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Abstract

Recently, a generalization to the Pontryagin space setting of the notion of
canonical (Hamiltonian) systems which involves a finite number of inner
singularities has been given. The spectral theory of indefinite canonical
systems was investigated with help of an operator model. This model
consists of a Pontryagin space boundary triple and was constructed in an
abstract way. Moreover, the construction of this operator model involves
a procedure of splitting-and-pasting which is technical but at the present
stage of development in general inevitable.

In this paper we provide an isomorphic form of this operator model
which acts in a finite dimensional extension of a function space naturally
associated with the given indefinite canonical system. We give explicit
formulae for the model operator and the boundary relation. Moreover, we
show that under certain asymptotic hypotheses the procedure of splitting-
and-pasting can be avoided by employing a limiting process.

We restrict attention to the case of one singularity. This is the core of
the theory, and by making this restriction we can significantly reduce the
technical effort without losing sight of the essential ideas.
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1 Introduction

A canonical system is a 2 x 2-system of differential equations of the form

y'(t) =2JH)yt), te(s_,sy), (1.1)

with a locally integrable, real-valued and non-negative 2 x 2-matrix valued func-
tion H(t), a complex parameter z, and the signature matrix

7 0 -1
=1 o)
The function H(t) is also called the Hamiltonian of the system (1.1). Equa-
tions of this form frequently occur in analysis and natural sciences; for example
in Hamiltonian mechanics, cf. [Ar], [Fl], as generalizations of Sturm-Liouville
equations, cf. [R], or in the study of strings, cf. [At], [KK], [Ka3].

Canonical systems can be viewed from an operator theoretic perspective
as a boundary triple B(H) = (L*(H), Tmax(H),T'(H)). Here the Hilbert space
L?(H) is a weighted L2-space of 2-vector valued functions, the operator Tiax (H)

is the natural maximal differential operator in L?(H) associated with (1.1) (ac-
tually, it can be a linear relation, i.e. a ‘multi-valued operator’), and I'(H) is the
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natural boundary map. This construction goes back to [Kal], [Ka2]; see also,
e.g. [HSW], [Sa], [O], [GK].

In various contexts generalizations of canonical systems appear which in-
clude a finite number of singularities (point-interaction type singularities or
non-integrability of H). Such examples are found, e.g. in Sturm-Liouville equa-~
tions with singular potentials, cf. [Ful], [GZ], [DS], [EGZ], indefinite versions
of the Hamburger and the Stieltjes power moment problems, cf. [KL1], [RS1],
the extension problem of positive definite functions, cf. [KL2], [LLS], [KW1], or
the theory of generalized strings, cf. [LW], [KWW]. In many examples a large
part of the spectral theory particular to canonical systems (Titchmarsh-Weyl
coefficient, Fourier transform, spectral multiplicity, etc.) can be carried over.
The reason lying behind this fact is that for many problems an operator model
which acts in a Pontryagin space (instead of a Hilbert space) can be constructed;
see, e.g. [RS2], [RS3], [RS4], [vDT], [P], [Sh], [DL], [DLSZ], [KuLu], [AK].

In [KW2] an indefinite analogue of the equation (1.1) which includes finitely
many singularities was considered, a notion of a generalized Hamiltonian b was
defined, and a corresponding Pontryagin space model consisting of a bound-
ary triple B(h) = (B(h),T(h),I'(h)) was constructed. This notion of indefinite
canonical systems covers the known examples and, actually, goes as far as Pon-
tryagin space theory can possibly lead.

One drawback of the construction in [KW2] is that it is rather abstract and
not easy to work with in particular instances of the theory. Our aim in the
present paper is to give a more concrete form of this Pontryagin space model.
We identify the model space with a finite-dimensional extension of a function
space and the model operator as a finite-dimensional perturbation of the natural
maximal differential operator in this function space.

Throughout this paper we restrict considerations to the case of one singu-
larity only. This restriction is made for two reasons. First, as a general rule,
results obtained for the case of one singularity will transfer to the general case
by sufficient technical labour. Secondly, many previously studied instances of in-
definite canonical systems actually do involve only one singularity. For example,
Sturm-Liouville equations with singular potentials like the Bessel equation, cf.
[DS], or the canonical system arising from the positive definite function studied
in [LLS]. Altogether, we may say that the restriction to the case of one singular-
ity significantly reduces the technical effort without losing sight of the essential
ideas and still covers a range of examples.

Let us outline the contents of this paper. In the second part of the present
introductory section we recall the notion of generalized Hamiltonians b as in-
troduced in [KW2] and make precise our overall assumptions on §. In Section 2

we associate with h a boundary triple %zo(f)) = (‘%zo(f)), %xo(b), f‘xo(b)) which
is isomorphic to the boundary triple B(h) originally constructed in [KW2]. The

space B, (h) is a finite-dimensional extension of a certain function space. Our

first main result is an explicit description of the model operator %mo(h) as a
finite-dimensional perturbation of the natural maximal differential operator in
this function space, cf. Theorem 2.15, Corollary 2.20, Remark 2.21.

The model %mo(b) (in particular, the operator im(h)) depends on a
splitting-point xy to the right of the singularity. The question whether the
xo-dependence can be removed is natural. It is our aim in Section 3 to show
that under certain asymptotic conditions on b, this is possible. We apply a



limiting procedure to obtain an zp-independent model boundary triple %(h),
cf. Proposition 3.9 and the paragraph preceding it. The underlying Pontryagin

space ‘%(h) is a finite-dimensional extension of the same function space which

appears in Section 2, and the model operator %(b) is a finite-dimensional per-
turbation of the maximal differential operator in this space. Our second main

result, besides the fact that %(f)) is well defined, is the explicit description of

T(h) given in Theorem 3.12.

The paper closes with an appendix, where we prove some technical formulae
related to [KW2, §7]. These formulae are needed in the asymptotic consider-
ations of Section 3. However, in order to not disturb the line of thoughts in
Section 3, we shifted their proof to the appendix.

Throughout the paper the notation ‘(IV.2.3)’ refers to equation (2.3) in
[KW2] and ‘Proposition IV.4.14’ to Proposition 4.14 in [KW2].

The notion of general Hamiltonians.
First we have to introduce (or recall) some preliminary notation.

We call a function H a Hamiltonian if it is defined on some interval (L_, L),
takes real and non-negative 2 x 2-matrices as values, is locally integrable on
(L_, L) and does not vanish on any set of positive measure.

We say that H is in limit circle or limit point case at Ly if for one (and
hence for all) o € (L_, L1 ) we have

/ tr H(t)dt < oo or / tr H(t) dt = oo, respectively.

Similarly, we distinguish limit circle/point case at the endpoint L_, depending
whether [;* tr H(t)dt is finite or infinite.

An interval («, §) is called H-indivisible of type ¢ if
H(t) = h(t)ést], e (o, 5),

where &, := (cos¢,sing)? and h(t) is some scalar function that is positive
almost everywhere.

We recall the definition of the space L?(H) and the maximal relation
Tmax(H); for details see, e.g. [KW2, §2]. Let H be a Hamiltonian defined
on (L_,Ly). Then L?(H) is the space of measurable functions f defined on
(L_, L) with values in C? which satisfy

Ly
(4) fTHf < oo,
L_
(i1) 55 f is constant a.e. on every indivisible interval of type ¢,
factorized with respect to the equivalence relation =g where
f=mg <= H(f—-g)=0 ae.
and endowed with the inner product

(f.9) = /L+ g Hf.



In the space L?(H) the mazimal relation Tyax(H) is defined as

Tmax(H) := {(f;g) € (L2(H))2: 3 representatives f, § of f, g such that
f is locally absolutely continuous and

f'=JHj ae. on (L,,L+)}.

The minimal relation is the adjoint of the maximal: Tiin(H) := (Tax(H))*.

Next we recall the notion of boundary triples, which is quite useful and has
recently been studied by many people; see, e.g. [B], [D], [DHMS1], [DHMS2].
The definition we use is taken from [KW2]. A boundary triple is a triple (P, T,T")
where (P, [-,+]) is a Pontryagin space and T C P x P and I' C T x (C? x C?)
are closed linear relations with domI' = T" that satisfy

()
l9,h] = [f, k] = yi J21 — y5 22 (1.2)
for all ((f;9); (x1;22)), ((h; k); (y1,92)) €T;
(i1) kerT' = T*.

Moreover it is assumed that P carries a conjugate linear, anti-isometric involu-
tion - : P — P such that T and I' are compatible with this conjugation. For
details see Definition IV.2.7.

An isomorphism from a boundary triple (P,T,T) to a boundary triple
(P,T,T) is a pair (w,$) where w and ¢ are isometric isomorphisms from P
onto P, and in ((C2 x C2, ((‘é Y ) » )), respectively, where w is compatible with
conjugation and the relations

(wxw)(T)=T, Fo(wxw)r=¢ol

are valid; see Definition IV.2.12.
The pasting
(7)7 T7 P) = (Plu Tlu Fl) W (7)27 T27 F?)

of two boundary triples (Py,T1,T'1) and (Pa, T2, T'2) is a boundary triple where,
roughly speaking, elements in 7" are combinations of elements of 771 and T where
the right boundary value of the first must coincide with the left boundary value
of the second element. For details, see Definition IV.6.1.

With a Hamiltonian H one can associate a boundary triple B(H) =
(L?(H), Tynax(H),T(H)) where T'(H) is the boundary relation defined as fol-
lows: T'(H) consists of all pairs ((f;g); (a;b)) € T x (C? x C?) for which there

exists a locally absolutely continuous representative f of f such that

liIil f(x), H in limit circle case at L_,
a = rT— L

0, H in limit point case at L_,

hI? f(x), H in limit circle case at L,
b = T— Ly

0, H in limit point case at L.



With a Hamiltonian H, which is in limit circle case at L_, in [KW2, Defini-
tion 3.1] a number A(H) € NU {0, 00} was associated. This number measures
in some sense the growth of H towards L. For example, A(H) = 0 means that
fLLf tr H(t) dt < oo; or if fLLf tr H(t) dt = oo and for some Ly < Ly the interval
(L1, Ly ) is H-indivisible, then A(H) = 1; see [KW2, §3] for details.

Assume that H is in limit circle case at L_ and in limit point case at L.
Then we say that H satisfies the condition (HS) if the resolvents of one (and
hence of all) self-adjoint extensions of the minimal relation T, (H) associated
with H are Hilbert—Schmidt operators. In this case, the growth of H towards
L is bounded in one (and extremal in another) direction in the sense that for
a unique angle ¢(H) € [0, 7) we have

Ly
&b H()Egmy dt < 00,

cf. [KW3, Theorem 2.4]. The direction of ‘extremal growth’ is then {y(m) 4z

If H is a Hamiltonian on (L_,L;) and o € (L_,Ly), then Hy(t) :=
H|a,1,)(t) and H_(t) := H|_ o) (—t) are Hamiltonians defined on («a, Ly )
or (—a, —L_), respectively. Both, Hy and H_, are in limit circle case at their
left endpoint. At their right endpoint limit circle or limit point case prevails
depending on the behaviour of H at L, or L_, respectively.

Numbers Ay (H) are defined as Ay (H) := A(H+). Moreover, we say that
H satisfies (HS;) or (HS_) if H, or H_, respectively, satisfies (HS). Numbers
¢+ (H) are defined correspondingly. Let us note that each of these notions is
independent of the choice of « in the definition of Hy, cf. Lemma IV.3.12.

1.1 Definition. A general Hamiltonian § is a collection of data of the following
kind:

(1) ne NU{0}, 0o,...,0n41 € RU{£oo} with 0g < 01 < ... < Opy1,

(#4) Hamiltonians H;, i = 0,...,n, defined on the intervals (o;, 0;41), respec-
tively,

(#41) numbers 61,...,6, € NU{0} and b;1,...,b,5,41 € R, i =1,...,n, with
bi,1 # 0 in the case 0; > 1,

(iv) numbers d;o,...,d;2a,—1 € R, i=1,...,n, where
Ai = maX{A+(HZ'_1), A_(Hl)},

(v) a finite subset E of {00, 0n41} U U o(0i, 0i41),
which is assumed to be subject to the following conditions:

(H1) Hp is in limit circle case at op and, if n > 1, in limit point case
at o;. H; is in limit point case at both endpoints o; and o;41,
i=1,...,n—1. If n > 1, then H, is in limit point case at o,,.

(H2) Fori=1,...,n—1 the interval (0;,0,41) is not H;-indivisible. If
H,, is in limit point case at 0,1, then also (o, 0p41) is not H,-
indivisible.



(H3) We have A; < 00, i = 1,...,n. Moreover, Hy satisfies (HS), H;
satisfies (HS_) and (HSy) for ¢ = 1,...,n — 1, and H,, satisfies
(HS_).

(H4) We have (bJr(Hi,l) :(b,(Hl), = 1,...,71.

(H5) Leti € {1,...,n}. If for some € > 0, the interval (o; — €,0;) is
H;_1-indivisible and the interval (o;,0; + €) is H;-indivisible, then
d;1 = 0. If additionally b; ; = 0, then also d; o < 0.

(El) 00,0n+1 € E, and EN (UiuUi-i-l) #*gfori=1,....n—1. If H,
is in limit point case at 0,41, then also E N (o, 0n41) # . Let
i € {0,...,n}; if (o,0441) or (0y,) is a maximal H;-indivisible
interval, then a € F.

(E2)  No point of E is an inner point of an indivisible interval.

The number

ind_ b :Zi(Ai-i- {%D +{1<i<n:éodd by >0}
=1

is called the megative index of the general Hamiltonian . Moreover, b is called
definite if ind_ h = 0, and indefinite otherwise. We say that h is in limit point
case or limit circle case if H,, has the respective property at o, 1. /

In order to shorten notation we shall write a general Hamiltonian § which is
given by the data n, 09,...,0n41, Ho, ..., Hy, 01,...,0n, b; j, d; j, E, as a triple

h: (H,b,O),

where H represents the Hamiltonians H;, including their number n and their
domains of definition (oy,0;4+1), b represents the numbers é; and b; ;, and 9
represents the numbers d; ; and the subset E. Apparently, we may also identify
H with the function defined on |J"_,(0s,054+1) by

Hl(o,, H;y, i=0,...,n. (1.3)

ai+1) =
We will speak of H as the Hamiltonian function of h. The boundary triple
associated with b by means of Definition IV.8.5 will be denoted as B(h) =

(B(b), T(H),T(H))-

1.2 Remark. Intuitively, the notion of a general Hamiltonian can be understood
as follows: we deal with the differential equation f' = zJH f given on an interval
(00,0n+1) which involves some kind of singularities located at the points oy,
t =1,...,n. Condition (H1) says that the differential equation is regular at
09, so that the initial value problem at og is well posed, but that oi,...,0,
actually are singularities. Moreover, and this is the condition (H2), two adjacent
singularities o; and o;4; must be separated by more than just a single indivisible
interval. The meaning of (H3) is that the growth of H; towards a singularity is
not too fast. Moreover, (H4) is an interface condition at o;.

The numbers 6; € NU {0} and b;1,...,b; 5,41 model the part of the sin-
gularity o; which is concentrated at o;, whereas the numbers d; o, ..., d;2a,-1
model the part of this singularity which is in interaction with the local behaviour



around ;. The elements of F in the vicinity of o; determine quantitatively what
‘local’ here means. The freedom of this interaction is, by the first part of (H5),
restricted if to both sides of ¢; indivisible intervals adjoin. The possibility that
on both sides of ¢; indivisible intervals adjoin and at the same time b;; = 0,
can occur by the second part of (H5) only in the case of ‘indivisible intervals of
negative length’, the simplest possible kind of a singularity. /

For the reasons already mentioned we consider singular general Hamiltonians
having only one singularity. More precisely, whenever the notation h appears or
we speak of a general Hamiltonian, we will understand that § is subject to the
following conditions.

1.53. Form of h.
Let b be a singular general Hamiltonian such that

(7) b has only one singularity o1 =: 0.

Due to this assumption, b is given by data H, 6,b;,d;, and E. Besides (i), we
assume that the following conditions are satisfied.

(i4) The singularity o may be the endpoint of an indivisible interval adjoining
from the right or adjoining from the left, but not both.

(i4i) The Hamiltonian function H of h is defined on a set I = (s—,0) U (0, 54)
where —o0 < s_ < 0 < sy < +o0.

1) For one (and hence for all) zg € (o, s4+), the function elongs to the
v) F d hence for all +), the function () bel h
space L? (H|(877U)U(U,LE0))'

(v) We have b1 = 0.
/

Some remarks concerning these conditions are in order. Let us explain that actu-
ally (i¢) is only an insignificant restriction and (4i7)—(v) are no loss of generality
at all.

1.4 Remark. Let h be a singular general Hamiltonian with only one singularity.

Condition (i1): If indivisible intervals adjoin to both sides of o, then the model
B(h) is very simple. Actually, we only need to use the cases (B) or (C) of
Definition IV.4.1. The contribution of the singularity to the model is finite
dimensional and explicitly described by Definition IV.4.3 and Definition IV.4.5.
Hence, requiring (i7) just rules out some more or less trivial cases. We require
(#9) in order to avoid repeated distinction of cases.

Condition (iii): The Hamiltonian function of § is defined on some set of the
form (s—,0) U (0,5+) where —oco < s_ < 0 < s; < +oo. By an obvious
reparameterization we can achieve that s_ # —oo. Hence, assuming (#i7) is no
loss of generality.

Condition (iv): We know that the space L*(H|(s_ o)u(o,z0))> Lo € (0, 54), con-
tains the constant function £4(gy where ¢(H) := ¢4 (H|s_ ). Using rotation
isomorphisms, cf. Remark IV.2.28, it is no loss of generality to assume that
¢(H) = 0, i.e. that (iv) holds. The procedure of rotation is actually already
implemented in the very definition of B(h), cf. Definition IV.8.5.



Moreover, if an indivisible interval adjoins at o, then its type equals 7 by
condition (iv).

Condition (v): By Proposition IV.8.13 it is no loss of generality to assume that
b5+1 = 0 //

2 Function space realization

Elements of various model spaces under consideration will be tuples whose en-
tries are either (equivalence classes of) functions, or elements of C* or C°. In
order to shorten notation, we agree on the following.

2.1. Notational conventions.

(1) Elements of C® or C° will be denoted by upright Greek letters, like, e.g.
«, B, &, etc. There coordinates will be denoted by the corresponding normal font
Greek letter. Indices range between 0 and A —1 for elements of C* and between
1 and 6 for elements of C°. Whether a vector belongs to C* or C° will always
be clear from the context and thus not be indicated explicitly (often o, B € C°
and vectors denoted by other Greek letters are in C2). So, for example, we
would have

£= (&) A= ()5 or o= ()i
Complex conjugation will be denoted accordingly, e.g. we will use & := (ZJ )jA:_Ol.

(2) The k-th canonical basis vector of either C* or C° will be denoted by &y.
That is, we write

£ 1= (5]”_)]4;01 (or £ 1= (5kj)?:1, respectively),

where dy; denotes the Kronecker delta symbol

1, k=y,

Okj = :

0, k+#j.
(3) We will deal with elements (&, @) of C® x C%. The number A is always at
least 1, and hence the component ¢ is always present. The number 6, however,
may be equal to zero in which case the second component « is not present at

all. Still, in order to unify notation, we will always write (&, «) € C2 x C® and
understand that « is empty if 6 = 0.

(4) If F is a function defined on some subset D of the real line R, and zp € R,
then we set

Fﬁ;ﬂo = F|Dﬂ(7oo,mg]u Fwol" = F|Dﬂ[zo,+oo) .

In the same spirit, we let x5, and xz,r denote the indicator functions

Xzo = X(—o0,x0]r  Xwof = X[z0,4+00) -

If we are given two functions fi, fo, then we understand by f := fix9z, + f2Xzor
the function

Jo) = {fl(:t), x < xg, ¢ € dom f1,

fa(x), x> x0, z € dom fo.



no matter what the original domains of definition of f; and fo are.

(5) Let H be a Hamiltonian function (more precisely, a collection of two
Hamiltonian functions in the sense of (1.3)) defined on a set of the form
I =(s_,0)U(0,s+). Then we denote by I the set of all points ¢ € (0, 5+)
which are not inner points of an H-indivisible interval and, correspondingly, by
I_ the set of all points 2y € (s_, o) which are not inner points of an H-indivisible
interval. /

a. Identification of B(h) as pasting of two components.

Building blocks for a general Hamiltonian h are positive definite and elementary
indefinite Hamiltonians, cf. Definition IV.4.1, and building blocks for the model
B(h) are the boundary triples associated with such Hamiltonians, cf. [KW2,

§2.1], Definition 1V.4.10, IV.4.11, TV.4.12. In [KW2, §7] the following fact was
shown.

2.2. Splitting of elementary indefinite Hamiltonians.
Let hs* = (H;6,bj;d;" ;) be an elementary indefinite Hamiltonian of kind (A)
defined on (s_,0)U (0o, s+ ), and let sg € I_ be given. Then there exist numbers
dyt ; such that the boundary triples B(hs*) and B(Hxs,) & B(h5; ) are isomor-
phic, when b5l is the elementary indefinite Hamiltonian of kind (A) defined on
(s0,0) U (0o, s4) given by the data
bl = (Haor; 8,b53d5 ;) -

Here B(H+s,) denotes the boundary triple (L?(Hqs, ), Tmax(Has, ), T'(Has, ) as-
sociated naturally with Hes,, and B(hs") and B(hs)) denote the boundary
triples associated with the elementary indefinite Hamiltonians b5 and b3, re-
spectively.

The isomorphism between these boundary triples is of the form (s, s_;idc4)
where

Ysous— t BOTH) = LA(H](s_s0)) [FIBO) -

The map vs,,s_ is compatible with conjugation and satisfies

L2(H|(w o)) FIB03) P62
id [Hw(h;f)l lw( )
M((S—7SO))/:H X M((SO7S+)\{U})/:H — M((S—7S+)\{0})/:H

where 1 (hs; ) and ¥ (hs") are the respective maps defined on [KW2 p.760] and
M(I) is the set of measurable C2-valued functions on a set I C R; see [KW2,
§2].

The analogous statement is true when so € I,. Then we find an elemen-
tary indefinite Hamiltonian h° = (Hes,;0,b;5;d3° ;) defined on (s—, o) U (0, so)

together with an isomorphism v, : B(het) — B(h20 ) [+] L2(H|(s0.5.))- /
The statement made in §2.2 can also be read the other way.

2.3. Pasting.
Let hat = (Hy;0, b],ds+ ;) be an elementary indefinite Hamiltonian of kind (A)
defined on (so, ) U (0 s+), and let Hy be a Hamiltonian function defined on



(s—, so). Assume that, if Hy ends with an indivisible interval and H; starts with
an indivisible interval, these indivisible intervals are not of the same type. Set

{HQ(t)7 te (5*750%

H(t) =
Hi(t), te€(so,0)U(o,s4).

Then there exist numbers d;* ; such that the boundary triples B(h5*) and

B(Has, )W B(het) are isomorphic, where hs* is the elementary indefinite Hamil-
tonian of kind (A) defined on (s—,0) U (0, s1) by the data

hit == (H;0 bj,ds e
The isomorphism

Fso,s- t L2(H(s_ s0)) [F]BO5) — B(H3+)

between these boundary triples has the same properties as the one in §2.2.
The analogous statement is true when so € I. In this case we obtain hs"
and an isomorphism

Fso,si + BOI) [F] L2 (H](50,5,)) — B(BIF)

out of h%° plus a Hamiltonian function Hy defined on (sg, $4). /

It follows from Proposition IV.5.18 and our overall assumption that bsy1 =
0 that the numbers d’ ;,di° ; obtained in §2.2 and d;' ; obtained in §2.3,
respectively, are uniquely determlned.

2.4 Remark. The explained splitting and pasting procedures are converse to

each other in the following sense.

Pasting after splitting: Let hs™ be an elementary indefinite Hamiltonian de-
fined on (s_,0) U (0,54 ), let so € I_, and let b3l be the elementary 1ndeﬁn1te
Hamiltonian defined on (sg, o) U (o, s+ ) which is obtained by splitting hs* a

s0. Since sg € I, the hypothesis required in §2.3 in order to paste s With
H|(s_sy) 1s satisfied. Let bt be the elementary indefinite Hamiltonian defined

on (s_,0) U (0,s4) obtained by means of §2.3. Then we have hs+ = h3+

Splitting after pasting: Let hs. be an elementary indefinite Hamiltonian defined

on (sg,0) U (0,54), let Hy be a Hamiltonian function defined on (s_, sg), and

assume that the hypothesis of §2.3 is satisfied. Let hi' be the elementary

indefinite Hamiltonian defined on (s_, ) U (0, s1) obtained by pasting hs; with

H,. Then the number sy belongs to I_ (for the Hamiltonian hs"). Let 6?:

be the elementary indefinite Hamiltonian defined on (sg,0) U (o, s4+) which is
sS4

obtained by splitting h3* at so. Then we have hoi = hit.
In both situations we have kg, s = ’Ys_oj:s,' /

The similar statements of course hold true when the point sq is located to the
right of 0. We revisit the splitting/pasting procedure in more detail in the
appendix, where we give explicit formulae for the numbers ds ],dzo ) d:f,j
and for the action of the isomorphisms r,,s_ and kg, s, -

By repeated application of the splitting/pasting procedure, we can reduce
the set of splitting points of a given general Hamiltonian.
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2.5 Lemma. Let h = (H;06,b;;d;E), E = {s_,81,...,5n,5+}, be a general
Hamiltonian (of the form 1.3). Moreover, let xg € It be given. Then there exist
unique numbers df“ such that the boundary triple B(b) is isomorphic to

%mo(h) = (‘Bzo(h)a Txo(b)vrxo(h)) = %(bzo) W %(HIOF’> )

where b, is the elementary indefinite Hamiltonian of kind (A) given by the data

bay = (Hﬂxr);éabj;d;‘m)- (2.1)
Proof. We are in the situation
h§7n+1
—N—
N S S —
s 81 ... Sm u Sm+1 Sk Zo Sk+1 Sn sy
where hs7 "' is the elementary indefinite Hamiltonian
szJrl = (H|(S7n75m+1); o, bj; d]) .
First we apply successively the isomorphisms kg, s,. 1, .-, ks,,s_ starting from
am ' and paste in the corresponding pieces with the Hamiltonian functions
Hes,. sm1)s---»Hl(s;,s_y. In this way, we obtain an elementary indefinite
Hamiltonian ™" of the form (H|ss,,,,;6,b;;d."™') such that
%(b) = %(sz+l) W %(H5m+1l") :
If z9 > s;m41, we apply successively the isomorphism ks, s,ni0r-- - Kog,zo

where we paste in the corresponding pieces with the Hamiltonian functions

|(smstssmas)s -+ Hl(sp,m0)- By this procedure, we obtain the desired elemen-
tary indefinite Hamiltonian b, = (H|y,;06,b;;d;°). If 20 € (0, 1), We use
the splitting isomorphism v,

smy1 and again obtain b, as desired. 0

Note the difference in the notation between B,,(h) and B(h,,). The latter
is a boundary triple connected with a Hamiltonian on (s_, zp), the former is a
boundary triple connected with a Hamiltonian on (s_, s;) with splitting point
Zo-

b. The function space L3 (H).

If h is a general Hamiltonian, the relation T(h) can be mapped to a relation
acting in a certain space of functions, which is actually fully determined by
the Hamiltonian function H of §, cf. (IV.4.18), Proposition IV.4.17. In this
subsection we treat this space more systematically.

2.6. Form of H.
We deal with Hamiltonian functions H which are subject to the following con-
ditions.

(¢) The Hamiltonian function H is defined on I = (s_,0) U (0, s4) (in the
sense of (1.3). Moreover, H4, is in limit circle case at s_ and in limit
point case at o, and Hyp is in limit point case at both endpoints.

(i) The Hamiltonian H4, satisfies the condition (HS1) and Ay (H4,) < cc.
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(i) The Hamiltonian H,p satisfies the condition (HS_) and A_(H,») < 0.

(#4) The point o is not both left and right endpoint of an indivisible interval.
(#41) We have s_ > —oo0.

(iv) We have (}) € L*(H).
If H is of this form, set A := max{A(H4 ), A_(H|or)}- /

The significance of Hamiltonian functions of this form in the present context is
that H is the Hamiltonian function of a general Hamiltonian h of the form 1.3
if and only if H is of the form 2.6.

If zg € (0,54+), we denote by w}°, j > 0, the unique (see Lemma IV.3.10)
absolutely continuous 2-vector functions on [s_,0) U (o, s4.) with

0
o __
= (1),
(w™) = JHw®™ | k> 1,
0
;0 (s-),10.°(x0) € span{ (1) }, k € No,
w710 € L*(Hag,), k> A.

For notational convenience, we set w”% := 0, and let w;° denote the second
component of the vector w}°(zo), i.e.

- (1)

By Lemma IV.3.6, the functions rg°, ..., w3’ , are linearly independent modulo
L*(H). Let us remark that (7°)s, does not depend on zg, whereas (10}°),p
does.

2.7 Definition. Let H be of the form 2.6, and choose zy € (0,54+). Then we
set
LA(H) = L*(H)+ span {r}°xaz,: k=0,...,A =1},

Tamax(H) :=={(f;9) € LA (H) x LA (H) : 3f absolutely continuous
representative of f s.t. f’ = JHg}.

/

Note that, by Lemma IV.3.12, the space L% (H) does not depend on the choice
of Zo-

2.8 Lemma. Let H be of the form 2.6, choose xg € I+ and a pair (fo;g0) €
Tinax(Hzor) with T(Hzor)(fo;90) = (2) Moreover, let

(uk; Uk) = (mioxﬁwo; mi(ilXﬁio) + wzo(fo;go), k>0. (22)
Then
TA max(H) = Tmax(H) + span {(uk;vk) :k=0,..., A} . (2.3)

12



Proof. Obviously, (ug;vk) € Tamax and {(ug;vx): k = 0,...,A} is linearly
independent modulo L?(H) x L?(H). It already follows that the inclusion ‘2’
in (2.3) holds and that the sum on the right-hand side is direct.

To show the converse inclusion, let (f; g) € Ta max(H). There exist constants
)\0, ey )\A,1 and Moy« -5 UA—1 such that

A—1 A—1
F= M xXmgs §— > k0w, € L2(H).
k=0 k=0
Set
A A-1
(f;9) = (f;9) — Ak (U vk) — pa—1(ua;va). (2.4)
k=0

Then (f;§) € Tamax(H) and f € L2(H), §xaor € L*(H). Tt is sufficient to
show that gz, € L*(H). It follows from (2.4) that

g € L*(H) + span{mw®°xaz, - - - 0 5 X920 }-

Hence there exist scalars 7g, ..., vA—_2 such that
A—2
gi=9— ) "X, € L*(H).
1=0

By the definition of the number A, at least one of the sets

{mgOX(s,,U)v ) mXLlX(s,,a') }a {mgox(o',;ﬂo)a ey m2071X(U,10)}

is linearly independent modulo L?(H). Consider the case when the first one has
this property; the other case is treated completely analogously.
Denote by Z the operator

(Th)(z) = / JHh, € (s_,0).

Since ( f :G) € Ta max, there exist scalars ey, e_ such that

@)+ () = fe) a0,

€_

Moreover, we know from [KW2, §2.b] and the construction preceding Definition
1V.3.7, that there exist scalars €, €, ..., ea—_2 such that

75+ (2)}”570) e L2(H),

xT O xT
{Iml" + (q)}){(syg) = mlilx(sﬂg), [=0,...,A—2.

13



It follows that (note that rog°(z) = (2))

A—2 A—2
Z YL X (s 0y + (6= —€— Z V€)W X (s o)
=0 =0
A2
0 €+ 6+ 0
[ () () )- O
L 1=0
rA—2

-2 I + f — Tg — <€O* ) - <2>]x<s,a>
_ B (Ig+ (S)) +f- (?ﬂms,g) € L*(H),

and hence that v =0, 1 =0,...,A — 2. We conclude that §xaz, = §x, and
hence belongs to L?(H). O

2.9 Corollary. With the notation as in Lemma 2.8, we have
dom TA max(H) = dom Typax (H) + span {miOXﬂzo +wi®fo: k=0,..., A} .

Proof. In view of (2.3), it is enough to note that {w;°x4., : £ =0,...,A} is
linearly independent modulo dom T,ax(H), cf. Lemma IV.3.11. 0

2.10 Corollary. Let (f;g) € Tamax(H), and let A and p be the unique con-
stants such that

A-1 A-1
— > AwjOxas, € LX(H), g— Y mn°xas, € L*(H).
1=0 1=0

Moreover, let uj,v; be as in (2.2). Then we have
Al+1:,UJl7 ZZO,,A—2

)

and

- Z Al(ul;’Ul) - ,UAfl(uA;’UA) S Tmax(H) .

Proof. Let ~g,...,7a be the unique constants, such that

A
- Z/yl(ul;vl) S Tmax(H) .
1=0
Then, in particular,
A
(f = > i) xawo € L*(H), (9= Y w0}y xw, € L*(H),
1=0 =0
and we conclude that
)\l:/yla ML= Vi+1, 12077A_1 (25)
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2.11 Remark. Let b be a general Hamiltonian, let H be its Hamiltonian function,
and let () be the map defined on [KW2, p.760]. Then

(¥(h) x Y(0)) (T(H)) = Tamax(H) -

In view of Proposition IV.4.17 (iii), and Definition IV.4.11, this is an immediate
consequence of (2.3). /

c. Definition of the isomorphic copies B,,(h) and %zo(f)).

From the parameters b;, j = 1,...,0, of h we define numbers c;, j € Z, by
by -+ by
(c1,...,es) |+ -, 1| =(=1,0,...,0), ¢; =0 otherwise,
0 b1
cf. (IV.4.2).

In a first step we construct the isomorphic copy ’fﬁwo (h) of a given boundary
triple B, ().

2.12 Definition (of B, (h), Part 1). Denote by P, (h) the linear space

Pao (h) := L2(H) x (C* x C2) x C°

equipped with the inner product [-, -] defined by means of the Gram matrix
I10 0 0
010 I 0
Cpem = | 0|1 0 0 ) (2:6)
0]0 0 (Ckab')z,l:l

ie.
[F,G] = (Gixzo(h)Fv G)L2(H)><((CA><(CA)><(C5

for F,G € Py, (H). Moreover, define - : By, (h) — Bao (h) by
(fi& A o) = (FEANR).
/

Choose z¢ € I;, and let by, be an elementary indefinite Hamiltonian of kind
(A) as in (2.1). The isometric isomorphism ¢ from PB(h,,) onto L2(Haz,) X
(CA x C?) x C? constructed in (IV.4.10) naturally extends to an isometric
isomorphism

T mxo(b) = ‘B(hxo)['i_]Lz(HIoV) - ﬁxo(b) )

namely by

Lwo(x+g) =t (ngol";OaOuO)v T e m(h$0)7 g € L2(HLE0F)) :
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2.13 Definition (of B, (h), Part 2). Let 2 € I.. Denote by T, (h) C By (h)?
and 'y, (h) C P, (h)? x (C? x C?) the linear relations

Txo(b) = (Lo X Lag)Tae(h)
Lo () = (b X twy) X idca )T () -

/

In a second step we construct another isomorphic copy of B, (h) where the
space component L?(H) x C* is replaced by L% (H). To this end consider the
map

o { Buo(h) — LA(H) x CA x C?
L .
(FEA0) = (f+ ey Wrofxae: & &)

Then, clearly, i,, is bijective.

2.14 Definition (of %mo(b)) Let xo € I+. Denote by ‘i}mo (h) the linear space

P, (h) == LA(H) x CA x C?
endowed with the inner product

[F, Glay 1= [izy Py Glg, (g0 FG € Buy(b),

» Yxo

and the conjugate linear involution

(FEw) = (L)

Denote by im(b) C ‘i}mo(b)2 and T, (h) C ‘%mo(h)Q x (C? x C?) the linear
relations

/

With these definitions, the triples
%xo(b) = (@mo(b)v TIO (b)v fﬂﬁo(b))a
By (0) = (Ba (), Ty (). Ty (0)

are boundary triples isomorphic to B(h). Actually, (t4,;idc4) is an isomorphism
from B, (h) to B, (h), and (g, ; idcs) is an isomorphism from B, (h) to %10 (h).

d. Description of ’%wo(h).

In this subsection we establish the following intrinsic description of the boundary
triple B,,(h). The following theorem is the main result of this section.
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2.15 Theorem. Let by be a general Hamiltonian (of the form 1.3) and let xy €
I, and d?“ as in Lemma 2.5. Moreover, let F = (f;&,«),G = (¢;1,B) €

‘%zo(f)), and denote by A and w the unique coefficients such that

i a-1 A1
fi=F=) Awi°xau, € L*(H [0 Xz, € L*(H).
=0 =0
Then
i A-1
[F.G) = (f9) 20y + > MTl + Z &kl + Z Chri—s0 0 -
k=0 k=1

Moreover, (F;G) € %mo(b) if and only if
(Z) (fvg) € TA,maX(H);
(¢3) for each k € {0,...,A — 2},

1 «
&k = Met1 + s pa—1d2 +k+ )\od0

2

@ 0.5, (s=)2f(s-)1, (s—,0) not indivisible,
+ Wit f (o) — { i

0, (s—, o) indivisible;
(i) )
z A-1 ..
To\* T~ 1 x - 615 o> 07
a1 = /("0&)) Hg+ 5 Z NP n—y + pa—1dp 4 — {O g
s =0 ) o=V,

w0 (s_)af(s-)1, (s—,0) not indivisible,
+ WX f(wo)1 —

0, (s—,0) indivisible;

() if (s—,0) is not indiwvisible, then

A—-1
pudy®;
=0

mo = f(s-)1 —

l\DI»—A

(v) if 6> 0, then

ﬁj-‘rla .7:1770_17

e

aj = —pa—1bs_j11+ {

Here f(s—) and f(xo) denote the values of the unique absolutely continuous
representative with f' = JHg, which always exists on (0,sy), and exists on
(s—, o) if this interval is not indivisible.

We have mul%mo(f)) # {0} if and only if H starts with an indivisible in-
terval at s—. In this case, when sqg € (s—,o| denotes the right endpoint of
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the maximal indivisible interval with left endpoint s_, ¢ denotes its type, and
L:= [7°tr H(t)dt its length, the multi-valued part of %mo(h) is given by

Span { (07 (§¢Xﬁso; (_mio (S*)Ql sin ¢)_]’A:Blv 0))}5 so < 0,

mul %zo =
(®) {span { (O; (0; €9, 0)) }, S0 = 0.

Whenever (F;G) € %zo(f)), we have
f(s2), (s—, o) not indivisible,

Loy (F;G) = (770 + flao)t + 2S00 mdi

), (s—, o) indivisible.
Ao

2.16 Remark. Note that by Corollary 2.10, condition (i) implies that
Mk:)\k+17 kZO,...,A—Q.
/

The proof of this result is done in two steps; first we deal with ‘Bmo (h), and then

transfer the obtained knowledge to %10 (h). The description of %10 (h) reads as
follows.

2.17 Proposition. Let ) be a general Hamiltonian (of the form 1.3), and let
xg € I.. Moreover, let d?“ be as in Lemma 2.5, and fix an element (fo;g0) €
Tmax(ngF’) U)Zt}ol F(Hmol")(f()ng) = (?)

Let F,G € PBao(h), and write F := (f;E,N &) and G := (g;1, 1, B). Then
(F;G) € Ty, () if and only if

(i) A-1
(f = N fo — pa-1 (0% xaw, + Wi o)
=0

A—

g — ( )‘lwlxo + MA—IWZD)QO> € Tmax(H)
1=

:uk:)\k+17 kZOa"'vA_2a

—

and (F';G) satisfies (ii)~(v) of Theorem 2.15 where in (iii) the function g is
replaced by g. If (F;G) € Ty, (h), then

f(s—)+ Efzgl Aoy (s_), (s—,0) not indiisible,
L (F;G) = Al 2.7
o (’70 +flwo) +3 Xk’ mdlo> (s_,0) indiisible 20
AO ) - *

For the proof we start with identifying some particular elements of f}o(b).

2.18 Lemma.
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(i) Let a, by € Pay(h), k=0,...,A, be defined as

1. A
ap = (f07 (deo)jA:()lu E070)7

bO = (907 Oa 07 0)7

. 1. _
ag = (wi" fo; (§dk0+_j)jA:01’ ek, 0),

- 1, - @
br. = (wigo; (§dk0—1+j)jA:01 —di% 0, €1-1,0),

k=1,...,A—1,

an = (WX Xwo + Wi fo; (AR ;)70 0, = (bsp1-5)7-1)

ba = (B0s (AR 125 — 560, €a-1.0).
Then (ax; br) € Tuy(B), k=0,..., A, and Ty (h)(ar; b) = 07 (s_).

(t3) Leta), k=0,...,A+6—1, be defined as
, [(0:=€x,0,0), k=0,...,A—1,
L {(O;O,O,ekAH), k=A,. . A+i—1.

Then (a;al 1) € Ty (h), k= 0,...,A+5—2, and Ty, (h)(a};a) ;) = 0.

Proof. Let px, k =0,...,A—1, and dx, k = 0,...,A 4+ 6 — 1, be defined as
in the paragraphs before and after Lemma IV.4.9 and in Definition 1V.4.10.
Then according to Remark IV.7.5, equation (IV.4.8), Proposition IV.4.7, top of
page 760 in [KW2] and Definition IV.4.10, the following relations are valid:

1 .. \Aa-1
lzgPk = (07 (§dkij)J:0 787670)7 kzou"'uA_la
LmOmAO = (mAOX‘Tzo, (dAO-i—])]:O 5070)5
(0; —ex, 0,0), E=0,...,A—1,
Lwoék =
(00,0, e5_nt1), k=A,...,A+6— 1.
Hence
(@05 b0) = (ty X L2) ((P0; 0) + (fo; 90)),

(a3 be) = (two X tao ) (Pr; Pr—1 + d}° 160) + wi®(fo; 90)) ,
k=1,...,A—1,

(an;ba) = (tog X tay) (WX + b;pa—1 + dX_160) + WX (fo; 90)),

ay = Ly (0k), k=0,...,A+06—1,
where (see Definition IV.4.11)

541 5
b:= Zbl5A+6—z = Zb6+l—j6A+j—1
=1 j=1

19



since b4+1 = 0. Now the assertions follow from the fact that the pairs
(po; 0),
(Prs Pr—1 + d°100), k=1,...,A—-1
(WX + b;pa—1 + dX_16),
(0k; 0k41), k=0,....,A4+06—-2

all belong to T'(h,,) (see Definition IV.4.11 and Proposition IV.4.17 (iv)). The
form of the boundary mappings follows from Definition IV.4.12 and the two
preceding paragraphs. Il

Now we are in position to treat the case when both elements F' and G belong
to L2(H) x (C» x {0}) x {0}.

2.19 Lemma. Let F':= (f;£,0,0) and G := (g;n,0,0) be elements of Py (h).
Then (F;G) € Ty, (b) if and only if

(1) (f:9) € Tmax(H);
(¢3) for each k € {0,...,A —2},
% (s-)2f(s-)1, (s—,0) not indivisible,

k= Ne+1 +wity f(@0)1 —
il 0, (s—,0) indivisible;

(i4) o

Q_ﬁ3/mxrﬂg

S

w3 (s_)2f(s—)1, (s—,o) not indivisible,
+ Zo _ A
wa'flwo) {O, (s—,0) indivisible;

() if (s—,0) is not indwisible, then no = f(s_)1 — f(zo)1-

In this case,

f(s2), (s—, o) not indivisible,

0 ) . (s—,0) indivisible.

Proof. Assume first that (F; G) € Ty, (h). Since
L2(H) x (C* x {0}) x {0} = span {14, (60), - - -, twy (0a45-1)}
it follows that

(tzg X139 )(F; G) € T (h) N (span {do, . .. 75A+6—1}J—)2 .
We obtain from Proposition IV.4.17 (iii), that

(f;9) = [(1/’ X 1) o (L;O ngol)] (I3 G) € Tnax(H),
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i.e. (i) holds.

In order to obtain the formulae asserted in (i7)—(iv), we apply the abstract
Green’s identity (1.2) with various elements in the spaces P, (h) and L2(Hy,p).
First we compute the boundary values of (F; G). We have

(fzo(h)(FvG))l = mgo (S*)*Jf‘zo(h)(F7G) = [Gv aO] - [Fa bO] =

S+ S+
=770+/ fJHg—/ goH [ =m0+ flxo)r .
0

Zo

=fo(@0)*Jf(z0)
If (s_,0) is not indivisible, by the definition of 'y, (h) (see Definition IV.4.12),

Loy (0)(F3 G) = Ty (B) © (17, X 15, )(F3 G) = f(s-).
We see that (2.8) and (iv) hold. Next, let k € {0,...,A —2}; then

3% (s—)2(no + f(zo)1)
=107, (5-)" L0 (0)(F; G) =[G, aks1] — [F, by1]

S+ S+
- / (W22 fo) Hg + mioss — / (W2 g0) HT — &

0 0
= Mkt1 — &k +wi§y fo(zo) T f(w0) = M1 — e +wipl 1 f(zo)1 -

If (s_,0) is not indivisible, this relation combined with the already established
relation (iv) gives (éi). If (s_,o) is indivisible, we know from Remark IV.3.8
that ro}¢ | (s—)2 = 0. Hence, also in this case (i) holds. Finally, we compute

Wi (s_)2 (10 + f(w0)1) = WX (s_)" JTa, (0)(F; G) = [G,an] — [F,ba] =

— [y oy U fiHg - / iH S| - 6o

- / (%) Hg + w2 f(20)1 — €a1,

which yields (ii7).

For the converse, assume that F and G satisfy (i)—(iv). By Proposition
IV.4.17 (iii), there exists an element (F; G) € Ty, (h)N(L2(H) x (C2 x{0})x{0})
with (¢ o L;()l)(ﬁ') = fand (o Lgol)(é) = g. By the first part of this proof, the
elements F' and G satisfy the conditions (i)-(iv).

Write F' = (f; £,0,0) and G' = (¢;7,0,0). By Lemma 2.18 (i), we can make
the choice of (F;G) such that 7, = np, k = 1,...,A — 1. If (s_,0) is not
indivisible, by condition (iv), we must have 7o = n9. If (s_, o) is indivisible,
we have (0;80) € Ty, () (see Definition TV.4.11 (4.14)), and again (F;G) can
be chosen in this way. The conditions (i) and (i74) now imply that F =F and
G=0G. O

With the help of Lemma 2.18, we can reduce the general case to the case treated
in Lemma 2.19.
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Proof (of Proposition 2.17).
Step 1. Define an element (F; G) by

A-1 6-1
(15 G) Me(an;br) — pa—1(ansba) = > Bis(as 1455 ah45)
k=0 3=0
By Lemma 2.18 we have (F;G) € Tyo (B) if and only if (F;G) € Tuy(h).
Write F' = (f;&,A, &) and G = (37, i, B), then
) A1
f:f_ Alw[OfO_NA 1(mAX"Imo +WAfO)
1=0
) =
gk = 5 )\ldl+k HA— ldA+k7 k:Ow"uA_27
1=0
A ! - 615 0> 07
a1 =&a1 — = Z MNAR 1 — pa—1dyp_q + 0
) 0 - )
) A-1
Me=X— > Mo =0, k=0,...,A-1,
1=0

- ﬁj-‘rlu jzl,,O—l,
;= Oy + ‘LLAflbb'Jrlfj —

0, Jj =0,
and
A-1
g - <Z Aw)® + /LAMZO)QO,
=0
1= 1
o = no + 3 ; nd°, + 5/%716@),17
ik = Z)\ldl ek — MA R e k=1 A1,
A-1
- :UJk_Ak+la k:O,...,A—2,
ik = pg — Z ANOi—1k — HA—10A—1,k =
=1 0, k=A-1,

Bi=0, j=1,...,6.

Step 2: assume that (F; G) € Ty, (B). 3
The abstract Green’s identity applied to the pairs (F;G) and (aj;a;,,), | =
LA+ 06— 2, gives

fir = ik — Mer1 = —[G,al] + [Foa} 4] =0, k=0,...,A—2,
[F,ap] = [F,dp] + fin—1 = [F,ax] = [G,ay_] =0,

[Faa;chl]:[Faa;chl]_[Gaa;c]:Oa k:AvaA+O_2
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The last two lines imply that & = 0, and we see that

F,G e L*(H) x (C* x {0}) x {0}.
Plugging the expressions for f,&,... from Step 1 into the formulae of Lemma
2.19, shows that the relations (i') of Proposition 2.17 and (i7)—(v) of Theorem
2.15 are satisfied.

Step 3: assume that (i) of Proposition 2.17 and (ii)—(v) of Theorem 2.15 hold.
Then we have F,G € L*(H) x (C2 x {0}) x {0}, and hence Lemma 2.19 is
applicable. However, (i), (ii)—(iv) exactly correspond to (i)—(iv) of Lemma
2.19. We conclude that (F; G) € Ty, (h), and hence also (F;G) € Ty, (b).

Step 4: computation of boundary values.

Assume that (F;G) € Ty, (), and let (F;G) be as above. Then, by (2.8),
Ly (0)(F3G)
f(s=) — pa—1wR(s-), (s—, o) not indivisible,

1 A-1 x 1 x

= Ndr° + spa—1dR
(770 3 2m Ay 22MA N f(x0)1> , (s_,0) indivisible.
Using the definition of F', G, the knowledge about the boundary values of the
pairs appearing in Lemma 2.18, and the fact that pr = Agyr1, £ =0,..., A =2,
we obtain (2.7). Remember here also that w;°(s_) = 0, k > 1, if (s_,0) is
indivisible. O

Proof (of Theorem 2.15). The formula for the inner product is clear. Now con-
sider the elements F, G as given in the statement of the theorem. Then

F=i'F=(fig,\ ), G:=i,'G=(gnwmB).

By the definition of Tao(B), we have (I';G) € Too (b) if and only if (F;G) €
T.,(h), and in turn if and only if F' and G satisfy the conditions (i’) of Propo-
sition 2.17 and (é¢)—(v) of Theorem 2.15 with the function § in (¢i¢). Since

tE° (0), 1070(s) € span{ ((1’) } |

F, G satisfying (ii)—(v) of Theorem 2.15 is equivalent to F,G satisfying these
conditions.

We show that Proposition 2.17, (i), for F, G is equivalent to (i) of Theorem
2.15 for F,G. Clearly, this will finish the proof of the asserted equivalence.

Let (fo;90) and (u;;v;) be as in (2.2). Then the element (f;g) belongs to
TA max(H) if and only if

A-1
(f;9) = > Nlwisv) — pa—1(ua;va) € Tamax(H) - (2.9)
1=0
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Using the relations F = i, F, G = i,,G we compute

A-1
=" Nw — pa-qua
1=0

A-1 A-1
= T DT MR Xy — D A (07 X + W fo) — a1 (103 Xy + W2 o)
k=0 =0
. a-l
=f= > A fo— pa—1(0R X, + Wi’ fo)
1=0
and
A-1
g— Z AlUr = fa—1vA
1=0
A-1 A-1
=G4 > 0 Xame — Y M (0] X + wi090) — a1 (MR Xawo + @R g0)
k=0 =0
A-1 Q2
=g— ) Aw/’g0 — pa—1wx'go + Z (k1 = A1 107 Xt
1=0 1=0

Hence, if (i') holds, the pair in (2.9) will belong to Ta max(H). Conversely, if
(¢) holds, we obtain from Corollary 2.10 that p; = Nj41, 1 =0,...,A—2. In
turn, it follows that also the first condition in (i) holds.

Next we determine mul %wo (h). The boundary triple B, (h) is obtained from
pasting the boundary triples associated with an elementary indefinite Hamilto-
nian of kind (A) and a positive definite one. Hence, it follows from Proposition
IV.5.16 that mul Ty, (h) # {0} if and only if H starts with an indivisible inter-
val at s_, and that in this case dimmul T, () = 1. The case when (s_, o) is
indivisible is easily settled. It suffices to observe that in this case the pair

(F;G) == (0;(0;0,0))

satisfies the conditions (i)—(v), and hence belongs to %zo(b).
Assume that sg < o, and write

H(t) = h(t)és€), te (s—,s0).
Then I = [ tr H(t)dt = [° h(t)dt. Set

£ = [ A T, ol0) = oo

then .
f'=JHg, =m0, f(s)—l( o )

—Ccos ¢

Moreover, since f,g € L2(H), the numbers )\; and y; all vanish. Consider the
pair
(F;G) = (0; (g; (05" (s )al sin ¢) 25, 0)) .
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By what we just said, (F;G) satisfies the condition (7). Moreover, (i), (iv),
and (v) hold by the definition of G. It remains to consider (ii7). However, since
§£m2“ is constant on (s_, sg), we have

[ty = [y me = [ (o) hg s

= (T2 (s0))" / B()ET €yt = 1070 (5 )€y -1

=13 (s_)2sing -l =wy(s-)2f(s-)1.

Thus also (i4¢) holds, and we conclude that (F;G) € %mo(h)
In order to compute boundary values, assume that (F;G) € T4, (h). Then
(F;G) € Ty, (h), and by Proposition 2.17 and the definition of I, o (b) thus

Luo (0)(F; G) = Ty (0)(F3 G)

f(s Zl o Ao (s ), (s—,0) not indivisible,

- <770+f To 1+ Zl 0 /lewo

) , (s—,0) indivisible,
Ao
-), (s—, o) not indivisible,

o <770 + f(xO)l + 5 Zl 0 Mldzo
/\0

) , (s—,0) indivisible.

U

As a consequence of Theorem 2.15 we obtain a description of %Io (h) in terms
of its domain and action.
2.20 Corollary. Let by be a general Hamiltonian (of the form 1.83) and xp € I4.

Moreover, let F = (f;&,a) € ‘i}mo(b) Then F € domTy,(h) if and only if
in case 6 = 0 the condition (i) A (iis=0)’, and in case 6 > 0 the condition

(@) A (iis>0) " holds.
(Z) f € domTA,max(H).

(it5=0) Under the assumption that f satisfies (i), let vo,...,7a € C be the
unique constants such that

A
f = (f — Z ’Ylmlx0>Xﬁm0 € dom Tmax(H‘uo)
=0

and set

L, = lim [m?(z)*Jf(:z:) +/j0(m2‘)1)*Hﬂ,

z\o

Lot [ @) (o) + [ o) ]
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Then

A—1
én-1=Li+L_+ Z HINRLIN YR
=0

N =

(tig>0) We have az = 0.

2.21 Remark. If F € dom T4, (h) and (F;G) € T4, (h) with G = (g;:m, B), then
the numbers 1, 3 can be computed immediately by solving the equations in
Theorem 2.15, (ii)—(v).

Hence, the action of %zo(f)) is easily understood, provided the action of the
differential operator Ta max(H) in the function space L% (H) is. This operator,
in turn, is explicitly related to Tinax(H) via Lemma 2.8. Altogether, we see that

%xo(b) is a finite dimensional perturbation of Tyax(H) which is given in a very
explicit way. /
Proof (of Corollary 2.20). The case that 6 > 0 is easily settled. If F €

dom%zo(f)), then by Theorem 2.15 (i), (v), we have f € dom Ta max(H) and
as = 0. Conversely, if F' satisfies the present conditions (¢) and (ii5=0), then we
can first choose g € L4 (H) with (f;g) € Ta max(H) and then choose 1,  such
that Theorem 2.15 (4i)—(v) hold.

Assume for the rest of the proof that 6 = 0. Let f € domTaA max(H) be
given. Choose g € L% (H) such that (f;g) € Ta max(H) and let po, ..., pa—1
be the unique constants such that

A—1

g= (g -3 mmf“)xwo € L*(H).
=0

First of all, let us verify that the limits Ly in (ii5=0) do exist. If x € (o, z0),
Green’s identity in L2(Hqy,) yields

/ " (o) Hg / " (wEo ) HF = 1% () f(x) — w5 (o) F (z0)

Since o and § both belong to L?(H|(y 4,)), we may pass to the limit z \, o
to obtain

Ly = lim Wi (2)* T (@) + / (R )" Hf

- / " (10%0)* Hj + w2 (20)* ] f (o).

In the same way, we obtain that

L= /U(mgo)*Hg ol (s_ )" T (s_).

Since ] (20), 07 (z0) € span{(J)}, we have

Wi (20)" T f(w0) = Wi f (o)1, WX (s-)* T f(s-) = Wi (s_)af(s-)1 .
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Moreover, if (s_, o) is indivisible, we have w%’(s_) = 0. Remembering (2.5), we
see that under the assumption of (i), statement (éiz—¢) is equivalent to Theorem
2.15 (idi).

Assume that F' satisfies the present conditions (i) and (¢is=p). Then we can
choose g € L% (H) with (f;g) € Ta max(H) and Theorem 2.15 (iii). Clearly,
n can be chosen such that Theorem 2.15 (i7) and (iv) hold. Thus (F;(¢g;1)) €

%xo(b), and we have F' € dom %zo(b).

Conversely, if there exists G € ‘i}mo with (F;G) € %mo, then Theorem 2.15 (7)
and (i4i), immediately give the present conditions (i) and (ii5=0). O

3 An xp-independent form of the model

The Pontryagin space ‘ﬁmo(h) underlying the boundary triple ’fﬁwo(b) does not
depend on the particular choice of zg. However, as it is seen from Proposition
2.17, the relations T}, () and 'y, (h) do in general depend on zg.

A similar remark applies to the boundary triple %10 (h). Due to Lemma

IV.3.12 (ii), the linear space underlying the Pontryagin space ‘%xo(f)) does not
depend on zy. Moreover, due to the existence of the isometric isomorphism

Y ‘i}wl (h) — ‘i}wz (h), and the fact that ‘i}ml (h) and ‘%mz(h) are both Pon-

1
tryagin spaces, the topology on this linear space induced by the inner product

[, ]z, does not depend on zy. However, the inner product [-, ], on ‘i}mo(b) and

the relations im(h) and f‘mo (h) do in general depend on .

One idea how to remove the dependence on xg is the following: the point
x¢ is the point where the given general Hamiltonian is cut into two pieces, and
the model is then obtained by pasting the two corresponding models. Is it
possible to shift this cutting point to s; and thus completely avoid cutting and
pasting? Our aim in this section is to show that under certain assumptions on
the asymptotics of H, limiting its growth towards s, the answer is ‘yes’. To this
end, we have to study the dependence on x( in some more detail. A big portion
of technically complicated computations has been shifted to the appendix, so
that in this section we can concentrate on the essential ideas.

3.1 Remark. If h ends with an indivisible interval towards s;, i.e. Tymax =
sup Iy < sy (for the definition of I see §2.1 (5)), then it is of course impossible
to shift the cutting point to s;. However, in this case, the boundary triple B(h)
can be described without cutting/pasting anyway. Namely, we have PB(h) =
PB(bz,...); T(h) is a certain one-dimensional restriction of T'(h,, .. ) depending
on the type of the indivisible interval (max, $+), and T'(h) is the restriction of

L(H2,.) t0 T(h). /

In view of this remark we will, throughout this section, assume that h does not
end with an indivisible interval towards s;. Limits x — sy will be understood
such that x tends to s inside I;.

Let z1,29 € I, 1 < 22, and let b, and b, be the elementary indefinite
Hamiltonians as in Lemma 2.5. We know from [KW2, §7] (cf. also §2.2, §2.3,
and Remark 2.4) that there exists an isometric isomorphism

Kgy,zs * ‘B(hml) [+] L2(H|(m1,;v2)) - m(bm),
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such that (kg z,,1dca) is an isomorphism of the corresponding boundary triples.
This map naturally lifts to an isomorphism of B, (h) = B(bs,) [+] L*(Ha,r)
onto P, (h) = P(bay) [+] L2(Hyyr) which will again be denoted by kK, s
namely by

F+f = Hﬂﬁl,mz(F—i—fX(am,wz))_i'fxzﬂ)v Fem(bzl)a fELQ(HOCﬂ))'

Clearly, (Kg; z,,1dce) will again be an isomorphism of the corresponding bound-
ary triples B, (h) and B, (h).
The isomorphisms ty,,ty, and iz, ,iz, can be used to transport the map

Kayzot 100 Rgy oz, ‘Bm(b) - ‘Bm(b) and 7%11,12 : ‘%zl(h) - (i}mz(b) be the

isometric isomorphisms defined by

Po, () — 2 P, () (3.1)
‘le(b) ......... ’%122 ...... -~ ;pmz( )
;j%zl (h) - %mm ....... - ;ff}m (H)

Note that &g, 5, is just the natural extension of the map that is also named
K, 3, and considered in the appendix, cf. (A.1), to a map

Por (0) = (L*(Haz,) [H (€2 +C2) [H C°) [H] (L2 (H sy ,2)) [H L (Haor )
— Paa(h) = (L*(Hazy) [H] (C* +C2) [H] C°) [F] L* (Hasr ).

Using Proposition A.6, it follows that the action of the map &, ;, defined by
(3.1) is given by linearity and the formulae

foraa (£:0,0,0) = (£5([ oy Hs+ [y —wityap) S 0.0),
%11@2 (05 E,,O, (X) = (0’ E”O’ (X)’

I%Il,mz (0, 07 &k, 0) = ( - mZ2X(z1,mz) - (mz2 - mz )Xﬂzn (hml)mz)gA 017 €k, 0)7

Z2

where we set

k+g+1

T1,T2 ,__
by ™ = =5 E , Wik (@)1 + 5 E :warngl 1072 (1)1
I=j+1

Using these formulae, we can easily deduce how Ky, », acts.

3.2 Lemma. Let x1,22 € I, x1 < x2, and let F = (f;£,a) € ‘%zl(f)), let N be
the unique coefficients such that

A_
f- Nyt xag, € L*(H).
=0

—
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Then

A / Ctwpy s

x1

x1 A—1
+/ (o7? — Z gty + S i) oc)

=0

Proof. Let an element (f; &, ) € ‘jf}xl(b) be given. Then

A—1

(&) =(f- Zkzml Xaz13 &N, &) -
1=0
Hence, we obtain
(Ray,zs © Uy, )(f & o)

A—1
= ((f - Z )\lmflxﬁwl) - Z Al (mf2x(9017962) + (mim - mfl)Xﬁw1)§
= =0

A-1
=[=2=0 N X,

xTo T1 —1
(/ (m;?Z)*Her/ (rf? —rof' ) H(f — lem +§J+Zwﬁl I) :
T g
A, a).
Applying i,, we obtain the desired formula. 0

a. Asymptotic conditions on H; the elements vy.

3.8. Asymptotic conditions on H. Let H be a Hamiltonian of the form 2.6 with
sup Iy = s, and choose a base point xg € I. For N, M € Ny we consider the
following conditions:

(Ayx) The limits

m Wy (z0,2), lm (0f —1w07°)xaz,, k=0,...,N,

T—54 T—s4
exist in the norm of L2(H).

(Bas) The limits
v = lim wi(xo), k=1,...,M,

T—S4

exist in R.

/
For k > A the existence of the two limits in (Ay) is equivalent to the existence
of the limit lim, ., W¥X(0,2). However, for k < A, it is necessary to introduce
the splitting point zo, since the function 1} x(s,4,) does not belong to L?(H) in
general.
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Note that since rof = (?), the limit

v == lim w{(xo):

T—S4
always trivially exists and is equal to 0. Hence (Bg) is always satisfied.
If H satisfies the condition (Ay), we set

O 1= (szXﬁmo'i‘ lim (o — mio)Xﬁwo)+ W WX (zg,0), k=0, N
T—S4 T—S4

Since on the interval (s_, o) the function w7 does not depend on x at all, we
have vy (t) :=wi(t), t € (s—,0), z € (0,54).

First of all we shall justify these notions by showing that they do not depend
on the choice of the base point zg.

3.4 Lemma. The validity of the conditions (An) or (Bar) does not depend on
the choice of the base point xo. Also the actual value of vy, is independent of xq,
in fact

lim (v — wEx4y) =0, k=0,...,N, (3.2)
T—S4
in the norm of L?(H) if (An) satisfied.
Conversely, if there exist functions vy, k =0,..., N, such that vy, —wixw €

L2(H) for every z € (0,54) and (3.2) is valid, then condition (Ay) is satisfied.

Proof. Let xg,x1 € I;, and assume that (Ay) holds with the choice of zy as
a base point. Consider the case when z; > 5. The existence of the limit
limg s, WX (20,0) implies the existence of the limits

s xT : xT
hm ka(LEU#El)’ Ill>IIsl+ ka(;El,;E) .

T—S4

This implies that also the limit

Jim (v —togt) X, = M (00} 103 )X o +103" X rwo 10k X, + I 0L X (0,00)
exists. The case x1 < xg is treated in a completely similar way; in either case
(An) also holds with the choice of 1 as a base point.

In order to show (3.2), let us denote by v the functions constructed with
base point x¢. Then, for arbitrary « € I with > ¢, we have

. t : t
Vg —miXﬁw = (mio _mi)xﬁ:ﬂo +t11I£1 (mk _mio)xﬁwo +thI£1 05X (z0,t) _miX(acg,x)-
—S+ —S4

It follows that vy — w¥x4, € L2(H). Passing to the limit z — s; gives (3.2).
Let 2,21 € I, and assume that (Bjs) holds with the choice of x as a base
point. Choose arbitrary real numbers d;°, k =0,...,2A — 1, and set

o
o — / (050 Hrod k> 2A.
Moreover, set 6 := 0, by := 0. Then the data b, = (Hay,;0,b5;d;°) is an
elementary indefinite Hamiltonian of kind (A) defined on [s_, o) U (o, z].

Let € I with > max{xo, z1} be given. Let df, k =0,...,2A —1, be the
parameters of the elementary indefinite Hamiltonian b, obtained in §2.3 when
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pasting b, with H|, »), and let d*, k =0,...,2A — 1, be the parameters of
the elementary indefinite Hamiltonian b, obtained in §2.2 when splitting b, at
the point x7. Then, by Proposition A.6 and Proposition IV.5.17, we have

k+1 k+1

dzo + Zwarl J LL‘Q)l = dk = dml + Zwarl Jmi(xl)l (33)
7=0

for all £k € Nyg. Moreover, again by Proposition A.6 and Proposition IV.5.17,
the numbers d;° and d;' are in case xg < x; related as

k+1
T g)
= 2wy @

If xo > 21, we apply (A.2) with the elements
0,15, ..., 7% 5 0,05, ... it € L*(H|(z, 20))

to conclude that the same formula holds true. We see that the numbers dj*,
which were originally constructed via the point x, actually do not depend on
x. Hence, we may pass to the limit # — sy in (3.3). Since wj' = 1, it follows
inductively that the limits

v;-“— lim wj(r1), j=1,...,M,

T—>S4

exist, i.e. (Bps) holds with the choice of 21 as a base point.
For the last assertion of the lemma, observe that the first condition in (Ay)
follows immediately from the relation

lim (br — W7 X% ) Xaor = 0.

TSy

For the second condition in (Ay), note that

(nf — 107°) Xz = (W0 — 0p) Xz, — (103° — &)Xy

Both terms are in L?(H) for x > zo; the second one is independent of z. The
convergence of the first term follows from (3.2). O

3.5 Remark. Assume that, in addition to a Hamiltonian H of the form 2.6, also
a point zg € I and real numbers d,°, k =0,...,2A — 1, are given. Again we
set

zo
o ::/ (%) Hrol k> 2A.

For z € I let numbers df be defined as

ket 1
dmo—i-Zle ¥ (@)1, k>0
Then H satisfies (Bpy) if and only if the limits

Dy:= lim d¥, k=0,....M—1, (3.4)

T—S4

31



exist in R.

This remark becomes interesting if we remember that the numbers dy,
k=0,...,2A—1, are exactly the parameters of the elementary indefinite Hamil-
tonian obtained in Lemma 2.5 when using z as cutting point. /

We trivially have ‘(An)=(An_1)’" and ‘(Bas)=(Bar—1)’. It is more interesting
to note that a condition ‘type A’ implies a condition ‘type B’.

3.6 Lemma. Let H be a Hamiltonian of the form 2.6 with supl, = sy. If H
satisfies the condition (Ay), then also (Byi1).

Proof. Let 1 < k < N + 1 be given. We apply the abstract Green’s identity
with the elements

xr xr O
(it 2 ((})50) € T Al

This gives

s+ 70\ " 0\
/ (1) Hmi—lXﬁzZ/ (1) Hwj_,
xo o

_ (?)*meo) _ (f)*sz@) ~ k(o)

o " 0\"
i = Jim wiao)s = | (1> Hoy_y .
zo

Let us collect some properties of the functions vy.

and hence

3.7 Lemma. Let H be a Hamiltonian of the form 2.6 with suply = sy, and
assume that H satisfies (An). For notational convenience, set v_1 := 0.

(i) For each xo € (0,54+) we have
(06 Xaor; 9k—1Xaor) € Tmax(Haor), k=0,...,N.
(13) For each xo, 1 € (0,54+) we have
(o — 03 ) X905 (D=1 — WFL 1) X0 ) € Tmax(Hazo), k=0,...,N.

Due to the above items there exist unique absolutely continuous representatives of
o, 0 <k < N, which will again be denoted by vy, such that vj_ | (t) = JHog(t),
te (s—,o0)U(o,s4).

(tit) For k > N, there exist absolutely continuous functions vy on (s—,o) U
(0,54) such that the assertion made in (ii) holds for all k > 0.

The following limit relations hold:
(iv) For each zo € (0,54+) we have
lim wf(xg) = vg(x0), k=0,...,N.

T—5y
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(v) We have
lim wf(z)*Jog(z) =0, 0<I[,k<N.

T—>S4

Proof. By their definition the functions vy Xz, and (v —10}") X920, £ =0,..., N,
belong to L?(H.,,) or L*(H4g,), respectively. For the proof of (i) and (i), it is
therefore enough to show that for each interval (a,b) with [a,b] C (o, s4),

(98X () Ok—1X(a,b)) € Trmax(H(a,p)) - (3.5)

However, for each x € Iy, we have (W0} X(a,6); Wi_1X(a,b)) € Tmax(H(ap)), and
hence (3.5) follows from (3.2).

Next it is easy to construct functions vg, k > N, with the desired properties.
To this end, fix x € I, and remember that for each function f € LQ(H|(U)m))
there exists a unique constant a(f) such that

B0 = [ i+ () € )

cf. [KW2, §2.b]. On (o, s4+) we define functions vy, k > N, inductively by
oy = B(og_1 —wi_;) +wi, k> N.

On (s_,0) we set vy := w7}, k > N; note that on (s_, o), wj does not depend
on z. Then, clearly, (v —10}) = JH(vp—1 —tf_,) and (v —10}) € L*(H|(5,))-
The asserted properties are now immediate from the known properties of tof.

We come to the proof of (iv). Set a := x¢ and choose b € (xg, s+) such that
(a,b) is not indivisible. Then the boundary relation I'(H|(,,5)) is a continuous
operator from Tax(H|(q,5)) onto C? x C2. Hence

(vi(a);0k(0)) = T(H|(p) (06X (ab); Ok—1X(a,p))

= T(Hl(ap) ( Jim (wEX(a0); 0E-1X(ap)) = lim (i (a); wi(0).

TSy

For the proof of (v), we apply the abstract Green’s identity with the elements
(0,2 € (0,54) with zy < )
(0k;05-1), (01;01-1) € Tinax(Heor), 0 <1,k <N,

(Uk;nkr—l)u (mlm;mlmfl) S Tmax(H|(zo,z))7 0 S lu k S N.

This gives

S4 S
/ 0] Hop_4 —/ v;_1Hoy, = v;(x0)* Jog(z0), (3.6)

0 0

/m(mf)*Huk,l — /I(mf,l)*Huk = o] (x9)* Jor(xo) — i (x)* Jog(x). (3.7)

0 Zo

When =z — s;, the left-hand of side of (3.7) tends to the left-hand side of
(3.6). By the already proved item (iv), the first summand on the right-hand
side of (3.7) approaches the right-hand side of (3.6). Thus, we must have
lim, .., v} (z)*Jog(z) = 0. O
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Let us note that the functions vy, k£ > N, in the above item (ii7) are not unique.

b. Construction of limit boundary triples.

By Proposition A.7 we have
Ragws O Ray,we = Rayg,  T1,%2,23 € I, 21 <xp < x3.

Hence, thinking of the totality of all maps &z, z,, we have a chain of isomor-
phisms (which of course also transports via the isomorphisms )

Ray,xg

Ray,ep o Rag,xg

=B, (§) = By, () 7 Py, (h) —

m,

®
K zqy,z3

It is a central result for our present purposes that, assuming the asymptotics
(Aa—1) and (B2a), we may pass to the limit z3 — s;. Actually, these conditions
are chosen exactly to allow this limiting procedure.

As a first, trivial, step towards passing to the limit, let us emphasize also

in notation that some parts of the boundary triples %zo(f)) and ‘%xo(f)) do not
depend on x( at all.

3.8 Definition.

(i) Denote by () the linear space L2(H) x (C2 x C2) x C?, endowed with
the inner product induced by the Gram matrix (2.6).

(i4) Denote by ‘%(h) the linear space L% (H) x C2 x C%, endowed with the
Banach space topology common to all the spaces B, (), zo € Iy.

/

All maps in (3.8) are bijective and bicontinuous operators if considered between
these Banach spaces:

Faas 2 B(0) = B(D), Fayay (D) — B(D), iy = P(H) — B(H).
Since i,, maps the subspace L2(H) C P(h) onto L2(H) C ‘i}(h), the space
L?(H) is a closed subspace of ‘%(h) In particular, the topology induced on

L2(H) by B(h) is equal to the topology induced by the L2(H)-norm.
We can now establish the existence of limits.

3.9 Proposition. Assume that the general Hamiltonian § satisfies the asymp-
totic conditions (Aa—1) and (Baa), and let xg € I. Then the limits

Rzoysy = UM Rpgzy  Ragsy = UM Kgoz, s, = lim i, (3.9)
T—84 T—84 T—S4
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exist in the operator norm. We have

() —2 (1) (3.10)
B) ————= ()

The map ks, 15 an isometric isomorphism of &B(h) onto itself, and its action

is given by linearity and

Fran,si (£10,0,0) = (3 /

/%I075+ (Oa E., Oa (X) = (Oa Evv Oa (X)a

Coptse [t 0.0),

0

"%1)075+ (07 07 ks 0) - ( - Xwor’nk — Xzo (Uk - mio); (hz;)s+ )JA 017 €k, O)

where we set

k+]+1

10 S+ .
hy, =5 E Wk+;+1 e E:Wkﬂﬂ e
I=j+1

The maps i, : ‘,B([)) — ‘ff}(f)) and gy s, ‘i}mo(b) — ‘ff}([)) act as follows

is, (f1E,\ @) f+Z)\ml,a «

=0

Faps (fi8.0) = (5i(6+ [ o3ms

z0 A1 A1
+/ (0j =0 H(f = > Awo®) + > Ny ) ,oc)
o 1=0 =0

where A are the unique coefficients so that f — Zf:?)l Ny x4z, € L*(H).

Proof. Letting x tend to sy in the formulae describing the action of &gz, 4, it
follows that the limit (3.9) exists in the strong operator topology and is given by
the asserted formulae. Strong convergence also implies that &, ., is isometric,

and hence injective.
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In order to show convergence in the operator norm, we compute
(%10;S+ - ’%10,1)(f§ 0,0, O)

= (s ([ —wpyas e [ -wpyas e [ 00).

0

(I%I(),S+ - I%:Co,z)(07 Eva 07 CX) = Oa

(oo = Fz0.) 050, €, 0) = (= (Xaar Ok = X, 10F) = Xwa (0 — 105);
k+j+1

1 xT X x
(- 3 Z Wit jp1—1 (07 — w7} (zo)1)

l=j+1

j
A-1
Z WG i1 (00 — oy ($0)1))j:0 7070)-

N)I)—l

It follows, with the help of (3.2), that lim, .., [|fz,s, — Rao,z| = 0, where || - ||
is a norm that is compatible with the indefinite inner product on ‘]3({)) The
surjectivity of £, s, is obvious.

From the definition of i, and (3.2) we immediately obtain that iy, :=
lim; .5, i, exists in the operator norm and acts as

A—1

(56N a) = (f+ D Mvgi& ).

k=0

Clearly, i,, is bijective. Finally, existence of the limit lim,_,, Koo and com-
mutativity of (3.10) follow since for each = € I+

o—

® ° o
Rgg,x = bz © Rgg,a © Lmo .

The form of K, s, follows from taking the strong limit in Lemma 3.2. O

3.10 Corollary. We have lim,_.,, ky,s, = I with respect to the operator norm.
In particular,
lim hzf+ =0, 0<kj<A-1.

T—S4

Proof. By (3.8), we have
Bgyz = Kgg,x O Koy mey 1,02, €11, 21 <x2 < T.
1 o .
Lettlng T — S4, gives "%1 sy = nz275+ omzl zgs 1-€. Iizl sy OKIM62 Kzy,sy - Since

fzy,s, is boundedly invertible and ||fg, 4, || = ||, || = 1, we may pass to the
limit 2 — s+ and obtain

Z1,22

01 o . o -1
m R, s, = Fzysp 0 Hm (R ,,) = Fey sy o ( im Ay 0,)  =1.
To—54 To—54 To—S4

The asserted limit relation for hif* follows immediately taking into account
the formula for £, , (0;0, ex;0). 0

We can use the isomorphisms f,,s, and Kg,,s, to transport boundary triples.
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3.11 Definition. Let h be a singular indefinite Hamiltonian (of the form 1.3
with sup Iy = s;) which satisfies the asymptotic conditions (Aa—1) and (Baa),
and choose a base point xg € 1. Set

T(h) = (’%mo,s+ X%w0,5+)fm0(h), F(h) = ((’%10,8+ X"%wo,8+) X idca )Pwo(b)

On the linear space ‘%(h) define an inner product by

o—1

[F,G]:=[r . Fk_ .G, FGeB®),

0,547 7 "T0o,S+

where the inner product on the right-hand side is the one in ‘%wo(h), and set

@ @ @ @

Th) := (Exo,s+ XEIO,S+)TI0([))7 I'(h) = ((Eﬂ@075+ X'?%zo,n) X idga )on(h)
/

The triples

B(H) := (B(H), 7(9),1(9)) and B(b) := (B(0), 7(0), T(1))
are, by definition, boundary triples isomorphic to B(h). It follows immediately

from (3.8) and (3.10) that the boundary triples B(h) and %( h) do not depend
on the choice of the base point zy, and that

a

T(0) = (isy xis,)T(0), T(h) = (L5, xis,) x idea )T (D).

c. The zyp-independent description of ’%(b)

The following description of the relations %(b) and f‘(h) is the main result of
this section.

3.12 Theorem. Let h) be a general Hamiltonian (of the form 1.3 with sup I} =
s+ ), and assume that b satisfies the asymptotic conditions (Aa—1) and (Baa).
Then, for each k € {0,...,A — 2}, the limit

[ := lim (—Uk+1(I)*meA(‘T)+/

—
x S+ o

x

(o, — mi)*Hmz)

exists in R.

Let F = (f;&, ) and G = (g;1, ) be elements of ‘%(h), and let X\ and p be
the unique coefficients with

A—1 A—1
F=Y_ No€L*(H), g—> v €L*H
=0 =0

Then (F;G) € %(b) if and only if
(Z) (f7 g) € TA,max(H);
(13) for each k € {0,...,A — 2} we have

1 1
§k = Nkt1 + EAODk + a1 (gDAJrkJrl - [k)

{Uk+1(s)2f(s)1, (s—,0) not indivisible,

0, (s—,0) indivisible;
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(i4i) the limit
—1

[Fc:= lim (UA(x)*J(f(x) - i (z) — MA_lmIA(:E))

TSy ;

e

Il
=]

A—-1

ulmf)>

x x
uass [ (oac—wi ) HwE + [ oaH(g-
o - 1=0

ezists in R, and we have
A— .
1 617 0> 07
fa1=lpc+5 Z ADipa—1 + pa-1Dan1 —
2 = 0, 6=0,
0

{UA(S_)gf(S_)l, (s—,0) not indivisible,
0,

(s—,0) indivisible;

(iv) if (s—,0) is not indivisible, then

A—

,_.

wmDy;
1=0

l\3|’—‘

No =

(v) if 6> 0, then
6j+17 .]:1550_17

aj = —pa—1bs_j11 +
0, j=o.

In this case,
f(s2), (s—, o) not indivisible,

T F;G) = A-l
( ) <770 +3 Z;\I:O /“Dl>, (s_,0) indivisible.
0

We have mul%(b) # {0} if and only if H starts with an indivisible interval at
_. In this case, when sy € (s—, o] denotes the right endpoint of the mazximal in-
divisible interval with left endpoint s_, ¢ denotes its type, and [ := f;f tr H(t) dt

its length, we have

span{( €¢X(7507 ( Uk(S*)QZSin ¢)JA:731aO))}7 so < 0,
span{( (0; eO,O))}, So = 0.
Proof. In the proof we use Theorem 2.15. To this end note that, for any x € I
and arbitrary elements (f; &, o) € ‘%(h), we have

?ﬂ;;(f;iv“):(f;(éj—/sUHf/ = v03) H (f — Z/\lml
—th“+J o >

mul%(f)) = {

(3.11)
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where X are the unique coefficients with f — ZZA:;)l No, € L2(H).
Step 1: w.lo.g. (F;G) satisfies (i) and (v).

Let F = (f;&,a),G = (g;m,B) € ‘%( h) be given. By the definition of 7'(f), we
have (F;G) € %(h) if and only if (K, 5+F, Ry 15+G) € iv(b) The relation (3.11)

and Theorem 2.15 (i), (v) show that, under the assumption that (F;G) € T(h),
the present conditions (i) and (v) hold. This implies that, for the proof of the
present theorem, we may assume from the start that (F; G) satisfies ( ) and (v).

Note that the condition () implies that pur = Agy1, £ = 0,...,A — 2, cf.
Corollary 2.10.

Step 2: computation of the conditions (ii)—(iv) in Theorem 2.15.

Let F,G € ‘%(f)) and p, A be as in the formulation of the theorem. Moreover,

let z € 1. We will show that the conditions (i7)—(#v) in Theorem 2.15 for the
element (K, S+F, "% 5, G) read as follows:

(ti5) for each k=0,...,A — 2 we have

1 1
&k = M1 + 5/\Odi + E“A*1d2+k
{mi+1(5—)2f(8—)1, (s—,0) not indivisible,

0, (s—, o) indivisible,
A—

A—1
— o (@) I (D0 Awf (@) + D ah - E:;uhle
=0

=0

,_.

x

$ e ( ok () T () + / (o — wf)* Hrwg )

o

(491y) A-1 0
1 . . 617 o> O,
Ea1 =12 Ndfa g+ pa1dia - .
2 0 =0
1=0 0=

>

+oa (@) (Fl@) = 3 Ami (@) — pa-ami (@)
l

Il
=
g

-1

+ pa—1 / (oa—1 — WA _1)"HwR +/ n*AH(g - mmf)
[eg S_— l

i
=]

A—1

+/’UA1Hf+§:MmA1

1=0
{WZ(S_)Qf(S_)l, (s—, o) not indivisible,
0,

(s—, o) indivisible;

(ivg) if (s—, o) is not indivisible, then

A—1

sy
no = dy +/ oo Hg —vo(z )+ Z by

l\D|P—‘

=0
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Let us start with condition (i7,). Plugging the respective expressions (3.11) for
7%;15+F and 7%;;6’ into Theorem 2.15 (ii) we obtain

sS4 x A—-1 A—1
gk:/ n,*;Her/(nk—mk (f - Z)\lml +Z)\ hy*t

Sy T A—-1 A—1
+ 77k+1—/ o1 Hg —/ (Vg1 — Wi, ) H (g — oy ) Z ) fksil
’ 7 1=0 =0
+ gHA-10A+k + 5 A0 + w1 f(T)1
w7, (s-)2f(s-)1, (s—,0) not indivisible,
0, (s_,0) indivisible

ENS sS4 x A—1
= Mr+1— (/ o1 Hy —/ UZHf) - </(Uk+1 Wi 1) H (g - Z puvoy)
x xr (e

=

A1 "

- / (b — roi)" (f Z Ao} — fia— 11%)) + pa- 1/ (bg — 1of)" HroR
T,54 T,54 1 T 1 k x
+ Z Aihy Z pihy jeiq + 5)\0% + g,uAfldAJrk + w1 f (2

7, ,(s—)2f(s-)1, (s—,o0) not indivisible,
_{ 1 (s=)2f(s-)1, (s—,0) (3.12)

0, (s—,0) indivisible.
The abstract Green’s identity applied to the pairs
(f;g)u (Uk—i-l; Uk) S Tmax(H;EI")

yields
S+ * S+ * *k
/ oii Hy / OLH S = o (2)" T f(2)

and applied to the pairs (remember that pp = Ag41, £ = 0,...,A — 2, and
w®; :=0)

( Z)\lmz —HA—1W0R; g Zﬂlml) (041 =105, 1305 —10%) € Trnax(H|(6,0)),

k=0,...,A—2,
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it gives

>

-1 A—-1

/ (o1 — i) H (g =3 purof) / (o —wp) H (f =3 Awof — s 1103)
g =0 =0
A—-1
—(opt1(2) — Wi (2)) ( Aoy (z MA,lm””A(a:))
=0
A—-1
~(ors1 (@) T (f(@) =3 Awof (2)—pra-1w0A (2) + Wi (2)" T () - (3.13)
— ﬁ_/
1=0 —ot o f(2)

Putting this all together we obtain (iiy).
Next we show the correspondence of (iii,) and Theorem 2.15 (ii7). Plugging
(3.11) into Theorem 2.15 (7i7) gives

sS4 T A—-1 A—1
fa-1 =/ UZ_1Hf+/ (va—1 —wX_)"H(f =D Awf) + D> MbiRt,
x o 1=0 =0

r 2\ -1 2 1 ey - - 615 0> 07
+/ (X)) H (g —Z puoy’) + B} Z N o N N 0 G—0
s 1=0 1=0 o 0=0

w3k (s—)2f(s=)1, (s—, o) not indivisible,
0, (s—, o) indivisible.

Let va be a function as in Lemma 3.7 (ii7); then we can apply (3.13) also with
k = A — 1. Using this we obtain (¢ii,).
Finally, we plug (3.11) into Theorem 2.15 (iv), and obtain

S+ xT
770—/ U*Hg—/ (bo —w§)*H(9—»  utof) byt
o [ (90— wg)* Z -y

which is exactly (iv,).

Step 3: (F;G) € T(h) = (i) — (iv).
For each x € I the pair (k,;, F;r s, G) belongs to T.(h). Hence the con-
ditions (iiy)—(ivy) are satisfied for all z € I, and we may pass to the limit
T — Sy.

Lemma 3.7 (v) and Corollary 3.10 imply that the terms in the third line
of (ii,) tend to 0. The expressions in the first line tend to the corresponding
expressions in (ii), cf. (3.4). We conclude that the limit

tin s (= vur (@) i () + [ (o0 - D) HwR)  (314)

—
T S4 o

exists and that (é¢) will hold once the existence of the limit [ is established.

This, however, follows at once from (3.14) since %(b) certainly does contain
elements with pya_1 # 0.
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Let us next consider (iii,). Since, for zo € I}, the elements va_1Xz,r and
fXxzor both belong to L?(H,,r), we have

s+

Together with Corollary 3.10 this shows that the terms in the fourth line of
(tii5) tend to 0. By (3.4), the terms in the first line approach the corresponding
terms in (4i7). The expression in the last line does not depend on z. It follows
that the limit [r ¢ exists and that the formula (i4¢) holds.

Finally, let us consider (iv,). Since for zg € Iy, fXzor and voX.,r belong to
dom Tipax(Hyor ), we have

lim vo(z)*Jf(z) =0,

T—S4

cf. [HSW, Theorem 3.6]. This together with considerations as above show that
the right-hand side of (iv;) converges to the right-hand side of (iv).
Step 4: (ii) — (iv) = (F;G) € T(p).
For each z € I, we define elements F,,G, € ‘%(h) as Fy = (f; &%, o) and
Gy = (g;n%, B), where

{right—hand side of (ivz), (s—,o) not indivisible,

705 (s_, o) indivisible,

ng =ng, k=1,...,A—1,

¢ {right-hand side of (i), k=0,...,A—2
k=

right-hand side of (iii;z), k=A—1.

Then, by Theorem 2.15 and Step 2, the pair (x %, Fr;r; L, Gz) belongs to
iv(b), and hence (Fy;G;) € %(b) However, as we saw in Step 3, the right-
hand sides of (ii,)—(iv,) tend to the right-hand sides of (ii)—(iv) for z — s;.
Thus

lim F, =F, lim G,=G,

T—sS4 T—S4

and we conclude that (F;G) € %(b) since %(h) is a closed linear relation.

Step 5: boundary values.
Let (F;G) € %(b) be given, and let x € I;. Then

f‘(F;G):fA/{fl F:r;t G)

z,54 1 v N sy
fls2), (s—, o) not indivisible,
i, RN (3.15)
5 d
(770 uRACU R PO l), (s—, o) indivisible,
Ao
where
st A-1
iy = Mo —/ oo Hg — > uhyg™
x 1=0
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If (s—, o) is not indivisible, we are already done. Consider the case when (s_, o)
is indivisible. Since fxu,r and vgXzr both belong to dom Thyax(Hy,r) for some
o € I, we have

lim f(z); = mli)lg vo(z)*Jf(x) = 0.

T—>S4

Hence passing to the limit in (3.15) gives the desired formula.

Step 6: multi-valued part.
We have (0;G) € mulT(h) if and only if (O;i'%;;G) € mulT,(h). However,

if (0;G) € mul %m(h), then by the form of G given in Theorem 2.15 we have
Rrs, G = G. Hence, mul 7(h) = mul T, (h). O
3.13 Remark. Under slightly stronger assumptions on the asymptotics of b, the

limits appearing in Theorem 3.12 can be computed: assume that h satisfies
(Aa) and (Baa). Then, with the notation of Theorem 3.12, we have

=0, k=0,...,A—=2.

Moreover, if (F;G) € %(f)), then

-1

S+
[FyG = / U*AH(Q — Z )\lUl) .

— =

The first relation follows from Lemma 3.7 (v) and (3.2). For the sec-
ond relation note in addition that vax., € domTymax(Hyr) and hence
limg s, 0a(z)*Jf(x) = 0. /

Appendix A. Splitting of the model for an ele-
mentary indefinite Hamiltonian b5

In this appendix we derive some formulae connected with the splitting of an
indefinite Hamiltonian. Although we need the formulae in the case that the
splitting point is to the right of the singularity, we first derive them for the
case that the splitting point is to the left and then apply an order-reversing
reparameterization. This is because the formulae we use from [KW2] are for the
former case.

Let b5t = (H;6,bj;d;" ;) be an elementary indefinite Hamiltonian of kind
(A) defined on (s—,0) U (0,54), let so € I, and let b3y = (H;6,bs;d;" ;) be
the elementary indefinite Hamiltonian obtained by splitting hs* at so. Then,
by §2.2, §2.3 and Remark 2.4, we have the isomorphism

Ksg,s_ ¢ LQ(H%U) [+] ‘13(6?3) - (ﬂp(b:f) .
Let
Wt P(h3H) — L(H) [+ (C2+C2) [H] €7,

if tPh3y) — L (Hagr) ] (C2+C2) [H] €
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be the respective isomorphisms constructed in (IV.4.10). By
(f+2)— (£0,0,0)+ ira, f€ L*(Has,), z € B(hZH),

the map 5. extends naturally to an isomorphism of L?(H«s,) [+] B(hss ) onto

L?(H) [+] (C® 4+ C?) [+] C? which again will be denoted by s .
The isomorphisms 5" and ¢, can be used to transport ks, s_: denote by

Kso,s_ the map defined by

K’os,

L2(Hoag,) [ B35 ——— PBhs*) (A1)

s sS4
Ls; l l ls_

L>(H) [+] (C*+C*) [H C° — L*(H) [+] (C* + C*) [+] C°

Rsg,s_

Our aim in the present section is to give explicit formulae for the action of

.
Rso,s_ -

Explicit form of the splitting isomorphism [KW2, §7].
Let hit and bi, where sy € (s, o) is not an inner point of an indivisible
interval, be given as above. Let t}"  and 0* denote the unique absolutely

continuous functions defined on [s_, s+]\ {o} and [so,s4] \ {o}, respectively,
with values in C? such that (k € N)

(w* ) = JHw " T k=1 (mz:,k)/:JHm:I,k—l’

S—,

s 0 s 0

il = (1) Wa00 = (1>

S+ S+ 0 + S+ 0
Wl (o)l (o) €span{ ()} mle(s0). () € span{ () ],

wit € LX(H), k> A, Wit € L*(Hyyr), k> A.

. . S S
For notational convenience, we set " | =w_" | =0.
- :

A.1 Remark. The functions mz;kv k € Ny, are a priori only defined on [sg, 5]\
{o}. However, on the interval [sg, o), they are of the form

o Zwk j (X[so, )(2))(17), T € [s0,0),

with some sequence w; € R, wy = 1, and where 7 acts as
xT
If:/ JHf, x € [s0,0).
S0

Since H is also defined on (s_, sg), each function mz: , admits a natural con-
tinuation to [s_,sy]\ {o}. Apparently, the relations

S4 ! _ S+
(s ) =JHw ', |, kEN,

hold also on the bigger set (s—,s4) \ {o}. /
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We know from Lemma IV.3.12 that there exist unique real numbers A; such
that

0" (@) r= w3t () — it ( Z)\k _j (X[s,a) (é))(iﬂ)a € [s0,0),

where B is the operator constructed in (IV.2.22). The numbers A; are in fact
given by
MNe =077 (s2)1 = —wol

S()k}

( )1, k € Np.

It will be practical to have the following extension of the abstract Green’s iden-
tity available.

A.2 Remark. Let (P,T,T) be a boundary triple in the sense of Definition IV.2.7.
Let n € N and

va"'afn; go,---59n EP, aitv"'va'ril; 6?:7767% GCQ
be such that

((fjvf] 1) (a Oéj)), ((gjagj 1) (6_7 76+>) jzlv'-'vn
Then

n n

[fo, 9] = [fns 90] = Z(ﬁ;Jrlfj)*Jaj_ - Z( I+1fj)*J0‘;_' (A.2)

Jj=1 Jj=1

This relation is obtained from taking the sum of the equalities
[fi—1sGnr1—5) = [f5s 9n—j] = Brpr ;)" Jay = By ;)" Jaf,

for j =1,. /
The deﬁmtlon of the parameters d’ *k of hsy in [KW2, p. 8121 and Proposi-
tion 7.8] reads as

gt k= dso w027 pol — M1, k€ N, (A.3)

where pg is defined in [KW2, p. 759]. It is essential for our present purposes to
. . . . S4 S
give a more explicit relation between d;” ; and d ;.

A.3 Proposition. We have

k+1
S
d57 - so k sto k+1—j SO m j(SO)la k € No.

Proof. According to Proposition IV.4.7, we have

4 1 s
B (e () = i mtoon

and hence
k—1 k—1
[0, po] = — Z Ap—jroct oy (s-)2 = Zmiﬁ,k_j(sf)lmif,m(sf)z
= =

Zm%,mj it (s-)e.
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Hence

[0, po] = A1 = Z‘Uso p1g(52)10g" S(52)2

_—ZmSO f1— ] )*Jmif)j(s,)

k+1

__Z sokj-‘,-l _] ) Jm:t_]( )

k+1

(*)

== Z mz:,kJrl—j(SO)*szij(SO)
§=0

k+1 k+1
== i (s0) Tt (s0) == D> wit L (s0)2m0l S(s0)1
i=1 =1

The equality sign marked with (x) is obtained from Remark A.2 applied to the
elements

0,005 g,y s O0lt e L?(Has,).
U
Now we are in position to prove formulae for fg, s .
A.4 Proposition. The action of ks, s_ 1s determined by linearity and
S0 (e
Foso,s— (f30,0,0) = (f; (/ (o* ) Hf +/ (O )V Hf) im0 ',0, 0)
S— S0
/%so.,s, (Oa En Oa “) = (07 Eva 07 CX),
"%so,s, (07 07 €k, 0) = ( X‘Wso Xsor’ozo 577
k+j+1 J
1 1 A-1
(5 Z msO,k+J+1 z(SO)Zm (50)1 - §sto,k+g+1 z(SO)Zm ( 0)1 )jzov
I=j+1 =1

Ek,O).

Proof. The construction of &y, s in [KW2, §7] was carried out in a two-step
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procedure according to the following diagram:

L*(H)
L?(Hg,p) X
L?(Has,) X X =~ (CA x C»)
(CA x CA) x C? X
(Cb'
ran Pj ran P 0.8
PN L*(H) /P L*(H)
X X
(CA x C») = (CA x C»)
X X
(Cb' (Cb'

where the notation of [KW2, §7] is used. The second formula in the present
assertion is apparent, since we have

@ (05,0, 00) = (0; &, 0, ),
P(0;£,0,0) = (0;£,0, ).

The first formula is also easy to see: from Lemma IV.7.1 and the proof of
Proposition IV.4.14 we obtain

Pa(rs( [ s+ [T ran?) 00)

s0

S0
= (X"Isof;(/ (w3t )" Hf)] o ,0) = 17 (X450 f)-
Using P = I — P; and the definition (IV.7.2) of @, it follows that

PO rs s [C@pranoo)

S0

_ (wa;(/”( U HE) YL 0,0) = w(xer £50,0,0).

S0

Together we obtain the first formula of the present assertion.
We come to the proof of the last asserted formula. By the definition (IV.7.2)
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of w and the formulae in Remark IV.7.5, we have

1, -
(00, e, 0) = w(pn) — (0 (555 1y) 10 0,0)

- S0,8 1 S

= P(pr, — 0 )_(0;(2dso+k+J)J 0700>

A 1 A-1 S0,5— | 80,5— A-1
P03 (557 1)1y e 0) = P (o5 (03 mi]) 2, 0,0)

- (o (;djgkﬂ)] "010,0)

( X4s0 10 Xsol"ak o (gk] )]4:517 &k, 0)

where

1 s 2 sk kS 50,5
Ekj 5_§(d ot dsz,kﬂ)_/ (o, ) Hw T = [0, py]

50

s 80,S—

+/ (ot )" Ho
S—

By Proposition A.3 we have

k+j+1
1 J

1 S S S
_E(ds:k-l-j - ds;k-i-j) D) Z ms:,k-i-]-i-l 1(50)2"0 ( 0)1-
1=1

Remark A.2 applied to the functions

S4 S+
mSo;k’ T mso k+j+1

S0 S0 S0
/ (rol* J) Hwo'* / (msf)j)*Ha,;” - :/ (rol* 5 Hmsz,C

0,105" gyt € L2(Hl(s_ o))

Jj+1 Jj+1
= Z mif,jﬂ_l( -) Jmi(f,w( -) - Z mif,j+1_l(80)*Jm§$k+l(80) .
=1 =1

Moreover, as we saw in the proof of Lemma IV.7.7, and by (A.3)

J

[0, ps] = [03%5 > pol + Zm:t,z( )T (s-)
=1
=3 ey = A ey T N+ )0 (5 )200 5 (5o
=1
= ey~ gty ~ e ki (81— Z w0 (s-)20p (s
=d." e~y Zm MG EL AW CRIR
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Hence we obtain

Jj+1
1

Erj = §(d§i,k+j so,kJrJ (Zm s_,j+1— i s5-)" JmSo k+l( -)

j+1
- Z we" g1l (80)*Jm§:,k+l(80))

=1

S+ E S+ 50,8~
- (ds,kJrj so,k+j m 2mk+g+1 l( )1)

1 j+1
= _g(dzt,k-i-j - diﬁ,kﬂ) - Zmzt,j-i-l—l( ) sz;k-ﬁ-l(sf)
=1
j+1 j
- Z mzt,j+1—l(50)1m:0+,k+l(50)2 + Z m:t,l( )2m:0+,k+j+1—l(5*)1
=1 =0
1 k+j+1 J
) Z W20k jr1-i(s0)2m0. " Z (50l (s0)2
1=1 =1
| Bt 1 Jd
=3 > w0l (s0)al (so)1 — §Zm§:,k+g+l 1(80)2105" 1 (s0)1 -
I=j+1 =1

Now the relations

P]( - X‘Tsom:t)k - X507020187; (gkj)jA:_ola &k O) = 07

P( = xaso3" = Xsor®p (€kj)f—_ol, 1)
= (= X5, & = Xaor 0777 (&j)f:_ol, ek, 0)
show the third formula of the proposition. 0

Splitting to the right of o.

Of course, similar considerations can be made when the splitting point sg be-
longs to I instead of I_. As noted in Remark IV.7.9, the isomorphism r, s,
can be constructed using the previous case so € I_ and an order-reversing repa-
rameterization. In order to obtain explicit formulae, we have to carry out this
argument in some more detail.

A.5 Definition. Let h be an elementary indefinite Hamiltonian of kind (A)
which is given by the data H, é,b,,d; and where H is defined on [s_, 0)U(0, s4].

Define an elementary indefinite Hamiltonian E of kind (A) on the interval
[-s4,—0) U (—0,—s_] as the collection of data

hji= (=1)"79b;,  dyi= (—1)d;.

anf)
=
Il
Ja
|
=
Q:
o
Q@‘

/
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By Lemma IV.5.19, there exists an isomorphism between B(h) and ‘]3(6) which
transfers T'(h) to —T(E) and reverses boundary values. More precisely, working

in terms of the isomorphic copies ’B(h) and %(B), it is easy to see that the map
Kp: P(h) — P(h) defined as

Ry (F1EA 00 = (F(=0; (FD76)750 (1055 (F)P 2 )iy

is an isomorphism and has the property

((F;G); (asb)) € T(h) <= ((ky F;— iy G); (bja)) € I(h).

If H is a positive definite regular Hamiltonian defined on an interval (s_, sy ),
then

H (t) := H(-t)
is a positive definite regular Hamiltonian defined on the interval (—s4, —s_).
The map

Kg: fe f(=t)

is an isomorphism of L2(H) onto L2(h) and satisfies
((F;G); (b)) €T(H) <= ((k F; = kg G); (bia)) € T(H),

cf. Lemma IV.2.6.

These order-reversing isomorphisms are compatible with the pasting of
boundary triples: let b be an elementary indefinite Hamiltonian of kind (A)
defined on [s_, o) U (o, so], and let H be a positive definite regular Hamiltonian
defined on (sg, s+). Then the map Ky, which is defined as

Eh,H: F@f P—>EH f@ Eh F
is an isomorphism of B(h) & L2(H) onto L2(H) ® P(h), and we have

(F& f;G@®g)i(a;b)) € T(h) WI(H) =
((Ry.ir (F & f);— o.m (G ®g));(bia)) € T(H)wT(h)

Now we are ready to describe the splitting isomorphism for splitting to the

right of the singularity. Functions rw?° ° i are defined correspondingly, and we
set 0;0°F = ms,,k — 3’ . Moreover, let h® = (Ha4s,;0,b5:d3° ;) be the
elementary indefinite Hamiltonian obtained by splitting b5 at so, and let s s,
be the isomorphism of L2(H)[+] (CA +C?)[+]C? onto itself defined by the

diagram corresponding to (A.1).

A.6 Proposition. Let bt = (H;6,bj;5d." ) be an elementary indefinite
Hamiltonian defined on [s_, ) U (o, s4], and let so € Iy. With the notation
described above, the numbers d T ond a° ° i are related as follows:

k+1
dii,k = difk - Zmii,k+17j(80)2m§f,j(80)17 k € No.

Jj=1
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The action of the map R, ,s, is given by linearity and

fiagey (£10,0,0) = (f;(/M(mjﬁj)*Her/:o(aS“ CYHE) ,0)

S0
’%50,s+ (07 E,, 07 CX) = (07 E,, 07 (X)

50,5+,

%So,s+ (07 07 Ek? 0) = <_X80sz X‘-\Soo )

1k+;+1 At
(_5 Z 2 kpgar—(s0)2t0” y(so)1 + 5 stf kg1t (50)2105" 1 (s0)1 )jfo’
l=j+1 l 1 N

Ekuo)u

Proof. Define elementary indefinite Hamiltonians of kind (A) by
b5, = (H;6,(=1)°7bd 7 ),

h:z(: = (E[—Sor;67( )O Jb.%dfsg J)

where
—s— k
d72+,k - (_1) dzt,k’
k+1
d_3 p=d” 21 rt Z W o (—s0)2 5T i(=so

Then, apparently, b:s’ =hst, and b:z; is just the Hamiltonian which appears

S_—

in the splitting of h_| s, at the point —sg according to the previous subsection,
cf. Proposition A.3. Moreover, since we have

w0 (1) = (=1t (=), wIl () = (1) (1), (A.4)
and thus also 9, * """ (t) = (—1)*0;""* (—t), we see that
b =H3 -
It follows that we have isomorphisms

—

s
00 Hyop

P(h) @ L2 (Hyr) —

—
K —s

- o ¢ | Kesg—s_ o _o b . s
L*(Ho—so) @ B(O75)  — BOZL) — PO).
Moreover, their composition

=K —s_ OK,75017570 K/h\f() Hs.r
b, 50 Hsg

satisfies

((k x &) x (id x id)) (D(h20 ) W T(Hy,r)) = T(h3F) .
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Putting together the formulae for Eh::’ K—sg,—s_, and Ehi‘l,Hsor’ as given in
their definition and in Proposition A.4, and keeping in mind the relations (A.4),
a straightforward calculation yields that k = k4, s, as defined in the statement

of the present proposition. O

Transitivity of splitting isomorphisms.

Let an elementary indefinite Hamiltonian b3 = (H; 6, by; dz:j) of kind (A) be
given, and assume that sp and s; with o < s¢p < s; < sy are both not inner
points of indivisible intervals. From Proposition A.6 we obtain numbers dzi j
and dzi)j, and isomorphisms ks, and ks, s, . Applying Proposition A.6 with
the Hamiltonian h3' and the splitting point so we get a Hamiltonian h3° with

corresponding parameters d:g ; and an isomorphism ks, - Altogether, we find

ourselves in the following situation:

P(h0 ) x L*(H|(s,51)) Kog,ey Xid 9
X ———— P(h3) x L2 (H|(s,,54))
L (H|(81,S+))
531,s+
‘B(bgo,) X LQ(H|(SO,S+)) m( it)

Koot
A.7 Proposition. In the situation described above, we have

b =b3° and KRsy,sy © (Ksg,s; X id) = Kso,sy

Proof. This statement can be deduced easily from Proposition IV.5.18, when
one slightly changes the point of view. Define hst by specifying parameters

k+1

At =d > w0 (0)2m5t (s0)1
7=0

Then Proposition A.6 furnishes us with an isomorphism

’%80,8+ : %(622) X L2(H|(So,s+)) - m(f)if)

From the formulae in Proposition A.6 it is apparent that Fsg,s, = Ksg,s, . 1hus

(K154 ©(Ksg,s, Xid)o m;ﬁH ;id) is an isomorphism between the boundary triples

B(hst) and B(h). By Proposition IV.5.18 and its proof it follows that

cz::k:d::k, Ksysp O (Ksg,sy xid)on;ﬁﬂ =id.
The equality szk = dsz clearly implies that also Jg‘ik =dy 4 0
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