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Abstract

Recently, a generalization to the Pontryagin space setting of the notion of
canonical (Hamiltonian) systems which involves a finite number of inner
singularities has been given. The spectral theory of indefinite canonical
systems was investigated with help of an operator model. This model
consists of a Pontryagin space boundary triple and was constructed in an
abstract way. Moreover, the construction of this operator model involves
a procedure of splitting-and-pasting which is technical but at the present
stage of development in general inevitable.

In this paper we provide an isomorphic form of this operator model
which acts in a finite dimensional extension of a function space naturally
associated with the given indefinite canonical system. We give explicit
formulae for the model operator and the boundary relation. Moreover, we
show that under certain asymptotic hypotheses the procedure of splitting-
and-pasting can be avoided by employing a limiting process.

We restrict attention to the case of one singularity. This is the core of
the theory, and by making this restriction we can significantly reduce the
technical effort without losing sight of the essential ideas.
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1 Introduction

A canonical system is a 2 × 2-system of differential equations of the form

y′(t) = zJH(t)y(t), t ∈ (s−, s+) , (1.1)

with a locally integrable, real-valued and non-negative 2×2-matrix valued func-
tion H(t), a complex parameter z, and the signature matrix

J :=

(
0 −1

1 0

)

.

The function H(t) is also called the Hamiltonian of the system (1.1). Equa-
tions of this form frequently occur in analysis and natural sciences; for example
in Hamiltonian mechanics, cf. [Ar], [Fl], as generalizations of Sturm–Liouville
equations, cf. [R], or in the study of strings, cf. [At], [KK], [Ka3].

Canonical systems can be viewed from an operator theoretic perspective
as a boundary triple B(H) = (L2(H), Tmax(H),Γ(H)). Here the Hilbert space
L2(H) is a weighted L2-space of 2-vector valued functions, the operator Tmax(H)
is the natural maximal differential operator in L2(H) associated with (1.1) (ac-
tually, it can be a linear relation, i.e. a ‘multi-valued operator’), and Γ(H) is the
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natural boundary map. This construction goes back to [Ka1], [Ka2]; see also,
e.g. [HSW], [Sa], [O], [GK].

In various contexts generalizations of canonical systems appear which in-
clude a finite number of singularities (point-interaction type singularities or
non-integrability of H). Such examples are found, e.g. in Sturm–Liouville equa-
tions with singular potentials, cf. [FuL], [GZ], [DS], [EGZ], indefinite versions
of the Hamburger and the Stieltjes power moment problems, cf. [KL1], [RS1],
the extension problem of positive definite functions, cf. [KL2], [LLS], [KW1], or
the theory of generalized strings, cf. [LW], [KWW]. In many examples a large
part of the spectral theory particular to canonical systems (Titchmarsh–Weyl
coefficient, Fourier transform, spectral multiplicity, etc.) can be carried over.
The reason lying behind this fact is that for many problems an operator model
which acts in a Pontryagin space (instead of a Hilbert space) can be constructed;
see, e.g. [RS2], [RS3], [RS4], [vDT], [P], [Sh], [DL], [DLSZ], [KuLu], [AK].

In [KW2] an indefinite analogue of the equation (1.1) which includes finitely
many singularities was considered, a notion of a generalized Hamiltonian h was
defined, and a corresponding Pontryagin space model consisting of a bound-
ary triple B(h) = (P(h), T (h),Γ(h)) was constructed. This notion of indefinite
canonical systems covers the known examples and, actually, goes as far as Pon-
tryagin space theory can possibly lead.

One drawback of the construction in [KW2] is that it is rather abstract and
not easy to work with in particular instances of the theory. Our aim in the
present paper is to give a more concrete form of this Pontryagin space model.
We identify the model space with a finite-dimensional extension of a function
space and the model operator as a finite-dimensional perturbation of the natural
maximal differential operator in this function space.

Throughout this paper we restrict considerations to the case of one singu-
larity only. This restriction is made for two reasons. First, as a general rule,
results obtained for the case of one singularity will transfer to the general case
by sufficient technical labour. Secondly, many previously studied instances of in-
definite canonical systems actually do involve only one singularity. For example,
Sturm–Liouville equations with singular potentials like the Bessel equation, cf.
[DS], or the canonical system arising from the positive definite function studied
in [LLS]. Altogether, we may say that the restriction to the case of one singular-
ity significantly reduces the technical effort without losing sight of the essential
ideas and still covers a range of examples.

Let us outline the contents of this paper. In the second part of the present
introductory section we recall the notion of generalized Hamiltonians h as in-
troduced in [KW2] and make precise our overall assumptions on h. In Section 2

we associate with h a boundary triple
m
Bx0

(h) = (
m
Px0

(h),
m
T x0

(h),
m
Γx0

(h)) which
is isomorphic to the boundary triple B(h) originally constructed in [KW2]. The

space
m
Px0

(h) is a finite-dimensional extension of a certain function space. Our

first main result is an explicit description of the model operator
m
T x0

(h) as a
finite-dimensional perturbation of the natural maximal differential operator in
this function space, cf. Theorem 2.15, Corollary 2.20, Remark 2.21.

The model
m
Bx0

(h) (in particular, the operator
m
T x0

(h)) depends on a
splitting-point x0 to the right of the singularity. The question whether the
x0-dependence can be removed is natural. It is our aim in Section 3 to show
that under certain asymptotic conditions on h, this is possible. We apply a
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limiting procedure to obtain an x0-independent model boundary triple
m
B(h),

cf. Proposition 3.9 and the paragraph preceding it. The underlying Pontryagin

space
m
P(h) is a finite-dimensional extension of the same function space which

appears in Section 2, and the model operator
m
T (h) is a finite-dimensional per-

turbation of the maximal differential operator in this space. Our second main

result, besides the fact that
m
B(h) is well defined, is the explicit description ofm

T (h) given in Theorem 3.12.
The paper closes with an appendix, where we prove some technical formulae

related to [KW2, §7]. These formulae are needed in the asymptotic consider-
ations of Section 3. However, in order to not disturb the line of thoughts in
Section 3, we shifted their proof to the appendix.

Throughout the paper the notation ‘(IV.2.3)’ refers to equation (2.3) in
[KW2] and ‘Proposition IV.4.14’ to Proposition 4.14 in [KW2].

The notion of general Hamiltonians.

First we have to introduce (or recall) some preliminary notation.
We call a function H a Hamiltonian if it is defined on some interval (L−, L+),

takes real and non-negative 2 × 2-matrices as values, is locally integrable on
(L−, L+) and does not vanish on any set of positive measure.

We say that H is in limit circle or limit point case at L+ if for one (and
hence for all) α ∈ (L−, L+) we have

∫ L+

α

trH(t) dt <∞ or

∫ L+

α

trH(t) dt = ∞, respectively.

Similarly, we distinguish limit circle/point case at the endpoint L−, depending
whether

∫ α

L−
trH(t) dt is finite or infinite.

An interval (α, β) is called H-indivisible of type φ if

H(t) = h(t)ξφξ
T
φ , t ∈ (α, β) ,

where ξφ := (cosφ, sinφ)T and h(t) is some scalar function that is positive
almost everywhere.

We recall the definition of the space L2(H) and the maximal relation
Tmax(H); for details see, e.g. [KW2, §2]. Let H be a Hamiltonian defined
on (L−, L+). Then L2(H) is the space of measurable functions f defined on
(L−, L+) with values in C

2 which satisfy

(i)

∫ L+

L−

f∗Hf <∞,

(ii) ξTφ f is constant a.e. on every indivisible interval of type φ,

factorized with respect to the equivalence relation =H where

f =H g ⇐⇒ H(f − g) = 0 a.e.

and endowed with the inner product

(f, g) :=

∫ L+

L−

g∗Hf.
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In the space L2(H) the maximal relation Tmax(H) is defined as

Tmax(H) :=
{

(f ; g) ∈
(
L2(H)

)2
: ∃ representatives f̂ , ĝ of f, g such that

f̂ is locally absolutely continuous and

f̂ ′ = JHĝ a.e. on (L−, L+)
}

.

The minimal relation is the adjoint of the maximal: Tmin(H) := (Tmax(H))∗.
Next we recall the notion of boundary triples, which is quite useful and has

recently been studied by many people; see, e.g. [B], [D], [DHMS1], [DHMS2].
The definition we use is taken from [KW2]. A boundary triple is a triple (P , T,Γ)
where (P , [·, ·]) is a Pontryagin space and T ⊆ P × P and Γ ⊆ T × (C2 × C2)
are closed linear relations with domΓ = T that satisfy

(i)
[g, h] − [f, k] = y∗1Jx1 − y∗2Jx2 (1.2)

for all
(
(f ; g); (x1;x2)

)
,
(
(h; k); (y1, y2)

)
∈ Γ;

(ii) kerΓ = T ∗.

Moreover it is assumed that P carries a conjugate linear, anti-isometric involu-
tion ·̄ : P → P such that T and Γ are compatible with this conjugation. For
details see Definition IV.2.7.

An isomorphism from a boundary triple (P , T,Γ) to a boundary triple
(P̃ , T̃ , Γ̃) is a pair (̟,φ) where ̟ and φ are isometric isomorphisms from P
onto P̃, and in

(
C2×C2,

((
J 0
0 −J

)
·, ·
))

, respectively, where ̟ is compatible with
conjugation and the relations

(̟ ×̟)(T ) = T̃ , Γ̃ ◦ (̟ ×̟)|T = φ ◦ Γ

are valid; see Definition IV.2.12.
The pasting

(P , T,Γ) = (P1, T1,Γ1) ⊎ (P2, T2,Γ2)

of two boundary triples (P1, T1,Γ1) and (P2, T2,Γ2) is a boundary triple where,
roughly speaking, elements in T are combinations of elements of T1 and T2 where
the right boundary value of the first must coincide with the left boundary value
of the second element. For details, see Definition IV.6.1.

With a Hamiltonian H one can associate a boundary triple B(H) =
(L2(H), Tmax(H),Γ(H)) where Γ(H) is the boundary relation defined as fol-
lows: Γ(H) consists of all pairs

(
(f ; g); (a; b)

)
∈ T × (C2 × C

2) for which there

exists a locally absolutely continuous representative f̂ of f such that

a =







lim
x→L−

f̂(x), H in limit circle case at L−,

0, H in limit point case at L−,

b =







lim
x→L+

f̂(x), H in limit circle case at L+,

0, H in limit point case at L+.
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With a Hamiltonian H , which is in limit circle case at L−, in [KW2, Defini-
tion 3.1] a number ∆(H) ∈ N ∪ {0,∞} was associated. This number measures
in some sense the growth of H towards L+. For example, ∆(H) = 0 means that
∫ L+

L−
trH(t) dt <∞; or if

∫ L+

L−
trH(t) dt = ∞ and for some L1 < L+ the interval

(L1, L+) is H-indivisible, then ∆(H) = 1; see [KW2, §3] for details.
Assume that H is in limit circle case at L− and in limit point case at L+.

Then we say that H satisfies the condition (HS) if the resolvents of one (and
hence of all) self-adjoint extensions of the minimal relation Tmin(H) associated
with H are Hilbert–Schmidt operators. In this case, the growth of H towards
L+ is bounded in one (and extremal in another) direction in the sense that for
a unique angle φ(H) ∈ [0, π) we have

∫ L+

L−

ξTφ(H)H(t)ξφ(H) dt <∞ ,

cf. [KW3, Theorem 2.4]. The direction of ‘extremal growth’ is then ξφ(H)+ π
2
.

If H is a Hamiltonian on (L−, L+) and α ∈ (L−, L+), then H+(t) :=
H |(α,L+)(t) and H−(t) := H |(L−,α)(−t) are Hamiltonians defined on (α,L+)
or (−α,−L−), respectively. Both, H+ and H−, are in limit circle case at their
left endpoint. At their right endpoint limit circle or limit point case prevails
depending on the behaviour of H at L+ or L−, respectively.

Numbers ∆±(H) are defined as ∆±(H) := ∆(H±). Moreover, we say that
H satisfies (HS+) or (HS−) if H+ or H−, respectively, satisfies (HS). Numbers
φ±(H) are defined correspondingly. Let us note that each of these notions is
independent of the choice of α in the definition of H±, cf. Lemma IV.3.12.

1.1 Definition. A general Hamiltonian h is a collection of data of the following
kind:

(i) n ∈ N ∪ {0}, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1,

(ii) Hamiltonians Hi, i = 0, . . . , n, defined on the intervals (σi, σi+1), respec-
tively,

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with
bi,1 6= 0 in the case öi ≥ 1,

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R, i = 1, . . . , n, where
∆i := max{∆+(Hi−1),∆−(Hi)},

(v) a finite subset E of {σ0, σn+1} ∪
⋃n
i=0(σi, σi+1),

which is assumed to be subject to the following conditions:

(H1) H0 is in limit circle case at σ0 and, if n ≥ 1, in limit point case
at σ1. Hi is in limit point case at both endpoints σi and σi+1,
i = 1, . . . , n− 1. If n ≥ 1, then Hn is in limit point case at σn.

(H2) For i = 1, . . . , n − 1 the interval (σi, σi+1) is not Hi-indivisible. If
Hn is in limit point case at σn+1, then also (σn, σn+1) is not Hn-
indivisible.
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(H3) We have ∆i < ∞, i = 1, . . . , n. Moreover, H0 satisfies (HS+), Hi

satisfies (HS−) and (HS+) for i = 1, . . . , n − 1, and Hn satisfies
(HS−).

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

(H5) Let i ∈ {1, . . . , n}. If for some ε > 0, the interval (σi − ε, σi) is
Hi−1-indivisible and the interval (σi, σi + ε) is Hi-indivisible, then
di,1 = 0. If additionally bi,1 = 0, then also di,0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) 6= ∅ for i = 1, . . . , n − 1. If Hn

is in limit point case at σn+1, then also E ∩ (σn, σn+1) 6= ∅. Let
i ∈ {0, . . . , n}; if (α, σi+1) or (σi, α) is a maximal Hi-indivisible
interval, then α ∈ E.

(E2) No point of E is an inner point of an indivisible interval.

The number

ind− h :=

n∑

i=1

(

∆i +
[ öi

2

])

+
∣
∣
{
1 ≤ i ≤ n : öi odd, bi,1 > 0

}∣
∣

is called the negative index of the general Hamiltonian h. Moreover, h is called
definite if ind− h = 0, and indefinite otherwise. We say that h is in limit point
case or limit circle case if Hn has the respective property at σn+1. �

In order to shorten notation we shall write a general Hamiltonian h which is
given by the data n, σ0, . . . , σn+1, H0, . . . , Hn, ö1, . . . , ön, bi,j , di,j , E, as a triple

h = (H, b, d),

where H represents the Hamiltonians Hi, including their number n and their
domains of definition (σi, σi+1), b represents the numbers öi and bi,j , and d

represents the numbers di,j and the subset E. Apparently, we may also identify
H with the function defined on

⋃n
i=0(σi, σi+1) by

H |(σi,σi+1) = Hi, i = 0, . . . , n . (1.3)

We will speak of H as the Hamiltonian function of h. The boundary triple
associated with h by means of Definition IV.8.5 will be denoted as B(h) =
(P(h), T (h),Γ(h)).

1.2 Remark. Intuitively, the notion of a general Hamiltonian can be understood
as follows: we deal with the differential equation f ′ = zJHf given on an interval
(σ0, σn+1) which involves some kind of singularities located at the points σi,
i = 1, . . . , n. Condition (H1) says that the differential equation is regular at
σ0, so that the initial value problem at σ0 is well posed, but that σ1, . . . , σn
actually are singularities. Moreover, and this is the condition (H2), two adjacent
singularities σi and σi+1 must be separated by more than just a single indivisible
interval. The meaning of (H3) is that the growth of Hi towards a singularity is
not too fast. Moreover, (H4) is an interface condition at σi.

The numbers öi ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 model the part of the sin-
gularity σi which is concentrated at σi, whereas the numbers di,0, . . . , di,2∆i−1

model the part of this singularity which is in interaction with the local behaviour
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around σi. The elements of E in the vicinity of σi determine quantitatively what
‘local’ here means. The freedom of this interaction is, by the first part of (H5),
restricted if to both sides of σi indivisible intervals adjoin. The possibility that
on both sides of σi indivisible intervals adjoin and at the same time bi,1 = 0,
can occur by the second part of (H5) only in the case of ‘indivisible intervals of
negative length’, the simplest possible kind of a singularity. �

For the reasons already mentioned we consider singular general Hamiltonians
having only one singularity. More precisely, whenever the notation h appears or
we speak of a general Hamiltonian, we will understand that h is subject to the
following conditions.

1.3. Form of h.
Let h be a singular general Hamiltonian such that

(i) h has only one singularity σ1 =: σ.

Due to this assumption, h is given by data H , ö, bj , dj , and E. Besides (i), we
assume that the following conditions are satisfied.

(ii) The singularity σ may be the endpoint of an indivisible interval adjoining
from the right or adjoining from the left, but not both.

(iii) The Hamiltonian function H of h is defined on a set I = (s−, σ) ∪ (σ, s+)
where −∞ < s− < σ < s+ ≤ +∞.

(iv) For one (and hence for all) x0 ∈ (σ, s+), the function
(
1
0

)
belongs to the

space L2(H |(s−,σ)∪(σ,x0)).

(v) We have bö+1 = 0.

�

Some remarks concerning these conditions are in order. Let us explain that actu-
ally (ii) is only an insignificant restriction and (iii)–(v) are no loss of generality
at all.

1.4 Remark. Let h be a singular general Hamiltonian with only one singularity.

Condition (ii): If indivisible intervals adjoin to both sides of σ, then the model
B(h) is very simple. Actually, we only need to use the cases (B) or (C) of
Definition IV.4.1. The contribution of the singularity to the model is finite
dimensional and explicitly described by Definition IV.4.3 and Definition IV.4.5.
Hence, requiring (ii) just rules out some more or less trivial cases. We require
(ii) in order to avoid repeated distinction of cases.

Condition (iii): The Hamiltonian function of h is defined on some set of the
form (s−, σ) ∪ (σ, s+) where −∞ ≤ s− < σ < s+ ≤ +∞. By an obvious
reparameterization we can achieve that s− 6= −∞. Hence, assuming (iii) is no
loss of generality.

Condition (iv): We know that the space L2(H |(s−,σ)∪(σ,x0)), x0 ∈ (σ, s+), con-
tains the constant function ξφ(H) where φ(H) := φ+(H |s−,σ). Using rotation
isomorphisms, cf. Remark IV.2.28, it is no loss of generality to assume that
φ(H) = 0, i.e. that (iv) holds. The procedure of rotation is actually already
implemented in the very definition of B(h), cf. Definition IV.8.5.
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Moreover, if an indivisible interval adjoins at σ, then its type equals π
2 by

condition (iv).

Condition (v): By Proposition IV.8.13 it is no loss of generality to assume that
bö+1 = 0. �

2 Function space realization

Elements of various model spaces under consideration will be tuples whose en-
tries are either (equivalence classes of) functions, or elements of C∆ or Cö. In
order to shorten notation, we agree on the following.

2.1. Notational conventions.

(1) Elements of C∆ or Cö will be denoted by upright Greek letters, like, e.g.
α,β, ξ, etc. There coordinates will be denoted by the corresponding normal font
Greek letter. Indices range between 0 and ∆−1 for elements of C∆ and between
1 and ö for elements of Cö. Whether a vector belongs to C∆ or Cö will always
be clear from the context and thus not be indicated explicitly (often α,β ∈ C

ö

and vectors denoted by other Greek letters are in C∆). So, for example, we
would have

ξ = (ξj)
∆−1
j=0 , λ = (λj)

∆−1
j=0 or α = (αj)

ö
j=1 .

Complex conjugation will be denoted accordingly, e.g. we will use ξ := (ξj)
∆−1
j=0 .

(2) The k-th canonical basis vector of either C∆ or Cö will be denoted by εk.
That is, we write

εk := (δkj)
∆−1
j=0

(

or εk := (δkj)
ö
j=1, respectively

)

,

where δkj denotes the Kronecker delta symbol

δkj :=

{

1, k = j,

0, k 6= j.

(3) We will deal with elements (ξ,α) of C∆ × Cö. The number ∆ is always at
least 1, and hence the component ξ is always present. The number ö, however,
may be equal to zero in which case the second component α is not present at
all. Still, in order to unify notation, we will always write (ξ,α) ∈ C∆ × Cö and
understand that α is empty if ö = 0.

(4) If F is a function defined on some subset D of the real line R, and x0 ∈ R,
then we set

F�x0
:= F |D∩(−∞,x0], Fx0� := F |D∩[x0,+∞) .

In the same spirit, we let χ�x0
and χx0� denote the indicator functions

χ�x0
:= χ(−∞,x0], χx0� := χ[x0,+∞) .

If we are given two functions f1, f2, then we understand by f := f1χ�x0
+f2χx0�

the function

f(x) :=

{
f1(x), x < x0, x ∈ dom f1,

f2(x), x > x0, x ∈ dom f2.
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no matter what the original domains of definition of f1 and f2 are.

(5) Let H be a Hamiltonian function (more precisely, a collection of two
Hamiltonian functions in the sense of (1.3)) defined on a set of the form
I = (s−, σ) ∪ (σ, s+). Then we denote by I+ the set of all points x0 ∈ (σ, s+)
which are not inner points of an H-indivisible interval and, correspondingly, by
I− the set of all points x0 ∈ (s−, σ) which are not inner points of anH-indivisible
interval. �

a. Identification of B(h) as pasting of two components.

Building blocks for a general Hamiltonian h are positive definite and elementary
indefinite Hamiltonians, cf. Definition IV.4.1, and building blocks for the model
B(h) are the boundary triples associated with such Hamiltonians, cf. [KW2,§2.1], Definition IV.4.10, IV.4.11, IV.4.12. In [KW2, §7] the following fact was
shown.

2.2. Splitting of elementary indefinite Hamiltonians.
Let h

s+
s− = (H ; ö, bj; d

s+
s−,j

) be an elementary indefinite Hamiltonian of kind (A)

defined on (s−, σ)∪ (σ, s+), and let s0 ∈ I− be given. Then there exist numbers
d
s+
s0,j

such that the boundary triples B(h
s+
s− ) and B(H�s0)⊎B(h

s+
s0 ) are isomor-

phic, when h
s+
s0 is the elementary indefinite Hamiltonian of kind (A) defined on

(s0, σ) ∪ (σ, s+) given by the data

hs+s0 := (Hs0�; ö, bj ; d
s+
s0,j

) .

Here B(H�s0 ) denotes the boundary triple (L2(H�s0 ), Tmax(H�s0),Γ(H�s0)) as-
sociated naturally with H�s0 , and B(h

s+
s−) and B(h

s+
s0 ) denote the boundary

triples associated with the elementary indefinite Hamiltonians h
s+
s− and h

s+
s0 , re-

spectively.
The isomorphism between these boundary triples is of the form (γs0,s− ; idC4)

where
γs0,s− : P(hs+s−) → L2(H |(s−,s0)) [+̇] P(hs+s0 ) .

The map γs0,s− is compatible with conjugation and satisfies

L2(H |(s−,s0)) [+̇] P(h
s+
s0 )

id [+̇]ψ(h
s+
s0

)

��

P(h
s+
s−)

γs0,s
−

oo

ψ(h
s+
s
−

)

��
M((s−, s0))/=H

×M((s0, s+)\{σ})/=H
M((s−, s+)\{σ})/=H

where ψ(h
s+
s0 ) and ψ(h

s+
s−) are the respective maps defined on [KW2, p.760] and

M(Î) is the set of measurable C2-valued functions on a set Î ⊆ R; see [KW2,§2].
The analogous statement is true when s0 ∈ I+. Then we find an elemen-

tary indefinite Hamiltonian hs0s− = (H�s0 ; ö, bj ; d
s0
s−,j

) defined on (s−, σ)∪ (σ, s0)

together with an isomorphism γs0,s+ : P(h
s+
s−) → P(hs0s−) [+̇]L2(H |(s0,s+)). �

The statement made in §2.2 can also be read the other way.

2.3. Pasting.
Let h

s+
s0 = (H1; ö, bj ; d

s+
s0,j

) be an elementary indefinite Hamiltonian of kind (A)
defined on (s0, σ) ∪ (σ, s+), and let H2 be a Hamiltonian function defined on
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(s−, s0). Assume that, if H2 ends with an indivisible interval and H1 starts with
an indivisible interval, these indivisible intervals are not of the same type. Set

H(t) :=

{
H2(t), t ∈ (s−, s0),

H1(t), t ∈ (s0, σ) ∪ (σ, s+).

Then there exist numbers d
s+
s−,j

such that the boundary triples B(h
s+
s− ) and

B(H�s0 )⊎B(h
s+
s0 ) are isomorphic, where h

s+
s− is the elementary indefinite Hamil-

tonian of kind (A) defined on (s−, σ) ∪ (σ, s+) by the data

hs+s− := (H ; ö, bj; d
s+
s−,j

) .

The isomorphism

κs0,s− : L2(H |(s−,s0)) [+̇] P(hs+s0 ) → P(hs+s−)

between these boundary triples has the same properties as the one in §2.2.
The analogous statement is true when s0 ∈ I+. In this case we obtain h

s+
s−

and an isomorphism

κs0,s+ : P(hs0s−) [+̇]L2(H |(s0,s+)) → P(hs+s−)

out of hs0s− plus a Hamiltonian function H2 defined on (s0, s+). �

It follows from Proposition IV.5.18 and our overall assumption that bö+1 =
0 that the numbers d

s+
s0,j

, ds0s−,j obtained in §2.2 and d
s+
s−,j

obtained in §2.3,
respectively, are uniquely determined.

2.4 Remark. The explained splitting and pasting procedures are converse to
each other in the following sense.

Pasting after splitting: Let h
s+
s− be an elementary indefinite Hamiltonian de-

fined on (s−, σ) ∪ (σ, s+), let s0 ∈ I−, and let h
s+
s0 be the elementary indefinite

Hamiltonian defined on (s0, σ) ∪ (σ, s+) which is obtained by splitting h
s+
s− at

s0. Since s0 ∈ I−, the hypothesis required in §2.3 in order to paste h
s+
s0 with

H |(s−,s0) is satisfied. Let h̃
s+
s− be the elementary indefinite Hamiltonian defined

on (s−, σ) ∪ (σ, s+) obtained by means of §2.3. Then we have h̃
s+
s− = h

s+
s− .

Splitting after pasting: Let h
s+
s0 be an elementary indefinite Hamiltonian defined

on (s0, σ) ∪ (σ, s+), let H2 be a Hamiltonian function defined on (s−, s0), and
assume that the hypothesis of §2.3 is satisfied. Let h

s+
s− be the elementary

indefinite Hamiltonian defined on (s−, σ)∪ (σ, s+) obtained by pasting h
s+
s0 with

H2. Then the number s0 belongs to I− (for the Hamiltonian h
s+
s−). Let h̃

s+
s0

be the elementary indefinite Hamiltonian defined on (s0, σ) ∪ (σ, s+) which is
obtained by splitting h

s+
s− at s0. Then we have h̃

s+
s0 = h

s+
s0 .

In both situations we have κs0,s− = γ−1
s0,s−

. �

The similar statements of course hold true when the point s0 is located to the
right of σ. We revisit the splitting/pasting procedure in more detail in the
appendix, where we give explicit formulae for the numbers d

s+
s0,j

, ds0s−,j , d
s+
s−,j

and for the action of the isomorphisms κs0,s− and κs0,s+ .
By repeated application of the splitting/pasting procedure, we can reduce

the set of splitting points of a given general Hamiltonian.
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2.5 Lemma. Let h = (H ; ö, bj ; dj ;E), E = {s−, s1, . . . , sn, s+}, be a general
Hamiltonian (of the form 1.3). Moreover, let x0 ∈ I+ be given. Then there exist
unique numbers dx0

j such that the boundary triple B(h) is isomorphic to

Bx0
(h) = (Px0

(h), Tx0
(h),Γx0

(h)) := B(hx0
) ⊎ B(Hx0�) ,

where hx0
is the elementary indefinite Hamiltonian of kind (A) given by the data

hx0
:= (H�x0

; ö, bj; d
x0

j ) . (2.1)

Proof. We are in the situation

• • • • • •×

s− σ x0 s+
s1 · · · sm sm+1 · · ·

sk
sk+1 · · · sn

z }| {

h
sm+1
sm

where h
sm+1

sm is the elementary indefinite Hamiltonian

hsm+1

sm
= (H |(sm,sm+1); ö, bj; dj) .

First we apply successively the isomorphisms κsm,sm−1
, . . . , κs1,s− starting from

h
sm+1

sm , and paste in the corresponding pieces with the Hamiltonian functions
H |(sm,sm−1), . . . , H|(s1,s−). In this way, we obtain an elementary indefinite
Hamiltonian h

sm+1
s− of the form (H |�sm+1

; ö, bj ; d
sm+1

s−,j
) such that

B(h) ∼= B(hsm+1

s−
) ⊎ B(Hsm+1�) .

If x0 > sm+1, we apply successively the isomorphism κsm+1,sm+2
, . . . , κsk,x0

where we paste in the corresponding pieces with the Hamiltonian functions
H |(sm+1,sm+2), . . . , H|(sk,x0). By this procedure, we obtain the desired elemen-
tary indefinite Hamiltonian hx0

= (H |�x0
; ö, bj ; d

x0

j ). If x0 ∈ (σ, sm+1), we use
the splitting isomorphism γx0,sm+1

and again obtain hx0
as desired. ❑

Note the difference in the notation between Bx0
(h) and B(hx0

). The latter
is a boundary triple connected with a Hamiltonian on (s−, x0), the former is a
boundary triple connected with a Hamiltonian on (s−, s+) with splitting point
x0.

b. The function space L2
∆(H).

If h is a general Hamiltonian, the relation T (h) can be mapped to a relation
acting in a certain space of functions, which is actually fully determined by
the Hamiltonian function H of h, cf. (IV.4.18), Proposition IV.4.17. In this
subsection we treat this space more systematically.

2.6. Form of H.
We deal with Hamiltonian functions H which are subject to the following con-
ditions.

(i) The Hamiltonian function H is defined on I = (s−, σ) ∪ (σ, s+) (in the
sense of (1.3). Moreover, H�σ is in limit circle case at s− and in limit
point case at σ, and Hσ� is in limit point case at both endpoints.

(i′) The Hamiltonian H�σ satisfies the condition (HS+) and ∆+(H�σ) <∞.

11



(i′′) The Hamiltonian Hσ� satisfies the condition (HS−) and ∆−(Hσ�) <∞.

(ii) The point σ is not both left and right endpoint of an indivisible interval.

(iii) We have s− > −∞.

(iv) We have
(
1
0

)
∈ L2(H).

If H is of this form, set ∆ := max{∆+(H�σ),∆−(H |σ�)}. �

The significance of Hamiltonian functions of this form in the present context is
that H is the Hamiltonian function of a general Hamiltonian h of the form 1.3
if and only if H is of the form 2.6.

If x0 ∈ (σ, s+), we denote by wx0

j , j ≥ 0, the unique (see Lemma IV.3.10)
absolutely continuous 2-vector functions on [s−, σ) ∪ (σ, s+) with

wx0

0 =

(
0

1

)

,

(wx0

k )′ = JHwx0

k−1, k ≥ 1,

wx0

k (s−),wx0

k (x0) ∈ span

{(
0

1

)}

, k ∈ N0,

wx0

k ∈ L2(H�x0
), k ≥ ∆.

For notational convenience, we set wx0

−1 := 0, and let ωx0

k denote the second
component of the vector wx0

k (x0), i.e.

wx0

k (x0) =

(
0

ωx0

k

)

.

By Lemma IV.3.6, the functions wx0

0 , . . . ,wx0

∆−1 are linearly independent modulo
L2(H). Let us remark that (wx0

j )�σ does not depend on x0, whereas (wx0

j )σ�

does.

2.7 Definition. Let H be of the form 2.6, and choose x0 ∈ (σ, s+). Then we
set

L2
∆(H) := L2(H) +̇ span

{
wx0

k χ�x0
: k = 0, . . . ,∆ − 1

}
,

T∆,max(H) :=
{
(f ; g) ∈ L2

∆(H) × L2
∆(H) : ∃f̂ absolutely continuous

representative of f s.t. f̂ ′ = JHg
}
.

�

Note that, by Lemma IV.3.12, the space L2
∆(H) does not depend on the choice

of x0.

2.8 Lemma. Let H be of the form 2.6, choose x0 ∈ I+ and a pair (f0; g0) ∈
Tmax(Hx0�) with Γ(Hx0�)(f0; g0) =

(
0
1

)
. Moreover, let

(uk; vk) := (wx0

k χ�x0
; wx0

k−1χ�x0
) + ωx0

k (f0; g0), k ≥ 0 . (2.2)

Then
T∆,max(H) = Tmax(H) +̇ span

{
(uk; vk) : k = 0, . . . ,∆

}
. (2.3)
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Proof. Obviously, (uk; vk) ∈ T∆,max and {(uk; vk) : k = 0, . . . ,∆} is linearly
independent modulo L2(H) × L2(H). It already follows that the inclusion ‘⊇’
in (2.3) holds and that the sum on the right-hand side is direct.

To show the converse inclusion, let (f ; g) ∈ T∆,max(H). There exist constants
λ0, . . . , λ∆−1 and µ0, . . . , µ∆−1 such that

f −
∆−1∑

k=0

λkw
x0

k χ�x0
, g −

∆−1∑

k=0

µkw
x0

k χ�x0
∈ L2(H).

Set

(f̂ ; ĝ) := (f ; g) −

∆−1∑

k=0

λk(uk; vk) − µ∆−1(u∆; v∆). (2.4)

Then (f̂ ; ĝ) ∈ T∆,max(H) and f̂ ∈ L2(H), ĝχx0� ∈ L2(H). It is sufficient to
show that ĝχ�x0

∈ L2(H). It follows from (2.4) that

ĝ ∈ L2(H) +̇ span{wx0

0 χ�x0
, . . . ,wx0

∆−2χ�x0
}.

Hence there exist scalars γ0, . . . , γ∆−2 such that

g̃ := ĝ −

∆−2∑

l=0

γlw
x0

l χ�x0
∈ L2(H) .

By the definition of the number ∆, at least one of the sets

{
wx0

0 χ(s−,σ), . . . ,w
x0

∆−1χ(s−,σ)

}
,
{
wx0

0 χ(σ,x0), . . . ,w
x0

∆−1χ(σ,x0)

}

is linearly independent modulo L2(H). Consider the case when the first one has
this property; the other case is treated completely analogously.

Denote by I the operator

(Ih)(x) :=

∫ x

s−

JHh, x ∈ (s−, σ) .

Since (f̂ ; ĝ) ∈ T∆,max, there exist scalars ǫ+, ǫ− such that

(Iĝ)(x) +

(
ǫ+
ǫ−

)

= f̂(x), x ∈ (s−, σ) .

Moreover, we know from [KW2, §2.b] and the construction preceding Definition
IV.3.7, that there exist scalars ǫ, ǫ0, . . . , ǫ∆−2 such that

[

Ig̃ +

(
0

ǫ

)]

χ(s−,σ) ∈ L2(H),

[

Iwx0

l +

(
0

ǫl

)]

χ(s−,σ) = wx0

l+1χ(s−,σ), l = 0, . . . ,∆ − 2.
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It follows that (note that wx0

0 (x) =
(
0
1

)
)

∆−2∑

l=0

γlw
x0

l+1χ(s−,σ) +
(
ǫ− − ǫ−

∆−2∑

l=0

γlǫl
)
wx0

0 χ(s−,σ)

=

[
∆−2∑

l=0

γl

(

wx0

l+1 −

(
0

ǫl

))

+

(
ǫ+
ǫ−

)

−

(
ǫ+
0

)

−

(
0

ǫ

)]

χ(s−,σ)

=

[
∆−2∑

l=0

γlIwx0

l + f̂ − Iĝ −

(
ǫ+
0

)

−

(
0

ǫ

)]

χ(s−,σ)

=

[

−

(

Ig̃ +

(
0

ǫ

))

+ f̂ −

(
ǫ+
0

)]

χ(s−,σ) ∈ L2(H),

and hence that γl = 0, l = 0, . . . ,∆ − 2. We conclude that ĝχ�x0
= g̃χ�x0

and
hence belongs to L2(H). ❑

2.9 Corollary. With the notation as in Lemma 2.8, we have

domT∆,max(H) = domTmax(H) +̇ span
{
wx0

k χ�x0
+ ωx0

k f0 : k = 0, . . . ,∆
}
.

Proof. In view of (2.3), it is enough to note that {wx0

k χ�x0
: k = 0, . . . ,∆} is

linearly independent modulo domTmax(H), cf. Lemma IV.3.11. ❑

2.10 Corollary. Let (f ; g) ∈ T∆,max(H), and let λ and µ be the unique con-
stants such that

f −
∆−1∑

l=0

λlw
x0

l χ�x0
∈ L2(H), g −

∆−1∑

l=0

µlw
x0

l χ�x0
∈ L2(H) .

Moreover, let ul, vl be as in (2.2). Then we have

λl+1 = µl, l = 0, . . . ,∆ − 2 ,

and

(f ; g) −

∆−1∑

l=0

λl(ul; vl) − µ∆−1(u∆; v∆) ∈ Tmax(H) .

Proof. Let γ0, . . . , γ∆ be the unique constants, such that

(f ; g) −

∆∑

l=0

γl(ul; vl) ∈ Tmax(H) .

Then, in particular,

(
f −

∆∑

l=0

γlw
x0

l

)
χ�x0

∈ L2(H),
(
g −

∆∑

l=0

γlw
x0

l−1

)
χ�x0

∈ L2(H) ,

and we conclude that

λl = γl, µl = γl+1, l = 0, . . . ,∆ − 1 . (2.5)

❑
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2.11 Remark. Let h be a general Hamiltonian, letH be its Hamiltonian function,
and let ψ(h) be the map defined on [KW2, p.760]. Then

(
ψ(h) × ψ(h)

)(
T (h)

)
= T∆,max(H) .

In view of Proposition IV.4.17 (iii), and Definition IV.4.11, this is an immediate
consequence of (2.3). �

c. Definition of the isomorphic copies B̊x0
(h) and

m
Bx0

(h).

From the parameters bj , j = 1, . . . , ö, of h we define numbers cj , j ∈ Z, by

(c1, . . . , cö)






b1 · · · bö
...

. . .
...

0 · · · b1




 = (−1, 0, . . . , 0) , cj := 0 otherwise,

cf. (IV.4.2).

In a first step we construct the isomorphic copy B̊x0
(h) of a given boundary

triple Bx0
(h).

2.12 Definition (of B̊x0
(h), Part 1). Denote by P̊x0

(h) the linear space

P̊x0
(h) := L2(H) × (C∆ × C

∆) × C
ö

equipped with the inner product [ · , · ] defined by means of the Gram matrix

G
P̊x0

(h)
:=








I 0 0 0

0 0 I 0
0 I 0 0

0 0 0 (ck+l−ö)
ö
k,l=1







, (2.6)

i.e.
[F,G] =

(
G

P̊x0
(h)F,G

)

L2(H)×(C∆×C∆)×Cö

for F,G ∈ P̊x0
(h). Moreover, define . : P̊x0

(h) → P̊x0
(h) by

(
f ; ξ, λ,α

)
:=
(
f ; ξ, λ,α

)
.

�

Choose x0 ∈ I+, and let hx0
be an elementary indefinite Hamiltonian of kind

(A) as in (2.1). The isometric isomorphism ι from P(hx0
) onto L2(H�x0

) ×
(C∆ × C

∆) × C
ö constructed in (IV.4.10) naturally extends to an isometric

isomorphism

ιx0
: Px0

(h) = P(hx0
)[+̇]L2(Hx0�) → P̊x0

(h) ,

namely by

ιx0
(x +̇ g

)
:= ιx + (gχx0�; 0, 0, 0), x ∈ P(hx0

), g ∈ L2(Hx0�) .
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2.13 Definition (of B̊x0
(h), Part 2). Let x0 ∈ I+. Denote by T̊x0

(h) ⊆ P̊x0
(h)2

and Γ̊x0
(h) ⊆ P̊x0

(h)2 × (C2 × C2) the linear relations

T̊x0
(h) := (ιx0

× ιx0
)Tx0

(h) ,

Γ̊x0
(h) :=

(
(ιx0

× ιx0
) × idC4

)
Γx0

(h) .

�

In a second step we construct another isomorphic copy of Bx0
(h) where the

space component L2(H) × C∆ is replaced by L2
∆(H). To this end consider the

map

ι̊x0
:

{
P̊x0

(h) → L2
∆(H) × C∆ × Cö

(f ; ξ, λ,α) 7→
(
f +

∑∆−1
k=0 λkw

x0

k χ�x0
; ξ,α

)

Then, clearly, ι̊x0
is bijective.

2.14 Definition (of
m
Bx0

(h)). Let x0 ∈ I+. Denote by
m
Px0

(h) the linear spacem
Px0

(h) := L2
∆(H) × C

∆ × C
ö ,

endowed with the inner product

[F,G]x0
:=
[
ι̊−1
x0
F, ι̊−1

x0
G
]

P̊x0
(h)
, F,G ∈

m
Px0

(h) ,

and the conjugate linear involution

(
f ; ξ,α

)
:=
(
f ; ξ,α

)
.

Denote by
m
T x0

(h) ⊆
m
Px0

(h)2 and
m
Γx0

(h) ⊆
m
Px0

(h)2 × (C2 × C2) the linear
relations m

T x0
(h) := (̊ιx0

× ι̊x0
)T̊x0

(h) ,m
Γx0

(h) :=
(
(̊ιx0

× ι̊x0
) × idC4

)
Γ̊x0

(h) .

�

With these definitions, the triples

B̊x0
(h) :=

(
P̊x0

(h), T̊x0
(h), Γ̊x0

(h)
)
,m

Bx0
(h) :=

( m
Px0

(h),
m
T x0

(h),
m
Γx0

(h)
)

are boundary triples isomorphic to B(h). Actually, (ιx0
; idC4) is an isomorphism

from Bx0
(h) to B̊x0

(h), and (̊ιx0
; idC4) is an isomorphism from B̊x0

(h) to
m
Bx0

(h).

d. Description of
m
Bx0

(h).

In this subsection we establish the following intrinsic description of the boundary

triple
m
Bx0

(h). The following theorem is the main result of this section.
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2.15 Theorem. Let h be a general Hamiltonian (of the form 1.3) and let x0 ∈
I+, and dx0

j as in Lemma 2.5. Moreover, let F = (f ; ξ,α), G = (g; η,β) ∈m
Px0

(h), and denote by λ and µ the unique coefficients such that

f̃ := f −

∆−1∑

l=0

λlw
x0

l χ�x0
∈ L2(H), g̃ := g −

∆−1∑

l=0

µlw
x0

l χ�x0
∈ L2(H) .

Then

[F,G] = (f̃ , g̃)L2(H) +
∆−1∑

k=0

λkηk +
∆−1∑

k=0

ξkµk +
ö∑

k,l=1

ck+l−öαkβl .

Moreover, (F ;G) ∈
m
T x0

(h) if and only if

(i) (f ; g) ∈ T∆,max(H);

(ii) for each k ∈ {0, . . . ,∆ − 2},

ξk = ηk+1 +
1

2
µ∆−1d

x0

∆+k +
1

2
λ0d

x0

k

+ ωx0

k+1f(x0)1 −

{
wx0

k+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(iii)

ξ∆−1 =

x0∫

s−

(wx0

∆ )∗Hg̃ +
1

2

∆−1∑

l=0

λld
x0

l+∆−1 + µ∆−1d
x0

2∆−1 −

{
β1, ö > 0,

0, ö = 0,

+ ωx0

∆ f(x0)1 −

{
wx0

∆ (s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(iv) if (s−, σ) is not indivisible, then

η0 = f(s−)1 − f(x0)1 −
1

2

∆−1∑

l=0

µld
x0

l ;

(v) if ö > 0, then

αj = −µ∆−1bö−j+1 +

{
βj+1, j = 1, . . . , ö− 1,

0, j = ö.

Here f(s−) and f(x0) denote the values of the unique absolutely continuous
representative with f ′ = JHg, which always exists on (σ, s+), and exists on
(s−, σ) if this interval is not indivisible.

We have mul
m
T x0

(h) 6= {0} if and only if H starts with an indivisible in-
terval at s−. In this case, when s0 ∈ (s−, σ] denotes the right endpoint of
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the maximal indivisible interval with left endpoint s−, φ denotes its type, and

l :=
∫ s0
s−

trH(t) dt its length, the multi-valued part of
m
T x0

(h) is given by

mul
m
T x0

(h) =

{
span

{(
0; (ξφχ�s0 ; (−wx0

k (s−)2l sinφ)∆−1
j=0 , 0)

)}
, s0 < σ,

span
{(

0; (0; ε0, 0)
)}
, s0 = σ.

Whenever (F ;G) ∈
m
T x0

(h), we havem
Γx0

(F ;G) =







f(s−), (s−, σ) not indivisible,

(

η0 + f(x0)1 + 1
2

∑∆−1
l=0 µld

x0

l

λ0

)

, (s−, σ) indivisible.

2.16 Remark. Note that by Corollary 2.10, condition (i) implies that

µk = λk+1, k = 0, . . . ,∆ − 2.

�

The proof of this result is done in two steps; first we deal with B̊x0
(h), and then

transfer the obtained knowledge to
m
Bx0

(h). The description of B̊x0
(h) reads as

follows.

2.17 Proposition. Let h be a general Hamiltonian (of the form 1.3), and let
x0 ∈ I+. Moreover, let dx0

j be as in Lemma 2.5, and fix an element (f0; g0) ∈

Tmax(Hx0�) with Γ(Hx0�)(f0; g0) =
(
0
1

)
.

Let F,G ∈ P̊x0
(h), and write F := (f ; ξ, λ,α) and G := (g; η,µ,β). Then

(F ;G) ∈ T̊x0
(h) if and only if

(i′) (

f −

∆−1∑

l=0

λlω
x0

l f0 − µ∆−1

(
wx0

∆ χ�x0
+ ωx0

∆ f0
)
;

g −
(∆−1∑

l=0

λlω
x0

l + µ∆−1ω
x0

∆

)

g0

)

∈ Tmax(H)

µk = λk+1, k = 0, . . . ,∆ − 2 ,

and (F ;G) satisfies (ii)–(v) of Theorem 2.15 where in (iii) the function g̃ is
replaced by g. If (F ;G) ∈ T̊x0

(h), then

Γ̊x0
(F ;G) =







f(s−) +
∑∆−1

l=0 λlw
x0

l (s−), (s−, σ) not indivisible,

(

η0 + f(x0)1 + 1
2

∑∆−1
l=0 µld

x0

l

λ0

)

, (s−, σ) indivisible.
(2.7)

For the proof we start with identifying some particular elements of T̊x0
(h).

2.18 Lemma.
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(i) Let ak, bk ∈ P̊x0
(h), k = 0, . . . ,∆, be defined as

a0 :=
(
f0; (

1

2
dx0

j )∆−1
j=0 , ε0, 0

)
,

b0 :=
(
g0; 0, 0, 0

)
,

ak :=
(
ωx0

k f0; (
1

2
dx0

k+j)
∆−1
j=0 , εk, 0

)
,

bk :=
(
ωx0

k g0; (
1

2
dx0

k−1+j)
∆−1
j=0 − dx0

k−1ε0, εk−1, 0
)
,

k = 1, . . . ,∆ − 1,

a∆ :=
(
wx0

∆ χ�x0
+ ωx0

∆ f0; (d
x0

∆+j)
∆−1
j=0 , 0,−(bö+1−j)

ö
j=1

)
,

b∆ :=
(
ωx0

∆ g0; (
1

2
dx0

∆−1+j)
∆−1
j=0 − dx0

∆−1ε0, ε∆−1, 0
)
.

Then (ak; bk) ∈ T̊x0
(h), k = 0, . . . ,∆, and Γ̊x0

(h)(ak; bk) = wx0

k (s−).

(ii) Let a′k, k = 0, . . . ,∆ + ö− 1, be defined as

a′k :=

{
(0;−εk, 0, 0), k = 0, . . . ,∆ − 1,

(0; 0, 0, εk−∆+1), k = ∆, . . . ,∆ + ö− 1.

Then (a′k; a
′
k+1) ∈ T̊x0

(h), k = 0, . . . ,∆ + ö− 2, and Γ̊x0
(h)(a′k; a

′
k+1) = 0.

Proof. Let pk, k = 0, . . . ,∆ − 1, and δk, k = 0, . . . ,∆ + ö − 1, be defined as
in the paragraphs before and after Lemma IV.4.9 and in Definition IV.4.10.
Then according to Remark IV.7.5, equation (IV.4.8), Proposition IV.4.7, top of
page 760 in [KW2] and Definition IV.4.10, the following relations are valid:

ιx0
pk =

(

0;
(1

2
dx0

k+j

)∆−1

j=0
, εk, 0

)

, k = 0, . . . ,∆ − 1,

ιx0
wx0

∆ =
(

wx0

∆ χ�x0
;
(
dx0

∆+j

)∆−1

j=0
, 0, 0

)

,

ιx0
δk =

{
(0;−εk, 0, 0), k = 0, . . . ,∆ − 1,

(0; 0, 0, εk−∆+1), k = ∆, . . . ,∆ + ö− 1.

Hence

(a0; b0) = (ιx0
×ιx0

)
(
(p0; 0) + (f0; g0)

)
,

(ak; bk) = (ιx0
×ιx0

)
(
(pk; pk−1 + dx0

k−1δ0) + ωx0

k (f0; g0)
)
,

k = 1, . . . ,∆ − 1 ,

(a∆; b∆) = (ιx0
×ιx0

)
(
(wx0

∆ + b; p∆−1 + dx0

∆−1δ0) + ωx0

∆ (f0; g0)
)
,

a′k = ιx0
(δk), k = 0, . . . ,∆ + ö− 1,

where (see Definition IV.4.11)

b :=

ö+1∑

l=1

blδ∆+ö−l =

ö∑

j=1

bö+1−jδ∆+j−1
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since bö+1 = 0. Now the assertions follow from the fact that the pairs

(p0; 0),

(pk; pk−1 + dx0

k−1δ0), k = 1, . . . ,∆ − 1,

(
wx0

∆ + b; p∆−1 + dx0

∆−1δ0
)
,

(δk; δk+1), k = 0, . . . ,∆ + ö− 2

all belong to T (hx0
) (see Definition IV.4.11 and Proposition IV.4.17 (iv)). The

form of the boundary mappings follows from Definition IV.4.12 and the two
preceding paragraphs. ❑

Now we are in position to treat the case when both elements F and G belong
to L2(H) × (C∆ × {0}) × {0}.

2.19 Lemma. Let F := (f ; ξ, 0, 0) and G := (g; η, 0, 0) be elements of P̊x0
(h).

Then (F ;G) ∈ T̊x0
(h) if and only if

(i) (f ; g) ∈ Tmax(H);

(ii) for each k ∈ {0, . . . ,∆ − 2},

ξk = ηk+1 +ωx0

k+1f(x0)1−

{
wx0

k+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(iii)

ξ∆−1 =

x0∫

s−

(wx0

∆ )∗Hg

+ ωx0

∆ f(x0)1 −

{

wx0

∆ (s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(iv) if (s−, σ) is not indivisible, then η0 = f(s−)1 − f(x0)1.

In this case,

Γ̊x0
(h)(F ;G) =







f(s−), (s−, σ) not indivisible,
(

η0 + f(x0)1

0

)

, (s−, σ) indivisible.
(2.8)

Proof. Assume first that (F ;G) ∈ T̊x0
(h). Since

L2(H) × (C∆ × {0})× {0} = span
{
ιx0

(δ0), . . . , ιx0
(δ∆+ö−1)

}⊥
,

it follows that

(ι−1
x0

×ι−1
x0

)(F ;G) ∈ Tx0
(h) ∩

(
span

{
δ0, . . . , δ∆+ö−1

}⊥)2
.

We obtain from Proposition IV.4.17 (iii), that

(f ; g) =
[
(ψ × ψ) ◦ (ι−1

x0
×ι−1

x0
)
]
(F ;G) ∈ Tmax(H) ,
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i.e. (i) holds.
In order to obtain the formulae asserted in (ii)–(iv), we apply the abstract

Green’s identity (1.2) with various elements in the spaces P̊x0
(h) and L2(Hx0�).

First we compute the boundary values of (F ;G). We have

(
Γ̊x0

(h)(F ;G)
)

1
= wx0

0 (s−)∗J Γ̊x0
(h)(F ;G) = [G, a0] − [F, b0] =

= η0 +

∫ s+

x0

f∗
0Hg −

∫ s+

x0

g∗0Hf

︸ ︷︷ ︸

=f0(x0)∗Jf(x0)

= η0 + f(x0)1 .

If (s−, σ) is not indivisible, by the definition of Γx0
(h) (see Definition IV.4.12),

Γ̊x0
(h)(F ;G) = Γx0

(h) ◦ (ι−1
x0

×ι−1
x0

)(F ;G) = f(s−) .

We see that (2.8) and (iv) hold. Next, let k ∈ {0, . . . ,∆ − 2}; then

wx0

k+1(s−)2
(
η0 + f(x0)1

)

= wx0

k+1(s−)∗J Γ̊x0
(h)(F ;G) = [G, ak+1] − [F, bk+1]

=

∫ s+

x0

(ωx0

k+1f0)
∗Hg + ηk+1 −

∫ s+

x0

(ωx0

k+1g0)
∗Hf − ξk

= ηk+1 − ξk + ωx0

k+1f0(x0)
∗Jf(x0) = ηk+1 − ξk + ωx0

k+1f(x0)1 .

If (s−, σ) is not indivisible, this relation combined with the already established
relation (iv) gives (ii). If (s−, σ) is indivisible, we know from Remark IV.3.8
that wx0

k+1(s−)2 = 0. Hence, also in this case (ii) holds. Finally, we compute

wx0

∆ (s−)2
(
η0 + f(x0)1

)
= wx0

∆ (s−)∗J Γ̊x0
(h)(F ;G) = [G, a∆] − [F, b∆] =

=

∫ x0

s−

(wx0

∆ )∗Hg + ωx0

∆

[∫ s+

x0

f∗
0Hg −

∫ s+

x0

g∗0Hf

]

− ξ∆−1

=

∫ x0

s−

(wx0

∆ )∗Hg + ωx0

∆ f(x0)1 − ξ∆−1,

which yields (iii).
For the converse, assume that F and G satisfy (i)–(iv). By Proposition

IV.4.17 (iii), there exists an element (F̃ ; G̃) ∈ T̊x0
(h)∩(L2(H)×(C∆×{0})×{0})

with (ψ ◦ ι−1
x0

)(F̃ ) = f and (ψ ◦ ι−1
x0

)(G̃) = g. By the first part of this proof, the

elements F̃ and G̃ satisfy the conditions (i)–(iv).
Write F̃ = (f ; ξ̃, 0, 0) and G̃ = (g; η̃, 0, 0). By Lemma 2.18 (ii), we can make

the choice of (F̃ ; G̃) such that η̃k = ηk, k = 1, . . . ,∆ − 1. If (s−, σ) is not
indivisible, by condition (iv), we must have η̃0 = η0. If (s−, σ) is indivisible,
we have (0; δ0) ∈ Tx0

(h) (see Definition IV.4.11 (4.14)), and again (F̃ ; G̃) can
be chosen in this way. The conditions (ii) and (iii) now imply that F̃ = F and
G̃ = G. ❑

With the help of Lemma 2.18, we can reduce the general case to the case treated
in Lemma 2.19.
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Proof (of Proposition 2.17).
Step 1. Define an element (F̃ ; G̃) by

(F̃ ; G̃) := (F ;G) −

∆−1∑

k=0

λk(ak; bk) − µ∆−1(a∆; b∆) −

ö−1∑

j=0

βj+1(a
′
∆−1+j ; a

′
∆+j)

By Lemma 2.18 we have (F ;G) ∈ T̊x0
(h) if and only if (F̃ ; G̃) ∈ T̊x0

(h).
Write F̃ = (f̃ ; ξ̃, λ̃, α̃) and G̃ = (g̃; η̃, µ̃, β̃), then

f̃ = f −

∆−1∑

l=0

λlω
x0

l f0 − µ∆−1

(
wx0

∆ χ�x0
+ ωx0

∆ f0
)
,

ξ̃k = ξk −
1

2

∆−1∑

l=0

λld
x0

l+k − µ∆−1d
x0

∆+k, k = 0, . . . ,∆ − 2,

ξ̃∆−1 = ξ∆−1 −
1

2

∆−1∑

l=0

λld
x0

∆−1+l − µ∆−1d
x0

2∆−1 +

{
β1, ö > 0,

0, ö = 0,

λ̃k = λk −

∆−1∑

l=0

λlδlk = 0, k = 0, . . . ,∆ − 1,

α̃j = αj + µ∆−1bö+1−j −

{
βj+1, j = 1, . . . , ö− 1,

0, j = ö,

and

g̃ = g −

(∆−1∑

l=0

λlω
x0

l + µ∆−1ω
x0

∆

)

g0,

η̃0 = η0 +
1

2

∆−1∑

l=1

λld
x0

l−1 +
1

2
µ∆−1d

x0

∆−1,

η̃k = ηk −
1

2

∆−1∑

l=1

λld
x0

l−1+k −
1

2
µ∆−1d

x0

∆−1+k, k = 1, . . . ,∆ − 1,

µ̃k = µk −

∆−1∑

l=1

λlδl−1,k − µ∆−1δ∆−1,k =

{
µk − λk+1, k = 0, . . . ,∆ − 2,

0, k = ∆ − 1,

β̃j = 0, j = 1, . . . , ö.

Step 2: assume that (F ;G) ∈ T̊x0
(h).

The abstract Green’s identity applied to the pairs (F̃ ; G̃) and (a′l; a
′
l+1), l =

0, . . . ,∆ + ö− 2, gives

µ̃k = µ̃k − λ̃k+1 = −[G̃, a′k] + [F̃ , a′k+1] = 0, k = 0, . . . ,∆ − 2,

[F̃ , a′∆] = [F̃ , a′∆] + µ̃∆−1 = [F̃ , a′∆] − [G̃, a′∆−1] = 0,

[F̃ , a′k+1] = [F̃ , a′k+1] − [G̃, a′k] = 0, k = ∆, . . . ,∆ + ö− 2.
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The last two lines imply that α̃ = 0, and we see that

F̃ , G̃ ∈ L2(H) × (C∆ × {0})× {0} .

Plugging the expressions for f̃ , ξ̃, . . . from Step 1 into the formulae of Lemma
2.19, shows that the relations (i′) of Proposition 2.17 and (ii)–(v) of Theorem
2.15 are satisfied.

Step 3: assume that (i′) of Proposition 2.17 and (ii)–(v) of Theorem 2.15 hold.
Then we have F̃ , G̃ ∈ L2(H) × (C∆ × {0}) × {0}, and hence Lemma 2.19 is
applicable. However, (i′), (ii)–(iv) exactly correspond to (i)–(iv) of Lemma
2.19. We conclude that (F̃ ; G̃) ∈ T̊x0

(h), and hence also (F ;G) ∈ T̊x0
(h).

Step 4: computation of boundary values.
Assume that (F ;G) ∈ T̊x0

(h), and let (F̃ ; G̃) be as above. Then, by (2.8),

Γ̊x0
(h)(F̃ ; G̃)

=







f(s−) − µ∆−1w
x0

∆ (s−), (s−, σ) not indivisible,

(

η0 + 1
2

∑∆−1
l=1 λld

x0

l−1 + 1
2µ∆−1d

x0

∆−1 + f(x0)1

0

)

, (s−, σ) indivisible.

Using the definition of F̃ , G̃, the knowledge about the boundary values of the
pairs appearing in Lemma 2.18, and the fact that µk = λk+1, k = 0, . . . ,∆ − 2,
we obtain (2.7). Remember here also that wx0

k (s−) = 0, k ≥ 1, if (s−, σ) is
indivisible. ❑

Proof (of Theorem 2.15). The formula for the inner product is clear. Now con-
sider the elements F,G as given in the statement of the theorem. Then

F̃ := ι̊−1
x0
F = (f̃ ; ξ, λ,α), G̃ := ι̊−1

x0
G = (g̃; η,µ,β) .

By the definition of
m
T x0

(h), we have (F ;G) ∈
m
T x0

(h) if and only if (F̃ ; G̃) ∈
T̊x0

(h), and in turn if and only if F̃ and G̃ satisfy the conditions (i′) of Propo-
sition 2.17 and (ii)–(v) of Theorem 2.15 with the function g̃ in (iii). Since

wx0

l (x0),w
x0

l (s−) ∈ span

{(
0

1

)}

,

F̃ , G̃ satisfying (ii)–(v) of Theorem 2.15 is equivalent to F,G satisfying these
conditions.

We show that Proposition 2.17, (i′), for F̃ , G̃ is equivalent to (i) of Theorem
2.15 for F,G. Clearly, this will finish the proof of the asserted equivalence.

Let (f0; g0) and (ul; vl) be as in (2.2). Then the element (f ; g) belongs to
T∆,max(H) if and only if

(f ; g) −

∆−1∑

l=0

λl(ul; vl) − µ∆−1(u∆; v∆) ∈ T∆,max(H) . (2.9)
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Using the relations F = ι̊x0
F̃ , G = ι̊x0

G̃ we compute

f −

∆−1∑

l=0

λlul − µ∆−1u∆

= f̃ +

∆−1∑

k=0

λkw
x0

k χ�x0
−

∆−1∑

l=0

λl
(
wx0

l χ�x0
+ ωx0

l f0
)
− µ∆−1

(
wx0

∆ χ�x0
+ ωx0

∆ f0
)

= f̃ −

∆−1∑

l=0

λlω
x0

l f0 − µ∆−1

(
wx0

∆ χ�x0
+ ωx0

∆ f0
)

and

g −

∆−1∑

l=0

λlvl − µ∆−1v∆

= g̃ +

∆−1∑

k=0

µkw
x0

k χ�x0
−

∆−1∑

l=0

λl
(
wx0

l−1χ�x0
+ ωx0

l g0
)
− µ∆−1

(
wx0

∆−1χ�x0
+ ωx0

∆ g0
)

= g̃ −

∆−1∑

l=0

λlω
x0

l g0 − µ∆−1ω
x0

∆ g0 +

∆−2∑

l=0

(µl − λl+1)w
x0

l χ�x0
.

Hence, if (i′) holds, the pair in (2.9) will belong to T∆,max(H). Conversely, if
(i) holds, we obtain from Corollary 2.10 that µl = λl+1, l = 0, . . . ,∆ − 2. In
turn, it follows that also the first condition in (i′) holds.

Next we determine mul
m
T x0

(h). The boundary triple Bx0
(h) is obtained from

pasting the boundary triples associated with an elementary indefinite Hamilto-
nian of kind (A) and a positive definite one. Hence, it follows from Proposition
IV.5.16 that mulTx0

(h) 6= {0} if and only if H starts with an indivisible inter-
val at s−, and that in this case dimmulTx0

(h) = 1. The case when (s−, σ) is
indivisible is easily settled. It suffices to observe that in this case the pair

(F ;G) :=
(
0; (0; ε0, 0)

)

satisfies the conditions (i)–(v), and hence belongs to
m
T x0

(h).
Assume that s0 < σ, and write

H(t) = h(t)ξφξ
T
φ , t ∈ (s−, s0) .

Then l =
∫ s0
s−

trH(t) dt =
∫ s0
s−
h(t) dt. Set

f(t) :=

∫ t

s0

h(x) dx · Jξφχ�s0 , g(t) := ξφχ�s0 ,

then

f ′ = JHg, f =H 0, f(s−) = l

(
sinφ

− cosφ

)

.

Moreover, since f, g ∈ L2(H), the numbers λl and µl all vanish. Consider the
pair

(F ;G) :=
(
0; (g; (wx0

k (s−)2l sinφ)∆−1
k=0 , 0)

)
.
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By what we just said, (F ;G) satisfies the condition (i). Moreover, (ii), (iv),
and (v) hold by the definition of G. It remains to consider (iii). However, since
ξTφwx0

∆ is constant on (s−, s0), we have

∫ x0

s−

(wx0

∆ )∗Hg =

∫ s0

s−

(wx0

∆ )∗Hξφ =

∫ s0

s−

(
ξTφwx0

∆

)∗
h(t)ξTφ ξφdt

= (ξTφwx0

∆ (s0)
)∗
∫ s0

s−

h(t)ξTφ ξφdt = wx0

∆ (s−)∗ξφ · l

= wx0

∆ (s−)2 sinφ · l = wx0

∆ (s−)2f(s−)1 .

Thus also (iii) holds, and we conclude that (F ;G) ∈
m
T x0

(h).

In order to compute boundary values, assume that (F ;G) ∈
m
T x0

(h). Then

(F̃ ; G̃) ∈ T̊x0
(h), and by Proposition 2.17 and the definition of

m
Γx0

(h) thusm
Γx0

(h)(F ;G) = Γ̊x0
(h)(F̃ ; G̃)

=







f̃(s−) +
∑∆−1
l=0 λlw

x0

l (s−), (s−, σ) not indivisible,

(

η0 + f̃(x0)1 + 1
2

∑∆−1
l=0 µld

x0

l

λ0

)

, (s−, σ) indivisible,

=







f(s−), (s−, σ) not indivisible,

(

η0 + f(x0)1 + 1
2

∑∆−1
l=0 µld

x0

l

λ0

)

, (s−, σ) indivisible.

❑

As a consequence of Theorem 2.15 we obtain a description of
m
T x0

(h) in terms
of its domain and action.

2.20 Corollary. Let h be a general Hamiltonian (of the form 1.3) and x0 ∈ I+.

Moreover, let F = (f ; ξ, α) ∈
m
Px0

(h). Then F ∈ dom
m
T x0

(h) if and only if
in case ö = 0 the condition ‘(i) ∧ (iiö=0)’, and in case ö > 0 the condition
‘(i) ∧ (iiö>0)’ holds.

(i) f ∈ domT∆,max(H).

(iiö=0) Under the assumption that f satisfies (i), let γ0, . . . , γ∆ ∈ C be the
unique constants such that

f̂ :=
(

f −

∆∑

l=0

γlw
x0

l

)

χ�x0
∈ domTmax(H�x0

)

and set

L+ := lim
xցσ

[

wx0

∆ (x)∗Jf̂(x) +

∫ x0

x

(wx0

∆−1)
∗Hf̂

]

,

L− := lim
xրσ

[

− wx0

∆ (x)∗Jf̂(x) +

∫ x

s−

(wx0

∆−1)
∗Hf̂

]

.
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Then

ξ∆−1 = L+ + L− +
1

2

∆−1∑

l=0

γld
x0

l+∆−1γ∆d
x0

2∆−1 .

(iiö>0) We have αö = 0.

2.21 Remark. If F ∈ dom
m
T x0

(h) and (F ;G) ∈
m
T x0

(h) with G = (g; η,β), then
the numbers η,β can be computed immediately by solving the equations in
Theorem 2.15, (ii)–(v).

Hence, the action of
m
T x0

(h) is easily understood, provided the action of the
differential operator T∆,max(H) in the function space L2

∆(H) is. This operator,
in turn, is explicitly related to Tmax(H) via Lemma 2.8. Altogether, we see thatm
T x0

(h) is a finite dimensional perturbation of Tmax(H) which is given in a very
explicit way. �

Proof (of Corollary 2.20). The case that ö > 0 is easily settled. If F ∈

dom
m
T x0

(h), then by Theorem 2.15 (i), (v), we have f ∈ domT∆,max(H) and
αö = 0. Conversely, if F satisfies the present conditions (i) and (iiö=0), then we
can first choose g ∈ L2

∆(H) with (f ; g) ∈ T∆,max(H) and then choose η,β such
that Theorem 2.15 (ii)–(v) hold.

Assume for the rest of the proof that ö = 0. Let f ∈ domT∆,max(H) be
given. Choose g ∈ L2

∆(H) such that (f ; g) ∈ T∆,max(H) and let µ0, . . . , µ∆−1

be the unique constants such that

ĝ :=
(

g −
∆−1∑

l=0

µlw
x0

l

)

χ�x0
∈ L2(H).

First of all, let us verify that the limits L± in (iiö=0) do exist. If x ∈ (σ, x0),
Green’s identity in L2(H�x0

) yields

∫ x0

x

(wx0

∆ )∗Hĝ −

∫ x0

x

(wx0

∆−1)
∗Hf̂ = wx0

∆ (x)∗Jf̂(x) − wx0

∆ (x0)
∗Jf̂(x0) .

Since w∆ and ĝ both belong to L2(H |(σ,x0)), we may pass to the limit x ց σ
to obtain

L+ = lim
xցσ

[

wx0

∆ (x)∗Jf̂(x) +

∫ x0

x

(wx0

∆−1)
∗Hf̂

]

=

∫ x0

σ

(wx0

∆ )∗Hĝ + wx0

∆ (x0)
∗Jf̂(x0).

In the same way, we obtain that

L− =

∫ σ

s−

(wx0

∆ )∗Hĝ − wx0

∆ (s−)∗Jf̂(s−).

Since wx0

l (x0),w
x0

l (x0) ∈ span
{(

0
1

)}
, we have

wx0

∆ (x0)
∗Jf̂(x0) = ωx0

∆ f(x0)1, wx0

∆ (s−)∗Jf̂(s−) = wx0

∆ (s−)2f(s−)1 .

26



Moreover, if (s−, σ) is indivisible, we have wx0

∆ (s−) = 0. Remembering (2.5), we
see that under the assumption of (i), statement (iiö=0) is equivalent to Theorem
2.15 (iii).

Assume that F satisfies the present conditions (i) and (iiö=0). Then we can
choose g ∈ L2

∆(H) with (f ; g) ∈ T∆,max(H) and Theorem 2.15 (iii). Clearly,
η can be chosen such that Theorem 2.15 (ii) and (iv) hold. Thus (F ; (g; η)) ∈m
T x0

(h), and we have F ∈ dom
m
T x0

(h).

Conversely, if there exists G ∈
m
Px0

with (F ;G) ∈
m
T x0

, then Theorem 2.15 (i)
and (iii), immediately give the present conditions (i) and (iiö=0). ❑

3 An x0-independent form of the model

The Pontryagin space P̊x0
(h) underlying the boundary triple B̊x0

(h) does not
depend on the particular choice of x0. However, as it is seen from Proposition
2.17, the relations T̊x0

(h) and Γ̊x0
(h) do in general depend on x0.

A similar remark applies to the boundary triple
m
Bx0

(h). Due to Lemma

IV.3.12 (ii), the linear space underlying the Pontryagin space
m
Px0

(h) does not
depend on x0. Moreover, due to the existence of the isometric isomorphism

ι̊x2
◦ ι̊−1
x1

:
m
Px1

(h) →
m
Px2

(h), and the fact that
m
Px1

(h) and
m
Px2

(h) are both Pon-
tryagin spaces, the topology on this linear space induced by the inner product

[·, ·]x0
does not depend on x0. However, the inner product [·, ·]x0

on
m
Px0

(h) and

the relations
m
T x0

(h) and
m
Γx0

(h) do in general depend on x0.
One idea how to remove the dependence on x0 is the following: the point

x0 is the point where the given general Hamiltonian is cut into two pieces, and
the model is then obtained by pasting the two corresponding models. Is it
possible to shift this cutting point to s+ and thus completely avoid cutting and
pasting? Our aim in this section is to show that under certain assumptions on
the asymptotics of H , limiting its growth towards s+, the answer is ‘yes’. To this
end, we have to study the dependence on x0 in some more detail. A big portion
of technically complicated computations has been shifted to the appendix, so
that in this section we can concentrate on the essential ideas.

3.1 Remark. If h ends with an indivisible interval towards s+, i.e. xmax :=
sup I+ < s+ (for the definition of I+ see §2.1 (5)), then it is of course impossible
to shift the cutting point to s+. However, in this case, the boundary triple B(h)
can be described without cutting/pasting anyway. Namely, we have P(h) =
P(hxmax

), T (h) is a certain one-dimensional restriction of T (hxmax
) depending

on the type of the indivisible interval (xmax, s+), and Γ(h) is the restriction of
Γ(hxmax

) to T (h). �

In view of this remark we will, throughout this section, assume that h does not
end with an indivisible interval towards s+. Limits x→ s+ will be understood
such that x tends to s+ inside I+.

Let x1, x2 ∈ I+, x1 < x2, and let hx1
and hx2

be the elementary indefinite
Hamiltonians as in Lemma 2.5. We know from [KW2, §7] (cf. also §2.2, §2.3,
and Remark 2.4) that there exists an isometric isomorphism

κx1,x2
: P(hx1

) [+̇]L2(H |(x1,x2)) → P(hx2
),
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such that (κx1,x2
, idC4) is an isomorphism of the corresponding boundary triples.

This map naturally lifts to an isomorphism of Px1
(h) = P(hx1

) [+̇]L2(Hx1�)
onto Px2

(h) = P(hx2
) [+̇]L2(Hx2�) which will again be denoted by κx1,x2

,
namely by

F +̇ f 7→ κx1,x2
(F +̇ fχ(x1,x2)) +̇ fχx2�, F ∈ P(hx1

), f ∈ L2(Hx1�).

Clearly, (κx1,x2
, idC4) will again be an isomorphism of the corresponding bound-

ary triples Bx1
(h) and Bx2

(h).
The isomorphisms ιx1

, ιx2
and ι̊x1

, ι̊x2
can be used to transport the map

κx1,x2
: let κ̊x1,x2

: P̊x1
(h) → P̊x2

(h) and
m
κx1,x2

:
m
Px1

(h) →
m
Px2

(h) be the
isometric isomorphisms defined by

Px1
(h)

κx1,x2 //

ιx1

��

Px2
(h)

ιx2

��

P̊x1
(h)

κ̊x1,x2

//

ι̊x1

��

P̊x2
(h)

ι̊x2

��m
Px1

(h) m
κ x1,x2

// m
Px2

(h)

(3.1)

Note that κ̊x1,x2
is just the natural extension of the map that is also named

κ̊x1,x2
and considered in the appendix, cf. (A.1), to a map

P̊x1
(h) =

(
L2(H�x1

) [+̇] (C∆ +̇ C
∆) [+̇] Cö

)
[+̇]
(
L2(H(x1,x2)) [+̇]L2(Hx2�)

)

→ P̊x2
(h) =

(
L2(H�x2

) [+̇] (C∆ +̇ C
∆) [+̇] Cö

)
[+̇]L2(Hx2�).

Using Proposition A.6, it follows that the action of the map κ̊x1,x2
defined by

(3.1) is given by linearity and the formulae

κ̊x1,x2
(f ; 0, 0, 0) =

(

f ;
(
∫ x2

x1

(wx2

j )∗Hf +

∫ x1

σ

(wx2

j − wx1

j )∗Hf
)∆−1

j=0
, 0, 0

)

,

κ̊x1,x2
(0; ξ, 0,α) = (0; ξ, 0,α),

κ̊x1,x2
(0; 0, εk, 0) =

(

− wx2

k χ(x1,x2) − (wx2

k − wx1

k )χ�x1
; (hx1,x2

kj )∆−1
j=0 , εk, 0

)

,

where we set

hx1,x2

kj
:= −

1

2

k+j+1
∑

l=j+1

ωx1

k+j+1−lw
x2

l (x1)1 +
1

2

j
∑

l=1

ωx1

k+j+1−lw
x2

l (x1)1 .

Using these formulae, we can easily deduce how
m
κx1,x2

acts.

3.2 Lemma. Let x1, x2 ∈ I+, x1 < x2, and let F = (f ; ξ, α) ∈
m
Px1

(h), let λ be
the unique coefficients such that

f −
∆−1∑

l=0

λlw
x1

l χ�x1
∈ L2(H) .
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Thenm
κx1,x2

F =
(

f ;
(
ξj +

∫ x2

x1

(wx2

j )∗Hf

+

∫ x1

σ

(wx2

j − wx1

j )∗H
(
f −

∆−1∑

l=0

λlw
x1

l

)
+

∆−1∑

l=0

λlh
x1,x2

lj

)∆−1

j=0
,α
)

Proof. Let an element (f ; ξ,α) ∈
m
Px1

(h) be given. Then

ι̊−1
x1

(f ; ξ,α) =
(
f −

∆−1∑

l=0

λlw
x1

l χ�x1
; ξ, λ,α

)
.

Hence, we obtain

(̊κx1,x2
◦ ι̊−1

x1
)(f ; ξ,α)

=
( (
f −

∆−1∑

l=0

λlw
x1

l χ�x1

)
−

∆−1∑

l=0

λl
(
wx2

l χ(x1,x2) + (wx2

l − wx1

l )χ�x1

)

︸ ︷︷ ︸

= f −
∑∆−1

l=0 λlw
x2

l χ�x2

;

(∫ x2

x1

(wx2

j )∗Hf +

∫ x1

σ

(wx2

j −wx1

j )∗H
(
f −

∆−1∑

l=0

λlw
x1

l

)
+ ξj +

∆−1∑

l=0

λlh
x1,x2

lj

)∆−1

j=0
,

λ, α
)

.

Applying ι̊x2
we obtain the desired formula. ❑

a. Asymptotic conditions on H; the elements vk.

3.3. Asymptotic conditions on H. Let H be a Hamiltonian of the form 2.6 with
sup I+ = s+, and choose a base point x0 ∈ I+. For N,M ∈ N0 we consider the
following conditions:

(AN ) The limits

lim
x→s+

wx
kχ(x0,x), lim

x→s+
(wx

k − wx0

k )χ�x0
, k = 0, . . . , N,

exist in the norm of L2(H).

(BM) The limits
vx0

k
:= lim

x→s+
wx
k(x0)1, k = 1, . . . ,M,

exist in R.

�

For k ≥ ∆ the existence of the two limits in (AN ) is equivalent to the existence
of the limit limx→s+ wx

kχ(σ,x). However, for k < ∆, it is necessary to introduce
the splitting point x0, since the function wx

kχ(σ,x0) does not belong to L2(H) in
general.
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Note that since wx
0 =

(
0
1

)
, the limit

vx0

0 := lim
x→s+

wx
0(x0)1

always trivially exists and is equal to 0. Hence (B0) is always satisfied.
If H satisfies the condition (AN ), we set

vk :=
(

wx0

k χ�x0
+ lim
x→s+

(wx
k − wx0

k )χ�x0

)

+ lim
x→s+

wx
kχ(x0,x), k = 0, . . . , N.

Since on the interval (s−, σ) the function wx
k does not depend on x at all, we

have vk(t) := wx
k(t), t ∈ (s−, σ), x ∈ (σ, s+).

First of all we shall justify these notions by showing that they do not depend
on the choice of the base point x0.

3.4 Lemma. The validity of the conditions (AN ) or (BM ) does not depend on
the choice of the base point x0. Also the actual value of vk is independent of x0,
in fact

lim
x→s+

(vk − wx
kχ�x) = 0, k = 0, . . . , N, (3.2)

in the norm of L2(H) if (AN ) satisfied.
Conversely, if there exist functions vk, k = 0, . . . , N , such that vk−wx

kχ�x ∈
L2(H) for every x ∈ (σ, s+) and (3.2) is valid, then condition (AN ) is satisfied.

Proof. Let x0, x1 ∈ I+, and assume that (AN ) holds with the choice of x0 as
a base point. Consider the case when x1 > x0. The existence of the limit
limx→s+ wx

kχ(x0,x) implies the existence of the limits

lim
x→s+

wx
kχ(x0,x1), lim

x→s+
wx
kχ(x1,x) .

This implies that also the limit

lim
x→s+

(wx
k−wx1

k )χ�x1
= lim
x→s+

(wx
k−wx0

k )χ�x0
+wx0

k χ�x0
−wx1

k χ�x1
+ lim
x→s+

wx
kχ(x0,x1)

exists. The case x1 < x0 is treated in a completely similar way; in either case
(AN ) also holds with the choice of x1 as a base point.

In order to show (3.2), let us denote by vk the functions constructed with
base point x0. Then, for arbitrary x ∈ I+ with x > x0, we have

vk−wx
kχ�x = (wx0

k −wx
k)χ�x0

+ lim
t→s+

(wt
k−wx0

k )χ�x0
+ lim
t→s+

wt
kχ(x0,t)−wx

kχ(x0,x).

It follows that vk − wx
kχ�x ∈ L2(H). Passing to the limit x→ s+ gives (3.2).

Let x0, x1 ∈ I+, and assume that (BM ) holds with the choice of x0 as a base
point. Choose arbitrary real numbers dx0

k , k = 0, . . . , 2∆ − 1, and set

dx0

k
:=

∫ x0

s−

(wx0

∆ )∗Hwx0

k−∆, k ≥ 2∆ .

Moreover, set ö := 0, b1 := 0. Then the data hx0
:= (H�x0

; ö, bj ; d
x0

k ) is an
elementary indefinite Hamiltonian of kind (A) defined on [s−, σ) ∪ (σ, x0].

Let x ∈ I+ with x > max{x0, x1} be given. Let dxk, k = 0, . . . , 2∆−1, be the
parameters of the elementary indefinite Hamiltonian hx obtained in §2.3 when
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pasting hx0
with H |(x0,x), and let dx1

k , k = 0, . . . , 2∆ − 1, be the parameters of
the elementary indefinite Hamiltonian hx1

obtained in §2.2 when splitting hx at
the point x1. Then, by Proposition A.6 and Proposition IV.5.17, we have

dx0

k +
k+1∑

j=0

ωx0

k+1−jw
x
j (x0)1 = dxk = dx1

k +
k+1∑

j=0

ωx1

k+1−jw
x
j (x1)1 (3.3)

for all k ∈ N0. Moreover, again by Proposition A.6 and Proposition IV.5.17,
the numbers dx0

k and dx1

k are in case x0 < x1 related as

dx1

k = dx0

k +

k+1∑

j=0

ωx0

k+1−jw
x1

j (x0)1 .

If x0 > x1, we apply (A.2) with the elements

0,wx0

0 , . . . ,wx0

k+1; 0,wx1

0 , . . . ,wx1

k+1 ∈ L2(H |(x1,x0))

to conclude that the same formula holds true. We see that the numbers dx1

k ,
which were originally constructed via the point x, actually do not depend on
x. Hence, we may pass to the limit x → s+ in (3.3). Since ωx1

0 = 1, it follows
inductively that the limits

vx1

j = lim
x→s+

wx
j (x1)1, j = 1, . . . ,M ,

exist, i.e. (BM ) holds with the choice of x1 as a base point.
For the last assertion of the lemma, observe that the first condition in (AN )

follows immediately from the relation

lim
x→s+

(vk − wx
kχ�x)χx0� = 0.

For the second condition in (AN ), note that

(wx
k − wx0

k )χ�x0
= (wx

k − vk)χ�x0
− (wx0

k − vk)χ�x0
.

Both terms are in L2(H) for x ≥ x0; the second one is independent of x. The
convergence of the first term follows from (3.2). ❑

3.5 Remark. Assume that, in addition to a Hamiltonian H of the form 2.6, also
a point x0 ∈ I+ and real numbers dx0

k , k = 0, . . . , 2∆ − 1, are given. Again we
set

dx0

k
:=

∫ x0

s−

(wx0

∆ )∗Hwx0

k−∆, k ≥ 2∆.

For x ∈ I+ let numbers dxk be defined as

dxk := dx0

k +

k+1∑

j=0

ωx0

k+1−jw
x
j (x0)1, k ≥ 0.

Then H satisfies (BM ) if and only if the limits

Dk := lim
x→s+

dxk, k = 0, . . . ,M − 1, (3.4)

31



exist in R.
This remark becomes interesting if we remember that the numbers dxk,

k = 0, . . . , 2∆−1, are exactly the parameters of the elementary indefinite Hamil-
tonian obtained in Lemma 2.5 when using x as cutting point. �

We trivially have ‘(AN )⇒(AN−1)’ and ‘(BM )⇒(BM−1)’. It is more interesting
to note that a condition ‘type A’ implies a condition ‘type B’.

3.6 Lemma. Let H be a Hamiltonian of the form 2.6 with sup I+ = s+. If H
satisfies the condition (AN ), then also (BN+1).

Proof. Let 1 ≤ k ≤ N + 1 be given. We apply the abstract Green’s identity
with the elements

(wx
k ; w

x
k−1), (

(
0

1

)

; 0) ∈ Tmax(H |(x0,x)) .

This gives

∫ s+

x0

(
0

1

)∗

Hwx
k−1χ�x =

∫ x

x0

(
0

1

)∗

Hwx
k−1

=

(
0

1

)∗

Jwx
k(x0) −

(
0

1

)∗

Jwx
k(x) = wx

k(x0)1 ,

and hence

vx0

k = lim
x→s+

wx
k(x0)1 =

∫ s+

x0

(
0

1

)∗

Hvk−1 .

❑

Let us collect some properties of the functions vk.

3.7 Lemma. Let H be a Hamiltonian of the form 2.6 with sup I+ = s+, and
assume that H satisfies (AN ). For notational convenience, set v−1 := 0.

(i) For each x0 ∈ (σ, s+) we have

(
vkχx0�; vk−1χx0�

)
∈ Tmax(Hx0�), k = 0, . . . , N.

(ii) For each x0, x1 ∈ (σ, s+) we have

(
(vk − wx1

k )χ�x0
; (vk−1 − wx1

k−1)χ�x0

)
∈ Tmax(H�x0

), k = 0, . . . , N.

Due to the above items there exist unique absolutely continuous representatives of
vk, 0 ≤ k ≤ N , which will again be denoted by vk, such that v′k+1(t) = JHvk(t),
t ∈ (s−, σ) ∪ (σ, s+).

(iii) For k > N , there exist absolutely continuous functions vk on (s−, σ) ∪
(σ, s+) such that the assertion made in (ii) holds for all k ≥ 0.

The following limit relations hold:

(iv) For each x0 ∈ (σ, s+) we have

lim
x→s+

wx
k(x0) = vk(x0), k = 0, . . . , N.
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(v) We have
lim
x→s+

wx
l (x)

∗Jvk(x) = 0, 0 ≤ l, k ≤ N.

Proof. By their definition the functions vkχx0� and (vk−wx1

k )χ�x0
, k = 0, . . . , N ,

belong to L2(Hx0�) or L2(H�x0
), respectively. For the proof of (i) and (ii), it is

therefore enough to show that for each interval (a, b) with [a, b] ⊆ (σ, s+),

(vkχ(a,b); vk−1χ(a,b)) ∈ Tmax(H(a,b)) . (3.5)

However, for each x ∈ I+, we have (wx
kχ(a,b); w

x
k−1χ(a,b)) ∈ Tmax(H(a,b)), and

hence (3.5) follows from (3.2).
Next it is easy to construct functions vk, k > N , with the desired properties.

To this end, fix x ∈ I+, and remember that for each function f ∈ L2(H |(σ,x))
there exists a unique constant α(f) such that

(Bf)(t) :=

∫ t

x

JHf +

(
0

α(f)

)

∈ L2(H |(σ,x)),

cf. [KW2, §2.b]. On (σ, s+) we define functions vk, k > N , inductively by

vk := B(vk−1 − wx
k−1) + wx

k, k > N.

On (s−, σ) we set vk := wx
k, k > N ; note that on (s−, σ), wx

k does not depend
on x. Then, clearly, (vk−wx

k)
′ = JH(vk−1−wx

k−1) and (vk−wx
k) ∈ L2(H |(σ,x)).

The asserted properties are now immediate from the known properties of wx
k.

We come to the proof of (iv). Set a := x0 and choose b ∈ (x0, s+) such that
(a, b) is not indivisible. Then the boundary relation Γ(H |(a,b)) is a continuous
operator from Tmax(H |(a,b)) onto C2 × C2. Hence

(
vk(a); vk(b)

)
= Γ(H |(a,b))

(
vkχ(a,b); vk−1χ(a,b)

)

= Γ(H |(a,b))
(

lim
x→s+

(wx
kχ(a,b); w

x
k−1χ(a,b))

)
= lim
x→s+

(wx
k(a); w

x
k(b)) .

For the proof of (v), we apply the abstract Green’s identity with the elements
(x0, x ∈ (σ, s+) with x0 < x)

(vk; vk−1), (vl; vl−1) ∈ Tmax(Hx0�), 0 ≤ l, k ≤ N,

(vk; vk−1), (w
x
l ; w

x
l−1) ∈ Tmax(H |(x0,x)), 0 ≤ l, k ≤ N.

This gives

∫ s+

x0

v∗lHvk−1 −

∫ s+

x0

v∗l−1Hvk = vl(x0)
∗Jvk(x0), (3.6)

∫ x

x0

(wx
l )

∗Hvk−1 −

∫ x

x0

(wx
l−1)

∗Hvk = wx
l (x0)

∗Jvk(x0) − wx
l (x)

∗Jvk(x). (3.7)

When x → s+, the left-hand of side of (3.7) tends to the left-hand side of
(3.6). By the already proved item (iv), the first summand on the right-hand
side of (3.7) approaches the right-hand side of (3.6). Thus, we must have
limx→s+ wx

l (x)
∗Jvk(x) = 0. ❑
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Let us note that the functions vk, k > N , in the above item (iii) are not unique.

b. Construction of limit boundary triples.

By Proposition A.7 we have

κ̊x2,x3
◦ κ̊x1,x2

= κ̊x1,x3
, x1, x2, x3 ∈ I+, x1 < x2 < x3 .

Hence, thinking of the totality of all maps κ̊x1,x2
, we have a chain of isomor-

phisms (which of course also transports via the isomorphisms ι̊x)

· · · // P̊x1
(h)

κ̊x1,x2 //

κ̊x1,x3

%%

ι̊x1

��

P̊x2
(h)

κ̊x2,x3 //

ι̊x2

��

P̊x3
(h) //

ι̊x3

��

· · ·

· · · // m
Px1

(h) m
κ x1,x2

// m
κ x1,x3

99

m
Px2

(h) m
κ x2,x3

// m
Px3

(h) // · · ·

(3.8)

It is a central result for our present purposes that, assuming the asymptotics
(A∆−1) and (B2∆), we may pass to the limit x3 → s+. Actually, these conditions
are chosen exactly to allow this limiting procedure.

As a first, trivial, step towards passing to the limit, let us emphasize also

in notation that some parts of the boundary triples B̊x0
(h) and

m
Bx0

(h) do not
depend on x0 at all.

3.8 Definition.

(i) Denote by P̊(h) the linear space L2(H)× (C∆ ×C∆)×Cö, endowed with
the inner product induced by the Gram matrix (2.6).

(ii) Denote by
m
P(h) the linear space L2

∆(H) × C∆ × Cö, endowed with the

Banach space topology common to all the spaces
m
Px0

(h), x0 ∈ I+.

�

All maps in (3.8) are bijective and bicontinuous operators if considered between
these Banach spaces:

κ̊x1,x2
: P̊(h) → P̊(h),

m
κx1,x2

:
m
P(h) →

m
P(h), ι̊x1

: P̊(h) →
m
P(h) .

Since ι̊x1
maps the subspace L2(H) ⊆ P̊(h) onto L2(H) ⊆

m
P(h), the space

L2(H) is a closed subspace of
m
P(h). In particular, the topology induced on

L2(H) by
m
P(h) is equal to the topology induced by the L2(H)-norm.

We can now establish the existence of limits.

3.9 Proposition. Assume that the general Hamiltonian h satisfies the asymp-
totic conditions (A∆−1) and (B2∆), and let x0 ∈ I+. Then the limits

κ̊x0,s+ := lim
x→s+

κ̊x0,x,
m
κx0,s+ := lim

x→s+

m
κx0,x, ι̊s+ := lim

x→s+
ι̊x , (3.9)
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exist in the operator norm. We have

P̊(h)

ι̊x0

��

κ̊x0,s+ // P̊(h)

ι̊s+

��m
P(h)

m
κx0,s+ // m

P(h)

(3.10)

The map κ̊x0,s+ is an isometric isomorphism of P̊(h) onto itself, and its action
is given by linearity and

κ̊x0,s+(f ; 0, 0, 0) =
(

f ;
(
∫ s+

x0

v∗jHf +

∫ x0

σ

(vj − wx0

j )∗Hf
)∆−1

j=0
, 0, 0

)

,

κ̊x0,s+(0; ξ, 0,α) = (0; ξ, 0,α),

κ̊x0,s+(0; 0, εk, 0) =
(

− χx0�vk − χ�x0
(vk − wx0

k ); (h
x0,s+
kj )∆−1

j=0 , εk, 0
)

where we set

h
x0,s+
kj

:= −
1

2

k+j+1
∑

l=j+1

ωx0

k+j+1−lv
x0

l +
1

2

j
∑

l=1

ωx0

k+j+1−lv
x0

l .

The maps ι̊s+ : P̊(h) →
m
P(h) and

m
κx0,s+ :

m
Px0

(h) →
m
P(h) act as follows

ι̊s+(f ; ξ, λ,α) =
(
f +

∆−1∑

l=0

λlvl; ξ,α
)
,m

κx0,s+(f ; ξ,α) =
(

f ;
(
ξj +

∫ s+

x0

v∗jHf

+

∫ x0

σ

(vj − wx0

j )∗H
(
f −

∆−1∑

l=0

λlw
x0

l

)
+

∆−1∑

l=0

λlh
x0,s+
lj

)∆−1

j=0
,α
)

where λ are the unique coefficients so that f −
∑∆−1
l=0 λlw

x0

l χ�x0
∈ L2(H).

Proof. Letting x tend to s+ in the formulae describing the action of κ̊x0,x, it
follows that the limit (3.9) exists in the strong operator topology and is given by
the asserted formulae. Strong convergence also implies that κ̊x0,s+ is isometric,
and hence injective.
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In order to show convergence in the operator norm, we compute

(̊κx0,s+ − κ̊x0,x)(f ; 0, 0, 0)

=
(

0;
(
∫ x

x0

(vj − wx
j )

∗Hf +

∫ x0

σ

(vj − wx
j )

∗Hf +

∫ s+

x

v∗jHf
)∆−1

j=0
, 0, 0

)

,

(̊κx0,s+ − κ̊x0,x)(0; ξ, 0,α) = 0,

(̊κx0,s+ − κ̊x0,x)(0; 0, εk, 0) =
(

− (χx0�vk − χ(x0,x)w
x
k) − χ�x0

(vk − wx
k);

(
−

1

2

k+j+1
∑

l=j+1

ωx0

k+j+1−l(v
x0

l − wx
l (x0)1)

+
1

2

j
∑

l=1

ωx0

k+j+1−l(v
x0

l − wx
l (x0)1)

)∆−1

j=0
, 0, 0

)

.

It follows, with the help of (3.2), that limx→s+ ‖̊κx0,s+ − κ̊x0,x‖ = 0, where ‖ · ‖

is a norm that is compatible with the indefinite inner product on P̊(h). The
surjectivity of κ̊x1,s+ is obvious.

From the definition of ι̊x and (3.2) we immediately obtain that ι̊s+ :=
limx→s+ ι̊x exists in the operator norm and acts as

ι̊s+(f ; ξ, λ, α) =
(
f +

∆−1∑

k=0

λkvk; ξ, α
)
.

Clearly, ι̊s+ is bijective. Finally, existence of the limit limx→s+
m
κx0,x and com-

mutativity of (3.10) follow since for each x ∈ I+m
κx0,x = ι̊x ◦ κ̊x0,x ◦ ι̊

−1
x0
.

The form of
m
κx0,s+ follows from taking the strong limit in Lemma 3.2. ❑

3.10 Corollary. We have limx→s+ κ̊x,s+ = I with respect to the operator norm.
In particular,

lim
x→s+

h
x,s+
kj = 0, 0 ≤ k, j ≤ ∆ − 1 .

Proof. By (3.8), we have

κ̊x1,x = κ̊x2,x ◦ κ̊x1,x2
, x1, x2, x ∈ I+, x1 < x2 < x .

Letting x→ s+, gives κ̊x1,s+ = κ̊x2,s+ ◦ κ̊x1,x2
, i.e. κ̊x1,s+ ◦ κ̊−1

x1,x2
= κ̊x2,s+ . Since

κ̊x1,s+ is boundedly invertible and ‖̊κx1,x2
‖ = ‖̊κ−1

x1,x2
‖ = 1, we may pass to the

limit x2 → s+ and obtain

lim
x2→s+

κ̊x2,s+ = κ̊x1,s+ ◦ lim
x2→s+

(̊κ−1
x1,x2

) = κ̊x1,s+ ◦ ( lim
x2→s+

κ̊x1,x2
)−1 = I .

The asserted limit relation for h
x,s+
kj follows immediately taking into account

the formula for κ̊x,s+(0; 0, εk; 0). ❑

We can use the isomorphisms κ̊x0,s+ and
m
κx0,s+ to transport boundary triples.
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3.11 Definition. Let h be a singular indefinite Hamiltonian (of the form 1.3
with sup I+ = s+) which satisfies the asymptotic conditions (A∆−1) and (B2∆),
and choose a base point x0 ∈ I+. Set

T̊ (h) :=
(
κ̊x0,s+×κ̊x0,s+

)
T̊x0

(h), Γ̊(h) :=
(
(̊κx0,s+×κ̊x0,s+) × idC4

)
Γ̊x0

(h).

On the linear space
m
P(h) define an inner product by

[F,G] := [
m
κ
−1

x0,s+
F,

m
κ
−1

x0,s+
G], F,G ∈

m
P(h) ,

where the inner product on the right-hand side is the one in
m
Px0

(h), and setm
T (h) :=

( m
κx0,s+×

m
κx0,s+

) m
T x0

(h),
m
Γ(h) :=

(
(
m
κx0,s+×

m
κx0,s+) × idC4

) m
Γx0

(h) .

�

The triples

B̊(h) :=
(
P̊(h), T̊ (h), Γ̊(h)

)
and

m
B(h) :=

( m
P(h),

m
T (h),

m
Γ(h)

)

are, by definition, boundary triples isomorphic to B(h). It follows immediately

from (3.8) and (3.10) that the boundary triples B̊(h) and
m
B(h) do not depend

on the choice of the base point x0, and thatm
T (h) =

(
ι̊s+× ι̊s+

)
T̊ (h),

m
Γ(h) =

(
(̊ιs+× ι̊s+) × idC4

)
Γ̊(h) .

c. The x0-independent description of
m
B(h).

The following description of the relations
m
T (h) and

m
Γ(h) is the main result of

this section.

3.12 Theorem. Let h be a general Hamiltonian (of the form 1.3 with sup I+ =
s+), and assume that h satisfies the asymptotic conditions (A∆−1) and (B2∆).

Then, for each k ∈ {0, . . . ,∆ − 2}, the limit

lk := lim
x→s+

(

− vk+1(x)
∗Jwx

∆(x) +

∫ x

σ

(vk − wx
k)

∗Hwx
∆

)

exists in R.
Let F = (f ; ξ,α) and G = (g; η,β) be elements of

m
P(h), and let λ and µ be

the unique coefficients with

f −

∆−1∑

l=0

λlvl ∈ L2(H), g −

∆−1∑

l=0

µlvl ∈ L2(H) .

Then (F ;G) ∈
m
T (h) if and only if

(i) (f ; g) ∈ T∆,max(H);

(ii) for each k ∈ {0, . . . ,∆ − 2} we have

ξk = ηk+1 +
1

2
λ0Dk + µ∆−1

(1

2
D∆+k+1 − lk

)

−

{
vk+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;
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(iii) the limit

lF,G := lim
x→s+

(

v∆(x)∗J
(

f(x) −

∆−1∑

l=0

λlw
x
l (x) − µ∆−1w

x
∆(x)

)

+ µ∆−1

∫ x

σ

(v∆−1 − wx
∆−1)

∗Hwx
∆ +

∫ x

s−

v∗∆H
(

g −

∆−1∑

l=0

µlw
x
l

))

exists in R, and we have

ξ∆−1 = lF,G +
1

2

∆−1∑

l=0

λlDl+∆−1 + µ∆−1D2∆−1 −

{
β1, ö > 0,

0, ö = 0,

−

{
v∆(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(iv) if (s−, σ) is not indivisible, then

η0 = f(s−)1 −
1

2

∆−1∑

l=0

µlDl ;

(v) if ö > 0, then

αj = −µ∆−1bö−j+1 +

{
βj+1, j = 1, . . . , ö− 1,

0, j = ö.

In this case,m
Γ(F ;G) =







f(s−), (s−, σ) not indivisible,

(

η0 + 1
2

∑∆−1
l=0 µlDl

λ0

)

, (s−, σ) indivisible.

We have mul
m
T (h) 6= {0} if and only if H starts with an indivisible interval at

s−. In this case, when s0 ∈ (s−, σ] denotes the right endpoint of the maximal in-
divisible interval with left endpoint s−, φ denotes its type, and l :=

∫ s0
s−

trH(t) dt

its length, we have

mul
m
T (h) =

{
span

{(
0; (ξφχ�s0 ; (−vk(s−)2l sinφ)∆−1

j=0 , 0)
)}
, s0 < σ,

span
{(

0; (0; ε0, 0)
)}
, s0 = σ.

Proof. In the proof we use Theorem 2.15. To this end note that, for any x ∈ I+

and arbitrary elements (f ; ξ,α) ∈
m
P(h), we havem

κ
−1

x,s+
(f ; ξ,α) =

(

f ;
(
ξj −

∫ s+

x

v∗jHf −

∫ x

σ

(vj − wx
j )

∗H
(
f −

∆−1∑

l=0

λlw
x
l

)

−
∆−1∑

l=0

λlh
x,s+
lj

)∆−1

j=0
,α

)
(3.11)
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where λ are the unique coefficients with f −
∑∆−1

l=0 λlvl ∈ L2(H).

Step 1: w.l.o.g. (F ;G) satisfies (i) and (v).

Let F = (f ; ξ,α), G = (g; η,β) ∈
m
P(h) be given. By the definition of

m
T (h), we

have (F ;G) ∈
m
T (h) if and only if (

m
κ
−1
x,s+

F ;
m
κ
−1
x,s+

G) ∈
m
T x(h). The relation (3.11)

and Theorem 2.15 (i), (v) show that, under the assumption that (F ;G) ∈
m
T (h),

the present conditions (i) and (v) hold. This implies that, for the proof of the
present theorem, we may assume from the start that (F ;G) satisfies (i) and (v).

Note that the condition (i) implies that µk = λk+1, k = 0, . . . ,∆ − 2, cf.
Corollary 2.10.

Step 2: computation of the conditions (ii)–(iv) in Theorem 2.15.

Let F,G ∈
m
P(h) and µ, λ be as in the formulation of the theorem. Moreover,

let x ∈ I+. We will show that the conditions (ii)–(iv) in Theorem 2.15 for the

element (
m
κ
−1
x,s+

F ;
m
κ
−1
x,s+

G) read as follows:

(iix) for each k = 0, . . . ,∆ − 2 we have

ξk = ηk+1 +
1

2
λ0d

x
k +

1

2
µ∆−1d

x
∆+k

−

{
wx
k+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible,

− vk+1(x)
∗J
(∆−1∑

l=0

λlw
x
l (x)

)

+

∆−1∑

l=0

λlh
x,s+
lk −

∆−1∑

l=0

µlh
x,s+
l,k+1

+ µ∆−1

(

− vk+1(x)
∗Jwx

∆(x) +

∫ x

σ

(vk − wx
k)

∗Hwx
∆

)

;

(iiix)

ξ∆−1 =
1

2

∆−1∑

l=0

λld
x
l+∆−1 + µ∆−1d

x
2∆−1 −

{
β1, ö > 0,

0, ö = 0.

+ v∆(x)∗J
(

f(x) −

∆−1∑

l=0

λlw
x
l (x) − µ∆−1w

x
∆(x)

)

+ µ∆−1

∫ x

σ

(v∆−1 − wx
∆−1)

∗Hwx
∆ +

∫ x

s−

v∗∆H
(

g −

∆−1∑

l=0

µlw
x
l

)

+

∫ s+

x

v∗∆−1Hf +

∆−1∑

l=0

λlh
x,s+
l,∆−1

−

{
wx

∆(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible;

(ivx) if (s−, σ) is not indivisible, then

η0 = f(s−)1 −
1

2

∆−1∑

l=0

µld
x
l +

∫ s+

x

v∗0Hg − v0(x)
∗Jf(x) +

∆−1∑

l=0

µlh
x,s+
l0 .
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Let us start with condition (iix). Plugging the respective expressions (3.11) form
κ
−1
x,s+

F and
m
κ
−1
x,s+

G into Theorem 2.15 (ii) we obtain

ξk =

∫ s+

x

v∗kHf +

∫ x

σ

(vk − wx
k)

∗H
(
f −

∆−1∑

l=0

λlw
x
l

)
+

∆−1∑

l=0

λlh
x,s+
lk

+ ηk+1−

∫ s+

x

v∗k+1Hg −

∫ x

σ

(vk+1 − wx
k+1)

∗H
(
g −

∆−1∑

l=0

µlw
x
l

)
−

∆−1∑

l=0

µlh
x,s+
l,k+1

+
1

2
µ∆−1d

k
∆+k +

1

2
λ0d

x
k + ωxk+1f(x)1

−

{
wx
k+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible,

= ηk+1−
(∫ s+

x

v∗k+1Hg −

∫ s+

x

v∗kHf
)

−

(∫ x

σ

(vk+1 − wx
k+1)

∗H
(
g −

∆−1∑

l=0

µlw
x
l

)

−

∫ x

σ

(vk − wx
k)

∗H
(

f −

∆−1∑

l=0

λlw
x
l − µ∆−1w

x
∆

))

+ µ∆−1

∫ x

σ

(vk − wx
k)

∗Hwx
∆

+

∆−1∑

l=0

λlh
x,s+
lk −

∆−1∑

l=0

µlh
x,s+
l,k+1 +

1

2
λ0d

x
k +

1

2
µ∆−1d

k
∆+k + ωxk+1f(x)1

−

{
wx
k+1(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible.
(3.12)

The abstract Green’s identity applied to the pairs

(f ; g), (vk+1; vk) ∈ Tmax(Hx�)

yields
∫ s+

x

v∗k+1Hg −

∫ s+

x

v∗kHf = vk+1(x)
∗Jf(x)

and applied to the pairs (remember that µk = λk+1, k = 0, . . . ,∆ − 2, and
wx−1 := 0)

(

f−

∆−1∑

l=0

λlw
x
l −µ∆−1w

x
∆; g−

∆−1∑

l=0

µlw
x
l

)

, (vk+1−wx
k+1; vk−wx

k) ∈ Tmax(H |(σ,x)),

k = 0, . . . ,∆ − 2,
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it gives

∫ x

σ

(vk+1 − wx
k+1)

∗H
(
g −

∆−1∑

l=0

µlw
x
l

)
−

∫ x

σ

(vk − wx
k)

∗H
(

f −
∆−1∑

l=0

λlw
x
l − µ∆−1w

x
∆

)

= −
(
vk+1(x) − wx

k+1(x)
)∗
J
(

f(x) −
∆−1∑

l=0

λlw
x
l (x) − µ∆−1w

x
∆(x)

)

= −
(
vk+1(x)

)∗
J
(

f(x) −

∆−1∑

l=0

λlw
x
l (x)−µ∆−1w

x
∆(x)

)

+ wx
k+1(x)

∗Jf(x)
︸ ︷︷ ︸

=ωx
k+1

f(x)1

. (3.13)

Putting this all together we obtain (iix).
Next we show the correspondence of (iiix) and Theorem 2.15 (iii). Plugging

(3.11) into Theorem 2.15 (iii) gives

ξ∆−1 =

∫ s+

x

v∗∆−1Hf +

∫ x

σ

(v∆−1 − wx
∆−1)

∗H
(
f−

∆−1∑

l=0

λlw
x
l

)
+

∆−1∑

l=0

λlh
x,s+
l,∆−1

+

∫ x

s−

(wx
∆)∗H

(
g −

∆−1∑

l=0

µlw
x
l

)
+

1

2

∆−1∑

l=0

λld
x
l+∆−1 + µ∆−1d

x
2∆−1 −

{
β1, ö > 0,

0, ö = 0,

+ ωx∆f(x)1 −

{
wx

∆(s−)2f(s−)1, (s−, σ) not indivisible,

0, (s−, σ) indivisible.

Let v∆ be a function as in Lemma 3.7 (iii); then we can apply (3.13) also with
k = ∆ − 1. Using this we obtain (iiix).

Finally, we plug (3.11) into Theorem 2.15 (iv), and obtain

η0 −

∫ s+

x

v∗0Hg −

∫ x

σ

(v0 − wx
0

︸ ︷︷ ︸

=0

)∗H
(
g−

∆−1∑

l=0

µlw
x
l

)
−

∆−1∑

l=0

µlh
x,s+
l0

= f(s−)1 − f(x)1 −
1

2

∆−1∑

l=0

µld
x
l ,

which is exactly (ivx).

Step 3: (F ;G) ∈
m
T (h) ⇒ (ii) − (iv).

For each x ∈ I+ the pair (κ−1
x,s+

F ;κ−1
x,s+

G) belongs to
m
T x(h). Hence the con-

ditions (iix)–(ivx) are satisfied for all x ∈ I+ and we may pass to the limit
x→ s+.

Lemma 3.7 (v) and Corollary 3.10 imply that the terms in the third line
of (iix) tend to 0. The expressions in the first line tend to the corresponding
expressions in (ii), cf. (3.4). We conclude that the limit

lim
x→s+

µ∆−1

(

− vk+1(x)
∗Jwx

∆(x) +

∫ x

σ

(vk − wx
k)

∗Hwx
∆

)

(3.14)

exists and that (ii) will hold once the existence of the limit lk is established.

This, however, follows at once from (3.14) since
m
T (h) certainly does contain

elements with µ∆−1 6= 0.
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Let us next consider (iiix). Since, for x0 ∈ I+, the elements v∆−1χx0� and
fχx0� both belong to L2(Hx0�), we have

lim
x→s+

∫ s+

x

v∗∆−1Hf = 0 .

Together with Corollary 3.10 this shows that the terms in the fourth line of
(iiix) tend to 0. By (3.4), the terms in the first line approach the corresponding
terms in (iii). The expression in the last line does not depend on x. It follows
that the limit lF,G exists and that the formula (iii) holds.

Finally, let us consider (ivx). Since for x0 ∈ I+, fχx0� and v0χx0� belong to
domTmax(Hx0�), we have

lim
x→s+

v0(x)
∗Jf(x) = 0,

cf. [HSW, Theorem 3.6]. This together with considerations as above show that
the right-hand side of (ivx) converges to the right-hand side of (iv).

Step 4: (ii) − (iv) ⇒ (F ;G) ∈
m
T (h).

For each x ∈ I+, we define elements Fx, Gx ∈
m
P(h) as Fx := (f ; ξx,α) and

Gx := (g; ηx,β), where

ηx0 :=

{
right-hand side of (ivx), (s−, σ) not indivisible,

η0, (s−, σ) indivisible,

ηxk := ηk, k = 1, . . . ,∆ − 1 ,

ξk :=

{
right-hand side of (iix), k = 0, . . . ,∆ − 2,

right-hand side of (iiix), k = ∆ − 1.

Then, by Theorem 2.15 and Step 2, the pair (κ−1
x,s+

Fx;κ
−1
x,s+

Gx) belongs tom
T x(h), and hence (Fx;Gx) ∈

m
T (h). However, as we saw in Step 3, the right-

hand sides of (iix)–(ivx) tend to the right-hand sides of (ii)–(iv) for x → s+.
Thus

lim
x→s+

Fx = F, lim
x→s+

Gx = G ,

and we conclude that (F ;G) ∈
m
T (h) since

m
T (h) is a closed linear relation.

Step 5: boundary values.

Let (F ;G) ∈
m
T (h) be given, and let x ∈ I+. Thenm

Γ(F ;G) =
m
Γx
(
κ−1
x,s+

F ;κ−1
x,s+

G
)

=







f(s−), (s−, σ) not indivisible,

(

η̃x0 + f(x)1 + 1
2

∑∆−1
l=0 µld

x
l

λ0

)

, (s−, σ) indivisible,
(3.15)

where

η̃x0 := η0 −

∫ s+

x

v∗0Hg −
∆−1∑

l=0

µlh
x,s+
l0 .
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If (s−, σ) is not indivisible, we are already done. Consider the case when (s−, σ)
is indivisible. Since fχx0� and v0χx0� both belong to domTmax(Hx0�) for some
x0 ∈ I+, we have

lim
x→s+

f(x)1 = lim
x→s+

v0(x)
∗Jf(x) = 0.

Hence passing to the limit in (3.15) gives the desired formula.

Step 6: multi-valued part.

We have (0;G) ∈ mul
m
T (h) if and only if (0;

m
κ
−1
x,s+

G) ∈ mul
m
T x(h). However,

if (0; G̃) ∈ mul
m
T x(h), then by the form of G̃ given in Theorem 2.15 we havem

κx,s+G̃ = G̃. Hence, mul
m
T (h) = mul

m
T x(h). ❑

3.13 Remark. Under slightly stronger assumptions on the asymptotics of h, the
limits appearing in Theorem 3.12 can be computed: assume that h satisfies
(A∆) and (B2∆). Then, with the notation of Theorem 3.12, we have

lk = 0, k = 0, . . . ,∆ − 2 .

Moreover, if (F ;G) ∈
m
T (h), then

lF,G =

∫ s+

s−

v∗∆H
(
g −

∆−1∑

l=0

λlvl
)
.

The first relation follows from Lemma 3.7 (v) and (3.2). For the sec-
ond relation note in addition that v∆χx0

∈ domTmax(Hx0�) and hence
limx→s+ v∆(x)∗Jf(x) = 0. �

Appendix A. Splitting of the model for an ele-

mentary indefinite Hamiltonian h
s+
s−

In this appendix we derive some formulae connected with the splitting of an
indefinite Hamiltonian. Although we need the formulae in the case that the
splitting point is to the right of the singularity, we first derive them for the
case that the splitting point is to the left and then apply an order-reversing
reparameterization. This is because the formulae we use from [KW2] are for the
former case.

Let h
s+
s− = (H ; ö, bj; d

s+
s−,j

) be an elementary indefinite Hamiltonian of kind

(A) defined on (s−, σ) ∪ (σ, s+), let s0 ∈ I−, and let h
s+
s0 = (H ; ö, bj ; d

s+
s0,j

) be

the elementary indefinite Hamiltonian obtained by splitting h
s+
s− at s0. Then,

by §2.2, §2.3 and Remark 2.4, we have the isomorphism

κs0,s− : L2(H�s0) [+̇] P(hs+s0 ) → P(hs+s−) .

Let

ιs+s− : P(hs+s−) → L2(H) [+̇] (C∆ +̇ C
∆) [+̇] Cö,

ιs+s0 : P(hs+s0 ) → L2(Hs0�) [+̇] (C∆ +̇ C
∆) [+̇] Cö
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be the respective isomorphisms constructed in (IV.4.10). By

(f +̇ x) 7→ (f ; 0, 0, 0) + ιs+s0 x, f ∈ L2(H�s0 ), x ∈ P(hs+s0 ),

the map ι
s+
s0 extends naturally to an isomorphism of L2(H�s0) [+̇] P(h

s+
s0 ) onto

L2(H) [+̇] (C∆ +̇ C∆) [+̇] Cö which again will be denoted by ι
s+
s0 .

The isomorphisms ι
s+
s− and ι

s+
s0 can be used to transport κs0,s− : denote by

κ̊s0,s− the map defined by

L2(H�s0) [+̇] P(h
s+
s0 )

ι
s+
s0

��

κs0,s− // P(h
s+
s−)

ι
s+
s−

��
L2(H) [+̇] (C∆ +̇ C∆) [+̇] Cö

κ̊s0,s−
// L2(H) [+̇] (C∆ +̇ C∆) [+̇] Cö

(A.1)

Our aim in the present section is to give explicit formulae for the action of
κ̊s0,s− .

Explicit form of the splitting isomorphism [KW2, §7].

Let h
s+
s− and h

s+
s0 , where s0 ∈ (s−, σ) is not an inner point of an indivisible

interval, be given as above. Let w
s+
s−,k

and w
s+
s0,k

denote the unique absolutely

continuous functions defined on [s−, s+] \ {σ} and [s0, s+] \ {σ}, respectively,
with values in C2 such that (k ∈ N)

(w
s+
s−,k

)′ = JHw
s+
s−,k−1, (w

s+
s0,k

)′ = JHw
s+
s0,k−1,

w
s+
s−,0

=

(
0

1

)

, w
s+
s0,0

=

(
0

1

)

,

w
s+
s−,k

(s−),w
s+
s−,k

(s+) ∈ span
{(0

1

)}

, w
s+
s0,k

(s0),w
s+
s0,k

(s+) ∈ span
{(0

1

)}

,

w
s+
s−,k

∈ L2(H), k ≥ ∆, w
s+
s0,k

∈ L2(Hs0�), k ≥ ∆.

For notational convenience, we set w
s+
s−,−1 = w

s+
s0,−1 = 0.

A.1 Remark. The functions w
s+
s0,k

, k ∈ N0, are a priori only defined on [s0, s+] \
{σ}. However, on the interval [s0, σ), they are of the form

w
s+
s0,k

(x) =

k∑

j=0

ωk−jI
j

(

χ[s0,σ)

(
0

1

))

(x), x ∈ [s0, σ) ,

with some sequence ωj ∈ R, ω0 = 1, and where I acts as

If =

∫ x

s0

JHf, x ∈ [s0, σ) .

Since H is also defined on (s−, s0), each function w
s+
s0,k

admits a natural con-
tinuation to [s−, s+] \ {σ}. Apparently, the relations

(w
s+
s0,k

)′ = JHw
s+
s0,k−1, k ∈ N ,

hold also on the bigger set (s−, s+) \ {σ}. �
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We know from Lemma IV.3.12 that there exist unique real numbers λj such
that

d
s0,s−
k (x) := w

s+
s−,k

(x) − w
s+
s0,k

(x) =
k−1∑

j=0

λk−jB
j

(

χ[s−,σ)

(
1

0

))

(x), x ∈ [s0, σ) ,

where B is the operator constructed in (IV.2.22). The numbers λj are in fact
given by

λk = d
s0,s−
k (s−)1 = −w

s+
s0,k

(s−)1, k ∈ N0.

It will be practical to have the following extension of the abstract Green’s iden-
tity available.

A.2 Remark. Let (P , T,Γ) be a boundary triple in the sense of Definition IV.2.7.
Let n ∈ N and

f0, . . . , fn; g0, . . . , gn ∈ P , α±
1 , . . . , α

±
n ; β±

1 , . . . , β
±
n ∈ C

2

be such that
(
(fj ; fj−1); (α

−
j ;α+

j )
)
,
(
(gj ; gj−1); (β

−
j ;β+

j )
)
∈ Γ, j = 1, . . . , n.

Then

[f0, gn] − [fn, g0] =

n∑

j=1

(β−
n+1−j)

∗Jα−
j −

n∑

j=1

(β+
n+1−j)

∗Jα+
j . (A.2)

This relation is obtained from taking the sum of the equalities

[fj−1, gn+1−j ] − [fj , gn−j] = (β−
n+1−j)

∗Jα−
j − (β+

n+1−j)
∗Jα+

j ,

for j = 1, . . . , n. �

The definition of the parameters d
s+
s0,k

of h
s−
s0 in [KW2, p. 8121 and Proposi-

tion 7.8] reads as

d
s+
s−,k

= d
s+
s0,k

+ [d
s0,s−
k , p0] − λk+1, k ∈ N0, (A.3)

where p0 is defined in [KW2, p. 759]. It is essential for our present purposes to
give a more explicit relation between d

s+
s−,j

and d
s+
s0,j

.

A.3 Proposition. We have

d
s+
s−,k

= d
s+
s0,k

−

k+1∑

j=1

w
s+
s0,k+1−j(s0)2w

s+
s−,j

(s0)1, k ∈ N0.

Proof. According to Proposition IV.4.7, we have

Bj
(

χ[s−,σ)

(
1

0

))

= −w
s+
s−,j+1(s−)2

and hence

[d
s0,s−
k , p0] = −

k−1∑

j=0

λk−jw
s+
s−,j+1(s−)2 =

k−1∑

j=0

w
s+
s0,k−j

(s−)1w
s+
s−,j+1(s−)2

=
k∑

j=1

w
s+
s0,k+1−j(s−)1w

s+
s−,j

(s−)2 .
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Hence

[d
s0,s−
k , p0] − λk+1 =

k∑

j=0

w
s+
s0,k+1−j(s−)1w

s+
s−,j

(s−)2

= −
k∑

j=0

w
s+
s0,k+1−j(s−)∗Jw

s+
s−,j

(s−)

= −

k+1∑

j=0

w
s+
s0,k+1−j(s−)∗Jw

s+
s−,j

(s−)

(∗)
= −

k+1∑

j=0

w
s+
s0,k+1−j(s0)

∗Jw
s+
s−,j

(s0)

= −

k+1∑

j=1

w
s+
s0,k+1−j(s0)

∗Jw
s+
s−,j

(s0) = −

k+1∑

j=1

w
s+
s0,k+1−j(s0)2w

s+
s−,j

(s0)1 .

The equality sign marked with (∗) is obtained from Remark A.2 applied to the
elements

0,w
s+
s−,0

, . . . ,w
s+
s−,k+1; 0,w

s+
s0,0

, . . . ,w
s+
s0,k+1 ∈ L2(H�s0).

❑

Now we are in position to prove formulae for κ̊s0,s− .

A.4 Proposition. The action of κ̊s0,s− is determined by linearity and

κ̊s0,s−(f ; 0, 0, 0) =
(

f ;
(
∫ s0

s−

(w
s+
s−,j

)∗Hf +

∫ σ

s0

(d
s0,s−
j )∗Hf

)∆−1

j=0
, 0, 0

)

,

κ̊s0,s−(0; ξ, 0,α) = (0; ξ, 0,α),

κ̊s0,s−(0; 0, εk, 0) =

(

−χ�s0w
s+
s−,k

− χs0�d
s0,s−
k ;

(1

2

k+j+1
∑

l=j+1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1 −
1

2

j
∑

l=1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1

)∆−1

j=0
,

εk, 0

)

.

Proof. The construction of κ̊s0,s− in [KW2, §7] was carried out in a two-step
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procedure according to the following diagram:

L2(H�s0)

ιJ

��

×
L2(Hs0�)

×
(C∆ × C∆) × Cö

̟

��

∼=

L2(H)
×

(C∆ × C∆)
×
Cö

κs0,s
−

��

ranPJ ran P̂

L2(H)
×

(C∆ × C∆)
×
Cö

PJ

__???????????? P̂

??������������

=

L2(H)
×

(C∆ × C∆)
×
Cö

where the notation of [KW2, §7] is used. The second formula in the present
assertion is apparent, since we have

̟(0; ξ, 0,α) = (0; ξ, 0,α),

P̂ (0; ξ, 0,α) = (0; ξ, 0,α).

The first formula is also easy to see: from Lemma IV.7.1 and the proof of
Proposition IV.4.14 we obtain

PJ

(

f ;
(
∫ s0

s−

(w
s+
s−,j

)∗Hf +

∫ σ

s0

(d
s0,s−
j )∗Hf

)∆−1

j=0
, 0, 0

)

=
(

χ�s0f ;
(
∫ s0

s−

(w
s+
s−,j

)∗Hf
)∆−1

j=0
, 0, 0

)

= ιJ (χ�s0f).

Using P̂ = I − PJ and the definition (IV.7.2) of ̟, it follows that

P̂
(

f ;
(
∫ s0

s−

(w
s+
s−,j

)∗Hf +

∫ σ

s0

(d
s0,s−
j )∗Hf

)∆−1

j=0
, 0, 0

)

=
(

χs0�f ;
(
∫ σ

s0

(d
s0,s−
j )∗Hf

)∆−1

j=0
, 0, 0

)

= ̟(χs0�f ; 0, 0, 0).

Together we obtain the first formula of the present assertion.
We come to the proof of the last asserted formula. By the definition (IV.7.2)
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of ̟ and the formulae in Remark IV.7.5, we have

̟(0; 0, εk, 0) = ̟(p̃k) −̟
(

0;
(1

2
d
s+
s0,k+j

)∆−1

j=0
, 0, 0

)

= P̂ (pk − d
s0,s−
k ) −

(

0;
(1

2
d
s+
s0,k+j

)∆−1

j=0
, 0, 0

)

= P̂
(

0; (
1

2
d
s+
s−,k+j

)∆−1

j=0
, εk, 0

)

− P̂
(

d
s0,s−
k ;

(
[d
s0,s−
k , pj]

)∆−1

j=0
, 0, 0

)

−
(

0;
(1

2
d
s+
s0,k+j

)∆−1

j=0
, 0, 0

)

=
(
− χ�s0w

s+
s−,k

− χs0�d
s0,s−
k ; (ξkj)

∆−1
j=0 , εk, 0

)

where

ξkj :=
1

2
(d
s+
s−,k+j

− d
s+
s0,k+j

) −

∫ s0

s−

(w
s+
s−,j

)∗Hw
s+
s−,k

− [d
s0,s−
k , pj ]

+

∫ s0

s−

(w
s+
s−,j

)∗Hd
s0,s−
k .

By Proposition A.3 we have

−
1

2
(d
s+
s−,k+j

− d
s+
s0,k+j

) =
1

2

k+j+1
∑

l=1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1 .

Remark A.2 applied to the functions

w
s+
s0,k

, . . . ,w
s+
s0,k+j+1; 0,w

s+
s−,0

, . . . ,w
s+
s−,j

∈ L2(H |(s−,s0))

gives
∫ s0

s−

(w
s+
s−,j

)∗Hw
s+
s−,k

−

∫ s0

s−

(w
s+
s−,j

)∗Hd
s0,s−
k =

∫ s0

s−

(w
s+
s−,j

)∗Hw
s+
s0,k

=

j+1
∑

l=1

w
s+
s−,j+1−l(s−)∗Jw

s+
s0,k+l

(s−) −

j+1
∑

l=1

w
s+
s−,j+1−l(s0)

∗Jw
s+
s0,k+l

(s0) .

Moreover, as we saw in the proof of Lemma IV.7.7, and by (A.3)

[d
s0,s−
k , pj ] = [d

s0,s−
k+j , p0] +

j
∑

l=1

w
s+
s−,l

(s−)∗Jd
s0,s−
k+j+1−l(s−)

= d
s+
s−,k+j

− d
s+
s0,k+j

+ λk+j+1 +

j
∑

l=1

w
s+
s−,l

(s−)2d
s0,s−
k+j+1−l(s−)1

= d
s+
s−,k+j

− d
s+
s0,k+j

− w
s+
s0,k+j+1(s−)1 −

j
∑

l=1

w
s+
s−,l

(s−)2w
s0,s−
k+j+1−l(s−)1

= d
s+
s−,k+j

− d
s+
s0,k+j

−

j
∑

l=0

w
s+
s−,l

(s−)2w
s0,s−
k+j+1−l(s−)1 .
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Hence we obtain

ξkj =
1

2
(d
s+
s−,k+j

− d
s+
s0,k+j

) −

( j+1
∑

l=1

w
s+
s−,j+1−l(s−)∗Jw

s+
s0,k+l

(s−)

−

j+1
∑

l=1

w
s+
s−,j+1−l(s0)

∗Jw
s+
s0,k+l

(s0)

)

−

(

d
s+
s−,k+j

− d
s+
s0,k+j

−

j
∑

l=0

w
s+
s−,l

(s−)2w
s0,s−
k+j+1−l(s−)1

)

= −
1

2
(d
s+
s−,k+j

− d
s+
s0,k+j

) −

j+1
∑

l=1

w
s+
s−,j+1−l(s−)∗Jw

s+
s0,k+l

(s−)

−

j+1
∑

l=1

w
s+
s−,j+1−l(s0)1w

s+
s0,k+l

(s0)2 +

j
∑

l=0

w
s+
s−,l

(s−)2w
s+
s0,k+j+1−l(s−)1

=
1

2

k+j+1
∑

l=1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1 −

j
∑

l=1

w
s+
s−,j+1−l(s0)1w

s+
s0,k+l

(s0)2

=
1

2

k+j+1
∑

l=j+1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1 −
1

2

j
∑

l=1

w
s+
s0,k+j+1−l(s0)2w

s+
s−,l

(s0)1 .

Now the relations

PJ
(
− χ�s0w

s+
s−,k

− χs0�d
s0,s−
k ; (ξkj)

∆−1
j=0 , εk, 0

)
= 0,

P̂
(
− χ�s0w

s+
s−,k

− χs0�d
s0,s−
k ; (ξkj)

∆−1
j=0 , εk, 0

)

=
(
− χ�s0w

s+
s−,k

− χs0�d
s0,s−
k ; (ξkj)

∆−1
j=0 , εk, 0

)

show the third formula of the proposition. ✌

Splitting to the right of σ.

Of course, similar considerations can be made when the splitting point s0 be-
longs to I+ instead of I−. As noted in Remark IV.7.9, the isomorphism κs0,s+
can be constructed using the previous case s0 ∈ I− and an order-reversing repa-
rameterization. In order to obtain explicit formulae, we have to carry out this
argument in some more detail.

A.5 Definition. Let h be an elementary indefinite Hamiltonian of kind (A)
which is given by the data H, ö, bj , dj and where H is defined on [s−, σ)∪(σ, s+ ].

Define an elementary indefinite Hamiltonian
←

h of kind (A) on the interval
[−s+,−σ) ∪ (−σ,−s−] as the collection of data

←

H (t) := H(−t),
←

ö := ö,
←

bj := (−1)ö−jbj,
←

dj := (−1)jdj .

�
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By Lemma IV.5.19, there exists an isomorphism between P(h) and P(
←

h) which

transfers T (h) to −T (
←

h) and reverses boundary values. More precisely, working

in terms of the isomorphic copies B̊(h) and B̊(
←

h), it is easy to see that the map
←

κh: P̊(h) → P̊(
←

h) defined as

←

κh: (f ; ξ, λ,α) 7→
(
f(−t); ((−1)jξj)

∆−1
j=0 , ((−1)jλj)

∆−1
j=0 , ((−1)j+∆−1αj)

ö
j=1

)

is an isomorphism and has the property

(
(F ;G); (a; b)

)
∈ Γ̊(h) ⇐⇒

(
(
←

κh F ;−
←

κh G); (b; a)
)
∈ Γ̊(

←

h).

If H is a positive definite regular Hamiltonian defined on an interval (s−, s+),
then

←

H (t) := H(−t)

is a positive definite regular Hamiltonian defined on the interval (−s+,−s−).
The map

←

κH : f 7→ f(−t)

is an isomorphism of L2(H) onto L2(
←

h) and satisfies

(
(F ;G); (a; b)

)
∈ Γ(H) ⇐⇒

(
(
←

κH F ;−
←

κH G); (b; a)
)
∈ Γ(

←

H) ,

cf. Lemma IV.2.6.
These order-reversing isomorphisms are compatible with the pasting of

boundary triples: let h be an elementary indefinite Hamiltonian of kind (A)
defined on [s−, σ)∪ (σ, s0], and let H be a positive definite regular Hamiltonian
defined on (s0, s+). Then the map

←

κh,H which is defined as

←

κh,H : F ⊕ f 7→
←

κH f⊕
←

κh F

is an isomorphism of P̊(h) ⊕ L2(H) onto L2(
←

H) ⊕ P̊(
←

h), and we have

(
(F ⊕ f ;G⊕ g); (a; b)

)
∈ Γ̊(h) ⊎ Γ(H) ⇐⇒

(
(
←

κh,H (F ⊕ f);−
←

κh,H (G⊕ g)); (b; a)
)
∈ Γ(

←

H) ⊎ Γ̊(
←

h)

Now we are ready to describe the splitting isomorphism for splitting to the
right of the singularity. Functions ws0

s−,k
are defined correspondingly, and we

set d
s0,s+
k

:= w
s+
s−,k

− ws0
s−,k

. Moreover, let hs0s− = (H�s0 ; ö, bj; d
s0
s−,j

) be the

elementary indefinite Hamiltonian obtained by splitting h
s+
s− at s0, and let κ̊s,s+

be the isomorphism of L2(H) [+̇] (C∆ +̇ C∆) [+̇] Cö onto itself defined by the
diagram corresponding to (A.1).

A.6 Proposition. Let h
s+
s− = (H ; ö, bj; d

s+
s−,j

) be an elementary indefinite

Hamiltonian defined on [s−, σ) ∪ (σ, s+], and let s0 ∈ I+. With the notation
described above, the numbers d

s+
s−,k

and ds0s−,k are related as follows:

ds0s−,k = d
s+
s−,k

−

k+1∑

j=1

ws0
s−,k+1−j(s0)2w

s+
s−,j

(s0)1, k ∈ N0.
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The action of the map κ̊s0,s+ is given by linearity and

κ̊s0,s+(f ; 0, 0, 0) =
(

f ;
(
∫ s+

s0

(w
s+
s−,j

)∗Hf +

∫ s0

σ

(d
s0,s+
j )∗Hf

)∆−1

j=0
, 0, 0

)

κ̊s0,s+(0; ξ, 0,α) = (0; ξ, 0,α)

κ̊s0,s+(0; 0, εk, 0) =

(

−χs0�w
s+
s−,k

− χ�s0d
s0,s+
k ;

(

−
1

2

k+j+1
∑

l=j+1

ws0
s−,k+j+1−l(s0)2w

s+
s−,l

(s0)1 +
1

2

j
∑

l=1

ws0
s−,k+j+1−l(s0)2w

s+
s−,l

(s0)1

)∆−1

j=0
,

εk, 0

)

,

Proof. Define elementary indefinite Hamiltonians of kind (A) by

h
−s−
−s+

:= (
←

H ; ö, (−1)ö−jbj ; d
−s−
−s+,j

) ,

h
−s−
−s0

:= (
←

H−s0�; ö, (−1)ö−jbj ; d
−s−
−s0,j

)

where

d
−s−
−s+,k

:= (−1)kd
s+
s−,k

,

d
−s−
−s0,k

:= d
−s−
−s+,k

+

k+1∑

j=1

w
−s−
−s0,k+1−j(−s0)2w

−s−
−s+,j

(−s0)1 .

Then, apparently, h
−s−
−s+

=
←

h
s+
s− , and h

−s−
−s0

is just the Hamiltonian which appears

in the splitting of h
−s−
−s+

at the point −s0 according to the previous subsection,
cf. Proposition A.3. Moreover, since we have

w
−s−
−s+,k

(t) = (−1)kw
s+
s−,k

(−t), w
−s−
−s0,k

(t) = (−1)kws0
s−,k

(−t) , (A.4)

and thus also d
−s0,−s+
k (t) = (−1)kd

s0,s+
k (−t), we see that

h
−s−
−s0

=
←

hs0s− .

It follows that we have isomorphisms

P̊(hs0s−) ⊕ L2(Hs0�)

←

κ
h

s0
s
−

,Hs0�

−→

L2(
←

H�−s0) ⊕ P̊(h
−s−
−s0

)
κ−s0,−s

−

−→ P̊(h
−s−
−s+

)

←

κ
h
−s
−

−s+

−→ P̊(hs+s−) .

Moreover, their composition

κ :=
←

κ
h
−s
−

−s+

◦κ−s0,−s−◦
←

κh
s0
s
−
,Hs0�

satisfies
(
(κ× κ) × (id× id)

)(
Γ̊(hs0s−) ⊎ Γ(Hs0�)

)
= Γ̊(hs+s−) .
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Putting together the formulae for
←

κ
h
−s
−

−s+

, κ−s0,−s− , and
←

κh
s0
s
−
,Hs0�

, as given in

their definition and in Proposition A.4, and keeping in mind the relations (A.4),
a straightforward calculation yields that κ = κs0,s+ as defined in the statement
of the present proposition. ❑

Transitivity of splitting isomorphisms.

Let an elementary indefinite Hamiltonian h
s+
s− = (H ; ö, bj ; d

s+
s−,j

) of kind (A) be
given, and assume that s0 and s1 with σ < s0 < s1 < s+ are both not inner
points of indivisible intervals. From Proposition A.6 we obtain numbers ds0s−,j
and ds1s−,j, and isomorphisms κs0,s+ and κs1,s+ . Applying Proposition A.6 with

the Hamiltonian hs1s− and the splitting point s0 we get a Hamiltonian h̃s0s− with

corresponding parameters d̃s0s−,j and an isomorphism κs0,s1 . Altogether, we find
ourselves in the following situation:

P(h̃s0
s
−

) × L
2(H |(s0,s1))

×
L

2(H |(s1,s+))

κs0,s1
×id

// P(hs1s−) × L2(H |(s1,s+))

κs1,s+

��
P(hs0s−) × L2(H |(s0,s+)) κs0,s+

// P(h
s+
s−)

A.7 Proposition. In the situation described above, we have

h̃s0s− = hs0s− and κs1,s+ ◦ (κs0,s1 × id) = κs0,s+

Proof. This statement can be deduced easily from Proposition IV.5.18, when
one slightly changes the point of view. Define h̃

s+
s− by specifying parameters

d̃
s+
s−,k

:= ds0s−,k +

k+1∑

j=0

ws0
s−,k+1−j(s0)2w

s+
s−,j

(s0)1 .

Then Proposition A.6 furnishes us with an isomorphism

κ̃s0,s+ : P(h̃s0s−) × L2(H |(s0,s+)) → P(h̃s+s−).

From the formulae in Proposition A.6 it is apparent that κ̃s0,s+ = κs0,s+ . Thus
(κs1,s+ ◦(κs0,s1 × id)◦κ−1

s0,s+
; id) is an isomorphism between the boundary triples

B(h̃
s+
s− ) and B(h

s+
s− ). By Proposition IV.5.18 and its proof it follows that

d̃
s+
s−,k

= d
s+
s−,k

, κs1,s+ ◦ (κs0,s1 × id) ◦ κ−1
s0,s+

= id .

The equality d̃
s+
s−,k

= d
s+
s−,k

clearly implies that also d̃s0s−,k = ds0s−,k. ❑
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