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Abstract

This is the second part in a series dealing with subspaces of de Branges

spaces of entire functions generated by majorization on subsets of the

closed upper half-plane. In this part we investigate certain Banach spaces

generated by admissible majorants. We study their interplay with the

original de Branges space structure, and their geometry. In particular, we

will show that, generically, they will be nonreflexive and nonseparable.
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1 Introduction

A de Branges space H is a Hilbert space whose elements are entire functions,
and which has the following properties:

(dB1) For each w ∈ C the point evaluation F 7→ F (w) is a continuous
linear functional on H.

(dB2) If F ∈ H, also F#(z) := F (z̄) belongs to H and ‖F#‖ = ‖F‖.

(dB3) If w ∈ C \ R and F ∈ H, F (w) = 0, then

z − w̄

z − w
F (z) ∈ H and

∥
∥
∥

z − w̄

z − w
F (z)

∥
∥
∥ =

∥
∥F

∥
∥ .

Alternatively, de Branges spaces can be defined via Hermite–Biehler functions.
These are entire functions E which satisfy:

(HB) For all z in the open upper half-plane C+, we have |E(z)| < |E(z)|.

For a Hermite–Biehler function E define

H(E) :=
{

F entire :
F

E
,
F#

E
∈ H2(C+)

}

,

‖F‖H(E) :=
( ∫

R

∣
∣
∣
F (t)

E(t)

∣
∣
∣

2

dt
) 1

2

, F ∈ H(E) ,

where H2(C) denotes the Hardy space in the upper half-plane. Then H(E) is a
de Branges space. Conversely, every de Branges space can be obtained in this
way, cf. [dB].

In the theory of de Branges spaces, an important role is played by their
de Branges subspaces (dB-subspaces, for short). These are those subspaces L
of a de Branges space H which are themselves de Branges spaces with the norm
inherited from H.
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In [BW3] we have investigated a general procedure to construct dB-subspaces
of a given de Branges space H by means of majorization. For a function m :
D → [0,∞), defined on some subset D of the closed upper half-plane C+ ∪ R,
we have defined

Rm(H) :=
{

F ∈ H : ∃C > 0 : |F (z)|, |F#(z)| ≤ Cm(z), z ∈ D
}

,

and
Rm(H) := closH Rm(H) .

Provided Rm(H) 6= {0} and m satisifies a mild regularity condition, the space
Rm(H) is a dB-subspace of H, cf. [BW3, Theorem 3.1]. In this case we say
that m is an admissible majorant for H; the set of all admissible majorants
is denoted by AdmH (see Definition A.11). The main task in [BW3] was to
investigate which dB-subspaces of H can be represented as Rm(H). Results, of
course, depend on the set D where majorization is permitted. We showed that
every dB-subspace L of H is of the form Rm(H) when D is sufficiently large, and
obtained a number of results on representability by specific majorants defined
on specific (smaller) subsets D.

The starting point for the present paper is the following observation: Those
elements of a space Rm(H) about which one has explicit information, are the
elements of Rm(H). Hence, a closer investigation of Rm(H), rather than just of
Rm(H), is desirable.

On the space Rm(H) a stronger norm than ‖.‖H can be defined in a natural
way, namely as

‖F‖m := max
{
‖F‖H, min{C ≥ 0 : |F (z)|, |F#(z)| ≤ Cm(z), z ∈ D}

}
,

F ∈ Rm(H) .

It is seen with a routine argument that Rm(H), if endowed with the norm
‖.‖m, becomes a Banach space. Although quite simple, this fact has interesting
consequences and gives rise to some intriguing geometric problems. The reason
which makes the structure of 〈Rm(H), ‖.‖m〉 involved might be explained as
follows: On the one hand Rm(H) is fairly small as a set; it is a subset of the
Hilbert space H. On the other hand, to some extent, the norm ‖.‖m behaves
badly; it involves an L∞-component.

Let us describe the results and organization of the present paper. In Sec-
tion 2, after providing some basics, we present two instances of the interaction
between the de Branges space structure of H and the Banach space structure
of Rm(H). Namely, we show that the maximal rate of exponential growth of
functions in Rm(H) is already attained within Rm(H), and that reflexivity of
〈Rm(H), ‖.‖m〉 implies its separability, cf. Proposition 2.3 and Proposition 2.4.
The proofs of these results are not difficult, but nicely illustrate the interplay
of ‖.‖H and ‖.‖m.

Section 3 is the most involved part of the present paper. There we discuss
the geometry of the Banach space 〈Rm(H), ‖.‖m〉 for a particular majorant and
two particular domains of majorization. Namely, if L = H(E1) is a dB-subspace
of H, we consider the majorant mE1

|D where

mE1
(z) :=

|E1(z)|
|z + i| and D := i[1,∞) or D := R .
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This majorant already has been used and investigated intensively in [BW3].
Although it is probably one of the simplest majorants one can think of, it is al-
ready quite hard to obtain knowledge on Rm(H). It turns out that the geometric
structure of RmE1

|D(H) varies from very simple to extremely complicated, and is
closely related to the distribution of zeros of E1 or, more generally, the behaviour
of the inner function E−1

1 E#
1 . In the case D = i[1,∞), roughly speaking, the

zeros of E which are close to R give ”simple” parts of the space, whereas zeros
separated from the real axis give ”complicated” parts of the space, cf. Theorem
3.1 and Theorem 3.2. A good illustration of this idea is also Corollary 3.9. The
case D = R is different; it turns out that the geometric structure of Rm(H) will
always be complicated, cf. Theorem 3.10.

In the last section of the paper we revisit the question of representability of
dB-subspaces by means of majorization, taking up the refined viewpoint of the
space Rm(H). It is a consequence of the Banach space structure of Rm(H) that,
for each given majorant m, the set of all majorants m1 with Rm1

(H) = Rm(H)
contains a smallest element. This majorant is fairly smooth and reflects many
properties of Rm(H), cf. Proposition 4.6. Moreover, it can be used to character-
ize minimal elements in the set of all admissible majorants; a topic studied for
majorization along R e.g. in [BH] or [HM]. It turns out that minimal majorants
correspond to one-dimensional dB-subspaces representable as Rm(H). In con-
junction with our previous results on representability, this fact yields criteria
for existence of minimal majorants, cf. Corollary 4.11.

The notation in the present paper will follow the notation introduced in
[BW3]. In order to make the present paper more self-contained, we collected
the necessary definitions and some preliminary facts on de Branges spaces in an
appendix. Moreover, since in the present context this is no loss in generality, we
will assume that all de Branges spaces H have the following property: Whenever
x ∈ R, there exists an element F ∈ H with F (x) 6= 0. Also, bounded sets D
give only trivial results, hence we will throughout this paper exclude bounded
sets from our discussion.

2 The Banach space Rm(H)

The following simple observation is the basis of all considerations made in this
paper. For this reason we provide an explicit proof. Let the set AdmH be
defined as in Definition A.11.

2.1 Proposition. Let H be a de Branges space and m ∈ AdmH. Then
〈Rm(H), ‖.‖m〉 is a Banach space.

Proof. Let (Fn)n∈N, Fn ∈ Rm(H), be a Cauchy sequence with respect to the
norm ‖.‖m. Since ‖.‖m ≥ ‖.‖H, it is thus also a Cauchy sequence in H. By
completeness of H, (Fn)n∈N converges with respect to the norm ‖.‖H, say, to
F := limn→∞ Fn ∈ H. Set C := supn∈N ‖Fn‖m < ∞. Since convergence in H
implies pointwise convergence, we have

|F (z)| = lim
n→∞

|Fn(z)| ≤ Cm(z), z ∈ D .

Similarly, it follows that |F#(z)| ≤ Cm(z), z ∈ D. Hence F ∈ Rm(H).
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Let ǫ > 0 be given, and choose N ∈ N with ‖Fn − Fm‖m ≤ ǫ, n, m ≥ N .
Then we have

|Fn(z) − Fm(z)| ≤ ǫm(z), z ∈ D, n, m ≥ N .

Passing to the limit m → ∞, it follows that |Fn(z) − F (z)| ≤ ǫm(z), z ∈ D,
n ≥ N . Together with convergence in H, this implies that limn→∞ Fn = F with
respect to the norm ‖.‖m. ❑

As a first step towards getting acquainted with this Banach space, let us
discuss its dual.

2.2 Remark. Let m : D → [0,∞) belong to AdmH. Assume that D is a closed
subset of C+ ∪ R, and that

∀w ∈ D : (z − w)−dm(w)
m(z) is continuous at w . (2.1)

For the definition of the zero-divisor dm see Definition A.1. As it will become
clear later, assuming (2.1) is no essential restriction. Denote by C(D) the Ba-
nach space of all continuous and bounded functions on D endowed with the
supremum norm ‖.‖∞. Then the map

J :

{
〈Rm(H), ‖.‖m〉 → 〈H × C(D), max{‖.‖H, ‖.‖∞}〉

F 7→
(
F, F

m

)

is an isometric isomorphism of Rm(H) onto a closed subspace of H×C(D). Note
that the condition (2.1) ensures that m

−1F is a continuous function whenever
dF ≥ dm. Since D is locally compact, the dual space C(D)′ is isomorphic to
the space rba(D) of all regular bounded finitely additive set functions defined
on the σ-algebra of Borel sets on D. It follows that

Rm(H)′ ∼=
(
H× rba(D)

)/

N ,

where N := J (Rm(H))⊥. In fact, every continuous linear functional on Rm(H)
can be written in the form

F 7→ (F, G)H +

∫

D

F dµ, F ∈ Rm(H) ,

with some G ∈ H and µ ∈ rba(D). We also see that the annihilator N is given
as

N =
{

(G, µ) ∈ H× rba(D) :

∫

D

F

m
dµ = (F,−G)H, F ∈ Rm(H)

}

.

Interaction between ‖.‖m and ‖.‖H.

The interplay between the Banach space structure of Rm(H) and the de Branges
space structure of H leads to interesting insight. We give two results of this
kind. First we show that the maximal rate of exponential growth transfers from
Rm(H) to Rm(H). For α ≤ 0, set H(α) := {F ∈ H : mtH F, mtH F# ≤ α}.
Then H(α) is a closed subspace of H, cf. [KW, Corollary 5.2]. Hence we have

mtH Rm(H) = sup
F∈Rm(H)

mtH F , (2.2)

for the definition of mtH see Definition A.1.
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2.3 Proposition. Let H be a de Branges space, and let m ∈ AdmH. Then
there exists a function F ∈ Rm(H), such that

mtH Rm(H) = mtH F .

Proof. We have ‖.‖m ≥ ‖.‖H on Rm(H). Hence, for each α ≤ 0, the subspace
Rm(H)∩H(α) is ‖.‖m-closed. Consider the value α := supF∈Rm(H) mtH F . Then

Rm(H) ∩H(β) ( Rm(H), β < α ,

and hence each of the spaces Rm(H) ∩ H(β), β < α, is nowhere dense in
〈Rm(H), ‖.‖m〉. By the Baire Category Theorem the set

Rm(H) \
⋃

n∈N

(

Rm(H) ∩H(α− 1
n

)

)

is dense in Rm(H). In particular, there exists F ∈ Rm(H) with mtH F = α. ❑

Secondly, we discuss the geometry of 〈Rm(H), ‖.‖m〉. Several different topolo-
gies play a role:

(i) The topology τlu of locally uniform convergence.

(ii) The weak topology τw of 〈H, ‖.‖H〉.

(iii) The weak topology τm

w of 〈Rm(H), ‖.‖m〉.

Denote by Bm(H) the unit ball of the Banach space 〈Rm(H), ‖.‖m〉. Explicitly,
this is

Bm(H) :=
{

F ∈ H :
‖F‖H ≤ 1 and
|F (z)|, |F#(z)| ≤ m(z), z ∈ D

}

.

2.4 Proposition. Let m ∈ AdmH. Then the following hold:

(i) Let B ⊆ H be bounded with respect to the norm ‖.‖H of H. Then B is a
normal family of entire functions. We have τw|B = τlu|B.

(ii) The space 〈Rm(H), ‖.‖m〉 is reflexive if and only if τm

w |Bm(H) = τlu|Bm(H).

(iii) If 〈Rm(H), ‖.‖m〉 is reflexive, then it is also separable.

Proof. Let B be a ‖.‖H-bounded subset of H. The weak closure of B is again
‖.‖H-bounded. Hence, for the proof of (i), we may assume in addition that B
is τw-closed, and thus τw-compact. Let ∇H be defined as

∇H(z) := sup
{
|F (z)| : ‖F‖H = 1

}
=

(
K(z, z)

)1/2
,

where K(z, .) is the reproducing kernel at the point z (see Appendix A, Sub-
section II, for details). Since |F (z)| ≤ ‖F‖H∇H(z) and ∇H is continuous, the
family B is locally uniformly bounded, i.e. a normal family. Since H is a separa-
ble Hilbert space, the restriction τw|B is metrizable, cf. [M, Theorem 2.6.23]. Let
(Fn)n∈N be a sequence of elements of B which converges to F ∈ B with respect
to τw|B. Then it converges pointwise and, by the Vitali Theorem, thus also lo-
cally uniformly. We see that τlu|B ⊆ τw|B; note here that τlu is also metrizable.
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Since τw|B is compact and τlu|B is Hausdorff, it follows that actually equality
holds, cf. [Bou, I.9.Corollary 3]. This finishes the proof of (i).

We come to the proof of (ii). The space 〈Rm(H), ‖.‖m〉 is reflexive, if and only
if its unit ball Bm(H) is τm

w -compact, cf. [M, Theorem 2.8.2]. Since ‖.‖m ≥ ‖.‖H,
we have τw|Rm(H) ⊆ τm

w . The unit ball Bm(H) is a ‖.‖H-bounded subset of H. It
is ‖.‖H-closed and convex, and hence also τw-closed. Thus Bm(H) is τw-compact.
It follows that Bm(H) is τm

w -compact if and only if τw|Bm(H) = τm

w |Bm(H). By
the already proved item (i), the desired assertion follows.

For the proof of (iii), assume that 〈Rm(H), ‖.‖m〉 is reflexive. Then, by (ii),
the topology τm

w |Bm(H) equals the topology of locally uniform convergence and,
hence, is metrizable. We conclude from [M, Theorem 2.6.23] that 〈Rm(H), ‖.‖m〉
is separable. ❑

3 Geometry of RmE1
|D(H)

Let H be a de Branges space and let L ∈ Sub∗ H, i.e. let L be a dB-subspace
of H with dL = dH (= 0), cf. Definition A.2 and the paragraph following it.
Write L = H(E1), and denote by K1(w, z) the reproducing kernel of L. In our
previous work two particular majorants were extensively investigated. Namely,
those obtained by restriction of the functions

∇L(z) := ‖K1(z, .)‖H and mE1
(z) :=

|E1(z)|
|z + i|

to the set D under consideration. In [BW1] and [BW3] we showed that:

(i) Let D := i[1,∞). Then

L = R∇L|D (H) = RmE1
|D (H) . (3.1)

(ii) Let D := R and assume that mtH L = 0. Then L = RmE1
|D (H).

In this section we will study 〈Rm(H), ‖.‖m〉 for these situations. If dimH < ∞,
of course, all questions about the geometry of Rm(H) are trivial. Hence we will,
once and for all, exclude finite dimensional spaces H from our discussion.

a. Majorization on the imaginary half-line.

Consider D := i[1,∞). Since L ⊆ R∇L|D(H), (3.1) implies that the space
R∇L|D(H) is ‖.‖H-closed. It follows that the norms ‖.‖∇L|D and ‖.‖H both turn
R∇L|D(H) into a Banach space. However, ‖.‖∇L|D ≥ ‖.‖H, and therefore they
are equivalent. Being bicontinuously isomorphic to the Hilbert space 〈L, ‖.‖H〉,
the geometry of the space 〈R∇L|D (H), ‖.‖∇L|D〉 is very simple. For example it
is separable, reflexive, has an unconditional basis, etc.

Things change, when turning to the majorant mE1
|D. Then, as we will show

below, the geometry of the space 〈RmE1
|D(H), ‖.‖mE1

|D〉 varies from very simple
to highly complicated.

For each majorant m we have Rm(H) = Rm(Rm(H)). Moreover, trivially,
the norms ‖.‖m of Rm(H) and Rm(Rm(H)) are equal. In particular, using (3.1),

RmE1
|D(H) = RmE1

|D (L)
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including equality of norms. Hence, we may restrict explicit considerations to
the case when L = H (and doing so slightly simplifies notation).

Our aim in this subsection is to prove the following two theorems. Denote
by Γα, α ∈ (0, π

2 ), the Stolz angle

Γα :=
{
z ∈ C : α ≤ arg z ≤ π − α

}
.

3.1 Theorem. Let H = H(E) be a de Branges space, and set m := mE|i[1,∞).

Moreover, denote Θ := E−1E#, and let (wn)n∈N be the sequence of zeros of Θ
in C+ listed according to their multiplicities. Then the following are equivalent:

(i) The norms ‖.‖m and ‖.‖H are equivalent on Rm(H).

(i′) The space Rm(H) is ‖.‖H-closed.

(i′′) We have Rm(H) = H.

(ii) There exists ϕ ∈ R, such that

sup
z∈Γα

(

|z| · |eiϕ − Θ(z)|
)

< ∞, α ∈
(

0,
π

2

)

.

(ii′) There exists ϕ ∈ R and α ∈
(

0, π
2

)

, such that

lim inf
|z|→∞
z∈Γα

(

|z| · |eiϕ − Θ(z)|
)

< ∞ .

(iii) We have mtΘ = 0 and
∑

n∈N Im wn < ∞.

(iii′) The domain of the multiplication operator SH in H is not dense.

3.2 Theorem. Let H = H(E) be a de Branges space, and set m := mE|i[1,∞).

Moreover, denote Θ := E−1E#, and let (wn)n∈N be the sequence of zeros of Θ
in C+ listed according to their multiplicities. Then

(i) =⇒ (ii) =⇒ (iii),

where (i), (ii), and (iii) are the following conditions:

(i) We have mtΘ < 0 or lim supn→∞ Im wn > 0.

(ii) There exists δ > 0 such that

lim inf
|z|→∞
Im z≥δ

|Θ(z)| = 0 . (3.2)

(iii) There exists a bicontinuous embedding of 〈ℓ∞, ‖.‖∞〉 into 〈Rm(H), ‖.‖m〉.

Note that the condition Theorem 3.2, (iii), implies that Rm(H) is neither
separable nor reflexive.
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3.3 Remark. Comparing the condition (iii) of Theorem 3.1 with (i) of Theorem
3.2, it is apparent that these theorems do not establish a full dichotomy; there
is a gap between the described situations. At present it is not clear to us
what happens in this gap. In particular, it is an open question whether there
exists a de Branges space H = H(E), such that for m := mE |i[1,∞) the space
〈Rm(H), ‖.‖m〉 is separable (or reflexive) although Rm(H) 6= H.

We turn to the proof of Theorem 3.1 and Theorem 3.2. For the first theorem
we will use the following variant of the Julia-Carathéodory theorem and Ahern
and Clark’s result on radial limits of KΘ functions [AC] adjusted to the point
at infinity (for details see also [Ba1, Theorem 2, Corollary 2]).

3.4 Lemma. Let Θ be an inner function in C+. Then the following are equiv-
alent:

(i) There exists ϕ ∈ R such that supy≥1 y|eiϕ − Θ(iy)| < ∞.

(ii) We have supy≥1 y(1 − |Θ(iy)|) < ∞.

(iii) There exists ϕ ∈ R such that eiϕ − Θ ∈ H2.

Assume that Θ is of the form Θ(z) = e−iazB(z) with a ≤ 0 and B being a
Blaschke product. Denote by (wn)n∈N the sequence of zeros of B listed according
to their multiplicities, then the conditions (i)–(iii) are further equivalent to

(iv) a = 0 and
∑

n∈N Im wn < ∞.

❑

3.5 Corollary. Let H = H(E) be a de Branges space. Set Θ := E−1E#, and
denote by (wn)n∈N, wn ∈ C+, the sequence of zeros of Θ in C+ listed according
to their multiplicities. Then the multiplication operator in H is not densely
defined, if and only if mtΘ = 0 and

∑

n∈N Im wn < ∞. ❑

Proof (of Theorem 3.1). By the just stated corollary we have (iii) ⇔ (iii′).
The equivalences (i) ⇔ (i′) ⇔ (i′′) are easy to see: If ‖.‖m and ‖.‖H|Rm(H)

are equivalent, then Rm(H) is ‖.‖H-complete and hence also ‖.‖H-closed. Since
in any case Rm(H) = H, ‖.‖H-closedness of Rm(H) implies that Rm(H) = H.
Finally, if Rm(H) = H, then ‖.‖m and ‖.‖H both turn Rm(H) into a Banach
space. Since ‖.‖m ≥ ‖.‖H, this implies that they are equivalent.

Trivially, (ii) ⇒ (ii′) holds. We will finish the proof by showing that (i) ⇔
(iii), (iii′) ⇒ (ii), and (ii′) ⇒ (iii′). To this end let us make a preliminary
remark. Substituting the explicit expression for ∇H, cf. (A.5), we obtain

∇H(z)

mE(z)
=

|z + i|
|E(z)|

( |E(z)|2 − |E(z)|2
4π Im z

) 1
2

=
|z + i|

2
√

π Im z

(
1 − |Θ(z)|2

) 1
2 =

=
1

2
√

π

|z + i|
Im z

(
1 + |Θ(z)|

) 1
2 ·

[

Im z · (1 − |Θ(z)|)
] 1

2

, z ∈ C+ .

(3.3)

By (A.6), we have infz∈C+ m
−1
E ∇H > 0. Since the first factor of the last ex-

pression in (3.3) is bounded above and away from zero on D = i[1,∞), it fol-
lows that (writing m1 . m2 if there exists a positive constant C, such that
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m1(z) ≤ Cm2(z), z ∈ D, and letting m1 ≍ m2 stand for ”m1 . m2 and
m2 . m1”)

∇H|D . m ⇐⇒ ∇H|D ≍ m ⇐⇒ sup
y≥1

y
(
1 − |Θ(iy)|

)
< ∞ . (3.4)

(i) ⇔ (iii): Let C > 0 be such that ‖F‖m ≤ C‖F‖H. Then |F (z)| ≤ Cm(z),
z ∈ D, ‖F‖H ≤ 1. Thus ∇H|D . m. Using (3.4) and Lemma 3.4, we obtain
that Rm(H) = H if and only if the condition (iii) holds.

(iii′) ⇒ (ii): Let H(E) be such that domSH 6= H, and assume without loss
of generality that B ∈ H(E). The function −B−1A has nonnegative imaginary
part throughout the upper half-plane, and its Herglotz integral representation
is of the form

−A

B
= pz +

∑

B(tn)=0

pn

( 1

tn − z
− tn

1 + t2n

)

,

with some nonnegative numbers p and pn, n ∈ N. By [dB, Theorem 22] and its
proof, the linear term pz in this representation does not vanish. Hence, for each
α ∈ (0, π

2 ),

0 < p = − lim
|z|→∞
z∈Γα

1

z
· A

B
= i lim

|z|→∞
z∈Γα

1

z
· 1 + Θ(z)

1 − Θ(z)
.

Since 1 + Θ(z) is bounded, it follows that z(1 − Θ(z)) is bounded throughout
Γα.

(ii′) ⇒ (iii′): Again it is enough to consider the case that φ = 0. Hence, assume
that α ∈ (0, π

2 ), C > 0, and a sequence (zn)n∈N, zn ∈ Γα, is given such that
|zn| · |1 − Θ(zn)| ≤ C. Then, in particular, limn→∞ Θ(zn) = 1, and it follows
that

lim inf
n→∞

∣
∣
∣

1

zn
· A(zn)

B(zn)

∣
∣
∣ = lim inf

n→∞

∣
∣
∣

1

zn
· 1 + Θ(zn)

1 − Θ(zn)

∣
∣
∣ ≥ 2

C
.

If we had domSH = H, then by [dB, Theorem 29] and the proof of [dB, Theorem
22] we would have

lim
|z|→∞
z∈Γα

1

z
· A(z)

B(z)
= 0 ,

and obtain a contradiction. Thus (iii′) must hold. ❑

For the proof of Theorem 3.2, we will employ the following two lemmata.

3.6 Lemma. Let H = H(E) be a de Branges space, and let (wk)k∈N, wk ∈
C+ ∪ R, be a sequence of points with

lim
k→∞

mE(wk)

∇H(wk)
= 0 . (3.5)

Then there exists a subsequence (wk(n))n∈N, such that the sequence

(K̃(wk(n), .))n∈N of normalized kernels K̃(w, .) := ∇H(w)−1KH(w, .) is a Riesz
sequence, i.e. a Riesz basis in its closed linear span.

In particular, if (wk)k∈N satisfies |wk| → ∞ and supk∈N |Θ(wk)| < 1, the
hypothesis (3.5) holds true. Here we have again set Θ := E−1E#.

9



Proof. Let (ek)k∈N be a sequence of elements of some Hilbert space with ‖ek‖ =
1, k ∈ N. Then, in order that (ek)k∈N is a Riesz sequence, it is sufficient that

∞∑

n,m=1
n6=m

∣
∣(en, em)

∣
∣
2

< 1 ,

see e.g. [GK, VI.Theorem 2.1]. We compute

(
K̃(wm, .), K̃(wn, .)

)

H
=

1

∇H(wm)∇H(wn)

E(wn)E(wm) − E(wm)E#(wn)

2πi(wm − wn)
.

Hence, by our assumption (3.5), for each fixed m ∈ N

lim
n→∞

(
K̃(wm, .), K̃(wn, .)

)

H
= 0 .

Therefore we can extract a subsequence (wk(n))n∈N which satisfies

∞∑

n,m=1
n6=m

|
(
K̃(wk(n), .), K̃(wk(m), .)

)

H
|2 ≤ 1

2
,

and hence gives rise to a Riesz sequence (K̃(wk(n), .))n∈N.
In order to see the last assertion, it is enough to consider the first line of

(3.3):

mE(z)

∇H(z)
= 2

√
π

(Im z)
1
2

|z + i|
1

(1 − |Θ(z)|2) 1
2

.

Hence, if |wn| → ∞ and supn∈N |Θ(wn)| < 1, certainly (3.5) will hold. ❑

Throughout the following we will denote by U the linear space of all complex
sequences a = (ak)k∈N with

‖a‖U := sup
n∈N

∣
∣
∣

n∑

k=1

ak

∣
∣
∣ < ∞ .

Then 〈U , ‖.‖U〉 is a Banach space. Actually, it is isometrically isomorphic to ℓ∞

via the map (an)n∈N 7→ (
∑n

k=1 ak)n∈N.

3.7 Lemma. Set nl := l3, l ∈ N0, and consider the linear map Λ which assigns
to a sequence d = (dk)k∈N the sequence Λ(d) = (Λ(d)k)k∈N defined as (d0 := 0)

Λ(d)k :=
dl − dl−1

nl − nl−1
, nl−1 < k ≤ nl, l ∈ N .

Then, whenever d ∈ ℓ∞, we have (with C := 2
√

1 + π2

18 )

‖Λ(d)‖2 ≤ C‖d‖∞, ‖Λ(d)‖∞ ≤ ‖d‖∞, ‖Λ(d)‖U ≤ ‖d‖∞ . (3.6)
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Proof. We compute

∞∑

k=1

|Λ(d)k|2 =
∞∑

l=1

(nl − nl−1)
∣
∣
∣
dl − dl−1

nl − nl−1

∣
∣
∣

2

≤ 4‖d‖2
∞

∞∑

l=1

1

l3 − (l − 1)3
=

= 4‖d‖2
∞

(

1 +

∞∑

l=1

1

3l2 − 3l + 1

)

≤ 4
(
1 +

π2

18

)
‖d‖2

∞ ,

and this is the first inequality in (3.6). The second one is obvious since Λ(d)1 =
d1 and nl − nl−1 ≥ 2, l > 1. To see the last inequality, note that

nl∑

k=1

Λ(d)k = dl, l ∈ N ,

and that the number
∑n

k=1 Λ(d)k lies on the line segment joining dnl−1
and dnl

when l ∈ N is chosen such that nl−1 ≤ n ≤ nl.

| | | | |
n1n2 n3 n4 n5 n

•
•

•

•

•

d1

d2

d3

d4

d5

n
P

k=1

Λ(d)k

❑

Proof (of Theorem 3.2). The fact that (i) ⇒ (ii) is clear. Let us assume that
(ii) holds.

Step 1, Extracting a sparse sequence (vk)k∈N: Let δ > 0 be chosen according to
(3.2), and let (wk)k∈N be a sequence of points with Imwk ≥ δ, |wk| ≥ 1, |wk| <
|wk+1|, |wk| → ∞, and limk→∞ |Θ(wk)| = 0. By Lemma 3.6, we may extract a
subsequence (wk(n))n∈N such that the normalized kernel functions K̃(wk(n), .),
n ∈ N, form a Riesz sequence in H. Note that therefore also each subsequence
of this sequence of functions is a Riesz sequence. Since limk→∞ |Θ(wk)| = 0, we
may extract a subsequence (wk(n(l)))l∈N such that

∑∞
l=1 |Θ(wk(n(l)))| ≤ 1

4 . We
thus have found a sequence (uk)k∈N with the following properties

(i) Im uk ≥ δ > 0, |uk| ≥ 1, |uk| < |uk+1|, k ∈ N, |uk| → ∞;

(ii) The sequence (K̃(uk, .))k∈N is a Riesz sequence in H;

(iii)
∑∞

n=1 |Θ(un)| ≤ 1
4 .

A straightforward induction shows that we may extract yet another subsequence
(vk)k∈N of (uk)k∈N which satisfies

(iv)
∑k

n=1 |vn| ≤ 1
8 |vkvk+1|

1
2 , k ∈ N;

(v)
∑k

n=l
1

|vn| < 1
8 |vl−1vl|−

1
2 , l = 2, . . . , k; and hence, letting k → ∞,

∞∑

n=l

1

|vn|
≤ 1

8
|vl−1vl|−

1
2 , l ≥ 2 .

11



Since each of the properties (i)–(iii) remains valid when passing to subsequences,
the sequence (vk)k∈N satisfies (i)–(v).

Step 2, Definition of Ψ: Since (K̃(vk, .))k∈N is a Riesz sequence in H, the map
ρ defined as

ρ : (ak)k∈N 7→
∞∑

k=1

akK̃(vk, .) (3.7)

induces a bicontinuous embedding of ℓ2 into H. Set

µk := i

(

π
1 − |Θ(vk)|2

Im vk

)1/2 |E(vk)|
E(vk)

, k ∈ N .

Since Im vk ≥ δ > 0, k ∈ N, the sequence (µk)k∈N belongs to ℓ∞. Thus the
multiplication operator

µ : (ak)k∈N 7→ (µkak)k∈N (3.8)

induces a bounded operator of ℓ2 into itself. Finally, let Λ be the operator
constructed in Lemma 3.7 considered as an element of B(ℓ∞, ℓ2), and set

Ψ := ρ ◦ µ ◦ Λ .

Then Ψ ∈ B(ℓ∞,H).

Step 3, Ψ ∈ B(ℓ∞, Rm(H)): Let d ∈ ℓ∞. We have, by our choice of µk,

Ψ(d)(z) =

∞∑

n=1

i

(

π
1 − |Θ(vn)|2

Im vn

)1/2 |E(vn)|
E(vn)

Λ(d)n · K̃(vn, z) =

=
∞∑

n=1

i

(

π
1−|Θ(vn)|2

Im vn

)1/2 |E(vn)|
E(vn)

Λ(d)n ·
[( |E(vn)|2 − |E(vn)|2

4π Im vn

)−1/2

·

· E(z)E(vn) − E(vn)E#(z)

2πi(vn − z)

]

= E(z)

∞∑

n=1

Λ(d)n
1 − Θ(vn)Θ(z)

vn − z
,

(3.9)

and hence

Ψ(d)(z)

E(z)
=

∞∑

n=1

Λ(d)n
1 − Θ(vn)Θ(z)

vn − z
=

∞∑

n=1

[ Λ(d)n

vn − z
− Λ(d)nΘ(vn)

Θ(z)

vn − z

]

.

Let y ∈ [|v1|,∞) be given, and choose k ∈ N such that |vk| ≤ y ≤ |vk+1|. Using
(3.6) and the properties (iii), (iv), (v) of (vk)k∈N, we obtain the estimates
below. To see these estimates, remember that vn ∈ C+ and hence |vn − iy| ≥
max{|vn|, y}.

∣
∣
∣

k−1∑

n=1

Λ(d)n

vn − iy

∣
∣
∣ =

∣
∣
∣

k−1∑

n=1

Λ(d)n

iy

(

− 1 +
vn

vn − iy

)∣
∣
∣ ≤

≤ 1

y
‖Λ(d)‖U +

‖Λ(d)‖∞
y2

k−1∑

n=1

|vn|
︸ ︷︷ ︸

≤ 1
8
|vk−1vk|

1
2 ≤ y

8

≤ 9

8y
‖d‖∞ ,
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∣
∣
∣

Λ(d)k

vk − iy
+

Λ(d)k+1

vk+1 − iy

∣
∣
∣ ≤ 2

y
‖Λ(d)‖∞ ≤ 2

y
‖d‖∞ ,

∣
∣
∣

∞∑

n=k+2

Λ(d)n

vn − iy

∣
∣
∣ ≤ ‖Λ(d)‖∞

∞∑

n=k+2

1

|vn|
︸ ︷︷ ︸

≤ 1
8
|vk+1vk+2|

− 1
2 ≤ 1

8y

≤ 1

8y
‖d‖∞ ,

∣
∣
∣

∞∑

n=1

Λ(d)nΘ(vn)
Θ(iy)

vn − iy

∣
∣
∣ ≤ ‖Λ(d)‖∞

1

y

∞∑

n=1

|Θ(vn)| ≤ 1

4y
‖d‖∞ .

Altogether, it follows that

y
∣
∣
∣
Ψ(d)(iy)

E(iy)

∣
∣
∣ ≤ 7

2
‖d‖∞, y ∈ [|v1|,∞) .

Consider the majorant m̃(z) := |E(z)|
|z| defined on the ray D̃ := i[|v1|,∞). The

above estimate, together with the already known fact that Ψ ∈ B(ℓ∞,H), im-
plies that Ψ(ℓ∞) ⊆ Rm̃(H) and Ψ ∈ B(ℓ∞, 〈Rm̃(H), ‖.‖m̃〉).

Since the domains of m and m̃ differ only by a bounded set, and m̃ ≍ m|D̃,
we have Rm(H) = Rm̃(H) and the norms ‖.‖m and ‖.‖m̃ are equivalent. We
conclude that

Ψ ∈ B
(
ℓ∞, 〈Rm(H), ‖.‖m〉

)
.

Step 4, Ψ is bicontinuous: Let nl = l3, cf. Lemma 3.7, and consider the values
yk := |vnk

vnk+1|
1
2 , k ∈ N. Then, for each sequence d ∈ ℓ∞,

Ψ(d)(iyk)

E(iyk)
= − 1

iyk

nk∑

n=1

Λ(d)n

︸ ︷︷ ︸

=dk

+

nk∑

n=1

Λ(d)n
1

iyk

vn

vn − iyk
+

+
∞∑

n=nk+1

Λ(d)n

vn − iyk
−

∞∑

n=1

Λ(d)nΘ(vn)
Θ(iyk)

vn − iyk
.

However, we estimate

∣
∣
∣

nk∑

n=1

Λ(d)n
1

iyk

vn

vn − iyk

∣
∣
∣ ≤ ‖Λ(d)‖∞

y2
k

nk∑

n=1

|vn|
︸ ︷︷ ︸

≤ 1
8
|vnk

vnk+1|
1
2 =

yk
8

≤ 1

8yk
‖d‖∞ ,

∣
∣
∣

∞∑

n=nk+1

Λ(d)n

vn − iy

∣
∣
∣ ≤ ‖Λ(d)‖∞

∞∑

n=nk+1

1

|vn|
︸ ︷︷ ︸

≤ 1
8
|vnk

vnk+1|
− 1

2 = 1
8yk

≤ 1

8yk
‖d‖∞ ,

∣
∣
∣

∞∑

n=1

Λ(d)nΘ(vn)
Θ(z)

vn − z

∣
∣
∣ ≤ ‖Λ(d)‖∞

1

yk

∞∑

n=1

|Θ(vn)| ≤ 1

4yk
‖d‖∞ ,
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and it follows that

‖Ψ(d)‖m̃ ≥ Ψ(d)(iyk)

m̃(iyk)
≥ |dk| −

1

2
‖d‖∞ .

Taking the supremum over k ∈ N, yields ‖Ψ(d)‖m̃ ≥ 1
2‖d‖∞. ❑

With the help of Lemma 3.6 we can also show that Rm(H) may contain
infinite dimensional closed subspaces M on which the norms ‖.‖m and ‖.‖H are
equivalent, even if Rm(H) itself is not ‖.‖H-closed.

3.8 Proposition. Let H = H(E) be a de Branges space, and set m := mE|i[1,∞).

Moreover, denote Θ := E−1E#. Assume that there exists a sequence (wk)k∈N,
wk ∈ C+, such that

lim inf
k∈N

Im wk = 0 and sup
k∈N

|Θ(wk)| < 1 .

Then there exists an infinite dimensional subspace M of Rm(H) which is ‖.‖H-
closed. In particular, the norms ‖.‖m|M and ‖.‖H|M are equivalent.

Proof. The normalized kernel function K̃(w, .), w ∈ C+, is explicitly given as

K̃(w, z) =
( |E(w)|2 − |E(w)|2

4π Im w

)− 1
2 E(z)E(w) − E(w)E#(z)

2πi(w − z)
=

= E(z)
1 − Θ(w)Θ(z)

i
√

π(w − z)

( Im w

1 − |Θ(w)|2
) 1

2 E(w)

|E(w)| .

We obtain the estimate (δ := supn∈N |Θ(wn)|)
∣
∣
∣
K̃(wn, iy)

m(iy)

∣
∣
∣ ≤ 2√

π

y + 1

y

√
Im wn

1 − δ2
, y ≥ 1 .

Hence K̃(wn, .) ∈ Rm(H) and

∥
∥
∥

K̃(wn, .)

m

∥
∥
∥
∞

≤ 4
√

Im wn√
π(1 − δ2)

.

Since lim infn→∞ Im wn = 0, we can extract a subsequence (vn)n∈N of (wn)n∈N

such that
∑

n∈N Im vn < ∞. Moreover, by Lemma 3.6, the choice of (vn)n∈N

can be made such that (K̃(vk, .))k∈N, is a Riesz sequence. Consider the bi-
continuous embedding ρ : ℓ2 → H defined as in (3.7). Since, the sequence
(‖m−1K̃(vn, .)‖∞)n∈N is by our choice of (vn)n∈N square summable, for each
sequence a = (an)n∈N ∈ ℓ2

∥
∥
∥

1

m

∑

n∈N

anK̃n

∥
∥
∥
∞

≤
∑

n∈N

|an| ·
∥
∥
∥

K̃n

m

∥
∥
∥
∞

≤ ‖a‖2 ·
∥
∥(‖m−1K̃n‖∞)n∈N

∥
∥

2
< ∞ .

Thus every element of M := closH span{K̃(vn, .) : n ∈ N} belongs to Rm(H).
Since ‖.‖m ≥ ‖.‖H, this implies that ‖.‖m|M and ‖.‖H|M are equivalent. ❑

Let us explicitly state the following observation, which we obtain from Propo-
sition 3.8 in conjunction with Theorem 3.2.
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3.9 Corollary. Let H = H(E) be a de Branges space, and set m := mE|i[1,∞).

Denote by (wk)k∈N the sequence of zeros of E#, and assume that

lim inf
k→∞

Im wk = 0, lim sup
k→∞

Im wk > 0 .

Then the space 〈Rm(H), ‖.‖m〉 contains two closed infinite dimensional subspaces
M1, M2, such that ‖.‖m|M1

is equivalent to the Hilbert space norm ‖.‖H|M1
,

and 〈M2, ‖.‖m|M2
〉 is bicontinuously isomorphic to 〈ℓ∞, ‖.‖∞〉. ❑

b. Majorization along the real line.

In this subsection we study majorization on D := R. It turns out that in this
case the situation is different; the geometry of RmE1

|D (H) is always complicated.

3.10 Theorem. Let H be a de Branges space, let L = H(E1) ∈ Sub∗ H, and
set m := mE1

|R. Then there exists a bicontinuous embedding of 〈ℓ∞, ‖.‖∞〉 into
〈Rm(H) ∩ L, ‖.‖m〉. In particular, Rm(H) is neither separable nor reflexive.

The basic idea for the proof of this result is similar to the one which led to
Theorem 3.2. Still, in some details, one has to argue differently, cf. Remark
3.12 below. We have to consider separately the cases where the zeros wk of
Θ := E−1

1 E# approach the real axis or are contained in some Stolz angle.

Proof (of Theorem 3.10. Case 1: zeros approaching the real axis.) Assume
that

lim inf
k→∞,Re wk>0

Im wk

|wk|
= 0.

Let (wk(n))n∈N be a subsequence of (wk)k∈N with Re wk(n) > 0 and
limn→∞ |wn|−1 Im wn = 0. From this sequence we can extract yet another
subsequence (vk)k∈N which satisfies

(i) |vk + i| ≤ 2 Re vk, k ∈ N,

(ii) Re vk+1 > 2 Re vk, k ∈ N,

(iii)
∑∞

n=1
Im vn

|vn+i| ≤ 1
24 .

Denote by K1(w, z) the reproducing kernel of L, and set K̃1(w, .) :=
‖K1(w, .)‖−1

H K1(w, .). The functions K̃1(vk, .) are normalized and belong to

the subspace L. Hence the map ρ defined by (3.7), using K̃1(vk, .) in place of
K̃(vk, .), maps the space ℓ1 contractively into L. Set

γk :=
Im vk

|vk + i| , k ∈ N .

Then, by (iii), the multiplication operator γ : (ak)k∈N 7→ (γkak)k∈N maps ℓ∞

boundedly into ℓ1. Finally, the multiplication operator µ defined in (3.8) maps
ℓ∞ boundedly into itself. Altogether, we have

Ψ1 := ρ ◦ γ ◦ µ ∈ B(ℓ∞,H) .
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Note that, as in (3.9),

Ψ1(c)(z)

E1(z)
=

∞∑

n=1

cnγn

vn − z
, c = (ck)k∈N ∈ ℓ∞ .

In order to estimate m-norms let some point x ∈ R \ (−Re v1, Re v1) be given.

If x ≤ −Re v1 ≤ 0, clearly |E−1
1 (x)Ψ1(c)(x)| ≤ ‖c‖∞

|x|

∑∞
n=1 γn ≤ ‖c‖∞

24|x| . Next,

note that

1

|vn − x| ≤







1
Re vn−x ≤ 1

x , x ≤ 1
2 Re vn,

1
Re vk−Re vk−1

≤ 2
Re vk

≤ 4
x , n ≤ k − 1, Re vk ≤ x ≤ 2 Re vk,

1
x−Re vn

≤ 2
x , 2 Re vn ≤ x,

1

|vn + i| ≤
1

Re vn
≤

{
1
x , x ≤ Re vn,
2
x , x ≤ 2 Re vn.

Using these inequalities, it follows that

∣
∣
∣

∞∑

n=1

γn

vn − x

∣
∣
∣ ≤

k−1∑

n=1

γn

|vn − x| +
1

|vk − x|
Im vk

|vk + i| +
1

|vk+1 − x|
Im vk+1

|vk+1 + i|

+

∞∑

n=k+2

γn

|vn − x| ≤
1

x

( 4

24
+ 2 + 1 +

1

24

)

, Re vk ≤ x ≤ Re vk+1 .

It follows that Ψ1 ∈ B(ℓ∞, Rm̃(H)) where m̃ is the majorant m̃(x) := |x|−1|E(x)|
defined on D̃ := R \ (−Re v1, Re v1).

We can also obtain an estimate from below. Set xk := Re vk, k ∈ N, then

∣
∣
∣
Ψ1(c)(xk)

E1(xk)

∣
∣
∣ ≥ |ck|

|vk − xk|
Im vk

|vk + i| − ‖c‖∞
∞∑

n=1
n6=k

1

|vn − x|
Im vn

|vn + i| ≥

≥ |ck|
2 Re vk

− ‖c‖∞
xk

( 4

24
+

Im vk+1

|vk+1 + i|
︸ ︷︷ ︸

≤ 1
24

+
1

24

)

≥ 1

xk

( |ck|
2

− ‖c‖∞
4

)

.

Taking the supremum over all k ∈ N yields ‖Ψ1(c)‖m̃ ≥ 1
4‖c‖∞. Since Rm̃(H) =

Rm(H) and the norms ‖.‖m̃ and ‖.‖m are equivalent, we obtain that Ψ1 maps
ℓ∞ bicontinuously into 〈Rm(H) ∩ L, ‖.‖m〉. ❑

The case when lim inf
k→∞,Re wk<0

Im wk

|wk|
= 0 is treated in a completely similar way,

and we will therefore omit explicit proof.

Proof (of Theorem 3.10. Case 2: Zeros in a Stolz angle.) Assume that there
exists α ∈

(
0, π

2

)
such that wn ∈ Γα, n ∈ N. We can extract a subsequence

(vk)k∈N of (wk)k∈N with

(i) Im vk ≥ 1, Im vk < Im vk+1, k ∈ N, Im vk → ∞,

(ii)
∑∞

n=1(Im vk)−
1
2 ≤ 1.
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As seen by a straightforward induction, we may choose (vk)k∈N in such a way
that moreover

(iii)
∑k

n=1 |vn| ≤ sin α
8 (Im vk Im vk+1)

1
2 ,

(iv)
∑k

n=l
1

Im vk
< 1

8 (Im vl−1 Im vl)
− 1

2 , l = 2, . . . , k; and hence, letting k → ∞,

∞∑

n=l

1

Im vk
≤ 1

8
(Im vl−1 Im vl)

− 1
2 , l ≥ 2 .

Again the map ρ defined by (3.7) with K̃1(vk, .) is a contraction of ℓ1 into L. Let
µ be the multiplication operator defined in (3.8). By (ii) we have (µk)k∈N ∈ ℓ1,
and hence µ ∈ B(ℓ∞, ℓ1). Finally, let Λ be the map defined in Lemma 3.7, then
Λ maps ℓ∞ contractively into itself. Consider the map

Ψ := ρ ◦ µ ◦ Λ ∈ B(ℓ∞,L) .

We have to estimate m-norms. Note that always |vn−x| ≥ max{|x| sin α, Im vn}.
Let x ∈ R \ (− Im v1, Im v1) be given, and choose k ∈ N such that Im vk ≤ |x| ≤
Im vk+1. Then

∣
∣
∣

k−1∑

n=1

Λ(d)n

vn − x

∣
∣
∣ =

∣
∣
∣

k−1∑

n=1

Λ(d)n

x

(

− 1 +
vn

vn − x

)∣
∣
∣ ≤

≤ 1

|x| ‖Λ(d)‖U +
‖Λ(d)‖∞
|x|2 sinα

k−1∑

n=1

|vn|
︸ ︷︷ ︸

≤ sin α
8

(Im vk−1 Im vk)
1
2 ≤ |x| sin α

8

≤ 9

8|x| ‖d‖∞,

∣
∣
∣
Λ(d)k

vk − x
+

Λ(d)k+1

vk+1 − x

∣
∣
∣ ≤ 2‖Λ(d)‖∞

|x| sin α
≤ 2

|x| sin α
‖d‖∞,

∣
∣
∣

∞∑

n=k+2

Λ(d)n

vn − x

∣
∣
∣ ≤ ‖Λ(d)‖∞

∞∑

n=k+2

1

Im vn

︸ ︷︷ ︸

≤ 1
8
(Im vk+1 Im vk+2)−

1
2 ≤ 1

8|x|

≤ 1

8|x| ‖d‖∞.

Putting together these inequalities, it follows that

∣
∣
∣
Ψ(d)(x)

E(x)

∣
∣
∣ ≤

(5

4
+

2

sin α

) 1

|x| ‖d‖∞, |x| ≥ Im v1 . (3.10)

Consider the majorant m̃(x) := |x|−1|E(x)| defined on D̃ := R\(− Im v1, Im v1).
Then (3.10) says that Ψ ∈ B(ℓ∞, 〈Rm̃(H) ∩ L, ‖.‖m̃〉). Equivalence of norms
implies

Ψ ∈ B(ℓ∞, 〈Rm(H) ∩ L, ‖.‖m〉) .

Let nl := l3 as in Lemma 3.7, and set xk := (Im vnk
Im vnk+1)

1
2 . Then we can

estimate

∣
∣
∣

nk∑

n=1

1

xk

Λ(d)nvn

vn − xk

∣
∣
∣ ≤ ‖Λ(d)‖∞

|xk|2 sinα

nk∑

n=1

|vn| ≤

≤ ‖Λ(d)‖∞
|xk|2 sin α

sin α

8

(
Im vnk

Im vnk+1

) 1
2 ≤ 1

8|xk|
‖d‖∞
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∣
∣
∣

∞∑

n=nk+1

Λ(d)n

vn − x

∣
∣
∣ ≤ ‖Λ(d)‖∞

∞∑

n=nk+1

1

Im vn
≤ 1

8|xk|
‖d‖∞

It follows that
∣
∣
∣
xkΨ(d)(xk)

E(xk)

∣
∣
∣ ≥

∣
∣
∣

nk∑

n=1

Λ(d)n

︸ ︷︷ ︸

=|dk|

∣
∣
∣ − ‖d‖∞

4
,

and, taking the supremum over all k ∈ N,

‖Ψ(d)‖m̃ ≥ 3

4
‖d‖∞ .

Again by equivalence of norms, this shows that Ψ maps ℓ∞ bicontinuously into
〈Rm(H) ∩ L, ‖.‖m〉. ❑

3.11 Remark. With similar arguments as used in Theorem 3.10 for the case
when the zeros of Θ approach R, one can prove the following statement: Let H
be a de Branges space and let L = H(E1) ∈ Sub∗ H, dimL = ∞. Moreover, let
D ⊂ C+ ∪ R be such that

lim sup
|z|→∞
z∈D

Im z

|z| = 0 .

Assume that there exists a sequence (wk)k∈N, wk ∈ C+, with

lim
k→∞

Im wk

|wk|
= 0, sup

n∈N
|Θ(wn)| < 1 .

Then there exists a bicontinuous embedding of ℓ∞ into Rm(H) ∩ L.
We will not go into details.

3.12 Remark. It is interesting to analyze the construction of the respective
embeddings in the proofs of Theorem 3.2, and Theorem 3.10, Case 1 / Case 2:

Theorem 3.2: ℓ∞
Λ

// ℓ2
µ

// ℓ2
ρ

// H
Theorem 3.10, Case 2: ℓ∞

Λ
// ℓ∞

µ
// ℓ1

ρ
// H

Theorem 3.10, Case 1: ℓ∞
µ

// ℓ∞
γ

// ℓ1
ρ

// H

In Theorem 3.10, Case 2, the rough argument that ρ ∈ B(ℓ1,H) was sufficient,
whereas in Theorem 3.2 we had to use the much finer argument that we can
extract a Riesz sequence of normalized kernels. This is necessary, since in The-
orem 3.2 we only assume that Im wn is bounded away from zero, and not that
the points wn are contained in some Stolz angle.

4 The majorant m♭

In this section we investigate the question in how many ways a given dB-
subspace can be realized by majorization (provided it can be realized at all). In
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particular, we ask for ”small” majorants which do the job. We will also view rep-
resentability by different majorants from a refined viewpoint, requiring instead
of Rm1

(H) = Rm2
(H) that Rm1

(H) = Rm2
(H) or even Bm1

(H) = Bm2
(H).

To start with, let us show by examples that in general there will actually
exist many majorants m generating the same dB-subspace Rm(H).

4.1 Example. Consider a Paley–Wiener space PWa, a > 0, and majorization on
D := R. For every m ∈ AdmR PWa which is separated from zero on each com-
pact interval, we have Rm(PWa) = PWa, cf. [BW1, Corollary 3.12]. However,
for each α ∈ (0, 1), the function

m(x) := exp(−|x|α), x ∈ R ,

is an admissible majorant, cf. [BW1, Example 2.14].

This example relies on the fact that no proper dB-subspaces of PWa can
be obtained by majorization on the real line. The following example is of a
different nature.

4.2 Example. Let H be a de Branges space and let L ∈ Sub∗ H, dimL = ∞, be
such that L = closH

⋃{K ∈ Sub∗ H : K ( L}. We will consider majorization on
D := i[1,∞), so we know that ∇L|D belongs to AdmD H and R∇L|D(H) = L.

By the Baire Category Theorem we have L 6= ⋃{K ∈ Sub∗ H : K ( L}.
Note here that this union is actually equal to some at most countable union.
Moreover, each dB-subspace is invariant with respect to F 7→ F#. Hence we
can choose F ∈ L \ ⋃{K ∈ Sub∗ H : K ( L}, ‖F‖ = 1, with F = F#.

It follows from a general argument that the function F has infinitely many
zeros: Assume on the contrary that w1, . . . , wn are all the zeros of F (listed
according to their multiplicities). Then the function

F̃ (z) := F (z)

n∏

k=1

(z − wk)−1

belongs to H, satisfies F̃# = F̃ , and has no zeros. Thus span{F̃} ∈ Sub∗ H.
Hence also each of the spaces

Lm :=
{
pF̃ : p ∈ C[z], deg p ≤ m

}
∩H, m ∈ N, m ≤ n,

belongs to Sub∗ H. By the construction of F̃ , we have F ∈ Ln. Thus Ln is
not contained in any of the spaces K ∈ Sub∗ H, K ( L, and, by de Branges’
Ordering Theorem, must therefore contain each of them. By our assumption,
⋃

K(L K is dense in L, and it follows that also L ⊆ Ln. This contradicts the
assumption that dimL = ∞.

Denote the sequence of zeros of F which lie in C+ ∪ R by (wn)n∈N, and let
B(z) be the Blaschke product build from the zeros wn with positive imaginary
part. Define

mk(z) :=
|F (z)|

|z + i|k|B(z)| , z ∈ D, k ∈ N0 .

Clearly, we have mk > 0 and m0 ≥ m1 ≥ m2 ≥ . . .. Moreover, for each k ∈ N0,

Fk(z) :=
F (z)

∏k
n=1(z − wn) · B(z)

∈ Rmk
(H) \ Rmk+1

(H) .
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We see that mk ∈ AdmD H. The same argument as used in [BW2, Lemma 3.5,
(i)] gives

dimRmk
(H)

/
Rmk−1

(H) ≤ 1 .

Since each dB-subspace is closed with respect to multiplication by Blaschke
products, the function F0 does not belong to any of the spaces K ∈ Sub∗ H,
K ( L. Hence, Rm0

(H) ⊇ L. On the other hand, F0 ∈ L and thus m0 . ∇L.
This implies that Rm0

(H) = L, and altogether we obtain Rmk
(H) = L, k ∈ N0.

We have obtained a decreasing family mk of majorants with

Rmk
(H) = L but Rmk+1

(H) ( Rmk
(H), k ∈ N0 .

Let us remark moreover that limk→∞ mk(z) = 0, z ∈ D, and thus also

⋂

k∈N

Bmk
(H) = {0} .

In particular, these examples show that the space Rm(H) might be very
small, despite the fact that Rm(H) is always the same.

Let m ∈ AdmH be given. Among all those majorants m1 for which even
Bm1

(H) = Bm(H) there is a natural ”sharp” majorant.

4.3 Definition. Let H be a de Branges space and m ∈ AdmH. Define a
function m

♭ : C+ ∪ R → [0,∞) by

m
♭(z) := sup

{
|F (z)| : F ∈ Bm(H)

}
, z ∈ C+ ∪ R .

4.4 Lemma. Let H be a de Branges space, D ⊆ C+ ∪ R, and m ∈ AdmD H.
Then m

♭ ∈ AdmH and

B
m♭(H) = B

m♭|D (H) = Bm(H) .

Moreover, m
♭|D ≤ m and m

♭♭ = m
♭.

Proof. The inclusion B
m♭(H) ⊆ B

m♭|D (H) is trivial. By the definition of m
♭, we

have m
♭|D ≤ m, and therefore B

m♭|D(H) ⊆ Bm(H). Let F ∈ Bm(H) be given.

Then |F (z)| ≤ m
♭(z), z ∈ C+ ∪ R, and hence F ∈ B

m♭(H). Finally, we have

m
♭♭(z) = sup

F∈B
m♭ (H)

|F (z)| = sup
F∈Bm(H)

|F (z)| = m
♭(z) .

❑

4.5 Remark. We see that, given m ∈ AdmD H, the majorant m
♭ is the smallest

among all majorants m1 ∈ AdmH with Bm1
(H) = Bm(H).

Lemma 4.4 can often be used to reduce considerations to majorants of the
form m

♭. In view of this, it is worth mentioning that the majorant m
♭ is always

fairly smooth and preserves real zeros as well as exponential growth.

4.6 Proposition. Let H be a de Branges space, D ⊆ C+∪R, and m ∈ AdmD H.
Then m

♭ is continuous on C+ ∪R and log m
♭ is subharmonic on C+. Moreover,

we have d
m♭ = max{dm, dH} and mtH m

♭ = mtH Rm(H).
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Proof. The unit ball of H is a locally bounded, and thus normal, family of
entire functions. This shows that the subset Bm(H) is also a normal family of
entire functions, and thus equicontinuous. This implies that m

♭ is continuous.
The function log m

♭ is the supremum of the subharmonic functions log |F (z)|,
F ∈ Bm(H). Since log m

♭ is continuous on C+, this implies that log m
♭ is

subharmonic on C+.
Let w ∈ C, n ∈ N0, be such that n < dH(w). Then

{ F (z)

(z − w)n
: F ∈ Bm(H)

}

is a normal family of entire functions, and hence equicontinuous. Thus, given
ǫ > 0, there exists r > 0 such that

∣
∣
∣

F (z)

(z − w)n

∣
∣
∣ ≤ ǫ, |z − w| ≤ r, F ∈ Bm(H) .

This implies that also |z − w|−n
m

♭(z) ≤ ǫ for 0 < |z − w| ≤ r, and hence that
n < d

m♭(w). We conclude that d
m♭(w) ≥ dH(w), w ∈ C. Now we obtain from

(A.8) that

d
m♭ = max{d

m♭ , dH} = dR
m♭ (H) = dRm(H) = max{dm, dH} .

Since Bm(H) is contained in the unit ball (with respect to the norm of H)
of Rm(H), we have m

♭ ≤ ∇Rm(H). Hence, by (A.8), mtH m
♭ ≤ mtH Rm(H).

Conversely, by (2.2),

mtH Rm(H) = sup
F∈Rm(H)

mtH F = sup
F∈Bm(H)

mtH F ≤ mtH m
♭ .

Thus mtH m
♭ ≥ mtH Rm(H). ❑

The next result says that equality of two spaces Rm1
(H) and Rm2

(H) can
be characterized via m

♭
1 and m

♭
2. It is again a consequence of the completeness

of Rm(H).

4.7 Proposition. Let H be a de Branges space, D ⊆ C+ ∪ R, and m1, m2 ∈
AdmD H. Then the following equivalences hold:

Rm1
(H) ⊆ Rm2

(H) ⇐⇒ ∃λ > 0 : Bm1
(H) ⊆ λBm2

(H)

⇐⇒ m
♭
1 . m

♭
2;

(4.1)

Rm1
(H) = Rm2

(H) ⇐⇒ Rm1
(H) = Rm2

(H) and ‖.‖m1
≍ ‖.‖m2

⇐⇒ ∃λ1, λ2 > 0 : λ1Bm1
(H) ⊆ Bm2

(H) ⊆ λ2Bm1
(H)

⇐⇒ m
♭
1 ≍ m

♭
2;

(4.2)
Bm1

(H) = Bm2
(H) ⇐⇒ Rm1

(H) = Rm2
(H) and ‖.‖m1

= ‖.‖m2

⇐⇒ m
♭
1 = m

♭
2.

(4.3)

Proof. Assume that Rm1
(H) ⊆ Rm2

(H). Since ‖.‖mj
≥ ‖.‖H, point evaluation

is continuous with respect to each of the norms ‖.‖mj
. Hence the map id :

〈Rm1
(H), ‖.‖m1

〉 → 〈Rm2
(H), ‖.‖m2

〉 has closed graph. By the Closed Graph
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Theorem, it is therefore bounded, i.e. there exists a positive constant λ, such
that Bm1

(H) ⊆ λBm2
(H). Next assume that Bm1

(H) ⊆ λBm2
(H) with some

λ > 0. Then it follows that

1

λ
m

♭
1(z) = sup

F∈Bm1
(H)

∣
∣
1

λ
F (z)

∣
∣ ≤ sup

G∈Bm2
(H)

|G(z)| = m
♭
2(z) .

Assume finally that m
♭
1 . m

♭
2. If F ∈ Bm1

(H), then F ∈ H and

|F (z)| ≤ m
♭
1(z) . m

♭
2(z) ≤ m2(z), z ∈ D . (4.4)

Hence F ∈ Rm2
(H), and we conclude that Rm1

(H) ⊆ Rm2
(H). This finishes the

proof of (4.1).
The equivalences in (4.2) are an immediate consequence of (4.1). Those in

(4.3) are seen by similar arguments as above, noting that m
♭
1 = m

♭
2 gives a more

accurate estimate in (4.4). ❑

When investigating ”small” majorants, naturally the question comes up
whether there exist minimal ones among all admissible majorants. First, let
us make precise what we understand by the terms ”small” or ”minimal”.

4.8 Definition. On the set of all pairs (m, D), where D ⊆ C+∪R and m : D →
[0,∞), we define a relation � by

(m1, D1) � (m2, D2) ⇐⇒ D1 ⊇ D2 and m1|D2
. m2 .

Clearly, the relation � is reflexive and transitive, i.e. AdmH is preordered
by �. Moreover, (m1, D1) � (m2, D2) and (m2, D2) � (m1, D1) both hold at the
same time if and only if

D1 = D2 and m1 ≍ m2 .

Whenever we speak of order-theoretic terms in the context of majorization, we
refer to the order induced by �.

The validity of m1 � m2 means that majorization by m1 is a stronger re-
quirement than majorization by m2. In fact, (m1, D1) � (m2, D2) implies

Rm1
(H) ⊆ Rm2

(H) .

Let us note that in general the converse does not hold, even if D1 = D2.

4.9 Example. Assume that H = H(E) contains the set of all polynomials C[z]
as a dense linear subspace. Such de Branges subspaces were studied in [Ba2];
in particular, whenever E is a canonical product whose zeros all lie on the
imaginary axis and have genus zero, the space H(E) will have this property.

Let n ∈ N, and set m1(z) = (1+ |z|)n+1/2 and m2(z) = (1+ |z|)n, z ∈ C+∪R.
Then Rm1

(H) = Rm2
(H) equals the set of all polynomials whose degree does

not exceed n. Moreover, the norms ‖.‖m1
and ‖.‖m2

are equivalent on Rm1
(H)

and so there is δ > 0 such that Bδm1
(H) ⊆ Bm2

(H). However, it is not true
that (δm1, C

+ ∪ R) � (m2, C
+ ∪ R).
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The following result is an extension of [BW1, Theorem 4.2] where the case
of majorization along R was treated. For a de Branges space H denote by
rH : AdmH → SubH the map

rH(m) := Rm(H) ,

and let Min AdmD H be the set of all minimal elements of AdmD H modulo ≍.

4.10 Proposition. Let H be a de Branges space, and let D ⊆ C+ ∪ R. Then
rH maps Min AdmD H bijectively onto

L :=
{
L ∈ rH(AdmD H) : dimL = 1

}
.

If L ∈ L, then (rH|MinAdmD H)−1(L) ≍ ∇L|D.

Proof. Assume that m ∈ AdmD H is minimal, but dimRm(H) > 1. Then there
exists an element F ∈ Rm(H) with F (i) = 0. It follows that

F (z)

z − i
∈ Rm̃(H)

where m̃(z) := (1+ |z|)−1
m(z), z ∈ D. This yields that m̃ ∈ AdmD H. However,

m̃ � m but m 6≍ m̃, and we have obtained a contradiction. We conclude that rH

maps Min AdmD H into L.
We proceed with an intermediate remark: Let L be any one-dimensional

dB-subspace of H. Fix F0 ∈ L \ {0}, then L = span{F0} and thus ∇L(z) =
‖F0‖−1

H |F0(z)|. If m ∈ AdmD H has the property that L = Rm(H), then

Bm(H) =
{
λF0 : |λ| ≤ ‖F0‖m

}
and m

♭(z) =
|F0(z)|
‖F0‖m

.

It follows that m
♭ ≍ ∇L|D.

By Lemma 4.4 a minimal majorant m satisfies m ≍ m
♭|D. Hence, to-

gether with the first paragraph of this proof, this remark already shows that
rH|Min AdmD H is injective. To see surjectivity, let L ∈ L be given. Then the
above remark yields L = R∇L|D (H). If m ∈ AdmD H and m � ∇L|D, then
{0} 6= Rm(H) ⊆ R∇L|D (H) = L, and hence also Rm(H) = L. It follows

that m
♭|D ≍ ∇L|D. Since m

♭|D . m, we obtain that also m ≍ ∇L|D. Thus
∇L|D ∈ Min AdmD H. ❑

In conjunction with the representability results shown in [BW3], we obtain
the following analogue of [BW1, Theorem 4.9] for majorization on the imaginary
half-line.

4.11 Corollary. Let H be a de Branges space, and set D := i[1,∞). Then the
set AdmD H contains a minimal element if and only if Sub∗ H contains a one-
dimensional subspace L0. In this case there exists exactly one minimal element,
namely ∇L0

|D.

Proof. By [BW3, Theorem 4.1], we have rH(AdmD H) = Sub∗ H. By
de Branges’ Ordering Theorem, the set Sub∗ H can contain at most one one-
dimensional subspace. ❑
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Appendix A. Notation and preliminaries

I. Mean type and zero divisors

We will use the standard theory of Hardy spaces in the half-plane as presented
e.g. in [G] or [RR]. In this place, let us only recall the following notations. We
denote by

(i) N = N (C+) the set of all functions of bounded type, that is, of all functions
f analytic in C+, which can be represented as a quotient f = g−1h of two
bounded and analytic functions g and h.

(ii) H2 = H2(C+) the Hardy space, that is, the set of all functions f analytic
in C+ which satisfy

sup
y>0

∫

R

|f(x + iy)|2 dx < ∞ .

If f ∈ N , the mean type of f is defined by the formula

mt f := lim sup
y→+∞

1

y
log |f(iy)| .

Then mt f ∈ R, and the radial growth of f is determined by the number mt f
in the following sense: For every a ∈ R and 0 < α < β < π, there exists an open
set ∆a,α,β ⊆ (0,∞) with finite logarithmic length, such that

lim
r→∞

r 6∈∆a,α,β

1

r
log

∣
∣f(a + reiθ)

∣
∣ = mt f · sin θ , (A.1)

uniformly for θ ∈ [α, β]. If, for some ǫ > 0, the angle [α − ǫ, β + ǫ] does not
contain any zeros of f(a + z), then one can choose ∆a,α,β = ∅.

Here we understand by the logarithmic length of a subset M of R+ the value
of the integral

∫

M
x−1 dx. When speaking about logarithmic length of a set M ,

we always include that M should be measurable.

A.1 Definition. Let m : D → C be a function defined on some subset D of the
complex plane.

(i) By analogy with (A.1) we define the mean type of m as

mtH m := inf
{ 1

sin θ
lim sup

r→∞
r∈M

1

r
log |m(a + reiθ)|

}

∈ [−∞, +∞] ,

where the infimum is taken over those values a ∈ R, θ ∈ (0, π), and those
sets M ⊆ R+ of infinite logarithmic length, for which {a+reiθ : r ∈ M} ⊆
D. Thereby we understand the infimum of the empty set as +∞.

(ii) We associate to m its zero divisor dm : C → N0 ∪ {∞}. If w ∈ C, then
dm(w) is defined as the infimum of all numbers n ∈ N0, such that there
exists a neighbourhood U of w with the property

inf
z∈U∩D

|z−w|n 6=0

|m(z)|
|z − w|n > 0 .
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Note that in general mtm may take the values ±∞. However, the above defini-
tion ensures that mtm coincides with the classical notion in case m ∈ N .

A similar remark applies to dm. If D is open, and m is analytic, then dm|D is
just the usual zero divisor of m, i.e. dm(w) is the multiplicity of the point w as
a zero of m whenever w ∈ D. Moreover, note that the definition of dm is made
in such a way that dm(w) = 0 whenever w 6∈ D.

II. De Branges spaces of entire functions

By the axiom (dB1) a de Branges space H is a reproducing kernel Hilbert
space. We will denote the kernel corresponding to w ∈ C by K(w, ·) or, if it is
necessary to be more specific, by KH(w, ·). A particular role is played by the
norm of reproducing kernel functions. We will denote

∇H(z) := ‖K(z, ·)‖H, z ∈ C .

This norm can be computed e.g. as

∇H(z) = sup
{
|F (z)| : ‖F‖H = 1

}
=

(
K(z, z)

)1/2
.

Let us explicitly point out that every element of H is majorized by ∇H: By the
Schwarz inequality we have

|F (z)| ≤ ‖F‖∇H(z), z ∈ C, F ∈ H . (A.2)

A.2 Definition. Let H be a de Branges space. For a subset L ⊆ H we define
dL : C → N0 as

dL(w) := min
F∈L

dF (w) .

Due to the axiom (dB3), we have dH(w) = 0, w ∈ C \ R. In fact, if F ∈ H
and w is a nonreal zero of F , then (z − w)−1F (z) ∈ H. This need not be true
for real points w. However, one can show that, if w ∈ R and dF (w) > dH(w),
then (z − w)−1F (z) ∈ H.

A.3 Definition. Let H be a de Branges space, and let m : D → C be a function
defined on some subset D of the complex plane. We define the mean type of m

relative to H by

mtH m := mt
m

∇H
.

If L is a subset of H, the mean type of L relative to H is

mtH L := sup
F∈L

mtH F .

Note that, by (A.2), we have mtH L ≤ 0. Moreover, for each α ≤ 0 the
set {F ∈ H : mtH F ≤ α} is closed, cf. [KW]. This implies that always
mtH closH L = mtH L.

As we have already remarked in the introduction, a de Branges space H is
completely determined by a single function of Hermite-Biehler class.
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A.4 Definition. We say that an entire function E belongs to the Hermite–
Biehler class HB, if

|E#(z)| < |E(z)|, z ∈ C+ .

If E ∈ HB, define

H(E) :=
{

F entire :
F

E
,
F#

E
∈ H2(C+)

}

,

and

(F, G)E :=

∫

R

F (t)G(t)

|E(t)|2 dt, F ∈ H(E) .

Instead of E−1F, E−1F# ∈ H2 one could, equivalently, require that E−1F
and E−1F# are of bounded type and nonpositive mean type in the upper half-
plane, and that

∫

R
|E−1(t)F (t)|2 dt < ∞. This is, in fact, the original definition

in [dB1].
The relation between de Branges spaces and Hermite-Biehler functions is

established by the following fact:

A.5. De Branges spaces via HB: For every function E ∈ HB, the space
〈H(E), (·, ·)E〉 is a de Branges space, and conversely every de Branges space
can be obtained in this way.

The function E ∈ HB which realizes a given de Branges space 〈H, (·, ·)〉 as
〈H(E), (·, ·)E〉 is not unique. However, if E1, E2 ∈ HB and 〈H(E1), (·, ·)E1

〉 =
〈H(E2), (·, ·)E2

〉, then there exists a constant 2 × 2-matrix M with real entries
and determinant 1, such that

(A2, B2) = (A1, B1)M .

Here, and later on, we use the generic decomposition of a function E ∈ HB as
E = A − iB with

A :=
E + E#

2
, B := i

E − E#

2
. (A.3)

For each two function E1, E2 ∈ HB with 〈H(E1), (·, ·)E1
〉 = 〈H(E2), (·, ·)E2

〉,
there exist constants c, C > 0 such that

c|E1(z)| ≤ |E2(z)| ≤ C|E1(z)|, z ∈ C+ ∪ R .

The notion of a phase function is important in the theory of de Branges spaces.
For E ∈ HB, a phase function of E is a continuous, increasing function ϕE :
R → R with E(t) exp(iϕE(t)) ∈ R, t ∈ R. A phase function ϕE is by this
requirement defined uniquely up to an additive constant which belongs to πZ.
Its derivative is continuous, positive, and can be computed as

ϕ′(t) = π
K(t, t)

|E(t)|2 = a +
∑

n

| Im zn|
|t − zn|2

, (A.4)

where zn are zeros of E listed according to their multiplicities, and a :=
−mt(E−1E#).
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A.6 Remark. Let 〈H, (·, ·)〉 be a de Branges space, and let E ∈ HB be such that
〈H, (·, ·)〉 = 〈H(E), (·, ·)E〉. Then all information about H can, theoretically, be
extracted from E. In general this is a difficult task, however, for some items it
can be done explicitly. For example:

(i) The reproducing kernel K(w, ·) of H is given as

K(w, z) =
E(z)E#(w̄) − E(w̄)E#(z)

2πi(w̄ − z)
.

(ii) We have dH = dE . This equality even holds if we only assume that
H = H(E) as sets, i.e., without assuming equality of norms.

(iii) The function ∇H is given as

∇H(z) =







(
|E(z)|2−|E(z)|2

4π Im z

)1/2

, z ∈ C \ R,

π−1/2|E(z)|(ϕ′
E(z))1/2, z ∈ R.

(A.5)

In particular, we have d∇H = dH.

(iv) We have

mtH F = mt
F

E
, F ∈ H .

This follows from the estimates (with w0 ∈ C+ fixed)

|E(w0)|(1 − |E(w0)
E(w0) |)

2π∇H(w0)

1

|z − w0|
≤ ∇H(z)

|E(z)| ≤
1

2
√

π

1√
Im z

, z ∈ C+ , (A.6)

which are deduced from the inequality |K(w0, z)| =
∣
∣
(
K(w0, ·), K(z, ·)

)∣
∣ ≤

∇H(w0)∇H(z) and (A.5).

III. Structure of dB-subspaces

The, probably, most important notion in the theory of de Branges spaces is the
one of de Branges subspaces.

A.7 Definition. A subset L of a de Branges space H is called a dB-subspace
of H, if it is itself, with the norm inherited from H, a de Branges space.

We will denote the set of all dB-subspaces of a given space H by SubH. If
d : C → N0, we set

Subd H :=
{
L ∈ SubH : dL = d

}
.

Since dB-subspaces with dL = dH appear quite frequently, we introduce the
shorthand notation Sub∗ H := SubdH H.

It is apparent from the axioms (dB1)–(dB3) that a subset L of H is a dB-
subspace if and only if the following three conditions hold:

(i) L is a closed linear subspace of H;
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(ii) If F ∈ L, then also F# ∈ L;

(iii) If F ∈ L and z0 ∈ C \ R is such that F (z0) = 0, then F (z)
z−z0

∈ L.

A.8 Example. Some examples of dB-subspaces can be obtained by imposing
conditions on real zeros or on mean type.

If d : C → N0, supp d ⊆ R, is a function such that dF0
≥ d for some

F0 ∈ H \ {0}, then

Hd :=
{
F ∈ H : dF ≥ d

}
∈ SubH .

We have dHd
= max{d, dH}.

If α ≤ 0 is such that mtH F0, mtH F#
0 ≤ α for some F0 ∈ H \ {0}, then

H(α) :=
{
F ∈ H : mtH F, mtH F# ≤ α

}
∈ Sub∗ H ,

and we have mtH H(α) = α.
Those dB-subspaces which are defined by mean type conditions will in gen-

eral not exhaust all of Sub∗ H. However, sometimes, this also might be the case.

Trivially, the set SubH, and hence also each of the sets Subd H, is partially
ordered with respect to set-theoretic inclusion. One of the most fundamental
and deep results in the theory of de Branges spaces is the Ordering Theorem
for subspaces of H, cf. [dB, Theorem 35] where even a somewhat more general
version is proved.

A.9. De Branges’ Ordering Theorem: Let H be a de Branges space and let
d : C → N0. Then Subd H is totally ordered.

The chains Subd H have the following continuity property: For a dB-
subspace L of H, set

L̆ :=
⋂{

K ∈ SubdL H : K ) L
}
, if L 6= H , (A.7)

L̃ := closH
⋃{

K ∈ SubdL H : K ( L
}
, if dimL > 1 .

Then
dim

(
L̆/L

)
≤ 1 and dim

(
L/L̃

)
≤ 1 .

A.10 Example. Let us explicitly mention two examples of de Branges spaces,
which show in some sense extreme behaviour.

(i) Consider the Paley–Wiener space PWa where a > 0. This space is a
de Branges space. It can be obtained as H(E) with E(z) = e−iaz . The
chain Sub∗(PWa) is equal to

Sub∗ PWa =
{
PWb : 0 < b ≤ a

}
.

Apparently, we have PWb = (PWa)(b−a), and hence in this example all
dB-subspaces are obtained by mean type restrictions.
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(ii) In the study of the indeterminate Hamburger moment problem de Branges
spaces occur which contain the set of all polynomials C[z] as a dense linear
subspace, see e.g. [Ba2], [BS], [DK, §5.9]

If H is such that H = closH C[z], then the chain Sub∗ H has order type N.
In fact,

Sub∗ H =
{
C[z]n : n ∈ N0

}
∪ {H} ,

where C[z]n denotes the set of all polynomials whose degree is at most n.

Examples of de Branges spaces H for which the chain Sub∗ H has all different
kinds of order types can be constructed using canonical systems of differential
equations, see e.g. [dB, Theorems 37,38], [GK], or [HSW].

With help of the estimates (A.6), it is easy to see that

mt
KH(w, ·)
∇H(z)

= 0 .

This implies that for any dB-subspace L of H the supremum in the definition of
mtH L is attained (e.g. on the reproducing kernel functions KL(w, ·)). Moreover,
we obtain mtH L = mtH ∇L.

IV. Admissible majorants

We start with the definition of an admissible majorant for a de Branges space
H.

A.11 Definition. Let H be a de Branges space. A function m : D → [0,∞)
where D ⊆ C+ ∪ R, is called an admissible majorant for H if it satisfies the
conditions

(Adm1) supp dm ⊆ R;

(Adm2) Rm(H) contains a nonzero element.

The set of all admissible majorants is denoted by AdmH. For the set of all those
admissible majorants which are defined on a fixed set D, we write AdmD H.

The significance of this notion is shown by the following fact.

A.12. Subspaces generated by majorants: Let H be a de Branges space,
and let m : D → [0,∞) be a function with D ⊆ C+ ∪ R. Then Rm(H) is a
dB-subspace of H if and only if m is an admissible majorant for H. In this case
we have

dRm(H) = max{dm, dH} and mtH Rm(H) ≤ mtH m . (A.8)

An obvious, but surprisingly important, example of admissible majorants is
provided by the functions ∇L|C+∪R, L ∈ SubH. Since always L ⊆ R∇L|

C+∪R
(H),

(Adm2) is satisfied. Also, it follows that d∇L ≤ dL and this yields (Adm1).
Thus ∇L|C+∪R ∈ AdmH.
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