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Abstract

The spectral theory of a two-dimensional canonical (or ‘Hamiltonian’)
system is closely related with two notions, depending whether Weyl’s limit
circle or limit point case prevails. Namely, with its monodromy matrix
or its Weyl coefficient, respectively. A Fourier transform exists which
relates the differential operator induced by the canonical system to the
operator of multiplication by the independent variable in a reproducing
kernel space of entire 2-vector valued functions or in a weighted L2-space
of scalar valued functions, respectively.

Motivated from the study of canonical systems or Sturm-Liouville
equations with a singular potential and from other developments in Pon-
tryagin space theory, we have suggested a generalization of canonical sys-
tems to an indefinite setting which includes a finite number of inner sin-
gularities. We have constructed an operator model for such ‘indefinite
canonical systems’. The present paper is devoted to the construction of
the corresponding monodromy matrix or Weyl coefficient, respectively,
and of the Fourier transform.
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1 Introduction

A two-dimensional canonical (or Hamiltonian) system is an initial value problem
of the form

Yy (t) =2JH(t)y(t), te[s—,s1), y(s-)=wo, (1.1)

where z is a complex parameter, J denotes the symplectic matrix

0 -1
J = (1 . > |
and H is a 2 x 2-matrix valued function with H(t) > 0 for ¢ € (s_,s;) a.e.,
which is locally integrable and does not vanish identically on any set of positive
measure. The function H is called the Hamiltonian of the system (1.1). A
Hamiltonian H is called regular, if | °*tr H(t) dt < oo, and singular otherwise.
One also speaks of Weyl’s limit circle or limit point case instead of regular or
singular, respectively.

The interpretation of (1.1) as a differential operator takes place in a cer-
tain L?-space of 2-vector valued functions. In fact, in order to investigate
the spectral theory of a canonical system, one constructs a boundary triplet
B(H) = (L*(H), Tmax(H),T(H)). This operator theoretic viewpoint goes back
to [K], for a more recent compilation see [HSW].



Depending whether limit circle or limit point case prevails, the system (1.1)
shows significantly different behaviour. In the following we denote by W(t, z) =
(wij(t, 2))i,j=1,2 the unique solution of the initial value problem

7]

EW(t,z)J =2W(t,2)H(t), t € [s_,s+), W(s_,z)=1. (1.2)
Limit circle case: The function W (t,z) admits a continuous extension to s.
The matrix function W (s, z), sometimes also called the monodromy matrix
of H, belongs to the class My, i.e. the entries of W (s, z) are entire functions
which are real for real z, det W(s4, z) = 1, and

W(sq,2)JW(sq,2)* —J

z—Z

>0, Imz>0. (1.3)

The family wy = (W(t,2))te[s_,s,] 15, in the language of §3.b below, a fi-
nite maximal chain of matrices going downwards from the monodromy matrix
W(s4, 2).

The symmetric operator Tiin(H) := Tmax(H)* has defect index (2,2), is
completely nonselfadjoint, and the set of its points of regular type satisfies
r(Tmin(H)) = C. The selfadjoint extensions of T, (H) have compact resol-
vents, in particular, their spectrum is discrete. The monodromy matrix is a
(regularized) u-resolvent matrix of a certain symmetric extension of Ty, (H)
with defect 1. A Fourier transform exists which maps L?(H) isometrically onto
the reproducing kernel Hilbert space generated by W (s, z) via the kernel (1.3).
The elements of this reproducing kernel space are entire C2-valued functions,
and the operator Ty (H) corresponds to the operator of multiplication by the
independent variable z.

Limit point case: We have lim; »,, tr(W(t,0)'J) = 4o00. The family wy :=
(W(t,2))te[s_,s4) 18, in the language of [KW/III], a maximal chain of matrices.
Write W (¢, z) = (wi;(t, 2))i j=1,2. Then, for each 7 € RU {oo}, the limit

an(2) = Ty (b2)T +una(t2)

1.4
t sy w21(t7 Z)T + wa2 (ta Z) ( )

exists locally uniformly on C\ R and does not depend on 7. The function gy
is called the Titchmarsh-Weyl coefficient associated to the Hamiltonian H. It
belongs to the Nevanlinna class Ay, i.e. is analytic on C \ R, satisfies q(z) =
qu(z), z € C\ R, and

Imgp(z) >0, Imz>0. (1.5)

The symmetric operator Tpin(H) := Tmax(H)* has defect index (1,1) and is
completely nonselfadjoint. However, the selfadjoint extensions of Ty (H) may
have continuous spectrum. The function gy can be viewed as a Q-function of
Tmin(H). A Fourier transform exists which maps L?(H) isometrically onto the
space L?(o) where o is the measure in the Herglotz—integral representation of
qu (appropriately including a possible point mass at co). Thereby, the operator
Tmin(H) corresponds to a restriction of the operator of multiplication by the
independent variable .

In [KW/IV] we have, as a generalization of the notion of a Hamiltonian func-
tion H to an indefinite setting, introduced the notion of general Hamiltonians



h which involves a finite number of singularities, cf. Definition IV.8.1 or §3.e
below. For each general Hamiltonian we have constructed a Pontryagin space
boundary triplet B(h) = (P(h),T(h),I'(h)), which is an indefinite analogue of
the boundary triplet *B(H), and showed that it shares the most important oper-
ator theoretic properties of B(H). Our aim in the present paper is to establish
the indefinite analogoues of the above mentioned items related to the chain wgy
and to the Weyl coeflicient qp.

The main difficulty is to actually construct a (finite) maximal chain wy for a
given general Hamiltonian h. Most of this paper is devoted to the construction of
wp and to the development of the machinery needed for it. Unlike in the positive
definite situation, where wy is simply obtained as the solution of (1.2), in the
indefinite case it is not at all clear how to define wy. Of course, in between each
two singularities we should have a solution of the differential equation in (1.2),
the problem is to understand how to ‘jump over an inner singularity’. In order
to construct wy, we will combine indefinite analogues of the classical differential
equation oriented approach interpreting W (¢, z) as boundary values of defect
elements, and the more operator theoretic approach via the (generalized) u-
resolvent matrix of a certain selfadjoint extension of the minimal operator.

Besides constructing wy and proving that it indeed is a (finite) maximal
chain (and thereby in particular associating a monodromy matrix to a regular
general Hamiltonian), we will also prove in this paper existence of a Fourier
transform in both cases, regular and singular. Moreover, we will show that in
the singular case the Weyl-coefficient g can be identified as a Q-function of the
minimal operator.
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Let us outline the content of these sections. In Section 2 we consider entire
matrix functions of the class M. We construct, for each W € M., a
boundary triplet 8B(W) and investigate its properties. Moreover, we recall some
relations of M., to other classes of functions. In Section 3 we deal with
maximal chains of matrices and general Hamiltonians. We prove some results
which supplement [KW/III] and [KW/IV]. In Section 4 we associate to each
boundary triplet B an entire matrix function w(*8) by means of boundary values,
and make the connection with another line of approach by showing that it is a
(generalized) u-resolvent matrix in the sense of [KW /0], cf. Theorem 4.20. The
matrix w(B) and its properties is vital for our purposes. We will pay particular
attention to the situation that 9B is of the form 9B (h) with a general Hamiltonian
. Moreover, it is a noteworthy fact that for boundary triplets of the form B (W),
the construction of w(*B) is converse to the construction introduced in §2. In
fact, w(B(W)) = W whenever W € M, ,. In Section 5 we give the definition of
wy, for a general Hamiltonian §, and prove that wy actually is a (finite) maximal
chain, cf. Theorem 5.1 which can be regarded as the main result of this paper.



Moreover, in the singular case, we give a representation of gy as a Q-function
associated with a certain selfadjoint extension of the minimal operator. Finally,
in Section 6, we construct the Fourier transforms for both cases, regular or
singular. In the singular case, thereby the space L?(o) is substituted by a
Pontryagin space induced by a distribution which represents gy by application
to Poisson-kernels.

Through all levels of development, some operations can be defined; rotation,
reversing, and the splitting-and pasting method, cf. §2.b,c. §3.c,e, §4.a,e, §5.d.
These operations are a somewhat technical, but essential, tool throughout our
considerations.

In its flavour, this paper is operator theoretic. Our methods are based on
the theory of very special Pontryagin space boundary triplets which possess
the specific properties as introduced in [KW/IV]. There is a vast literature on
boundary triplets leading in its generality far beyond the special case treated
in detail here. For the Hilbert space case we refer the interested reader for ex-
ample to [DHMS/I], [DHMS/II] and [DHMS/III]. The algebraic and geometric
properties of general boundary triplets and related objects in operator theory
remain more or less the same if they are studied not only in Hilbert spaces, but
also in the indefinite situation of Pontryagin or even Krein spaces. Regarding
this we refer the reader for example to [D/I] and [B].

Let us close this introduction with a technical notice: References to [KW/0]-
[KW/IV] will be given as the following examples indicate. E.g. Lemma 0.2.1
refers to Lemma 2.1 of [KW/0], (I.2.1) refers to the equation (2.1) of [KW/I],
or Theorem IV.8.6 to Theorem 8.6 of [KW/IV].

2 Matrices of the class M_

In this section we discuss entire 2 X 2-matrix functions for which a certain
kernel function has a finite number of negative squares. After having recalled
the definition of M., this section is divided into five subsections:

a. We show that each nonconstant function W € M, generates a boundary
triplet B (W) in the sense of Definition IV.2.7.

b. We introduce two operations, namely O, and rev, with functions from
M as well as with boundary triplets, and provide some of their properties.
Though elementary, these operations will be a very practical tool throughout
the whole paper. See [DHMS/I] and [DHMS/III] for related operations in a
more general setting.

c. Matrix polynomials do belong to M ,. Here we discuss the boundary
triplet generated by matrix polynomials of specific form.

d. The class M is closed with respect to products. In this subsection we
make the relation between the boundary triplets B(W7), B(Ws), and

B(W; - Wy) explicit.

e. The class M, is closely related to other classes of functions. We recall
some results on the relationship with indefinite Hermite-Biehler functions and
with generalized Nevanlinna functions.

Let us come to the definition of M. For a complex valued function f defined
on some subset D of the complex plane, we denote by f# the function f#(z) :=
f(%), which is defined on the set D¥ := {z € C: z € D}. We call f real, if



D# = D and f#(z) = f(2), z € D. If W is an analytic 2 x 2-matrix valued
function defined on some open subset D of the complex plane, and satisfies
W(z)JW (z)* =J, z,Z € D, we consider the kernel Hy defined as

W) JW(w)* —J

zZ—w

Hy (w, 2) := , Z,w€E D.

For z = w this formula has to be interpreted appropriately as a derivative, which
is possible by analyticity.

2.1 Definition. Let W = (w;;); j=1,2 be a 2 x 2-matrix valued function defined
on C, and let x € Ng. We write W € M,,, if

(M1)  The entries w;; of W are real and entire functions.
(M2)  We have det W (z) =1, z € C, and W(0) = 1.
(M3)  The kernel Hy has k negative squares on C.

Note in this place that the conditions (M1) and (M2) together imply that
W(z)JW(Z)* = J.

We will moreover use the notation

M<oo = U Ml,,

veNU{0}

and write ind_ W = Kk to express the fact that a matrix function W € M
belongs to M. For W € M, set

t(W) == tr(W'(0)J). (2.0)
/

a. The boundary triplet associated with W € M_,.

A matrix function W € M, generates via the kernel Hy in a standard way
a reproducing kernel Pontryagin space (W), cf. [ADSR]. In fact, R(W) is the
Pontryagin space completion of the inner product space defined by

L(W) := span { Hy (w, .)v: w € C,v € C*},

[Hw(wl, Jur, Hw (wa, .)’02] = vy Hyy (w1, we)v7 .

The elements of this space are entire 2-vector valued functions. Besides its
Pontryagin space structure, R(W) carries a conjugate linear and anti-isometric
involution: Consider the map .# defined on the set of all entire 2-vector valued

functions by
F\* (F#
G) = \G#*)’

Since the entries of W (z) are real, we have

(2.1)
= v = Hwy(w,z2)v,




and

o o SNV T
[Hw (wz, 2)vz, Hw (W1, 2)v1| = 01" Hw (w2, w1)vz = (01 Hw (W3, w1)02)" =

= ’U* (W(W)JW(W?)* — J)Tvl = ’U* _W(’U}Q)JW(UH)* + J’U1 =
2 wy — wa 2 wy — wsa
= vy Hy (w1, ws)v1 = [HW(U)l,Z)Ul,HW(U}Q,Z)UQ} .

Hence .# maps £(W) conjugate linearly and anti-isometrically onto itself. With
a standard continuity argument, it follows that .# maps &(W) conjugate linearly
and anti-isometrically onto itself.

Tt is a deeper result that (W) is closed with respect to difference quotients,
cf. Proposition 1.8.3: Denote by R(w) the operator

F(z) — F(w) .

Z—w

(R(w)F)(2) :=

Then, for each w € C, we have R(w)&(W) C &(W), and

G(u)"JF(w) = [F, R(u)G] = [R(w)F,G] + (w = u)[R(w) F,R(u)G],  (2.2)
whenever w,u € C and F,G € &W).
2.2 Definition. Let W € M_.,, W # I, be given. Define T(W) C &(W)? as

T(W) = cls {(Hw (w, .)v; WHw (w, .)v) : w € C,v € C*},

and T(W) C T x (C% x C?) as

L(W) == cls { (Hw (w, .)v; WHw (w, .)v); (v; W(w)*v)) : w € C,v € C*}.
Moreover, set S(W) := T(W)*. /

For similar constructions involving Nevanlinna pairs in a broader setting see

[BHS] and [D/II].

2.3 Proposition. Let W € Moo, W # I, be given. Then B(W) =
(R(W), T(W),T(W)) is a boundary triplet which has defect 2 and satisfies (E),
¢f. Definition IV.2.8, Definition IV.2.16. The symmetry S(W) is completely
nonselfadjoint and the set of its points of reqular type satisfies r(S(W)) = C.

Proof.
Step 1: First we show that T'(W) and I'(W) respect the involution .# on K(W),
and that the abstract Green’s identity holds.

From the computation (2.1) we obtain

((Hw (w, 2)0)*; (WHw (w, 2)v)#) = (Hw (W, 2)v; wHw (W, 2)v) € T(W),

((Hw (w, 2)v)*; (WHw (w, z)v)#); (o; W (w)*v)) =
= ((Hw (w, 2)v; wHw (w, 2)v); (v, W (w)*v)) € T(W).

It follows by continuity that

(f;9) eT(W) < (f#;9%)eT(W)



((f:9);(a;b)) eT(W) <= ((f#;97); (@Db)) € T(W)

The abstract Green’s identity (2.2) follows with the help of linearity and conti-
nuity from

[wi Hw (w1, 2)v1, Hw (w2, 2)va] — [Hw (w1, 2)v1, WaHw (w2, 2)vs| =
= (w1 — wa)vy Hy (w1, we)vy = —vs W (we) JW (wy)* vy + v3Juy .

Step 2: We turn to a closer inspection of S(W). It is apparent from the definition
of T(W) that

SOV) = {(f(2): 2£(2)) = F(2), 2 (2) € ROV}
Since R(n) maps (W) into itself, we obtain
ran (SW) —n) ={f € &W): f(n) =0}, neC.
In particular, ran(S(W) — n) is closed and
ran (S(W) — n)J' ={Hw(n,.)v: veC?}. (2.3)

Obviously, ker(S(W) —n) = {0} for all n € C. Hence r(S(W)) = C. Moreover,
we see that S(W) is completely nonselfadjoint. Using (1.8.4), we obtain

S(W) € {(Ri(0)g;9) : g€ RW)} C S(W)* =T (W),

i.e. S(W) is symmetric. The defect index of S(W) is, by (2.3), given as

(2,2) , {Hw(O0, .)(é),HW(O, )((1))} linearly independent
(1,1) , {Hw(0,.)(}), Hw(0,.)(})} linearly dependent, Hy(0,.) # 0
( 70) ) HW(Ov ) =0

The case of defect (0,0), however, cannot occur, since W is not constant.

By (2.3) and r(S(W)) = C, the dimension of ker Hy (7, .) does not depend
on n € C. Let us show that actually ker Hy (n,.) is independent of n € C. To
this end assume that m € ker Hy (0, .), i.e.

(W(2)J —J)m=0, zeC. (2.4)
Using W (z)~1J = JW(z)*, we obtain
m=W(Z)"m, z€ C, (2.5)
and hence

(z =M Hw(n,z)m = (W(2)JW(n)* — J)m =0, z,n € C.

Step 3: Next we establish the required properties of T'(W). To start with note
the following consequences of the Green’s identity: If J denotes the Gram-matrix

~._(J 0 2 2
J._(O J) on C* x C=, then



(i) mul (W) is J-neutral and ran I'(W) C mul ['(W)+3;
(17) ker (W) C T(W)* = S(W).
By (i) we are left with the possibilities
dimmul (W) =0,1,2
and, correspondingly,

4 , dimmul (W)
dimranI'(W) < ¢3 | dimmulT'(W) =
2, dimmulT(W)

0
1

Since, for any linear relation G C X x Y with dimY < oo and dom G = X, the
inequality
dim(X/ker G) < dimran G — dimmul G

holds, it follows that
, dimmulT'(W)

4
dim(T(W)/kerI'(W)) < <2 | dimmul (W)
0 , dimmul(W)

0
1.
2

Note here that by (i) in particular mulT'(W) C mul'(W)Ls. It follows from
(1) that the case ker I'(W) = T(W) cannot occur, and that

dim(T(W)/S(W)) =4 = mull(W)=0kerI’(W)=5(W)

Assume that dim T'(W)/S(W) = 2. Then there exists m € C?\ {0} such that
Hw (0,.)m = 0. Hence we obtain

((0;0); (m;m)) = ((Hw (0, z)m; 0); (m;m)) € D(W),

ie. (m;m) € mul'(W). It follows that dimmulT'(W) = 1 and thus also that
dim T(W)/ker I'(W) < 2. Combining this with (i) yields kerI'(W) = S(W),
and mul (W) = span{(m;m)}.

Let us state explictily that, in any case,

mul (W) = span{(m;m)} where span{m} = ker Hy (z,0). (2.6)

Step 4: So far we have shown that B(W) is a boundary triplet with defect 2,
that S(W) is completely nonselfadjoint, and that »(S(W)) = C. It remains to
show that (E) holds.

We have

ker (T(W) —n) = ran (S(W) —ﬁ)J' ={Hw®@,.)v: veC?}.
Let v € C? be such that Hy (7,.)v # 0, and let a,b € C? be such that

((Hw (7, 2)v; nHw (7, 2)v); (a;0)) € T(W) .



If mul (W) = {0}, it follows that

Since Hw (7,.)v # 0, certainly v # 0, i.e. a # 0. Since det W(77) = 1 this
also implies that b # 0. Consider the case that mulT'(W) # {0}, and write
mul (W) = span{(m;m)} with span{m} = ker Hy (7,.). It follows that, for
some € C,
a=v+pum, b=W(@)*v+ um.

By (2.5), actually b = W (7)*(v+ wm). Since Hw (77, .)v # 0 but Hy (7, .)m = 0,
the elements v and m are linearly independent. In particular, a # 0. Since
det W(7) = 1, it follows that also b # 0. 0

The relation (2.6) in the previous proof corresponds to conditions appearing
in Lemma 4.1 of [DHMS/II] or Proposition 3.8 of [DHMS/III].

b. Operations with matrix functions and boundary triplets.

We will frequently employ two elementary operations on M_,. Before we
come to the definition of these operations, let us fix the following notation.
Throughout our discussions, products and pairings of maps will appear. We
shall be accurate and distinguish these concepts also notationwise: Let fi :
Y - Xy and fo : Y — X, then f1 X fo : Y — X7 x X5 denotes the direct
product of the maps f1, fo. That is the unique map with

e,

1 <7 X1 X XQ *> Xg
Let g1 Y1 — X1 and gs : Y2 — X27 then g1 &gg : Yl X Y2 — X1 X X2 denotes
the pairing of the maps g1, go. That is the unique map with
Y1 < Yl X YYQ > }/2
gll jg1|Z|92 lgz
Y
X1 -~ Xl X X2 E— X2

The first operation On: M <o — Mo which we will introduce can be thought
of as a rotation of a matrix by the angle a.. For a related concept for boundary
triplets in a more general setting see Proposition 3.18 in [DHMS/III].

2.4 Definition. Denote

N, = ( cos o sma) . a€R, (2.7)

—sina  cosa
and define for each 2 x 2-matrix W
Oa W:=N,WN; . (2.8)

For boundary triplet B = (77,T7 F) and o € R we define a rotated boundary
triplet O, B: Denote by v, : C? — C2 the isomorphism v, (7) := N,z and set

Oa B := (P, T,(va®vy)oT). (2.9)
/



The matrix N, is unitary and J-unitary, i.e. N;! = N = NI and
NoJN: = J, and we have N;' = N_,. Clearly, N_z = J. Moreover, let
us note the following simple properties of (), which are seen by straightforward
computations (see (2.0)):

Oo=1id, 4 0 Oﬁ:©a+ﬁ7 t(ooz W) = t(W) .
Oa=0p <= o= modm.

Oa (Wl ' W2) :Oa Wl' Oa W?a (210)

For boundary triplet B the rotated boundary triplet O, B is in fact a
boundary triplet and (idp, v, B v,) is an isomorphism from B to O, B, cf.
Remark IV.2.14.

2.5 Lemma. Let W € M., and a € R. Then also O W € M., and
ind. O W =ind_ W .

Denote by vy : C2 — C? the map vox := Nyzx, and let wf = vy o f for
C2-valued functions f. Then (w,v, X vy) is an isomorphism of the boundary
triplets B(W) and B(Oq W).

Proof. The kernel relation
He, w(w,z) = NoHw (w, 2) N (2.11)

shows that O, W € M., if and only if W € M., and that ind_ O, W =
ind_ W. Moreover, the map w : f — N, f is an isometric isomorphism of (W)
onto R(Oq W), cf. [ADSR]. Since the entries of N, are real, w is compatible
with the respective involutions.

Again by (2.11), we have

Hes w(w, )vev = wHy (w, . )v, w e C,v € C2.

Hence, the sets of elements written explicitly on the right side of the definition
of T(W) and T'(W) will be mapped to the respective sets for T(O, W) and
I'(On W) when applying w X w and (w X w) X (v, W v,), respectively. By
continuity, it follows that

(@R @)T(W) =T(Ga W), [(@Rw)R (Ve ® )] T(W) =T(Ca W).
O

We will next introduce another operation rev : Mo, — M 4. The mean-
ing of this operation will become clear later, when it will be applied to chains
of matrices and Hamiltonians rather than to single matrices, cf. §3.c-e.

1 0
v (5 5).

and define for each 2 x 2-matrix W

2.6 Definition. Denote

revW := VW1V,

10



Denote by ¢ : C2 x C2 — C2 x C? the map
¢(a;b) :== (Vb Va).

Let 8 = (P,T,T) be a boundary triplet. We define the reversed boundary
triplet rev3 as
rev®B := (P, T,poT).

/

The matrix V satisfies V = V~! = V* and VJV = —J. Moreover, the
following relations are checked by simple computation (see (2.0)):

rev(rev W) =W, t(revIV)=¢t(W),
rev(Wy - Wy) =rev Wy -rev Wy, rev Oq W =0O_4 revW.

Clearly, ¢ is an isometric isomorphism of (C? x C2,(J.,.)) onto itself such that
¢po¢ = id. Therefore, by Remark IV.2.14, rev B is a boundary triplet and (id; ¢)
is an isomorphism between B and rev B. Moreover, it is easy to check that

rev Og B =0_, rev’B
2.7 Lemma. Let W € Mco. Then also revW € M., and
ind_revW =ind_ W .

Let wf := VW™Lf for C?-valued functions f, and set ¢(a;b) := (Vb;Va) for
(a;b) € C? x C2. Then (w, ¢) is an isomorphism of the boundary triplets B(W)
and B(revW).

Proof. The kernel relation

Hyovw(w, z) = [VW(Z)_l] Hy (w,z) [VW(w)_l]

* (2.12)
is verified by a simple computation. Thus revW € M, if and only if W €
M <oo. Moreover, in this case, ind_rev W = ind_ W. It also follows that w is
an isometric isomorphism of £(W) onto &(rev W). Since the entries of VW !
are real, w is compatible with the respective involutions.

The relation (2.12) can be written as

Hyeow(w, )[VW(w)*Jv = wHw (w, . )v, we C,v € Cc?,

and hence (w X w)T (W) = T'(rev W). Finally, a straightforward computation
will show that ¢ actually is an isometric isomorphism of (C? x C?,J) onto itself,
cf. Definition IV.2.12; and that ((w X w) X ¢)T' (W) = T'(rev W). O

c. Polynomial matrices.
If W = (wi;)7 =, is a real polynomial matrix with W(0) = I and det W = 1,
then the space £(WW) is finite-dimensional. Actually,

LW) ¢ {<f :
f2
In particular, it follows that W € M., and ind— W < 2max; j—1.2 degw;;.
Frequently it will be necessary to have a detailed description of &(W) for
polynomial matrices W of a specific form at hand. This result is implicitly
contained in several earlier works, e.g. in [dB]. However, in view of our later
needs we give an explicit proof.

) € Clz]?: max deg f; < Jnax, degw;; } .
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2.8 Proposition. Let p € R[z], write p(z) := a12 + ... + apz"™ with a, # 0,
and consider the matrixz function

Wiz) = (—p1<z> (1)) '

n} {1 , noodd,a, <0

Then W € M. and

ind_ W = [f +

5 (2.13)

0 , otherwise

The space K(W) is spanned by the functions

(1) 6 ()

and the Gram-matriz of R(W') with respect to this basis is of Hankel type, i.e.
of the form (ve41)i Lo Thereby

Yo = o= Ynz =0,
and Yp—1, - --,Von—2 are the unique real numbers which satisfy
0 e Tn—1
(aty...,ap) ; : = (1,0,...,0). (2.14)
Yn—1 " V2n-2

Proof. A computation shows that

W (2)JW (w)* —J (o 0) |

Z—w

cf. (I.8.2). Hence, the reproducing kernel functions of (W) are

() - 288().

w 1
It follows that £(W) is contained in the set {q(2)(}) : ¢ € C[z],degq < n — 1}
of polynomials. Moreover,

Hiw (0, 2) (?) = (a1 4 azz + ...+ anz""1) @ € ](W). (2.15)

Hence, there exists a polynomial of degree n — 1 in the space K(W).
Since £(W) is invariant under R(0) and contains a polynomial of degree
n — 1, it contains a polynomial of each degree <n — 1, i.e.

ﬁ(W):{q(z)((1)> :q € Clz],degg<n—1}=

() (D) ().

12



Moreover, by (2.2) we have

[zk@zl((l))} _ [ﬁ“(?),/*(?)}, k= 0n—20=1,....n—1.

Hence, the Gram-matrix of &(W') with respect to the basis ((1)), z((l)), Lo ((1))
is of Hankel type ('ka)Z;:lO. Again by (2.2) we have

[z’“(?),@)} = [zk“((l)),o] =0, k=0,...,n—2,

and hence 79 = ... = 7,2 = 0. We have

[J(?),Hw(o,z)(?)} - {(1) zjn—l

Since, by (2.15),
0 0 0 n—1 0 n—1
k k 1
Qo (1=16(0) B () -Err
we conclude that (2.14) holds true. Formula (2.13) for the negative index of
K(W) follows from the already established form of the Gram-matrix. 0

Proposition 2.8 can be used to characterize the occurance of a nontrivial
multivalued part of I'(W) explicitly in terms of W. For « € R denote by &, the

vector
o = (COS a) : (2.16)

sin «v

It is useful to collect the following elementary relations:

Ntbga = fafdh

Nobo = ((1))) NoJ&o = ((3>7 N (é) =& a; Na(?) :gg—aa

Ja :§%+au Sotr = —Ea-
€a,&p linearly dependent <= a=f modn

2.9 Corollary. Let W € Moo, W # I. Then mulT'(W) #£ {0} if and only if
W is of the form

W () =On (_ 1 ?) (2.17)
with some o € R. In this case
mul T(W) = span {(€_ai€_a)} . (2.18)

and R(W) = span{éz q, ..., zdegp—lég,a},
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Proof. Assume first that W is of the form (2.17). Then we have

0 0
Hw(w,z) :Qa H(_lp(l))(w,z) = Na (0 p(z pw)> N,Oé .

z—

Thus
0 0
HW(Oaz)ffa = N, <0 p(z)p(’w)) N_o€0a=0,
=(o)

and we conclude from (2.6) that mulT'(W) # {0} and, actually, that (2.18)
holds.

Conversely, assume that mulI'(W) = span{(m;m)} # {0}. Clearly, we can
choose m such that m = £_,, with some appropriate & € R. Remembering (2.4)
it follows that

(O—a W(2)) (2) = N_,W(2)N, (?) = N_ W(2)éz_a =

= N_aW()JE 0 = NoJE o = Noobs o = (2) .

As det(O—q W(z)) = 1 we also have (1,0) O, W(z) = (1,0), and by Lemma

11.5.6
1 0
O—a W =
(2) (p(Z) 1)
with some polynomial p.

By Lemma 2.5, the map f + N, f is an isomorphism of &(( *,9)) onto
K(W). Proposition 2.8 implies that R(W) is of the desired form. O

d. Products of M_-functions.
It is an immediate consequence of the kernel relation

Hw,w,(w, z) = Hw, (w, z) + W1(2) Hw, (w, 2) W1 (w)* (2.19)
that the class M is closed with respect to products:
2.10 Lemma. Let Wy, Wy € M. Then also Wy - Wy € Mo, and

ind_(Wle) S ind_ W1 + ind_ Wg . D
It is a more involved task to figure out how, for given Wy, Wy € M, the
boundary triplet B(W; - Wa) is related with B(WW7) and B(Ws). If one of W;
is equal to I, the matters are trivial. Hence, assume that Wy, Wy # I. Let A be
the mapping
' f(z) = Wi(2)f(2)

and define an inner product on Wi - £(W3) so that A is isometric. Note here
that A is injective since det Wi (z) = 1. On Wy - R(W3) we have the conjugate
linear involution Wy f + (W1 f)# = Wi(f#). Clearly, \ respects the respective
involutions, and the involution on Wy - R(W?) is anti-isometric.

Denote by By, (W2) the boundary triplet defined on Wy - £(Ws) by the
requirement that (A, idcs) is an isomorphism between B(Ws) and By, (Wa), cf.
Remark IV.2.14. Then By, (W) has defect 2 and satisfies (E).

14



2.11 Proposition. Let Wy, Wy € Moo, W1, Wy £ 1. Assume that there exists
no nonzero constant u with uw € K(Wa) and Wi (z)u € R(W1). Then

B(W1) W By, (Wa) = B(W, - Wa).

In the proof of this result we employ the following general statement which can
also be shown by means of Section 3 of [DHMS/II]. We give a more straight
forward proof.

2.12 Lemma. Let B, = (P,T1,T1) and By = (P, T,T'3) be boundary triplets
defined on the same space P. Assume that either both have defect 2 or both have
defect 1. If 'y C T'y, then already 81 = Bs.

Proof. The hypothesis I'y C I'; implies
T1 = domF1 Q domFQ = TQ,
TF =kerI'y Ckerl'y =T5 .

Thus T = T», and hence in particular dim T3 /T = dim T /Ty . Since B; and
B, have the same defect, it follows that

mull; # {0} <= mulls # {0}

If mull’; = mulTy = {0}, then I'; = I'y since their domains coincide. Other-
wise, we obtain from dimmull'y = dimmull's = 1 and mull’y € mull's that
actually mull'; = mulIT'y. Again we end up with I'y = I's. [l

Proof (of Proposition 2.11). Our first task is to show that B(W7) and By, (Ws)
satisfy the condition (LI), cf. Proposition IV.6.2. Assuming the contrary yields

mulI'(W7) = mulT' (B, (W2)) = span{(m;m)}

with some m € C? \ {0}. However, mulT'(By, (W2)) = mulT'(Ws), and we
conclude from (2.4) and Corollary 2.9 that

Wi (z)dm = Wa(z)dm = Jm € R(W7) N K(W?) .

This contradicts the assumption of the present proposition. Thus (LI) holds,
and by Proposition IV.6.2 B(W1)wBw, (W>) is a well-defined boundary triplet,
has defect 2, and satisfies (E), cf. Lemma IV.6.7.

The boundary triplet B(W7) W By, (Ws) acts in the space

R(W) @ Wy - &(Wy).

However, by the present assumption, this space is isometrically equal to
K(W1W3), cf. [ADSR, §1.5]. In order to prove that B(W;) W By, (Ws) =
B(W1Wa) it is, by Lemma 2.12; enough to show that

T(W 1 Wo) CT(W1) W (B, (Wa)). (2.20)
The relation I'(W;W3) is the closed linear span of the elements
((HW1W2 (wa Z)U; m]{‘/Vl Wa (UJ, Z)U)7 (’U; WQ(w)*Wl (UJ)*U)), v E (C27 weC.
(2.21)
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However, we have
Hw,w, (w, 2) = Hw, (w, 2) + Wi (2) Hw, (w, 2) W1 (w)*,
and

((HW1 (w, 2)v; WHw, (w, 2)v); (v; Wl(w)*v)) e (W),

(W1 (2) - Hw, (w, 2) - Wi (w)*v; W1 (2) - WHw, (w, 2) - Wi (w)*v);
(Wi (w) v Wa(w)" - Wi(w)*v)) € T(Bw, (W2)).

We see that each element of the form (2.21) belongs to I'(W1) W I'(Bw, (Wa)),
cf. Definition IV.6.1. Thus (2.20) holds. 0

It is sometimes practical to note that pasting is compatible with operation rev.

2.13 Lemma. Let W1, Wy € Mo, W1, Wy # 1, be given. Then Wy and W
satisfy the hypothesis of Proposition 2.11 if and only if rev Wy and rev Wy do
s0.

Assume that Wy and Wy do satisfy this hypothesis, set W := W1 W, and let

ww : RW) — R(rev W),
ww, : RW;) = Rrev Wj), j=1,2,
be the respective isomorphisms constructed in Lemma 2.7. Then
ww (R(W1)) =rev W R(rev W),  ww (W1R(W2)) = K(rev Wa),
i.e. we are in the situation
8W) = &) H WS

~
~ ~
ww > <

— ~
£ A

R(revW) = RK(revWa) [+] revWs K(rev Wh)
Proof. Assume that u is constant with u € K(W3) and Wiu € £(W7). Then
Vu=VW] 'Wiu = ww (Wiu) € &(rev W),

rev Wy - Vu = VW, 'V - Vu = ww, (u) € Rlrev Wy).

Since rev is involutory, the first assertion follows.
In order to show the remaining part of the lemma, it suffices to compute

owf=VW, ' Wt f=VW, 'V - VW[ f =rev W -ww, f, f€RW),

ow(Wif) = VW, ' Wit Wif =VWy L f = ow, f, f€R&Ws).

e. Relation with other classes of functions.
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If E: D — C is an analytic function defined on some open subset D of the
complex plane, we define a kernel Ky as

i E(2)E(w) — E¥ (2)E#(w)
2 z—w

Kg(w,z) := , Z,weD.

Again, for z = w, this formula has to be interpreted appropriately.

2.14 Definition. Let E be a complex-valued function, and let x € Ng. We
write F € HB,, if

(HB1) FE is entire;
(HB2) FE and E# have no common nonreal zeros;
(HB3) The kernel Kp has s negative squares on C.

We use the notation
MBeoo = | J HB.,

reNU{0}

and write ind_ ' = Kk to express that a function £ € HB_., belongs to HB,.
The class HB< is called the indefinite Hermite-Biehler class. /

Let us recall some facts which can be found in [KW/I]. By means of
the reproducing kernel Kg, each function £ € HB_.,, generates a Pontrya-
gin space P(E) which consists of entire functions. This space is referred to
as the de Branges Pontryagin space generated by E. In the space PB(F) we
can consider the operator S(F) of multiplication by the independent vari-
able. This operator is closed, symmetric, has defect index (1,1), and the set
r(S(E)) of its points of regular type equals the whole plane. Moreover, we have
dim(P(E)/dom S(E)) < 1.

The relations A C B(E)? which extend S(F) and have nonempty resolvent
set can be described in terms of the set

AssocPB(E) := {S(z) : I F,G € P(E), S(z) = F(z) +2G(2)} .

This correspondence is given by the formula

F(2) - gy F(w)

p(As) ={w e C: S(w) # 0},

where S € AssocB(E). The relation Ag has a nontrivial multivalued part if
and only if S € P(F) and, in this case, mul Ag = span{S}. The relation Ag is
selfadjoint if and only if S = Sy, for some ¢ € [0, 7), where

(As —w) ' F(z) = L we p(As), F € B(E).

Sy = eVE+e WE* ¢ e(0,m).

If S € AssocB(E) and S(0) = 1, then Ag" is a bounded operator which extends
S(E)~L. Tt is clear that there exists a one-dimensional perturbation which turns
Ag! into a selfadjoint operator. We will in our later discussions need this fact
in an explicit form for functions S € P(F).

17



2.15 Lemma. Let E € HB.,, E(0) = —i, and let S € B(F), S(0) = 1.
Define Bs : B(E) — PB(E) as

BsF := A3'F — [A'F,S|Kg(0,.), F € P(E).
Then Bg is a bounded selfadjoint operator in B(E). We have
Bs 0 S(E)|dom s(B)nspan{s}t = id,
(BsF;F — F(0)S) € As,, F € B(E).

Proof. The fact that Bg is bounded is clear. We only need to check symmetry.
To this end, note that Kg(0,.) € ker Ag,, and hence

F(z) — F(0)S(z)

(BsF;F — F(0)S) = ( [F(2)— F(0)S(2)) -
€S(E)
—[.AsF, S](KE(O, .);0) € As, .
Moreover, we have S 1 ran Bg. Thus we can compute

[BsF,G] = [BsF,G — G(0)S] = [F — F(0)S, BsG] = [F, BsG].

g

Matrices of the class M., give rise to indefinite Hermite-Biehler functions
as follows: If W = (w;;)i j=1,2 € M<o, define

EW = W1 — iw22 .

The kernel relation

Ky (1,2) = (?)*wa,z) () (222)

shows that Fy € HB. and ind_ Ey < ind_ W. Moreover, the projection
Ty : (g) > f» onto the second component induces an isometric isomorphism

0
7o cls { Hw (w, .) (1) Cw e C}/cls{Hw(w,.)((l)):wEC}" — PB(Ew),

cf. Lemma 1.8.6. In particular, if
0
R(W) = closgw span { Hy (w, z) <1) tweC}, (2.23)

then 7o is an isometric isomorphism of R(W) onto PB(Ew ).

Let W € M., and assume that (2.23) is satisfied, so that we can identify
K(W) via my with PB(Fw). Let us record that T (W) and S(Ew) are related.
To this end denote by m; 1 : C? x C% — C, 7, : C? x C? — C? the projections

7rz,1((Z;>, (2)) = ay, mr(a,b) =0,

Ty (W) := ker (m, o D(W)), Sy (W) := Ty (W)*.

Then S1(W) = ker((m1 x m,) o T'(W)), and S;1(W) is symmetric with defect
index (1,1).

and set
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2.16 Lemma. Assume that W € M< satisfies (2.23), then
(71'2 X ﬂg)Sl(W) = S(Ew) .

We are thus in the situation

K(W) T(W)2Ty(W) 2 S (W) 2 S(W)
ﬂ-Ql iﬂ'zgﬂ'g
B(Ew) S(Ew)* 2 S(Ew)

Proof. The relation T1 (W) contains all pairs (Hw (w,.)(}); wHw (w,.)(3)), w €
C. Thus, cf. (2.22),

(Kpy (w,.); WKy, (w,.)) € (me K m) Ty (W), we C.
We conclude that [(me X 7g)T1(W)]* C S(Ew ), and hence
(71'2 |Z WQ)Sl(W) g S(Ew) g S(Ew)* Q (71'2 & 7T2)T1(W) .

Since dlm(S(Ew)*/S(Ew)) = dim((ﬂ'z X 7T2)T1(W)/(7T2 X 772)51(W)) = 1, the
assertion follows. N

If ¢ : D — C is an analytic function defined on some open subset D of the
complex plane, we define a kernel N, as

Ny(w, z) == q(zi%w, z,w € D.

S

Again, for z = w, this formula has to be interpreted appropriately.

2.17 Definition. Let ¢ be a complex-valued function, and let x € Nyg. We
write ¢ € N, if

(N1) q is real and meromorphic on C\ R;

(N2) The kernel N, has x negative squares on the domain of holomorphy
of q.

Once more, we set N := UneNu{o} N, and write ind_ g = x to express that
q € N<oo belongs to Ny,. /

Matrices of the class M., give rise to generalized Nevanlinna functions as
follows: For a 2 x 2-matrix valued function W(z) = (wq;(2))7 =, and a scalar
function 7(z), we denote by W x 7 the scalar function

Wi ()7(2) + wna2)
wo1(2)7(2) + waa(z)

(W x71)(2) :=

wherever this expression is defined. For the parameter 7 = co, we set W x 7 :=
w;llwu. A straightforward computation shows that

(WiWa) x 7 =Wy x (Wa k7).
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The kernel relation

(WxT1)(2) — (W *7) (W)

(w21(2)7(2) + w22 (2)) P (wa1 (W) (W) + waz(W)) =
7N\ (VW) () J(VW V) (w) — J [~ (@ 7(2) — 7(w)
:( 1( )> Z—W < 1( )>+ z—W

shows that W 7 € N provided that W € M., and 7 € N.o. Actually,
we have ind_ W7 <ind_ W +ind_ 7.

Indefinite Hermite-Biehler functions give rise to generalized Nevanlinna
functions as follows: If E is an entire function, write £ = A — ¢B with
A= YE+ E#), B := {(E — E#). Assume that £ and E# have no com-
mon nonreal zeros. The kernel relation

Kg(w,z) = A(2)Ne (w, 2)A(w), z,we C A(z), A(w) #£0,

B
A
implies that £ € HB. if and only if % € N<wo, and that in this case ind_ E =
ind_ %.

On the set M. we can also introduce an operation (O, namely as

Oaq:=Nyoxq, a €R,qg € Neg .

From the above kernel relation it follows immediately that O, q¢ € N<o and
ind_ On ¢ =ind_ g. Clearly, we have

QB (Oa q) :O(thB) q, Oa o o—a: ld, Oa (Q1 + Q2) :Oa N+ O(x q2 -
Moreover, a simple computation shows that

(Oa W) *T =0q (W * (O—q *7)) . (2.24)

3 Maximal chains and general Hamiltonians

In this section we deal with chains of matrices and with positive definite and
general Hamiltonians. We set up the necessary notation, give some supplements
to earlier results, and provide some tools which are essential for the present work.
The content of this section is arranged in five subsections:

a. We recall definition and properties of a maximal chain of matrices, which is
the indefinite analogue of the fundamental matrix solution of a canonical
system in the limit point case. Moreover, we recall the notion of its Weyl
coefficient, and the corresponding variant of the Inverse Spectral Theorem.

b. Finite maximal chains are the indefinite analogue of the fundamental
matrix solution of a canonical system in the limit circle case. Besides recalling
the definition and the corresponding variant of an Existence/Uniqueness
Theorem for finite maximal chains, we give a condition for a function to be a
finite maximal chain which will be used later.

c. We formalize the idea of splitting-and-pasting for (finite) maximal chains.
This procedure is a technical tool whose use is, at the present stage of
development, inevitable. Moreover, we introduce operations O, and rev on
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(finite) maximal chains analogous to those introduced in the previous section
on M<oo~

d. We revisit the positive definite situation, and recall some results concerning
positive definite Hamiltonians. We discuss their relationship with (positive
definite) maximal chains, and provide the analogues of the previously defined
operations on maximal chains.

e. Here we recall the definition of a general Hamiltonian, investigate the
splitting-and-pasting procedure for such, and introduce corresponding
operations O, and rev.

a. Maximal chains of matrices and their Weyl coefficients.

Let us recall the definition of a maximal chain of matrices, cf. [KW /I11].

3.1 Definition. A mapping w : I — M, is called a maximal chain of matrices
if the following axioms are satisfied:

(W1)  Theset I is of the form [ J;" (03, 0i41) for some numbers n € NU{0}
and og,...,0,41 € RU{%o0} with og < 01 < ... < Opy1.

(W2)  The function w is not constant on any interval contained in I.
(W3)  Forall s,t €l,s<t, the matrix w(s) 'w(t) belongs to M., and
ind_ w(t) = ind_ w(s) +ind_ w(s) tw(t).
We will refer to w(s) tw(t) as the transfer-matrix from s to t.

(W4) Lett e land W € Moo, W # I. If Wlw(t) € Moy and
ind_ w(t) = ind_ W + ind_ W~tw(t), then there exists a number
s € I such that W = w(s).

(W5)  We have limy ., t(w(t)) = +o0. If I is not connected, i.e. n > 0,
there exist numbers s,t € (0, 0,4+1) such that w(s)"1w(t) is not a
linear polynomial.

The points o1, ...,0, are called the singularities of w. /

It is apparent from the axiom (W5) that points s,t € I where the transfer
matrix w(s) w(t) is a linear polynomial play a special role. For [,¢ € R, we
set

(1 —lzsingcos¢ Iz cos? ¢
W (2) = ( —lzsin? ¢ 1 + Iz sin ¢ cos ¢
Note that (see (2.8))
Oa W) (2) = Wi g—a)(2) (3.1)
A short argument shows that a linear polynomial W belongs to M., if and
only if W = Wy 4) for some [ € R and ¢ € [0,7). In this case we have

0 ,1>0

ind_ W =ind_ W(l’(t,) = {1 1 <0

A nonvoid interval (s,t) C I is called indivisible of type ¢ € [0, ), if for all
st € (s,t) there is an I(s’,t) € R such that

w(s) T w(t’) = Wige 11),0) -
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For s’ < t' we obtain from Definition 3.1 that I(s’,¢') > 0. Hence, sup{l(s’,t') :
s < st € (s,t)} is positive, and we call it the length of the indivisible
interval (s,t).

If (s1,t1) and (s2,t2) are indivisible intervals of types ¢; and ¢s, respectively,
which have nonempty intersection, then ¢; = ¢2 and their union is again an
indivisible interval of the same type. Hence every indivisible interval is contained
in a maximal indivisible interval. We set

Ling = U (s,t), and lieg :=1I\ Lsing-

(s,t) indivisible interval

A singularity o of a maximal chain w is called of polynomial type, if for some
s_,sy € I the intervals (s_, o) and (o, s4) are both indivisible.

Let us recall some basic properties of maximal chains which were proved in
[KW/III]. For (i) and (i¢) of the following statement see Lemma II1.3.5, the
assertion (4i7) is Proposition II1.3.16, and (iv) follows from the construction in
Theorem II.7.1. For (v) see below.

3.2 Proposition ([KW/III]). Let w be a mazimal chain of matrices.

(i) The function ind_ w(t) is nondecreasing, constant on each connected com-
ponent of I, and takes different values on different components. In par-
ticular, it is bounded and attains its mazimum on (o,,0n41). Moreover,
ind_ w(t) =0 fort € (0p,01).

(#4) The function t(w(t)) (see (2.0)) is continuous and strictly increasing on
each interval (o;,0,41). We have

lim t(w(t)) = b =1,... 1
t}(nali (w(t)) = 400, i IREREY (e ol

lim t(w(t)) = — =1,... li ty=1. 3.2

Jm Hw(t)) = —o0, i=1,...,n,  lim w(t) (3.2)

(#91) The condition required in (W5) for the interval (op,0n+1) holds auto-

matically for intervals between two singularities, i.e. none of the intervals

(04,0i41), 1 =1,...,n — 1, is indivisible. The interval (cg,01), however,
might be indivisible.

() Lett € Lieg and s € I, s > t. Then R(w(t)) C R(w(s)) and the inclusion
map is isometric. The map f — w(t)f is an isometric isomorphism of
R(w(t) tw(s)) onto K(w(s)) © K(w(t)).

(v) Leti € {1,...,n}. Then there exists a unique angle ¢(o;) € [0,7) such
that

. A
Jim [ Op(o,) w(t)]1(0) < oo

We have

. / ) /
tlggl [ Og(os) w(t)] 12(0) = tl}rgll l:o¢(‘7i) w(t)]12(0) :
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For the verification of (v) note that due to Remark II1.5.7 the intermediate
Weyl coefficient g of w at o; as introduced in the beginning of Section IIL.5 is a
meromorphic generalized Nevanlinna function including the possibility that it
identically equals to co. In particular ¢(0) € RU {oo}.

If ¢ has a singularity at 0 set ¢(o;) = 0. Otherwise chose the unique angle

¢(o;) € (0,m) so that ¢(0) = (s:?r?i((;)) In any case there is a unique angle
¢(0;) € [0,m) such that O4(s,) ¢ has a singularity at 0.

As Og(o,) w is also a maximal chain of matrix functions and as Og(,,) q is
its intermediate Weyl coefficient at o; (see Lemma 3.13) we can apply Lemma
I11.5.9 and Proposition I11.5.8 in order to obtain the properties mention in (v).
The uniqueness follows by reversing the mentioned steps of the present argu-

ments.

3.8 Remark. Let us explicitly state the following consequences of the above item
Proposition 3.2, (i):

(i) The notation ind_ w := maxyesind_ w(t) is meaningful. The set of all
maximal chains w with ind_ w = k will be denoted by 9,. As usual we
will use the notation

Meoo 1= U m,,
veNU{0}

and write ind_ w = k to express that a chain w € M., belongs to M.

(ii) If s,t € I, s < t, are such that (s,t) is an indivisible interval, then
ind_w(t) = ind_w(s). Hence the number I in w(s)'w(t) = W4 is
positive. In particular, the length of an indivisible interval is a positive
number or equal to +oo.

It might happen that for some s,t € I, s < t, we have w(s) " 'w(t) = W 4)
with some [ < 0. In this case (s,t) cannot be contained in I. Nevertheless,
we shall speak of (s,t) as an indivisible interval of negative length I.

/

Chains which can be obtained out of each other by a change of variable will
share their important properties. This is formalized by the notion of reparam-
eterization.

3.4 Definition. Let J;,Js C R and let w; : J; &> M, i = 1,2, be functions.
Then we say that ws is a reparameterization of w; if there exists an increasing
and bijective map « : Jo — Ji such that wy = w; o a. In this case we write
Wo W1 //

Clearly, the relation «~ induces an equivalence relation on the set M. o,
and thereby wi «~ wy implies ind_ w; = ind_ ws.

A central role in the theory of maximal chains of matrices is played by
the Weyl coefficient associated to a maximal chain. Let w : I — M, be a
maximal chain of matrices. Due to the fact that lim; »gup 1 H{w(t)) = 400, for
each function 7 € N the limit

Joo(W)(2) := lim (w(t) *7)(2) (3.3)
t 'sup I
exists locally uniformly on compact subsets of C\ R with respect to the chordal
metric, cf. [KW/II]. Moreover, it does not depend on 7. Obviously, if wy «~ wa,
then goo (W1) = goo(wa)-
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3.5 Definition. If w € M, the function ¢, (w) is called the Weyl coefficient

of w. /

The main result in connection with this notion is the Inverse Spectral Theorem
for matrix chains which is obtained by combining Theorem I1.8.7 with Theorem
I1.7.1.

3.6. Inverse Spectral Theorem; chain version ([KW/II]): For each k €
NU{0} the assignment w — qoo(w) establishes a bijective correspondence between
the sets My /en. and N.

b. Finite maximal chains
Finite maximal chains are bounded analogues of maximal chains.

3.7 Definition. A mapping w : I — M is called a finite maximal chain of
matrices if

(W1y) the set I is of the form I = |09, 0py1] \ {01,...,0,} for some num-
bers n € NU{0} and oq,...,0n41 ERwithop <01 < ... <0, <
On+1,
and w satisfies the axioms (W2), (W3) and (W4). Again, o1,...,0, are called
the singularities of the chain w. /

Again we will denote by Igng the union of all indivisible intervals, and set
Lieg := I\ Ising. With the obvious modifications the statements of Proposition
3.2 remain true.

3.8 Proposition ([KW/III]).

(i) The function ind_ w(t) is nondecreasing, constant on each connected com-
ponent of I, and takes different values on different components. We have
ind_ w(t) =0 fort € [0g,01).

(1) The function t(w(t)) is continuous and strictly increasing on each compo-
nent of I. We have

tl}nal tw(t)) = o0, tl{‘r{‘l tw(t)) =—00, i=1,...,n,

and w(og) = 1.

(i7) None of the intervals (0;,0;41), i =1,...,n—1, is indivisible. The inter-
vals [cg,01) and (opn,0ny1], however, might be indivisible.

(tv) Lett € Lieg and s € I, s > t. Then K(w(t)) C R(w(s)) isometrically, and
the map f — w(t)f is an isometric isomorphism of &(w(t)~w(s)) onto

R(w(s)) © &(w(t))-

Note that this includes, as trivial cases, the points t = og and t = op41.-

(v) Leti € {1,...,n}. Then there exists a unique angle ¢(o;) € [0,7) such
that )
Jim [ Op(or) w(t)]15(0) < o0
We have

/

lim [ Oy w(t)]15(0) = lim [ Ogio,y w(t)]},(0).

t\o; t o
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U

Again we will write ind_ w := maxye; ind_ w(t) = ind_ w(oy41), denote the
set of all finite maximal chains w with ind_ w = & by 9/, and set

zmioo = U smf;
veNU{0}

!

<oo

Clearly, if wy € zmﬁoo and wy e~ wq, then also wy, € M
ind_ wsy.

W eM,andw: I - M, is afinite maximal chain with w(maxI) = W,
we speak of w as a finite maximal chain going downwards from W. Let us recall
the following fundamental result, cf. Theorem II.7.1.

and ind_ w; =

3.9. Ezistence/Uniqueness of finite maximal chains ((KW/II]): Let W €
Mo be given. Then there exists an, up to reparameterizations, unique finite
maximal chain w going downwards from W.

Note in this place that, clearly, w; ¢~ wy implies that wi(maxI) =
wo(max I3). Hence, if W € M. is given, the set of all finite maximal chains
going downwards from W equals exactly one equivalence class of m{nd_ w mod-
ulo «~s.

Next we give an easy-to-check set of conditions for maximality of a given
chain. This result will be of good use later on.

3.10 Proposition. Let w: I — M, be given, where the set I is of the form
I =[o0,0n41] \ {01,...,0n} with og < 01 < 03 < ... < 0y < Opt1, and let
W € Mco. Then w is a finite maximal chain going downwards from W if and
only if the following conditions hold:

(i) We have w(og) = I and w(opy1) = W.

(i4) The function ind_ w(t) is nondecreasing on I, constant on each component
of I, and takes different values on different components. For each t € I
we have w(t)"*W € M. and ind_ w(t)"'W =ind_ W — ind_ w(t).

(#i7) The function t(w(t)) is continuous and strictly increasing on each interval
contained in I. Moreover,

tl{(rgll t(w(t)) = —oo, tl}(rgl tw(t)) =400, i=1,...,n.

(iv) For eachi=1,...,n there exist functions T4,7— € Ny such that

li t = li 1) *T— .
tg?iw( ) x T4 t}rglw( )x T

Proof. Necessity of the conditions (iv) is clear from what we have recalled in
Proposition 3.8 and Theorem II1.5.6.

We need to establish sufficiency. Thus let w be given, and assume that
conditions (7)—(iv) hold true. Let & : I — Moo, I = [60,0041] \ {61,-..,04},
be a finite maximal chain going downwards from W. We shall show that w is a
reparameterization of w.
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By our assumption (i) on the factorization of W and by the maximality
(W4) of &, for each ¢ € I there exists a number s € I such that w(t) = &(s), i.e.
ranw C ran®@. Since @ is injective, we can define ¥ := &~ ! o w, then ¥ maps I
into 1.

Write I = {og} UlyU...UI, U{0,41} where I; := (0j,0j41). Similarly,
let I = {60} UlgU... Ul U {6411} with I; := (65,6;41). Let i € {0,...,n}
and assume that for some [ € {0,...,n} we have 9(I;) N I; # 0. Then, by our
assumption (i¢) on negative indices, and the property Proposition 3.8, (i), of &,
we have ¥(I;) C I;. Hence, there exists a map [ : {0,...,n} — {0,...,7} such
that ¢¥(I;) C jl(i)~ Moreover, the map [ is strictly increasing.

By our assumption (i), tow|s, is continuous and strictly increasing. More-
over, for ¢ = 1,...,n, it maps I; bijectively onto R. In the case that i = 0 or
i =n+1, we obtain from (i27) and (¢) that tow|y, is a continuous and increasing
bijection of Iy onto (0, 00) or of I,, onto (—oo, t(IW)), respectively. The map tow
has the same properties. Since tow = towot}, we have ¢ = (toc?)|fl)_1 o(towlr,),
and conclude that 9|z, is an increasing bijection of I; onto jl(i)~

By (¢) and (i), we have ind_ w(t) = ind_w(og) = 0, t € Ip. Since also
ind_&(s) =0, s € Io, it follows that [(0) = 0. Let i € {0,...,n — 1} be given.
By our assumption (iv), Proposition I11.5.1 and Theorem IIL.5.6, we have

ind_ d}(fl(i)) =ind_ w(l;) =ind_ lim w(t)*oco =

tN\Oi+1
=ind_ lim (@od)(t)xoco=1ind_ lim &(s)*o0=
IN\Oif1 SNO1(i+1)

=ind_ d}(fl(i%»l)fl) .

It follows that (i + 1) — 1 = I(i). Recursively, we obtain (i) = i for all i €
{0,...,n}. Since, by (i), ind_ w(t) = ind_ w(opy1) = ind_ W, t € I,, and
correspondingly ind_ @(t) = ind_ &(6p41) = ind_ W, t € I, we obtain that
[(n) = n. This shows that n = 7 and that [ is an increasing bijection.

Altogether it follows that v is an increasing and bijective map of I onto
I. 0

Since each matrix W € M., induces a de Branges Pontryagin space, a
(finite) maximal chain of matrices induces a whole family of de Branges spaces.
In essence, this is actually a chain of spaces.

3.11 Proposition ([KW/II]). Let w € E)JTJ;OO, and assume that w(t) satisfies
(2.23). Denote E; := E ) fort € I. Then the set of all nondegenerated
dB-subspaces of PB(Es, ) is equal to

{m(Et) ot ¢ Ising} .

If t € Ing, and (t—,t4+) is the mazimal indivisible interval which contains t,
then PB(E:) contains each space P(Fs), s < t_, isometrically, and is contained
in each P(Ey), s > ty, as a set but not isometrically. For s € (t—,ty) \ {t} we
have B(Es) = P(E:) as sets, but not isometrically. O

c. Splitting-and-pasting, and other operations.
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The operations OO, and rev, which were introduced previously for matrices W €
M ., can be applied to chains of matrices. One can think of O, as rotation
of the whole chain by the angle «, and of rev as reading the chain backwards,
i.e. reversing the order in which the chain is run through.

3.12 Definition. Let w € i)ﬁ];oo UM<, and let o € R. Then we define

. I — M<oo
Oaw.{ f oo Onwl(t)

If we ML, define

) I = Moo
reves t o rev (w(—t)'w(opg1))

/
3.13 Lemma.
(i) Let w € ML, and let « € R. Then Oy w € M.

(it) Let w € My, and let « € R. Then Of w € My, and Goo(O w) =
No * qoo(w)-

(iii) Let w € ML, then also revw € M.
Proof.

(i) As On (w(s)7tw(t)) = (Oa w(s)) HOa w(t)) for s < t the assertion
follows from Lemma 2.5.

(#4) Since O, W is a linear polynomial if and only if W is, the first assertion
follows from Lemma 2.5 in the same manner. The second is immediate
from (3.3) and (2.24).

(iii) One easily verifies that (revw)(s)™!(revw)(t) = rev(w(—t)"lw(—s)) for
s < t. Hence, the assertion is an immediate consequence of Lemma 2.7.

U
Clearly,

O (O w) =Oa+pw, Opw =w and rev(revw) =w.

For the following keep in mind that I contains o9 and o,41 if w is a finite
maximal chain.

3.14 Definition. Let w: I — M be a maximal or a finite maximal chain.
Let r € IU{og},s € I,r < s. Then we define

Wress(t) = w(r)tw(t), te INr,s].

In parallel we will also use the notations w«s := Weyess, and wWrr = Wresg,, -
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Because of t({WV) = (W) + t(V) (see (2.0)), it is easy to show that w,,s is
a finite maximal chain or a maximal chain, depending whether s € I or s & I.
Moreover, we have

(Wriss)rriss? = Wrressr, 11 €TU{og), 8,8 €, r<r <s <s.

The following remark shows that one can often reduce statements about maxi-
mal chains to corresponding statements about finite maximal chains. Its proof
is again obvious from the respective definitions.

3.15 Remark. Let w : I — M. be a function which satisfies (W1) and (W5).
Then the following are equivalent:

(1) w is a maximal chain.
(i) For each s € I, the function w«s is a finite maximal chain.

(#i1) There exists a sequence (S, )nen, Sn € I, with s, 041, such that for
each n € N the function w«s, is a finite maximal chain.

/

Although the definition of pasting two chains of matrices is most natural, the
properties of this operation are more involved.

3.16 Definition. Let Jy,Jo C R, and let wy : J1 =& Moo, wo @ Jo = Moo
Assume that inf Jy = sup J; € Jq, and that we have

wo(inf Jo) =T , inf Jy € J
hmt\inf Ja w2(t) =1 5 inf J2 € J2

Then we define wy Wws : J1 U Jy = Moy by

w1<t) ,teJy
w1(51)w2(t) , L€ Jo

(wl H‘JUJQ)(t) = {

where s1 := sup Jj. /

Note that W is associative whenever all operations are defined. From the
considerations in [KW/II, §7] we obtain the following statement.

3.17 Proposition ([KW/II]). Let wy : [; = Mc belong to Emﬁl, wo Iy —
M belong to 93?£2 UM, and assume that sup I; = inf I so that wi Wwy is
well-defined. Assume that the following condition does not hold:

(mlink) w; ends with an indivisible interval of type ¢ € [0,7) and we starts
with an indivisible interval of the same type ¢.

Then wy Wwy € om/ or wy Wwa € My, 4+1,, depending whether we € 9)?£2 or

K1t+K2

wo € mﬁg . O]
3.18 Remark.
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(i) The fact that wy starts with an indivisible interval of type ¢ is equivalent
to the fact that for some (and hence for all) ¢ € I \ {inf I} there exists
a nonzero element &, € R(wa(t)), see (I1.5.10), Remark III.3.2.

Applying this fact to t = —inf I; and revw; we obtain from Lemma 2.7
that the fact that wq ends with an indivisible interval of type ¢ is equivalent
to wi(sup I1)&y € R(wi(sup 1)).

Therefore, the condition (—link) is equivalent to the following condi-
tion:

(—link’) For some t € Iy there exists a nonzero element u € K(ws(t))
such that wq(sup I1)u € K(wq(sup I1)).

(#4) If, in the situation of Proposition 3.17, wy € M. then

oo (w1 Wwa) = wy(sup I1) * goo(wa) .

/

The operations of splitting and pasting are converses of each other. The
following statements are easily seen from Proposition 3.17 and Proposition 3.8,
(791). We will thus not elaborate their proofs.

3.19 Lemma. Assume that w : I — M. is a finite mazimal (or mazimal)
chain, and let F be a finite subset of Ieg. Write F' = {ri,...,rn} with og <
r<...<rm<O0pti, and set rg := 00, "m+1 ‘= Op4t1-

Then Wy, csr;y € sm-ioo, Jj=0,....m—1, and Wy, &r,, ., belongs to Dﬁéoo
or Mcoo depending whether w has the corresponding property. For each two
consecutive chains Wy, _, csr;, Wr;esr;,,, the condition (—link) fails, and we have

m
w= Lﬂ Wrj g -
Jj=0

g

3.20 Lemma. Let 0g,...,0p4+1 € RU {*o0}, 0p < ... < Opy1, set I =
Uio(0i,0i41), and let F be a finite subset of I. Write F = {r1,...,7m} with
00 <11 <...<Tm < Opt1, and set g := 09, Tim+t1 = Opt1-

Assume that there are given finite mazimal chains wj : [rj,741)N] = Mcoo,
j=0,....m—1, and a finite mazimal (or mazimal) chain wy, : [Fm, Tmy+1] —
Mceso (07 W 2 [Ty Tma1) = Mceoo, Tespectively). Assume that for each two
consequtive chains wj and wji1 the condition (-link) fails, and setw = L—ﬂ;nzo Wy,
so that w is a finite maximal or maximal chain depending whether w,, has the
corresponding property.

Then F :={r1,...,rm} C Lz and

Wriesrj = Wi, J=0,...,m.

O

Let w e DJIQOO UM< o. Then, by virtue of Proposition 2.3, we obtain a family
of boundary triplets, namely B(w(t)), t € I. It follows by induction from
Proposition 2.11 and Remark 3.18 that a splitting of the chain w corresponds
to a splitting of the associated boundary triplets.
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3.21 Corollary. Assume that w: I — M., is a finite mazimal (or mazimal)
chain, and let F be a finite subset of Leg. Write F' = {r1,...,rpn} with og <
r) < ...< 7Ty < 0Opt1, and set rg = 0g, Timi1 = Ont1. Moreover, fort € I, let
i(t) € {0,...,m} be such that t € (ri),7i1)4+1]. Then we have

i(t)
%(w(t)) = Lﬂ st(mfl)(wTi—lHn (Tl)) W %w(""i(t))(wri(t)(_”"i(t)#»l (t)) :

i=1

d. Positive definite Hamiltonians

Let I = (s—,sy) be an interval on the real axis where s_ < sy, s_,s4 €
RU{+00}. A Hamiltonian on I is a measurable function H defined on I which
takes real and nonnegative 2 X 2-matrices as values, is locally integrable on I,
and does not vanish on any set of positive measure.

An important role is played by the primitive t(H) of tr H. It is determined
up to an additive constant. Since tr H is nonnegative, locally integrable, and
does not vanish on any set of positive measure, t(H) is locally absolutely con-
tinuous and strictly increasing. Thus t(H) maps I bijectively onto some interval
(L— ) L+)'

We say that a Hamiltonian H is regular at the endpoint s_ if, for some
e >0,

S_—+e
/ tr H(t)dt < 0o (3.4)

If f:_’% tr H(t) dt = oo, it is called singular at s_. The terminology of reg-
ular /singular at the endpoint sy is defined analogously. Sometimes one also
speakes of Weyl’s limit circle and limit point case, instead of regular and singu-
lar, respectively.

3.22 Remark. Let F : [a,b] — [c,d] be increasing, bijective and absolutely con-
tinuous, and assume that F’ does not vanish identically on any Borel-subset of
[a, b] with positive measure. Then F~! : [c,d] — [a,b] is absolutely continuous,
and (F7!) = 1 ae. /
Therefore, since tr H does not vanish on any set of positive measure, also the
inverse function t(H)~! is locally absolutely continuous.

We also see that H is regular or singular at the endpoint s4 in the sense of
(3.4) if and only if Ly is finite or infinite.

Intervals where H is of a particularly simple form play a special role. An
interval (a_,a,) C I, a_ < ay, is called H-indivisible of type ¢ € [0, ) if

ran H(t) = span{y}, t € (a_,ay) ae.

In this case we have, with an appropriate measurable, scalar and a.e. positive
function h(¢),
H(t)= h(t)§¢§$, t € (a_,aq) ae.
If (a—,ay) is H-indivisible, the difference t(H)(a4) — t(H)(a—) € (0,00] is
called the length of this H-indivisible interval.
It is clear that, if (a_,ay) and (o’ ,a’ ) are H-indivisible intervals with
nonempty intersection, then their types must coincide and their union is again

30



H-indivisible. Hence, every H-indivisible interval is contained in a maximal H-
indivisible interval. Similar as in the setting of chains of matrices, we will also
here denote by Igng the union of all indivisible intervals, and set Ireg := I\ Ising-

Two Hamiltonians H; and H, which are defined on intervals (s, s!) and
(s2, si), respectively, are called reparameterizations of each other, if there exists
an increasing bijection 9 of (s%,s%) onto (sL,s}) such that ¢ and 9~ are
locally absolutely continuous and Hs(t) = Hy(9(t))¥ (t). In this case we write
H; «~ Hs. Clearly, this relation is an equivalence relation on the set of all
Hamiltonians.

It is a classical result that positive definite Hamiltonians are related to posi-
tive definite maximal chains of matrices. Let us state this fact in a comprehen-
sive formulation suitable for our purposes.

3.23 Proposition ([GK], [HSW], [dB]).

(i) Let H be a positive definite Hamiltonian defined on an interval (s—,sy)
which is regular at s_. Then there exists a unique solution W (t, z) of the
initial value problem

%W(t,z)J =2W(t,2)H(t), fora.e. t € (s_,s4), Wi(s_,z)=1,

(3.5)

where z is a complex parameter. Set

_ H lar at
wr(t) =W(t,.), te€ ls—54] r?gu anat st
(s—,s+) , H singular at s4

If H is regular at sy, then wy(t) belongs to zmg‘. If H is singular at sy,
then wir(t) € M.

The function towpy and its inverse are both locally absolutely continuous.
In fact, towy = t(H) when t(H) is chosen such that it takes the value 0
at s_.

If Hy e~ Hy, and wy, ,wy, are defined correspondingly, then wg, e~ wHh, .

(ii) Letw € zmgusmo, and assume that tow and its inverse are locally absolutely
continuous. Then there exists a unique Hamiltonian H which is reqular at
s—, and reqular or singular at s4 depending whether w € zmg; or w € My,
such that w = wy, i.e. such that w(t) is the solution of (3.5).

If wy and wo are mazimal chains or finite maximal chains which give rise
to Hamiltonians Hy and Hs, respectively, and if wy «~ws, then Hy «~ Hy.

0

Each equivalence class of chains modulo reparameterization contains elements
which do have the property that tow and (tow)~! are locally absolutely con-
tinuous, and hence give rise to a Hamiltonian. Thus Proposition 3.23 can be
stated, in a somewhat less detailed form, as follows.

3.24 Remark. Denote by £ the set of all Hamiltonians which are regular at their
left endpoint. Then the assignment H — wpy induces a bijective correspondence
between §o/... and (M U M)/ ..., where Hamiltonians which are regular at
54 correspond to finite maximal chains, and Hamiltonians which are singular
at s; correspond to maximal chains. /
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A classical result, which lies at the basis of the operator theory of canonical
systems, says that a Hamiltonian H generates a boundary triplet B(H) =
(L?(H), Timax(H),T'(H)). Thereby mull'(H) # {0} if and only if (s_,sy) is
H-indivisible. These facts were formulated in a suitable way for our present
purposes in [KW/IV, §2.1]. If H is regular at s_ and at sy, the boundary
triplet B(H) has defect 2, if H is regular at s_ and singular at s, it has defect
1. In any case, it satisfies (E).

The boundary triplet generated by H can be related to gy or wg(s4), re-
spectively. We start with the case of a singular Hamiltonian.

3.25 Proposition ([HSW)). Let H be a Hamiltonian which is reqular at s_ and
singular at sy. Then the Weyl-coefficient qi is a Q-function of the symmetry
S(H):=T(H)*. O

Assume that H is regular at s_ and at si. It is well-known that then there
exists an isomorphism between the Hilbert spaces L?(H) and &(wp(s4)). Let us
complete the picture and show that this isomorphism actually is an isomorphism
of boundary triplets.

3.26 Proposition. Let H be a Hamiltonian which is reqular at both endpoints
s_ and sy. Denote

(©f)(2) = /S+ wr () () H () f(t)dt, fe L*(H).

Then the pair (©,idca) is an isomorphism between the boundary triplets B(H)
and B(wr (sy)).

Proof. Assume first that mulT'(H) = {0}, i.e. that not the whole interval
(s—,s4+) is indivisible. Note that this is equivalent to assuming that wg(si) #
W,4) with some [, ¢, and hence equivalent to mul'(wg (s4)) = {0}.

Since Tax(H)* is completely nonselfadjoint, and since for each w € C the
space ker(Tiax(H) — w) is spanned by the functions t — wg (t)(w)Tu, u € C?,
we have

L*(H) = cls {wp()(w

Tmax (H) = cls { (wg (
I'(H) = cls { ((wr ()(

Ty ue(C2,w€(C}7

(w) v wwp ()(w) u) : ue C?we C},

)T wior () (@) T); (01 (5:4) (w)Tw) :
ueClwe C} .

)
)

The function wy satisfies the differential equation (3.5), and hence, as a com-
putation shows, we have

Hop o (w,2) = / o (02 H (s (1) (w)* dt,

cf. [dB]. Therefore,

(Qwr()(w)u)(z) = /S+ wi (t)(2) H(O)wr () (@) wdt = Hy, (s, (W, 2)u,
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and we obtain
@(span {wH(.)(w)Tu: ueC?, wE(C}) = span {HWH(5+)(E, D):ueC?, wEC} .
Moreover, by the abstract Green’s identity in B(H),

(wy — w3) [wH(.)(w1)Tu17WH(-)(w2)TU2] L2(H)

= w3 Juy — (w(5+) (w2)Tuz) " (wrr (54 ) =
= —uS(wH(s+)(w2)U2JWH( +) (W) uy — )
= —US(@ - wl) WH(5+)(w7 )

= (wl - U)72) [HwH(s_*_)(wila ')uh wr(sy) ( )u2:|ﬁ(wH(s+)) =
= (w1 —w32) [Owp () (w1) ur, Owy () (ws) ug]ﬁ(wH(u)) .
Thus, © is isometric. With a standard continuity argument, we obtain that
O(L*(H)) = R(wn(s+)), (OMO)Tmax(H) = T(wi(s+))-

Moreover, it is clear that © is compatible with the respective involutions. From
the definition of the boundary relation I'(wg (s4)) we see that also

(OXO) Rides )T(H) = T(wp(sy)).

The case that (s_, sy ) is indivisible can be checked explicitly from the form of
L*(H) and 8(W(, 4)), cf. [KW/IV, §2.1.¢], Proposition 2.8. We will not carry
out the details. 0

Later on we will need a more general formulation of this result.

3.27 Corollary. Let H be a Hamiltonian defined on (s—,sy), and let w :
(s—,54) = Mcoo be a solution of the differential equation in (3.5) (without
imposing any conditions on boundary values, they even need not necessarily ex-
ist). Moreover, let r_,r, € [s_,sy], r— < ry, be such that H|(._ .y is regular
at both of its endpoints T+, and denote

T+
(@r_,m_ f)(Z) = / w(r,7 Z)ilw(ta Z)H(t)f(t) dtv f € L2(H|(T7,r+)) .
Then the pair (©,_ ,, ,idca) is an isomorphism between the boundary triplets

B(H|;_ r,y) and B(w(r-) " w(ry)).

Proof. This follows immediately from Proposition 3.26, since w(r_)"tw(t), t €
(r—,r4), is the solution of the initial value problem (3.5) for the Hamiltonian

Hlr_rp)- 0

The operations OO, and rev, defined above on the level of chains of matrices,
have their analogues for Hamiltonians.

3.28 Definition. Let H be a Hamiltonian defined on (s_, s).
(i) For a € R define Oy H : (s_,5:) — R?*? as

(O H)(t) :=Cun (H()), t € (s-,51)
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(ii) Define rev H : (—s,,—s_) — R?*2 as

(rev H)(t) :=VH(-t)V, t € (—s4,—5_).

/

3.29 Lemma. Let H be a Hamiltonian defined on (s—,sy). Then also Oq H
and rev H are Hamiltonians. If H is reqular/singular at s+, then O, H is
reqular/singular at s1, and rev H is reqular/singular at s+.

If H is regular at s_, then ws, g =0q wy. If H is regular at s_ and at sy,
then wrey F = reVwy.

Proof. The proof of these assertions is done by elementary computation, namely
by checking that the functions OO, wy and revwy satisfy the respective differ-
ential equations. We will not carry out the details. O

3.30 Remark. The construction of the boundary triplet B(H) in [KW/IV, §2.1]
also shows that (w, v, K v,) is an isomorphism of the boundary triplets B(H)
and B(O, H). Hereby, v, : C? — C? is the map v,z := Nyx and (wf)(t) :=
N, f(t) for f € L*(H).

Similarly, (w,¢) is an isomorphism of the boundary triplets B(H) and
B(rev H), where (wf)(t) = Vf(—t), and where ¢ and V are as in Definition

2.6. /

Also the splitting-and-pasting method has an analogue for Hamiltonians. Let
(s—, s4) be given, and let F be a finite subset of [s_, sy] with s_, s, € F. Write

F={ro,...,rmy1} with 7o < ... < rp41. If H is a Hamiltonian defined on
(s—,54), set

HT’71<—>Ti+1 = H|(Ti,7“1:+1) :
Conversely, if H; are Hamiltonians on (r;,r;41), i =0,...,m, define a function

Wit H : (s—,s4) — R2*2 a.e. by
(L—ﬂHi)(t) = H;(t), te(ririta), i=0,...,m.
=0

The following is immediate from the definitions:

8.81 Remark. If H is a Hamiltonian on (s_,s;), then H, ., are Hamilto-
nians on (r;,7j41), which are regular at the endpoints r;, j = 1,...,m, and
regular/singular at 7o or r,,+1 depending whether H is regular/singular at s_
or s;. If H is regular at s_, then we have (see Definition 3.16)

m

wH = L‘ﬂ WH, . ryy (3.7)
i=0

Conversely, if H; are Hamiltonians on (r;,r;4+1), which are regular at the end-
points r;, j =0,...,m, then H := §* ; H; is a Hamiltonian on (s_, s4) which
is regular at s_, and (3.7) holds. /
Similar as in Corollary 3.21, we can pass to boundary triplets. It is straightfor-
ward to verify the following remark.
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3.32 Remark. Let H be a Hamiltonian defined on (s_,sy), and let F =
{ros- - sTm+1}, 70 < ... < Im41, be a finite subset of [s_,sy]| with s_, sy € F.
Assume that 7; & Lgng, 2 = 1,...,m. Then

/
3.38 Remark. Let H be a Hamiltonian defined on (s_,s;). From (3.5) it is
easily seen that H starts (ends) with an indivisible interval of type ¢ if and only
wg does.

Therefore, the condition that r € (s_, s ) is contained in I,z is equivalent to
the fact that (—link) from Proposition 3.17 for w1 = wpg, ., and wy = WH, e,
fails. /
It is interesting to note the following compatibility with the isomorphisms ©.

3.34 Lemma. Let H be a Hamiltonian defined on (s_,sy), and let w :
(s—,84) = Mcs be a solution of the differential equation in (3.5) (without
imposing any conditions on boundary values). Moreover, let r_,ry, v’ !, €
[s_,s4], 7= <l <7 < ry, be such that H|._ .,y is reqular at both of its
endpoints v+, and assume that 1’y & Isng. Let us denote

(1) by vy v, LZ(HT/J_W;) — L*(H,_ &y, ) the natural embedding operator,

(i) by Pri g, L*(Hy_r,) — LQ(HTU_)T;) the restriction operator (we then

iii) by P. . the orthogonal projection of f(w(r_) ‘w(r onto its subspace
(1i) by P . gonal proj + i

w(r-)w(r)R(w(rl) " lw (),

(iv) and by
@r_,r+ : L2(H7“_<—>7“+) - ﬁ(w(r—)ilw(r-‘r)) )
97‘/_»7“; : LQ(HT/_(_W;_) — ﬁ(w(r',)_lw(rﬁr))

the respective isomorphisms as in Corollary 3.27.

Then we have

w(rl)"tw(r=) P
————

frw(ro) T tw(rl)f
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Proof. The fact that the restriction operator Pro g, f—=rf |(T’—)Tﬁf) is the adjoint
of the natural embedding operator ¢, o is obvious.

By Corollary 3.27 we have for f € L? (HT/_ Hr;)

Oy 0t gt ()= [ i) et 2 H 0 oy (10 =

= QJ(T_, Z)_lw(rl—v Z)@rLJﬂr (f) .
Since Le . is isometric and both operators ©,._ ;. and @rL,rjr are unitary, also
the assignment f +— w(r_) tw(r’)f maps &(w(r" ) 'w(r))) isometrically into
R(w(r-)"w(ry)). Its range, namely

w(r_) tw(r )R (w(rl) tw () = {wro) rwr ) f f € R(w(r) T w ()}
is thus a closed subspace of .ﬁ( )t ) Hence, the adjoint of f —
w(r-)"lw(r’)f is the projection P . onto w

(ro) " tw(r )R (w(r) " tw(r))

followed by multiplication with [w(r_) " w(r’ )]~ 0

e. General Hamiltonians

The notion of positive definite Hamiltonians admits a generalization to an in-

definite setting. The definition of this generalization requires some preliminary

notation. Let H be a Hamiltonian defined on the interval (s_, sy ).

~ If H is regular at s_ a number A(H) € NU {0,00} is associated with H
which measures in a certain sense the growth of H towards s, cf. Definition
IvV.3.1.

~+ If H is regular at s_ and singular at s, we say that H satisfies the condition
(HS) if resolvents of selfadjoint extensions of Tyax(H)* are Hilbert-Schmidt
operators, cf. [KW/IV, §2.3.a]. In this case there exists a unique number ¢(H)
such that [ &5 ) H(t)€(m) dt < oo, cf. [KW] or Theorem IV.2.27.

~+ Let H be singular at both endpoints s_ and sy, and fix sg € (s—,s). We
say that H satisfies the condition (HS ) or (HS_), if H| (s, s,y or H|(s_ 5,)(—2),
respectively, satisfies (HS). Moreover, we define

A+(H) = A(Hl(swa—))v A,(H) = A(H|(s_750)(—x)),

¢+ (H) := ¢(H|(s9,54)), ¢—(H) := ¢(H|(s_50)(—7))-
It was shown in [KW/IV, §2.3.c, (i)] and Lemma IV.3.12 that these numbers
do not depend on the choice of sg € (s_, s4).

Now we can state the definition of a general Hamiltonian. It consists of a
Hamiltonian function H, which has in a sense certain singularities, and some
additional data associated with each singularity.

3.35 Definition. A general Hamiltonian b is a collection of data of the following
kind:
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(1) ne NU{0}, 00,...,0n+1 € RU{£oo} with g <01 < ... < 0opt1.

(i1) Hamiltonians H; : (0;,0:11) — R?*2 for i = 0,...,n (as defined in the
beginning of §3.d),

(#9¢) numbers 61,...,6, € NU{0} and b;1,...,b65,41 € R, i =1,...,n, with
b1 # 0 in case 6; > 1,

(v) numbers d; o, ...,d;2a,—1 € R, where A; := max{A; (H;—1), A_(H;)} for

1=1,...,n,
(v) a finite subset E of {00, 0n41} U U o(0i, 0it1),
which is assumed to be subject to the following conditions

(H1)  The Hamiltonian Hj is regular at o¢ and, if n > 1, singular at oy.
Each Hamiltonian H;, i =1,...,n—1, is singular at both endpoints
o; and 0;41. If n > 1, then H, is singular at o,,.

(H2)  None of the intervals (¢;,0,41), i = 1,...,n — 1, is indivisible!. If
H,, is singular at 0,41, then also (0,,0,+1) is not indivisible.

(H3) We have A; < o0, i = 1,...,n. Moreover, Hy satisfies (HS,), H;
satisfies (HS_) and (HS;),7=1,...,n—1, and H,, satisfies (HS_).

(H4) We have ¢+(H1;_1) :¢—(Hi)7 = 1,...,71.

(H5) Letie{l,...,n}. If both of H;_y and H; end with an indivisible
interval towards o;, then d; = 0. If additionally b; ; = 0, then also
do < 0.

(El) 00,0n+1 € E, and EN (Ui70i+1) # 0 for ¢ = 1,....,n—1. If H,
is singular at 0,41, then also £ N (0p,0n41) # 0. Moreover, E
contains all endpoints of indivisible intervals of infinite length which

lie in U:‘L:O(O-’i’ O'i+1).
(E2)  No point of E is an inner point of an indivisible interval.

The common value of ¢, (H;—1) and ¢_(H;) will be denoted by ¢;.

The general Hamiltonian § is called definite if n = 0, and indefinite otherwise.
It is called regular or singular, if H,, is regular or singular, respectively, at o,11.
Moreover, with the numbers ¢; ; for each ¢ linked with the numbers b; ; 0; as in
(IV.4.2) we set

ind_b =" (A; + [%]) +{1<i<n:é 0dd,cp <0}.  (3.8)

i=1

We will denote the set of all general Hamiltonians by <., and set £, := {h €
Hcoo t ind_bh =k} /

TNo typo: The interval (oo, o1) may be indivisible.
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Let us introduce some more generic notation. Let § be a general Hamil-
tonian. The subset F is called an admissible partition and will be written as
E ={s0,...,5n41} with 89 < ... < sy41. The function H : I — R?*2 where
I:=J;" (04, 0i41), which is defined by

H(t) = Hl(t), te (0i70i+1)7i =0,...,n,

is referred to as the Hamiltonian function of . For technical reasons we add to
I the points o¢ and o,41. If ¢ is one of these points we choose H (t) to be the
identity matrix. Since we consider H only almost everywhere this choice is not
relevant.

We will denote by Iy, the union of all H-indivisible intervals, and set I eg =
I\ Ling. Moreover, we will often write a Hamiltonian h which is given by the
data n, 0pgy.--,0n+1, H17 . ,Hn, 61, ey 67“ b@j, dj,’j and F as

h = (H7 c)a)

where the Hamiltonian function H includes the number n and the points o;,
where ¢ represents the numbers ¢; and b; ;, and where 0 represents the numbers
d; ; and the subset E.

Intuitively speaking, a general Hamiltonian models a canonical system on
[00, 0n+1) whose Hamiltonian is allowed to have singularities, namely o1, ..., 0,
and which is in the limit circle or limit point case at 0,41 depending whether
b is regular or singular. The behaviour of H at a singularity is not too bad in
the sense of (H3). A singularity itself contributes to the equation in two ways:
Firstly, a contribution concentrated inside the singularity; passing the singu-
larity influences the solution. This is modelled by the parameters ¢. Secondly,
interface conditions which connect before and after each singularity. This is
modelled by the parameters 9, and by the condition (H4). We can picture the

situation as follows (E = {sg,...,Sn+1}):
h: b1 baj bnj
61 62 On,
Ho 3 H1 $ H2 anl 3 Hn
00 } ‘ f f - - } { On+41
I ‘ o1 ‘ o2 In I
“ny A ey
50 s1 dy 82 83 dyj SN dpj SN+1
¢ 4+(Ho) ¢ 4+(H7) S+(Hp—1)
1" 1" 1"
¢_(H1) ¢_(Ho) ¢_(Hp)

Let h be a general Hamiltonian. In [KW/IV] a boundary triplet B(h) =
(P(),T'(h),I'(h)) has been associated to b, cf. Definition IV.8.5.

3.36 Remark. Let us briefly recall the construction of B(h) = (P(h),T(h),T'(h)),
cf. Lemma IV.8.4.

For I € {0,...,N} let i(l) € {0,...,n} be such that either (s;,s;4+1) C
(7i(1) Tiry+1) or o) € (s1,8141) and o; & (s1,8141), @ # i(1).

In the first — definite — case b = Hi1y|(s1,5041) 18 @ positive definite Hamil-
tonian which is regular at s;. It is also regular at s;4; if and only if it is not
true that b is singular and [ = N.

If the second — indefinite — case occurs, then the data

Ofin(z) Hi(l)—1|(51,07;(z))7Ofm(z) Hi(l)|(0i(z),81+1)7
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Oi(1)s Ci(1),15 - - - » Ci(l), 6,00y » Di(1),00 - - - » di(1), 28,0y ~1 »

constitutes an elementary indefinite Hamiltonian h! of kind (A), (B) or (C), see
Definition IV.4.1.

For each [ € {0,..., N} boundary triplets B(h') := (P(h'), T(h'),T'(h!)) are
well defined by [KW/IV, §2.1, §4.1]. If b is regular, then all these boundary
triplets are of defect 2. If b is singular, then B(h?),...,B(hV 1) are of defect
2, and B(hY) is of defect 1.

The boundary triplet associated to b is defined as

N
B(h) = (P(h),T(h),T(h)) := [ O, B(H1), (3.9)
1=0
where
)0 , bt is positive definite
= -0y s h! is elementary indefinite
remember Definition 2.4. /

Also a mapping ¥ (h) : P(h) — M(I)/=, has been defined. Here M(I)
is the set of all measurable functions f : I — C? such that on any indivisi-
ble interval of H of type ¢ the complex valued function 53; f is constant a.e.,
and M(I)/=,, denotes the set of equivalence classes of M(I) induced by the
equivalence relation f =y g < H(f —g) =0 a.e.

The mapping 1(h) has a finite dimensional kernel. Hence, ¥(h)(f) reflects
the major part of the information about a given element f € P(h). Neverthe-
less ¥(h)(f) does not describe f entirely. Some information is hidden in the
singularities.

The following facts have been established in Theorem IV.8.6 and Theorem
IV.8.7:
~» We have

ind_P(h) = Z (A + [5]) +{1<i<n:é odd, ey <0} (3.10)

=1

~» The triple B(h) is a boundary triplet which has defect 2 or 1, depending
whether b is regular or singular. Moreover, it satisfies the condition (E).

~ If h = (H,¢,?) is regular, the adjoint S(h) := T(h)* is a completely non-
selfadjoint symmetric operator which satisfies (CR), cf. Definition IV.2.15, and
has the property that 7(S(h)) = C. Moreover, S(h) has defect index (2,2) and
mulI'(h) = {0} unless the Hamiltonian function H is almost everywhere of the
form h(t)€,&7 for a constant +. In the later case we have n € {0,1}, S(h) has
defect index (1,1) and mulT'(h) # {0}, where

mul T'(h) :span{(ny;Jfﬂ,)}. (3.11)

Note that if h(t)f,yf,? almost everywhere, n = 0 means that § is definite and
indivisible, and n = 1 means that (Og, H,¢,0) is elementary indefinite of kind
(B) or (C). Hereby ¢1 =y — 3.

39



~ If b is singular, the adjoint S(h) := T'(h)* is a symmetric operator’. More-
over, S(h) has defect index (1,1) and mulT'(h) = {0} unless the Hamiltonian
function H is almost everywhere of the form h(t)f(ﬁég for a constant ¢. In the
later case n = 0, S(h) is selfadjoint and mulI'(h) # {0}.

In the case that the Hamiltonian function H is not almost everywhere of the
form h(t){,bfg for some constant ¢, i.e. I'(h) is a function, in Remark IV.8.9 a
mapping ¥*(h) : T(h) - AC(I U{o0}) x M(I)/=pn was defined such that

Ue(h)((f59))1 = JHY(h)((f;9))2, a.e. on 1.

We have ¥*°(h)((f;9))1(c0) =T(h)(f; 9)1 and, in case of a regular Hamiltonian
also U*¢(0)((f;9))1(on+1) =T (H)(f; g)2. Moreover, U¢(h)(f;g) is such that its
entries are equivalent (with respect to =g ) to ¥(h)(f) and ¥ (h)(g), respectively.

For later use we bring the following assertion. We will say that h = (H,¢,?)
starts with an indivisible interval of type « if H starts with an indivisible interval
of type a.

3.37 Lemma. A general Hamiltonian b = (H,¢,), such that it is not the case,
that it is positive definite and just one indivisible interval of infinite length,
starts with an indivisible interval of type « if and only if there exists g € P(h),
such that ((0; g); (J€as0)) € T'(h).

Proof. The proof is similar to the arguments in the proof of Theorem IV.8.6. We
first construct elementary general Hamiltonians h°,. .., h" from b as in Remark
3.36.

Assume that for some g € P(h) we have (0;g) € T(h). We write g
...+gn according to (3.9), i.e. P(h) = P(h®)@---@P(hY). Then (0; )
and there exist ag, a1, ...,ay € C? with

= 9o+
€ T(h')

(a(); al) S (Vyo X V’yo) o F(bo)(o;go)» (al;a2) € (V% X V’Yl) © F(bl)(o;gl),
o laniangr) € (vyy By )E(ON) (05 9n)

or equivalently,

(N—’Yoa’o; N—’Yoa’l) € F(ho)(o’g0)7 (N_’Ylal; N—’Y1a2) S F(hl)(oygl)a
) (N—')’NaN; N—’YNQN-H) € F(bN)(O§gN> .

In the case that h' is positive definite we have v, = 0 and we know from Corollary
1V.2.25, that

oy (Hl(sy,s,41))>50
0 e span{J¢, -} o1 type of (si.ay (Hl(.e, 1)) (3.12)
{O} ’ a;(H|(SL,Sl+1)) =51
+
. of (Hl(sp,sp 1)) <s141,
Qi1 € A TEg 5t type of (af (Hl(upoyy )os150) (3.13)
{O} ) a;r (H‘(Sl,sul)) = Si+1

tIn Corollary 6.5 we will see that S(h) is also completely nonselfadjoint.
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In the case that b is indefinite we see from Proposition IV.5.16, that

a;(O—’YlHl(Sl,Sl+1))>SZa
Span{J&pl— o o

Nf'yz a; € type of (Sl,al_(O—’”H‘(sl,sl+1)))
{0} s ar (O—y, H|(slvsl+1)) =S
+
o (O Hl(sy,5y41)) <5141,
span{J¢  +
N—wal-s-l c p { Ewl } ) wl* type of (OCT(O—’”H‘(sl,sl+1))781+1)

{0} ’ a{r(of’w H|(Sz,Sz+1)) = Si+1

Note that if h’ is indefinite of kind (B) or (C), then the type of (s;,s;41) for
Oy Hl(s),5141) 18 always 7.

Applying 9, we see that in fact (3.12) and (3.13) hold for all /= 0,..., N.

If we have af (H|(s,5.1)) < Si41 and o (H|(s,,.5000)) > Si41 for
some index [ € {0,...,N — 1}, then the types of the indivisible intervals
(af (H|(s;,5.1))s S1+1) and of (si41, a7 (H|(s,,,.5,,,))) must be different because
Si41 € Ireg. Hence, ay =--- =an = 0.

By (3.12) for [ = 0 the fact that ((0;g); (J€4;0)) € T'(h) implies that h starts
with an indivisible interval of type «.

If, conversely, h starts with an indivisible interval of type o then h° starts
with an indivisible interval of type a + vo.

According to Corollary IV.2.25, Proposition 1V.2.24 (see also Section 2.1.e
of [KW/IV]) in the definite case or Proposition IV.5.16 in the indefinite case
we have ((0;9); (J€at0;0)) € T(°) for some g € P. As Ny JEqtyy = JEa we
obtain ((0;9); (J€4;0)) € (V4 K1) o T'(H0), and further

((0;9); (J€q:0)) € T'(b).
O

3.38 Remark. Positive definite Hamiltonians which are reparameterizations of
each other share their important properties. This fact holds true also for indefi-
nite Hamiltonians, only, that the definition of ‘reparameterization’ is a bit more
tricky. It proceeds in several steps:

(i) First we define a relation ~; which directly generalizes what we are famil-
iar with from the positive definite case. We say that § ~1 b, if n = n/,
if there exists an increasing bijection ¥ of [0(, 07, ,,] onto [0, 07,41 such
that ¥ and 9~ are locally absolutely continuous,

Vo)) =o04 i=1,....n, H =(Hod)od ae.,

K3
andifc=¢ and 0 =0'.

(17) Next we write h ~o b’, if all the data of h and h’ with exception of
the numbers d; oa;—1,d] 95, 1 and bis, 41,0 5, are the same. These
parameters should satisfy

U /
dz‘,zAiq - bi,6i+1 = di,mﬁl - bi,éiﬂ .

(#4¢) Finally, and this is the most involved step, we write § ~3 b, if H = H’
and ¢ = ¢, but the sets F' and E' may differ, and the numbers d}; are
those used in the proof of Proposition IV.8.11 to perform the change from
E to E’ as admissible partitions.
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It is obvious that each of these relations is reflexive and symmetric. Hence, the
transitive closure «~ of (~1 U ~g U ~3) is an equivalence relation. If f «~ b’
we say that h and ' are reparameterizations of each other. Inspecting the
proof of Proposition IV.8.11, and using the relation between dy, and dj, given in
[KW/IV, §7, p.812], shows that

howh <= Th1,b2 € Heoo: hg br~o by g by

In particular, if h «~ B, there exists an increasing bijection ¢ : I’ — I such
that ¥ and ¥~ are locally absolutely continuous and H' = (H o) - ¢'. /

The following statement is an immediate consequence of Proposition IV.8.11
and Proposition IV.8.13. It indicates that general Hamiltonians which are repa-
rameterizations of each other will behave essentially the same.

3.39 Remark. Let h and b’ be general Hamiltonians, and let B(h) and B(h’) be
the boundary triplets associated to b and §’, respectively, by Definition IV.8.5.
Assume that b « b’, and denote by ¥ the increasing bijection of [0, 07, 1] onto
[00, 0nt1] which satsifies H = (H o 9) - &Y.

Then there exists an isomorphism of B(h) to B(h’), which has the form
(w,id) and satisfies ¥(h’)(w(z)) = ¥(h)(z) o9, z € P(h). If H is not al-
most everywhere of the form h(t)§¢§£ for a constant ¢, then ¥*(h)(f;g) =
(') (w(f); w(g)) for all (f;g) € T(h). /
We have already encountered the operations O, and rev in various settings.
It is no surprise that these operations also have their analogues for general
Hamiltonians.

3.40 Definition. Let h = (H,¢,0) € Hcwo-

(i) For o € R define a general Hamiltonian O, b as
Oa b= (0a H,¢,0).

(ii) If b is regular, define rev b as revh = (rev H,¢,0), where rev H is defined

as in Definition 3.28 together with the singularities 7; = —0y,41-; for
1=0,...,n+1, where the data ¢ consist of the numbers 6; := 6,414,
bij := bpy1—s; for i = 0,...,n 4+ 1, and where the data 9 consist of the

numbers dj; := dpy1-45 for i =0,...,n + 1 and of the subset E:=—F.

/
3.41 Lemma.

(1) Leth € Hewo, then Op h € Hewo andind_ Oy h =1ind_b. b and O, b are
together reqular or singular. Moreover, ) «~ b’ implies Oq h «~Og by’

(13) Let b € Heoo be regular, then revl is reqular and belongs H<on. We have
ind_revh =ind_§. Moreover, j «~ b’ implies revh «~ revh’.

Proof. 1t is elementary to check that with h also OO, and, in case of a regular
Hamiltonian, rev b satisfy all conditions in Definition 3.35. Also the compatibil-
ity with «~ is verified in a straightforward manner. Moreover, it is immediately
seen from (3.10) that ind_ O, h =ind_ h and ind_ revh = ind_ b. 0
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3.42 Remark. The boundary triplets B(CO, h) and B(h) are isomorphic. To see
this, we first construct elementary general Hamiltonians b°,...,h" from b and
(0a §)2,..., (O h) from O b as in Remark 3.36; see in particular (3.9).

If b' is definite, then obviously (04 h)! =04 (h'). By Remark 3.30
(w!, v Mu,) with (! f)(t) := Nof(t) for f € L?(h!) is an isomorphism from
B(h') onto B((Oa h)").

If ! is indefinite, then (O, h)! = h! because Bi1y(Oa b) = diy(h) — a (see
Remark 3.30). Hence B(h') = B((Oq b)), and further

an—%(z)(h) %(hl) :O—¢i(z)(0ab) B((Oa b)l)

Thus, (@', ve Kvy) with @ = id |py1) is an isomorphism from O iy (1) B(h)
onto O—¢i(l)(0ah) %((Oa f))l)

Defining @ : P(h) — P(On h) by w = KN (! we see that (w, v, K v,) is
an isomorphism from B(h) onto B(O4 h).

Moreover, by the definition of ¥(h) and ¥(O4 h) in Definition IV.8.5 we find
Y(Oa h)ow = Natp(h), and by Remark IV.8.9 we find ¥*¢(O4, h)o(wNw)|rp) =
(No B No ) W7 (). /

3.48 Remark. Assume that b is regular. Similarly as in Remark 3.42 the bound-
ary triplets B(rev h) and B(h) are isomorphic. As before we first construct ele-
mentary general Hamiltonians b, ..., h" from b and (rev h)?, ..., (rev )V from
rev h as in Remark 3.36.

If BN¥=1 is definite, then obviously (revh)’ = rev(h™¥~!). By Remark 3.30
(@, ¢) with (@' f)(t) :== V f(—t) for f € L2(hV~!) and ¢, V as in Definition 2.6
is an isomorphism from B(hV ') onto B((rev h)).

If BV~ is (elementary) indefinite, then (revh)! = rev(hV~!), since by Re-
mark 3.30 ¢;)(revh) = —d;(y—;)(h) and rev O— sy (rev 1) =g,y (rev ) TEV.

If hV~=! is elementary indefinite of kind (B) or (C), then by Definition
IV.4.1 (see also Remark IV.4.2) rev(hV~!) = ¥~ From the construction
of the corresponding boundary triplet in [KW/IV, §4.2], one can easily derive
that (@', ¢) with @! = —id|pn-1) is an isomorphism from B(h™ ') onto
BN = B((revh)!), and because of by (revh) = —div—)(h) also from
Od’i(N—l)(h) %(hN_l) onto O(ﬁi(z)(mvh) ‘B((revh)l).

Assume now that h¥~! is elementary indefinite of kind (A). We know from
Remark 3.30, that f(t) — V f(—t) is an isomorphism from L*(H|(sy_, sx_111))
onto L2(rev H (s, sx_101))- I 0k(BV 1) and rog(rev hV ) are defined as in
the end of [KW/IV, §4.1] for ¥~ and rev hV !, respectively, then it follows
from Lemma IV.3.10, that Viog(hN 1) (—t) = —rog(rev H¥ 1) (2).

From this it follows that ! defined by (for the notation see [KW/IV, §4.2])

f) = VI(=t), feXc™),

pi (0N = —pi(revpNTh, j=0,... AN -1
(BN Y = —0p(revhN Y, k= AGN Y, AGN T +o(pN T —1,

)

extends to an isometric isomorphism from P(h™=!) onto P(rev(hN~1)). More-
over, (!, ¢) is an isomorphism from B(h™~!) onto B((revh)!), and because

of ¢;)(revh) = —d;n_1)(h) also from Oguin—u (h) B(HNV-!) onto Oy (rev b)
B((rev b)).
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Defining @ : P(h) — P(revh) by w = XY ;o™ ~! we see that (w, ¢) is an
isomorphism from B(h) onto B(revh). Thus, (w,idczxcz) is an isomorphism
from revB(h) onto B(rev bh)

Moreover, by the definition of ¥(h) and i (rev b) in Definition IV.8.5 we find
(W(revh) owf)(t) = V(¥ (h)(f)(—t)) for f € P(h), and by Remark IV.8.9 we
a9  ( B)(f30)1) = (VY)W (5)i9)(~1) o (1) TO)

Also for general Hamiltonians a splitting-and-pasting method can be intro-
duced. However, in this setting, splitting up is the more involved matter. It is
obtained by an inductive application of Corollary IV.8.12.

3.44 Lemma. Assume that § is a general Hamiltonian, and let F =

{70, s Tma1}, 7o <71 < ... < Tmy1, be a finite subset of I such that
0o = 00, T"m4+1 = On+1, ’/‘iEIreg,i:L...,m.
Then there exist general Hamiltonians b, i = 0,...,m, defined on (r;,7i11),

respectively, such that there exists an isomorphism (t,id) between the boundary
triplets

m

B(h) and |+ B(h"), (3.14)

=0

which has the property that
(o) = (R v(h)) o, (h) = (W2 W(H')) o (@R @)lrgy) - (3.15)

Moreover, b, is reqular fori =0,...,m —1 and §™ is reqular (singular) if and
only if b is reqular (singular).

Proof. We use induction on |F|. If |F| = 2, i.e. F = {00,0,41}, we set h® := b.
Then the desired properties are trivially satisfied.

Assume that |F| = m + 2 > 2, and consider the set F' := F'\ {r,,}. By
the inductive hypothesis there exist h?, ¢ = 0,...,m — 1, which are defined on
(riyrig1), 1 =0,...,m—2, and on (ry—1,7m+1) for i =m — 1, and possess the
stated properties. By Corollary IV.8.12 we can further split h™ ! in two general
Hamiltonians hg”_l, h7 =1 defined on (rp,_1,7m) and (7, "my1), respectively,
such that (3.14) and (3.15) hold for ™!, and hg”_l, h™ 1. Note here that, by
(3.11), the condition (LI) is satisfied. O

More interesting than the proof just given is that we actually know the general
Hamiltonians h? quite explicitly. The following notice is obtained from the
formulas given in Corollary IV.8.12 by carrying out the above inductive process
step by step.

3.45 Remark. For the Hamiltonians h?, i = 0,...,m, in Lemma 3.44 we can
choose the ones described as follows:
For i € {0,...,m} let k(i) denote the smallest number such that oy > r;.
Then
(risrivc1) \ I = {Tkiys -+ Ok(it1)—1) -
Note that this set might be empty, actually this is the case if and only if oy,;) >
rit1 or, equivalently, k(i) = k(i + 1). In this case the Hamiltonian h? shall be
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positive definite and given by the Hamiltonian function

H(bl) = Hk(i)—1|(T¢7Ti+1) :

If k(i) < k(i + 1), then b’ shall be given by the data

k(i +1) = k(i) €N,  74,0%3), - Okit1)—1,Tit1 € RU{Fo0},
‘ Hiy-1lerio) =0
H(Y)1 = Hiiysi cl=1,.. k(i +1) — k(i) -1
Hy(iv1)—1l(oripnyrric) » L=k(E+1) = k(i) >0
8(b") := Op(iyri-1, L=1,...,k(i+1)—k(3),
b(h' )1y = brgiyri—15, =1, k(i+1)—k(@), j=1,...,080)4-1+1,
E':={ry,ri1} U (E N (Ti7ri+1)) ,

A0 )1y = dpiyri—1,j, 1=2,...,k(i+1)—k(@)—1, j=0,...,2A(p"); — 1,
and some appropriate numbers
d(h");, l=1landl=k(i+1)—k@), j=0,...,2A(h"); — 1

according to Corollary 1V.8.12. Note here that A(h?);, = A kyi-1, I =
1,..., k(i + 1) — k(¢). We can picture the situation as follows:

E: S0 S1 82 83 S84 S5 S6 S7 SN—1 SN SN+1
I ‘ o1 |02 |03 o4 ‘ ‘ On—1 On ‘ "
oo H—h S NV B
I ‘ ‘ I
F: r r1 ro T3 T'm Tm41
A1, 5 Ay, 5 Aigit1)-2,j i1,
h: b5 b, buirn—2 bii)—15
Ok(i) O k(i1 Ok(i+1)—2 Ok(i+1)—1
Higy ¢ Hyy b Hign b o Hpgpyr b Higpa
T k(i) T k(i1 T k(i+1)—2 T k(i+1)—1
r; Tit+1
Higyaleiowy 1 Hig + Hig s Higry 3 Hierloggan g
) (%) Skt Skfit1)—2 Skit1)—1
h: bri.s briip, b2 LECR
d@); i1, U027 dOD) rp1)-ne), 5

/

The following observation, which is obtained by a closer inspection of the con-
struction in [KW/IV, §7], turns out to be quite important.

3.46 Remark. The numbers d(h?); ; for | = 1 and | = k(i + 1) — k(i), depend
only on the points r; and r; 1, respectively. More exactly: Let F = {rg,..., 7}
and F' = {f,...,7n} be two finite subsets of T which qualify for the above
construction, and denote the corresponding general Hamiltonians resulting from
Remark 3.45 by b, i = 0,...,m, and b¥, k = 0,...., 7}, respectively. If, for some
i and k, we have r; = 7y, 741 = 741, then b = hF. //
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Let us now introduce notation similar as we did for maximal chains.

3.47 Definition. Let r € IU{oo} and s € I, r < s, and assume that r, s & L.
We distinguish five cases:

(i) 7 = 00,8 € I: Let h° and h! be the general Hamiltonians constructed in
Remark 3.45 for the set F := {0¢,$,0n+1}, and set

hr<—>s = bo .

(ii) r > 00,58 = 0pni1: Let h® and h! be the general Hamiltonians constructed
in Remark 3.45 for the set F' := {o0,7, 0,41}, and set

br(—)s = bl .

(iii) r > o and s € I: Let h° h*, b2 be the general Hamiltonians constructed
in Remark 3.45 for the set F':= {0¢,r, s, 0541}, and set

br<—>s = bl .

(iv) r =009 and s ¢ I: Let n’ € {1,...,n+ 1} be such that s = o,,/, and let
Boos0,, be the general Hamiltonian comprised of the data

n—1€N, 00y -+, 0n € RU{%o0}, H;, i=0,....,n -1,

O i=1,...m =1, by, i=1,...0 —1,j=1,...,6 —1

EN 00,0n’ U On' g, dz,2:1,,n'—1,j=0,,2AZ—1
J

(v) r>o0¢and s € I: Set hreos = (Breso, 1 )ros
We will also write hoyes =: bas and broo,,, =2 brr. /

According to the definition of the negative index of a general Hamiltonian,
we have

ind_ b, i= Z (Ai + [%]) + |{1 <i<m:é;o0dd, ¢ < 0}| )
1=1,...,n
o; €(r,s)
3.48 Remark. It immediately follows from our construction that

(1) If 5,t € Lo, s < t, then
(hat)as = bas,  (Bor)ae = (hat)se = Dsese -
(i7) If s,t,u € Leg, s <t < u, then
(hau)sot = (Dsou)at = bsot,  (Bsr)tou = (Dsow)tr = o -

(797) From the construction which led to Definition 3.47 and from Definition
3.40 it is immediate that for s,¢ € Lq,s <t and a € R, we have

(Oa h)"ls :Oa (h"ls)a (Oa b)r’s :Oa (hr’s)v (Oa h)s(—)t :Oa (bs<—>t)a

(rev h)*lfs = reV(hl"s)7 (rev b)r’fs = feV(hﬁS)7 (revb)ftﬁfs = reV(bsHt)~
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/

Also an operation of pasting of general Hamiltonians can be defined in a natural
way.

3.49 Definition. Let by = (Hy,¢1,01) and hy = (Ha, c2,02) be general Hamil-
tonians, and assume that h; is regular. Let their respective domains be such
that of}ll = 062)7 and assume that the following does not hold true:

(—paste) bh; ends with an indivisible interval of type ¢ € [0,7) and b starts
with an indivisible interval of the same type ¢

Then let h; W ho be the general Hamiltonian constituted by the data

n:=mny + no € Ny, Uél),...,o,(lll),agz)

) Hi(t) ,tel
H(t) o {Hg(t) , € I

o? | € RU{%o0},

see s Onot

op:=06(b1), I=1,...,n1, 06 :=0(h2)i—ny, L=n1+1,...,n,
bij=bb1);, l=1,...,n1, b j:=0b02)i—n,j, I=n1+1,...,n,
E = E(h1) UE(hs),

dij=dbi), 1=1,...,n1, dij:=db2)i—n, 4, l=n1+1,...,n,

/

The fact that actually h; W hs is a general Hamiltonian, is obvious. Note here
that the assumption that (—paste) fails is necessary to ensure (H2). Moreover,
h1 W ho is regular or singular depending whether b5 is regular or singular.

The operations of splitting and pasting are converses of each other. The
following statement is easily seen from the definitions.
3.50 Remark. If h € Hoo and F = {ro,...,"m41}, 7 < 7j41, be a finite subset
of Ieg U{00,0n41} with 0g, 0,41 € F, then b, ., € Heoo for i =0,...,m.
For each two consecutive general Hamiltonians the condition (—paste) fails, and
we have

h = L"j bri<—>ri+1 .
=0
/

3.51 Remark. Let h; be general Hamiltonians defined on (r;,741) \ {04, :
j=1,...,n;}. If (—paste) fails for each two consequtive Hamiltonians, then
L'ﬂ;n:o hi € H<oo, and

(@bl) =b;, 1=0,...,m.
i=0

Ti <P Ti41

In particular, we obtain from (3.14) that

B(lHb:) and |H B(b:),
i=0 =0
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are isomorphic. Moreover, it is straight forward to check that (a € R)

Oa LIJ hz = L:'j Oa hiv rev @ hz = L:_j revhmfb
=0 =0 i=0 =0

/

4 Boundary triplets and matrix functions of the
class M _,

In this section we will construct for each boundary triplet B = (P,T,T') of
defect 2 in the sense of Definition IV.2.7, Definition IV.2.8, which satisfies the
condition (E) of Definition IV.2.16, that is

2€C,(f;2f)eT, f#£0,((f;2f);(a;0)) €T =a#0 and b+#£0,

a 2 x 2-matrix function w(B) which is analytic on r(T*) and is such that the
kernel H, () has a finite number of negative squares. As for a converse, we are
content to show that each matrix function W € M. is realized as w(B(W)).
For boundary triplets B = (P, T, T") of defect 1 an object v(B) playing a similar
role will be constructed.

The content of this section is arranged in five subsections:

a. Here the definition of w(B) is given, and some compatibilities of the
assignment B — w(B) are provided.

b. Here the definition of v(B) is given, and some of its properties are
discussed.

c. In this subsection we show that w(28) can be considered as a u-resolvent
matrix in the sense of [KW/0]; this is a central result.

d. We show that w(B(W)) =W for W € M.

e. The construction of w(.) will later be applied to the boundary triplet B (b)
associated with a general Hamiltonian . Here we collect some properties
specific for this situation.

Throughout this section we will keep the following notation: If 8 = (P, T,T")
is a boundary triplet, the adjoint of T will be denoted by S := T*. Moreover,
™, Ty, T, T 5, Tr,; denote the following projections of C2% x C? (or C?) onto C?

(or C):
(o)) = () =G Gh =)
mj (Z;) = aj, Wz,j((;t); (Z;)) = aj, Wm((ZD; (Z;)) =b;, j=1,2.

a. Construction of w(B).

The definition of w(B) is based on the following observation.

4.1 Lemma. Let B = (P,T,T') be a boundary triplet which has defect 2
and satisfies (E). Moreover, let z € r(S). Then there exist unique elements
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#(2),9(2) € P and unique vectors a(z),3(z) € C?, such that
<(¢(Z); 2(2)); ((O> ; a(Z))) er,
(e (()is) et

We have ker(T — z) = span{¢(z), ¢ (2)}.

Proof. Put N, := {(f;2f) € P? : f € ker(T — 2)}, and consider the linear
relation m; o I'| .. By the condition (E) we have

(4.1)

ker (m 0|y, ) = {0}. (4.2)

This already shows the uniqueness of ¢(z) and 9 (z).

Let us first consider the case that mull' = {0}. Then S has defect index
(2,2), i.e. dimker(T—z) = 2 for all z € r(5). In this case m;oT'|y. is an injective
linear map between spaces of dimension 2. Therefore, it is bijective, and hence
elements ¢(z),1(z), a(z), B(z) with the desired property (4.1) exist. Moreover,
#(2) and v(z) span ker(T — z), since their images span C2.

In the case that mull’ # {0}, mull’ =: span{(m;m)}, the symmetry S
has defect index (1,1), i.e. dim N, = 1, z € (S). Choose fo € N, \ {0} and
ag, by € C? such that ((fo; 2f0); (ao; bo)) € T'. Clearly, then

((fo; z1efo); (nao + Am; pbo + Am)) € T, A, ueC.

By (4.2), the elements ag and m are linearly independent and thus span C2.
Again we see that elements ¢(z), ¥ (2), a(z), 8(z) with the desired property (4.1)
exist. If both ¢(z) and ¢(z) were equal to 0, we would obtain the contradiction

I R pr——

Thus, also in the present case, ker(T' — z) = span{¢(z), ¥ (2)}.
Finally, note that a(z) and 8(z) are uniquely determined by (4.1) since mul T’
has the form span{(m;m)}. O

4.2 Corollary. Let notation be as in Lemma 4.1, and let p1, p2 € C be given.
Then there exist unique vectors x(z) € ker(T — z) and c(z) € C? such that

((X(z);zx(Z)); (<Z;>;C(Z))) erl. (4.3)
In fact, x(z) = p1¢(2) + p2t(2) and c(z) = p1oz) + p2f(2).

Proof. Set x(z) := p1d(z) + p210(z) and ¢(z) = p1a(z) + p2P(z). Then the
relation (4.3) follows immediately from Lemma 4.1.

In order to see uniqueness, assume that (4.3) also holds for elements x(z)
and ¢(z). Then

((((2) = 22 20(=) = X(2)): (05¢(2) — &(=)) ) €T

By property (E) we obtain x(z) — x(z) = 0, and the fact that mulT is spanned
by a vector of the form (m;m) gives ¢(z) — é(z) = 0. 0
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4.3 Definition. Let B be a boundary triplet which has defect 2 and satisfies

(E). Let
= (o) < 10=(305) =€

be the elements constructed in Lemma 4.1. Then we define
w(B)(2) = (al2) ] B(2))T = (gggi ggz;z) L zen(8).
/

To start with let us collect some properties of w(2B) which follow by elementary
computation.

4.4 Proposition. Let B be a boundary triplet which has defect 2 and satisfies
(E). Then ¢(Z) = ¢(2), ¥(Z) = ¢¥(2), a(Z) = a(z) and B(Z) = B(z). Moreover,
detw(B)(2) =1 and

[¥(2), o(w)] [¢(2), ¢ (w)]

Proof. The relation I' is real with respect to the involution * in the sense of
(IV.2.5). Hence we obtain from (4.1) that

((Mwaﬂ@);((é)m@)) er.

The uniqueness statement of Lemma 4.1 yields ¢(Z) = ¢(z) and «(z) = a(z).
The relations ¥(z) = ¥(z) and B(z) = f(z) follow in the same way.

In order to show (4.4), we use the abstract Green’s identity (IV.2.6). It
gives:

(= =) 0(2), 6] = [£0(2). 6(w)] — [6(2), wo(w)] =
= <é> J(é) — OZ(’w)*JOé(Z) = Oé(Z)QO[(U))l — a(z)la(w)z ,

(z —w)[Y(2), Y(w)] = [z9(2), P(w)] = [¢(2), wp(w)] =

_ <$)J<(1)) — B(w)"JB(2) = B(2)aBw)r — B(z)1Bw)s

Computing w(B)(z)Jw(B)(w)* — J from the definition of w(B), cf. (1.8.2) with
‘S =1’, and comparing with the above relations yields (4.4).

If we put w = % in (4.4) and use that « and 8 are symmetric with respect
to the real line, it follows in particular that detw(B)(z) = 1. O
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4.5 Corollary. We have ind_ H,() < ind_ P.
Proof. By (4.4) the map O defined by linearity and

A
0: gy (w) () 1 Aotm) + () (45)
is an isometry of the linear space span{Hw(%)(w,.)(i) A u € Cw e r(9)}
into P. 0

4.6 Remark. Assume that S is completely non-selfadjoint, i.e. that we have
clsU, e, s) ker(T' — z) = P or, equivalently,

cs {¢(2),¥(z): z€C} =P, (4.6)

compare Lemma 4.1. Then the map © defined above has dense range and
therefore admits a continuation to a unitary mapping © : R(w(B)) — P. /

Our next task is to establish two compatibilities of the assignment B — w(B).
The first one deals with isomorphisms (w, ¢) of boundary triplets, where ¢ is
of the form ¢ X ¢, cf. Definition IV.2.12 and Remark IV.2.13, (iii). The second
one with pasting of boundary triplets.

4.7 Proposition. Let B, and Bs be boundary triplets, and let (w, gﬁ@é) be an
isomorphism between B, and Bo. Denote by Nd3 € C?*2 the matriz such that

b(x) = Njz, z € C2. If By has defect 2 and satisfies (E), so does Ba, and we
have
w(Bo) = N;Tw(‘Bl)Nq;T .

Proof. As it was noted in Remark IV.2.13, (4i7), and Remark IV.2.17, the pres-
ence of the isomorphism (oo, X ¢) implies that also B4 has defect 2 and satisfies

(E).
Let ¢j(2),v,(2),a;(2), Bj(2) be defined for B,, j = 1,2, as in Lemma 4.1,
and let (m;;); j=1,2 be the inverse of ng. Then
((ma1jor(2) + majabi(2); z[mad1(2) + majipn (2)]);
mi; .
(( 1j>;m1ja1(z)+m2j61(z))) eIy, j=12.

mgj

Hence
((wlmajdr(2)+ma;n(2)]; zwma b (2) + majibi (2)));

(<§Z>;N$(m1ja1(z) + mgjﬁl(z)))) el,, j=12,

(4.7)

and we obtain from the uniqueness assertion in Lemma 4.1

$2(2) = wimird1(2) + ma191(2)], Ya(2) = wlmizg(z) + maath1(2)],

ax(2) = Ny(ar(2) |51 (1) ) = Nylan () | 52 (1222

mai ma2
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By uniqueness in Lemma 4.1, it follows that

(a2(2) [ B2(2)) = Ny(a1(2) | Br(2 ))

Taking transposes we obtain the desired result. [l

The above Proposition 4.7 applies to the isomorphism (idp, v, Kv,) from B
to the rotated boundary triplet O, B, see (2.9). Recall also the notation ¢, W
from (2.8).

4.8 Corollary. We have w(O B) =0 w(B).

Proof. As already noted, (id, v, X, ) is an isomorphism from B to O, B. The
desired equality follows from Proposition 4.7 and the fact that N~ L= N}; 0

For the following recall Definition 2.6.

4.9 Lemma. Assume that the boundary triplet B has defect 2 and satisfies (E).
Then also rev B has these properties. Moreover, in this case, we have

w(revB) = rev(w(B)). (4.8)

Proof. Assume that 8 = (P,T,T") has defect 2 and satisfies (E). The base space
and the relation 7" in rev ‘B is just the same as in ‘B, and

mul " = span{(m;m)} = mul(¢ o ") = span{(Vm; Vm)}.

Thus also the boundary triplet rev B has defect 2. Since ((f;zf); (a;b)) € ¢poT
implies that ((f;zf); (Vb;Va)) €T, also the condition (E) transfers to rev 5.

Denote by ¢'(z),v¢'(2),'(2), 8 (z) the elements constructed in Lemma 4.1
for rev B, and let

(611(2) cu<2>> = (a(2)18() "

C21 (Z) CQQ(Z)

so that ci1a + ¢918 = ((1)) and cioa + 908 = ((1)) We have

((¢;z¢);(((1)>;a))7 ((%Wﬁ((?);ﬁ)) er

and hence
(((011¢+021¢); (c11 + c219)); (CH) <(1)> erl,
(((012¢ + c221); 2(C1260 + C221)) (612) ( ) el.
Thus )
(((611¢+621¢); (011¢+6211/1 (0>7 ( > egol,
—Co1

(((012¢ + c201); 2(c120 + C220)); ((_01>7 ( o1z ))) €g¢ol,

—C22
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and we conclude that
¢ =cup+eny, o = < o )7 Y = —(c120 + co2v), f = <612) .
—C21 C22

Hence,
(O[|5) —1 _ (z;l 012) _ V(QI‘B,)V
Taking transposes yields (4.8). 0

Though elementary, it is important that 8 — w(B) is compatible with pasting
of boundary triplets.

4.10 Proposition. Let B1 = (P1,T1,T1) and By = (P2, To,T'2) be boundary
triplets which have defect 2 and satisfy (E). Assume that the condition (LI) of
Proposition IV.6.2 holds true, so that the pasting B := B, W By is well-defined,
has defect 2, and satisfies (E), cf. Definition IV.6.1, Proposition IV.6.2 and
Lemma IV.6.7, (iii). Denote by ¢;(2),¢i(2) € P; and a;(z);,5:(2); € C those
elements and numbers, such that

(@@ (o) () ) ern =2,
(o) (1)) e i=1.2,

Then the elements ¢(z),1(z) € P1 WPy defined by Lemma 4.1 for the boundary
triplet B, are given as

B(2) = ¢1(2) + (1 (2)102(2) + 1 (2)21h2(2))
Y(z) = P1(2) + (Br(2)102(2)+51(2)292(2))
Moreover, we have
w(B)(2) = w(B1)(2)w(B2)(2), z€r(S)Nr(Sy) Nr(Ss).
Proof. By the definition of I'; W I'y, we have

(4.9)

((91(2) + [o1(2)192(2)+a1 (2)292(2)];261 (2) + [01 (2) 1262 (2) 1 (2)229)2(2)]);

() e s

(¥1(2) + [Br(2)102(2)+B1(2)202(2) ;201 (2) + [B1(2)1202(2) +B1(2)22¢2(2)]);

() G a sy erors

By Lemma 4.1 this shows that the relation (4.9) holds, and that

_ (ai(2raa(2)1+ai(2)282(2)1  ai(2)102(2)2+ai1(2)2B2(2)2)) _
w(B)(z) = (51(2)1a2( )1+81(2)2Ba (21 61(Z)1a2(2)2+f)’1(2)zﬂz(2)2> =

a1(z)1 a1(2)2 2(2)1 aa(2)2)
) (R Rl o).
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b. Construction of v(8).

In Definition 4.3 we have associated to each boundary triplets B with defect 2
satisfying (E) a 2 x 2-matrix function w(%). In this subsection we will carry
out a similar construction for boundary triplets with defect 1.

4.11 Definition. Let B = (P,T,T') be a boundary triplet with defect 1 satis-
fying (E). For z € r(S), let v(B)(z) be the subspace of all vectors u in C? such
that there exists (f;zf) € T such that ((f;zf); (—Ju;0)) € T, ie.

v(B)(2) = ImT({(f;2f) : f € ker(T — 2)}).
We call v(8)(z) the Titchmarsh-Weyl subspace of 8. /

Note that, by property (E), r(S) is not empty.
4.12 Remark. We immediately see, that v(B)(z) = v(B)(z). /

4.18 Remark. In case that mull’ = {0}, S is a symmetric relation with defect
(1,1). If in this situation (f;zf) € T and z € r(S), then (f;zf) € S = kerT.
Hence v(B)(z) is one-dimensional.

In case that mulT’ # {0} we have T'=T* = S and mulT" = span{(m;0)}.
Therefore, ker(T' — z) = {0} for z € r(S). We obtain v(B)(z) = span{Jm}.
Hence also in this case v(8)(%) is one-dimensional. /

4.14 Lemma. Let B = (P, T,T) be_a boundary triplet with defect 1 satisfying
(E). Set A := ker(m10T). Then A is selfadjoint. If mull’ = {0} or, more
generally, mulT # span{((0);0)}, then

p(A) = {z € 7(S) : mau(B)(2) # {0}}.

Moreover, p(A) = 0 implies mul S # {0} and mulT = {0}.
Under the condition that mull’ # bpan{(( );0)} for every z € p(A) there

exist f, € ker(T — z) and q( ) € C such that (q(z) spans v(B)(z). Moreover,
((f: = fw)i (zf: —wfu)) € .

If, in addition, mulT" = {0}, then f, is a defect family for (S, A) and q(2)
is the corresponding Q-function.

Proof. Selfadjointness of A is easily checked using Green’s identity. Note also
that p(A) C 7(5) and that a point z € r(S) belongs to o(A) if and only if
ker(A - 2) £ {0}.

Assume first that mv(B)(2) = {0}. Let w € C? be such that span{Jw} =
v(B)(z). By definition there exists (f;zf) € T such that ((f;zf); (w;0)) € T,
and as myw = 0 we have (f;zf) € A, ie. f e ker(/i —z). If we had f = 0,
then (( );0) € mulI’ = span{(m;0)}, a contradiction to our assumption. Hence

ker(A — z) # {0}.

Conversely, assume that f € ker(A—z)\ {0}. Then there exists w € C2\ {0}
such that ((f;zf); (w;0)) € I' with myw = 0, hence mv(B)(2) = {0}.

If mull' # {0}, then because of A = S we have p(A) # 0. Now assume
that mull' = {0} and that p(A A) = (). It is well-known, e.g. from [DS], that
then (Af;uf) € A for some f#0and all A\,u € C. As S is a subspace of A
with codimension one, we get (Af;uf) € S for some (\;u) € C2\ {(0;0)}. By
property (E) we must have A = 0 and, hence, mul S # {0}.
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As v(B)(z) is one-dimensional the condition mav(B)(z) # {0} implies that
v(B)(z) is spanned by a vector of the form (q(f))7 and hence

((For212); ((_ql(z));o» er.

for some f, € ker(T — 2). As (((f. — fw); (2f: — wfw)); ((7q(z)0+q(w));0)) e’

we find ((f, — fw); (2f: —wfw)) € A.

If mull' = {0}, then S is symmetric with defect (1,1) with S* = T" and
f- # 0. Hence f, € ker(S* — z) is a defect family for (S, A). Moreover, by
Green’s identity

=l ol = e ol = Uevrul = (_ ) 9(_ ) = o)~ )

This shows that ¢(z) is a @-function of (.5, A) corresponding to the defect family
2 O
The following proposition is the analogue of Proposition 4.7.

4.15 Proposition. Let B, and By be boundary triplets, and let (w, ¢ X ¢) be
an isomorphism between By and By. Denote by Nd3 € C2*2 the matriz such

that ¢(x) = Nyz, z € C2. If B1 has defect 1 and satisfies (E), so does B, and
we have
1}(%2) = N(z;”l}(%l) .

Proof. As it was noted in Remark IV.2.13, (¢i7), and Remark IV.2.17, the pres-
ence of the isomorphism (w, pX¢) implies that also Bs has defect 1 and satisfies

(E).
The relation v(B2) = Njv(B1) immediately follows from ((f;zf); (u;0)) €
Iy & (@f; 2w f); (Ngu;0)) € T O

The above Proposition 4.15 applies in particular to the isomorphism (idp, v, X
vy) from B to O, B, cf. (2.9).

4.16 Corollary. We have v(O B) = N,v(B). O

For Titchmarsh-Weyl subspaces a similar multiplicativity property as in Propo-
sition 4.10 holds true.

4.17 Lemma. Let B; be a boundary triplet with defect 2 and By be a boundary
triplet with defect 1 both satisfying property (E).

Assume that the condition (LI) of Proposition IV.6.2 holds true, so that the
pasting B = (P, T,T') := B1 WBy is well-defined, has defect 1, and satisfies (E).
Then

v(B1 W By)(2) = w(B1)(2)v(B2)(z), z €r(S)Nr(S1) Nr(Ss).

Proof. For v € v(B2)(z) we have ((f;zf); (—Jv;0)) € 'y for some f € ker(Ty —
z). Corollary 4.2 applied to B; gives we have

(w18(2) + wath(2); w12¢(2) + wa2th(2)); (W(B1)(2) " (—=Jv); —Jv)) € Iy
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with (w; w2)T = w(B1)(2) T (—=Jv). As w(B1)(2)Jw(B1)(2)T = J we have
cf‘J(SBlI)‘(z)*Th: —Jw(B1)(2)J and hence (w; wy)? = —Jw(B1)(z)v. As T =
1 W12 we have

(w1(2) + w2t (2) + f;w120(2) + w2zt (2) + 2f); (=Jw(B1)(2)v;0)) € T.
Therefore, w(B1)(z)v € v(B1 W B2)(2). 0

Note that a boundary triplet of the form B = 9B, W B, the assumptions of
Lemma 4.14 are satisfied, since mulT' = {0}, cf. Proposition IV.6.2.

4.18 Remark. With the same notation and assumptions as in Lemma 4.17 con-

sider A :=ker(m 1 oI'). By Lemma 4.14, for z € r(S), we have z € p(A) if and

only if mv(B)(z) # {0}. In our situation this means that for the entries £;(z)

and B3(z) in the lower row of w(B1)(z) we have B1(z)v1(2) + Ba2(2)r2(z) = 0,

where (v1(z) v2(2))7 is any non-zero element of v(83)(z). This, in turn, is the
va(2) Bi(2)

same as 5 = — 509 In particular,

sy V2(Z)__51(2) s
A =0 = ZE= G sens).

/

c. Realization as a u-resolvent matrix.

We will now prove that the matrix w(8) can be viewed as a u-resolvent matrix
in the sense of [KW/0]. This is a crucial result; it provides us with several con-
clusions of great value. Also, it establishes a connection between the viewpoint
of the classical theory of differential equations and the viewpoint of the operator
theory of the associated symmetry, namely the following: In the particular situ-
ation that the boundary triplet 8 under consideration is the maximal operator
of a positive definite canonical system, cf. Theorem IV.2.18, the matrix w(B)
above is defined as the boundary values at the right endpoint of the pair of
fundamental solutions. The below theorem then says nothing else but the well-
known fact that this matrix is a u-resolvent matrix of the symmetry associated
to the problem.

4.19 Theorem. Let B = (P,T,I') be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T™* is completely
nonselfadjoint. Moreover, assume that

it sy {((1): (7)) 10
320 €7(S): B(z0)2 #0.

Then the restriction S1 of T defined as Sy := ker ((77171 X Ty OF) 18 a symmetric
and real extension of S with defect index (1,1). Its adjoint Ty := ST is given as
Ty =ker(m,oT).

Let P_ be the space constructed from Sy as in [KW/0, §3], and let u be the
element of P_ which is defined by

[(f;9),u], = (ma2oPol)(f;9), (f;9) €T, (4.11)
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where

o (a;b) , mulT' = {0}

Fllat) = {(m) — 22 (mim)  mulT = span{(msm)} £ {0}
Then 1,(S1) = r(S)! and w(B) is a u-resolvent matriz of S;. Moreover,
ind_ Hy ) =ind_ P, and the map = defined as

= _ [f,¢>(z)]>
Ene = (100 rer. (1.12)

is an isometric isomorphism of P onto the reproducing kernel space R(w(B)).
The relation (EXZE)(S) is the multiplication operator f(z) — 2f(z) in this space
with domain {f € R(w(B)) : 2f(2) € RKw(B))}.

Proof. The proof of this theorem is quite elaborate and will be carried out in
several steps.

Step 1: Due to the abstract Green’s identity (IV.2.6), the relation S is sym-
metric. Moreover, S7 is real with respect to the involution . In particular, the
defect indices of S; are equal.

Consider first the case that mull’ = {0}. Then I is an isomorphism of 7'/
onto C? x C?, and the abstract Green’s identity yields 71 = ker(m; 1 o T'). We
also see that dim7T7/S; = 2, i.e. S1 has defect index (1,1). The relation I is a
closed, and thus bounded, operator defined on 7. Hence, the right hand side of
(4.11) is bounded linear functional on 77 = S}, which is, by definition, nothing
else but Py, c.f. [KW/0, §3]. By its definition, [KW/0, p.290], [.,.]+ is a duality
between Py and P_. Therefore, an element u € P_ is well-defined by (4.11).

Assume now that mulT' = span{(m;m)} # {0}. By our assumption, mym #
0. This implies T = ker(m; 1 o I'). Together with the abstract Green’s identity
we get

SCS; Cker(mypol)*=T"=59,

and conclude that S; =S and T3 = T = ker(m; 1 o T'). Thus, also in this case
S1 has defect index (1,1). Since P is nothing else but the projection of C? x C2
onto ({0} x C) x C? with kernel span{(m;m)}, we have mul(PoT) = {0}. The
same reasoning as above yields that the right hand side of (4.11) is bounded
linear functional on 77, and hence that u € P_ is well-defined by the relation
(4.11).

Clearly, r(S1) C r(S). If z € r(S), then ran(S — z) is closed, and hence
ran(S; — z) is closed. By (E), we have ker(S; — z) = {0} for all z € C, hence
z € r(S1). Let f € ker(Ty — z), and assume that [(f;zf),ulx = 0. Then
((f;2f); (0;b)) € T and hence, again by (E), f = 0. Thus, r,(S1) = r(S1).

Step 2: Consider the relation
A = ker ((771,1 X Tp2) 0 F) .

By the abstract Green’s identity we have A C A*, and thus certainly A C T3.
However, dimT; /A < 1. Hence, A is selfadjoint. Let us show that

p(4) = {z € r(S) : B(z)2 #0}.

74, (S1) is the set of all z € 7(S1) (points of regular type of S1) such that [u, (f;Zf)]+ # 0
for all f € ker(ST —2) \ {0} .
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In particular, by (4.10), it will follow that p(A) # (. To see this formula for
p(A), note that a point z € r(5) belongs to o(A) if and only if ker(A—z) # {0},
and that p(A) C (S). Assume first that 5(z)2 = 0. Then (¢¥(2); z1(2)) € A, i.e.
¥(z) € ker(A—2). If we had ¢(z) = 0, then ((}); 3(2)) € mulT’ = span{(m;m)},
a contradiction to (4.10). Hence ker(A — z) # {0}.

Conversely, assume that f € ker(A — z) \ {0}. Then there exist a,b € C?
such that ((f;zf);(a;b)) € T and ma = mb = 0. By (E) we have mea # 0.
Again by (E) the fact that

(fi2f) —ma- (¥(2);2(2)) € ker(m o T'),
implies f = ma - 1(z). Thus,

(030 = mea - B(2)) = (a;b) — mea- ((0

1);/3(2)) € mull" = span{(m;m)}

and we conclude that b — moa - 8(2) = 0. In particular, 0 = b = ma - §(2)2,
and thus 8(z)2 = 0.

Step 3: For z € p(A) define elements ¢(z) and v(z) as

P) =~ ), () = GO - ()
We show that

(= (w=2)(A =2 plw) = p(e), mwep(d),  (413)
where 0 # ¢(2) € ker(T} — z) and

(I~ (= 2)(A 2 (w) = 1), 2w € p(4) (1.14)

and y(z) € ker(ker(m20T") — 2).
For the first relation note that, for z € p(A),

(oo () (B er, s

which yields ¢(z) € ker(Th — z). As ¢(z) = 0 would give ¥(z) = 0 and further
mull" = span{(((l)); ((1)))}, we conclude that ¢(z) # 0. Moreover, for z,w € p(A)

(7, Wt ws(w) - 5 () 20(2)

Hence
(e(w) = p(2);wp(w) — 2p(2)) € A,
which implies (4.13).
As detw(B)(z) = 1 we have

a(z)2 . . N (s
(B(z)z (V(2);20(2)) = ((2); 26(2)); ((ggzgz) (ﬁ(o) ))) er,  (4.16)

58



which implies y(z) € ker(ker(m, 2 o T') — 2).

(a(w)g

B(w)s (o (w); wip(w)) = (p(w); wp(w)) —

and hence
(v(w) = (2);wy(w) — 27(2)) € A,
which yields (4.14).

Step 4: By the previous step ¢(z),7(z) span the defect space ker(T — z). The
corresponding @Q-function is

a(z)2 1
Q(z) = ( ﬁ(Ziz ggigf) . (4.17)

In fact, if we consider (z € r(5))

W(2) = —w(B)(2)J = (_gg;z 281) (4.18)
Q(2),

then for z € p(A) its Potapov-Ginzburg transform is Q(z), cf. [KW/0, §6]. Note
here that detw(B) = 1. By Lemma 0.6.2, for all z,w € p(A),

W(z)JW(w)* —J _ <_01 _gEZ§2> M (_01 —gEU’;?)* '
—B(2)s Z—w P2

Z—W
However, by (4.4),

W)W (w)" = J _ w(B)(2)Jw(B)(w)" —J ([Qﬁ(Z),fZ(w)] [¢(2

e :-® [(2),
and, hence,
Q(Z)—Ci(w) _
(v 53 ([¢><z>,¢<w>] [6(2) w(w)]) e
0 5&)2 [W(2),p(w)] [¥(2), ¥ (w)] 0 .
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_ <h(2)m(w)] [V(Z)»w(w)]> _ ([V(Z)ﬁ(w)] [w(Z)ﬂ(w)])
[p(2),v(w)] [p(2), p(w)] [(v(2), ()] [p(2), p(w)]) ~
The last equality sign holds since the off-diagonal entries of ¥(W(z)) are equal.
If we compare this formula with the expression for % obtained from
the explicit form (4.17) of @, and keep in mind that o and § are symmetric
with respect to the real line, we obtain

1 a(z)2 3 (W),
[(2), v(w)] = ~ _@(5(2)2 ﬁ(ﬁ)z)’ (4.19)
1 -1 -1
b o)) = @) = = (5o ~ ;) (420
(o(z), )] = —— (22 ZB@hy (4.21)

z—w

B(z)2 B
In particular, we obtain from (4.21), that _B/igil is a Q-function of (S1,A)

corresponding to the defect family ¢(z), and (4.19) shows that ggz;z is a Q-

function of (ker(m, 2 oI')*, A) corresponding to the defect family ~y(z).

Step 5: We show that v(w) = Ryu, w € p(A), and that 282 is a generalized

u-resolvent of Sy induced by A where R, is defined as in [KW/0, §3] and
generalized u-resolvents as in Definition 0.4.2: By the definition of R} and
relations (4.13) and (4.14),

Rp(z) = ((2) — @(W); 29(2) — Wp(W)) ,

Ry (2) =

We compute for z,w € p(A)

(), Bgu] = (R (=), uls = [-—= (3(2) = 2(@); 21(2) — ()], =
_ 1 a2 a(w)

T @(5(2)2 5(@)2) = [y(2), v(w)],

lp(2), Ryl = [Rge(2),ule = [ . —(p(2) — p(W): 20(2) ~Wp(W)) ], =
1 -1 -1

% B B
Since S is completely nonselfadjoint, by Lemma 4.1, the linear span of all el-
ements ¢(z),v(z), z € p(A), is dense in P. Hence, v(z) = R, u. The fact,
that 2232 is a generalized u-resolvent of S; induced by A now follows from

(4.19), Proposition 0.4.5 and its proof, where we saw that any such generalized
u-resolvent is a @-function corresponding to the defect family R u.

Step 6: Because of



the u-resolvent matrix of Sy constructed by means of Definition 0.4.8 with the
selfadjoint extension A, the regularized wu-resolvent g%zgz, and the @Q-function

% corresponding to the defect family (¢(2)).ep(4) is now nothing else, but

W (z) in (4.18) and, hence, w(B)(z) = W(z)J, z € p(A).

Step 7: We know from [KW/0, §4], that the matrix W (z) has an analytic
continuation W (z) to r,(51) = r(S). Hence, also the functions

a(2)1lpa), a(2)20pca), B(2)1lpay, B(2)z2pca),

are analytic and have analytic continuations &(z)1, &(z)2, 5(2)1, B(2)2 to r(S).
Consider the functionals P(z), Q(z), z € p(A), as defined in (0.5.1) and
(0.5.2). We compute for f € P and z € p(A)

[f, ¢(2)]
[u, (p(2); Z0(2))]+
Q(2)f = [Rf f,u]x — (P(2)f)r(z) = [f, RZu] — (P(2) f)r(z) =

= [£9@)] - (PEDr(=) = ggg 9@ = [F.0()] = (PR )r(2).

By Lemma 0.6.4, (4.17), and Q(z) = Q(z) we have

P(2)f = = [, (=8E)2)e(Z)] = [f,¢(Z)]. (4.22)

Together with (4.22) this yields

Q2)f = —[f,0()], feP,zep(A).

By Lemma 0.5.1, the functions P(z) f and Q(z)f have analytic continuations to
r,(S1) = r(S). Hence, for every f € P, the functions

2= LY@ 2= [f,0E)],  zep(4),

have analytic continuations to 7(S). Therefore, also the functions

2= Y(z), 2= ¢(2),  zep(d),

have analytic continuations to r(S5). We shall denote these continuations by
¥(z) and ¢(z), respectively.
Since p(A) is dense in r(S) and I' is closed, we obtain

(@raaG (o) (20 Dy er zens),

@) (2 e, zens).

By the uniqueness assertion in Lemma 4.1 we get

$(2) = 6(2), ¥(2) =9(2), zer(S),
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a(2)1 = a(2)1, a(2)s = a(2)2, B2 = B(2)1, B(2)2 = B(2)2, z€r(S).
We conclude that w(®B) is analytic on r(S) and is a u-resolvent matrix of S,
namely

w(B)(z) = W(z)J, ze€r(S).

Since S is completely non-selfadjoint, the function Q(z) = ¥(W(z)) is a gen-
eralized Nevanlinna function with ind_ ¢ = ind_ P. Therefore, ind_ Hy, =
ind_ Hw(‘B) =ind_ P.

Finally, by Theorem 0.5.4,

1o (oot ) = (o)

is an isometric isomorphism from P onto K(W). Since the kernels Hy, (w, 2)
and Hx)(w, z) coincide, we however have A(W) = R(w(B)).
The fact that, S is mapped to the multiplication operator by =X =, follows

from Theorem 0.5.3 and its proof. O

Using rotation isomorphisms it is easy to deduce a variant of Theorem 4.19
which is not bound to ((1)) and B(z)2. The original formulation corresponds to
the case v = 0 in the following statement. Recall the notation &, from (2.16).

4.20 Theorem. Let B = (P,T,T') be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T™* is completely
nonselfadjoint. Moreover, let v € R, and assume that

mul T # span {(§,13:¢,42) }
Iz €r(8): &Lzw(B)(2)&43 #0.

Then the restriction ST of T defined as S7 := ker(([X'm] x m.) o T), is a sym-
metric and real extension of S with defect index (1,1). Its adjoint T} = (S7)*
is given as ker(¢Xm oT).

Let P_ be the space constructed from S7 as in [KW/0, §3], and let u” be the
element of P_ which is defined by

[(F39),u"] = (&szmo P oT)(f;9), (f;9) €17, (4.24)

where P is the identity, if mull' = {0}, and the projection of C* x C? onto
span{& 1z } x C* with kernel mulT = span{(m;m)}, otherwise.

Then ry~(S7) = r(S) and O w(B) is a u”-resolvent matriz of S7. More-
over, ind_ Hey_, ) = ind— P, and map Z7 defined as

[f,0(2)]
[f,4(Z)]
is an isometric isomorphism of P onto the reproducing kernel space R(O~ w(B)).

The relation (EY R EY)(S) is the multiplication operator £(z) — zf(z) in this
space with domain {f € R(O, w(B)) : 2f(2) € R(O, w(B))}.

(4.23)

E@0E =N ({0, re.

Proof. We wish to apply Theorem 4.19 to the boundary triplet O, 9B, cf. (2.9).
In order to do so, we must make sure that the corresponding hypothesis (4.10)
is satisfied: Since mul[(ry, K vy) oT'] = (N, K N,) mulT, the first condition in
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(4.10) for O B is equivalent to mul T # (NT K NT) span{((}); (}))}, and hence
equivalent to the first condition in (4.23). We have

() e (0) = € somtses

and hence, the second condition in (4.10) for (O B is equivalent to the second
condition in (4.23).

Next we identify all the quantities appearing in Theorem 4.19 for O, 5.
First

51(0y B) = ker ((m,1 xm,)o(vy Ky )oT') = ker (([(1 0)Ny]x Ny)o(m X, )oT') =
= ker (([(cosy siny)m] x m,)oT) = 57,
and
Ty (O B) = ker(m 1 0 (v, Kvy) o) = ker((1 0)m 0 (v, Kvy) o) =
=ker((1 0)Nym oT') = ker((cos~y siny)m o) = (S7)" =17 .
The equation (4.11) reads as

[(f;9),u(Oy B)] . = (maoPo(vy®uy)oT)(f;9), (f;9) €TT,

where P is the identity map, if mulT" = {0}, and the projection of C? x C? onto
({0} x C) x C? with kernel mul|(vy, v, ) oT'| = span{(N,m; N,m)}, otherwise.
Moreover, we have

(m20Po(vyRuy)ol) = ((0 1)Nyomo (NI RNI)P(N,KN,)oT). (4.25)

The linear mapping P7 := (N;f X Ng)P(N7 x N,,) obviously is the projection
with ker P = span{(m;m)} and ran P? = span{&,;z} x C?. The relation
(4.25) thus shows that the right side of (4.24) for B equals the right side of
(4.11) for O B and, hence,

u(Oy B) =u".
Finally, by (4.7), we have
(0 B) = cosy - G+siny - =i ¢7, By B) = —siny -6+ cosy - = Y7,

and hence

_ (160 BEN _ (1F.60)]
By BNI(=) ([f,wm %)(z)]) N”([f,wzn) '

Theorem 4.19 now yields that r,+(S]) = r(S), that w(©, B) is a u”-resolvent
matrix of S7, that ind_ H, (o, »)=ind_ P, and that =7 is an isomorphism of P
onto K(w(O B)). However, by Corollary 4.8, we have w(O B) =0, w(B). [0

Looking at Theorem 4.20 from a little different angle, we obtain the following
corollary.
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4.21 Corollary. Let B = (P,T,T) be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T™* is completely
nonselfadjoint. Moreover, assume that for some v € R the conditions (4.23) are
satisfied.

Then ind_ H,(g) = ind_ P and the map E defined as in (4.12) is an isomet-
ric isomorphism of P onto the reproducing kernel space R(w(B)). The relation
(ERE)(S) is the multiplication operator £(z) — z£(z) in this space with domain
{f € RWw(DB)) : 2f(2) € K(w(B))}. In fact, = = O~ L, where O is defined in
Remark 4.6 by (4.5).

Proof. We can apply Theorem 4.20 with the number « given by the present
hypothesis. The fact that = is then an isometric isomorphism follows from
(2.11) and the remark made after it. Finally, by the definition of = and by the
fact that R(w(B)) is a reproducing kernel space = maps Ap(w) + pp(w) onto
H ) (w, )(2) Therefore, = = 071 0

4.22 Remark. Let us have a closer look at the set £ of all values v € R for which
(4.23) fails. If w(B) = £J, trivially, $+%(ij)§7+% =0, and thus £ =R.

Let us show that otherwise |[0,7) NE| < 3. The condition in the first line of
(4.23) fails for at most one value of y € [0, 7). Assume that the condition in the
second line fails for three different values v1,v2,v3 € [0,7), and let z € r(S).
Since span{&,1z }* = span{J&,; £}, this implies that &, 1z, j = 1,2,3, are
eigenvalues of the matrix w(B)(z). Since each two of these vectors are linearly
independent, this yields that Jw(B)(z) = £, i.e. w(B)(z) = +J.

Finally note that if w(%8) = +J and if S = T* is completely non-selfadjoint,
then due to Remark 4.6 P = {0}. /

As a consequence of Theorem 4.20, we can compute the reproducing kernel space
generated by the matrix constructed from a pasting of two boundary triplets.

4.23 Corollary. Let 81 and By be boundary triplets which have defect 2 and
satisfy (E) and (LI). Assume that S(B1), S(B2), and S(B1WB2) are completely
nonselfadjoint, and that none of the matrices w(B1), w(Ba), and w(By W Bs)
is equal to £J. Then

ﬁ(w(%l <) %2)) = ﬁ(w(%l)) (S5) [W(%l) . R(W(%g))} .

Proof. Due to Remark 4.22, we can choose a value v € R such that (4.23) holds
for each of B, B, and B := B wWB,. Denoting the corresponding isomorphisms
given in Corollary 4.21 by =1, =2 and =, we have

’P(%l) XP(%Q) :’P(%l H’J%Q)

R(W(B1)) X R(W(Bs)) - R(w(B1WB,))

However, if f1 € Py, fo € Py, we obtain from (4.9) that

S £)(2) = [(f1; f2), 6]\ _ ([f1,01(Z)] w . [f2, 92(2)] _
=i f2)(2) = <[(f1;fz),¢(2)]> - ([fl,mz)]) (B >([f2,w2<z>1)
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[1]

1f1(2) + w(B1)(2)E2f2(2)

and, hence,

(B0 (B1 BE) ) (F;G)(2) = F(2) +w(B1)(2)G(2), F € &(B1)). g € K(B2)).
The assertion follows. [l

4.24 Theorem. Let B, = (Py,T1,T'1) be a boundary triplet which satisfies the
hypothesis of Theorem 4.19. Moreover, let B4 be a boundary triplet with defect 1
satisfying property (E) such that the condition (LI) of Proposition IV.6.2 holds
true. Set

B =(P,T,T) =B, WDBy,

and A = ker(m 1 o), and assume that p(A) £ 0. For z € p(A) let

(CI(IZ)> € v(B)(z) and f. € ker(T — z)

be as in Lemma 4.14. Let z € r(S2), and let (v1(z) v2(2))T be any nonzero
element of v(B2)(z). Then |

q(z) = w(PB)(z) * , (4.26)

va(2)
and this function is a generalized u-resolvent in the sense of Definition 0.4.2
of S1 := ker ((7‘1’[71 X ) © Fl) induced by A. Here u is the same element as in
Theorem 4.19. Moreover, f, = ER; u for some £ € C\ {0}.

If it is not the case that q(z) = :8, z € 7(S), and that this function is a

real constant 0 such that mulT'; = span {((:é); (Zp))}, then € = —1.

Proof.
Step 1: First of all (4.26) is an immediate consequence of Lemma 4.17.

Step 2: Note that A := ker(m; 1 o (T'1 WI'y)) is in fact a selfadjoint extension of
Sy =ker((m1 x m)oI'1). Let A =ker((m,1 X mr2)0I'1) be as in Step 2 of the
proof of Theorem 4.19.
In the following R denotes the extension of the resolvent as defined in
[KW/0] on page 290, where now 3 is P; and P is P and where A = A.
Because of

lg—2f Roul = [RI (g — Zf), ulx = [(f;9), uly ,

cf. Proposition 0.4.5, R u is an appropriate parametrization of the defect spaces
of the symmetric restriction

Su=1{(f;9) € A: [(f;9),ul, =0}

of A. AsT = I'y wT's and consequently ‘JN’.L =P_P (‘fj ©P)? and as u € P_
we see that

Su=A{(f1+ fas91 +92) : 3 ((f1:91): (a1;01)) € T'1, ((f2392); (az;0)) € Ty,
by = ag, ma1 =0, [(fi;91),u). = 0}.

TRecall the notion of W x 7 from short after Definition 2.17.
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Since u is defined such that

[(fi591),u]l, =ma20Pol(fi1i01),

cf. (4.11), where P = I in case mulT'; = {0} and P is the projection of C? x C?
onto ({0} x C) x C? with kernel mulT';. As mja; = 0 in the above equation it
follows that
Sy =1{

Thus R;u € ker(T — z
multiple of f,.

Note that, since mulT' = {0}, S has defect (1,1), and hence, both R, u and
f» do not vanish.

(f;9) €T :mol(f;9)=0}=T"=:5.

). By Lemma 4.14 and Lemma 0.4.3 R, u is a constant

Step 3: For z € p(A)Np(A) let g € Py\ran(S; —z) and set f = (A—z) g (€ Py)
and f = (A — 2)"'g. According to the decomposition P = P; & Py we write
f = fi+ f2. It follows that

a0 (0 ): ("9 )y e (1.27

for some a(z),b(z) € C. Moreover, ((f;g+ zf); ((&(OZ));()) el'=T;wIy, and

hence,

(gt 20 ({0 ) (00 ) e Waani (01 )0 e a28)

a(z) co(2) 2 (2

for some a(z), c1(z),c2(z) € C. By Definition 4.11 J(Z;Ezg) € v(B2)(2). More-
over, from (4.27) and (4.28) we obtain

((fr = f;2(fr =) (<o 0 ); (CI(Z) - b(z)>)) eT;. (4.29)

a(z) —a(z) c2(2)
By the definition of w(B1)(z) = ((3;8) | (g;gg))T (see Lemma 4.1 and Corollary
1.2)
) 0 _ ey oo (1)
(2 =@t -aen(54) (4:30

On the other hand we have by Green’s identity (¢ (z) is defined in Lemma 4.1
applied to B1)

l9:9(2)] = [+ 2f, ¢ (2)] = [f, 24(2)] =
()~ () o) - s
Hence, with the notation from the proof of Theorem 4.19, Step 3, we have
l[g,90(2)] = b(2). For a(z) — a(z) # 0 we obtain from (4.30)

c1(2) = [g9,9(2)] + (a(2) — a(2))B1(2), c2(z) = (a(z) — a(z2))fa(2).

As z € p(A) we have B2(z) # 0, compare the proof of Theorem 4.19, Step 2,
and hence cy(z) # 0. Therefore,

al) ____lge@)] | Al)
() @) —a() BE) T AE)
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und further [ ()] )
. g,p(z
(a(z) —a(z)) = : :
ci(z) _ pi(z)
ag ey PG

By (4.29) and Lemma 4.1

9, ¢(2)] 1 9. p(2)]
fl = f+ c1(z) _ B1(z) ) ﬁQ(Z)w(Z) = f - c1(2) _ B1(z) . SO(Z)
c2(z) B2(z) c2(z) B2(z)

(4.31)

o

If a(z) —a(z) = 0 for some z € p(A)Np(A), then by property (E) of B; we have
f1=fand ¢1(2) = b(z), c2(z) = 0. By property (E) of B4 we have ¢1(z) # 0.
Thus, also in this case (4.31) holds true.

However, since —g;gg is the @-function of (S, A) corresponding to the
defect family (2), cf. Step 3 of the proof of Theorem 4.19, the formula (4.31)

is nothing else, but Krein’s formula for generalized resolvents of Sy, see (0.2.4).

Step 4: Let W(z) be the wu-resolvent matrix of S; constructed by means of
Definition 0.4.8 with the selfadjoint extension A, the regularized wu-resolvent
r(z) = @2(2) " and the Q-function —21Z) | see Step 5 of the proof of Theorem

T Ba2(z)? B2(z)’
4.19.
By Theorem 0.4.9 and (4.31) we get that
c1(2)
r(z) = W(z)x
() =W+ 25

is a generalized wu-resolvent of S7 induced by A. Moreover, by Step 6 of the
proof of Theorem 4.19 W (z)J = w(B1)(2), and hence,

#(2) = w(B1)(2) * _28 = w(B1)(2) * ’28 = q(2). (4.32)

Step 5: In Step 2 of the present proof we saw that f, = R, u for some £ €
C\ {0}.

To compute the actual value of ¢ we employ (0.3.8) and the fact that ((4 —
2)"H7u = v(2), cf. Step 5 of the proof of Theorem 4.19. This gives

_ u, (p(2); 2p(Z
PRu= () — | EI(E)) ﬁl((zz)]i ) =
c2(z) — Ba(z)

L Y (G C2)) PR ! Lp(2).
pre e o R S A YA e NS R

Since v(z), p(z) € P1 we obtain

[v(2), LR, u] = [y(2), v(w)] +

and




On the other hand, by the definition of f, and by Corollary 4.2, we have

L. (a(2) —a(2)pa(2)
—q(2)>’ (az(Z) —q(2)B2(2)

Hence, by Green’s identity, and by (4.15) and (4.16),
-

(z = @) [y(2), Prfu] = [27(2), Prfw

(o) () - (- ) )-
_as(2) 1

“ B0 + q(w) — (az(w) — g(w)Ba(w)) -

and (z — )[p(z), P1 fi] coincides with

(L) (L0 ) = (caty sty (59 -

S a )+ (@) — a(@) o)) 212)
s~ )+ a@)5i(0) + () — ) () 52

From (4.32) and the fact that det w(B1)(w) = 1 we get

AR AN Der.

o) = 52 (Bo(@) 205 — 1)) + ZH A1) — n(@)
ﬂz(w)iiﬁﬁg B (w)

Q
no
-~
S
S—
—_
‘v =

Ba(@)  Ba(®) gy() 20D — B, ()

as(z)  ag(w)

 Ba(z) | Ba(w)

1 1 1 1
B p@) 2 - Aw)  Aw) 2 - Aw) PG)

T <gzg; B gzgzi) - B2 (w )Cl(wl) Bi(w) (52_(1) R 52_(111))) |

co (W)

L s @A)

B (w) 1 1 Bi(z)

2 (@)
(62_(12)6;(«11)))(_/351(2) 51())) By() 2 1 —Bi(@)
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Therefore, according to relations (4.19) and (4.20), [v(2), Py fu] coincides with
[v(2), —PiR,u] and [p(z), P1 fi] coincides with [p(z), —P1 R,u]. By the com-
plete non-selfadjointness the vectors v(z), ¢(z) span P; and, hence, —Py R ju =

P fy,. If this vector does not vanish for at least one w € r(5), we get { = —1.
If this vector always vanishes, then ((0;0); ((q(:i)); (Z;))) €Ty and
((I=P1) fu; w(I—P1) fu); ((g;),O)) € I'y for some by, by € C. Therefore (q(_ul))) =

(Z;) and mulT'; = span {((_;(L)); (_;&U)))} for all w € r(S). From this we see

that q(w) is constant. Moreover, J (q(_uf)

vy (w)
va(w) " O

) spans v(B3)(z) and, hence, g(w) =

4.25 Remark. Assume that in the previous theorem it is the case that ¢(z) =

Z;Ezg, z € r(9), and that this function is a real constant such that mulT'y

Span {((—;(1z)); (—;(12)))}'

If in addition mulT'y = {(0;0)}, then, since according to Lemma 4.14 ¢(z) =
Z;Eig is a Q-function corresponding to the defect family (I —Py) f, € ker(Ty —z),
the span of these defect vectors is a neutral subspace. In particular, P, must
have at least one negative square.

If mulTy # {(0;0)}, then according to Remark 4.13 mulT's is spanned by

(q?l ) But this is impossible since we impose condition (LI) of Proposition

w)
1V.6.2. /
4.26 Remark. By Remark 4.18 the fact that p(A) # 0 is equivalent to the fact
that the denominator in (4.26) does not vanish identically. /

d. The matrix w(B(W)) induced by W € M.

We will now show that the constructions of w(.) and 9B(.) are in a sense converse
to each other. First, let W € M, be given. Then the construction of w(.)
can be applied to the boundary triplet B(W). It is easy to compute w(B(W)).

4.27 Proposition. Let W € Moo, W # I. Then w(B(W)) =W.
Proof. We have

Thus
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Secondly, let a boundary triplet % which has defect 2 and satisfies (E) be
given. Then we can consider the boundary triplet B(w(9)). It is equally easy
to relate it with 8.

4.28 Proposition. Let B be a boundary triplet which has defect 2 and satisfies
(E). Let ¢(z) and (z) be the elements constructed in Lemma 4.1, assume that
S is completely non-selfadjoint. Moreover, let © : R(w(B)) — P be the unitary
operator defined in Remark 4.6.

Then the pair (©;id) is an isomorphism between the boundary triplets
B(w(B)) and B.

Proof. By Lemma 2.12 and the definition of B (w(B)) it is enough to show that

((@ x 9) (Hw(%)(w, DU WH (3 (w, .)v); (v;w(%)(w)*v)) el, weC,veC?.

(4.33)
By linearity, it is enough to consider the cases v = ((1)) and v = ((1)) However,
we have ) )
@(Hw(sg)(w, ) (0>) = (ﬁ(@), w(%)(w)* (0) = a(@) s
0 _ «(0 _
O (Hagay () (1)) = (), w(B)(w)* () = ().
and thus (4.33) follows from the defining relations for v and g. O

e. The matrix w(*B(h)) induced by a general Hamiltonian.

Let h € H<o. The construction of w(.) can be applied to the boundary triplet
B(h). Properties of the boundary triplet B(h) reflect in properties of w(B(h)).

4.29 Proposition. Let h be a regular general Hamiltonian. Then w(B(h)) €
Moo and

ind_ w(B(h)) = Z (A + [g]) +{1<i<n:é oddciy <0}

=1

The map Z defined by (4.12) for f € P(h) is an isometric isomorphism of P(h)
onto R(w(B(H))).

Proof. We have r(S(h)) = C, hence w(B(h)) is entire. Moreover, S(h) is com-
pletely nonselfadjoint. We need to show that

w(B(h))(0) =1I. (4.34)

In order to establish this relation we first consider positive definite and ele-
mentary indefinite general Hamiltonians, and then use the standard pasting
argument.

If § is positive definite, i.e. h is just a Hamiltonian H(t), t € (s_,s4+),
then any constant C*-valued function f(t) := (§) satisfies f' = JH(g). Hence,
((£;0);:((9); (3)) € T(H), cf. Subsections IV.2.1.c and IV.2.1.d. If b is an
elementary indefinite Hamiltonian of type (A), then we see from Definition

IV.4.11 and Definition 1V.4.12 that

((x- (é) + X+ (é) ;0); (((1)) ; (é) ), ((po30); ((i)); (g) )) € T(h).
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For the elements such as py appearing here see Subsection IV.4.2.
Finally, if b is an elementary indefinite Hamiltonain of type (B) or (C), then
we see from Definition IV.4.3 and Definition IV.4.5 that

(@05 ((3 )+ () (w0 ((3): (1)) .

In all these cases we have w(B(h))(0) = I.

Next let h be an arbitrary regular general Hamiltonian, and let Hamiltonians
h!,1=0,...,N, be defined as in Remark 3.36. By Corollary 4.8 and Proposition
4.10 we conclude from (3.9) that

W(B(h))(2) =Oqp w(BH”))(2) ... - Oy w(B(ON))(2).

Evaluating at z = 0 yields (4.34).
The relation (4.34) gives

Ezw(B(h))(0)& 15 =1,

and hence the hypothesis (4.23) is satisfied for all but at most one value of
v € [0,7). An application of Corollary 4.21 yields the desired assertion. 1l

From Remark 3.42, Proposition 4.7 for (), and from Remark 3.43 together
with Lemma 4.9 und Proposition 4.7 for rev we immediately obtain the following
compatibility result.

4.30 Lemma. For § be a regular general Hamiltonian and o € R we have

w(B(Oa b)) =Oa w(B(h)) and w(B(revh)) = revw(B(h)). 0

For elementary indefinite Hamiltonians b of kind (B) or (C), the matrix w(B(h))
can be computed explicitly.

4.31 Proposition. Let by be an elementary indefinite Hamiltonian of kind (B)
or (C) which consists of the data

H(t), t€[s_,0)U(0,s4],

OENU{O}, bl,...,b5+1 eR, dy R, dy =0,
subject to the conditions of Definition 1V.4.1. Then

1 0
«(BO)(=) = <—zdo + 2%bs 41 + ...+ 20720 1) .

Proof. In both cases, kind (B) or (C), we have mulT'(h) = span{(((l)); ((1)))}7 cf.
Lemma IV.4.19. Hence,

If b is of kind (C), trivially ker(T — z) = span{po}. In fact, (po; zpo) = (po;0) +
2(0; po), which shows that A(po; zpo) = (2(11“), and thus

(i (1) (7)) e Tw. (4.35)
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Hence
v =m. 5= (1),

Assume now that b is of kind (B). In this case (for the notation see again
Subsection IV.4.2)

ker(T — z) = span {po + Z /Lj(sj} )

=0
with
6
— k+1 . .
Hj _ZZ + b1+57j7ka J =0,...,0.
k=0

To see this, note that by the definition of p; we have pu;_1 — zp; = 2bs—j49,
j=1,...,6, and remember b = ?;1 bi6145_;. Hence,

(po+ > pidiizpo + Y 2p;05) =
=0 =0

= (p0; 0) + > 211;(85-158;) + 2(b; po + dodo) + 2410 — do) (05 &o) -
=1

Hence . .
o o d _
A(po + Zﬂj5j§zp0 + Zw;&) = (Z( ’ 1 MO)) ;
j=0 j=0
and therefore
o g 0\ [—zdo+
((po +) uibiszpo+ Y 2p;0); ((1); ( ‘ 01 ZMO))) e(h).
§=0 §=0

It follows that

- —zd 8 k+2p
¥(2) :poJrZujéj, B(z) = < z O+Zk=1oz 1+ k)'

J=0

4.32 Corollary. Let b be a regular general Hamiltonian given by the data

h(t)Eses, tels—,0)U(o,s4],
5€NU{O}, bi,...,bs41 €R, dy €R, d; =0,

where h is locally integrable on [s_,0) U (0, 54], fsg_ h = f;+ = 00, and where
either by #0 or dg <0, 6 =0, by =0. Then

1 0
w(B(H))(2) =Oz-¢ (zdo + 22bs40 + ..+ 20720 1)
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Proof. Under the present hypothesis the general Hamiltonian Og_z b is ele-
mentary indefinite of kind (B) or (C). The assertion follows from Proposition
4.31 and compatibility with O, Lemma 4.30. O

4.33 Remark. Let b be a positive definite regular Hamiltonian which consists of
just one indivisible interval, i.e. let h = H where H(t) = h(t)&bfg, te(s_,s4),
where h is some non-negative integrable scalar function. Let us show that

GBONE) =056 (e 1) = Wi non):

The same argument as in Corollary 4.32 shows that it is enough to consider

the case ¢ = 7. Hence, assume that ¢ = 5. Then, by the considerations in

2
[KW/IV, §2.1.¢], we have mulT'(H) = span{(((l)); ((1)))}, and therefore

Moreover,

((<_Z {I‘ h);Z<_Z{:‘ h)%((?)% <_Z {Sf h))) cT'(H),

and hence ) .
oo = (") s = ().

We conclude that . 0
w800 = (_, ooy 1)
/

4.34 Remark. Let b be a positive definite singular Hamiltonian which consists of
just one indivisible interval, i.e. let h = H where H(t) = h(t)@fg, te(s_,sy),
where h is non-negative scalar function, which is integrable on all subintervals
(s—,t) C (s—,sy). Let us show that

oBO) ) =05 () = spaniés).

Note that the boundary triplet B(h) induced by the singular positive definite
Hamiltonian has defect 1 and satisfies property (E), see [KW/IV, §2.1.e]. There-
fore, v(B(h))(z) is well-defined, cf. Definition 4.11.

The same argument as in Corollary 4.32 shows that it is enough to consider
the case ¢ = 7. Hence, assume that ¢ = 5. By the considerations in [KW/IV,
§2.1.¢], we have mulT'(H) = span{(((I));O)}7 and therefore (see Remark 4.13)

v(B(h))(z) = span{J(é)} = Span{gg}.
/

Let us make explicit the following compatibility of w(.) with splitting of b.
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4.35 Lemma. Assume that b € H<o is regular, and let {ro,...,rmy1}, 1o <
r1 < ... <Tmy1, be a finite subset of I such that

70 =00, Tm+1 = Ont1s T3 € lreg, t=1,...,m.
Then we have -
w(%(b)) = Hw(%(hTiHTi+1))’ (436)
i=0

ﬁ(UJ(%(b))) = R(w(%(bmﬁm))) @w(%(hﬁﬂ—ﬂd)) : ﬁ(w(%(hﬁHTz))) D ...

... 0 1—_[ w(%(bmHTHl)) . R(W<%(hﬂn<—”"m+l))) :
=0

Proof. With the notation from Definition 3.47 by Lemma 3.44 we may apply
Proposition 4.7 with ¢ = id and then Proposition 4.10 to conclude that (4.36)
holds. The relation between reproducing kernel spaces follows from Corollary
4.23. 0

4.86 Remark. According to Remark 3.51 we obtain from Lemma 4.35 that past-
ing of general Hamiltonians is also compatible with building w(.):

Let b;, i = 1,...,m, be general Hamiltonians. If (—paste) fails for each two
consequtive Hamiltonians, then

m m
w(B(H h:) = [Jw(B(H:)
i=0 i=0
Moreover, the reproducing kernel spaces are connected as in Lemma 4.35. /

Let b be a regular general Hamiltonian. Observe that, by Proposition 4.31,
Corollary 4.32, and Remark 4.33, we have computed w(B(h)) explicitly in those
cases when mulT'(h) # {0}. If mull'(h) = {0}, this will in general not be
possible. However, w(B(h)) can be represented with help of the function ¥*(h) :
T(h) = AC(I) x M(I)/=,,, which was defined in Remark IV.8.9.

4.87 Remark. Let h be a regular general Hamiltonian defined on the set I =
Ui_o(0i,0i41), and assume that mull'(h) = {0}. Let ¢(z) and 9(z) be as in
Lemma 4.1. Then

ac ac T
w(B(h))(2) = (ML (h)(4(2); 26(2))(00) [T T (0) (1(2); 24(2)) (on+1))
This is obvious from the last lines of Remark IV.8.9, cf. the bottom line on
[KW/IV, p.827]. /
5 Construction of the maximal chain
In this section we turn to the actual construction of the chain wy : T U {0} —

M associated with the general Hamiltonian h. After the definition of wy, we
will prove the following theorem:
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5.1 Theorem. Leth be a general Hamiltonian defined on I = J;_ (0, 0it1). If
b is reqular, then wy is the finite mazimal chain going downwards from w(B(h)).
If b is singular, then wy|r is @ mazimal chain. In either case, we have ind_ h =
ind_ wy.

Moreover, by means of this result, the following definition is meaningful, cf.

Lemma I1.8.2:

5.2 Definition. Let § be a singular general Hamiltonian. The function

qy = goo(wp)
is called the Weyl coefficient of b. /
The content of this section is arranged in five subsections:

a. We give the definition of wy, and prove some of its properties.

b. In this subsection we give the proof of Theorem 5.1 for the case that b is
regular. This is done by invoking Proposition 3.10.

c. The case of a singular general Hamiltonian can easily be reduced to the
regular case.

d. We show compatibility of the assignment b — wy with the previously
defined operations O., rev, and with pasting.

e. We give a representation of gy as a Q-function.

a. Construction of wy.

In the following let h always denote a (regular or singular) general Hamiltonian.

5.3 Definition. In the singular case let t € TU{og} be given and in the regular
case let t € I U {0,011} be given. For the definition of wy(t) we distinguish
the following cases. First we deal with the cases that ¢ is not contained in an
indivisible interval.

(1) If t = o9, put wy(t) := 1.
(#7) If b is regular and t = oy,41, put wy(t) := w(B(h)).
(ti0) If t € I\ Lsing, define wy(t) := w(B(hay)).

It remains to define wy(t) if ¢ is inner point of some indivisible interval. Assume
that (t—,t4+) C I is the maximal indivisible interval which contains ¢, and write
H(t) = h(t)&p], t € (t—,ty), where ¢ € [0,7) is the type of the indivisible
interval and h is some locally integrable scalar function.

() If t_ € T U{oo}, and hence belongs to I.eg U {og}, define
wy (t) = wy (t_) . W(l,(t),zb) , (5.1)
where I_(t) := [ h(t)dt.

(v) Assume that t_ & TU{op}. Then we must have t; € TU{o,1}, cf. axiom
(H2) in Definition 3.35, and hence t4 € Ieg U {041}, where the case

t = 0,41 can occur only if b is regular. In this case set 4 () := f; h(t) dt
(< 0), and define
wy (t) := wy(t1) - W, 1),9) - (5.2)
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First of all note that wy(t) actually always does belong to Mco. If t €
(IU{00}) \ Lsing, this was said in Proposition 4.29, otherwise it follows because
M is closed with respect to products and W 4) € Mo U M.

We will frequently employ our standard splitting-and-pasting method. In
order to do so, it is practical to note explicitly:

5.4 Lemma. Let s,s' € (IU{oo})\ Lsing, s < &', be given. Then
wy(t) = wy(s)wy, ., (t), te (T U{oo})N[s,s]. (5.3)

Proof. Let t € (IU{oo}) N [s,s] be fixed. If ¢t = s, we have wy__ ,(t) = I and
hence (5.3) holds.
Assume next that ¢ € Iiee, t > 5. We employ Remark 3.48 to obtain

Wh o (t) = w(%((hsﬁs/)‘?t)) = W(%(hu—nﬁ)) 5

and hence
wy(t) = w(B(hat)) = w(B((hat)as)) - w(B((hae)sr)) =

= wW(B(has)) - W(B(hsest)) = wy(s) -wy, ().
Note here that
Ireg(hs(—w’) = Ireg(h) N (57 S/) . (54)

since the Hamiltonian functions of b4, s are just restrictions of the Hamiltonian
functions of b.

Assume now that we are in the case (iv) if Definition 5.3. Note that, by (5.4)
and s € I g, case (iv) prevails for b if and only if it does for hse,s. Moreover,
we must have ¢t_ > s. Clearly, the magnitudes ¢ and h(t) are the same for h
and hs. . Hence, by what we have already proved,

wy(t) = wy(t-)Wa_(t),6) = wn(s) - w ., (E)Wa_(1),6) = wy(s) - wp,,,.. (1)

If we are in case (v) of Definition 5.3 for  and thus also for hss, we can
proceed in the same manner. We must have ¢ < s’; and the magnitudes ¢ and
h(t) are the same for b and hs . Hence

w (1) = wy ()W, (1),6) = wy(s) - wp,, ., (E) Wy 0),0) = wp(s) -wy_,, (1)

U

With the help of Proposition 4.31 — Remark 4.37, we can determine wy ex-
plicitly if mulT'(h) # {0}, and at least represent it in terms of ¥*¢(h) otherwise.

5.5 Proposition. Let ) be a regular general Hamiltonian.

(i) Assume that b is positive definite and consists of just one indivisible in-
terval, and write b = H with H(t) = h(t)€,E], t € [s_,s¢]. Then

w;,(t) = W(l,(t),d))a te [8_,5_;,_] ,

where 1_(t) := ft h.

S
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(i) Assume that by is given by the data
h(t)Epel, t € [s_,0) U (0,54],

OENU{O}, bl,...,b5+1€R, doGR,dlzo,

where h is locally integrable on [s_,0) U (0, s4], [J h= [T*h =00, and
where either by £ 0 ordy <0, 6 =0, by =0. Then

() =W =036 () §)s 1€ -0,

1 0
wh(t)(z) _Og_¢<—z(l+(t)+d0)+22b5+1+. 202 1) , € (0,54,

where 14 (t) := fs: h.

(#i1) Assume that mulT'(h) = {0}. Let ¢(z) and ¢(z) be as in Lemma 4.1 for
B(h). Then

wy()(2) = (MP(9)(6(2); 26(2)) () | mW () (1(2); 2:(2)) (1))
te TuU {0'0} .

Proof. The assertions in (i) and (#¢) are immediate from the definition of wy
and Remark 4.33, Corollary 4.32.

In order to show (i4i), consider first the case that t € (I U {oo}) \ Lsing. For
t = 0y, we have by Remark 4.37,

wy(00)(2) = I = (mW(H)((2); 26(2)) (00) | mE(h) ((2); 296(2)) (00)) " -
If t > 0, we obtain from (3.15) and Remark 4.37 that
wiy (t)(2) = w(B(hae))(2) =
=m0 (ha0) (B(h0) (2); 26 (a0 ) (2)) (1) | T (e ) (W (e) (2); 200 (o) (2)) (£)) "=

T

= (mP(h)(4(h)(2); 26(h)(2)) (1) | mL(h) (¥ (b) (2); 20 (B)(2)) ()" -

Next observe that, by Remark IV.8.9, U4 maps T'(h) into T(H), and that the
definition of ¥ ensures that

W) (f;2f) = zm U () (f;2f), | €ker(T(h) - 2).

Thus the matrix function

M(t,2) = (m(0)(6(2); 26(2))(8) | @ (6)(w(2); 20(2) (1)
teIUu{og},z€C,

satisfies the differential equation

%M(t, )T = 2M(t, 2)H(t), t€ 1.
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Assume now that ¢ € I, is given, so that either case (iv) or (v) of Definition
5.3 prevails. If we have t_ € I U {0}, then M(¢,z) is the (unique) solution of
the initial value problem

0

aW(t,z)J =W(t,2)H(t), t € [t_,t4), W(t_,z)=M(t_,z).
Since (t_,t4) is indivisible, however, this equation is easily solved on this inter-
val and we obtain

M(t,z) = M(t—, Z)W(l,(t),(b)a tet_,ty).
By what we have already shown, it now follows that
wy(t) = wy(t-) - Wa_w),e) = M(t_,.) - Wa_w),e) = M(t,.), t € (t—,t4).

The case that t— ¢ I U {og} can be treated in a completely similar manner,
since then the function M (t, z) is the (unique) solution of

%W(t, 2)J = 2W(t, 2)H(t), t € (t_,t4], W(ty,z) = M(ts,z).

U

5.6 Corollary. The function wy : I U{op} = Mcoo is locally absolutely con-
tinuous and satisfies the differential equation

0

Eel (t)(2)J = 2wy (t)(2)H(t), t € I, wy(og) =1, (5.5)

and wy(op+1) = w(B(h)) in case b is reqular.

Proof. If b is regular, this is obvious from the above proposition and its proof.
Consider the case that b is singular. If s € I,¢g, then
wy(t) = wh“ls(t)7 t<s,
and hence wy satisfies (5.5) on I N (0g,s). If sup lieg = 0pq1, We are done.
Otherwise, put s := suples. Then s € I, and the interval (s,o,41) is a
maximal indivisible interval, cf. axiom (H2) in Definition 3.35. By what we
know for the regular case, wy|(1u{oy})n[00,s] 1 locally absolutely continuous and
satisfies (5.5). However, it is apparent from the definition of wy that wy|(s.s, )
is locally absolutely continuous and satisfies (5.5). Thus also in this case the
desired assertion follows. O

5.7 Remark.

(i) Although the equation (5.5) looks like an initial value problem, actually
it is not: If b is indefinite, the set I is not connected. In particular, wy
is not uniquely determined by (5.5). This is of course no surprise, since a
general Hamiltonian also contains the data 6;,b;;,d;;, and this data does
not appear in (5.5).

(73) We already see that the function wy is closely related to the general Hamil-
tonian b, namely via the equation (5.5).
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(#i7) If h = H is positive definite, then (5.5) is a proper initial value problem.
Hence, in this case, wy coincides with the chain wg previously defined, cf.
Proposition 3.23, (7).

/

b. Proof of Theorem 5.1, ) regular.

We will employ Proposition 3.10 to show that, for a regular general Hamiltonian
b, the function wy is a finite maximal chain.

The function wy maps the set I U {0}, which is of the form described in
Proposition 3.10, into M, the matrix w(B(h)) belongs to M., and as we
have already noted the equalities in hypothesis (7) of Proposition 3.10 hold true.
The validity of hypothesis (ii7) is an immediate consequence of the differential
equation (5.5), axiom (H1), and the classical theory of canonical systems:

5.8 Corollary. If s,s’ belong to the same connected component of I, s < s,
then

’

t(wy(s") = t(wy(s)) + /S tr H .

In particular, the function t(wy(t)) is locally absolutely continuous and strictly
increasing on I and

fl}rgll t(wy (t)) = +oo, tlinﬁi twp(t)) = —o0, i=1,...,n.

U

Tt is more exhausting to show that hypothesis (i) of Proposition 3.10 holds
true.

5.9 Proposition. Let b be a reqular general Hamiltonian, and let t € I U{og}.

Then
ind_ wy (t) =
= Z (Az+[g])+‘{1§1§n g; <t, 0; Odd,Ci’1<0}|, (56)
i=1,...,n
o<t
ind_ (wh(t)_lw(%(h))) =
= Z (Az+[g])+‘{1§1§n g; >t, 0; Odd,Ci’1<0}|. (57)
i=1,...,n
o>t

In particular, ind_ wy(t) is constant on each component of I U{oo}, and
ind_ w(B(h)) = ind_ wy(t) + ind_ (wy(t) " 'w(B(h))).

Proof (of Proposition 5.9, Case t € (I U{00}) \ Ising). We know from Proposi-
tion 4.29 that

ind_w(B(h) = > (A+ [g]) +{1<i<n: 6 odd, ey <0}

i=1,...,n
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In the cases that t = o or t = 04,41, the desired formulas (5.6) and (5.7) readily
follow.

Assume that ¢ € (09, 0n41). By the definition of wy, we have wy(t) = wy.,,
and by Lemma 5.4 we have wy (t) 1w (B (h)) = wy,.. Hence (5.6) and (5.7) follow
from Remark 3.45 and Proposition 4.29 applied to h«; and by, respectively. []

If t € ILng, three cases may occur: If (t_,¢;) is the maximal indivisible
interval which contains ¢, then

t_,ty € IU{op} or t_e€IlU{op},ty &€IU{op} or

t_ ¢ Iy {0'0},t+ celuU {0'0}
Proof (of Proposition 5.9, Case t_,t; € IU{og}). Write H(t) = h(t)éd,fg;, te
(t_,t4), and put Iy := [ h, Iy := [/* h. Then, by the definition of wy, and by
(5.5), respectively,
wy(t) = wy ()W, 0),  wy(ty) = wy(H)Wiy,g) -

Since l1,lz > 0 and hence W(;, 4) € Mo, it follows from the subadditivity of
ind_ that
ind_ wy(ty) <ind_ wy(t) <wgy(t-).

However, by what we have already proved, both of wy(t—) and wy(t4) are equal
to the number written on the right side of (5.6).
Similarly, we have

wy (1) w(B()) = Wiy,ywy (t1) ' w(B(H)),
wy(t—) " 'w(B(H)) = Wi, ywy (1) w(B(H)),
and hence
ind_ (wy(t-)"'w(B(H))) < ind_ (wy(t)"'w(B(h))) <

<ind_ (wy(ty) " 'w(B(D))) -

Both numbers ind_ (wy (t—) "'w(B(h))) and ind_ (wy(t4+) w(B(H))) are equal
to the number written on the right side of (5.7). O

The treatment of the case t_ € I U{og},t4+ & I U {op} is based on the
following result.

5.10 Lemma. Let (t_,ty) be a mazimal indivisible interval with t— € I U
{oo},ty € TU{oo}, and let ¢ € [0,7) and h(t) be such that H(t) = h(t)4E],
te (t_,ty). Then

Es € Rwp(t-)'w(B(D))),  [€s,&] 0.

Proof. Let s := min(E N (t4,0,41]), then 6 =0¢—z bt_«s is elementary indef-
inite, cf. Lemma IV.8.4.
If § is of kind (B) or (C), then by Proposition 4.31 and Proposition 2.8 we

have
HELECONE
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Ko) (o)} _Jo , hkind (B)

1)°)\1)1 | £ , bkind (C)

Assume that b is of kind (A). Since (¢_,t,) is indivisible, we have x_ ((1)) =0,
and hence

((0;=60); (<é>;0)) e T(h).

By the abstract Green’s identity, cf. (IV.2.6),

03] - 0.762) = (3) I (3) —az0=0.

o

[—d0,%(Z)] — [0,Z¢(2)] = <O> J(l) —-B(E)*Jo=1.
Let Z be the isomorphism of P(h) onto &(w(B(h))) defined by (4.12). Then the

formulas (5.8) give
0 =
(1> = Z(—0do) -

In particular, (}) € A(w(B(h))) and

K(D (?)] = [~00,~00] = 0.

Referring to Lemma 2.5, we find that

o= Noors () €SB0 o), [0t <0.

Finally, since t_,s € I, we may apply Lemma 3.44 with the general
Hamiltonian b; s and the set {t_,s,0,41}. It follows that R(w(B(h_os)))
is contained isometrically in K(w(B(h;_r))). However, wy(t_) 'w(B(h)) =
w(B(he_r)))- 0

Proof (of Proposition 5.9, Caset_ € I U{oo},t4+ € TU{og}). Let t € (t_,t4),
then wy(t-)"'wy(t) = W) where | = fti h > 0. We see from Lemma

5.10 and Proposition 2.8 that the space R(wp(t—) 'wy(t)) is contained in
f(wy(t-)"'w(B(h))) and that the inclusion map is contractive. By [ADSR,
Theorem 1.5.6], it follows that

ind— (Hy, (¢ )-1w0(m(6)) — Huoy(t )1y () =

=ind_ Hy, (¢ )-1w(m(p)) — d- Houyy-1w, ) = ndo Hey-10(3(n)) -

However, we have
Heyy ey =1 (0) (s 2) = Hog ()10, (0 (0, 2) =

= wy (t-) 7 (2)wp (8)(2) - Huy ()10 () (W, 2) - wp (1) (w) “wy () 7" (w).

Since it is already known that the formula (5.7) holds for ¢_, it now follows that
(5.7) also holds for ¢.
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From wy (1) = wy (t-)W(s,4), we have ind _ wy () < ind_ wy(t—). On the other
hand

w(B(H)) = wy(t) - [we(t) ™ w(B(h))] = wy(t-) - [wy(t-) " w(B(D))] .

Using (5.7), which is already known for ¢ and t_, and (5.6) for t_, it follows
that
ind_ w(B(h)) < ind_ wy(t) +ind_ [wy(t) " w(B(h))] <

<ind_ wy(t-) 4+ ind_ [wy(t-) " 'w(B(h))] = ind_ w(B(h)).
h

Thus equality must hold throughout, and we conclude that (5.6) holds also for
t. 0

In the case t_ & TU{op},t+ € I U{op} we proceed along similar lines.

5.11 Lemma. Let (t_,ty) be a mazimal indivisible interval with t— ¢ I U
{oo},ty € TU{oo}, and let ¢ € [0,7) and h(t) be such that H(t) = h(t)4E],
te(t_,ty). Then

wy(t1)€s € R(wp(t4)),  [wy(ts)€swp(ts)Eg] < 0.
Proof. Let s := max(E N [og,t_)), then h :=0¢-z bhsest, is elementary indefi-

nite.
Assume first that b is of kind (B) or (C), then by Proposition 4.31

~ (0 0
win(}) = (7).
Combining this with Proposition 2.8, we obtain the desired assertion.

Next, assume that b is of kind (A). Since (¢_,t;) is indivisible, we have
x+(}) =0, and hence

((0;60); (0; (é))) eT(h).

By the abstract Green’s identity,

3066311~ 036031 = () J0- @7} = alee,

b0, 02) ~ 0,503 = () 90— 50 () = ~(ake

Let 2 be the isomorphism (4.12), then (5.9) yields

It follows that

B0t )6 = N5 B0) ) € BB lbecr ).
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and [§¢,§¢] <0.
Since t4, s € Iieg, we may apply Lemma 3.44 with the general Hamiltonian

b, and the set {00, s,t4}. It follows that w(B(hs))R(wW(B(hsese,))) is con-
tained isometrically in R(w(B(has, ))). Since wy(ty) = w(B(has))w(B(hsese,))s
the assertion follows. O

Proof (of Proposition 5.9, Caset_ & I U{og},t+ € IU{0p}). Let t € (t_,t1),
then wy(t) " wy(t4) = Wiy with [ := tt+ h > 0. Thus, by Lemma 5.11, the
space wy (t4)R(wpy(t) "wy(t4)) is contained contractively in wy (¢ ). However,
wy(t)6s = wn(t4) - wy(t) " wy (1) €5 = wy(t+)Es
—_——

=W(—1.¢)

and hence also wy, (t)&(wp (£) "'wy(t4)) is contained contractively in &(wy(t1)).
Appealing to [ADSR, Theorem 1.5.6], we find

ind— (Hy, (1) (w, 2) = wy () (2) Hoy (1) 100y (145 () (0) ) =
=ind_ Hwh(tJr)(w, Z) —ind_ Wy (t)(z)Hwb(t)flwh (t”wb (t)(w)* =
=ind_ Hy, () (w, 2).
However,
Hey () (w, 2) — wy (8)(2) Huy (6)= 1wy () wp () (0) " = Hey 1) (w, 2)

and (5.6) follows. We have wy(t) *w(B(h)) = W e - wy(t4) 'w(B(h)), and
therefore

ind_ w(B(h)) < ind_ wy(t) +ind_ wy(t) 'w(B(h)) <
<ind_ wy(ts) +ind_ wy(t4)  'w(B(h)) = ind_ w(B(H)).
We see that also (5.7) holds. O

Finally, we will establish condition (iv) of Proposition 3.10. Thereby we will
use the following simple computation:

5.12 Lemma. Let ¢,¢p € C2, M = <(Cl Z

det M =1, and

) € C?, and g € C. Assume that

Ai=d—cqg#0. (5.10)
Thent .
(6] )M (q) —A[6— (Mx(—0)¥] .

d -—c
-T _
=% )
and hence

ot (1) = i) (1) = (@ o+ (-0t aapo =

b—aq]
d— cq

Proof. We have

(5.11)

=(d—cq)[p—v = Ao — (M x(—q))v].

TRecall the notion of W x 7 from short after Definition 2.17.
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5.13 Proposition. Let ¢ = o; be a singularity of h = (H,c,0). Then there
exists a number T € RU {oco} such that

th/r(rtlfwh(t)(z) *xT = }{I}rwh(t)(z) xT.

Proof. Put 7 := max(E N [0g,0)) and s := min(E N (¢,0,41]). Then b =0y,
Bress 18 elementary indefinite. For ¢ € [r, s] \ {0} we have

wy (1) = wy(r)- O—g, wy(t) = wy(r)N—g, - w ()N}, ,

and hence
wh(t) * (N_(z,i *7‘) = Wy (T’)N_¢i * (wﬁ(t) * T) .
Hence, it is enough to prove the stated assertion for elementary indefinite Hamil-
tonians.
Let h be an elementary indefinite Hamiltonian defined on [r, s] \ {¢}. If b is
of kind (B) or (C), then it is apparent from Proposition 5.5 that

wy(t)*0=0, t €r,s]\{o}.

The situation is more delicate if b is of type (A). By Corollary 5.6 the matrix
function wy(t)(2), t € [r,0), is the solution of the initial value problem
o)

aW(t 2)J =W (t,2)H_(t), t € [r,o), W(r,z)=1, (5.12)

and wy (s)(2) twy(t)(2), t € (0, 5], is the solution of

%W(t 2)J = 2W(t,2)H(t), t € (0,s], Wi(s,z)=1.

For each 7 € RU {oo} the limits

o 1
Go(2) 1= lim wy (t) x 7, (2) = — lim [wy (5)(2) " wp () (2) % 7]

exist and do not depend on 7. By [HSW, Theorem 2.1] and [HSW, (6.5),(6.6)],

respectively, we have (as functions of t € [r,o) or t € (o, 5], respectively)

an0@ () e ).

1
—qo(2)

=\—1 =\1* 1
on(s)@) O]
where H_ = H|, ,y and Hy := H|( . Moreover, again by [HSW, (6.5)] the
function ¢(z) is identically equal to oo only if H is of the form h(t) (é) (1,0) for
t € (o,s]. However, since the generalized Hamiltonian b is elementary of kind
(A) this is impossible, cf. (IV.4.1). Similarly, ¢,(z) is not identically equal to
0.
Put ¢(2)(t) := ¥*((¢(2); 20(2)) 1
By Proposition 5.5 we have (¢(z)(t)
Consider the element ¢(z) — g, (2
and (5.13) imply ¢(2)fr0) — 4o (2)
implies that also é(z)|(a7s} — ¢, (2)0(z

(5.13)
) € L*(Hy),

t) and ¢(2)(t) := T (2); 242 (#):

(2)(t)) = wy (t)(2)".

)(z) € ker(T'(h) — z). The relations (5.12)
|ir0) € L*(H_). By Lemma IV.5.13 this



On the other hand, writing

we obtain from (5.11) that (¢ € (o, s])

0# () O] ) ) =n 0@ 0@ () -

= (B(2)(1); P(2)(1))wp (5)(2) " (q<1z>> -

= (d(2) = ¢(2)4(2))d(2)(t) + (=b(2) + a(2)q(2))9 () (t).
By (5.13) we see that this function belongs to L?(H,). Hence, é(z)\(,,ys] —

6o (2)0(2)| (0, and (d(2) = e(2)a(2))$(2) ] (0,6] + (=D(2) +a(2)a(2)) ()] (5,5 bOth
belong to ker(T'(Hi) — z). We know from [HSW] that this space is one-
dimensional. Thus, these functions must be collinear. In particular, A(z) :=
d(z) — ¢(z)q(z) # 0, and by Lemma 5.12

3(2)](0,5] = 4 (2)0(2) 0,5 = D(2) (0,8 = (@ (5)(2) % (=a(2))) $(2) (0,5]
ie. ¢-(2) = wp(8)(2) x (—q(z)). By the definition of ¢, however,

wy (8)(2) * (—q(2)) = lim wy (£)(2) 7 = q(2)

U
We have by now shown that all the assumptions of Proposition 3.10 are satisfied,
and conclude that wy is a finite maximal chain. &)

c. Reduction to the regular case.

It is easy to deduce the desired assertion of Theorem 5.1 for singular general
Hamiltonians from the already established regular case. To this end, let us note
the following: If b is a general Hamiltonian and s € I¢g, then

iy (@) = wy(a), @ € (IU{0}) N [o0,s].

In case € (I U{00}) \ Lsing, this is immediate from Remark 3.48, (7). For
x € Iging, it follows from the fact that wy., (t) and wy(t) are both solutions of the
differential equation (5.5) together with the fact that at least one endpoint of the
corresponding indivisible interval belongs to I, and that these two functions
agree at this endpoint by the previous case.

Let a singular general Hamiltonian h be given. By what we already know,
for each s € (I U{00}) \ Lsing, the function wy|(1ufse})n[00,s] is @ finite maximal
chain. If sup l;eg = 0p41, it follows from Remark 3.15 that wy is a maximal
chain. Otherwise, put s := sup I, then wh\(w{do})m[go’s] is a finite maximal
chain, and wy|[s,, ) is @ maximal chain which consists of just one indivisible
interval. Since s € I,qq, the assumption of Proposition 3.17 is fullfilled, and we
conclude that wy = wy|(1U{oe})N[00,s] ¥ Whl[s,0,,1) 1 @ Maximal chain.

Finally, by Theorem 4.20 and (3.8), we have for any s € Lieg N (00, 0pn11),

ind_ h = ind_ h4s = ind_ wy.,(s) = ind_ wy(s) = ind_ wy, .
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d. Compatibilities.

It is important to know that the construction of wy is compatible with rotation,
reversing, and pasting.

5.14 Lemma. Ifl is a general Hamiltonian and oo € R, then we, p =0Oq wy.

Proof. If t € (I U{00}) \ Ising, t > 0¢ or if t = 0,41 in the regular case,
then by Definition 5.3, w5 (t) = w(B((On H)4r)). By Remark 3.48 we have
(Oa h)4t = (Oa b4t). Hence by Lemma 4.30

W(B((Oa b)) =Oa w(B(har)) =Oa wpy(t).

If ¢ is an inner point of an indivisible interval of type ¢ for h, then ¢ is an
inner point of an indivisible interval of type ¢ — « for O, §. Therefore, using
(2.10) and (3.1) we see from (5.1) and (5.2), that also in this case we have

W, (t) =Oa wi(t). O
5.15 Lemma. If § is a reqular general Hamiltonian, then wyeyy = revwy.

Proof. Ift € (IU{00, 0n+1})\Lsing, —t > 00, then by Definition 5.3, wrey n(—t) =
w(B((rev h)4—¢)). By Remark 3.48 we have (rev h)«_; = rev(hp;) and according
to Remark 3.50 and Remark 3.51 we obtain

rev(h) = rev(he W hre) = rev(hee) Wrev(ha).
From Lemma 4.35 and Lemma 4.30 we obtain
revw(B(h)) = w(B(rev(h))) = w(B(rev(bee))) - w(B(rev(har))) =
= w(B(rev(bre))) - revw(B(hat)),
and hence by Definition 3.12

w(B(rev(hee))) (=) = revw(B(h))(2) - (revew(B(ha)(2)) ' =
= rev ((@(B(he))(2) " w(B®)(2)) = (revey) (—1)(2).

If ¢ is an inner point of an indivisible interval of type ¢ for b, then —t is an
inner point of an indivisible interval of type —¢ for rev . Therefore, using the
fact that rev W 4) = W(; _¢) we see from (5.1) and (5.2), that also in the case
we have wyey b (t) = revwy (t). O

In order to consider pasting of general Hamiltonians and linking of chains
we need the following statement.

5.16 Proposition. The following assertions are equivalent:

(1) b starts with an indivisible interval of type c.

(i7) For some r € I with (0¢,r) C I we have wy(t) = W(f;o hays tE [o0,7).
(791) &o € R(wy(t)) for somet € 1.

(iv) &q € R(wy(t)) for allt € 1.
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Proof. 1If b starts with an indivisible interval of type «, then on a certain interval
(00,7) C I we have H(t) = h(t)&nEL. Ast — Wirt nays t € loo,7), satisfies
og 7

D

prd hay(2)d = zW(f;O hay(2)H(t), a.e. on [og,7), W(f;(? hay(2) =1,

it follows from (5.5), that wy(t) = Wt , o) on [o0,7).
og O’
If wy(t) = W(ft hya) =0z_qa W(ft hz) for at least one t € I, then due to
oo ' oo 2

Corollary 2.9 we have &, € 8(wy(t)).

Since wy is a maximal chain, we obtain from Corollary I1.5.15 that if £, €
R(wy(t)) for one t € I, then &, € R(wy(t)) for all ¢t € I.

Assume now that &, € R(wy(t)) for all t € Leg. Fix t € Lieg.

If mull'(O, bet) = span{(((l)); ((1)))}, then due to Theorem IV.8.6, and
Lemma IV.4.19 and Section 2.e of [KW/IV], Oq_z ho must be elemenatry
indefinite of kind (B) or (C) or positive and indivisible of type 7. In any case
of these cases h«; starts with an indivisible interval of type «.

If mulT(Oq bet) # span{((}); (9))}, then & € K(we,p(t)) and we can apply
Theorem 4.19.

Due to Theorem 0.5.3 (S; — a)"'271(&) = 0 for all @ € C, where
Sy = ker((m1 x m) o I'(wes,p.,)). Hence, Z71(&) € mulS; or equivalently
((0;271(%)); (€2;0)) € T(wo,pe,). As Ex = J& we obtain from Lemma 3.37
that O b4t starts with an indivisible interval of type 0, and, therefore, h+; starts
with an indivisible interval of type a. N

5.17 Remark. Let us state explicitly one consequence of the previous proof. We
saw that, if mulT'(O4 bhat) = span{((?); ((1)))}, then h«; starts with an indivisible
interval of type «. /

5.18 Lemma. Let h; and by be general Hamiltonians such that by is regular.
Then condition (—paste) from Definition 3.49 fails for b1 and b if and only
condition (—paste) from Proposition 3.17 fails for the correspoonding chains
wy, and wy,. In this case we have

Whwh, = Wh, YWy, -

Proof. By Proposition 5.16 b starts with an indivisible interval of type « if
and only if wy, does, and rev b, starts with an indivisible interval of type —a
if and only if revwy, = Wyevy, does, see Lemma 5.15.Therefore, h; ends with
an indivisible interval of type o if and only if wy, does. Hence, the conditions
(—paste) from Definition 3.49 and from Proposition 3.17 correspond to each
other. Finally, wpy,wp, = wy, W wy, follows easily from Definition 5.3 using
Remark 4.36. O

e. The Weyl coefficient as Q-function.

If b is a singular positive definite Hamiltonian, h = H : (0g, 01) — R2*2 which
does not consist of just one indivisible interval, it was proved in [HSW, Theorem
4.3] that the Weyl coefficient ¢ of H is a Q-function of S(h). Actually, the
selfadjoint extension of S(h) which gives rise to ¢ as a Q-function is the one
determined by the boundary condition 71 f(0g) = 0. Using the concept of
Titchmarsh-Weyl subspaces introduced in §4.b we are able to establish the exact
analogue of this result for singular general Hamiltonians.
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First of all note that for a singular general Hamiltonian bh the bound-
ary triplet B(h) has defect 1 and satisfies (E), see Theorem IV.8.7. Hence,
v(B(h))(z) is well-defined.

Moreover, by the same theorem, we have mul S(h) = {0}. Therefore, except
in the case mulT'(h) = span{((});0)} we may apply Lemma 4.14 to B(h) and

see that A := ker(m; 1 o I'(h)) has non-empty resolvent set.

5.19 Proposition. Let § be a singular general Hamiltonian, and assume that
S(h) has defect index (1,1), i.e. that b is not a positive definite Hamiltonian
which consists of just one indivisible interval.

With the notation from Lemma 4.14 applied to B(h) we have

Thus the Titchmarsh-Weyl coefficient of b is a Q-function of (S(h), A)

Proof. Let s € I g, then there exists at most one number ay € [0, 7) such that
mull’ Oq, bhes = Span{(((l)); ((1)))} Since ¢, =Oa gy, cf. Lemma 3.13, and
since v(B(Oq h)) = Nov(B(h)), cf. Corollary 4.16, we may thus assume without
loss of generality that Theorem 4.24 is applicable.

First we consider the case that there exists a largest number s € Iz N
(0n,0n+1). Since hpg is positive and consists of just one indivisible interval of
some type ¢ we see from Remark 4.34 that

v(B(hrs))(2) = span{&s ).

Hence, by (4.26)

q(z) = wy(s) * cot ¢.
By [HSW, Example 2.2] we know that cot ¢ is the Titchmarsh-Weyl coefficient
of hrs. Hence, ¢(z) is the Titchmarsh-Weyl coefficient of b.

If there is no largest number s € IegMN(0n, 0n1), there is a strictly increasing
sequence s, k € NU{0}, in LiegN(0pn, 0pp1). As B(bhas,) = B(has) WB(hsprsy)
we have mulT'q,, = {0}, k € N, see Proposition IV.6.2.

Thus we can apply Theorem 4.24 with B, = B(h4,, ) and Ba = B(hrs, ), k €
N. By (4.26)

() = w(s) « 48 (514
= WhlSk . 3 .
v ()
where (v¥(2) v5(2))T is any non-zero element from v(B(hrs, ))(2). By Lemma
k k
4.14 either 2 = 0 or 1) i5 a Q-function in the Hilbert space P(brs,)-

vy(z) — vy (2)
In any case Z{:Ez; is a Nevanlinna function. Hence, letting k tend to oo in
2
(5.14) we obtain ¢q(z) = qy(2). O

6 The Fourier transform
Let H be a singular positive definite Hamiltonian which does not start with

an indivisible interval of type zero and is not just one indivisible interval with
infinite length. Denote by p the measure in the Herglotz—integral representation
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of its Weyl—coefficient gy. Then there exists an isomorphism, the Fourier—
transform associated with H, of L?(H) onto L?(u). Thereby, the preimage of
the multiplication operator in L?(u) is a certain selfadjoint extension of S(H).

In this section we will establish the analogous result for singular general
Hamiltonians . The space b is thereby naturally substituted by J(h). On the
other side, the measure p is substituted by a certain distribution p associated
to gy, and the space L?(u) by the Pontryagin space II(p), cf. [KW/IL, §2, §3].

Before we turn to the definition and investigation of the Fourier transform,
we need a preparatory result.

6.1 Proposition. Let §) be a general singular Hamiltonian which is not positive
definite and consist of just one indivisible interval. Then S(h) is densely defined
if and only if b does not start with an indivisible interval.

Moreover, the following assertions are equivalent

(1) b does not start with an indivisible interval of type 0.
(ii) The selfadjoint extension A = ker(m; 1 o T'(h)) of S(h) is an operator.

(138) For allt € I the projection o, which assignes to any function in K(wy(t))
the second entry of this function, is injective.

(iv) oo is regular for the corresponding Weyl-coefficient gy, i.e. we have

limy o0 242 = 0.

Proof. First note that, under our assumption on §, we have mulT'(h) = {0}.

The relation S(h) is densely defined if and only if S*(h) = T'(h) is an opera-
tor. Since mul S(h) = {0}, cf. Theorem IV.8.7, by Lemma 3.37 this happens if
and only if h does not start with an indivisible interval.

The multivalued part of A consists of all elements g € mulT'(h) such that
m,1(T(H)(0;9)) = 0. Thus, again by mul S(h) = {0} and Lemma 3.37, the
assertion that mul A = {0} is equivalent to the fact that b does not start with
an indivisible interval of type 0.

Finally, by Proposition 5.16 this is equivalent to {y & R(wy(t)) for all ¢t € I.
However, by Corollary 1.9.7 together with Proposition 1.8.3, this is equivalent
to kermy = {0}. By Lemma 1.8.6 this means that £(wy(t)) = 8- (wy(t)) and by
Theorem I1.5.7 nothing else, but the fact that oo is regular for gy. 1l

6.2 Definition. Let h be singular generalized Hamiltonian. We say that an
element f € P(h) is right finite, if for some r € I,o; we have f € P(h«,), when
we consider P(h«,) as subspace of P(h), cf. Lemma 3.44. The set of all right
finite elements of (h) will be denoted by Pi2(h), i.e.

Pib) == |J Plha).

TEIx'eg

/

6.3 Lemma. The space Pi"(h) of right finite elements is a dense subspace of

P(b)-
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Proof. As the last interval (¢, 0,41) of I contains regular points we have

Phin(h) = U P(h4y).

r€lLegN(0n,0n+1)

If Iyeg N (0pn,0n41) contains a maximal element, say r, then P(bp,.) = L*(H
with some purely indivisible Hamiltonian H. Hence P(bp,.) = {0} and P(h«,.) =
P (h) = P(h).

If Iieg N (0, 0nt1) does not possess a maximal element, then for each fixed
7 € Iieg N (0pn, 0nt1) the Hamiltonian he, is not purely indivisible. Still,

,P(bﬁ'r‘) = LQ(H“T,—O—OO]) = U L2(H|[r,s]) :

r<8€Ilreg

Therefore, for our fixed r

Pin)= |J Pl =Plw)e | Plres) =Pb).

17<8€lreg r<SE€Iyeg

O

Assume that b is a singular generalized Hamiltonian which does not start with
an indivisible interval of type 0. Due to Remark 5.17 we have mulT'(h«;) #
span{(((l)); ((1]))}, t € I,eg. Therefore, we Theorem 4.19 is applicable, and we
have the isometric isomorphism =Z; : P(h«;) — K(w(B(ht))) defined by (4.12).

Moreover, by Proposition 6.1, the projection 72 onto the second entry is
injective. This implies that condition (2.23) is satisfied, cf. Lemma 1.8.6. Hence,
o : R(w(B(h«t))) — P(F:) is an isometric isomorphism, where E; = wa1 — jwag
and w(B(h«)) = (wi ;)i j=1,2. Thus also the map

f Pha) — B(EY)
@t'{ foe m(ES)

is an isometric isomorphism. For s,t € Ieg,5 < t, we obtain from Corollary
4.23 that ©y|p(y,.) = Os. Therefore a map © : Pir(h) — (J,o;  B(E,) is

well-defined by Of := O, f, f € P(h). Clearly, © is surjective. 4
Let g be the distribution in the representation Corollary I1.3.5 of the Weyl-
coefficient gy, so that we have

1 t — Rezg
t—z  |t— 202

ay(2) = e+ of ( )t = z0f?) (6.1)
with some 2y € p(A) \ R. Note that, by Proposition 5.19, zy belongs to the

domain of holomorphy of gy. Finally, let II(p) denote the Pontryagin space
generated by p, cf. Proposition I1.3.1.

6.4 Theorem. Let §h be a general singular Hamiltonian which is not positive
definite and consist of just one indivisible interval. Assume that by does not start
with an indivisible interval of type 0. Then S(h) is completely nonselfadjoint
symmetric operator with defect index (1,1). The map

A:f=0(f)- (. —2)
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is an isometry of the dense subspace Pi%(h) of P(h) onto a certain dense subset
of II(p). We have

A(Af)(z) = 20(£)(2) - (z = 20), f € P™(h)Ndom A,

Proof. From Theorem IV.8.7 we know that S(h) is a symmetric operator with
defect index (1,1).

Let t € Lieg M (0n,0n+1). By Remark 5.17 we can apply Theorem 4.19 to the
boundary triplet B; = B(h«;) and see that w(B1) is a generalized u-resolvent
matrix, where u € (Py)_ is given by (4.11).

Now Z; maps ¢ (w) to Hy,s,)(w,.) ((1)) and, hence, ©; maps 1 (w) to Kg, (w, .)
(see (2.22)).

The continuation (©;)_ of O; to (P1)- maps u to a function in P(F;)_.
From Proposition 1.10.2 we know that P(E:;)- can be identified with
AssocPB(E;) by the relation (1.10.1). Hereby,

(1) (u)(w) = [(80)(u), @%ﬁ&f»)]

() _
= = Pol =1
. )l = (mz o Po Ty w(w)
Therefore, (©;)_(u) is the constant one-function on C.

The selfadjoint extension

121 D) Sl(f)ﬁt) = ker ((7Tl,1 X 71—7“) © F(bﬂt))

acting in P(h) satisfies p(A) # 0, because of Lemma 4.14 which is applicable
since mulT'(h) = {0}. Let us choose zp € p(A) such that g is holomorphic
there.

By Proposition 6.1 A is in fact an operator. Therefore, we can apply Propo-

sition 11.4.4 with A = A and see that A is R u-minimal, or equivalently
cs{R;u:z € p(A)} = P(h),

where R7 denotes the extension of the resolvent as defined in [KW/0, p.290],
where now B is P; and P is P(h) and where A = A

By Theorem 4.24 we have R;u = —f,, where f, is the defect family from
Lemma 4.14. Here we can be sure that actually £ = —1 because of Remark
4.25 since for I'y = I'(hpy) either mulT's # {(0;0)} or P(hp¢) # {0} is a Hilbert
space.

Thus we showed that S(h) is completely non-selfadjoint. Since gy is the Q-
function of (S(h), A) corresponding to the defect family f., we see from Proposi-
tion I1.3.4 that there is an isometric isomorphism A : P(h) — II(p), where II(p)
is the model space constructed in [KW/II, §3] from the distribution in (6.1).

In particular, A X A(A) is just the multiplication operator by z. Moreover,
by Corollary I1.6.1 it satisfies

A(f) = ©u(f) - (- = 20)

for any f € P(h4¢), where t € Lieg N (0n, 0pnt1). As Pfin(h) coincides with the
union of all P(h«¢), Ireg N (0pn,0nt1), we see that

f=0(f)-(—2)
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is an isometric mapping from the dense subseteq P1*(f) of P(h) onto a certain
dense subseteq of II(p). |

As a consequence, we obtain one property of S(h) which was missing in
Theorem IV.8.7, cf. Remark IV.8.8.

6.5 Corollary. Let b be a singular generalized Hamiltonian, which is not
Just one positive definite indivisible interval. Then S(b) is completely non-
selfadjoint.

Proof. Apply Theorem 6.4 to the general Hamiltonian O, h with an appropriate
choice of a. U
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