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Abstract

In the theory of de Branges Hilbert spaces of entire functions, so-called
‘functions associated to a space’ play an important role. In the present
paper we deal with a generalization of this notion in two directions, namely
with functions N-associated (N ∈ Z) to a de Branges Pontryagin space.

Let a de Branges Pontryagin space P and N ∈ Z be given. Our aim
is to characterize whether there exists a real and zerofree function N-
associated to P in terms of Krĕın’s Q-function associated with the multi-
plication operator in P . The conditions which appear in this characteri-
zation involve the asymptotic distribution of the poles of the Q-function
plus a summability condition.

Although this question may seem rather abstract, its answer has a va-
riety of nontrivial consequences. We use it to answer two questions arising
in the theory of general (indefinite) canonical systems. Namely, to charac-
terize whether a given generalized Nevanlinna function is the intermediate
Weyl-coefficient of some system in terms of its poles and residues, and to
characterize whether a given general Hamiltonian ends with a specified
number of indivisible intervals in terms of the Weyl-coefficient associated
to the system. In addition, we present some applications, e.g., dealing
with admissible majorants in de Branges spaces or the continuation prob-
lem for hermitian indefinite functions.
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1 Introduction

An entire function E(z) which has no zeros on the real line is said to belong
to the Hermite-Biehler class HB∗

0 , if it satisfies |E(z)| < |E(z)| throughout the
open upper half-plane C+. Equivalently, one could require that the kernel KE

which is defined as (for z = w this formula has to be interpreted appropriately
as a derivative)

KE(w, z) := i
E(z)E(w) − E(z)E(w)

2(z − w)
, w, z ∈ C ,

does not vanish identically and is positive semidefinite. By this we mean that
for each choice of n ∈ N and w1, . . . , wn ∈ C, the quadratic form

QE(ξ1, . . . , ξn) :=
n∑

i,j=1

KE(wi, wj)ξiξj (1.1)

is positive semidefinite.
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For each function E ∈ HB∗
0 , the kernel KE generates a reproducing ker-

nel Hilbert space H(E) whose elements are entire functions. Spaces of this
kind were first introduced by L.de Branges, who also developed their deep and
rich structure theory, cf. [8], [9]. Therefore, one usually refers to H(E) as the
de Branges space associated with the function E.

A generalization of this concept to an indefinite (Pontryagin space) setting
was introduced in [21]. An entire function E is said to belong to the indefinite
Hermite-Biehler class HB∗

<∞, if it has no zeros on the real line, no conjugate
pairs of nonreal zeros, and if the kernel KE has a finite number of negative
squares. This means that the numbers of negative squares of the quadratic
forms (1.1) are bounded independently of n and w1, . . . , wn. If E ∈ HB∗

<∞,
we denote the maximal number of negative squares of forms (1.1) by ind−E.
Via the kernel KE each function E ∈ HB∗

<∞ generates a reproducing kernel
Pontryagin space P(E) whose elements are entire functions. We will again refer
to P(E) as the de Branges space generated by E.

In the theory of de Branges spaces P(E), an object of prime importance is
the operator SE of multiplication by the independent variable in P(E). This
is the linear operator which acts as F (z) 7→ zF (z), and whose domain consists
of all functions F ∈ P(E) such that zF (z) belongs to P(E). It is a closed and
symmetric (not necessarily densely defined) operator with defect index (1, 1)
whose set of regular points equals all of C.

With a space P(E) we associate a chain of linear spaces. Namely, for N ∈ Z,
we define the set AssocN P(E) of functions N -associated to the space P(E) as

AssocN P(E) :=

{
P(E) + zP(E) + . . .+ zNP(E) , N ≥ 0

dom S
|N |
E , N < 0

Obviously,

· · · ⊆ Assoc−1 P(E) ⊆ Assoc0 P(E)

=

P(E)

⊆ Assoc1 P(E) ⊆ Assoc2 P(E) ⊆ · · ·

This chain is, in its spirit but not in all details, similar to the chain of rigged
spaces associated to a selfadjoint operator, see, e.g., [5]. In the Hilbert space
case, the set Assoc1 H(E) already played an important role in [9]; elements of
Assoc1 H(E) were called ‘functions associated to the space H(E)’. For positive
values ofN larger than 1, and still in the Hilbert space case, the set AssocN H(E)
was investigated in [36].

An entire function U is called real, if it takes real values along the real axis.
It is called zerofree, if U(z) 6= 0 for all z ∈ C. Our aim in this paper is

(1) to characterize whether or not AssocN P(E) contains a real and zerofree
function in terms of the poles and residues of the function (ϕ ∈ R)

qϕ(z) := i
eiϕE(z) + e−iϕE(z)

eiϕE(z) − e−iϕE(z)
,

cf. Theorem 3.2,

and to answer two questions arising in the theory of general (indefinite) canonical
systems, namely
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(2) to characterize intermediate Weyl-coefficients, cf. Theorem 4.8,

(3) to characterize whether a given general Hamiltonian ends with a specified
number of indivisible intervals, cf. Theorem 5.4.

The decisive conditions in these respects are some requirements on the asymp-
totic distribution of the poles of qϕ and a summability condition, see 3.1. The
proof of Theorem 3.2 is an elegant combination of Pontryagin space techniques
and methods of classical complex analysis. In the proof of Theorem 4.8 we em-
ploy the part ‘N ≥ 1’ of Theorem 3.2; to establish Theorem 5.4 the part ‘N ≤ 1’
is used.

The present work can be viewed as a complete extension of [9, Problem 70]
for real and zerofree functions after the previous work [40] and [36]. In [40] we
have dealt with the case that E ∈ HB∗

0 and N = 1; the main achievement made
there was that we replaced the ‘bounded type condition’ in [9, Problem 70] by a
more easily accessible asymptotic condition. In [36] we have dealt with the case
that E ∈ HB∗

0 and N > 0; the main achievement there was that we have related
the fact that AssocN H(E) contains a real and zerofree function with the theory
of general (indefinite) canonical systems, and that we extended the replacement
for bounded type given in [40] to the case ‘N > 1’. In the present work we
combine the methods of [9, Problem 70], [40], and [36], with some results on the
geometry of Pontryagin spaces and some de Branges space theory.

Needless to say, results like Theorem 3.2 have a history besides the already
mentioned work. The closest example for a parent result is probably [19, 11.11◦],
which deals with strings in the sense of M.G.Krĕın. Another related problem is
the (definite or indefinite) power moment problem, cf. [1]. Also in this context
summability conditions appear and play a similar role as in the present con-
siderations, cf. [14, Theorem 3.1.4], [32, Proposition 4.4]. In some recent work,
results like Theorem 3.2 are used in the context of M.G.Krĕın’s theory of entire
operators, cf. [39].

Although the question of existence of real and zerofree elements in
AssocN P(E) may seem rather abstract, its answer has a variety of conse-
quences for various indefinite (and even positive definite) problems. We will
present some more applications of Theorem 3.2, Theorem 4.8, and Theorem 5.4,
namely the solution of a particular inverse problem for Hamiltonians and their
Weyl-coefficients (Corollary 4.10), a characterization that 1 ∈ AssocN P(E) in
the spirit of [9, Theorem 27] (Proposition 6.1), a characterization of existence of
minimal (positive) admissible majorants in a de Branges (Hilbert) space H(E)
(Proposition 6.8), and the computation of a characteristic number appearing
in the extension problem for a hermitian indefinite function (Proposition 6.10,
Proposition 6.11). A striking application of Theorem 5.4 is found in the, classi-
cal and positive definite, inverse spectral problem for Krĕın-strings. This result
will be presented in forthcoming work.

The present paper closes with an appendix, where we investigate the
polynomial asymptotics of functions belonging to a de Branges space, cf.
Proposition A.1. This result is interesting on its own right. Its full strength is
not necessary for the proofs of our main theorems; we can do with the weaker
(and simpler) Lemma 3.7. However, it points out some interesting peculiarities
of some parts of the proof of Theorem 3.2, cf. Remark A.3.
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2 Some geometric preliminaries

a. The role played by associated functions.

For later use, we need to recall some facts concerning Assoc1 P(E), see [21].
Associated functions describe the extensions with nonempty resolvent set of

the operator SE via their resolvent families as follows: For an entire function G
and a point w ∈ C with G(w) 6= 0, define the difference quotient operator

RG;w : F (z) 7→
F (z) − F (w)

G(w)G(z)

z − w
(2.1)

which acts on the set of all entire functions. If G ∈ Assoc1 P(E) \ {0}, then
there exists a closed linear relation TG ⊆ P(E)×P(E) which extends SE , such
that ρ(TG) = {w ∈ C : G(w) 6= 0} and (TG − w)−1 = RG;w, w ∈ ρ(TG).
Conversely, if T is an extension of SE with ρ(TG) 6= ∅, then there exists a
function G ∈ Assoc1 P(E) such that T = TG. The relation TG is (the graph of)
an operator, if and only if G 6∈ P(E).

Among all the extensions of SE , selfadjoint ones are of particular interest.
In the above correspondence, these are induced by the functions

Sϕ(z) :=
1

2i

(
eiϕE(z) − e−iϕE(z)

)
∈ Assoc1 P(E), ϕ ∈ R . (2.2)

Thereby, TSϕ = TSψ if and only if ϕ ≡ ψ mod π. Moreover, Krĕın’s Q-function
qϕ of the symmetry SE produced by the selfadjoint extension TSϕ is equal to

qϕ =
Sϕ+π

2

Sϕ

.

We will, throughout this paper, use the notation Aϕ := TSϕ .
Let us note that, since E is assumed to have no real zeros and no conju-

gate pairs of nonreal zeros, the functions Sϕ and Sϕ+π
2

have no common zeros.
Moreover, since a symmetry with defect index (1, 1) has at most one selfadjoint
extension which is not an operator, the function Sϕ can belong to the space
P(E) for at most one value of ϕ modulo π.

b. Extension of isometries.
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In this subsection we give a condition which ensures continuity of an isometric
map between Pontryagin spaces. This result extends [7, IX.Theorem 3.1] and
[2, Theorem 1.4.2].

If M is a linear subspace of an inner product space, we denote by M◦ its
isotropic part, that is

M◦ := M∩M⊥ =
{
x ∈ M : x ⊥ M

}
.

2.1 Proposition. Let 〈P1, [., .]1〉 and 〈P2, [., .]2〉 be Pontryagin spaces, let

φ : domφ ⊆ P1 → P2

be a linear and isometric map, and assume that ranφ is nondegenerate. Then
φ is continuous. Its extension by continuity φ̃ : domφ ⊆ P1 → P2 is a linear
and continuous isometry which maps domφ surjectively onto ranφ.

Proof.
Step 1; Reduction to the case that ranφ is dense in P2: Since ranφ is nonde-
generate, it is itself a Pontryagin space, and the topology 〈ranφ, [., .]2〉 carries
as a Pontryagin space is equal to the restriction to ranφ of the topology of the
Pontryagin space 〈P2, [., .]2〉. Hence, for the proof of the present assertions, we
may as well consider the map φ as a map of domφ ⊆ P1 into ranφ.

Step 2; Reduction to the case that P2 is a Hilbert space: According to Step 1, let
us assume that ranφ is dense in P2. Then we may choose a maximal negative
subspace D2 of P2, which is contained in ranφ, cf. [7, IX.Theorem 1.4]. Choose
a negative subspace D1 ⊆ domφ, such that φ(D1) = D2. Then we have

domφ = D1[+̇]1
(
D⊥

1 ∩ domφ
)
, ranφ = D2[+̇]2

(
D⊥

2 ∩ ranφ
)
,

and φ is decomposed as

(
φ|D1 0

0 φ|D⊥

1 ∩dom φ

)
:

D1

[+̇]1
D⊥

1 ∩ domφ
⊆

D1

[+̇]1
D⊥

1

→
D2

[+̇]2
D⊥

2

Note here that negative subspaces are finite-dimensional, and hence certainly
orthocomplemented. The space D⊥

1 is itself a Pontryagin space, and the topol-
ogy of 〈D⊥

1 , [., .]1〉 is equal to the restriction to D⊥
1 of the topology of 〈P1, [., .]1〉.

The same holds for the space D⊥
2 . Hence, for the proof of the present assertions,

it is enough to show that φ|D⊥

1
is continuous and can be extended in the desired

way. However, ranφ|D⊥

1
is a dense subset of the Hilbert space D⊥

2 .

Step 3; Finish of proof: According to Steps 1 and 2, we may assume that P2 is a
Hilbert space, and that ranφ is dense in P2. Let ‖.‖1 be a norm on P1 induced
by some fundamental decomposition, and let ‖.‖2 be the norm P2 carries as a
Hilbert space. Then we have

‖φx‖2
2 = [φx, φx]2 = [x, x]1 ≤ ‖x‖2

1, x ∈ domφ ,

i.e. φ is continuous. Let φ̃ be the extension by continuity of φ to a map of
domφ into P2. Clearly, φ̃ is linear, continuous, isometric, and has dense range.
In particular, domφ is positive semidefinite and kerφ = (domφ)◦.
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Since dim(domφ)◦ < ∞, certainly there exists a closed subspace X of P1,
such that

X +̇(domφ)◦ = domφ .

Then X is positive definite, and hence even uniformly positive, cf. [7,
IX.Lemma 2.1]. Thus the topology induced by the inner product [., .]1 on X is
equal to the restriction to X of the topology of P1. This shows that 〈X , [., .]1〉 is
a Hilbert space. Moreover, φ̃|X is an isometry of X onto a dense subspace of the
Hilbert space P2. Hence, it is a homeomorphism of X onto P2. In particular, φ̃
is surjective. ❑

c. Sums of reproducing kernels.

Our next aim in this preliminary section is to investigate the geometry of re-
producing kernel Pontryagin spaces generated by the sum of two kernels. The
below Proposition 2.2 extends [2, Theorem 1.5.5]. For the positive definite case
see also [10].

To start with, let us briefly recall: A Pontryagin space 〈P , [., .]〉 is called
a reproducing kernel Pontryagin space of function on a set Ω, if its elements
are complex valued functions defined on Ω, and if for each w ∈ Ω the point
evaluation functional f 7→ f(w) is continuous on P . In this case, for each
w ∈ Ω, there exists a unique element K(w, .) ∈ P with

[f,K(w, .)] = f(w), f ∈ P .

The function K(w, z) : Ω × Ω → C is called the reproducing kernel of 〈P , [., .]〉.
If 〈P1, [., .]1〉 and 〈P2, [., .]2〉 are reproducing kernel Pontryagin spaces on

some set Ω, and K1(w, z), K2(w, z), denote their respective kernels, then the
function

K(w, z) := K1(w, z) +K2(w, z)

is the kernel of some reproducing kernel Pontryagin space 〈P , [., .]〉, cf. [2, The-
orem 1.1.3]. The space P is closely related to P1 and P2, however, this relation
is not straightforward.

If Ω is an arbitrary set, we denote by Ψ the map

Ψ :

{
CΩ × CΩ → CΩ

(f, g) 7→ f + g

Moreover, if 〈Pj , [., .]j〉, j = 1, 2, are Pontryagin spaces, we consider P1 ×P2 as
a Pontryagin space endowed with the sum inner product

[(f1, f2), (g1, g2)]+ := [f1, g1]1 + [f2, g2]2, (f1, f2), (g1, g2) ∈ P1 × P2 .

2.2 Proposition. Let 〈Pj , [., .]j〉, j = 1, 2, be reproducing kernel Pontryagin
spaces of functions on a set Ω, and denote their respective kernels by Kj(w, z),
j = 1, 2. Set K(w, z) := K1(w, z) + K2(w, z), w, z ∈ Ω, and let 〈P , [., .]〉 be
the reproducing kernel Pontryagin space with kernel K(w, z). We thus deal with
three subspaces P1,P2,P of CΩ. Set

W := P1 ∩ P2, Qj := Pj [−]jW , j = 1, 2 ,

D :=
{
(g,−g) : g ∈ W

}
⊆ P1 × P2, Q := (P1 × P2)[−]+D .

Then the following hold:
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(i) Ψ|Q maps Q continuously, isometrically, and surjectively onto P.

(ii) We have kerΨ|Q = D[◦]+ , and Ψ|Q maps closed subspaces of Q onto closed
subspaces of P.

(iii) We have Q1 + Q2 ⊆ P, and each of Q1, Q2, Q1 + Q2 is closed in P.
Moreover,

Q1[⊥]Q2, Q1 ∩Q2 = W [◦]1 ∩W [◦]2 ,

[f, g]j = [f, g], f, g ∈ Qj , j = 1, 2 ,

and the space W [◦]1 + W [◦]2 is [., .]-neutral.

(iv) Assume additionally that

[f, g]1 = −[f, g]2, f, g ∈ W . (2.3)

Then D is [., .]+-neutral, and (note that under the assumption (2.3) cer-
tainly W [◦]1 = W [◦]2)

Q1 + Q2 = P [−]W [◦]j . (2.4)

In the proof of this statement, we will use the following elementary fact.

2.3 Lemma. Let X,Y be Banach spaces, and let A : X → Y be a bounded linear
operator of X into Y . Assume that ranA is closed, and that dim kerA < ∞.
Then A maps closed subspaces of X onto closed subspaces of Y .

Proof. Since A is bounded, the final topology on ranA induced by the one-
element family {A} is finer than the restriction to ranA of the topology of Y .
Since kerA is finite-dimensional and hence closed in X , and since ranA is closed
in Y , both are Banach space topologies. By the Open Mapping Theorem, they
must coincide.

Let M be a closed subspace of X . Since kerA is finite dimensional, also

A−1(A(M)) = M + kerA

is closed. This says that A(M) is closed in the final topology on ranA. Once
again using that ranA is closed in Y , it follows that A(M) is closed in Y . ❑

Proof (of Proposition 2.2). Consider the linear subspace

L := span
{(
K1(w, .),K2(w, .)

)
: w ∈ Ω

}

of P1 × P2. By the definition of K, we have

Ψ
(
K1(w, .),K2(w, .)

)
= K(w, .), w ∈ Ω .

Hence,

[K(w1, .),K(w2, .)] = K(w1, w2) = K1(w1, w2) +K2(w1, w2) =

= [K1(w1, .),K1(w2, .)]1 + [K2(w1, .),K2(w2, .)]2 =

=
[
(K1(w1, .),K2(w1, .)), (K1(w2, .),K2(w2, .))

]
+
,
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i.e. Ψ|L is an isometry of L into P . Clearly, the range of Ψ|L is dense in P .
By Proposition 2.1, there exists an extension Ψ̃ of Ψ|L to a linear, continuous,

isometric, and surjective map of L onto P . For each element (f1, f2) ∈ L and
point w ∈ Ω, we compute

f1(w) + f2(w) =
[
(f1, f2),

(
K1(w, .),K2(w, .)

)]
+

=

=
[
Ψ̃(f1, f2), Ψ̃

(
K1(w, .),K2(w, .)

)
︸ ︷︷ ︸

=K(w,.)

]
= Ψ̃(f1, f2)(w) ,

i.e. Ψ̃ = Ψ|L. However, since clearly L[⊥]+ = D, we have

L = D[⊥]+ = Q .

This finishes the proof of (i).
For the proof of (ii), first, Ψ|Q being isometric and ranΨ|Q = P being

nondegenerate implies
kerΨ|Q = Q[◦]+ = D[◦]+ .

Next, kerΨ|Q being a neutral subspace of the Pontryagin space P1 × P2, and
hence being finite-dimensional implies that Ψ|Q maps closed subspaces of Q
onto closed subspaces of P , cf. Lemma 2.3.

We proceed to the proof of (iii). First, Q1 ×Q2 ⊆ Q and each of Q1 × {0},
{0}×Q2, Q1 ×Q2 is a closed subspace of Q. Thus, by the already proved item
(ii), each of

Q1 = Ψ
(
Q1 × {0}

)
, Q2 = Ψ

(
{0} × Q2

)
, Q1 + Q2 = Ψ

(
Q1 ×Q2

)
,

is a closed subspace of P . Moreover, since (Q1 × {0})[⊥]+({0} × Q2), also
Q1[⊥]Q2.

We have

W [◦]1 = (P1[−]1W) ∩W = Q1 ∩ (P1 ∩ P2) = Q1 ∩ P2 ,

and similarly W [◦]2 = Q2 ∩ P1. Hence,

W [◦]1 ∩W [◦]2 =
(
Q1 ∩ P2

)
∩
(
P1 ∩ Q2

)
= Q1 ∩ Q2 .

Next, we compute

[f1, g1]1 =
[
(f1, 0), (g1, 0)

]
+

= [f1, g1], f1, g1 ∈ Q1 ,

[f2, g2]2 =
[
(0, f2), (0, g2)

]
+

= [f2, g2], f2, g2 ∈ Q2 .

Finally, note that W [◦]j is a [., .]j-neutral subspace of Qj , j = 1, 2. Hence, by
what we already showed, W [◦]j , j = 1, 2, is contained in P and is [., .]-neutral.
Moreover, W [◦]1 [⊥]W [◦]2 , and we conclude that W [◦]1 + W [◦]2 is [., .]-neutral.
This finishes the proof of (iii).

For the proof of (iv), we first make some computations which hold even
without the additional assumption (2.3). Set M := Q1 ×Q2, then surjectivity
and isometry of Ψ|Q implies

(Q1 + Q2)
[⊥] = Ψ(M)[⊥] = Ψ

(
M[⊥]+ ∩ Q

)
= Ψ

(
M[⊥]+ ∩D[⊥]+

)
.
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Since Q1 + Q2 is closed in P , it follows that

Q1 + Q2 = Ψ
(
M[⊥]+ ∩ D[⊥]+

)[⊥]
. (2.5)

Next, M[⊥]+ = W ×W , and we obtain

M[⊥]+ ∩ D[⊥]+ =
{
(f1, f2) ∈ W ×W : [f1, g]1 = [f2, g]2, g ∈ W

}
. (2.6)

Moreover, obviously,

D[◦]+ =
{
(f,−f) : f ∈ W , [f, g]1 = −[f, g]2, g ∈ W

}
.

From now on assume that (2.3) holds. Then we have D = D[◦]+ . Moreover,
clearly, W [◦]1 = W [◦]2 . In order to show (2.4), it is by (2.5) enough to show
Ψ
(
M[⊥]+ ∩ D[⊥]+

)
= W [◦]j .

If f ∈ W [◦]j , then clearly (f, 0) ∈ M[⊥]+ ∩ D[⊥]+ . Conversely, assume that
(f1, f2) ∈ M[⊥]+ ∩ D[⊥]+ . Then, by (2.6) and our hypothesis (2.3), we have
f1 + f2 ∈ W and

[f1 + f2, g]1 = [f1, g]1 + [f2, g]1 = [f1, g]1 − [f2, g]2 = 0, g ∈ W .

This gives f1 + f2 ∈ W [◦]1 , and we have finished the proof of (iv). ❑

d. Orthogonal sets in de Branges Pontryagin spaces.

Some orthogonal sets in a de Branges Pontryagin space where described in [21,§7]. For our present purposes a more complete and comprehensive formulation
of these results is needed.

Let us first recall some facts concerning the spectral structure of the self-
adjoint relation Aϕ induced by the function Sϕ, cf. (2.2). Denote by Zϕ the
set of all zeros of Sϕ, and let dα be the multiplicity of the zero α of Sϕ. Since
Sϕ is real, the set Zϕ is symmetric with respect to the real axis, and dα = dα,
α ∈ Zϕ.

2.4 Remark. Let E ∈ HB∗
<∞ and ϕ ∈ R.

(i) The finite spectrum of Aϕ is equal to Zϕ.

(ii) Denote by Eϕ
∞ the algebraic eigenspace of Aϕ at infinity, and set δϕ :=

dimEϕ
∞. Then

δϕ = max
{
k ∈ N0 : zkSϕ(z) ∈ P(E)

}
+ 1 ,

and
Eϕ
∞ = span

{
zkSϕ(z) : k = 0 ≤ k < δϕ

}
.

In particular, the relation Aϕ has a nontrivial multivalued part if and only
if Sϕ ∈ P(E).

(iii) The Gram matrix of the inner product [., .] restricted to Eϕ
∞ with respect

to the basis {zkSϕ(z) : 0 ≤ k < δϕ} has Hankel form. Hence, setting
δ◦ϕ := dim(Eϕ

∞)◦, we have

(Eϕ
∞)◦ = span{zkSϕ : 0 ≤ k < δ◦ϕ}

and

δ◦ϕ =

{
min

{
0 ≤ k < δϕ : [zδϕ−1Sϕ, z

kSϕ] 6= 0
}
, (Eϕ

∞)◦ 6= Eϕ
∞

δϕ , (Eϕ
∞)◦ = Eϕ

∞
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(iv) The set of finite criticial point of Aϕ is equal to the set of multiple real
zeros of Sϕ. Each of these points is a regular critical point. The point ∞
is a critical point if and only if

δϕ > 1 or δϕ = 1 ∧ dimP(E) = ∞∧ [Sϕ, Sϕ] < 0 .

It is a singular critical point if and only if [zδϕ−1Sϕ, Sϕ] = 0.

(v) The spectral subspace E
ϕ

{α} corresponding to a point α ∈ Zϕ ∩ R is equal
to

E
ϕ

{α} = span
{ Sϕ(z)

(z − α)k
: k = 1, . . . , dα

}
. (2.7)

The spectral subspace E
ϕ

{β,β}
corresponding to a nonreal conjugate pair

{β, β}, β ∈ Zϕ ∩ C+, is equal to

E
ϕ

{β,β}
= span

({ Sϕ(z)

(z − β)k
: k = 1, . . . , dβ

}
∪
{ Sϕ(z)

(z − β)k
: k = 1, . . . , dβ

})
.

(2.8)

(vi) The set of spectral points of positive type is equal to

Zϕ
+ :=

{
α ∈ Zϕ ∩ R : S′

ϕ(α)Sϕ+ π
2
(α) < 0

}
.

�

We will rather use a different basis of E
ϕ

{α}, α ∈ Zϕ∩R, and E
ϕ

{β,β}
, β ∈ Zϕ∩C+,

than the one indicated in (2.7) and (2.8). The reproducing kernel KE(w, z) of
the space P(E) can be written as

KE(w, z) =
Sϕ(w)Sϕ+π

2
(z) − Sϕ(z)Sϕ+π

2
(w)

z − w
.

Again, for z = w, this formula has to be interpreted appropriately as a deriva-
tive. It follows that

∂k

(∂w)k
KE(w, z)

∣∣∣
w=α

= −
k∑

j=0

(
k

j

)
Sϕ+π

2
(α)

(j + 1)!

Sϕ(z)

(z − α)j+1
, k = 0, . . . , dα − 1 .

Set

bα,k(z) :=
∂k

(∂w)k
KE(w, z)

∣∣∣
w=α

, α ∈ Zϕ, k = 0, . . . , dα − 1 ,

then
E

ϕ

{α} = span
{
bα,k : k = 0, . . . , dα − 1

}
, α ∈ Zϕ ∩ R ,

E
ϕ

{β,β}
= span

({
bβ,k : k = 1, . . . , dβ

}
∪
{
bβ,k : k = 1, . . . , dβ

})
, β ∈ Zϕ∩C+ .

2.5 Definition. Denote by ℓ2ϕ the weighted ℓ2-space of sequences (aα)α∈Z
ϕ
+
,

whose inner product is defined as

[
(aα)α∈Z

ϕ
+
, (bα)α∈Z

ϕ
+

]
:=

∑

α∈Z
ϕ
+

aαbα
−1

S′
ϕ(α)Sϕ+π

2
(α)

.
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Moreover, set

Žϕ :=
{
(α, k) : α ∈ Zϕ \ Zϕ

+, k = 0, . . . , dα − 1
}
,

and define an inner product on CŽϕ by requiring that the linear isomorphism

λ :





span
( ⋃

α∈Zϕ\Z
ϕ
+

α∈R

E
ϕ

{α} ∪
⋃

β∈Zϕ∩C+

E
ϕ

{β,β}

)
→ CŽϕ

F 7→
(
[F, bα,k]

)
(α,k)∈Žϕ

becomes isometric. Note here that the linear span on the left is nondegenerate.
�

Denote by Φ the map

Φ :

{
{F : F entire} → CZ

ϕ
+ × CŽϕ

F 7→
(
(F (α))α∈Z

ϕ
+
, (F (k)(α))(α,k)∈Žϕ

)

Note that Φ is continuous if the set of all entire functions is endowed with the
topology of locally uniform convergence, and CZ

ϕ

+ ×CŽϕ ∼= CZ
ϕ

+∪̇Žϕ carries the
product topology.

2.6 Proposition. Set X := P(E)[−]Eϕ
∞. Then Φ|X is a continuous, isometric,

and surjective map of X onto ℓ2ϕ × CŽϕ .

Proof. Set

L+ := span
⋃

α∈Z
ϕ
+

E
ϕ

{α}, Ľ := span
( ⋃

α∈Zϕ\Z
ϕ
+

α∈R

E
ϕ

{α} ∪
⋃

β∈Zϕ∩C+

E
ϕ

{β,β}

)
.

Let us show that Φ|L++Ľ is isometric. Since L+ and Ľ, as well as their images,

are orthogonal, it suffices to consider the restrictions Φ|L+ and Φ|Ľ separately.
For the second one, isometry holds by definition. In order to see isometry of
Φ|L+ , we compute (α, α′ ∈ Zϕ

+)

[bα,0, bα′,0] = KE(α, α′) =

{
−S′

ϕ(α)Sϕ+ π
2
(α) , α = α′

0 , α 6= α′
.

On the other hand,

Φ(bα,0) =
(
bα,0(γ)

)
γ∈Z

ϕ
+

=
(
δαγ ·KE(α, α)

)
γ∈Z

ϕ
+

,

where δαγ denotes the Kronecker delta symbol, and hence also

[
Φ(bα,0),Φ(bα′,0)

]
ℓ2ϕ

=

{
|KE(α, α)|2 −1

S′
ϕ(α)Sϕ+π

2
(α) , α = α′

0 , α 6= α′
=

=

{
−S′

ϕ(α)Sϕ+ π
2
(α) , α = α′

0 , α 6= α′
.
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Clearly, the range of Φ|L++Ľ is dense in the Pontryagin space ℓ2ϕ ×CŽϕ . Hence,

by Proposition 2.1, there exists an extension Φ̃ which maps L+ + Ľ continuously,

isometrically, and surjectively onto ℓ2ϕ × CŽϕ .
Since the topology of P(E) is stronger than the topology of locally uniform

convergence, and the topology of ℓ2ϕ is stronger than pointwise convergence, it
follows that

Φ̃ = Φ|
L++Ľ

.

To finish the proof, recall that Eϕ
∞ = (L+ + Ľ)[⊥], cf. [34, Proposition II.5.2],

and hence L+ + Ľ = (Eϕ
∞)[⊥]. ❑

e. dB-normable linear spaces.

2.7 Example. Let a function E ∈ HB∗
<∞ and an integer N ∈ Z be given. The

space AssocN P(E) is, ad hoc, just a linear space. However, it can be endowed
with an inner product so to become a de Branges space: Choose, according
to [21, Theorem 3.3], a function E0 ∈ HB0 such that P(E) = H(E0) as sets.
In case N ≥ 0, set EN (z) := (z + i)NE0(z). Then EN ∈ HB0, and by [36,
Corollary 3.4] we have

AssocN P(E) = AssocN H(E0) = H(EN ) .

Hence, the inner product [., .]H(EN ) turns AssocN P(E) into a de Branges space.
If N < 0, it is easy to see that the graph inner product

[F,G]N := [F,G]H(E0) +
[
z|N |F (z), z|N |G(z)

]
H(E0)

, F,G ∈ AssocN P(E) ,

turns AssocN P(E) into a de Branges space. �

The choice of inner products in Example 2.7 is by no means unique, nor in any
way canonical. Thus, we shall be interested in properties of a space which follow
from its de Branges space structure, but do not depend on the particular choice
of the inner product which realizes this structure. In order to stress this fact
also notationally, let us introduce the following terminology.

2.8 Definition. Let X be a linear space of entire functions. We call X dB-
normable, if there exists a positive definite inner product on X which turns X
into a de Branges space. This amounts to saying that there exists E ∈ HB∗

0

such that X = H(E) as sets. �

Note that, if X is dB-normable, then there exists a unique Banach space topol-
ogy on X such that for each w ∈ C the point evaluation functional F 7→ F (w)
is continuous on X . Topological notions will always be understood with respect
to this topology.

We will also use the following notation: Let X be a linear space of entire
functions. Then X is called division invariant, if

∀F ∈ X , w ∈ C : F (w) = 0 ⇒
F (z)

z − w
∈ X .

The space X is called reflection invariant, if

∀F (z) ∈ X : F (z) ∈ X .

12



The inner-product-independent objects which are of interest in the present con-
text are the operator of multiplication by the independent variable, the set of
N -associated functions, and the chain of de Branges subspaces. Denote by S
the operator which acts as F (z) 7→ zF (z) on the set of all entire functions.

2.9 Definition. Let X be a dB-normable linear space of entire functions.

(i) Denote by SX the restriction of S to

domSX :=
{
F ∈ X : zF (z) ∈ X

}
.

(ii) For each integer N ∈ Z, set

AssocN X :=

{
X + zX + . . .+ zNX , N ≥ 0

{F ∈ X : z|N |F (z) ∈ X} , N < 0

(iii) Denote

SubX :=

{
Y ⊆ X : Y is a closed nonzero linear subspace

and division and reflection invariant

}
.

An element of SubX is called a dB-subspace of X .

�

Let us recall some facts from de Branges’ theory.

2.10 Remark. Let X be dB-normable. Then the following hold:

(i) The operator SX is closed and every point w ∈ C is a point of regular type
for SX .

(ii) For each w ∈ C and n ∈ N

ran(SX − w)n =
{
F ∈ X : F (w) = . . . = F (n−1)(w)

}
.

(iii) The set SubX is totally ordered (the ‘Ordering Theorem’).

(iv) Whenever N ∈ Z and F,G ∈ AssocN X , G 6= 0, then the meromorphic
functionG−1F is of bounded type in both half-planes C+ and C−, meaning
that in each of these half-planes it can be represented as a quotient of two
bounded analytic functions.

�

We will frequently make use of the following simple algebraic properties. They
are proved by elementary manipulations; we will not carry out the details.

2.11 Lemma. Let X be a linear space of entire functions which is division
invariant. Then the following hold:

(i) For each N ∈ Z the space AssocN X is division invariant. In fact,

∀F ∈ AssocN X , w ∈ C, k ∈ N :

F (w)= . . .=F (k−1)(w)=0 ⇒
F (z)

(z − w)k
∈ AssocN−k X . (2.9)
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In particular,

∀F,G ∈ AssocN X , w ∈ C :
F (z)G(w) −G(z)F (w)

z − w
∈ AssocN−1 X .

Conversely, for each w ∈ C, N ∈ Z, and k ∈ N, we have

(S − w)k AssocN X = ran
(
SAssocN+k X − w

)k
=

=
{
F ∈ AssocN+k X : F (w) = . . . = F (k−1)(w) = 0

}
. (2.10)

(ii) We have

dim
(
X
/
ran(SX − w)k

)
=

{
k , Assoc−k X 6= {0}

dimX , Assoc−k X = {0}

where the minimum on the right hand side is understood as k if dimX =
∞. We have AssocN X = {0} if and only if −N ≥ dimX .

(iii) Let n,m ∈ Z. Unless −n ≥ dimX and −(n+m) < dimX , we have

Assocm Assocn X = Assocm+n X . (2.11)

❑

For later reference let us also state the following fact explicitly.

2.12 Lemma. Let X be a linear space of entire functions which is reflection
invariant. Then for each N ∈ Z also the space AssocN X has this property. ❑

By means of Lemma 2.11 we have a chain of maps consisting of appropriate
restrictions of S:

· · ·
S

// Assoc−1 X
S

// X
S

// Assoc1 X
S

// Assoc2 X
S

// · · ·

2.13 Lemma. Let X be dB-normable, and let N ∈ Z and k ∈ N. Then the
restriction Sk|AssocN X is a homeomorphism of AssocN X onto ranSk

AssocN+k X .

Proof. The map Sk|AssocN X is by (2.10) a bijection of the Banach space
AssocN X onto the closed subspace ranSk

AssocN+k X of the Banach space
AssocN+k X . Since point evaluation is continuous in both spaces, it has closed
graph. ❑

We arrive at an explicit relation between the chains of dB-subspaces of AssocN X
and AssocN+k X , −N < dimX , k ∈ N.

2.14 Proposition. Let X be a dB-normable space, let −N < dimX , and k ∈ N.
Then

{
Z ∈ Sub AssocN+k X : dimZ > k

}
=
{

Assock Y : Y ∈ Sub AssocN X
}
.
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Proof. Let Z ∈ Sub AssocN+k X with dimZ > k be given. Set Y := Assoc−k Z,
then Y is a nonzero division- and reflection invariant subspace of AssocN X ,
which satisfies Assock Y = Z. Since Y = (Sk)−1(ranSk

Z) and ranSk
Z = Z ∩

ranSk
AssocN+k X , the subspace Y is also closed in AssocN X .

Conversely, let Y ∈ Sub AssocN X be given. Then SkY is a closed subspace
of AssocN+k X . Since, by Lemma 2.11, (iii), we have Y = domSk

Assock Y , we ob-

tain that dim(Assock Y/SkY) < ∞. Hence, Assock Y is closed in AssocN+k X .
Moreover, since Y 6= {0}, dimAssock Y > k. By Lemma 2.11 and Lemma 2.12,
Assock Y is division- and reflection invariant. ❑

An extension of [9, Problem 72] follows. The proof given below is, however,
different to the one suggested in this book. We invoke the Ordering Theorem
rather than [9, Theorem 26].

2.15 Corollary. Let X be a dB-normable space, let Y ∈ SubX , and k ∈ N0.
Moreover, let U be a real and zerofree entire function. If U ∈ Assock X , then
also U ∈ Assock Y.

Proof. We have
span{U},Assock Y ∈ Sub Assock X .

The Ordering Theorem implies that span{U} ⊆ Assock Y. ❑

3 Existence of real and zerofree elements

Let us recall the notion of generalized Nevanlinna functions. If q : D → C is
an analytic function defined on some open subset D of the complex plane, we
define a kernel Nq as

Nq(w, z) :=
q(z) − q(w)

z − w
, z, w ∈ D .

Again, for z = w, this formula has to be interpreted appropriately.
A function q which is meromorphic on C \R and satisfies q(z) = q(z) is said

to belong to the class N<∞ of generalized Nevanlinna function, if the kernel Nq

has a finite number of negative squares on the domain of holomorphy of q. If
the exact number of its negative squares is equal to κ ∈ N0, we write q ∈ Nκ

and ind− q = κ. For more on the class N<∞ see, e.g., [30].
In the formulation of our present results some conditions on the asymptotic

distribution of the sequence of poles of a generalized Nevanlinna function appear.

3.1. Some asymptotic conditions: Let q ∈ N<∞ and assume that q is meromor-
phic in the whole plane but not a rational function. Denote by (γk)k∈N the
sequence of all nonzero real and simple poles of q with negative residuum, and
set σk := −Res(q; γk). Let α1, . . . , αr be the remaining poles of q, and denote
by d1, . . . , dr ∈ N their multiplicities. Provided the product converges, set

Aq(z) :=
[ r∏

j=1
αj 6=0

(−αj)
dj
]−1

·
r∏

j=1

(z − αj)
dj · lim

r→∞

∏

|γk|≤r

(
1 −

z

γk

)
. (3.1)

Finally, let (γ+
k )

k
and (γ−k )

k
denote the (finite or infinite) sequences of positive

or negative, respectively, elements of {γk : k ∈ N}, arranged according to
increasing modulus. Then we consider the conditions (N ∈ Z):
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(I) The limit

lim
r→∞

∑

|γk|≤r

1

γk

exists in R.

(II) The limits

lim
k→∞

k

γ+
k

and lim
k→∞

k

γ−k

exist in R and are equal. Thereby, if one of (γ+
k )

k
or (γ−k )

k
is a finite

sequence, the respective limit is understood as 0.

(IIIN) We have ∑

k∈N

γ−2N
k

1

A′
q(γk)2σk

<∞ . (3.2)

�

The conditions (I) and (II) frequently appear in complex analysis, for example
they are named (S) and (D+) in [6, §8.1]. Condition (IIIN ) of course requires
that the product (3.1) converges, which will not be the case in general. However,
under the assumption that q satisfies (I), this product does converge. Hence, in
conjunction with (I), condition (IIIN ) is meaningful.

The next statement is our first main result.

3.2 Theorem. Let E ∈ HB∗
<∞ and N ∈ Z, and assume that dimP(E) = ∞.

Then AssocN P(E) contains a real and zerofree function, if and only if for some
ϕ ∈ R the function qϕ := S−1

ϕ Sϕ+π
2

satisfies (I), (II), and (IIIN ). In this case

these conditions hold for all ϕ ∈ R, and the function A−1
qϕ
Sϕ is the (up to scalar

multiples) unique real and zerofree element of
⋃

k∈Z
Assock P(E).

Before we turn to the proof of this theorem, let us discuss some of its aspects.

3.3 Remark. In Theorem 3.2 we impose the condition that dimP(E) = ∞. The
case that P(E) is finite-dimensional is, however, trivial. Let us elaborate this
situation. Denote by C[z]n, n ∈ N0, the set of all polynomials whose degree
does not exceed n. If d := dimP(E) <∞, then there exists a real and zerofree
function U(z), such that

P(E) = U(z) · C[z]d−1 . (3.3)

For the Hilbert space case, this is shown in [9, Problem 88]. The indefinite case
immediately follows from this by applying [21, Theorem 3.3].

From (3.3) it is obvious that

AssocN P(E) =

{
U(z) · C[z]d−1+N , N ≥ −(d− 1)

{0} , N ≤ −d

�

Let E ∈ HB∗
<∞ and N ∈ Z. Since the set AssocN P(E) does not depend on the

inner product given on P(E), but only on the set P(E), Theorem 3.2 could also
be formulated as follows.
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3.4. Theorem 3.2 reformulated: Let X be an infinite dimensional dB-
normable space. Then AssocN X contains a real and zerofree function, if and
only if for some E ∈ HB∗

<∞ with X = P(E) and some ϕ ∈ R the function
qϕ := S−1

ϕ Sϕ+π
2

satisfies (I), (II), and (IIIN ). In this case these conditions hold

for all E ∈ HB∗
<∞ with X = P(E) and ϕ ∈ R, and the function A−1

qϕ
Sϕ is the

(up to scalar multiples) unique real and zerofree element of
⋃

k∈Z
Assock P(E).

3.5 Remark. Let E ∈ HB∗
<∞ and N > 0. Let E0 ∈ HB∗

0 be such that P(E) =
P(E0) as sets; existence of E0 is guaranteed by [21, Theorem 3.3]. Assuming
knowledge of E0, we could also decide with help [36, Theorem 5.1] whether or
not AssocN P(E) contains a real and zerofree element. Hence, Theorem 3.2 with
N > 0 does not give us a wider class of dB-normable spaces with the property
that there exists a real and zerofree element in AssocN P(E) than the class we
had obtained previously; it rather gives a wider class of tests whether a given
dB-normable space has this property.

However, let us note that in general it is very hard to obtain more knowledge
on E0 than its pure existence. �

3.6 Remark. Let X be an infinite dimensional dB-normable space. Choose
E ∈ HB∗

<∞ with X = P(E) and ϕ ∈ R.

(i) The fact whether or not the function qϕ := S−1
ϕ Sϕ+π

2
satisfies (I), (II),

and (IIIN ), does not depend on the choice of E and ϕ.

(ii) If qϕ satisfies (I), (II), and (IIIN ) for some N ∈ Z, then the function
A−1

qϕ
Sϕ does (up to scalar multiples) not depend on the choice of E and

ϕ.

(iii) We have 1 ∈ AssocN P(E) if and only if qϕ := S−1
ϕ Sϕ+π

2
satisfies (I), (II),

and (IIIN ), and A−1
qϕ
Sϕ is constant.

�

We proceed to the proof of Theorem 3.2. Throughout the remainder of this
section, let E ∈ HB∗

<∞ with dimP(E) = ∞ be fixed. We first show necessity
of the conditions stated in Theorem 3.2.

Proof (of Theorem 3.2, necessity). Let N ∈ Z, and assume that there exists a
real and zerofree function U in AssocN P(E). Moreover, let ϕ ∈ R be given.

The function U−1Sϕ is real, entire, and of bounded type in both half-planes.
Its zeros λk coincide with the zeros of Sϕ including multiplicities. By [35,
V.Lehrsatz 11, p.249] we have:

(i) The limit limr→∞

∑
0<|λk|<r

1
λk

exists in R.

(ii) The limits

lim
k→∞

| arg γk|<
π
4

k

γk

and lim
k→∞

| arg γk−π|<π
4

k

γk

exist in R and have the same value.

We already see that qϕ = S−1
ϕ Sϕ+π

2
satisfies (I) and (II). Thus the product Aq

converges. Again by [35, V.Lehrsatz 11, p.249], remember here that Sϕ is real,
we have:
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(iii) We can factorize
Sϕ(z) = C · U(z) ·Aq(z) , (3.4)

with some constant C ∈ C.

For the proof of (IIIN ) we will consider the cases ‘N > 0’ and ‘N ≤ 0’ separately.

Case N > 0: Fix w ∈ C+\Zϕ and consider the function Ũ(z) := (RSϕ;w)NU(z),
where RSϕ;w is the difference quotient operator (2.1).

Since U is a real and zerofree element of AssocN P(E), we have span{U} ∈
Sub AssocN P(E). Since P(E)[−]Eϕ

∞ is a dB-subspace of P(E), Proposition 2.14
yields that AssocN (P(E)[−]Eϕ

∞) ∈ Sub AssocN P(E). The Ordering Theorem
implies U ∈ AssocN(P(E)[−]Eϕ

∞), and hence

Ũ ∈ P(E)[−]Eϕ
∞ .

By Proposition 2.6, therefore (note that σk = S′
ϕ(γk)−1Sϕ+π

2
(γk))

∑

k∈N

|Ũ(γk)|2
1

S′
ϕ(γk)2σk

<∞ . (3.5)

A straightforward inductive argument shows that

Ũ(z) =
U(z)

(z − w)N
+ Sϕ(z)

N∑

l=1

ξl
(z − w)l

,

with some constants ξl ∈ C. Moreover, by (3.4),

|S′
ϕ(γk)| = |C| · |U(γk)| · |A′

q(γk)|, k ∈ N . (3.6)

Hence, the series (3.5) is nothing else but

∑

k∈N

1

|γk − w|2N |C|2A′
q(γk)2σk

.

Convergence of the series (3.2) follows.

Case N ≤ 0: We use a similar argument. First, span{U} ∈ Sub AssocN P(E).
Since dimP(E) = ∞, also dim(P(E)[−]Eϕ

∞) = ∞, and hence there exists Y ∈
Sub AssocN P(E) such that

Assoc−N Y = P(E)[−]Eϕ
∞ .

By the Ordering Theorem, we have U ∈ Y and hence z−NU(z) ∈ P(E)[−]Eϕ
∞.

Thus ∑

k∈N

∣∣γ−N
k U(γk)

∣∣2 1

S′
ϕ(γk)2σk

<∞ ,

and, using (3.6), ∑

k∈N

γ−2N
k

1

A′
q(γk)2σk

<∞ .

❑
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In the proof of sufficiency, we will employ the below result on polynomial growth.
The symbol ‘limzc→i∞’ denotes the nontangential limit of z to i∞, i.e. that z may
tend to infinity inside an arbitrary Stolz angle Γα := {z ∈ C : α ≤ arg z ≤ π−α}
where α ∈ (0, π

2 ).

3.7 Lemma. Let E ∈ HB∗
<∞ and ϕ ∈ R. For some sufficiently large positive

integer n0 we have

lim
zc→i∞

1

zn0

F (z)

Sϕ(z)
= 0, F ∈ P(E) .

Proof. By [21, Lemma 6.4], a parameterization of the defect elements of SE

associated with Aϕ is given as

χ(z, ζ) :=
1

Sϕ(z)
KE(z, ζ), z ∈ C, Sϕ(z) 6= 0 .

That means we have

χ(z, .) =
(
I + (z − z0)(Aϕ − z)−1

)
χ(z0, .), z, z0 ∈ C, Sϕ(z), Sϕ(z0) 6= 0 .

Let λ0 ∈ R \ Zϕ, then (Aϕ − λ0)
−1 is a selfadjoint operator in the Pontrya-

gin space P(E), and thus also definitizable, cf. [34, §I.3]. Using [34, Proposi-
tion II.2.1], we find a number n0 ∈ N such that

lim
zc→i∞

1

zn0

∥∥(Aϕ − z)−1
∥∥ = 0 .

Since Sϕ(z)−1F (z) = [F, χ(z, .)], the desired assertion follows. ❑

Proof (of Theorem 3.2, sufficiency). Let N ∈ Z and ϕ ∈ R, and assume that
the conditions (I), (II), and (IIIN ) hold for qϕ.

Step 1; The space P(E̊): The function Aqϕ(z) is real and has the same zeros as
Sϕ including multiplicities. Hence, the function

U(z) :=
Sϕ(z)

Aqϕ(z)

is entire, real, and zerofree. Define

Bqϕ(z) :=
Sϕ+π

2
(z)

U(z)
, E̊(z) := Aqϕ(z) − iBqϕ(z) ,

then we have

U(z) · E̊(z) = U(z)Aqϕ(z) − iU(z)Bqϕ(z) = Sϕ(z) − iSϕ+π
2
(z) = −ieiϕE(z) .

It follows that E̊ ∈ HB∗
<∞, and that the map µ : F 7→ UF is an isometric isomor-

phism of P(E̊) onto P(E). It is therefore also a linear bijection of Assocn P(E̊)
onto Assocn P(E) for each n > 0. Moreover, since SE ◦µ = µ ◦SE̊ , µ also maps

domS
|n|

E̊
bijectively onto domS

|n|
E , n < 0.

Let us record that Aqϕ = S̊π
2

and Bqϕ = S̊π, when S̊ϕ denotes the function

defined for E̊ as Sϕ was defined for E in (2.2).
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Step 2; E̊ is of bounded type: We are going to apply [36, Lemma 5.5] with the
sequence (γk)k∈N. Let γ(z) denote the product

γ(z) := lim
r→∞

∏

|γk|≤r

(
1 −

z

γk

)
,

and set p(z) :=
∏r

j=1
αj 6=0

(−αj)
dj
∏r

j=1(z − αj)
dj , so that Aqϕ = pγ. Moreover,

note that

σk = −
Sϕ+π

2
(γk)

S′
ϕ(γk)

= −Res(qϕ; γk) = −
Bqϕ(γk)

A′
qϕ

(γk)
. (3.7)

Since qϕ ∈ N<∞, there exists a positive integer n1 such that

∑

k∈N

σk

γn1

k

<∞ ,

cf. [30, Satz 3.1]. Let m ∈ N be such that 2m ≥ max{2N,n1} + deg p. Using
our assumption (3.2), the fact that A′

qϕ
(γk) = p(γk)γ′(γk), and (3.7), we obtain

the estimate

∑

k∈N

1

γ2m
k |γ′(γk)|

≤
∑

k∈N

|p(γk)|

γ2m
k |A′

qϕ
(γk)|

(
|Bqϕ(γk)| +

1

|Bqϕ(γk)|

)

︸ ︷︷ ︸
≥1

=

=
∑

k∈N

|p(γk)|

γ2m
k

σk +
∑

k∈N

|p(γk)|

γ2m
k A′

qϕ
(γk)2σk

<∞ .

Hence, the hypothesis of [36, Lemma 5.5] is satisfied, and it follows that γ(z),
and thus also Aqϕ(z), is of bounded type in C+. By [30, Satz 6.4] and fractional
linear transformation, each generalized Nevanlinna function is a meromorphic
function of bounded type in C+ (meaning a quotient of two bounded analytic
functions). Hence, the entire function E̊(z) = Aqϕ(z)(1 − iqϕ(z)) is of bounded
type in C+.

The fact that E̊(z) is of bounded type, also implies that each element f ∈⋃
n∈Z

Assocn P(E̊) is of bounded type in both half-planes C+ and C−.

Step 3, The functions h and Λ, Case N ≤ 0: Let Φ and ℓ2π
2

be the map and

weighted ℓ2-space as constructed in Section 2, using the de Branges space P(E̊)
and the angle ϕ := π

2 . Note that, in the notation of Section 2,

Z
π
2
+ \ {0} = {γk : k ∈ N} ,

Ž
π
2 \ ({0} × N) = {(αj , k) : 1 ≤ j ≤ r, 0 ≤ k < dj} \ ({0} × N) .

Moreover, by (3.7), we have A′
qϕ

(γk)2σk = −A′
qϕ

(γk)Bqϕ(γk).

Consider the function h(z) := z−N . Then our assumption (3.2) just says
that (

h(α)
)

α∈Z
π
2
+

∈ ℓ2π
2
. (3.8)
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For each r0 > 0, the function γr0(z) :=
∏

|γk|≥r0
(1 − γ−1

k z) is entire and real.

Moreover, |γr0(iy)| is nondecreasing for y > 0. Since Z
π
2
+ is infinite, remember

here that dimP(E) = ∞, we conclude that

lim
y→±∞

h(iy)

Aqϕ(iy)
= 0 . (3.9)

Since h is a polynomial, trivially

h is of bounded type in C+ and C− . (3.10)

Due to (3.8) and Proposition 2.6, there exists f ∈ P(E̊)[−]E
π
2
∞ with Φf = Φh.

Consider the function

Λ(z) :=
h(z) − f(z)

Aqϕ(z)
.

This function is entire by our choice of f , and of bounded type in both half-
planes by (3.10). Using Krĕın’s Theorem, cf. [37, Theorem 6.17, 6.18], we obtain
that Λ is of exponential type τ , where

τ := max
{

lim
y→+∞

1

y
log+ |Λ(iy)|, lim

y→−∞

1

|y|
log+ |Λ(iy)|

}
.

By (3.9) and Lemma 3.7, for some sufficiently large positive integer n0,

lim
y→±∞

1

|y|n0
Λ(iy) = 0 . (3.11)

Hence τ = 0, and the Phragmén-Lindelöf Principle, applied on the right and
left half-plane seperately, implies that Λ is a polynomial.

Step 4, Finish of proof, Case N ≤ 0: Let p̃ be a nonconstant polynomial with
real coefficients, and put

Ã := Aqϕ , B̃ := Bqϕ + p̃Aqϕ , Ẽ := Ã− iB̃ .

Then a short computation shows

KẼ(w, z) = KE̊(w, z) +Aqϕ(z)
p̃(z) − p̃(w)

z − w
Aqϕ(w)

︸ ︷︷ ︸
=:K2(w,z)

.

In particular, Ẽ ∈ HB∗
<∞. The reproducing kernel space P2 generated by the

kernel K2(w, z) is of a simple form. Namely, we have

P2 = Aqϕ(z) · C[z]deg p̃−1 ,

and the inner product [., .]2 on P2 is given as

[Aqϕ(z)zi, Aqϕ(z)zj] = νi+j , 0 ≤ i, j < deg p̃ ,

with some real numbers νl satisfying

ν0 = . . . = νdeg p̃−2 = 0, νdeg p̃−1 6= 0 ,
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see, e.g., [25, Proposition 2.8]. We conclude that

P2;0 := span
{
Aqϕ(z)zk : 0 ≤ k <

[deg p̃

2

]}

is a neutral subspace of P2.

Let us make the particular choice p̃(z) := z
2max{degΛ,δπ

2
}+2

, where δπ
2

:=

dimE
π
2
∞. Then, certainly, p̃ is nonconstant. Moreover, we have

P(E̊) ∩ P2 = E
π
2
∞ ⊆ P2;0 = span

{
Aqϕ(z)zk : 0 ≤ k ≤ max{deg Λ, δπ

2
}
}
,

and hence P2;0 ⊆ P2[−]2(P(E̊) ∩ P2). By Proposition 2.2 we have

(
P(E̊)[−]E

π
2
∞

)
+ P2;0 ⊆ P(Ẽ) .

It follows that

z−N = h(z) = f(z) +Aqϕ(z)Λ(z) ∈ P(Ẽ) ,

and hence that C[z]−N ⊆ P(Ẽ).

Since P(E̊)[−]E
π
2
∞ is a dB-subspace of P(E̊), it is division- and reflec-

tion invariant. Proposition 2.2 implies that it is closed in P(Ẽ), and hence
is a dB-subspace of P(Ẽ). By the Ordering Theorem, and the fact that

dim(P(E̊)[−]E
π
2
∞) = ∞, we obtain

C[z]−N ⊆ P(E̊)[−]E
π
2
∞ ⊆ P(E̊) .

This shows that 1 ∈ domS
|N |

E̊
. By what we saw in Step 1, this implies U ∈

domS
|N |
E . We have finished the proof of sufficiency for the case N ≤ 0.

Step 5, The functions h and Λ, Case N > 0: Choose w ∈ C\Zϕ, so that we have
Aqϕ(w) 6= 0, and consider the iterated difference quotient h := (RAqϕ ;w)N1. By
elementary induction we see that there exist constants ξl ∈ C, l = 1, . . . , N ,
such that

h(z) =
1

(z − w)N
+Aqϕ(z)

N∑

l=1

ξl
(z − w)l

.

Our assumption (3.2) says that ((α − w)−N )
α∈Z

π
2
+

∈ ℓ2π
2
. However, h(α) =

(α − w)−N , α ∈ Z
π
2
+ , and hence h satisfies (3.8). Clearly, also (3.9) and (3.10)

are satisfied. By exactly the same argument as carried out in Step 3, we obtain

that for some f ∈ P(E̊)[−]E
π
2
∞ the function Λ := A−1

qϕ
(h− f) is a polynomial.

Step 6, Finish of proof, Case N > 0: We construct the space P(Ẽ) in exactly the
same way as we did in Step 4, and obtain that (RAqϕ ;w)N1 ∈ P(Ẽ). This gives

1 ∈ AssocN P(Ẽ). Corollary 2.15 used with the dB-subspace Y := P(E̊)[−]E
π
2
∞

of P(Ẽ) implies that

1 ∈ AssocN Y ⊆ AssocN P(E̊) .

We conclude from Step 1 that U ∈ AssocN P(E), and hence have finished the
proof of sufficiency also for the case N > 0. ✌
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4 Intermediate Weyl-coefficients

The notion of intermediate Weyl-coefficients appears in connection with an in-
definite generalization of canonical systems, and was first observed in [23] in the
setting of maximal chains of matrices.

In order to explain this notion, we need to recall the definition of a general
(indefinite) Hamiltonian, cf. [24]. This requires some background. We call a
function H a Hamiltonian, if it is defined on some interval (L−, L+), takes real
and non-negative 2×2-matrices as values, is locally integrable on (L−, L+), and
does not vanish on any set of positive measure.

We say that H is in the limit circle case or limit point case at L+, if for one
(and hence for all) α ∈ (L−, L+) we have

∫ L+

α

trH(t) dt <∞ or

∫ L+

α

trH(t) dt = ∞, respectively .

Similarly, we distinguish limit circle/point case at the endpoint L−, depending
whether

∫ α

L−

trH(t) dt is finite or infinite.

An interval (α, β) is called H-indivisible of type φ if

H(t) = h(t)ξφξ
T
φ , t ∈ (α, β) ,

where ξφ := (cosφ, sinφ)T and h(t) is some scalar function.
With a Hamiltonian H , which is in the limit circle case at L−, in [24, Defi-

nition 3.1] a number ∆(H) ∈ N∪{0,∞} was associated. This number measures
in some sense the growth of H towards L+. For example, ∆(H) = 0 means that∫ L+

L−

trH(t) dt <∞; or if
∫ L+

L−

trH(t) dt = ∞ and for some L1 < L+ the interval

(L1, L+) is H-indivisible, then ∆(H) = 1.
Assume that H is in the limit circle case at L− and in the limit point case

at L+. Then we say that H satisfies the condition (HS), if the resolvents of
one (and hence of all) self-adjoint extensions of the minimal operator Tmin(H)
associated with H are Hilbert–Schmidt operators, cf. [24, §2]. In this case, the
growth of H towards L+ is bounded in one (and extremal in another) direction,
in the sense that for a unique angle φ(H) ∈ [0, π) we have

∫ L+

L−

ξT
φ(H)H(t)ξφ(H) dt <∞ ,

cf. [29, Theorem 2.4]. The direction of extremal growth is then ξφ(H)+ π
2
.

If H is a Hamiltonian on (L−, L+) and α ∈ (L−, L+), then H+(t) :=
H |(α,L+)(t) and H−(t) := H |(L−,α)(−t) are Hamiltonians defined on (α,L+)
or (−α,−L−), respectively. Both, H+ and H−, are in the limit circle case
at their left endpoint. At their right endpoint limit circle or limit point case
prevails depending on the behaviour of H at L+ or L−, respectively.

Numbers ∆±(H) are defined as ∆±(H) := ∆(H±). Moreover, we say that
H satifies (HS+) or (HS−) if H+ or H−, respectively, satisfies (HS). Numbers
φ±(H) are defined correspondingly. Let us note that each of these notions is
independent of the choice of α in the definition of H±, cf. [24, Lemma 3.12].

4.1 Definition ([24]). A general Hamiltonian h is a collection of data of the
following kind:
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(i) n ∈ N ∪ {0}, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1,

(ii) Hamiltonians Hi, i = 0, . . . , n, defined on the respective intervals
(σi, σi+1),

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with
bi,1 6= 0 in the case öi ≥ 1,

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R, i = 1, . . . , n, where
∆i := max{∆+(Hi−1),∆−(Hi)},

(v) a finite subset E of {σ0, σn+1} ∪
⋃n

i=0(σi, σi+1),

which is assumed to be subject to the following conditions:

(H1) H0 is in the limit circle case at σ0 and, if n ≥ 1, in the limit point
case at σ1. Hi is in the limit point case at both endpoints σi and
σi+1, i = 1, . . . , n − 1. If n ≥ 1, then Hn is in the limit point case
at σn.

(H2) For i = 1, . . . , n − 1 the interval (σi, σi+1) is not Hi-indivisible. If
Hn is in the limit point case at σn+1, then also (σn, σn+1) is not
Hn-indivisible.

(H3) We have ∆i < ∞, i = 1, . . . , n. Moreover, H0 satisfies (HS+), Hi

satisfies (HS−) and (HS+) for i = 1, . . . , n − 1, and Hn satisfies
(HS−).

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

(H5) Let i ∈ {1, . . . , n}. If for some ǫ > 0 the interval (σi − ǫ, σi) is
Hi−1-indivisible and the interval (σi, σi + ǫ) is Hi-indivisible, then
d1 = 0. If additionally bi,1 = 0, then also d0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) 6= ∅ for i = 1, . . . , n − 1. If Hn

is in the limit point case at σn+1, then also E ∩ (σn, σn+1) 6= ∅.
Let i ∈ {0, . . . , n}; if (α, σi+1) or (σi, α) is a maximal Hi-indivisible
interval, then α ∈ E.

(E2) No point of E is an inner point of an indivisible interval.

The number

ind− h :=

n∑

i=1

(
∆i +

[ öi

2

])
+
∣∣{1 ≤ i ≤ n : öi odd, bi,1 > 0

}∣∣

is called the negative index of the general Hamiltonian h. Moreover, h is called
definite if ind− h = 0, and indefinite otherwise. We say that h is in the limit
point case or limit circle case if Hn has the respective property at σn+1. �

In order to shorten notation we shall write a general Hamiltonian h which is
given by the data n, σ0, . . . , σn+1, H0, . . . , Hn, ö1, . . . , ön, bi,j , di,j , E, as a triple

h = (H, b, d),
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where H represents the Hamiltonians Hi, including their number n and their
domains of definition (σi, σi+1), b represents the numbers öi and bi,j , and d

represents the numbers di,j and the subset E. Obviously, we may also identify
H with the function defined on

⋃n
i=0(σi, σi+1) by

H |(σi,σi+1) = Hi, i = 0, . . . , n . (4.1)

We will speak of H as the Hamiltonian function of h.

4.2 Remark. Intuitively, the notion of a general Hamiltonian can be understood
as follows: we deal with the differential equation f ′ = zJHf given on an interval
(σ0, σn+1) which involves some kind of singularities located at the points σi,
i = 1, . . . , n. Condition (H1) says that the differential equation is regular at
σ0, so that the initial value problem at σ0 is well posed, but that σ1, . . . , σn

actually are singularities. Moreover, and this is the condition (H2), two adjacent
singularities σi and σi+1 must be separated by more than just a single indivisible
interval. The meaning of (H3) is that the growth of Hi towards a singularity is
not too fast. Moreover, (H4) is an interface condition at σi.

The numbers öi ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 model the part of the sin-
gularity σi which is concentrated at σi, whereas the numbers di,0, . . . , di,2∆i−1

model the part of this singularity which is in interaction with the local behaviour
around σi. The elements of E in the vicinity of σi determine quantitatively what
‘local’ here means. The freedom of this interaction is, by the first part of (H5),
restricted if to both sides of σi indivisible intervals adjoin. The possibility that
on both sides of σi indivisible intervals adjoin and at the same time bi,1 = 0,
can occur by the second part of (H5) only in the case of ‘indivisible intervals of
negative length’, the simplest possible kind of a singularity. �

In the theory of (indefinite) canonical systems a class of entire 2×2-matrix valued
functions plays an important role. Let us recall this notion. LetW = (wij)i,j=1,2

be an entire 2 × 2-matrix valued function with wij(z) = wij(z), detW (z) = 1,
z ∈ C, and W (0) = I. Then we write W ∈ M<∞, if the kernel (for z = w this
formula has to be interpreted appropriately as a derivative)

HW (w, z) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ C ,

has a finite number of negative squares. If the exact number of negative squares
of this kernel is equal to κ ∈ N0, we write W ∈ Mκ and ind−W = κ. For more
details on the class M<∞ see, e.g., [25].

To each general Hamiltonian h which is in the limit circle case, an entire 2×2-
matrix function Wh is associated; its monodromy matrix. This matrix function
belongs to the class M<∞. If h is in the limit point case, a function qh(z) is
associated to h; its Weyl-coefficient. This function belongs to the class N<∞.
These constructions were carried out in [25]. The following two fundamental
results have been proved in [26]:

4.3. Inverse Spectral Theorem; limit circle case: The assignment h 7→ Wh

establishes a bijective correspondence between the set of all general Hamiltonians
in the limit circle case (modulo reparameterization) and the set M<∞. Thereby
ind− h = ind−Wh.
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4.4. Inverse Spectral Theorem; limit point case: The assignment h 7→ qh
establishes a bijective correspondence between the set of all general Hamiltonians
in the limit point case (modulo reparameterization) and the set N<∞ of all
generalized Nevanlinna functions. Thereby ind− h = ind− qh.

We turn to intermediate Weyl-coefficients. Let h be a general Hamiltonian given
by data as in Definition 4.1, and let σ be one of its singularities, i.e. σ = σj

with some j ∈ {1, . . . , n}. Then we may define another general Hamiltonian
h�σ := (H�σ, b�σ, d�σ) as the collection of data

H�σ : j − 1, σ0, . . . , σj , Hi, i = 0, . . . , j − 1,

b�σ : öi, bi,1, . . . , bi,öi+1, i = 1, . . . , j − 1,

d�σ : di,0, . . . , di,2∆i−1, i = 1, . . . , j − 1,
(
E ∩ [σ0, σ)

)
∪ {σ} .

Since σ is a singularity of h, the general Hamiltonian h�σ is in the limit point
case.

4.5 Definition. Let h be a general Hamiltonian given by data as in Definition
4.1, and let σ be one of its singularities. Then the function qh�σ

is called the
intermediate Weyl-coefficient of h at σ. �

The question which functions q ∈ N<∞ are intermediate Weyl-coefficients of
some general Hamiltonian suggests itself. A simple necessary condition is that
q is meromorphic in the whole plane. However, this is by far not sufficient.

4.6 Definition. Let q ∈ N<∞. Then q is called an intermediate Weyl-
coefficient, if there exists a general Hamiltonian h such that q is the intermediate
Weyl-coefficient of h at one of its singularities σ. In this case, the minimum of
the numbers ind− h, when h varies through all general Hamiltonians with this
property, is called the weight of q. �

4.7 Remark. Let q ∈ N<∞ and let h be the (unique) general Hamiltonian h

with qh = q. Expressed in terms of h, the function q is an intermediate Weyl-
coefficient if and only if h can be prolongued to a ‘longer’ general Hamiltonian.

It only needs a short look at Definition 4.1 in order to see when this is possible
and what the minimal increase of negative index is: The general Hamiltonian
h can be prolongued if and only if on the last interval (σn, σn+1) of its domain
the condition (HS+) holds and ∆+(H(σn,σn+1)) <∞. �

In terms of the function q itself it is not that simple to decide whether q is
an intermediate Weyl-coefficient. For q ∈ N0 we gave a characterization in
[36, Theorem 5.1]. Especially the actual value of the weight of q is a highly
sensitive magnitude, interesting examples were given in [36, Corollary 5.10,
Corollary 5.11].

Using Theorem 3.2, we obtain complete answers to these questions. This is
the second main result of the present paper.

4.8 Theorem. Let q ∈ N<∞ be given. Then q is an intermediate Weyl-
coefficient if and only if q satisfies for some N ∈ N the conditions (I), (II),
and (IIIN ). In this case, we have

weight of q =

{
1 , (III1) holds

min
{
N ∈ N : (IIIN ) holds

}
− 1 , otherwise

(4.2)
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In the proof we will use the following observation, which is in essence just the
same as [36, Lemma 5.6]; we will thus not elaborate the details.

4.9 Lemma. Let q ∈ N<∞ be meromorphic in C and assume that q is analytic
at the point 0. Moreover, set

q̂(z) :=
−1

q(z) − 1
z

∈ N<∞ ,

and let N ∈ Z. Then q satisfies (I), (II), and (IIIN ) if and only if q̂ satisfies
(I), (II), and (IIIN−1). ❑

Next, recall the following notation, cf. [21, §8]: If W ∈ M<∞, we denote by
K(W ) the reproducing kernel space generated by the kernel HW , and by K±(W )
the subspaces

K+(W ) := cls
{
HW (w, .)

(
1

0

)
: w ∈ C

}
,

K−(W ) := cls
{
HW (w, .)

(
0

1

)
: w ∈ C

}
.

Proof (of Theorem 4.8). Let Nα denote the matrix

Nα :=

(
cosα sinα
− sinα cosα

)

and denote, for each matrix W = (wij)i,j=1,2 and scalar τ ,

W ⋆ τ :=
w11τ + w12

w21τ + w22
.

Moreover, if W = (wij)i,j=1,2 is a invertible 2 × 2-matrix, set

revW := VW−1V =

(
w22 w12

w21 w11

)
,

where

V :=

(
1 0
0 −1

)
.

Step 1; A reduction method: Let q ∈ N<∞ and α ∈ R. By [25, Lemma 3.13,
(ii)] the function q is an intermediate Weyl-coefficient if and only if Nα ⋆ q has
this property. Moreover, in this case, the weights of q and Nα ⋆ q coincide.

Let q ∈ N<∞ be meromorphic in C. Write q = −A
B

with some real entire
functions A,B which have no common zeros, and set E := A − iB. Then
E ∈ HB∗

<∞, and a short computation shows that

Sϕ+π
2

Sϕ

= N−ϕ ⋆ q, ϕ ∈ R .

Hence,

Nα ⋆
Sϕ+π

2

Sϕ

=
S(ϕ−α)+π

2

S(ϕ−α)
, ϕ, α ∈ R ,

27



in particular Nα ⋆ q = S−1
−αS−α+π

2
. By Remark 3.6, (i), the function q satisfies

(I), (II), and (IIIN ), if and only if Nα ⋆ q does.
In order to prove the equivalence asserted in Theorem 4.8 for the given

function q, it is thus enough to prove the corresponding equivalence for some
function Nα ⋆ q instead of q.

Step 2; The case (III1): Assume that q satisfies (I), (II), and (III1). We take
advantage of the reduction method in Step 1, and assume additionally that
q(0) = 0. Note here that there always exists exactly one value of α ∈ [0, π) for
which the function Nα ⋆ q vanishes at 0.

Since q satisfies (I) and (II), the product Aq(z) in (3.1) converges, and we
may consider

Bq := Aq · q, Eq := Aq − iBq . (4.3)

Then Eq ∈ HB∗
<∞, ind−Eq = ind− q, and by Theorem 3.2 we have 1 ∈

Assoc1 P(Eq). By [21, Corollary 10.4], there exist entire functions C(z), D(z)
such that

W (z) :=

(
Aq Bq

C D

)

belongs to M<∞ and satisfies K+(W ) = K(W ). Consider the matrix revW ∈
M<∞. Then

ind−(revW ) = ind−W = ind−Eq = ind− q, revW ⋆ 0 = q .

Let h be the general Hamiltonian which is in the limit circle case and whose
monodromy matrix equal revW . Then we can prolongue h for example as
follows:

| | | )× × ×
σ0

σ1 · · · σn

σn+1

σ

h
indivisible/type 0
infinite length

indivisible/type π
2

negative length

↑

rev W

h̃:

Note here that the interval (σn, σn+1) cannot be indivisible of type π
2 for h, since

ind− revW = ind−(revW ⋆ 0). The general Hamiltonian h̃ is thus well-defined.
It has the singularities σ1, . . . , σn, σ, and its intermediate Weyl-coefficient at σ
is q. Moreover,

ind− h̃ = ind− h + 1 = ind− q + 1 .

Step 3; The case (IIIN ), N ≥ 2: Assume that q satisfies (I), (II), and (IIIN )
with some N ≥ 2. Again we take advantage of the reduction in Step 1, and
assume additionally that

lim
y→∞

1

y
q(iy) = 0, lim

y→0
yq(iy) = 0 . (4.4)

Note here that there are at most two values of α ∈ [0, π) for which the function
Nα ⋆ q does not satisfy one of these limit relations.

We are going to utilize [23, Theorem 7.4]. Consider the sequence of functions
qj which is defined inductively by

q0(z) := q(z), qj(z) :=
−1

qj−1(z) −
1
z

, j ≥ 1 . (4.5)

28



By Lemma 4.9 the function qN−1 satisfies (I), (II), and (III1). Moreover,
qN−1(0) = 0 and q′N−1(0) = 1. By what we saw in the above Step 2, there

exists a matrix W̃ = (w̃ij)i,j=1,2 ∈ M<∞ with ind− W̃ = ind− qN−1 such that

qN−1 = W̃ ⋆ 0. Clearly, w̃′
12(0) = q′N−1(0) > 0. Hence, [23, Theorem 7.4] yields

that q is an intermediate Weyl-coefficient. Moreover, as we see from the proof
of this theorem, its weight is at most N − 1.

Step 4; The converse: Again assume that (4.4) holds, and let the sequence qj ,
j ≥ 0, be defined by (4.5). Assume that q is the intermediate Weyl-coefficient
at a singularity σ of some general Hamiltonian h, and let ∆ ∈ N be the increase
of negative index at the singularity σ. [23, Proposition 6.9] and [23, Lemma 7.1]
together imply that the function q∆ can be represented as

q∆ = W ⋆ 0

with some W = (wij)i,j=1,2 ∈ M<∞, ind−W = ind− q. Let Aq∆ , Bq∆ , Eq∆

be as in (3.1) and (4.3) using the function q∆. Since ind−Eq∆ = ind− q∆ =
ind−W , we may apply [21, Proposition 10.3] with revW , and conclude that
1 ∈ Assoc1 P(Eq∆). By Theorem 3.2, the function q∆ satisfies (I), (II), and
(III1). Lemma 4.9 shows that q satisfies (I), (II), and (III1+∆).

This proves the asserted equivalence. Since we may choose h such that ∆
equals the weight of q, also the formula (4.2) follows. ❑

Combining Theorem 4.8 with Remark 4.7, we obtain the following observation
which solves an interesting inverse problem already in the positive definite case.

4.10 Corollary. Let h be a general Hamiltonian. Then h satisfies on
the last interval (σn, σn+1) of its domain the condition (HS+) and we have
∆+(H |(σn,σn+1)) < ∞ if and only if qh satisfies (I), (II), and (IIIN ) for some
N ∈ N. In this case,

∆+(H |(σn,σn+1)) =

{
1 , (III1) holds

min
{
N ∈ N : (IIIN ) holds

}
− 1 , otherwise

❑

Another immediate consequence is the following, rather astonishing, fact.

4.11 Corollary. Let W ∈ M<∞, q ∈ N<∞, and N ∈ N. Assume that ind−(W⋆
q) = ind−W + ind− q. Then the function q satisfies (I), (II), and (IIIN ), if and
only if W ⋆ q does.

Proof. The general Hamiltonian whose Weyl-coefficient is W ⋆q is just the past-
ing (cf. [25, §3.e]) of the general Hamiltonian whose monodromy matrix is W ,
with the general Hamiltonian whose Weyl-coefficient is q. ❑

5 Canonical systems ending with indivisible in-
tervals

Although indivisible intervals can be seen as pieces of a Hamiltonian of the most
simple form, they often play an important role. For example in such classical
topics like the power moment problem or Stieltjes strings, see, e.g., [1].
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It is intuitively clear what is meant by saying that a Hamiltonian H defined
on an interval (L−, L+) ‘ends with at least M indivisible intervals’. However,
let us reformulate this property in a way suitable for our present purposes.

5.1 Definition. Let H : (L−, L+) → R2×2 be a Hamiltonian, and let M ∈ N.
We say that H ends with at least M indivisible intervals, if there exist points
x1 . . . , xν ∈ [L−, L+) such that (x0 := L+)

(i) xν < xν−1 < . . . < x1, and each of the intervals (xj , xj−1), j = 1, . . . , ν,
is maximal indivisible.

(ii) M ≤ ν.

�

Let H be a Hamiltonian defined on (L−, L+) which is in the limit circle case
at L− and in the limit point case at L+, and let qH be its Weyl-coefficient.
Moreover, let us assume that limy→+∞ y−1qH(iy) = 0, and denote by µH the
measure in the Herglotz-integral representation of qH . Then there exists a
unique chain of de Branges Hilbert spaces H(Et), t ∈ J ⊆ R, such that

H(Et) ⊆ H(Es) ⊆ L2(µH), t, s ∈ J, t ≤ s ,

where all these inclusions are isometric, and

clos
⋃

t∈J

H(Et) = L2(µH) .

The index set J is actually given as

J = (L−, L+) \
⋃{

(a−, a+) : indivisible
}
.

We arrive at the following obvious remark.

5.2 Remark. Let H be a Hamiltonian of the above form and let M ∈ N. Then H
ends with at leastM indivisible intervals, if and only if the chain {H(Et) : t ∈ J}
is of the form

{H(Et) : t ∈ J} = {H(Et) : t ∈ J ′} ∪
{
H(ExM ), . . . ,H(Ex1)

}

with some subset J ′ ⊆ J and

H(Et) ⊆ H(ExM ) ( . . . ( H(Ex1), t ∈ J ′ .

�

Let us now turn our attention to the indefinite situation, i.e. let us consider
a general Hamiltonian h. Then it is not so obvious what should be meant
when saying that ‘h ends with at least M indivisible intervals’. The problem
is to properly include the contribution of singularities so that the statement
analogous to Remark 5.2 holds true.

5.3 Definition. Let h be a general Hamiltonian consisting of data as in Defini-
tion 4.1 and let M ∈ N. We say that h ends with at least M indivisible intervals,
if there exist points x1, . . . , xν ∈ [σ0, σn+1) such that (x0 := σn+1)
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(i) xν < xν−1 < . . . < x1, and each of the intervals (xj , xj−1), j = 1, . . . , ν,
is maximal indivisible (with positive or infinite length).

(ii)

M ≤ ν +
∑

i:σi>xν

{
−1 , öi = 0, bi,1 = di,1

öi , otherwise
+

+

{
öj + ∆+(H |(σj−1,σj)) − 1 , xν = σj for some j ≥ 1

0 , otherwise

�

The following characterization is the third main result of this paper.

5.4 Theorem. Let h be a general Hamiltonian which is in the limit point case,
and let qh be its Weyl-coefficient. Moreover, let M ∈ N. Then h ends with at
least M indivisible intervals if and only if qh satisfies (I), (II), and (III2−M ).

The essential observation towards the proof of this result is the below lemma.
If h is a general Hamiltonian consisting of data as in Definition 4.1, we define

a (finite or infinite) decreasing sequence (xj)j of points xj ∈ [σ0, σn+1] by the
following inductive process which is carried out as long as possible:

x0 := σn+1, xj s.t. (xj , xj−1)
maximal indivisible
(positive or infinite length)

, j ≥ 1 . (5.1)

5.5 Lemma. Let h be a general Hamiltonian consisting of data as in Definition
4.1 which is in the limit circle case, and let ωh(t) denote the finite maximal
chain associated with h, cf. [25, §5].

(i) If xν is defined by the inductive process (5.1) and does not belong to
{σ1, . . . , σn}, then

dim
(

K
(
ωh(σn+1)

)/
K
(
ωh(xν)

))
= ν +

∑

i:σi>xν

{
−1 , öi = 0, bi,1 = di,1

öi , otherwise

(ii) If the inductive process (5.1) terminates after one step and x1 = σn (n ≥
1), then

dim
(

K
(
ωh(σn+1)

)/
cls
⋃

t<σn
K
(
ωh(t)

))
= ön + ∆+(H |(σn−1,σn))

Proof. Assume that we are in the situation (i). Let j ≤ ν and assume that
xj , xj−1 6∈ {σ1, . . . , σn}. Then the matrix ωh(xj)

−1ωh(xj−1) is a linear polyno-
mial, cf. [25, Proposition 5.5, (i)]. Hence,

dim
(

K
(
ωh(xj)

)/
K
(
ωh(xj−1)

))
= 1 .

Let j + 1 ≤ ν and assume that xj = σi for some i ∈ {1, . . . , n}. Then
xj−1, xj+1 6∈ {σ1, . . . , σn}, and the matrix ωh(xj+1)

−1ωh(xj−1) is a polynomial
of degree {

1 , öi = 0, bi,1 = di,1

öi + 2 , otherwise
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cf. [25, Proposition 5.5, (ii)]. Thus

dim
(

K
(
ωh(xj+1)

)/
K
(
ωh(xj−1)

))
=

{
1 , öi = 0, bi,1 = di,1

öi + 2 , otherwise

Together, the desired formula follows.
For example:

h:

(xj)j :

dim:

|||×||×|||
σn+1σnσn−1· · ·σ0

===

x0x1x2x3x4x5x6x7x8

0123489

↓

ön = 0,
bn,1 = dn,1

↓

ön−1 = 2

We turn to the situation described in (ii). Since h is, up to reparameterization,
equal to the general Hamiltonian constructed in [26] for the monodromy matrix
ωh(σn+1), it is sufficient to consider the construction carried out there, especially
[26, Definition 2.6]. We just need to match the notation used there with the
present one: The dimension we are seeking for is equal to a + 1, the number
∆+(ω) is equal to 1, and ∆−(ω) = ∆+(H |(σn−1,σn)), ö(ω) = ön. Thus the
desired formula holds. ❑

Proof (of Theorem 5.4).
Step 1; Reduction: For α ∈ R denote by 	α h the general Hamiltonian whose
Weyl-coefficient is Nα ⋆ qh; for an explicit definition and a detailed treatment
see [25, §3.e, Lemma 5.14]. Clearly, h ends with at least M indivisible intervals
if and only if 	α h does. Hence, similar as in the proof of Theorem 4.8, we may
consider 	α h and Nα ⋆ qh instead of h and qh.

We will take advantage of this fact, and assume throughout the following
that qh(0) = 0.

Step 2; The case M = 1: Assume first that h ends with at least one indivisible
interval, and let x1 be as in Definition 5.3. Then ind− ωh(x1) = ind− qh and
qh = ωh(x1) ⋆ 0. Set E := ωh(x1)22 − iωh(x1)12, then E ∈ HB∗

<∞. Moreover,
since

(ωh(x1)22, ωh(x1)12) = (1, 0) revωh(x1) ,

and ind−E = ind− qh = ind− ωh(x1) = ind− revωh(x1), we obtain that 1 ∈
Assoc1 P(E), cf. [21, Proposition 10.3]. However, the function qπ

2
defined for

E is equal to qh, and hence Theorem 3.2 implies that qh satisfies (I), (II), and
(III1).

Conversely, assume that qh satisfies (I), (II), and (III1). As we already saw
in Step 2 of the proof of Theorem 4.8, qh is the Weyl-coefficient of a general

Hamiltonian which ends with an indivisible interval (namely h̃�σ, in the notation
used there).

Step 3; The case M ≥ 2, necessity: Let M ≥ 2, and assume that h ends with
at least M indivisible intervals. Then the inductive process (5.1) for h can be
carried out at least for two steps. Moreover, by Step 2, the function qh satisfies
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(I), (II), and (III1), and we can write qh = revW ⋆ 0 where W is the matrix
constructed in Step 2 of the proof of Theorem 4.8.

Let ĥ be the general Hamiltonian which evolves from h by cutting off the
interval (x1, σn+1). Then the monodromy matrix of ĥ equals revW , remember
here that ind− revW = ind− qh. Let ω(t) : [σ0, x1] \ {σ1, . . . , σn} → M<∞ be
the finite maximal chain going downwards from revW , then the chain revω
(given by [25, Definition 3.12]) is the finite maximal chain going downwards
from W , cf. [25, Lemma 3.13].

By [25, Lemma 2.7 and Lemma 2.13], there exists an isomorphism
̟ : K(revW ) → K(W ), and this isomorphism satisfies ̟(K(ω(t))⊥) =
K([revω](−t)). Hence, for each t0 ∈ [σ0, x1], we have

̟
([

cls
⋃

t<t0

K
(
ω(t)

)]⊥)
=

⋂

s>−t0

K
(
[revω](s)

)
. (5.2)

Let ν be as in Definition 5.3. By possibly increasing ν by 1, we may assume
that either xν is not a singularity of h or the process (5.1) terminates at xν .
Lemma 5.5 together with (5.2) tells us that

dim
⋂

s>−xν

K
(
[revω](s)

)
= (ν − 1) +

∑

i:σi>xν

{
−1 , öi = 0, bi,1 = di,1

öi , otherwise
+

+

{
öj + ∆+(H |(σj−1,σj)) − 1 , xν = σj for some j ≥ 1

0 , otherwise
(5.3)

Denote this number by M(ν).
By the construction of W , we have K+(W ) = K(W ), and hence the chain of

nondegenerate dB-subspaces of P(Eqh
) is given as

{
P
(
[revω](t)11 − i[revω](t)12

)
: t ∈ (−x1,−σ0] \ {−σn, . . . ,−σ1}

}
.

As we observed above, the chain of all dB-subspaces of P(Eqh
) contains a space

whose dimension is equal toM(ν) <∞. Hence, Assoc−(M(ν)−1) P(Eqh
) contains

a real and zerofree element, and thus qh satisfies the conditions (I), (II), and
(III1−M(ν)). However, 1 −M(ν) ≤ 2 −M , and hence also (III2−M ) holds.

Step 4; The case M ≥ 2, sufficiency: Let M ≥ 2 and assume that qh satisfies
(I), (II), and (III2−M ). In particular, (III1) holds, and hence we may write
qh = revW ⋆0 as in Step 2. Moreover, the space P(Eqh

) contains a dB-subspace
with dimension M − 1.

Assume that the process (5.1) terminates at a point xν (which must be
< σn+1). Then, since for each t < xν the general Hamiltonian h contains an
interval right of t which is not indivisible,

dim
(

K
(
revW

)/
K
(
ω(t)

))
= ∞, t < xν ,

and hence
dimK

(
[revω](s)

)
= ∞, s > −xν .

However, as we proved in Step 3,

dim
⋂

s>−xν

K
(
[revω](s)

)
= M(ν) ,
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where M(ν) is the number defined by the right hand side of (5.3). It follows
that M − 1 ≤M(ν), and this means by definition that h ends with at least M
indivisible intervals. ❑

6 A selection of applications

In this section we present three selected applications of Theorem 3.2, Theorem
4.8, and Theorem 5.4.

6.1 A characterization that 1 ∈ AssocN P(E)

In the theory of de Branges Hilbert spaces the characterization [9, Theorem 27]
of associated functions plays a most important role. Similarly, its indefinite ana-
logue [21, Proposition 10.3] is a fundamental result. Applied with the constant
function 1 it says: Let E ∈ HB∗

<∞, E(0) = 1, then

1 ∈ Assoc1 P(E) ⇐⇒ ∃W ∈ M<∞,K+(W )◦ = {0} : (1, 0)W = (Sπ
2
, Sπ)

This fact is supplemented by [22, Lemm 5.11], where we showed that

∃W ∈ M<∞,K+(W )◦ 6= {0} : (1, 0)W = (Sπ
2
, Sπ) =⇒ 1 6∈ Assoc1 P(E)

We can now prove a beautiful completion of these results.

6.1 Proposition. Let E =∈ HB∗
<∞, E(0) = 1, and let N ≥ 2. Then

1 ∈ AssocN P(E) \ AssocN−1 P(E) ⇐⇒

∃W ∈ M<∞, dimK+(W )◦ = N − 1 : (1, 0)W = (Sπ
2
, Sπ)

The proof relies on the following two lemmata about the geometry of spaces
K(W ).

6.2 Lemma. Let W,W1 ∈ M<∞, W,W1 6= I, and assume that

∄u ∈ C2 : u ∈ K(W1) and Wu ∈ K(W ) . (6.1)

Moreover, set W̃ := WW1, and denote by π+ and π̃+ the projections onto the

first component in the spaces K(W ) and K(W̃ ), respectively. Then we have

kerπ+ = ker π̃+ .

Proof. Our assumption (6.1) implies, e.g., by [25, Proposition 2.11], that

K(W̃ ) = K(W )[+̇]WK(W1) . (6.2)

In particular, ind− W̃ = ind−W + ind−W1 and kerπ+ ⊆ ker π̃+.

Case 1; W is not a polynomial: We may apply [22, Theorem 5.7], and conclude
that kerπ+ = {0} if and only if ker π̃+ = {0}. In order to prove the desired
equality, we thus need to show that kerπ+ 6= {0} implies ker π̃+ ⊆ kerπ+.

Let p ∈ ker π̃+ be given, so that
(
0
p

)
∈ K(W̃ ). Recall that, by [21, Corol-

lary I.9.7], p is a polynomial.
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Since kerπ+ 6= {0} implies that K−(W ) = K(W ), we may apply [22,
Corollary 7.4], and obtain that there exists no constant u ∈ K(W1) such that
π−Wu ∈ P(EW ), where EW is defined by the second row of W , see, e.g., [25,§2.e], and π− denotes the projection onto the second component. Thus the con-
ditions (i)–(iii) of [21, Theorem 12.2, Corollary 12.3] are fullfilled. It follows

that (EfW
is defined similarly by the second row of W̃ )

P(EfW
) = P(EW )[+̇]π−WK(W1) ,

and that the map
(

g+

g−

)
7→ π−W1

(
g+

g−

)
is an isometric isomorphism of K(W1) onto

P(EfW
)[−]P(EW ).

Since p is a polynomial and belongs to P(EfW
), it also belongs to any infinite

dimensional dB-subspace of P(EfW
). However, P(EW ) ∼= K(W ) is one such, and

it follows that p ∈ P(EW ). According to (6.2) we can write
(

0

p

)
=

(
f+
f−

)
+W

(
g+
g−

)

with some
(

f+

f−

)
∈ K(W ) and

(
g+

g−

)
∈ K(W1). In particular,

π−W

(
g+
g−

)
= p− f− ∈ P(EW ) ,

and we conclude that
(

g+

g−

)
= 0. Hence

(
0
p

)
∈ K(W ), i.e. p ∈ kerπ+.

Case 2; W is a polynomial: If ker π̃+ = {0}, the inclusion ker π̃+ ⊆ kerπ+ holds
trivially. Hence, assume that ker π̃+ 6= {0}.

We first treat the case that W is of particular form

W =

(
1 0
−q 1

)

with some polynomial q with real coefficients and q(0) = 0. Let
(
0
p

)
∈ ker W̃

and write, according to (6.2),
(

0

p

)
=

(
f+
f−

)
+W

(
g+
g−

)

with some
(

f+

f−

)
∈ K(W ) and

(
g+

g−

)
∈ K(W1). However, K(W ) = kerπ+, see, e.g.,

[25, Proposition 2.8]. Thus this relation reads as
(

0

p

)
=

(
0

f−

)
+

(
g+

−qg+ + g−

)
.

It follows that g+ = 0. By our assumption (6.1), we have
(
0
1

)
6∈ K(W1), and

hence the projection onto the first component in the space K(W1) is injective.
Thus also g− = 0, and we see that

(
0
p

)
∈ K(W ).

Next we turn to the case thatW is an arbitrary polynomial. Then there exist
numbers n ∈ N, αi ∈ [0, π), i = 1, . . . , n, and real polynomials qi, i = 1, . . . , n,
with αi 6= αi+1, i = 1, . . . , n− 1, and qi(0) = 0, such that

W =
n∏

i=1

Nαi

(
1 0

−qi 1

)
N−1

αi
,
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where

Nα :=

(
cosα sinα
− sinα cosα

)

see, e.g., [27, Theorem 3.1]. It follows, e.g., from [25, Corollary 2.9], that

ξπ
2 −α1 ∈ K

(
Nα1

(
1 0

−q1 1

)
N−1

α1

)
⊆ K(W ) ⊆ K(W̃ ) .

Since the space K(W̃ ) can contain at most one constant (up to scalar multiples),
we must have α1 = 0.

Consider the matrix

Ŵ :=

(
1 0

−q1 1

)

then we can write W̃ = Ŵ · [Ŵ−1W ] ·W1, and hence K(Ŵ ) ⊆ K(W ) ⊆ K(W̃ ).

If π̂+ denotes the projection onto the first component in the space K(Ŵ ), thus

ker π̂+ ⊆ kerπ+ ⊆ ker π̃+ .

By what we have already shown, ker π̂+ = ker π̃+, and thus also kerπ+ =
ker π̃+. ❑

6.3 Lemma. Let h be a general Hamiltonian in the limit circle case (with at
least one singularity), and let W = (wij)i,j=1,2 ∈ M<∞ be its monodromy
matrix. Let π+ be the projection onto the first component defined on the space
K(W ). Then (kerπ+)◦ 6= {0} if and only if the interval (σ0, σ1) is indivisible
of type π

2 and σ1 is not left endpoint of an indivisible interval. In this case, we
have

dim(kerπ+)◦ = ∆−(H |(σ1,σ2)) .

Proof. First of all, recall that

kerπ+ = span
{( 0

zk

)
: k = 0, . . . , d

}
, d := dim kerπ+ − 1 ,

(kerπ+)◦ = span
{( 0

zk

)
: k = 0, . . . , d◦

}
, d◦ := dim(kerπ+)◦ − 1 .

Clearly, d = max{k ∈ N0 :
(

0
zk

)
∈ K(W )}.

We are going to work through all possible cases and determine kerπ+ and
(kerπ+)◦ in each of them. Again let ωh denote the finite maximal chain associ-
ated with h.

Case 1;
(
0
1

)
6∈ K(W ): In this case kerπ+ = {0}, and hence also (kerπ+)◦ = {0}.

Case 2;
(
0
1

)
∈ K(W ), [

(
0
1

)
,
(
0
1

)
] > 0: By [22, Lemma 7.5], the chain ωh starts

with an indivisible interval of type π
2 and finite (positive) length. Lemma 6.2

implies that kerπ+ = span{
(
0
1

)
}, and hence (kerπ+)◦ = {0}.

Case 3;
(
0
1

)
∈ K(W ), [

(
0
1

)
,
(
0
1

)
] ≤ 0: By [23, Remark 3.2, (i)], the interval (σ0, σ1)

is indivisible. Moreover, by [22, Lemma 7.6, proof of Theorem 7.1], its type is
equal to π

2 .

Subcase 3a; σ1 is left endpoint of indivisible interval: Let s ∈ (σ1, σ2) be such
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that (σ1, s) is maximal indivisible. Then the matrix ωh(s) is the monodromy
matrix of an elementary indefinite Hamiltonian of kind (B) or (C), and hence a
polynomial.

We can factorizeW = ωh(s)·[ωh(s)−1W ]. The type of the indivisible interval
(σ1, s) is equal to π

2 , and hence the constant
(
0
1

)
cannot belong to K(ωh(s)−1W ).

Thus we may apply Lemma 6.2, and conclude that kerπ+ = K(ωh(s)). it follows
that (kerπ+)◦ = {0}.

Subcase 3b; σ1 is not left endpoint of indivisible interval: We can choose s+ ∈
(σ1, σ2) which is not an inner point of an indivisible interval such that the
general Hamiltonian rev(h�s+) satisfies [26, 2.1. Overall assumption]. By [25,
Lemma 5.15] the monodromy matrix of rev(h�s+) is equal to revωh(s+).

By [26, Corollary 2.13] we have (using the same notation as there)

zk(revωh(s+))

(
0

1

)
= zkπ−1

2 D0 .

Thus, we obtain the following inequalities:

max
{
k : zk(revωh(s+))

(
0
1

)
∈ K(revωh(s+))

} trivial

≥ max
{
k : zk(revωh(s+))

(
0
1

)
∈ π−1

− (span{ωh(s+)11}⊥)
}

trivial ≥ trivial ≥

≥ [26, Corollary 2.13]

[26, Lemma 2.16]

max
{
k : zkωh(s+)11 ∈ P(Eωh(s+))

} [22, Lemma 5.19]

= max
{
k : zkωh(s+)11 ∈ span{ωh(s+)11}⊥

}
= [26, Lemma 2.8]

∆ + ö− 1

Since the map f 7→ revW · V f is an isomorphism of K(ωh(s+)) onto
K(revωh(s+)), we have (keep in mind that by Lemma 6.2 the kernel of the
projection onto the first component in the space K(W ) coincides with the re-
spective kernel in the space K(ωh(s+)))

d = max
{
k ∈ N0 : zk(revωh(s+))

(
0

1

)
∈ K(revωh(s+))

}
.

Thus we obtain that d = ∆1 + ö1 − 1 and, remember [26, (2.15)], that d◦ =
∆1 − 1. ❑

Proof (of Proposition 6.1). Assume first that W ∈ M<∞ with K+(W )◦ 6= {0}
is given, and set (A,B) := (1, 0)W , E := A−iB, q := A−1B. Moreover, let h be
the general Hamiltonian whose monodromy matrix equals W , and denote the
data h consist of as in Definition 4.1. Since K+(W )◦ 6= {0}, by the above lemma,
the interval (σ0, σ1) of h is indivisible of type π

2 and σ1 is not left endpoint of
an indivisible interval.

Consider the general Hamiltonian rev h whose monodromy matrix is revW ,
cf. [25, Definition 3.40, Lemma 4.30]. Then the last interval (−σ1,−σ0) of rev h

is indivisible of type π
2 and ∆+(revH |(−σ2,−σ1)) = ∆−(H |(σ1,σ2)). Moreover, by

its definition, ö−σ1(rev h) = ö1. The function q can be written as q = revW ⋆ 0,
and hence is the intermediate Weyl-coefficient of rev h at −σ1. Since K+(W )◦ 6=
{0}, we have 1 6∈ Assoc1 P(E). By Theorem 3.2, the function q does not satisfy
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(III1). Corollary 4.10 implies that q satisfies (I), (II), and (IIIn) for some n ∈ N.
Moreover, the minimal number N for which (IIIn) holds is equal to

N := ∆−(H |(σ1,σ2)) + 1 .

Theorem 3.2 gives 1 ∈ AssocN P(E) \ AssocN−1 P(E). Again referring to
Lemma 6.3, we find dim K+(W )◦ = N − 1.

Conversely, assume that 1 ∈ AssocN P(E) \AssocN−1 P(E) with some N ≥
2. Then the function q := S−1

π
2
Sπ satisfies (I), (II), and (IIIN ), but not (IIIN−1).

Let h be the general Hamiltonian with Weyl-coefficient qh = q, and denote the
data h consists of as in Definition 4.1. By Corollary 4.10 the Hamiltonian
H |(σn,σn+1) satisfies (HS+) and ∆+(H |(σn,σn+1)) = N − 1; remember here that
N ≥ 2.

Let h̃ be the general Hamiltonian which is defined by the following data
(φ0 := φ+(H |(σn,σn+1)):

σ0, . . . , σn+1, σn+1 + 1 ,

H |(σj ,σj+1), j = 0, . . . , n,
1

t− σn+1
ξφ0ξ

T
φ0
, t ∈ (σn+1, σn+1 + 1) ,

ö1, . . . , ön, ön+1 := 0 ,

bj,1, . . . , bj,öj+1, j = 0, . . . , n, bn+1,1 := 0 ,

dj,0, . . . , dj,2∆j−1, j = 0, . . . , n, dn+1,0 = dn+1,1 := 0 .

Since, by Theorem 5.4, the general Hamiltonian h does not end with an indivis-
ible interval, h̃ is indeed well-defined by this data.

Let W̃ = (w̃ij)i,j=1,2 be the monodromy matrix of h̃. Then, by the definition

of h̃, we have W̃ ⋆ cotφ0 = q. Since q(0) = 0, it follows that φ0 = π
2 . Thus

w̃−1
22 w̃12 = S−1

π
2
Sπ. The function w̃−1

22 Sπ2 is entire, real, zerofree, and of bounded

type. Hence, it is a constant. However, w̃22(0) = 1 = Sπ
2
(0), and it follows that

w̃22 = Sπ
2
. Thus also w̃12 = Sπ.

The matrix rev W̃ belongs to M<∞ and satisfies (1, 0) rev W̃ = (Sπ
2
, Sπ).

By Lemma 6.3, we have dim K(rev W̃ )◦ = ∆+(H |(σn,σn+1)) = N − 1. ❑

Let us explicitly state the following obvious, but still noteworthy, consequence
of Proposition 6.1.

6.4 Corollary. Let E ∈ HB∗
<∞, E(0) = 1. Then the number dimK+(W )◦ does

not depend on W , whenever W is a matrix belonging to M<∞ with (1, 0)W =
(Sπ

2
, Sπ). ❑

6.2 Polynomials in de Branges Pontryagin spaces

The case N ≤ 0 in Theorem 3.2 can also be formulated in a slightly different
way. Again denote by C[z]m the set of all polynomials whose degree does not
exceed m.

6.5 Remark. Let E ∈ HB∗
<∞ and m ∈ N0. In order that there exists a real and

zerofree function U with
U · C[z]m ⊆ P(E) , (6.3)
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it is necessary and sufficient that for one (and hence for all) ϕ ∈ R the function
qϕ satisfies (I), (II), and (III−m).

This statement indeed is an immediate reformulation of the case ‘N ≤ 0’ in
Theorem 3.2, since the inclusion (6.3) just means that U ∈ domSm

E . �

We obtain a criterion for the existence of minimal (positive) admissible majo-
rants. Let us recall this notion.

6.6 Definition. Let E ∈ HB∗
0 and m : R → (0,∞). Then m is called a (positive)

admissible majorant for H(E), if there exists a function F ∈ H(E) \ {0} such
that

|F (x)| ≤ m(x), x ∈ R .

�

Admissible majorants are a classical object of investigation, going back as far
as to the famous Beurling-Malliavin Multiplier Theorem which can be seen as
a sufficient condition for a function m to be an admissible majorant for each
Paley-Wiener space H(e−iaz), a > 0. For more on this topic see, e.g., [17], [18],
[3], [4], and the literature cited there. Although in general it is very hard to
decide whether a given function is an admissible majorant for a space H(E),
minimal majorants are much easier accessible. Recall:

6.7 Definition. Let E ∈ HB∗
0 , and let m : R → (0,∞) be a (positive) admissible

majorant for H(E). Then m is called minimal, if for each (positive) admissible
majorant m′ for H(E) the implication

m′(x) ≤ m(x), x ∈ R ⇒ ∃C > 0 : m(x) ≤ Cm′(x), x ∈ R

holds. �

It is known that minimal majorants precisely correspond to one-dimensional
dB-subspaces of the space H(E) under consideration, cf. [3, Theorem 5.5], [4,
Theorem 4.9]. From Theorem 3.2 we thus obtain without further notice the
following statement.

6.8 Proposition. Let E ∈ HB∗
0 . Then there exists a minimal (positive) ad-

missible majorant for H(E) if and only if for one (and hence for all) ϕ ∈ R the
function qϕ satisfies (I), (II), and (III0). ❑

6.3 Extension of hermitian indefinite functions

Let a ∈ (0,∞) and κ ∈ N0. The class Pκ,a is defined as the set of all continuous

functions f : [−2a, 2a] → C with f(−t) = f(t), t ∈ [−2a, 2a], for which the
kernel

D(s, t) := f(t− s), s, t ∈ (−a, a) , (6.4)

has κ negative squares. Moreover, we set

P<∞,a :=
⋃

κ∈N0

Pκ,a .

Similarly, we define classes Pκ as the sets of continuous functions f : R → C
with f(−t) = f(t), t ∈ R, for which the kernel (6.4) has κ negative squares,
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and set P<∞ :=
⋃

κ∈N0
Pκ. If f ∈ P<∞,a or f ∈ P<∞, we write ind− f for the

actual number of negative squares of the kernel (6.4).
The extension problem for hermitian indefinite functions is the following

question: Given f ∈ P<∞,a. Do there exist extensions f̃ of f to the whole real
line which belong to P<∞? If yes, describe the totality of all of them.

6.9. Solution ([33], [28]): If f ∈ P<∞,a is given, then there exists a number
∆(f) ∈ N ∪ {0,∞} such that

(i) If ∆(f) = 0, then

∀κ ≥ ind− f ∃∞-many f̃ ∈ Pκ : f̃ |[−2a,2a] = f

(ii) If 0 < ∆(f) <∞, then

∃! f̃ ∈ Pind− f : f̃ |[−2a,2a] = f

∀ ind− f <κ< ind− f+∆(f) ∄ f̃ ∈ Pκ : f̃ |[−2a,2a] = f

∀κ ≥ ind− f+∆(f) ∃∞-many f̃ ∈ Pκ : f̃ |[−2a,2a] = f

(iii) If ∆(f) = ∞, then

∃! f̃ ∈ Pind− f : f̃ |[−2a,2a] = f

∀κ > ind− f ∄ f̃ ∈ Pκ : f̃ |[−2a,2a] = f

Moreover, if ∆(f) <∞, then there exists W ∈ M<∞ such that the formula

i

∫ ∞

0

f̃(t)eizt dt = W (z) ⋆ τ(z), Im z ≥ hf̃ > 0

parameterizes all extensions f̃ ∈ P<∞ of f . The parameter τ(z) thereby runs
through a certain class of functions which depends on ∆(f). �

The proof of existence of the constant ∆(f) is rather implicit, and in general
it is a hard task to determine the number ∆(f). For example, for in some
sense ‘smooth’ functions f ∈ P<∞,a in [33, Theorem 2.2, Theorem 2.3] a (quite
implicit) criterion to decide whether ∆(f) = 0 or ∆(f) > 0 has been given.

We can use Theorem 4.8 and Theorem 5.4 to determine even the exact value
of ∆(f) in a different (but admittedly also not very explicit) way. This is the
content of the following two propositions. If g ∈ P<∞, we set

Qg(z) := i

∫ ∞

0

g(t)eizt dt .

6.10 Proposition. Let f ∈ P<∞,a be given. Then ∆(f) = 0 if and only if for

some extension f̃ ∈ Pind− f of f the function Qf̃ satisfies (I), (II), (III1).

6.11 Proposition. Let f ∈ P<∞,a be given. Assume that ∆(f) > 0, and let f̊
be the unique extension of f in the class Pind− f . Then

∆(f) = inf
{
N ∈ N : Q

f̊
satisfies (I), (II), (IIIN )

}
− 1 ,

where the infimum of the empty set is understood as ∞.
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The proofs of these two propositions are based on the same observation, which
we shall therefore state separately.

Basic observation: Let g ∈ P<∞ and let a > 0. Let hg be the general Hamil-
tonian whose Weyl-coefficient is equal to Qg (given by data denoted as in Def-
inition 4.1). Denote by ωg the maximal chain of matrices corresponding to hg,
and set

ta(g) := sup
{
t ∈ {σ0} ∪

n⋃

i=0

(σi, σi+1) : etωg(t)lk < a, l, k = 1, 2
}
,

where et denotes the exponential type of the function under consideration. By
[20, Proposition 5.4, Lemma 5.8], the chain ωg(t)|(σ0,ta(g)), and hence the general
Hamiltonian (hg)�ta(g), is completely determined by the restriction g|[−2a,2a].

Hence, with a given function f ∈ P<∞,a we can associate a general Hamil-

tonian h̊f by setting h̊f := (hg)�ta(g) where g ∈ P<∞ is any extension of f .
Moreover, a function g ∈ P<∞ is an extension of f if and only if hg prolongues

h̊f .

Proof (of Proposition 6.10). Let f ∈ P<∞,a be given. Obviously there exist

infinitely many extensions of f in the class Pind− f if and only if h̊f is in the
limit circle case. This, however, is the case if and only if there exists an extension
g of f with ind− g = ind− f such that the corresponding general Hamiltonian
hg ends with an indivisible interval. Note here that, by the definition of ta(g),
the general Hamiltonian (hg)�ta(g) can in particular not end with an indivisible
interval. The assertion of Proposition 6.10 follows from Theorem 5.4. ❑

Proof (of Proposition 6.11). Let f ∈ P<∞,a and assume that ∆(f) > 0. Let

f̊ be the unique extension of f with ind− f̊ = ind− f . Then h̊f = hf̊ and this
general Hamiltonian is in the limit point case. Thus, there exist extensions
g ∈ P<∞ of f with ind− g > ind− f if and only if Qf̊ is an intermediate Weyl-

coefficient, and the minimal number of increase of negative squares (i.e. the
number ∆(f)) is equal to the weight of Qf̊ . The assertion of Proposition 6.11
follows from Theorem 4.8. ❑

Appendix A. Polynomial asymptotics for func-

tions in a de Branges Pontryagin space

Let E ∈ HB∗
<∞ and ϕ ∈ R be fixed. Our aim in this appendix is to give

sharp estimates on the polynomial growth of the functions S−1
ϕ F , F ∈ P(E).

Depending on the geometric structure of the algebraic eigenspace at ∞ of the
selfadjoint relation Aϕ, and on how close F is to the orthogonal complement of
this space, different situations occur.

The proof of the below Proposition A.1 is purely operator theoretic. How-
ever, in order to avoid introduction of even more terms and notation, we will
stick to the situation of present interest.

We will use the following notation (remember Remark 2.4, (ii), (iii)):

δϕ := dimEϕ
∞, δ◦ϕ := dim(Eϕ

∞)◦ ,

jF := min
{
j ∈ {0, . . . , δϕ − 1} : F 6⊥ zjSϕ

}
, F ∈ P(E), F 6∈ (Eϕ

∞)⊥ .
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A.1 Proposition. Let E ∈ HB∗
<∞ and ϕ ∈ R. Then the following hold:

(i) Assume that Eϕ
∞ = {0}. Then

lim
zc→i∞

F (z)

Sϕ(z)
= 0 , F ∈ P(E) .

(ii) Assume that δ◦ϕ < δϕ. Then

lim
zc→i∞

1

zδ◦
ϕ

F (z)

Sϕ(z)
= 0 , F ∈ (Eϕ

∞)⊥

lim
zc→i∞

1

zδ◦
ϕ+(δϕ−jF−1)

F (z)

Sϕ(z)
= −

[F, zjFSϕ]

[zδϕ−1Sϕ, z
δ◦
ϕSϕ]

, F 6∈ (Eϕ
∞)⊥

(iii) Assume that δ◦ϕ = δϕ > 0, and that limzc→i∞ |z2δϕqϕ+π
2
(z)| = ∞. Then

lim
zc→i∞

1

zδϕ

F (z)

Sϕ(z)
= 0 , F ∈ (Eϕ

∞)⊥

lim
zc→i∞

1

zδϕ+(δϕ−jF−1)

F (z)

Sϕ(z)
= 0 , F 6∈ (Eϕ

∞)⊥

(iv) Assume that δϕ > 0, and that s2δϕ−1 := limzc→i∞ z2δϕqϕ+π
2
(z) ∈ R\{0}.

In this case, certainly, δ◦ϕ = δϕ. Then

lim
zc→i∞

1

zδϕ

F (z)

Sϕ(z)
= 0 , F ∈ (Eϕ

∞)⊥

lim
zc→i∞

1

zδϕ+(δϕ−jF−1)

F (z)

Sϕ(z)
= −

[F, zjFSϕ]

s2δϕ−1
, F 6∈ (Eϕ

∞)⊥

(v) Assume that δ◦ϕ = δϕ > 0, and that s2δϕ−1 = 0. Also in this case, cer-
tainly, δ◦ϕ = δϕ. Then

lim
zc→i∞

1

zδϕ+1

F (z)

Sϕ(z)
= 0 , F ∈ (Eϕ

∞)⊥

lim
zc→i∞

1

zδϕ+(δϕ−jF−1)+1

F (z)

Sϕ(z)
= 0 , F 6∈ (Eϕ

∞)⊥

lim
zc→i∞

∣∣∣ 1

zδϕ+(δϕ−jF−1)

F (z)

Sϕ(z)

∣∣∣ = ∞ , F 6∈ (Eϕ
∞)⊥

(vi) Assume that δ◦ϕ = δϕ > 0, and that the limit limzc→i∞ z2δϕqϕ+π
2
(z) does

not exist in R ∪ {±∞}. Put s := lim supzc→i∞ |z2δϕqϕ+π
2
(z)| ∈ (0,∞].

Then

lim
zc→i∞

1

zδϕ+1

F (z)

Sϕ(z)
= 0 , F ∈ (Eϕ

∞)⊥

lim
zc→i∞

1

zδϕ+(δϕ−jF−1)+1

F (z)

Sϕ(z)
= 0 , F 6∈ (Eϕ

∞)⊥

lim inf
zc→i∞

∣∣∣ 1

zδϕ

F (z)

Sϕ(z)

∣∣∣ = 0 , F ∈ (Eϕ
∞)⊥

lim inf
zc→i∞

∣∣∣ 1

zδϕ+(δϕ−jF−1)

F (z)

Sϕ(z)

∣∣∣ ≤ |[F, zjF Sϕ]|

s
, F 6∈ (Eϕ

∞)⊥
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A.2 Remark. Using the canonical factorization of a generalized Nevanlinna func-
tion established in [12], one easily sees the following statement. For each gen-
eralized Nevanlinna function q, there exists a (unique) integer n, such that the
limit limzc→i∞ zkq(z) shows the behaviour

2n−3 2n−2 2n−1 2n 2n+1 2n+2 2n+3

. . .. . .

0 0 ∃
in

R

? ∃
in

[−
∞

,
0
)
∪

(0
,
∞

]

±∞ ±∞

k ∈ Z

limzc→i∞ zkq(z)

where ‘?’ means that the limit may or may not exist in R ∪ {±∞}. �

Proof (of Proposition A.1). Let us consider the selfadjoint extension Aϕ of the
multiplication operator SE , and recall some of its properties, cf. [21, Lemma 6.4,
Lemma 7.2]. Set

χ(z, ζ) :=
1

Sϕ(z)
KE(z, ζ), z ∈ C, Sϕ(z) 6= 0 .

Then we have ran(SE − z)⊥ = span{χ(z, .)}, and

χ(z, .) =
(
I + (z − z0)(Aϕ − z)−1

)
χ(z0, .), z, z0 ∈ C, Sϕ(z), Sϕ(z0) 6= 0 .

In the case that Eϕ
∞ = {0}, the assertion of Proposition A.1 will immediately

follow from this fact.
The case that Eϕ

∞ 6= {0} is much more involved, and its proof requires finer
arguments. Assume that Sϕ ∈ P(E), and consider another selfadjoint extension
of SE , namely A := Aϕ+π

2
. Note that, since Aϕ is a proper relation, and SE

has defect index (1, 1), the extension A is an operator. Using the definition of
A, we compute

(A− z)−1Sϕ(ζ) =
Sϕ(ζ) −

Sϕ+π
2

(ζ)

Sϕ+π
2

(z)Sϕ(z)

ζ − z
= −

KE(z, ζ)

Sϕ+π
2
(z)

.

Hence, and this is the crucial formula for the present proof, we have

[
(A− z)−1Sϕ(.), F (.)

]
= −

F (z)

Sϕ+π
2

(z) = qϕ+π
2
(z) ·

F (z)

Sϕ(z)
.

In particular,
[(A− z)−1Sϕ, Sϕ] = qϕ+π

2
(z) .

It now follows, e.g., from [15, Proposition 3.4, (3.10)], that the algebraic
eigenspace of A at 0 is the same as the algebraic eigenspace of Aϕ at ∞, i.e.
equal to Eϕ

∞. More precisely, we have 0 ∈ σ(A) if and only if Sϕ ∈ P(E). In this
case Sϕ ∈ domAδϕ−1, and there exist constants λ1, . . . , λδϕ−1 ∈ C such that

AkSϕ = zkSϕ +

k−1∑

j=0

λk−jz
jSϕ, k = 0, . . . , δϕ − 1 . (A.1)
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We now use the usual trick to obtain asymptotics for (A−z)−1|dom Ak , see, e.g.,
the proof of [30, Theorem 1.10], and write

zδϕ(A− z)−1Sϕ = A(A− z)−1Aδϕ−1Sϕ −

δϕ−1∑

j=0

zδϕ−j−1AjSϕ .

It follows that

[
A(A−z)−1Aδϕ−1Sϕ(.), F (.)

]
=zδϕ·qϕ+π

2
(z)·

F (z)

Sϕ(z)
+

δϕ−1∑

j=0

zδϕ−j−1[AjSϕ(.), F (.)] .

Since A is an operator, the left side of this relation tends to 0 if z tends to i∞
nontangentially, see, e.g., again the proof of [30, Theorem 1.10]. Keeping in
mind that Sϕ is real, we end up with the limit relation

lim
zc→i∞

(
zδϕ · qϕ+π

2
(z) ·

F (z)

Sϕ(z)
+

δϕ−1∑

j=0

zδϕ−j−1[F,AjSϕ]
)

= 0 . (A.2)

The asymptotic behaviour of the function qϕ+π
2
(z) = [(A − z)−1Sϕ, Sϕ] is well

understood, e.g., from the already cited result [30, Theorem 1.10]. We will in
the following rather refer to the more detailed and more up to date exposition
[15], see also [11]. By [15, Theorem 3.1, Corollary 4.4], we have

qϕ+π
2
(z) =

2δϕ−1∑

j=δϕ+δ◦
ϕ

sj−1

zj
+ o
( 1

z2δϕ−1

)
, z →̂ i∞ , (A.3)

with numbers sj ∈ R where sδϕ+δ◦
ϕ−1 6= 0. In fact, the numbers sj are given as

sj := [zδϕ−1Sϕ, z
jSϕ] .

The asymptotic expansion (A.3) need not be maximal. Still, in the case that
δ◦ϕ 6= 0, it is almost maximal in the following sense: The limit

s2δϕ−1 := − lim
zc→i∞

z2δϕ
(
q(z) +

2δϕ−1∑

j=δϕ+δ◦
ϕ

sj−1

zj

)

may or may not exist in R∪{±∞}. If it either does not exist or is equal to ±∞,
then the asymptotic expansion (A.3) cannot be prolongued. If s2δϕ−1 exists and
is a real number, then the expansion (A.3) can be prolongued for one more step,
and we have

qϕ+π
2
(z) =

2δϕ∑

j=δϕ+δ◦
ϕ

sj−1

zj
+ o
( 1

z2δϕ

)
, z →̂ i∞ .

This expansion cannot be prolongued anymore, in fact

lim
zc→i∞

∣∣∣z2δϕ+1
(
q(z) +

2δϕ∑

j=δϕ+δ◦
ϕ

sj−1

zj

)∣∣∣ = ∞ . (A.4)
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Proof of case (i): We have Eϕ
∞ = {0}, and hence Aϕ is an operator. From the

relation I + z(A − z)−1 = A(A − z)−1, and what we have already once noted
above, it follows that limzc→i∞(I + z(A− z)−1) = 0. Hence limzc→i∞ χ(z, .) = 0,
and we obtain

lim
zc→i∞

F (z)

Sϕ(z)
= lim

zc→i∞
[χ(z, .), F (.)] = 0 .

Proof of case (ii): We have 0 ≤ δ◦ϕ < δϕ, in particular, Eϕ
∞ 6= {0}. The leading

term in the asymptotic expansion (A.3) is z−δϕ−δ◦

ϕsδϕ+δ◦
ϕ−1, and we obtain

lim
zc→i∞

zδϕ+δ◦

ϕqϕ+π
2
(z) = sδϕ+δ◦

ϕ−1 6= 0 .

Assume that F ∈ (Eϕ
∞)⊥. Then the sum in (A.2) vanishes, and it follows that

lim
zc→i∞

1

zδ◦
ϕ

F (z)

Sϕ(z)
=

= lim
zc→i∞

(
zδϕ+δ◦

ϕqϕ+π
2
(z)
)−1

· lim
zc→i∞

(
zδϕ+δ◦

ϕqϕ+π
2
(z) ·

1

zδ◦
ϕ

F (z)

Sϕ(z)

)
= 0 .

This is the desired assertion.
Assume that F 6∈ (Eϕ

∞)⊥. Then, keeping in mind (A.1), we see that the
leading term in the sum in (A.2) is zδϕ−jF−1[F, zjFSϕ]. It follows that

0 = lim
zc→i∞

zδϕ−jF−1 ·
(
zδϕ+δ◦

ϕqϕ+π
2
(z) ·

1

zδ◦
ϕ+(δϕ−jF−1)

F (z)

Sϕ(z)
+

δϕ−1∑

j=jF

[F,AjSϕ]

zj−jF

)
,

and since δϕ − jF − 1 ≥ 0, the desired assertion follows.

Proof of case (iii): If F ∈ (Eϕ
∞)⊥, we write the first summand in (A.2) as

z2δϕqϕ+π
2
(z) ·

1

zδϕ

F (z)

Sϕ(z)
. (A.5)

For F 6∈ (Eϕ
∞)⊥, we write it as

zδϕ−jF−1 · z2δϕqϕ+π
2
(z) ·

1

zδϕ+(δϕ−jF−1)

F (z)

Sϕ(z)
. (A.6)

Proof of case (iv): Again writing the first summand in (A.2) as in (A.5) or
(A.6), respectively, and again keeping in mind (A.1), the assertion follows also
in this case.

Proof of case (v): If F ∈ (Eϕ
∞)⊥, we write the first summand in (A.2) as

z2δϕ+1qϕ+π
2
(z) ·

1

zδϕ+1

F (z)

Sϕ(z)
. (A.7)

For F 6∈ (Eϕ
∞)⊥, we write it as

zδϕ−jF−1 · z2δϕ+1qϕ+π
2
(z) ·

1

zδϕ+(δϕ−jF−1)+1

F (z)

Sϕ(z)
. (A.8)
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Due to (A.4), the first two formulas follow. In order to see the third formula,
we rather use (A.6) and observe that the second summand in (A.2), after being
multiplied with z−(δϕ−jF−1), tends to a nonzero limit.

Proof of case (vi): Due to Remark A.2, we have limzc→i∞ |z2δϕ+1qϕ+π
2
(z)| = ∞.

Hence, the first two formulas follow using (A.7) and (A.8).
For the proof of the second pair of formulas, we use (A.5) and (A.6) instead,

and choose a sequence (zn)n∈N such that

lim
n→∞

|z2δϕ
n qϕ+π

2
(zn)| = lim sup

zc→i∞

|z2δϕqϕ+π
2
(z)| .

❑

To finish with, let us explain the promised link of the sharp estimates given in
Proposition A.1 with the proof of Theorem 3.2.

A.3 Remark. In Steps 3 and 5 of the proof of Theorem 3.2 we have concluded
from the estimate (3.11) that Λ is a polynomial. Of course, its degree cannot
exceed n0 − 1, where n0 is as in Lemma 3.7. Since the function f belongs to

f ∈ P(E̊)[−]E
π
2
∞, the stronger estimates provided in Proposition A.1 imply in

all cases listed in Proposition A.1 with exception of case (v), that we have

lim inf
zc→i∞

1

zδ◦
ϕ

f(z)

Aqϕ(z)
= 0 .

It follows that deg Λ ≤ δ◦ϕ − 1, and hence that

h = f + ΛAqϕ ∈
(
P(E̊)[−]E

π
2
∞

)
+ span{zkSϕ : 0 ≤ k < δ◦ϕ}︸ ︷︷ ︸

=(E
π
2
∞)◦

⊆ P(E̊)[−]̊E
π
2
∞ .

Hence, unless limzc→i∞ z2δϕqϕ+π
2
(z) = 0, the argument made in Step 4 will not

be necessary.
This notice gains interest, if we remember that the conclusion of Steps 4 and

6 relies on the Ordering Theorem, which is very deep and most specific, whereas
all other machinery employed before was rather general, of geometric nature,
and (comparatively) elementary. �
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