L1 → L∗

2

x1 7→ [., x1]L

where L∗
2 denotes the algebraic dual of L2, is conjugate linear. Clearly, the inner

product of arbitrary elements of L1 + L2 can be recovered as
[
x1 + x2, y1 + y2

]

L
= [x1, y1]L1

+ c(x1)y2 + c(y1)x2 + [x2, y2]L2
,

x1, y1 ∈ L1, x2, y2 ∈ L2 .
(3.2)

This situation will now be extended.

Definition 3.1. Let L1 and L2 be two inner product spaces whose inner products
are denoted by [., .]1 and [., .]2, respectively. Moreover, let

c : L1 → L∗
2

be a conjugate linear map of L1 into the algebraic dual space of L2. Denote by
L1 ⋉c L2 the product space L1 × L2 provided with an inner product by

[
(x1, x2), (y1, y2)

]

c
:= [x1, y1]1 + c(x1)y2 + c(y1)x2 + [x2, y2]2,

x1, y1 ∈ L1, x2, y2 ∈ L2.

The fact that [., .]c actually is an inner product follows with a straightforward
computation using that c is conjugate linear.

Example 3.2. Let L1 and L2 be inner product spaces. The zero map 0 : L1 → L∗
2,

0(x1)x2 := 0, is conjugate linear, and one has

L1 ⋉0 L2 = L1[+̇]L2 .

There are natural embeddings of Lj into L1 ⋉c L2, namely the maps ιc,j defined
as

(3.3) ιc,1(x) := (x, 0), x ∈ L1, ιc,2(x) := (0, x), x ∈ L2 .

These mappings are injective and isometric, and

L1 ⋉c L2 = ran ιc,1+̇ ran ιc,2 ,

where ‘+̇’ denotes a direct sum. Hence, L1 and L2 may be considered as summands
in a direct sum decomposition of L1 ⋉c L2. Recall the preliminary computation
(3.2); hence, conversely, each decomposition of an inner product space L into a
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direct sum gives rise to a representation L = L1 ⋉c L2, where c is as in (3.1). This
fact can be formulated in a slightly more general way.

Proposition 3.3. Let L1 and L2 be inner product spaces and let L be an inner

product space together with isometric maps ι′j : Lj → L, j = 1, 2. Then there exists

a unique conjugate linear map c : L1 → L∗
2 such that

(3.4) L1

ιc,1 //

ι′1 $$I
IIIIIIIII L1 ⋉c L2

φ

��

L2

ιc,2oo

ι′2zzuuuuuuuuuu

L

with some isometric linear map φ : L1 ⋉c L2 → L. Explicitly, c is given as

(3.5) c :

{
L1 → L∗

2

x1 7→
(
x2 7→ [ι′2(x2), ι

′
1(x1)]L

)

The map φ in the diagram (3.4) is uniquely determined. Explicitly, φ is given as

(3.6) φ :

{
L1 ⋉c L2 → L
(x1, x2) 7→ ι′1(x1)+ι

′
2(x2)

Moreover, one has

(3.7) kerφ =
{
(x1, x2) : ι′1(x1) = −ι′2(x2)

}
, ranφ = ran ι′1 + ran ι′2 .

Proof. Let c and φ be defined by (3.5) and (3.6). A short calculation will show
that φ is isometric. By the definition of ιc,j , the diagram (3.4) commutes. One
has φ(x1, x2) = 0 if and only if ι′1(x1) = −ι′2(x2). Hence, the kernel of φ has the
asserted form. Moreover, clearly, ranφ = ran ι′1 + ran ι′2.

It remains to show uniqueness of c and φ. Assume that c′ : L1 → L∗
2 is conjugate

linear and that there exists an isometric map φ′ of L1 ⋉c′ L2 into L which makes
the diagram (3.4) commute. Then

c′(x1)x2 =
[
ιc′,2(x2), ιc′,1(x1)

]

c′
=

[
φ′(ιc′,2(x2)), φ

′(ιc′,1(x1))
]

L
=

=
[
ι′2(x2), ι

′
1(x1)

]

L
= c(x1)x2, x1 ∈ L1, x2 ∈ L2 ,

i.e. c′ = c. The map φ is uniquely determined by (3.4) since the ranges of ιc,1 and
ιc,2 jointly span L1 ⋉c L2. �

Corollary 3.4. Let L1 and L2 be inner product spaces and let c : L1 → L∗
2 be a

conjugate linear map. Then there exists a unique conjugate linear map ĉ : L2 → L∗
1

such that

(3.8) L1
ιĉ,1

xxpppppppp ιc,1

''NNNNNNNN

L2 ⋉ĉ L1
φ // L1 ⋉c L2

L2

ιĉ,2

ggNNNNNNNN ιc,2

88pppppppp

with some isometric linear map φ. Explicitly, c is given as

(3.9) ĉ(x2)x1 = c(x1)x2 .

The map φ in the diagrams (3.8) is uniquely determined. Explicitly, φ is given as

(3.10) φ
(
(x2, x1)

)
= (x1, x2) .
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The map φ is bijective.

Proof. Applying Proposition 3.3 with the spaces L2 and L1, and

L := L1 ⋉c L2, ι′1 := ιc,2, ι
′
2 := ιc,1 ,

gives the mappings ĉ and φ as asserted in (3.9) and (3.10). �

The next result gives some of information about the isotropic part of L1 ⋉cL2. For
a linear space L and a subset M of L∗, denote by ⊥M the left annihilator with
respect to the natural duality between L and L∗, i.e.

⊥M :=
{
x ∈ L : f(x) = 0, f ∈M

}
.

Proposition 3.5. Let L1 and L2 be inner product spaces and let c : L1 → L∗
2 be a

conjugate linear map. Then

ιc,1(L1) ∩
(
L1 ⋉c L2

)◦
= ιc,1

(
L◦

1 ∩ ker c
)
,

ιc,2(L2) ∩
(
L1 ⋉c L2

)◦
= ιc,2

(
L◦

2 ∩
⊥ran c

)
.

Proof. Let y1 ∈ L1, then
[
(x1, x2), (y1, 0)

]

c
= [x1, y1]1 + c(y1)x2, x1 ∈ L1, x2 ∈ L2 .

Hence (y1, 0) ∈ (L1 ⋉c L2)
◦ if and only if

[x1, y1]1 = 0, x1 ∈ L1 and c(y1) = 0 .

Let y2 ∈ L2, then
[
(x1, x2), (0, y2)

]

c
= c(x1)y2 + [x2, y2]2, x1 ∈ L1, x2 ∈ L2 .

Hence (0, y2) ∈ (L1 ⋉c L2)
◦ if and only if c(x1)y2 = 0, x1 ∈ L1, and [x2, y2]2 = 0,

x2 ∈ L2. �

In general not much information on L1 ⋉cL2 can be obtained. Concerning nega-
tive indices and degrees of degeneracy there are only the following weak estimates:

ind− L1 ⋉c L2 ≥ max
{

ind− L1, ind− L2

}
,

ind0 L1 ⋉c L2 ≥ max
{

dim(L◦
1 ∩ ker c), dim(L◦

2 ∩
⊥ran c)

}
.

It is easy to give examples which show that negative indices or degrees of degeneracy
may increase arbitrarily.

Example 3.6. Let L be a linear space and let L1 and L2 be two linear subspaces
of L with the same dimension, such that L1 ∩L2 = {0}. Choose bases {b1j : j ∈ J}

and {b2j : j ∈ J} of L1 and L2 and let L1×L2 be endowed with inner products [., .]

and [., .]′ given by the Gram-matrices

G :=

(
0 I
I 0

)

, G′ :=

(
I I
I I

)

.

Explicitly, this means that
[∑

λib
1
i +

∑

µib
2
i ,

∑

λ′jb
1
j +

∑

µ′
jb

2
j

]

=
∑ (

λiµ′
i + µiλ′i

)
,

while
[ ∑

λib
1
i +

∑

µib
2
i ,

∑

λ′jb
1
j +

∑

µ′
jb

2
j

]′

=
∑ (

λiλ′i + λiµ′
i + µiλ′i + µiµ′

i

)
.
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Define inner products [., .]j and [., .]′j on Lj by [x1, x2]j := 0, j = 1, 2, and
[∑

λib
j
i ,

∑

µib
j
i

]′

j
:=

∑

λiµi, j = 1, 2 .

Then 〈L1 ×L2, [., .]〉 and 〈L1 ×L2, [., .]
′〉 can be realized as 〈L1, [., .]1〉⋉c 〈L2, [., .]2〉

and 〈L1, [., .]
′
1〉 ⋉c′ 〈L2, [., .]

′
2〉, respectively, with some appropriate mappings c and

c′. Then

ind−〈L1, [., .]1〉 = ind−〈L2, [., .]2〉 = 0, ind−〈L1, [., .]1〉 ⋉c 〈L2, [., .]2〉 = |J |,

ind0〈L1, [., .]
′
1〉 = ind0〈L2, [., .]

′
2〉 = 0, ind0〈L1, [., .]

′
1〉 ⋉c 〈L2, [., .]

′
2〉 = |J |.

If one of the spaces L1 or L2 is finite dimensional then at least rough upper
estimates can be given for ind− L1 ⋉c L2 and ind0 L1 ⋉c L2.

Remark 3.7. Let L1 and L2 be inner product spaces and let c : L1 → L∗
2 be a

conjugate linear map.

(i) Assume that dimL1 < ∞. Since, for each subspace K of L1 ⋉c L2 one has
dim(K ∩ L2) ≥ dimK − dimL1, it follows that

ind− L1 ⋉c L2 ≤ ind− L2 + dimL1, ind0 L1 ⋉c L2 ≤ ind0 L2 + dimL1

(ii) Assume that dimL2 <∞. Then it is seen from Corollary 3.4 that analogous
inequalities hold.

Now consider the case where the inner product spaces are almost Pontryagin
spaces. Assume that 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 are almost Pontryagin spaces
and let c : A1 → A∗

2 be conjugate linear. Neither ind−(A1⋉cA2) nor ind0(A1⋉cA2)
need to be finite so that A1 ⋉cA2 will in general be far from an almost Pontryagin
space. Also topologically A1 ⋉c A2 is not that simple. Of course, A1 ⋉c A2 carries
a natural Banach space topology, namely the product topology T := T1 × T2.
However, the inner product [., .]c will in general not be continuous.

Let A be an almost Pontryagin space. Then A′ denotes its topological dual space
and τw∗ denotes the weak-∗ topology on A′.

Proposition 3.8. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin spaces

and let c : A1 → A∗
2 be a conjugate linear map. Then the inner product

[., .]c : (A1 ⋉c A2)
2 → C

is T -continuous if and only if c(A1) ⊆ A′
2 and c is T1-to-τw∗–continuous.

Proof. First assume that c maps A1 T1-to-τw∗–continuously into A′
2. Choose norms

‖.‖1, ‖.‖2, which induce T1 and T2, respectively, and put ‖.‖ := max{‖.‖1, ‖.‖2}.
Let M1,M2 > 0 be such that

∣
∣[xj , yj]j

∣
∣ ≤Mj‖xj‖j‖yj‖j, xj , yj ∈ Aj , j = 1, 2 .

Since c is T1-to-τw∗–continuous, for each fixed x2 ∈ A2 there exists Mx2
> 0 such

that
|c(y1)x2| ≤Mx2

, y1 ∈ A1, ‖y1‖1 ≤ 1 .

The uniform boundedness principle implies

M := sup
{
‖c(y1)‖ : y1 ∈ A1, ‖y1‖1 ≤ 1

}
<∞ .

For x1 + x2, y1 + y2 ∈ A1 ⋉c A2 with ‖x1 + x2‖, ‖y1 + y2‖ ≤ 1, there is thus the
estimate
∣
∣[x1 +x2, y1 +y2]c

∣
∣ ≤ |[x1, y1]1|+ |c(x1)y2|+ |c(y1)x2|+ |[x2, y2]2| ≤M1 +2M+M2 .
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This shows that [., .]c is T -continuous.
Conversely, assume that [., .]c is T -continuous. One has

c(y1)x2 = [0 + x2, y1 + 0]c, y1 ∈ A1, x2 ∈ A2 .

Keeping y1 fixed and letting x2 vary through A2 shows that the functional c(y1)
belongs to A′

2. Keeping x2 fixed and letting y1 vary through A1 shows that c is
T1-to-τw∗–continuous. �

Proposition 3.8 does not state that A1 ⋉cA2 is an almost Pontryagin space. But
if A1 or A2 is finite dimensional, then A1 ⋉c A2 is an almost Pontryagin space.

Corollary 3.9. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be almost Pontryagin spaces

and let c : A1 → A∗
2 be a conjugate linear map.

(i) Assume that dimA1 < ∞. Then A1 ⋉c A2 is an almost Pontryagin space if

and only if c(A1) ⊆ A′
2.

(ii) Assume that dimA2 < ∞. Then A1 ⋉c A2 is an almost Pontryagin space

if and only if c is continuous. Here A′
2 = A∗

2 and its topology is just the

euclidean topology.

Proof. (i) Let A1 be finite dimensional. Assume that c(A1) ⊆ A′
2. Since c is con-

jugate linear, dimA1 < ∞ implies that c is T1-to-τw∗–continuous. By Proposition
3.8, [., .]c is T -continuous. Let M be a T2-closed subspace of A2 which is a Hilbert
space and has finite codimension in A2. Then M is also T -closed and has finite
codimension in A1 ⋉c A2. Moreover, [., .]c|M×M = [., .]2|M×M, and hence M is a
Hilbert space with respect to [., .]c. One sees that A1 ⋉cA2 is an almost Pontryagin
space. Conversely, if A1 ⋉cA2 is an almost Pontryagin space, then Proposition 3.8
yields c(A1) ⊆ A′

2.
(ii) The case that A2 is finite dimensional is settled in the same manner. �

Remark 3.10. Let A1 and A2 be almost Pontryagin spaces and let c : A1 → A∗
2 be

a conjugate linear map. The embeddings ιc,j : Aj → A1 ⋉c A2 are continuous and
map closed subsets of Aj to closed subsets of A1 ⋉cA2. Hence, whenever A1 ⋉cA2

is an almost Pontryagin space, then ιc,j will be morphisms.

Here are the analogs of Proposition 3.3 and Corollary 3.4 in the setting of an
almost Pontryagin space.

Proposition 3.11. Let A1 and A2 be almost Pontryagin spaces.

(i) Let A be an almost Pontryagin space with morphisms ι′j : Aj → A, j = 1, 2.
Let the conjugate linear map c : A1 → A∗

2 and the isometry φ : A1 ⋉cA2 → A
be as in Proposition 3.3. Then A1 ⋉c A2 is an almost Pontryagin space and

φ is a morphism if and only if

dim
(
ran ι′1 ∩ ran ι′2

)
<∞ and ran ι′1 + ran ι′2 closed in A .

(ii) Let c : A1 → A∗
2 be a conjugate linear map, let ĉ : A2 → A∗

1, and let

φ : A2 ⋉ĉ A1 → A1 ⋉c A2 be as in Corollary 3.4. Then A2 ⋉ĉ A1 is an

almost Pontryagin space if and only if A1 ⋉c A2 is an almost Pontryagin

space, and in this case φ is an isomorphism between these almost Pontryagin

spaces.
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Proof. For the proof of (i) let A and Aj , ι
′
j , j = 1, 2, be given. Since ι′1 and ι′2

are continuous, the map c is explicitly given by (3.5), it maps A1 into A′
2, and is

T1-to-τw∗–continuous. Thus [., .]c is continuous. Observe that

(3.11) dim kerφ <∞ ⇐⇒ dim
(
ran ι′1 ∩ ran ι′2

)
<∞

To see this, let π1 : A × A → A denote the projection onto the first component,
and consider the map µ := π1 ◦ (ι′1 × (−ι′2)) : A1 ⋉c A2 → A. By (3.7), µ(kerφ) =
ran ι′1 ∩ ran ι′2. Moreover, ker(µ|kerφ) = ker ι′1 × ker ι′2. Since ker ι′j ⊆ A◦

j , and hence
dimker(µ|kerφ) <∞, (3.11) follows.

Assume that A1 ⋉c A2 is an almost Pontryagin space and φ : A1 ⋉c A2 → A
is a morphism. Then ran ι′1 + ran ι′2 = ranφ is closed in A since φ maps closed
subspaces to closed subspaces. Moreover, since kerφ ⊆ (A1 ⋉cA2)

◦, one must have
dimkerφ <∞, and (3.11) gives dim(ran ι′1 ∩ ran ι′2) <∞.

Conversely, assume that dim(ran ι′1 ∩ ran ι′2) <∞ and ran ι′1 + ran ι′2 is closed in
A. Then, by (3.11), kerφ is finite dimensional. Moreover, since [ranφ]◦ is a neutral
subspace of A, dim([ranφ]◦) ≤ ind− A+ind0 A. Since φ−1([ranφ]◦) = (A1 ⋉cA2)

◦,
it follows that

dim(A1 ⋉c A2)
◦ <∞ .

The map φ is isometric, and hence clearly ind−(A1 ⋉c A2) ≤ ind− A <∞.
Since dimkerφ < ∞, the space kerφ is complemented in the Banach space

A1 ⋉cA2, i.e. one may choose a closed subspace M1 of A1 ⋉cA2 with M1+̇ kerφ =
A1 ⋉c A2. Then φ|M1

is a continuous bijection between the Banach spaces M1

and ranφ, and hence a homeomorphism. Let N be a closed subspace of ranφ with
finite codimension which is a Hilbert space with respect to the inner product of
A. Then M := (φ|M1

)−1(N ) is a closed subspace of M1 with finite codimension
and, since φ is isometric, is a Hilbert space with respect to the inner product of
A1 ⋉c A2. Since M1 itself is closed and has finite codimension in A1 ⋉c A2, M is
a subspace with the properties required in (aPs3). Let L be a closed subspace of
A1 ⋉c A2, then φ(L) = φ|M1

(L ∩ M1), hence is closed in ranφ and thus also in
A. As a closed subspace of an almost Pontryagin space, the space ranφ is itself an
almost Pontryagin space.

The second item is immediate, since φ is, besides being bijective and isometric,
in any case a homeomorphism. �

4. Orthogonal coupling of inner product spaces

Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces. Their direct and orthog-
onal sum L1[+̇]L2 is defined as the linear space L1 × L2 with the inner product

[
(x1, x2), (y1, y2)

]
:= [x1, y1] + [x2, y2], (x1, y1), (x2, y2) ∈ L1[+̇]L2 .

Properties of L1 and L2 immediately transfer to L1[+̇]L2; for example

ind− L1[+̇]L2 = ind− L1 + ind− L2, ind0 L1[+̇]L2 = ind0 L1 + ind0 L2 .

In fact, (L1[+̇]L2)
◦ = L◦

1 × L◦
2. Recall that (with the notation of the previous

section) L1[+̇]L2 = L1 ⋉0 L2, where 0 : L1 → L∗
2 denotes the zero map. The

following observation is the starting point for the present considerations.

Remark 4.1. If L1 and L2 are nondegenerated inner product spaces, then the di-
rect and orthogonal sum L1[+̇]L2 is (up to isomorphisms) the unique inner product
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space containing L1 and L2 isometrically as orthogonal subspaces which together
span the whole space. In the degenerated situation uniqueness will fail.

Definition 4.2. Let L1 and L2 be inner product spaces and let α be a linear
subspace of L◦

1 × L◦
2. Define

L1 ⊞α L2 :=
(
L1[+̇]L2

)/

α .

Then L1⊞α L2 is called the orthogonal coupling of L1 and L2 with overlapping re-
lation α. With ιj the canonical embedding of Lj into L1[+̇]L2 and πα the canonical
projection of L1[+̇]L2 onto (L1[+̇]L2)/α, define ια1 := πα ◦ ι1, ια2 := πα ◦ ι2, that is

L1[+̇]L2

πα

��
Lj

ιj
;;vvvvvvvvv

ιαj

// L1 ⊞α L2

Remark 4.3. Let L1 and L2 be inner product spaces and let α be a linear subspace
of L◦

1 ×L◦
2. In the following α will be identified with the graph of a linear operator,

precisely when (0, y) ∈ α implies y = 0.

(i) Since L◦
1×L◦

2 = (L1[+̇]L2)
◦, both ια1 : L1 → L1⊞αL2 and ια2 : L2 → L1⊞αL2

are isometric. Moreover,

ια1 (L1) ⊥ ια2 (L2) and L1 ⊞α L2 = ran ια1 + ran ια2 .

(ii) The mappings ια1 and ια2 are both injective if and only if the linear subspace
α is the graph of a bijective map α : domα → ranα between some linear
subspaces domα ⊆ L◦

1 and ranα ⊆ L◦
2. In order to see this, note that

(0, x2) ∈ α ⇐⇒ ια2 (x2) = 0, (x1, 0) ∈ α ⇐⇒ ια1 (x1) = 0 .

Proposition 4.4. Let L1 and L2 be inner product spaces and let L be an inner

product space with isometric maps ι′j : Lj → L, j = 1, 2, such that ι′1(L1) ⊥ ι′2(L2).
Then there exists a unique linear subspace α ⊆ L◦

1 × L◦
2, such that

(4.1) L1

ια1 //

ι′1 $$J
JJJJJJJJJ L1 ⊞α L2

ψ

��

L2

ια2oo

ι′2zztttttttttt

L

with some injective and isometric linear map ψ. Explicitly, α is given as

α =
{
(x1, x2) ∈ L1 × L2 : ι′1(x1) = −ι′2(x2)

}
.

The map ψ in the diagram (4.1) is uniquely determined. Explicitly, ψ is given as

ψ
(
(x1, x2)/α

)
= ι′1(x1) + ι′2(x2) .

The map ιαj is injective if and only if ι′j has this property, j = 1, 2. Moreover, if

ran ι′1 + ran ι′2 = L, then ψ is bijective.

Proof. The map φ(x) := ι′1(x) + ι′2(x) is an isometry of L1[+̇]L2 into L. It satisfies

(4.2) L1
ι1 //

ι′1 ##H
HHHHHH

HHH L1[+̇]L2

φ

��

L2
ι2oo

ι′2{{vv
vvvvvvv

v

L
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and kerφ = {(x1, x2) ∈ L1[+̇]L2 : ι′1(x) = −ι′2(x)}. Now it will be shown that
kerφ ⊆ (L1[+̇]L2)

◦. To this end, let (x1, x2) ∈ kerφ be given. If y1 ∈ L1, then
[
(x1, x2), (y1, 0)

]

L1[+̇]L2
= [x1, y1]L1

=
[
ι′1(x1), ι

′
1(y1)

]
=

[
− ι′2(x2), ι

′
1(y1)

]
= 0 .

An analogous computation will show that [(x1, x2), (0, y2)] = 0 for all y2 ∈ L2.
Hence, the linear subspace α := kerφ qualifies as being used to define L1 ⊞α L2.

Let ψ be the isometry which makes the diagram

L1[+̇]L2
φ //

πα

��

L

(L1[+̇]L2)/α

ψ

::

commute. Clearly, ψ is injective and the diagram (4.1) commutes. Moreover,

ranψ = ranφ = ran ι′1 + ran ι′2 .

The injectivity of ψ shows that ιαj is injective if and only if ι′j is injective.

In order to show uniqueness, assume that (4.1) holds with some α′ ⊆ L◦
1 × L◦

2

and ψ′ : L1 ⊞α′ L2 → L. Then one has

L1[+̇]L2

πα′

��
L1

ι1

::uuuuuuuuu ια
′

1 //

ι′1 %%JJJ
JJJ

JJ
JJJ

L1 ⊞α′ L2

ψ′

��

L2

ι2

ddIIIIIIIII
ια

′

2oo

ι′2yytttt
ttt

tt
tt

L

By uniqueness in Proposition 3.3, recall that L1[+̇]L2 can be viewed as L1 ⋉0 L2,
one must have ψ′ ◦ πα′ = φ. Since ψ′ is injective, this implies

α′ = kerπα′ = ker
(
ψ′ ◦ πα′

)
= kerφ = α .

The map ψ is uniquely determined by (4.1), since ran ια1 and ran ια2 together span
L1 ⊞α L2. �

Proposition 4.4 with Remark 4.3, (ii) lead to the following corollary.

Corollary 4.5. Let L1 and L2 be inner product spaces. An inner product space

contains isomorphic copies of L1 and L2 as orthogonal subspaces which span the

whole space if and only if it is isomorphic to L1 ⊞α L2 with some bijective map α
between subspaces of L◦

1 and L◦
2. �

Remark 4.6. G30 Let A1 and A2 be almost Pontryagin spaces and let α be a
linear subspace of A◦

1 ×A◦
2. Then also A1⊞αA2 is an almost Pontryagin space and

ind−

(
A1 ⊞α A2

)
= ind− A1 + ind−A2 ,

ind0

(
A1 ⊞α A2

)
= ind0 A1 + ind0 A2 − dimα .

The almost Pontryagin space version of Proposition 4.4 now reads as follows.
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Proposition 4.7. Let A1 and A2 be an almost Pontryagin spaces and let A be an

almost Pontryagin space together with morphisms ι′j : Aj → A, j = 1, 2, such that

ι′1(A1) ⊥ ι′2(A2). Then the isometry ψ : A1 ⊞α A2 → A in Proposition 4.4 is a

morphism.

Proof. Apply Proposition 3.11, (i), with the presently given data A,Aj , ι
′
j , c := 0,

and the map φ in (4.2). Note first that ran ι′1 ∩ ran ι′2, being a neutral subspace of
A, is finite dimensional. Since ran ι′1 and ran ι′2, as closed subspaces of the almost
Pontryagin space A, are themselves almost Pontryagin spaces, one may choose
closed subspaces Mj of ran ι′j , j = 1, 2, which are closed, have finite codimension in
ran ι′j , and are Hilbert spaces with respect to the inner product inherited from A.

Clearly, they are orthogonal to each other. This also implies that M1 ∩M2 = {0}.
Their sum M := M1[+̇]M2 is thus also a Hilbert space in the inner product of A.
Moreover M, as the orthogonal sum of two uniformly positive subspaces, is itself
uniformly positive. Hence M is closed in the norm of A. Clearly, M has finite
codimension in ran ι′1 + ran ι′2, and one may conclude that ran ι′1 + ran ι′2 is closed
in the norm of A.

Remark 3.11 implies that the map φ in (4.2) is an almost Pontryagin space-
morphism. Hence, also ψ is an almost Pontryagin space-morphism. �

Remark 4.8 (Concrete realization of A1⊞αA2). Let A1 and A2 be almost Pontrya-
gin spaces and let α be a bijective map between some subspaces domα and ranα
of A◦

1 and A◦
2, respectively. The space A1 ⊞α A2 can also be described explicitly.

For this purpose choose closed subspaces A1,r and A2,r such that

A1 = A1,r[+̇]A◦
1, A2 = A2,r[+̇]A◦

2 ,

choose D1 and D2 such that

A◦
1 = D1+̇ domα, A◦

2 = D2+̇ ranα ,

and set D := ranα. Consider the almost Pontryagin space

(4.3) A := A1,r[+̇]
(
D1+̇D+̇D2

)
[+̇]A2,r

where the inner product and topology on A1,r and A2,r are inherited from A1 and
A2, respectively, and where D1+̇D+̇D2 is neutral and endowed with the euclidean
topology. Moreover, define ι′1 : A1 → A by

ι′1|A1,r+̇D1
:= id, ι′1|domα := −α ,

and let ι′2 : A2 → A be the identity map. Then ι′1 and ι′2 are morphisms. Moreover,
it is clear from their definition that ι′1(A1) ⊥ ι′2(A2) and ι′1(A1) + ι′2(A2) = A.

By Proposition 4.4 there exist a linear subspace α̂ ⊆ A◦
1×A◦

2 and an isomorphism
ψ : A1 ⊞α̂ A2 → A with

A1

ια̂1 //

ι′1 %%KKKKKKKKKKK A1 ⊞α′ A2

ψ

��

A2

ια̂2oo

ι′2yysssssssssss

A

Thereby the linear subspace α̂ is given as α̂ = {(x1, x2) ∈ A◦
1 × A◦

2 : ι′1(x1) =
ι′2(x2)}. Write x1 = a1 + b1 according to the decomposition A◦

1 = D1+̇ domα, and
let x2 = a2 + b2 according to A◦

2 = D2+̇ ranα. Then ι′1(x1) = a1 − α(b1) and
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ι′2(x2) = a2 + b2. Hence ι′1(x1) = ι′2(x2) if and only if a1 = a2 = 0 and b2 = α(b1).
This, in turn, is equivalent to (x1, x2) ∈ α.

One sees that α̂ = α, and hence ψ is actually an isomorphism between A1⊞αA2

and A, i.e. A can be regarded as a concrete realization of A1 ⊞α A2.

5. The canonical Pontryagin space extension of an almost
Pontryagin space

There is a natural way to associate with a given almost Pontryagin space A a Pon-
tryagin space P(A) by means of a factorization process P(A) := A/A◦. However,
there is also another natural way via an extension process; and this construction
has turned out to be important.

Definition 5.1. Let A be an almost Pontryagin space. A pair (ι,P) is called a
canonical Pontryagin space extension of A, if P is a Pontryagin space, the extension
emdding ι : A → P is an injective morphism, and

dimP/ι(A) = ind0 A .

Let P be a canonical Pontryagin space extension of A, then it follows that
ind− P = ind− A+ind0 A. Canonical Pontryagin space extensions are in some sense
minimal among all Pontryagin spaces which contain A as an isometric subspace. If
P is a Pontryagin space which contains A as an isometric subspace, then certainly
dimP/A ≥ ind0 A and ind− P ≥ ind− A + ind0 A.

Remark 5.2 (Existence of canonical Pontryagin space extensions). Let A be an
almost Pontryagin space. Choose a closed subspace B of A such that A = B[+̇]A◦,
and let C be a linear space with dimC = dimA◦. Consider the linear space

Pext(A) := A+̇C = B+̇A◦+̇C ,

and define on this linear space an inner product [., .] by the requirements

[., .]|A×A = [., .]A, B ⊥ C, A◦#C .

The notation A#B means that A and B are skewly linked, i.e. that A and B are
neutral, dimA = dimB, and A+̇B is nondegenerated, cf. [1, §I.10] or [3, §I.3].

It is easy to see that Pext(A) is a Pontryagin space. Moreover, the set-theoretic
inclusion map ιext of A into Pext(A) is a morphism. Clearly, ιext is injective and
dimPext(A)/A = dimA◦.

In Corollary 5.6 below it will be shown that canonical Pontryagin space exten-
sions are unique up to isomorphisms.

Extension of morphisms. It is important to see how morphisms between almost
Pontryagin spaces can be extended to morphisms between canonical Pontryagin
space extensions. First concrete extensions as constructed in Remark 5.2 are dealt
with.

Proposition 5.3. Let A1,A2 be almost Pontryagin spaces and let φ : A1 → A2 be

a morphism. Let spaces Pext(A1/ kerφ) and Pext(A2) be constructed as in Remark

5.2 from some choices of subspaces B1 ⊆ A1/ kerφ and B2 ⊆ A2, respectively. Then



14 H.S.V. DE SNOO AND H. WORACEK

there exists a morphism φ̃ : Pext(A1/ kerφ) → Pext(A2), such that

(5.1) A1

φ

��

π // A1/ kerφ
ιext // Pext(A1/ kerφ)

φ̃

��
A2 ιext

// Pext(A2)

Proof. There exists an injective morphism φ′ : A1/ kerφ→ A2 such that

A1
π //

φ

��

A1/ kerφ

φ′

zz
A2

cf. Remark 2.5, (vii). Obviously, it is enough to prove the assertion for φ′. Hence,
assume without loss of generality that φ is injective.

The subspace (ιext ◦φ)(B1) of Pext(A2) is closed and nondegenerated. Moreover,
(ιext ◦φ)(A◦

1) is a neutral subspace of (ιext ◦φ)(B1)
⊥. Hence there exists a subspace

C′ of (ιext ◦ φ)(B1)
⊥, such that (ιext ◦ φ)(A◦

1)#C
′, cf. [1, §I.10].

The space Pext(A1) is defined as B1[+̇](A◦
1+̇C) with A◦

1#C. Choose a basis
{δ1, . . . , δn} of A◦

1 and let {ǫ1, . . . , ǫn} be a basis of C with

[δj , ǫk] =

{

0 , j 6= k,

1 , j = k.

Since ιext ◦ φ is injective, the set {(ιext ◦ φ)(δ1), . . . , (ιext ◦ φ)(δn)} is a basis of
(ιext ◦ φ)(A◦

1). Hence there exists a basis {ǫ′1, . . . , ǫ
′
n} of C′ such that

[
(ιext ◦ φ)(δj), ǫ

′
k

]
=

{

0 , j 6= k,

1 , j = k.

With these notations define φ̃ : Pext(A1) → Pext(A2) by

φ̃|ιext(A1) := ιext ◦ φ ◦ ι−1
ext, φ̃(ǫj) := ǫ′j, j = 1, . . . , n .

It is straightforward to check that φ̃ is isometric. Moreover, the commutativity of
(5.1) is built into the definition. �

Remark 5.4. The extension φ̃ in Proposition 5.3 is in general not unique. In fact,
whenever P is a Pontryagin space with

(ιext ◦ φ)(A1) ⊆ P ⊆ Pext(A2) ,

the extension φ̃ can be chosen such that ran φ̃ ⊆ P .

Corollary 5.5. Let A be an almost Pontryagin space and let (ι,P) be a canonical

Pontryagin space extension of A. Moreover, let (ιext,Pext(A) be the canonical

Pontryagin space extension constructed in Remark 5.2 from some subspace B. Then

there exists an isomorphism λ : Pext(A) → P such that

A
ιext //

ι

��

Pext(A)

λ
{{

P
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Proof. Since P is a Pontryagin space, one has Pext(P) = P and ιext = id. Propo-
sition 5.3 applied with the map ι : A → P gives a morphism λ : Pext(A) → P .

Since a morphism between Pontryagin spaces is injective, one concludes from
λ(ιext(A)) = ι(A) and

dimP/ι(A) = dimA◦ = dimPext(A)/ιext(A) ,

that λ is an isomorphism. �

This fact has some immediate, important, consequences.

Corollary 5.6. (i) Let A be an almost Pontryagin space. If (ι1,P1) and (ι2,P2)
are canonical Pontryagin space extensions of A, then there exists an isomor-

phism λ : P1 → P2 with

A
ι1

~~}}
}}

}}
}

ι2

  A
AA

AA
AA

P1
λ

// P2

(ii) Let A1,A2 be almost Pontryagin spaces and let φ : A1 → A2 be a morphism.

Let (ι1,P1) and (ι2,P2) be canonical Pontryagin space extensions of A1/ kerφ

and A2, respectively. Then there exists a morphism φ̃ : P1 → P2, such that

A1

φ

��

π // A1/ kerφ
ι1 // P1

φ̃

��
A2 ι2

// P2

Compatibility with orthogonal coupling. The following fairly simple conse-
quence of Proposition 5.3 turns out to be useful.

Proposition 5.7. Let A1 and A2 be almost Pontryagin spaces and let α be a

bijective function between subspaces of A◦
1 and A◦

2. Then there exist morphisms ι̃α1
and ι̃α2 , such that

(5.2) A1

ια1 //

ιext

��

A1 ⊞α A2

ιext

��

A2

ια2oo

ιext

��
Pext(A1)

ι̃α1

// Pext(A1 ⊞α A2) Pext(A2)
ι̃α2

oo

The choice of ι̃α1 and ι̃α2 can be made such that ran ι̃α1 ∩ ran ι̃α2 is a nondegenerated

subspace of Pext(A1⊞αA2) with dimension 2 dim(domα) which contains the space

(ιext ◦ ια1 )(dom(α)).

Proof. By Remark 4.3, (ii), the maps ια1 and ια2 are injective. Hence Proposition 5.3
guarantees the existence of ι̃α1 and ι̃α2 which satisfy (5.2). It will be shown that they
can be chosen so as to satisfy the stated additional requirement. To this end use
the concrete realization of orthogonal couplings given in Remark 4.8, the concrete
form of canonical Pontryagin space extensions given in Remark 5.2, and trace the
construction of ι̃α1 and ι̃α2 in the proof of Proposition 5.3.
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Choose closed subspaces Aj,r of Aj with Aj = Aj,r[+̇]A◦
j , j = 1, 2, choose Dj

with A◦
1 = D1+̇ domα and A◦

2 = D2+̇ ranα, and set D := ranα. Then one has

A1 = A1,r[+̇](D1+̇ domα), A2 = A2,r[+̇](D2+̇D) ,

and one can identify

A1 ⊞α A2
∼= A1,r[+̇](D1+̇D+̇D2)[+̇]A2,r .

In this identification, the embeddings ια1 and ια2 act as

ια1 (xr + x1 + xd) = xr + x1 + α(xd), xr ∈ A1,r, x1 ∈ D1, xd ∈ domα ,

ια2 (x) = x, x ∈ A2 ,

and the isotropic part of A1 ⊞α A2 is given as

(
A1 ⊞α A2

)◦
= D1+̇D+̇D2 ,

For the construction of Pext(A1), Pext(A2), and Pext(A1 ⊞α A2), use the closed
nondegenerated subspaces A1,r, A2,r, and A1,r[+̇]A2,r, respectively. Then one can
write (note that dimdomα = dim ranα)

Pext(A1) = A1,r [+̇]
(

(D1+̇C1)[+̇](domα+̇C)
)

,

Pext(A2) = A2,r [+̇]
(

(D2+̇C2)[+̇](D+̇C)
)

,

Pext(A1 ⊞α A2) = A1,r [+̇]
(

(D1+̇C1)[+̇](D+̇C)[+̇](D2+̇C2)
)

[+̇]A2,r,

with neutral spaces C1, Cd, C, C2 satisfying C1#D1, C#domα, C2#D2, C#D,
and the extension embeddings are the respective set-theoretic inclusion maps. The
maps constructed in Proposition 5.3 act as

ι̃α1
(
xr + (x1 + y1) + (xd + y)

)
= xr + (x1 + y1) + (α(xd) + y),

xr ∈ A1,r, x1 ∈ D1, y1 ∈ C1, xd ∈ domα, y ∈ C ,

and

ι̃α2 (x) = x, x ∈ Pext(A2) .

From this one sees that

ran ι̃α1 ∩ ran ι̃α2 = D+̇C . �

Remark 5.8. In Proposition 5.7 the mappings ια1 and ια2 are injective, all extension
embeddings ιext are by definition injective, and ι̃α1 , ι̃

α
1 are morphisms with nondegen-

erated domain and they are also injective. Hence, one can think of Pext(A1⊞αA2)
as the biggest of the six spaces in (5.2) which contains the other ones.

If the distinction between the spaces domα and ranα is suppressed and both are
thought of as equal to the space D, then the situation can be pictured as follows:
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A1 ⊞α A2

A1

A2

[+̇] [+̇] [+̇] [+̇]A1,r A2,rD1 D D2

Pext(A1 ⊞α A2)

Pext(A1)

Pext(A2)

[+̇] [+̇] [+̇] [+̇]

+̇ +̇ +̇

A1,r A2,rD1 D D2

C1 C C2

In the case that domα = A◦
1 and ranα = A◦

2 in Proposition 5.7, more can be said.
Then D1 = D2 = C1 = C2 = 0 and (A1 ⊞α A2)

◦ = D = A◦
1 = A◦

2. Denote by PD,
PC , PA1,r [+̇]A2,r

, and PA1⊞αA2
the projections of the space Pext(A1⊞αA2) onto the

space denoted as index according to the above pictured direct sum decomposition.
Thus, e.g., one has ranPD = D and kerPD = A1,r[+̇]C[+̇]A2,r.

Lemma 5.9. Assume that in the situation of Proposition 5.7 one has domα = A◦
1

and ranα = A◦
2. Then the following statements hold:

(i) The projections PA1,r [+̇]A2,r
and PA1⊞αA2

satisfy

PA1,r [+̇]A2,r
+ PD + PC = I, PA1⊞αA2

+ PC = I,

PA1,r [+̇]A2,r

(
Pext(Aj)

)
= Aj,r , PA1⊞αA2

(
Pext(Aj)

)
= Aj , j = 1, 2.

Let elements x1 ∈ Pext(A1) and x2 ∈ Pext(A2) be given. Then

(ii) [x1, x2] = [PDx1, PCx2] + [PCx1, PDx2].
(iii) PCx1 = PCx2 if and only if [x1, h] = [x2, h], h ∈ D , in which case

x1 + PA1⊞αA2
x2 = PA1⊞αA2

x1 + x2.

Moreover, let elements y1 ∈ Pext(A1) and y2 ∈ Pext(A2) be given.

(iv) If PCx1 = PCx2 and PCy1 = PCy2, then

[x1 + PA1⊞αA2
x2, y1 + PA1⊞αA2

y2] = [x1, y1] + [x2, y2] .

Proof. The formulas in (i) are immediate from the definitions of the corresponding
projections. In order to see the equality asserted in (ii) compute

[x1, x2] =
[
(PA1,r [+̇]A2,r

+ PD + PC)x1, (PA1,r [+̇]A2,r
+ PD + PC)x2

]

=
[
PA1,r [+̇]A2,r

x1, PA1,r [+̇]A2,r
x2

]
+

[
(PD + PC)x1, (PD + PC)x2

]

= [PDx1, PCx2] + [PCx1, PDx2].

As to the proof of (iii), observe that for each h ∈ D,

[x1, h] =
[
(PA1⊞αA2

+ PC)x1, h
]

= [PCx1, h],

[x2, h] =
[
(PA1⊞αA2

+ PC)x2, h
]

= [PCx2, h].

Since D#C the asserted equivalence follows. Moreover, if PCx1 = PCx2, then

x1 + PA1⊞αA2
x2 = PA1⊞αA2

x1 + PCx1 + PA1⊞αA2
x2

= PA1⊞αA2
x1 + PCx2 + PA1⊞αA2

x2 = PA1⊞αA2
x1 + x2.
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The situation in (iv) leads to

[x2, y2] =
[
(PA1⊞αA2

+ PC)x2, (PA1⊞αA2
+ PC)y2

]

= [PA1⊞αA2
x2, PA1⊞αA2

y2] + [PA1⊞αA2
x2, PCy2] + [PCx2, PA1⊞αA2

y2]

= [PA1⊞αA2
x2, PA1⊞αA2

y2] + [PA1⊞αA2
x2, PCy1] + [PCx1, PA1⊞αA2

y2].

Hence it follows that

[x1 + PA1⊞αA2
x2, y1 + PA1⊞αA2

y2]

=[x1, y1]+[PA1⊞αA2
x2, y1]+[x1, PA1⊞αA2

y2]+[PA1⊞αA2
x2, PA1⊞αA2

y2]

=[x1, y1]+[PA1⊞αA2
x2, PCy1]+[PCx1, PA1⊞αA2

y2]+[PA1⊞αA2
x2, PA1⊞αA2

y2]

=[x1, y1]+[x2, y2]. �

6. Almost Pontryagin space completions

Definition 6.1. Let 〈L, [., .]〉 be an inner product space. A pair (ι,A) is called an
almost Pontryagin space-completion of L if A is an almost Pontryagin space and ι
is an isometric map of L onto a dense subspace of A.

Note that the isometric map ι in Definition 6.1 need not be injective; see Remark
2.5 (i).

Two almost Pontryagin space completions of an inner product space L might
be ‘the same’ or one might be ‘larger’ than the other. This is made precise by the
following notions.

Definition 6.2. Let (ι1,A1) and (ι2,A2) be two almost Pontryagin space comple-
tions of an inner product space L.

(i) The completions (ι1,A1) and (ι2,A2) are isomorphic, (ι1,A1) ∼= (ι2,A2), if
there exists an isomorphism φ of A1 onto A2, such that φ ◦ ι1 = ι2, i.e.

L
ι1

yyrrrrrr ι2

%%LLLLLL

A1
∼=
φ // A2

(ii) The completions (ι1,A1) and (ι2,A2) satisfy (ι1,A1) � (ι2,A2), if there exists
a surjective morphism π1

2 of A1 onto A2, such that π1
2 ◦ ι1 = ι2, i.e.

L
ι1

yyrrrrrr ι2

%%LLLLLL

A1
π1
2

// // A2

Obviously, isomorphism is an equivalence relation on the set of all almost Pon-
tryagin space-completions of L and the relation � is reflexive and transitive. More-
over, a short argument will show that

(

(ι1,A1) � (ι2,A2) ∧ (ι2,A2) � (ι1,A1)
)

⇐⇒ (ι1,A1) ∼= (ι2,A2)

The relation � induces a partial order on the set of all almost Pontryagin space-
completions of L modulo isomorphism.

Remark 6.3. If (ι1,A1) is an almost Pontryagin space-completion of L, A2 is
an almost Pontryagin space, and π is a surjective morphism of A1 onto A2, then
(π◦ι1,A2) is an almost Pontryagin space-completion of L and (ι1,A1) � (π◦ι1,A2).
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Let L be an inner product space. If in some almost Pontryagin space-completion
(ι,A) of L the space A is nondegenerated, i.e. a Pontryagin space, then (ι,A) is
said to be a Pontryagin space completion of L.

Remark 6.4. The space L admits a Pontryagin space completion if and only if
ind− L < ∞; cf. [1, §V.2,§I.11]. Moreover, in this case Pontryagin space comple-
tions are isomorphic. Since ind− L < ∞ is obviously a necessary condition for the
existence of an almost Pontryagin space-completion, one concludes that L admits
an almost Pontryagin space-completion if and only if ind− L <∞.

Let L be an inner product space with ind−L <∞ and consider the map L which
assigns to each almost Pontryagin space-completion (ι,A) of L the linear subspace

L(ι,A) := ι∗A′

of the algebraic dual L∗ of L. Here ι∗ denotes the (algebraic) adjoint of ι, that is
ι∗ : A∗ → L∗ and ι∗f = f ◦ ι.

The next statement already contains a good portion of the description of an
almost Pontryagin space-completion.

Lemma 6.5. Let L be an inner product space with ind− L <∞ and let (ι1,A1) and

(ι2,A2) be two almost Pontryagin space-completions of L with (ι1,A1) � (ι2,A2).
Then

L(ι1,A1) ⊇ L(ι2,A2) and dim
(
L(ι1,A1)

/

L(ι2,A2)
)

= ind0 A1 − ind0 A2 .

Proof. Let π : A1 → A2 be a surjective morphism with π ◦ ι1 = ι2. Passing to
adjoints yields

L
ι1

~~}}
}}

}}
}} ι2

  A
AA

AA
AA

A

A1 π
// A2

///o/o/o/o/o

L∗

A∗
1

ι∗1

>>||||||||
A∗

2
π∗

oo

ι∗2

``BBBBBBBB

Since π is continuous one has π∗A′
2 ⊆ A′

1. It readily follows that

L(ι2,A2) = ι∗2A
′
2 = ι∗1π

∗A′
2 ⊆ ι∗1A

′
1 = L(ι1,A1) .

As ran ι1 is dense in A1, the restriction of ι∗1 to A′
1 is injective. Thus the codimension

satisfies

dim
(
L(ι1,A1)

/

L(ι2,A2)
)

= dim
(
ι∗1A

′
1

/

ι∗1π
∗A′

2

)
= dim

(
A′

1

/

π∗A′
2

)
.

Since π is surjective, by the closed range theorem, π∗A′
2 is a w∗-closed subspace of

A′
1. It follows that

π∗A′
2 = π∗A′

2

w∗

= (kerπ)⊥ ,

and hence
dim

(
A′

1

/

π∗A′
2

)
= dim

(
A′

1

/

(kerπ)⊥
)

= dim (kerπ)′ .

The mapping π is isometric, so that kerπ ⊆ A◦
1. In particular, kerπ is finite

dimensional, and hence
dim (kerπ)′ = dimkerπ .

The inclusion kerπ ⊆ A◦
1 also shows that kerπ = ker(π|A◦

1
). Since π is surjective,

one has π−1(A◦
2) = A◦

1, and hence π|A◦

1
maps A◦

1 onto A◦
2. It follows that

dimkerπ = dimker(π|A◦

1
) = dimA◦

1 − dimA◦
2 .



20 H.S.V. DE SNOO AND H. WORACEK

Putting together these identities, the desired formula follows. �

In particular Lemma 6.5 shows that

(6.1) (ι1,A1) ∼= (ι2,A2) =⇒ L(ι1,A1) = L(ι2,A2) .

Since Pontryagin space completions of L are isomorphic, the following notion is
well-defined.

Definition 6.6. Let L be an inner product space with ind− L < ∞. Choose
a Pontryagin space completion (ι,P) of L and let a linear subspace L′ of L∗ be
defined as

L′ := L(ι,P), (ι,P) Pontryagin space completion of L .

Remark 6.7. In the terminology of [1, §IV.6] L(ι,P) is nothing else but the topo-
logical dual space of L with respect to the unique decomposition majorant which
L carries as inner product space with finite negative index. Hence the notation L′.

The map L is defined on the set of all almost Pontryagin space-completions
of L and maps an almost Pontryagin space-completion to a linear subspace of
the algebraic dual L∗. Due to (6.1) it induces a map, again denoted by L, from
equivalence classes of almost Pontryagin space-completions modulo isomorphisms
to linear subspaces of L∗. It acts between two partially ordered sets as an injective
order homomorphism.

Theorem 6.8. Let L be an inner product space with ind− L <∞. Then L induces

an order-isomorphism of the set of all almost Pontryagin space-completions of L
modulo isomorphism onto the set of all linear subspaces of L∗ which contain L′ with

finite codimension. Thereby,

(6.2) dim
(
L(ι,A)

/

L′
)

= ind0 A .

Proof. The proof will be given in a number of steps.
Step 1. Let (ι,A) be an almost Pontryagin space-completion of L. Denote

by π : A → A/A◦ the canonical projection, then π is a surjective morphism.
Hence, (π ◦ ι,A/A◦) is also an almost Pontryagin space-completion and (ι,A) �
(π◦ι,A/A◦), cf. Remark 6.3. However, since A/A◦ is nondegenerated, (π◦ι,A/A◦)
is actually a Pontryagin space completion of L. Thus L(π ◦ ι,A/A◦) = L′, and it
follows from Lemma 6.5 that L(ι,A) contains L′ with codimension ind0 A◦.

Step 2. Next assume that (ι1,A1) and (ι2,A2) are almost Pontryagin space-
completions of L such that L(ι1,A1) ⊇ L(ι2,A2). Therefore, for each given f ∈ A′

2,

there exists f̃ ∈ A′
1 with ι∗1f̃ = ι∗2f . Since ι∗1|A′

1
is injective, this element f̃ is

uniquely determined. Hence, a map Λ : A′
2 → A′

1 is well-defined by the requirement

ι∗1(Λf) = ι∗2f, f ∈ A′
2 .

Clearly, Λ is linear.
Now apply the closed graph theorem. Let a sequence (fn)n∈N of functionals

fn ∈ A′
2 be given, and assume that fn → f in A′

2 and Λfn → g in A′
1. Since

convergence in the norm implies w∗-convergence, one has for each x ∈ L

(ι∗2fn)x = fn(ι2x) → f(ι2x) = (ι∗2f)x = ι∗1(Λf)x

=

ι∗1(Λfn)x = (Λfn)(ι1x) → g(ι1x) = (ι∗1g)x

Since ι∗1|A′

1
is injective, this implies that Λf = g. It follows that Λ is bounded.
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Let ‖.‖1 and ‖.‖2 be norms on A1 and A2 which induce their respective topolo-
gies. Moreover, let ‖.‖′1 and ‖.‖′2 be the corresponding operator norms on A′

1 and
A′

2. Note that for x ∈ L

‖ι2x‖2 = sup
{
| f(ι2x)
︸ ︷︷ ︸

=

(ι∗2f)x=ι∗1(Λf)x=(Λf)(ι1x)

| : f ∈A′
2, ‖f‖

′
2 ≤ 1

}
=

= sup
{
|f̃(ι1x)| : f̃ ∈ Λ

(
{f ∈A′

2 : ‖f‖′2 ≤ 1}
)

︸ ︷︷ ︸

⊆{f̃∈A′

1: ‖f̃‖
′

1≤‖Λ‖}

}
≤ ‖Λ‖ · ‖ι1x‖1 .

It follows that ker ι1 ⊆ ker ι2, so that ι2 ◦ ι−1
1 is a well-defined map. Moreover, it

follows that ι2 ◦ ι−1
1 is bounded. Let π : A′

1 → A′
2 be its extension by continuity.

Then π is isometric and has dense range in A′
2.

Now let πj : Aj → Aj/A◦
j , j = 1, 2, denote the canonical projections. Since

(π1 ◦ ι1,A1/A
◦
1) and (π2 ◦ ι2,A2/A

◦
2) are both Pontryagin space completions of L,

there exists an isomorphism φ of A2/A◦
2 onto A1/A◦

1 with φ ◦ (π2 ◦ ι2) = π1 ◦ ι1.
Thus, in the following diagram, each outer triangle commutes.

A1
π //

π1

��

A2

π2

��

L

ι1

ccFFFFFFFFF ι2

;;xxxxxxxxx

π1◦ι1

||xx
xx

xx
xx

x
π2◦ι2

""F
FF

FF
FF

FF
##

#

#

A1/A◦
1 A2/A◦

2φ
oo

Passing to adjoints, gives the outer triangles in

A′
1

ι∗1 $$H
HH

HHH
HH

HH
A′

2
π′

oo

ι∗2zzvv
vvv

vvv
vv

L ##

#

#

(A1/A◦
1)

′

ι∗1◦π
′

1

::vvvvvvvvv

φ′

//

π′

1

OO

(A2/A◦
2)

′

π′

2

OO

ι∗2◦π
′

2

ddHHHHHHHHH

Injectivity of ι∗1|A′

1
implies π′

1 = π′ ◦ π′
2 ◦ φ′. In particular, ranπ′

1 ⊆ ranπ′ ⊆ A′
1.

However, as seen in the proof of Lemma 6.5, ranπ′
1 is a closed subspace of A′

1 with
finite codimension. Hence, also ranπ′ is closed in A′

1. By the closed range theorem,
ranπ is closed in A1, and hence π is surjective. Thus π is a morphism and it has
been shown that (ι1,A1) � (ι2,A2).

Step 3. So far it is clear that L maps almost Pontryagin space-completions into
the set of all subspaces of L∗ which contain L′ with finite codimension, that (6.2)
holds, and that

(ι1,A1) � (ι2,A2) ⇐⇒ L(ι1,A1) ⊇ L(ι2,A2) .

In particular, L(ι1,A1) = L(ι2,A2) if and only if (ι1,A1) and (ι2,A2) are isomor-
phic.
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It remains to show that for each given subspaceM with L′ ⊆ M and dimM/L′ <
∞, there exists an almost Pontryagin space-completion (ι,A) of L with L(ι,A) =
M. The construction of one such completion goes back to [4] and was formu-
lated and proved in the almost Pontryagin space-context in [5]. This method is
now briefly indicated. Put n := dimM/L′ and choose f1, . . . , fn ∈ L∗ such that
M = span(L′ ∪ {f1, . . . , fn}). Moreover, let (ιP ,P) be the Pontryagin space com-
pletion of L. Define

 A := P [+̇]Cn, and T the product topology on A,
 [x+ ξ, y + η]A := [x, y]P , x, y ∈ P , ξ, η ∈ C

n,
 ιx := x+ (f1(x), . . . , fn(x)), x ∈ L.

Then one can show that (ι,A) is an aPs-completion of L with L(ι,A) = M. �

Corollary 6.9. Let (ι1,A1) and (ι2,A2) be two almost Pontryagin space-completions

of an inner product space L. Then (ι1,A1) � (ι2,A2) if and only if ker ι1 ⊆ ker ι2
and ι2 ◦ ι

−1
1 : ran ι1 → ran ι2 is bounded.

Proof. If (ι1,A1) � (ι2,A2), then the map π1
2 guaranteed by the definition of �

is linear, bounded, and satisfies π1
2 ◦ ι1 = ι2. The required properties of ι1 and

ι2 follow. Conversely, assume that ker ι1 ⊆ ker ι2 and ι2 ◦ ι−1
1 : ran ι1 → ran ι2

is bounded. Let π : A1 → A2 be the extension by continuity of ι2 ◦ ι−1
1 , then

ι∗2 = ι∗1 ◦ π
′ and hence

L(ι2,A2) = ι∗2A
′
2 =

(
ι∗1 ◦ π

′
)
A′

2 ⊆ ι∗1A
′
1 = L(ι1,A1) . �
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