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Abstract

We consider 2×2–Hamiltonian systems of the form y′(t) = zJH(t)y(t),
t ∈ [s−, s+). If a system of this form is in the limit point case, an ana-
lytic function is associated with it, namely its Titchmarsh–Weyl coefficient
qH . The (global) uniqueness theorem due to L. de Branges says that the
Hamiltonian H is (up to reparameterization) uniquely determined by the
function qH . In the present paper we give a local uniqueness theorem:
if the Titchmarsh–Weyl coefficients qH1 and qH2 corresponding to two
Hamiltonian systems are exponentially close, then the Hamiltonians H1

and H2 coincide (up to reparameterization) up to a certain point of their
domain, which depends on the quantitative degree of exponential closeness
of the Titchmarsh–Weyl coefficients.
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1 Introduction

a. Formulation of the main result.

We consider a 2×2-Hamiltonian system without potential, i.e. a 2×2-system of
the form

y′(t) = zJH(t)y(t), t ∈ [s−, s+), (1.1)

with a function H(t) : [s−, s+) → C
2×2 which is locally integrable on [s−, s+),

takes non-negative matrices as values, and does not vanish identically on any
set of positive measure. Moreover, z is a complex parameter, and J denotes the
signature matrix

J :=

(
0 −1
1 0

)

.

The function H(t) is also called the Hamiltonian of the system (1.1).
Equation (1.1) generates in a natural way a differential operator (actually, in

some cases it is a linear relation, i.e. a multi-valued operator). It acts in a certain
weighted L2-space L2(H) whose elements are 2-vector valued functions; see, e.g.
[Ka1], [O], [HSW]. The spectral theory of this operator changes tremendously
depending whether the integral

∫ s+

s
−

trH(t) dt is finite or infinite; in the first

case one says that the Hamiltonian H (or the system (1.1)) is in Weyl’s limit
circle case, in the latter one speaks of limit point case. In the limit point case
the operator mentioned above has deficiency indices (1, 1); in the limit circle
case it has deficiency indices (2, 2).

∗The author gratefully acknowledges the support of the Engineering and Physical Sciences
Research Council (EPSRC) of the UK, grant no. EP/E037844/1.
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Of course, ‘changes of scale’ in the equation (1.1) will not affect the spec-
tral theory of the associated differential operator. The notion of ‘changes of
scale’, however, needs to be defined rigorously. Two Hamiltonians H1 and H2

defined on respective intervals (s1−, s
1
+) and (s2−, s

2
+) are called reparameteriza-

tions of each other if there exists an absolutely continuous, increasing bijec-
tion ϕ : (s2−, s

2
+) → (s1−, s

1
+) such that ϕ−1 is also absolutely continuous and

H2(t) = H1(ϕ(t)) ·ϕ
′(t), t ∈ (s2−, s

2
+). In this case, we write H1 ∼ H2. We have

the following connection between solutions in this situation: if y1 is a solution
of (1.1) with H = H1, then y2(t) = y1(ϕ(t)) is a solution of (1.1) with H = H2

and vice versa.
Consider a Hamiltonian H which is in the limit point case and denote by

W (x, z) = (wij(x, z))i,j=1,2 the transpose of the fundamental solution of (1.1),
i.e. the solution of the initial value problem

d

dt
W (t, z)J = zW (t, z)H(t), t ∈ (s−, s+), W (s−, z) = I, (1.2)

where I denotes the 2×2-identity matrix. Then, for each τ ∈ R∪{∞}, the limit

lim
tրs+

w11(t, z)τ + w12(t, z)

w21(t, z)τ + w22(t, z)
=: qH(z)

exists locally uniformly on C \ R and does not depend on τ . For τ = ∞,
the quotient is understood as w11(t, z)/w21(t, z). The function qH is called
the Titchmarsh–Weyl coefficient (in some areas better known as the Weyl m-
function) associated with the Hamiltonian H. It belongs to the Nevanlinna
class N0, which means that

qH is analytic on C \ R, qH(z) = qH(z), z ∈ C \ R,

Im qH(z) ≥ 0 for Im z > 0.

This construction is vital for the spectral theory of the equation (1.1); for exam-
ple the function qH can be used to construct a Fourier transform of the space
L2(H) onto a certain L2-space of scalar valued functions, namely the space
L2(µ) where µ is the measure in the Herglotz integral representation of the
function qH (appropriately including a possible point mass at infinity). The
name Titchmarsh–Weyl coefficient comes from the fact that the function

y(t) =

(

w11(t, z)

w12(t, z)

)

− qH(z)

(

w21(t, z)

w22(t, z)

)

(1.3)

is the unique (up to scalar multiples) solution of (1.1) that is in L2(H).
It is a fundamental result due to L.de Branges that for each function q ∈ N0

there exists (up to reparameterization) one and only one Hamiltonian H such
that q = qH , cf. [dB], [W1]. The uniqueness part of this result may be formulated
in the following way.

1.1.Uniqueness theorem ([dB]). Let H1 and H2 be Hamiltonians defined on
intervals [s1−, s

1
+) and [s2−, s

2
+), respectively. Assume that H1 and H2 are in the

limit point case and denote by qH1
and qH2

their respective Titchmarsh–Weyl
coefficients. Then the following are equivalent.
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(i) H1 ∼ H2.

(ii) qH1
= qH2

.

Our aim in this paper is to prove a refinement of this theorem, namely the
following local version.

1.2. Local uniqueness theorem. Let H1 and H2 be Hamiltonians defined on
intervals [s1−, s

1
+) and [s2−, s

2
+), respectively. Assume that H1 and H2 are in the

limit point case, and denote by qH1
and qH2

their respective Titchmarsh–Weyl
coefficients. Moreover, let a > 0 and set

sja := sup
{

t ∈ [sj−, s
j
+) :

∫ t

s
j
−

√

detHj(x) dx < a
}

, j = 1, 2 .

Then the following are equivalent.

(i) H1

∣
∣
[s1

−

,s1a)
∼ H2

∣
∣
[s2

−

,s2a)
.

(ii) There exists θ ∈ (0, π) such that for every ε > 0,

qH1
(reiθ)− qH2

(reiθ) = O
(
e(−2a+ε)r sin θ

)
, r → +∞ .

(iii) Denote by Γα, α ∈ (0, π
2 ), the Stolz angle Γα := {z ∈ C : α ≤ arg z ≤

π − α}. For every α ∈ (0, π
2 ) we have1

qH1
(z)− qH2

(z) = O
(
(Im z)3e−2a Im z

)
, |z| → ∞, z ∈ Γα .

We should say it very explicitly that, although the local theorem 1.2 is a re-
finement of de Branges’ global uniqueness theorem 1.1, we do not obtain a new
proof of Theorem 1.1 since this result enters in our proof of Theorem 1.2.

Moreover, let us note that Hamiltonian systems in the limit circle case are
also covered by our uniqueness result; simply by prolonging them in an appropri-
ate way, e.g., by putting an additional boundary condition at the right endpoint.
However, if it is a priori known that both Hamiltonians under consideration are
in the limit circle case, then one could use an alternative, simpler, argument for
the proof, being based on classical bounded type theory and Phragmén–Lindelöf
principles.

1.3 Remark. The local uniqueness theorem analogous to 1.2 remains true in the
setting of indefinite Hamiltonian systems as introduced and studied in [KW/IV]–
[KW/VI] 2. The proof is word by word the same, only in some places one has
to refer to Pontryagin space theory instead of classical Hilbert space results. In
order to avoid the somewhat tedious introduction of these notions, we decided
not to formulate the general ‘indefinite’ result. We will content ourselves with
indicating the proper references in footnotes.

This observation becomes valuable when considering local uniqueness theo-
rems for Sturm–Liouville equations with singular potentials; some examples of
such equations have been studied, e.g. in [LLS], [HM], [FL]. However, in the
present paper, we will not touch upon this topic. �

1Maybe the power (Im z)3 is not the best growth estimate one can get. However, it is not
far from optimal; it is easy to construct examples with qH1

(z)− qH2
(z) ≍ e−2a Im z .

2Only the power in (iii) has to be adapted.
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The following fact, although a simple consequence of 1.2, is worth being stated
separately.

1.4 Corollary. Let H1 and H2 be Hamiltonians defined on intervals [s1−, s
1
+)

and [s2−, s
2
+), respectively. Each of the following two conditions implies that

H1 ∼ H2.

(i) Assume that α :=
∫ s1+

s1
−

√

detH1(x) dx < ∞ and that for some θ ∈ (0, π)

and some β > α

qH1
(reiθ)− qH2

(reiθ) = O
(
e−2βr sin θ

)
, r → +∞ . (1.4)

(ii) Let a > 0, and assume that H1|(s1a,s1+) ∼ H2|(s2a,s2+), and that for some

θ ∈ (0, π) and all ε > 0

qH1
(reiθ)− qH2

(reiθ) = O
(
e(−2a+ε)r sin θ

)
, r → +∞ .

We can also deduce a local Borg-Marchenko uniqueness result for Sturm–
Liouville equations without potential from Theorem 1.2. Because of its relevance
for applications, let us state this fact explicitly.

1.5 Proposition. Let b1, b2 > 0 and let pj, wj be measurable functions defined
on [0, bj), j = 1, 2, such that pj(x) > 0, wj(x) > 0 almost everywhere and
1
pj
, wj ∈ L1

loc([0, bj)) for j = 1, 2. Moreover, denote by mj the Titchmarsh–

Weyl coefficient for the Sturm–Liouville equation

−(pjy
′)′ = λwjy.

Let a > 0 and set

sja :=

∫ a

0

√

wj(x)

pj(x)
dx.

Then the following statements are equivalent.

(i) There exists an absolutely continuous, increasing function ϕ : (0, s2a) →
(0, s1a) such that ϕ−1 is also absolutely continuous and

w2(t) = w1

(
ϕ(t)

)
ϕ′(t)

p2(t) = p1
(
ϕ(t)

) 1

ϕ′(t)

for almost all t ∈ (0, s2a). (1.5)

(ii) There exists θ ∈ (0, 2π) such that for every ε > 0,

m1(re
iθ)−m2(re

iθ) = O
(
e(−2a+ε)

√
r sin θ

2

)
, r → +∞ .

(iii) For every α ∈ (0, π),

m1(λ)−m2(λ) = O
(

|λ|2e−2a Im
√
λ
)

,

|λ| → ∞, λ ∈ {z ∈ C : α ≤ arg z ≤ 2π − α} .
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Let us note that, similar as in Theorem 1.2/Corollary 1.4, the corresponding
corollary of Proposition 1.5 holds true.

b. History and relation to previous work.

Generally speaking, an inverse problem is the task to find a property of a system
or a medium from its response to a probing signal. Solutions to inverse prob-
lems enable us to remotely sense or non-destructively evaluate the system. For
example one could think of the task to find caves by collecting scattering data
of acoustic waves sent from the surface of the earth, of the task to determine the
structure of a DNA from x-ray measurements, or of the task to reconstruct the
shape of a membrane from its natural frequencies of vibration, see, e.g. [Si2],
[CCPR], [R], [K].

Let us turn to inverse problems for the Sturm–Liouville equation

−
(
p(x)y′(x)

)′
+ q(x)y(x) = λw(x)y(x) (1.6)

for an unknown function y(x). Equations of this kind arise from many partial
differential equations important in physical context, for example: In quantum
mechanics from the time-independent Schrödinger equation (where (1.6) is in
potential form, i.e. with p = r = 1), from the Helmholtz equation when studying
acoustic scattering in waveguides (where (1.6) is in its general form, i.e. with
all coefficients being present), cf. [CDCO], or in geophysics from an elliptic
equation modelling the propagation of waves in the earth’s crust (where (1.6)
is in potentialless form, i.e. with q = 0), cf. [BB], [McL].

Questions: Is p, q, w uniquely determined by data accessible to measurement,
for example eigenfrequencies, impedance function, reflexion coefficients, etc.? If
this is not the case, can at least parts of p, q, w be recovered? Having available
only noisy data, how much can still be said?

Answers #1; Global uniqueness: As a starting point of modern theory one may
regard the paper [Am]. There the equation

−y′′(x) +
(
q(x)− λ

)
y(x) = 0, x ∈ [0, 1] , (1.7)

is studied, and it is shown that the potential q must vanish identically, when the
eigenvalues of the selfadjoint operator obtained by imposing Dirichlet boundary
conditions at both endpoints are equal to n2π, n ∈ N. The definite result in
this direction was proved later, in [Bor1], where it is shown that two spectra
of (1.7) are always sufficient to determine the potential uniquely. Equivalently,
one may say that the impedance function (Weyl m-function) fully determines
the potential. This fact was recognised as an important result, and various
proofs, variations, generalisations, reconstruction methods, etc., were given. As
examples, let us mention [M1], [GL], [Bor2], [M2], [Sak], [GS1], [BW], [BBW].
Among them, in some sense as a generalisation, there appears the above men-
tioned Theorem 1.1 of L.de Branges, cf. [dB]. This result is particular, since
it can be viewed a posteriori as the mother of many different inverse theorems
which have been established over the years. Moreover, up to the present day it
gives rise to interesting new implications.

Answers #2; Local Uniqueness: Local theorems seek to recover a part of the
potential from asymptotic knowledge of spectral or scattering data. Results of
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this type came up only comparatively recently, starting with [Si1] who studied
the equation (1.7) on the half-line. This paper has initiated growing interest in
local versions of inverse spectral results, and has been extended over the past
ten years in several directions; as examples let us mention [GS2], [Be], [CG],
[GKM], [S1], [CGR], [S2], [GZ], [CGZ], [S3].

Our main results Theorem 1.2 and Proposition 1.5 fall in this category;
asymptotic knowledge on the Titchmarsh–Weyl coefficient partially determines
the Hamiltonian.

Answers #3; Reconstruction from incomplete or mixed data: Unlike in the case
treated by Ambartsumyan, in general one spectrum of (1.7) is not enough to
recover the potential. Similarly, knowledge of the reflexion coefficients of a full–
line problem will not suffice. Still, many things can be said. For example, if one
spectrum is completely known but the second is missing some information, then
q can be recovered modulo a sum of eigenfunctions from the missing part, cf.
[H]. Or, if the potential is known on half of the interval, then one spectrum is
enough to recover q, cf. [HL]. Or, if in the full–line problem it is a priori known
that the potential vanishes on the negative half-line or decays sufficiently fast,
then the reflexion coefficients will be enough, cf. [R, §3.7]. A variety of other
results in this direction can be found in the literature, see, e.g., [An1], [An2],
[LPR].

The above stated Corollary 1.4, as well as the corresponding corollary of
Proposition 1.5, fall in this category; the Hamiltonian is fully determined by
some a priori knowledge onHi (integrable square root of determinant or equality
from some point on) and some partial information on the Titchmarsh–Weyl
coefficients (sufficiently fast exponential closeness).

Relation to previous work: Roughly speaking, previous papers on local unique-
ness deal with equations of the form

JmΨ′(z, t) = (zH + V (t))Ψ(z, t)

where m ≥ 1, Ψ is m-vector valued,

Jm :=

(
0 −Im
Im 0

)

V is a 2m × 2m-matrix valued function (possessing specific properties varying
from case to case), and where H is a constant 2m× 2m-matrix (of a particular
form varying from case to case).

In contrast to this setup, we consider the situation where the coefficient H of
the spectral parameter may depend on t, but no potential V is present and m =
1. Allowing H to be time–dependent changes the face of affairs dramatically.
For example, if m > 1, not even a global uniqueness result holds true. If H
is diagonal and has sufficiently smooth (e.g. twice continuously differentiable)
entries, a Liouville transformation can be applied to reduce to a Sturm–Liouville
problem in potential form, see, e.g., [CCPR, §3.2], and for equations of this
kind a vast body of results is available. Other cases, non–smooth coefficients
or presence of non–diagonal entries, can up to our knowledge not be reduced to
what is already known.

The methods employed in previous work in order to investigate local inverse
problems are either similar to the classical Borg-Marchenko approach, to Si-
mon’s method, use Sakhnovich’s method of operator identities, or rely on exact
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asymptotics of Weyl-functions and complex analysis methods. Our method for
proving the present local uniqueness theorem 1.2 is based on the relationship
between de Branges’ theory of Hilbert spaces of entire functions, cf. [dB], and
the theory of positive definite functions, cf. e.g. [Sa], [AG]. The interaction
between these notions has been revealed in [K]. Moreover, we invoke some
classical results of complex analysis, cf. e.g. [Ko]. The closest relative to our
method among the above cited papers is probably [Be]. Attempts were under-
taken to generalize the approach of Bennewitz to the equation (1.1), but, up to
our knowledge, did not succeed.

c. Some applications.

We close this introduction with two examples from physics, where the present
results can be applied.

1.6 Example (An inverse problem of reflection seismology). In exploration seis-
mology an impulsive or vibrating force is applied at the ground level. This
launches elastic waves into the earth’s interior which are partially reflected by
inhomogenities like caves or interfaces between geological strata. It is required
to reconstruct the earths desity profile from measurement of this reflection data.
In an idealized setup one assumes that the equations of isotropic elasticity hold,
and that the density depends only on the depth measured from the surface, cf.
[BB], [McL].

The linear spectral problem corresponding to the associated hyperbolic sys-
tem of the form

−
(
p(x)y′(x)

)′
= ω2ρ(x)y(x), x ≥ 0 , (1.8)

where x measures the depth from the surface, ρ(x) is the density of the media,
p(x) = λ(x) + 2µ(x) with the Lamé parameters λ, µ, and ω is the eigenvalue
parameter. The Weyl m–function associated with the equation (1.8) is deter-
mined, e.g., by two sets of eigenfrequencies (its poles and zeros), or its poles
and residues.

The global uniqueness theorem now tells us that the density profile is
uniquely determined by the Weyl m–function. Contrasting this, the local
uniqueness theorem says that approximate knowledge of the Weyl m–function
(in the sense of exponential asymptotics) determines the density ρ(x) up to a
certain depth.

If the density profile were sufficiently smooth, one could transform (1.8) to
an equation in potential form and apply previous results to obtain this local
knowledge on ρ (at least on some transform of ρ). However, since we deal with
a layered media (thinking of caves or different layers of soil), the density profile
is not even continuous. �

1.7 Example (Propagation of shallow water waves). In [CH] the Camassa–Holm
equation

ut − uxxt = −3uux + 2uxuxx + uuxxx (1.9)

was derived from the Green–Naghdi equation as a model for shallow water
waves. The Green–Naghdi equation itself derives from Euler’s equations for
an inviscid incompressible fluid with uniform density, cf. [GN]. Camassa and
Holm constructed a class of special solutions, the multi–peakon solutions, which
interact similar as soliton solutions of the Korteweg–de Vries equation, and are
shown to be of particular importance.
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The linear spectral problem associated with the Camassa–Holm equation
(1.9) can be transformed to a Sturm–Liouville equation in potentialless form
with a simple substitution. This fact can, for example, be exploited to relate
multi–peakon solutions with classical moment problems and Stieltjes’ theory of
continued fractions and thereby obtain direct and inverse spectral results, cf.
[BSS1], [BSS2], and [BSS3], see also the review article [BSS4].

The coefficients of the occuring Sturm–Liouville equations are in general not
smooth; for example the coefficients in equations giving rise to multi–peakon
solutions are step functions. �

2 Proof of the local uniqueness theorem

We need to recall the relations among Hamiltonian systems, de Branges spaces
and positive definite functions in some detail.

2.1. Some classes of functions. Besides Hamiltonians and the class N0 of Nevan-
linna functions, some other classes of functions have to be specified.

(i) A continuous function f : R → C is called positive definite if f(−t) = f(t),
t ∈ R, and if the kernel

Kf (s, t) := f(t− s), t, s ∈ R,

is positive definite, i.e. the matrices
(
Kf (ti, tj)

)n

i,j=1
are positive semi-

definite for all choices of n ∈ N and t1, . . . , tn ∈ R.

(ii) An entire functions is said to belong to the Hermite–Biehler class HB0 if
|E(z)| < |E(z)|, z ∈ C

+, where C
+ denotes the upper half-plane. Equiva-

lently, we could require that the kernel

KE(w, z) :=
i

2

E(z)E(w)− E(z)E(w)

z − w
, z, w ∈ C,

is positive definite (for z = w this formula has to interpreted appropriately
as a derivative).

Each function E ∈ HB0 generates a reproducing kernel Hilbert spaceH(E)
via the kernel KE whose elements are entire functions. The reproducing
kernel property is

F (w) =
(
F,KE(w, ·)

)

H(E)
, F ∈ H(E), w ∈ C.

The space H(E) is called the de Branges space generated by E.

(iii) An entire 2×2-matrix-valued function W (z) is said to belong to the class
M0 if W (z) = W (z), W (0) = I and if the kernel

KW (w, z) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ C,

is positive definite (for z = w this formula again has to interpreted appro-
priately as a derivative). Each function W ∈ M0 generates a reproducing
kernel Hilbert space K(W ) via the kernel KW whose elements are 2-vector-
valued entire functions.
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2.2. We are going to explain the relations among all these objects according to
the following diagram:

(
H(t)

)

t∈[s
−
,s+)

oo (1) //
OO

(3)

��

(
W (t, z)

)

t∈[s
−
,s+)

oo (2) //
(
EW (t,·)(z)

)

t∈[s
−
,s+)OO

(4)

��
qH(z) oo (5) // fH(x) oo (6) //

(
H(EW (t,·))

)

t∈[s
−
,s+)

(2.1)

Relation (1): A Hamiltonian H(t) gives rise to a family of matrix functions
W (t, z) via (1.2). These matrices have the property that W (s, z)−1W (t, z) ∈
M0 whenever s, t ∈ [s−, s+), s ≤ t; in particular, W (t, z) ∈ M0, t ∈ [s−, s+).
Conversely, the fundamental solution of a Hamiltonian system determines its
Hamiltonian uniquely. These classical facts can be found, e.g. in [GK], [HSW],
[O], [dB] 3.

Note that for two Hamiltonians H1, H2 we have H1 ∼ H2 with reparame-
terization ϕ, i.e. H2(t) = H1(ϕ(t))ϕ

′(t) if and only if W2(t) = W1(ϕ(t)) where
Wj is the fundamental solution corresponding to Hj .

Relation (2): If W (z) = (wij(z))i,j=1,2 belongs to the class M0, then the func-
tion

EW (z) := w22(z) + iw21(z)

is a Hermite–Biehler function. It satisfies EW (0) = 1 and the de Branges space
generated by EW is invariant under forming difference quotients, i.e.

F ∈ H(EW ) =⇒
F (z)− F (w)

z − w
∈ H(EW ), w ∈ C .

Conversely, if E ∈ HB0 possesses these two additional properties, then there
exists a function W ∈ M0 with E = EW . The function W can be chosen such
that the projection π2 onto the second component is an isometric isomorphism
of the space K(W ) onto H(E), and with this additional requirement it becomes
unique. This can be found in [dB, Theorem 27] 4.

Relation (3): The Hamiltonian H corresponds bijectively (up to reparameteri-
zation) to its Titchmarsh–Weyl coefficient qH via de Branges’ inverse spectral
theorem, cf. [dB], [W1, Theorem 1] 5.

For our present task it is important to know that the following three condi-
tions are equivalent, see [W2], [dB] 6:

– The Hamiltonian H satisfies

∃ ε > 0 : H(t) = h(t)

(
0 0
0 1

)

, t ∈ [s−, s− + ε] a.e., (2.2)

with some scalar integrable function h.

3 for the indefinite case see [KW/V, Theorem 5.1], [KW/VI, Theorem 1.5, Theorem 1.6]
4 [KW/I, Proposition 8.3, Lemma 8.6], [KW/I, Proposition 10.3, Corollary 10.4]
5 [KW/VI, Theorem 1.4]
6 [KW/II, Proof of Theorem 7.1], [K, Proposition 5.3]
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– For one, and hence for all, values t ∈ (s−, s+) the reproducing kernel space
K(W (t, ·)) contains the constant function

(
0
1

)
.

– The Titchmarsh–Weyl coefficient qH of H satisfies

lim
y→+∞

qH(iy) = 0 and lim
y→+∞

y| Im qH(iy)| < ∞.

Relation (4): A function E ∈ HB0 gives rise to the de Branges space H(E).
Two different functions E1 and E2 of Hermite–Biehler class may induce the
same Hilbert space, meaning that

F ∈ H(E1) ⇔ F ∈ H(E2) and [F,G]H(E1) = [F,G]H(E2), F,G ∈ H(E1).

In fact, this is the case if and only if there exists a matrix U ∈ R
2×2 with

detU = 1, such that
(A2, B2) = (A1, B1)U (2.3)

where Aj(z) :=
1
2 (Ej(z) + Ej(z)) and Bj(z) :=

i
2 (Ej(z) − Ej(z)). This fact is

shown in [dB] 7.
It is clear that, if besidesH(E1) = H(E2) we require that E1(0) = E2(0) = 1,

then the matrix U in (2.3) must be of the form

U =

(
1 0
u 1

)

.

We need the following, more specific and less elementary statement.

2.3 Lemma. Let H1 and H2 be Hamiltonians defined on intervals [s1−, s
1
+) and

[s2−, s
2
+), respectively. Assume that both are in limit circle case and satisfy (2.2).

Denote by (Wj(t, z))t∈[sj
−

,s
j
+), j = 1, 2, the respective solutions of (1.2), and set

Ej := E
Wj(s

j
+,·), j = 1, 2. Then H(E1) = H(E2) implies that H1 ∼ H2, and

thus E1 = E2.

Proof. Set Wk(z) = (wk
ij(z))i,j=1,2 := Wk(s

k
+, ·), k = 1, 2. Then Ek = wk

22 +

iwk
21, and Ak = wk

22, Bk = −wk
21. By the above considerations, the relation

H(E1) = H(E2) thus implies that for some u ∈ R

(w2
21, w

2
22) = (w1

21, w
1
22)

(
1 −u
0 1

)

. (2.4)

Set

W̃ :=

(
1 u
0 1

)

W1

(
1 −u
0 1

)

,

then W̃ ∈ M0 and the map

(
f+
f−

)

7→

(
1 u
0 1

)(
f+
f−

)

7 [KW/I, Corollary 6.2]
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is an isometric isomorphism from K(W1) onto K(W̃ ); see, e.g. [Aro] 8. Since we
assume that H1 satisfies (2.2), it follows that

(
u

1

)

∈ K(W̃ ) .

Since the space K(W̃ ) can contain at most one constant, in particular, the
constant

(
1
0

)
does not belong to the space K(W̃ ). Since also H2 satisfies (2.2),

we also have
(
1
0

)
/∈ K(W2).

By (2.4) we have (0, 1)W2 = (0, 1)W̃ , and [dB, Theorem 27]9 implies that
for some v ∈ R

W2 =

(
1 v
0 1

)

W̃

(
1 −v
0 1

)

=

(
1 u+ v
0 1

)

W1

(
1 −(u+ v)
0 1

)

.

Hence the map
(
f+
f−

)

7→

(
1 u+ v
0 1

)(
f+
f−

)

is an isometric isomorphism from K(W1) onto K(W2), and we conclude that
(
u+v
1

)
∈ K(W2). Again using that H2 satisfies (2.2), it follows that u + v = 0,

i.e.W2 = W1 and hence also E1 = E2. By de Branges’ Inverse Spectral Theorem
this even implies that H1 ∼ H2. ❑

Relation (5): The class P0 of positive definite functions corresponds bijectively
to the subclass of N0 which contains all functions q ∈ N0 with

lim
y→+∞

q(iy) = 0, lim
y→+∞

y| Im q(iy)| < ∞. (2.5)

This bijection is established by the one-sided Fourier transform (f ∈ P0)

q(z) = i

∫ ∞

0

f(t)eizt dt, Im z > 0. (2.6)

This relationship is best understood via the measures appearing in the Herglotz
integral representation of q and in the integral representation of f as a Fourier
transform by Bochner’s Theorem. In fact, a function q belongs to N0 and
satisfies (2.5) if and only if it can be written as

q(z) =

∫

R

dµq(t)

t− z
, Im z > 0,

with a finite positive Borel measure µq on R, cf. [KK1, Theorem S1.4.1]10. On
the other hand, by Bochner’s Theorem, a positive definite function f can be
represented as

f(x) =

∫

R

e−itx dµf (t), x ∈ R,

8 [ADSR, Theorem 1.5.3]
9 [KW/I, Corollary 9.8]

10 In the indefinite case the measure µq has to be replaced by some distribution; see [JLT],
[KWW1].
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with some finite positive Borel measure µf on R; see, e.g. [AG]. An application
of Fubini’s Theorem gives that the functions q and f are related by (2.6) if and
only if µq = µf

11.

Relation (6): Let H be a Hamiltonian that satisfies (2.2). Going counterclock-
wise in the scheme (2.1) along (3) and (5), let qH ∈ N0 be its Titchmarsh–Weyl
coefficient and fH ∈ P0 be the Fourier transform of qH . Going clockwise along
(1), (2) and (4), let W (t, ·) be the fundamental solution of the Hamiltonian
system with Hamiltonian H, and let EW (t,·) and H(EW (t,·)) be the Hermite–
Biehler function generated by W (t, ·) and the corresponding de Branges space,
respectively. Moreover, set

sa := sup

{

t ∈ [s−, s+) :

∫ t

s
−

√

detH(x) dx < a

}

, a > 0.

Then, for each a ∈ (0,
∫ s+

s
−

√

detH(t) dt), we have

H(EW (sa,·)) = c.l.s.
{
e−itz : |t| ≤ a

}
,

[e−itz, e−iuz]H(EW (sa,·)) = f(u− t), |t|, |u| ≤ a,

where c.l.s. stands for ‘closed linear span’. See [K, Lemma 5.8] 12 13 .

We have collected everything that is needed for the proof of the local uniqueness
theorem 1.2. �

Proof (of the local uniqueness theorem 1.2).

Step 1: the case that H1 and H2 satisfy (2.2).
By Relation (5) there exist positive definite functions f1 and f2 with

qHj
(z) = i

∫ ∞

0

fj(t)e
itz dt, Im z > 0, j = 1, 2.

Set f := f1 − f2; then (Im z > 0)

qH1
(z)− qH2

(z) = i

∫ ∞

0

f(t)eitz dt = i

∫ 2a

0

f(t)eitz dt

︸ ︷︷ ︸

=:F1(z)

+ i

∫ ∞

2a

f(t)eitz dt

︸ ︷︷ ︸

=:F2(z)

.

First we estimate F2. Since fj is positive definite, we have fj(0) ≥ 0 and
|fj(t)| ≤ fj(0), t ∈ R. This allows us to compute (Im z > 0)

|F2(z)| =
∣
∣
∣ie2aiz

∫ ∞

2a

f(t)ei(t−2a)z dt
∣
∣
∣ ≤ e−2a Im z · f1(0)+f2(0)

Im z
.

Secondly, if f |[0,2a] 6= 0, we set m := min(supp f ∩ [0, 2a]). Then, by the Theo-
rem of Paley–Wiener on Fourier transforms of functions with compact support

11 [KL, Satz 5.3]
12 We do not know a reference which deals with the positive definite case only.
13 Density of exponentials depends on de Branges’ Ordering Theorem.
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combined with the knowledge on regular asymptotic behaviour of functions of
bounded type, we have

lim sup
r→∞

log |F1(re
iθ)|

r
= −m sin θ, θ ∈ (0, π);

see, e.g. [Ko, §3.D, Scholium p. 35], [Boa, §7.2].
Next, note that by Lemma 2.3, the condition H1|[s1

−

,s1a)
∼ H2|[s2

−

,s2a)
is equiv-

alent to the relation H(EW1(s1a,·)) = H(EW2(s2a,·)), which by Relation (6) is
equivalent to f1|[0,2a] = f2|[0,2a], i.e. to f |[0,2a] = 0.

Now we are in position to establish the equivalences asserted in 1.2. Assume
that (i) of 1.2 holds. Then the function F1 vanishes identically, and hence for
each fixed α ∈ (0, π)

qH1
(z)− qH2

(z) = O

(
e−2a Im z

Im z

)

, |z| → ∞, z ∈ Γα. (2.7)

In particular, (iii) holds. Trivially, (iii) implies (ii). Assume next that (ii)
holds and f |[0,2a] 6= 0. Then m < 2a, and hence the summand F1 dominates
the asymptotic behaviour of qH1

− qH2
. We obtain that for each θ ∈ (0, π)

lim sup
r→∞

log |qH1
(reiθ)− qH2

(reiθ)|

r
= −m sin θ .

However, by (ii), there exists at least one value of θ such that this limit superior
does not exceed −2a sin θ. It follows that −2a ≥ −m, and we have reached a
contradiction.

Step 2: reduction of the general case to the previous one.
Let Hj , j = 1, 2, be arbitrary Hamiltonians defined on respective intervals

[sj−, s
j
+). Define Hamiltonians H̃j on the intervals [sj− − 1, sj+) by

H̃j(t) :=







(
0 0

0 1

)

, t ∈ [sj− − 1, sj−),

Hj(t), t ∈ [sj−, s
j
+).

The fundamental matrix solutions of the canonical systems with Hamiltonians
H̃j are given by

W̃j(t, z) =







(

1 0

−(t− sj− + 1)z 1

)

, t ∈ [sj− − 1, sj−),

(

1 0

−z 1

)

Wj(t, z), t ∈ [sj−, s
j
+),

and hence

qH̃j
(z) =

qHj
(z)

−zqHj
(z) + 1

=
−1

z − 1
qHj

(z)

, j = 1, 2.
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It follows that

qH̃1
(z)− qH̃2

(z) =
qH1

(z)− qH2
(z)

qH1
(z)qH2

(z)
(
z − 1

qH1
(z)

)(
z − 1

qH2
(z)

) .

Denote by (̃i), ˜(ii), ˜(iii) the respective conditions of 1.2 for the pair (H̃1, H̃2).
Since det H̃j(t) = 0, t ∈ [sj− − 1, sj−), the value of sja remains the same whether

computed for Hj or H̃j . Thus we have (i) ⇔ (̃i). Next, remember that each
Nevanlinna function q satisfies above and below polynomial estimates, in fact
there exist constants γ± > 0 such that14

γ−
|z|

≤ |q(z)| ≤ γ+|z|, z ∈ Γα, Im z ≥ 1 .

With qHj
also the function z− 1

qH1
(z) is a Nevanlinna function. Hence (ii) ⇔

˜(ii),

and (2.7) for H̃j instead of Hj implies (iii). The implication (iii) ⇒ (ii) is
of course trivial. Together with what we showed in Step 1, we have by now
established the following implications

(̃i) +3
KS

��

(2.7) +3

��

˜(iii) +3 ˜(ii)
KS

��

u}

(i) (iii) +3 (ii)

This gives the equivalence of (i), (ii) and (iii). ,

3 Proof of mixed data results and the Sturm–

Liouville situation

The mixed data results stated as Corollary 1.4 are easily deduced from Theo-
rem 1.2.

Proof (of Corollary 1.4). Assume first that the hypothesis (i) holds true. We
apply Theorem 1.2 with H1, H2, and a number a which is arbitrarily chosen
in (α, β). Since a < β, the present assumption (1.4) implies that the condition
(ii) of 1.2 is satisfied. Hence H1|[s1

−

,s1a)
∼ H2|[s2

−

,s2a)
. However, since a > α, we

have s1a = s1+. It follows that H2|[s2
−

,s2a)
is in the limit point case, and hence

that s2a = s2+. We see that H1 ∼ H2.
Next, assume that the hypothesis (ii) holds true. Then Theorem 1.2 gives

equality of H1 and H2 (up to reparameterization) up to the points s1a, s
2
a. The

remaining parts are equal by assumption. ❑

Next, we turn to Sturm–Liouville equations without potential term. Thus, we
consider an equation of the form

−(p(x)y′(x))′ = λw(x)y(x) (3.1)

14 In the indefinite case one has γ−|z|−N ≤ |q(z)| ≤ γ+|z|N with some appropriate N ∈ N.
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on the interval [0, b) with 0 < b ≤ ∞, where p and w are measurable functions,
p(x) > 0, w(x) > 0 almost everywhere, and 1

p
, w ∈ L1

loc([0, b)). Note that here

y denotes a scalar function. Equation (3.1) can be written as a Hamiltonian
system (1.1) with

H(x) =






w(x) 0

0
1

p(x)




 (3.2)

and λ = z2 because y is a solution of (3.1) if and only if
(
y1

y2

)
with

y1(x) = y(x),

y2(x) = −
1

z
p(x)y′(x)

is a solution of (1.1) with H from (3.2).
We say that (3.1) is in limit point case if (3.1) for λ ∈ R \ C has only one

linearly independent solution in L2
w(0, b), where L2

w(0, b) is the L2 space with
weight w. In this case also H in (3.2) is in limit point case because otherwise
every solution of (1.1) is in L2(H) and hence the first component in L2

w(0, b).
The converse (i.e. H in (3.2) is in limit point case ⇒ (3.1) is in limit point case)
is not true as the example p(x) = 1, w(x) = (1 + x)−4 shows.

The Titchmarsh–Weyl coefficient of (3.1) is defined as follows. Assume that
(3.1) is in limit point case. Let θ(x, λ), φ(x, λ) be solutions of (3.1) that satisfy
the initial conditions

θ(0, λ) = 1, p(x)θ′(x, λ)|x=0 = 0,

φ(0, λ) = 0, p(x)φ′(x, λ)|x=0 = 1.

Since we have limit point case, there exists a unique number m(λ) for every
λ ∈ C \ R such that

θ(x, λ) +m(λ)φ(x, λ) (3.3)

is in L2
w(0, b). It is easily seen that

θ(x, z2) = w11(x, z), φ(x, z2) = −
1

z
w21(x, z).

Comparing (3.3) and (1.3) we obtain

m(z2) = zqH(z). (3.4)

The proof of Proposition 1.5 is now easily obtained.

Proof (of Proposition 1.5). We can apply the local uniqueness theorem 1.2 to
the Hamiltonians

Hj =

(
wj 0

0 1
pj

)

, j = 1, 2.

Observing (3.4) one can easily see that the conditions (i) − (iii) directly cor-
respond to the conditions (i) − (iii) in Theorem 1.2. Note that in (iii) in
Theorem 1.2, (Im z)3 can be replaced by |z|3. ❑
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To close the paper, let us mention the particular case of Proposition 1.5 when
the considered Sturm–Liouville equation is in impedance form, i.e. that p = w.
Such equations sometimes appear in applications and have been investigated
previously see, e.g. [An1] or [AHM] and the reference therein. The observation
we can make is that for equations in impedance form reparameterization is not
necessary.

3.1 Corollary. Let b1, b2 > 0 and let pj be measurable functions defined on
[0, bj), j = 1, 2, such that pj(x) > 0 almost everywhere and pj ,

1
pj

∈ L1
loc([0, bj))

for j = 1, 2. Moreover, denote by mj the Titchmarsh–Weyl coefficient for

−(pjy
′)′ = λpjy.

For a > 0 the following statements are equivalent.

(i) p1(x) = p2(x) almost everywhere on (0, a).

(ii) There exists θ ∈ (0, 2π) such that for every ε > 0,

m1(re
iθ)−m2(re

iθ) = O
(
e(−2a+ε)r sin θ

2

)
, r → +∞ .

(iii) For every α ∈ (0, π),

m1(λ)−m2(λ) = O
(

|λ|2e−2a Im
√
λ
)

,

|λ| → ∞, λ ∈ {z ∈ C : α ≤ arg z ≤ 2π − α} .

Proof. If (1.5) holds for wj = pj , then ϕ′(t) = 1 for almost all t ∈ (0, a) and
hence ϕ(t) = t, t ∈ (0, a). ❑
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[KW/I] M.Kaltenbäck, H.Woracek: Pontryagin spaces of entire functions I,
Integral Equations Operator Theory 33 (1999), 34–97.
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