
Majorization in de Branges spaces III. Division

by Blaschke products

Anton Baranov, Harald Woracek

Dedicated to Victor Petrovich Havin on the occasion of his 75th birthday.

Abstract

This paper is a part of a series dealing with subspaces of de Branges spaces
of entire functions generated by majorization on subsets of the closed up-
per half-plane. In the present, third, part we continue our study of a
certain Banach space generated by an admissible majorant. The main
theme is ”invariance of the unit ball with respect to division by Blaschke
products”. In connection with this topic representability by means of spe-
cial types of majorants plays an important role. We obtain some (positive
and negative) results on invariance when dividing by Blaschke factors,
and characterize those unit balls representable by log-superharmonic ma-
jorants.
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1 Introduction

A de Branges space H is a Hilbert space whose elements are entire functions,
and which satisfies the following axioms:

(dB1) For each w ∈ C the point evaluation functional F 7→ F (w) is con-
tinuous in the norm of H.

(dB2) If F ∈ H, also the function F#(z) := F (z̄) belongs to H and
‖F#‖H = ‖F‖H.

(dB3) If w ∈ C \ R and F ∈ H, F (w) = 0, then

z − w̄

z − w
F (z) ∈ H and

∥∥∥z − w̄

z − w
F (z)

∥∥∥
H

=
∥∥F

∥∥
H

.

In [dB1]–[dB5] L. de Branges developed a deep and rich structure theory of such
spaces. The key role thereby is played by the de Branges subspaces of a given
space H, i.e. those subspaces of H which become themselves de Branges spaces
if endowed with the inner product inherited from H.

Originating from the Beurling–Malliavin Multiplier Theorem, and some
more recent generalizations to shift-coinvariant subspaces of the Hardy space,
cf. [BM], [HM1], [HM2], a general concept of generating de Branges subspaces
by majorization has evolved: If m is a function defined on some subset D of the
closed upper half-plane C+ ∪ R, one may define

Rm(H) := closH
{

F ∈ H : ∃C > 0 : |F (z)|, |F (z)| ≤ Cm(z), z ∈ D
}

.
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Here closH stands for the closure taken in the norm of H. Provided that
Rm(H) 6= {0} and m satisfies some mild regularity condition, Rm(H) is a
de Branges subspace of H. We have studied this concept in our previous papers
[BW1]–[BW4]. For example, we have shown that every de Branges subspace of
H can be obtained in this way, and have investigated which majorants defined
on which subsets produce (or may produce) a prescribed (family of) de Branges
subspace. Also, we have considered the linear space

Rm(H) :=
{

F ∈ H : ∃C > 0 : |F (z)|, |F (z)| ≤ Cm(z), z ∈ D
}
,

which becomes a Banach space if endowed with the stronger norm

‖F‖m := max
{
‖F‖H , min{C ≥ 0 : |F (z)|, |F#(z)| ≤ Cm(z), z ∈ D}

}
,

F ∈ Rm(H) .

Apparently, the space Rm(H) is exactly that part of Rm(H) about whose ele-
ments one has explicit information. Hence, this Banach space is an object of
interest. The geometric structure of Rm(H) is in general complicated, but an
intriguing topic. For example, in most cases Rm(H) will not be reflexive, cf.
[BW4].

The present paper is devoted to a further study of Rm(H). It is more oriented
towards complex analysis topics than towards Banach space questions; the main
theme here is ”dividing out zeros” and ”subharmonicity”.

We now give a short overview of the main results of the paper, sometimes
in a simplified and less general form (in brackets we refer to the corresponding
statements in the text).

It is well known that, if H is a de Branges space and L is one of its de Branges
subspaces, then the unit ball

B(L) :=
{
F ∈ L : ‖F‖H ≤ 1

}

of L is invariant with respect to dividing out zeros in the following sense: If
F ∈ B(L) and P is a Blaschke product for C+ such that P−1F is entire, then
P−1F ∈ B(L). We pose the question whether the same holds true for the unit
ball

Bm(H) :=
{
F ∈ Rm(H) : ‖F‖m ≤ 1

}

of the Banach space Rm(H). In general the answer will be negative; obstacles
are naturally appearing when majorization is required off the real axis (see, e.g.
Example 4.2). However, for a particular class of majorants m defined on open
subsets of C+, positive answers can be given. The crucial property of m in this
respect is that the function (− logm) is subharmonic; we will call such majorants
log-superharmonic. This property allows us to employ the Phragmén–Lindelöf
Principle.

1.1 Theorem. (Theorem 4.4 and Corollary 4.5) Let D be an open subset of
C+, and let m ∈ AdmD H be log-superharmonic. Moreover, let F ∈ Bm(H)\{0}
and let P be a Blaschke product for C+ with dP |C+ ≤ dF |C+ . If, for some β > 0,

∣∣∣F (ζ)

P (ζ)

∣∣∣ ≤ β lim inf
z→ζ
z∈D

m(z), ζ ∈ ∂D \ R ,
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then we have P−1F ∈ Rm(H), and

∣∣∣F (z)

P (z)

∣∣∣ ≤ max{β, ‖F‖m}m(z), z ∈ D .

In particular, if m ∈ AdmC+ H is log-superharmonic, F ∈ Bm(H) and P is a
Blaschke product for C+ with dP |C+ ≤ dF |C+ , then P−1F ∈ Bm(H).

Of course, being log-superharmonic is a quite strong property. However,
one should notice that still every de Branges subspace of H can be realized
as Rm(H) with a majorant m of this kind, cf. [BW3]. In connection with the
division problem, the following question appears: Which unit balls Bm0(H) (or,
more generally, which subsets B of H) are equal to a unit ball Bm(H) with some
log-superharmonic majorant m defined on all of C+?

We also consider two more special classes of majorants, namely, Smirnov
class N+ and Hardy class Hp majorants. A function m ∈ AdmC+ H is called an
N+-majorant (a Hp-majorant, p > 0) for H, if it is of the form

m(z) =
∣∣e−iazf(z)E(z)

∣∣, z ∈ C+ ,

with some a ≤ 0 and f being outer (respectively, f being an outer function in
Hp).

The next theorem gives a description of those subsets B which can be realized
as unit balls with some log-superharmonic majorant in C+. Interestingly, it
turns out that these balls can already be realized by majorization along the real
axis in conjunction with a restriction of exponential growth; also a majorant
may always be chosen to be an N+-majorant. In the statement we use the
following upper envelope majorant mB(w) = supF∈B |F (w)|.

1.2 Theorem. (Theorem 5.3) Let H be a de Branges space, and let E ∈ HB be
such that H = H(E). Moreover, let B ⊆ B(H), B 6= ∅, {0}. Then the following
are equivalent:

(i) There exists a log-superharmonic majorant m ∈ AdmC+ H, such that B =
Bm(H).

(ii) There exists an N+-majorant m ∈ AdmC+ H, such that B = Bm(H).

(iii) We have B = BmB |R(H(a)) (majorization on the real axis) and

∫

D

(
log+ mB(t)

|E(t)|
) dt

1 + t2
< ∞ . (1.1)

Here a = mtH B is the so-called mean type of the set B, and

H(a) :=
{
F ∈ H : mtH F, mtH F# ≤ a

}

is the subspace defined by exponential growth.

The convergence of the logarithmic integral in (1.1) is a mild restriction, it is
satisfied, e.g., whenever the function E is of finite order (see Proposition 5.10).

An analogous description may be given for sets B representable as unit balls
Bm(H) with some Hp-majorant m.

3



1.3 Proposition. (Proposition 5.14) Let H be a de Branges space, let B be
a nonempty subset of its unit ball, and let p ∈ (0,∞). Then the following are
equivalent:

(i) There exists an Hp-majorant m ∈ AdmC+ H, such that B = Bm(H).

(ii) We have B = BmB |R(H(a)), a = mtH B, and
∫

R

(
mB(t)
|E(t)|

)p
dt < ∞.

In the last part of the paper we study the question if a unit ball Bm0(H) gen-
erated by an arbitrary majorant is contained or does contain unit balls Bm(H)
generated by log-superharmonic majorants.

This question is also of interest for the following reason: In the first case, we
obtain supersets B such that division of a function F in Bm0(H) by a Blaschke
product cannot lead further out than B and, in the second case, we obtain
subsets B which are invariant with respect to division by Blaschke products.

It is a noteworthy fact that the desription of those balls which are larger
than Bm0(H) is fairly simple, whereas it is quite hard to get hands on the
set of those which are contained in Bm0(H). The following theorem provides
an answer to the first question. Here we denote by m♭

0 the upper envelope,
m♭

0(w) = supF∈Bm0 (H) |F (w)|, w ∈ C+.

1.4 Theorem. (Theorem 6.3) Let H = H(E) be a de Branges space, and let
m0 ∈ AdmH. Then a log-superharmonic majorant m with Bm0(H) ⊂ Bm(H)
exists if and only if ∫

R

(
log+ m♭

0(t)

|E(t)|
) dt

1 + t2
< ∞.

The problem of existence of smaller balls generated by log-superharmonic
majorants is more delicate, and is related to a completely different topic, namely
the existence of real zerofree elements in Bm0(H).

1.5 Theorem. (Theorem 6.5) Let H be a de Branges space, and let m0 ∈
AdmH. Then the following are equivalent:

(i) There exists an H2-majorant m with Bm(H) ⊂ Bm0(H).

(ii) There exists an element F ∈ Bm0(H) which satisfies F# = F and which
has no zeros in C \ R.

The paper is organized as follows. Sections 2 and 3 are of preliminary char-
acter. In Section 2 we set up our notation, recall some basic facts on de Branges
spaces, and provide some preparatory results, among them a variant of the
Monotone Convergence Theorem for nondecreasing nets (rather than sequences)
of functions. In Section 3, we introduce the majorants mB and m⊥

B associated
to a subset B ⊆ B(H). These are essential tools, and will be extensively used
throughout the paper.

Sections 4 and 5 contain the main results of the paper. In Section 4 we study
the problem of division by Blaschke products and prove Theorem 4.4 on dividing
out zeros for log-superharmonic majorants, In Section 5 we characterizes those
subsets B of a de Branges space H which are equal to a unit ball Bm(H) with
some log-superharmonic majorant defined on all of C+. Finally, in Section 6,
we study the question if a unit ball Bm0(H) generated by an arbitrary majorant
is contained or does contain unit balls Bm(H) generated by log-superharmonic
majorants.
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2 Preliminaries

a. Functions of bounded type.

To start with, let us recall a few notations from bounded type theory. Our
standard reference in this respect will be [RR].

We will denote by N (C+) the class of function which are analytic and
of bounded type in C+, and by Hp(C+), p ∈ (0,∞), the respective Hardy
space. Moreover, N+(C+) will denote the Smirnov class, i.e. those functions
f of bounded type whose inner-outer factorization is of the form BSF with
a Blaschke product B, a singular inner function S, and an outer function F .
Since we will use these notations excusively for the open upper half-plane, we
will drop the argument C+.

For later use, let us recall the definition of an outer function. If k : R → [0,∞]
is measurable, and log k ∈ L1( dt

1+t2 ), then an analytic function fk is well-defined

on C+ by

fk(z) := exp
( 1

iπ

∫

R

( 1

t − z
− t

1 + t2

)
log k(t) dt

)
.

The boundary values of |fk| along R are equal almost everywhere to k. Actually,
the function log |fk| is just the Poisson integral of log k. Let us note explicitly
that always fk1 · fk2 = fk1·k2 .

A function f is called outer, if it is of the form γfk with some γ ∈ C, |γ| = 1,
and some k : R → [0,∞], log k ∈ L1( dt

1+t2 ). Sometimes, one speaks more
specifically of an outer function for N . If, additionally, the function k belongs
to Lp(dt), then f belongs to Hp, and one says that f is outer for Hp.

The following statement will be used later on. It is seen by a simple and
standard argument and, apparently, is well known. Therefore we omit the proof.

2.1 Lemma. Let k : R → [0,∞] be such that log k ∈ L1( dt
1+t2 ). Assume that

(i) k is continuous.

(ii) the set S := k−1({0,∞}) is discrete.

(iii) for each x0 ∈ S there exists a number n(x0) ∈ Z, such that

lim
t→x0

k(t)

|t − x0|n(x0)
∈ (0,∞) . (2.1)

Let F be a function which is defined and meromorphic on some domain G ⊇
C+ ∪ R, and which satisfies

lim
z→x0

|F (z)|
|z − x0|n(x0)

∈ (0,∞), x0 ∈ S, F (z) 6= 0,∞, z ∈ G \ S .

Then the function |F−1fk| has a continuous and positive extension to C+ ∪ R,
namely by {

k(x)
|F (x)| , x 6∈ S,

limt→x0

k(t)
|F (t)| , x ∈ S.

b. Zero-divisors, mean type, ordering.
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First, we deal with zero-divisors associated with a function. Let D ⊆ C be a
nonempty open set, and let f : D → C be analytic and not identically zero.
Then the zero-divisor df associated with f is the map which assigns to each
point w ∈ D the multiplicity of w as a zero of f . In other words, df (w) is the
unique nonnegative integer, such that

lim
z→w

|f(z)|
|z − w|df (w)

∈ (0,∞) . (2.2)

We will use a slightly different formulation of this definition, in order to be able
to apply the notation df to arbitrary functions.

2.2 Definition. Let D ⊆ C and f : D → C be an arbitrary function. Then the
zero-divisor df of f is the function df : C → N0 ∪ {+∞}, defined as

df (w) := inf

{
n ∈ N0 :

∃ neighborhood U of w, s.t.
inf z∈U∩D

|z−w|n 6=0
|z − w|−n|f(z)| > 0

}
, w ∈ C .

Here the infimum of the empty set is understood as +∞.

For analytic functions f and points w ∈ D, this definition of df (w) clearly
coincides with the above stated usual definition via (2.2). Of course, for an
arbitrary function f we will not have a limit relation like (2.2). But at least
the speed of decrease of f towards w will be bounded by |z − w|df (w). Let
us moreover note that the above definition of df is made in such a way that
df (w) = 0, w 6∈ D.

The notation dindex will also be applied when ‘index is not a single function,
but a set of functions: If B is a set of functions, we will denote

dB(w) := inf{df (w) : f ∈ B} .

Note that, provided B is nonempty, this infimum is attained.
Next, we discuss the notion of mean type. If f is analytic and of bounded

type in C+, then there exists a number c ∈ R such that

lim sup
r→∞
r∈M

1

r
log |f(a + reiθ)| = c · sin θ , (2.3)

whenever θ ∈ (0, π), a ∈ R, and M ⊆ R+ is a subset of infinite logarithmic
length. The number c is usually referred to as the mean type of f . Again, we
wish to apply the notion of mean type to a broader class of functions.

2.3 Definition. Let D ⊆ C+ and f : D → C be an arbitrary function. Then
the mean type of f is defined as the number

mt f := inf
{ 1

sin θ
lim sup

r→∞
r∈M

1

r
log |f(a + reiθ)|

}
∈ [−∞, +∞] ,

where the infimum is taken over all θ ∈ (0, π), a ∈ R, and subsets M ⊆ R+ of
infinite logarithmic length, such that {a + reiθ : r ∈ M} ⊆ D. If B is a set of
functions, we set mtB := sup{mt f : f ∈ B}.
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Apparently, this notion coincides with the usual one if f ∈ N . Of course, for an
arbitrary function f , we cannot expect a regular growth behaviour like (2.3).
But at least the asymptotic growth of f on some not too small set is controlled
by mt f .

Finally, let us define a partial order on functions taking nonnegative values.

2.4 Definition. Let Di ⊆ C and fi : Di → [0,∞), i = 1, 2. Then we will write

f1 4 f2
def⇐⇒ D1 ⊇ D2 and f1|D2 ≤ f2.

In the context of majorization, the use of this notation is sometimes practical.
Let us explain this fact. Denote by AdmH the set of all functions m : D →
[0,∞], where D is some nonempty subset of C+ ∪ R, such that

(Adm1) supp dm ⊆ R.

(Adm2) Rm(H) contains a function which does not vanish identically.

If we wish to be specific about the domain of m, we will write m ∈ AdmD H
when m is defined on D. As we saw in [BW3, Theorem 3.1], these functions are
exactly those for which Rm(H) becomes a de Branges subspace of H.

Further, denote by β the assignment

β :

{
AdmH → {B ⊆ H : B 6= ∅, {0} }

m 7→ Bm(H)
(2.4)

The relevance of the relation ‘4’ is seen from the following simple observation:
The assignment β is order preserving, i.e. m1 4 m2 implies that β(m1) ⊆ β(m2).

c. De Branges spaces.

Most of the facts collected in this subsection can be found in [dB6]. To start
with, note that by (dB1) the space H is a reproducing kernel Hilbert space.
Denote its reproducing kernel by K(w, z), i.e. let K(w, .) be the unique element
of H such that

F (w) :=
(
F, K(w, .)

)
H

, F ∈ H, w ∈ C .

Moreover, set

∇H(w) := ‖K(w, .)‖H = K(w, w)
1
2 , w ∈ C .

The function w 7→ K(w, .) is a (weakly- and hence norm-) analytic Banach space
valued function. This implies in particular that the function ∇H is continuous.
Moreover, let us note that, by (dB2), we have ∇H(z) = ∇H(z), z ∈ C. By
(dB3), the function ∇H does not vanish at any point of ∈ C \ R.

In the very beginning of our exposition we gave an axiomatic definition of
de Branges spaces, namely via (dB1)–(dB3). For many purposes it is essential
that de Branges spaces can be constructed also in a more concrete way.

2.5 Definition. An entire function E is said to be of Hermite–Biehler class, if
it satisfies
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(HB) |E(z)| < |E(z)|, z ∈ C+.

The set of all Hermite–Biehler functions is denoted by HB.

For each function E ∈ HB, there exists a continuous and increasing function
ϕE : R → R, such that

E(x) = |E(x)| exp(−iϕE(x)), x ∈ R .

A function ϕE with these properties is called a phase function of E. Clearly,
each two phase functions of E differ only by an additive constant.

Sometimes, it is also useful to relate the above notions to the zeros of the
function E. Let us mention some facts in this direction:

2.6 Remark. Let E ∈ HB, and denote by (zn)n the (finite or infinite) sequence
of nonreal zeros of E.

(i) The sequence (zn)n satisfies the Blaschke condition

∑

n

Im
1

zn
< ∞ ,

and we have
E#(z)

E(z)
= γe−iaz

∏

n

1 − z/zn

1 − z/zn
,

where |γ| = 1 and a = mt(E−1E#) ≤ 0.

(ii) We have

ϕ′
E(x) = −a

2
+

∑

n

| Im zn|
|x − zn|2

, x ∈ R .

With a function E ∈ HB, a space of entire functions can be associated.

2.7 Definition. For E ∈ HB denote by H(E) and ‖.‖E the linear space and
norm

H(E) :=
{
F entire :

F

E
,
F#

E
∈ H2

}
,

‖F‖E :=
(∫

R

∣∣∣F (t)

E(t)

∣∣∣
2

dt
) 1

2

, F ∈ H(E) .

2.8. De Branges spaces via Hermite–Biehler functions: The following
statements hold true:

(i) If E ∈ HB, then H(E) endowed with the norm ‖.‖E is a de Branges space.

(ii) If H is a de Branges space, then there exists a function E ∈ HB such that
H = H(E) and ‖.‖H = ‖.‖E.

(iii) Let E1, E2 ∈ HB. Then H(E1) = H(E2) and ‖.‖E1 = ‖.‖E2 , if and only if
there exists a matrix U ∈ R2×2 with detU = 1 such that

(A2, B2) = (A1, B1)U ,

where A := 1
2 (E + E#), B := i

2 (E − E#).
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In the following we will always understand equality of de Branges spaces as
including equality of norms, i.e. writing H(E1) = H(E2) implicitly includes that
‖.‖E1 = ‖.‖E2.

Since a de Branges space H = H(E) is fully determined by the function E,
all its properties must correspond to properties of E. Let us mention a couple
of relations of this kind.

2.9. Relations between H(E) and E: Let H be a de Branges space, and let
E ∈ HB be such that H = H(E). Then the following hold:

(i) We have dH(x) = dE(x), x ∈ R.

(ii) The reproducing kernel K(w, .) of H is given as

K(w, z) =
E(z)E#(w̄) − E(w̄)E#(z)

2πi(w̄ − z)
, z, w ∈ C, z 6= w ,

and

K(z, z) :=
i

2π

(∂E

∂z
(z)E#(z) − E(z)

∂E#

∂z
(z)

)
, z ∈ C .

(iii) We have

∇H(z) =
( |E(z)|2 − |E(z)|2

4π Im z

)1/2

, z ∈ C \ R ,

and
∇H(x) = π−1/2|E(x)|(ϕ′

E(x))1/2, x ∈ R.

The following statement is very easy to see, but still often useful.

2.10 Lemma. Let H be a de Branges space, and let E ∈ HB be such that
H = H(E). Then

(i) The function |E(z)|−1∇H(z), z ∈ C+, has a continuous and positive ex-
tension to C+ ∪ R.

(ii) We have mt(|E|−1∇H) = 0. More precisely,

lim
r→∞

1

r
log

∇H(reiϑ)

|E(reiϑ)| = 0, ϑ ∈ (0, π) .

Proof. If E has no real zeros, the assertion in (i) is clear. The general case can
be easily reduced to this case by dividing out the real zeros of E.

The assertion (ii) follows from the inequalities (w0 ∈ C+ fixed)

|E(w0)|(1 − |E(w0)
E(w0)

|)
2π∇H(w0)

1

|z − w0|
≤ ∇H(z)

|E(z)| ≤
1

2
√

π

1√
Im z

, z ∈ C+ ,

see e.g. [BW3, (2.6)]. ❑

Sometimes a property of a de Branges space H = H(E) will be defined in
terms of the function E. Proceeding in this way makes it of course necessary to
show that the notion under consideration is well-defined. For this purpose, the
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following facts are useful: Let E1, E2 ∈ HB and assume that H(E1) = H(E2).
Then for some positive constants c, C > 0, we have

c ≤
∣∣∣E1(z)

E2(z)

∣∣∣ ≤ C, z ∈ C+ ∪ R . (2.5)

The function E−1
2 E1 is of bounded type and has an analytic extension to some

domain containing the closed half-plane C+∪R. This extension does not vanish
at any point of R ∪ C+, and satisfies mt(E−1

2 E1) = 0. Thus, as it is seen e.g.
from the Theorem of Szegö-Solomentsev [RR, Theorem 3.13], it is outer.

It turns out practical to use a notation of mean type relative to a given
de Branges space.

2.11 Definition. Let H be a de Branges space, let D ⊆ C and f : D → C.
Then we denote

mtH f := mt
f

∇H
.

If B is a set of functions, we again set mtH B := supf∈B mtH f .

Finally, let us spend a couple of lines on the notion of de Branges subspaces.

2.12 Definition. Let H be a de Branges space. A closed subspace L of H is
called a de Branges subspace of H, if it is itself, with the norm inherited from
H, a de Branges space.

A closed subspace L of H is a de Branges subspace of H if and only if

F ∈ L ⇒ F# ∈ L, F ∈ L, w ∈ C+, F (w)=0 ⇒ F (z)

z − w
∈ L .

Certain de Branges subspace are defined by restriction of exponential growth:
If a ≤ 0, let us denote

H(a) :=
{
F ∈ H : mtH F, mtH F# ≤ a

}
.

The fact that H(a) is a de Branges subspace of H, provided it contains a function
which does not vanish identically, has been proved e.g. in [KW, §5]. Moreover,
we have:

(i) If L is a de Branges subspace of H, then mtH L = mtH ∇L.

(ii) Provided H(a) 6= {0}, we have mtH H(a) = a.

d. Monotone Convergence Theorem for nets of functions.

We will need the following variant of the Lebesgue Monotone Convergence The-
orem, which deals with nondecreasing nets of nonnegative functions, rather than
nondecreasing sequences. We will thereby require some additional properties of
the functions under consideration, namely lower semicontinuity. Other variants
of the Monotone Convergence Theorem rather put some hypothesis on the order
structure of the index set, see e.g. [H-J].
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2.13 Proposition. Let X be a locally compact and σ-compact Hausdorff space,
and let λ be a positive Borel measure which is complete, regular and satisfies
λ(K) < ∞ for all compact sets K ⊆ X.

Let (I,≤) be a directed set, and let fi : X → [0,∞], i ∈ I, be a family
of lower semicontinuous functions which is nondecreasing, i.e. fi(x) ≤ fj(x),
x ∈ X, whenever i ≤ j. Set f(x) := supi∈I fi(x), x ∈ X. Then

∫

X

f dλ = sup
i∈I

∫

X

fi dλ . (2.6)

Proof. The inequality ‘≥’ is trivial. For the proof of the converse inequality,
choose a function g0 which is lower semicontinuous, everywhere positive, and
satisfies

∫
X

g0 dλ = 1, e.g. an appropriate step-function with open level sets, cf.
[R].

Let s be a nonnegative and bounded upper semicontinuous function with
s ≤ f . Moreover, let ǫ > 0 be given. By semicontinuity, the set

Ei :=
{
x ∈ X : fi(x) − s(x) + ǫg0(x) > 0

}

is open. Let x ∈ X be given. Assume that f(x) < ∞, then there exists
i0 ∈ I such that fi0(x) > f(x) − ǫg0(x) ≥ s(x) − ǫg0(x), i.e. x ∈ Ei0 . If
f(x) = ∞, since s(x) < ∞, again there exists i0 ∈ I with fi0(x) > s(x)−ǫg0(x).
We conclude that X =

⋃
i∈I Ei. By σ-compactness there exists a countable

subcover {Ei1 , Ei2 , . . .}.
For each n ∈ N choose an index jn ∈ I with jn ≥ i1, . . . , in. Since each fi in

nonnegative and the family (fi)i∈I is monotone, we obtain

sup
i∈I

∫

X

fi dλ ≥
∫

X

fjn
dλ ≥

∫
n
S

k=1

Eik

fjn
dλ ≥

∫
n
S

k=1

Eik

s dλ − ǫ

∫
n
S

k=1

Eik

g0 dλ .

Letting n ∈ N tend to infinity, it follows that supi∈I

∫
X

fi dλ ≥
∫

X
s dλ − ǫ.

Since ǫ > 0 was arbitrary, this yields supi∈I

∫
X fi dλ ≥

∫
X s dλ. Finally, since

the measure λ is regular and s was arbitrary, it follows that supi∈I

∫
X

fi dλ ≥∫
X

f dλ, cf. [R, Theorem 2.25] which applies to each nonnegative step-function
not exceeding f . ❑

2.14 Remark.

(i) Since (fi)i∈I is nondecreasing, both suprema appearing in Proposition
2.13 are actually limits. Hence, by taking linear combinations, we obtain
that ∫

X

lim
i∈I

fi dλ = lim
i∈I

∫

X

fi dλ

whenever (fi)i∈I satisfies the stated hypothesis, and λ is a complex (com-
plete, regular) Borel measure.

(ii) Let us explicitly note that, in order to have (2.6), some hypothesis on the
net (fi)i∈(I,≤) is needed. For example, let I be the set of all finite subsets
of [0, 1] ordered by set-theoretic inclusion. Moreover, let fi, i ∈ I, be the
indicator function of i. Then f(x) := supi∈I fi(x) = 1, x ∈ [0, 1]. Hence,
integrating with respect to the Lebesgue measure,

∫

[0,1]

f dx = 1 but

∫

[0,1]

fi dx = 0, i ∈ I .
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This example also explains why we cannot employ a compactness argu-
ment in Proposition 2.13. Since fi = 0 in L1(dx), i ∈ I, we trivially have
limi∈I(fi dx) = 0 in C([0, 1])′. The point here is that for a nondecreasing
net of functions, unlike for a nondecreasing sequence, the L1-limit and
pointwise limit (fi)i∈I need not coincide almost everywhere.

As a consequence of Proposition 2.13 we obtain the following two statements,
and these are what will be needed later on in §6. A function f is called super-
harmonic, if (−f) is subharmonic.

2.15 Corollary. Let D ⊆ C+ be open, let (I,≤) be a directed set, and let
fi : D → (−∞,∞], i ∈ I, be a family of superharmonic functions. Assume that
(fi)i∈I is nondecreasing and that, for some index i0 ∈ I, there exists a harmonic
function g : D → R with g ≤ fi0 . Set f := supi∈I fi. Then f is superharmonic.

Proof. First note that f is, as supremum of a family of lower semicontinuous
functions, itself lower semicontinuous. Moreover, since the family (fi)i∈I is
nondecreasing, we have f = supi≥i0 fi.

Let U be a closed disk which is entirely contained in D, let a be its center
and r its radius. We have

fi(a) ≥ 1

2π

∫ 2π

0

fi(a + reit) dt, i ∈ I, g(t) =
1

2π

∫ 2π

0

g(a + reit) dt ,

and hence also

(fi − g)(a) ≥ 1

2π

∫ 2π

0

(fi − g)(a + reit) dt, i ∈ I .

Taking the supremum over all i ≥ i0 yields

f(a) − g(a) ≥ sup
i≥i0

1

2π

∫ 2π

0

(fi − g)(a + reit) dt .

The family (fi − g)i≥i0 is a nondecreasing family of nonnegative lower semicon-
tinuous functions. Hence, by Proposition 2.13,

sup
i≥i0

1

2π

∫ 2π

0

(fi − g)(a + reit) dt =
1

2π

∫ 2π

0

(f − g)(a + reit) dt .

Using once again the mean value property of g, we conclude that

f(a) ≥ 1

2π

∫ 2π

0

f(a + reit) dt .

❑

2.16 Corollary. Let (I,≤) be a directed set, and let ki : R → [0,∞], i ∈ I, be
a nondecreasing family of continuous functions. Assume that

log ki ∈ L1
(

dt
1+t2

)
, i ∈ I, sup

i∈I

∫

R

log+ ki(t)
dt

1 + t2
< ∞ . (2.7)

Denote k(x) := supi∈I ki(x) = limi∈I ki(x), x ∈ R. Then log k ∈ L1( dt
1+t2 ) and

lim
i∈I

fki
(z) = fk(z), z ∈ C+ .

12



Proof. Clearly, we have

log− k = −min{log k, 0} ≤ log− ki ≤ | log ki|, i ∈ I .

In particular, log− k ∈ L1( dt
1+t2 ).

The functions log+ ki, i ∈ I, are continuous, nonnegative, and form a nonde-
creasing family. Moreover, log+ k = supi∈I log+ ki. Thus, by Proposition 2.13
and the present assumption,

∫

R

log+ k(t)
dt

1 + t2
=

∫

R

[
sup
i∈I

log+ ki(t)
] dt

1 + t2
= sup

i∈I

∫

R

log+ ki(t)
dt

1 + t2
< ∞ .

It follows that log k ∈ L1( dt
1+t2 ).

Let z ∈ C+ be fixed. Then, as mentioned in Remark 2.14, (i), we may apply
Proposition 2.13 with the complex measure

dλ(t) :=
( 1

t − z
− t

1 + t2

)
dt .

It follows that

lim
i∈I

∫

R

( 1

t − z
− t

1 + t2

)
log+ ki(t) dt = lim

i∈I

∫

R

( 1

t − z
− t

1 + t2

)
log+ k(t) dt .

Fix i0 ∈ I. The functions log− ki0 − log− ki, i ∈ I, i ≥ i0, are continuous,
nonnegative, and form a nondecreasing family. Thus

lim
i∈I

∫

R

( 1

t − z
− t

1 + t2

)
log− ki(t) dt =

= − lim
i∈I

∫

R

( 1

t − z
− t

1 + t2

)[
log− ki0(t) − log− ki(t)

]
dt+

+

∫

R

( 1

t − z
− t

1 + t2

)
log− ki0 (t) dt =

∫

R

( 1

t − z
− t

1 + t2

)
log− k(t) dt .

❑

3 The functions mB and m⊥
B

If H is a de Branges space, denote its unit ball by B(H), i.e.

B(H) :=
{
F ∈ H : ‖F‖H ≤ 1

}
.

3.1 Definition. Let H be a de Branges space, and let B be a subset of its unit
ball which contains a function that does not vanish identically. Denote by mB

the function

mB :

{
C+ ∪ R → [0,∞)

w 7→ supF∈B |F (w)| .

3.2 Remark. Let us explicitly note the following facts:

13



(i) The supremum in the definition of mB is finite, since B ⊆ B(H) implies
that |F (z)| ≤ ∇H(z), F ∈ B.

(ii) We have mB(H)(w) = ∇H(w), w ∈ C+ ∪ R.

(iii) If B1 ⊆ B2, then mB1 ≤ mB2 .

For particular sets B, namely for unit balls Bm(H) generated by majorization,
we had already used this function in our previous work, cf. [BW4, §4]. There,
we had defined for a majorant m the function

m♭(w) := sup
F∈Bm(H)

|F (w)|
(

= mBm(H)

)
.

We will keep this notation also in the present paper.
It will be important to know that the function mB is fairly smooth, and

reflects properties of B in many respects. Let us collect some statements of
this kind. Similar as in [BW4, Proposition 4.6], the proof is based on a normal
family argument.

3.3 Lemma. Let H be a de Branges space, and let B ⊆ B(H), B 6= ∅, {0}.
Then the following hold:

(i) The function ∇−1
H mB is continuous on C+ ∪ R, and we have

lim
z→z0,z∈C+

1

|z − z0|dB(z0)−dH(z0)

mB(z)

∇H(z)
∈ (0,∞), z0 ∈ C+ ∪ R .

(ii) We have dmB
= dB ; moreover, limz→w |z − z0|−dB(w)mB(z) ∈ (0,∞),

w ∈ C+ ∪ R.

(iii) The function log mB is subharmonic in C+.

(iv) We have mtH mB = mtH B.

Proof. Let E ∈ HB, and let G be a domain which contains the closed half-plane
C+ ∪ R, such that E has no nonreal zeros in G. Then the family FH(E) :={

F
E

∣∣∣
G

: F ∈ B(H)
}

is normal. Note that all elements of FH(E) are analytic,

since F ∈ H(E) implies that dF |R ≥ dE |R. If E has no real zeros, this fact is
clear. Otherwise, we can immediately reduce to this case.

The proof of (i) can now be given. Let w ∈ C+ ∪ R, and set n := dB(w) −
dH(w) ≥ 0. Since B ⊆ B(H), the family {E−1F : F ∈ B} is normal. Thus also
the family

F :=
{ F (z)

(z − w)nE(z)
: F ∈ B

}

is normal, and hence equicontinuous. Using Lemma 2.10, it follows that

mB(z)

|z − w|n∇H(z)
=

|E(z)|
∇H(z)

· mB(z)

|z − w|n|E(z)| =
|E(z)|
∇H(z)

· sup
F∈F

∣∣∣ F (z)

(z − w)nE(z)

∣∣∣

is continuous. Moreover, since there exists a function F ∈ B with dF (w) =
dB(w), the supremum on the right side is positive. This shows (i).
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In view of Lemma 2.10 and 2.9, (i), the assertion (ii) is an immediate con-
sequence of (i).

We turn to the proof of (iii). By (i), the function log mB is a continuous
function of C+ into [−∞,∞). Moreover, it is the supremum of the subharmonic
functions log |F (z)|, F ∈ B. Thus it is itself subharmonic.

Finally, we come to the proof of (iv). For each F ∈ B we have |F (z)| ≤
mB(z), z ∈ C+. Thus

mtH B = sup
F∈B

mtH F ≤ mtH mB .

Conversely, we have B ⊆ H(a) where a := mtH B. Thus mB ≤ ∇H(a)
, and hence

mtH mB ≤ mtH∇H(a)
= a .

❑

3.4 Lemma. Let m0 ∈ AdmH, and denote the domain of m0 by D0 ⊆ C+ ∪R.
If D ⊆ C+ ∪ R is such that D0 ⊆ D, and a ∈ [mtH Bm0(H), 0], then

Bm0(H) = B
m♭

0|D
(H(a)) .

Proof. If F ∈ Bm0(H), then F ∈ H(a) and |F (z)| ≤ m♭
0(z), z ∈ C+ ∪ R.

In particular, F ∈ B
m♭

0|D
(H(a)). Conversely, assume that F belongs to this

set. Then F ∈ H and |F (z)| ≤ m♭
0(z), z ∈ D. By continuity, it follows that

|F (z)| ≤ m♭
0(z), z ∈ D. Since D0 ⊆ D, we obtain

|F (z)| ≤ m♭
0(z) ≤ m0(z), z ∈ D0 .

❑

If B is a subset of the unit ball of H, define

M≥(B) :=
{
m ∈ AdmH : Bm(H) ⊇ B

}
,

and set B≥(B) := β(M≥(B)) where β is the map m 7→ Bm(H), cf. (2.4).

3.5 Lemma. Let H be a de Branges space, and let B ⊆ B(H), B 6= ∅, {0}.

(i) We have m ∈ M≥(B) if and only if m ∈ AdmH and m < mB.

(ii) Assume that for each w ∈ C+ there exists an element F ∈ B with F (w) 6=
0. Then mB ∈ AdmH, and is the smallest element of M≥(B). The ball
BmB

(H) is the smallest element of B≥(B).

Proof. Let D ⊆ C+ ∪ R be the domain of m. Assume that Bm(H) ⊇ B, then

mB(z) = sup
F∈B

|F (z)| ≤ sup
F∈Bm(H)

|F (z)| ≤ m(z), z ∈ D .

Conversely, if m ≥ mB|D and F ∈ B, then

|F (z)| ≤ mB(z) ≤ m(z), z ∈ D ,

and hence F ∈ Bm(H). This shows (i).
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If there exists F ∈ B with F (w) 6= 0, then mB(w) > 0. Hence, the as-
sumption in (ii) together with continuity of mB implies that dmB

(w) = 0,
w ∈ C+. Since B contains a function which does not vanish identically, we
obtain mB ∈ AdmH.

By (i), clearly, mB is the smallest element of M≥(B). Since the map β :
m 7→ Bm(H) preserves the respective orders and maps M≥(B) surjectively onto
B≥(B), this implies that β(mB) is the smallest element of B≥(B). ❑

3.6 Lemma. Let H be a de Branges space, and let B ⊆ B(H), B 6= ∅, {0}.
Assume that B is invariant with respect to division by Blaschke products, i.e.
assume that for each function F ∈ B and Blaschke product P for C+ with
dP |C+ ≤ dF |C+ , we have P−1F ∈ B. Then

mB(w) = sup
{
|F (w)| : F ∈ B, F zerofree in C+

}
.

Proof. The inequality ‘≥’ holds by the definition of mB. Conversely, denote
the supremum on the right side by M , and let F ∈ B be given. Let P be the
Blaschke product with dP |C+ = dF |C+ . Then P−1F ∈ B, and hence

|F (z)| ≤
∣∣∣F (z)

P (z)

∣∣∣ ≤ M, z ∈ C+ .

The inequality ‘≤’ follows. ❑

With a subset B of the unit ball B(H), which is in some sense not too big, we
can associate another function closely related to B.

3.7 Definition. Let H be a de Branges space, and choose E ∈ HB with H =
H(E). Moreover, let B ⊆ B(H), B 6= ∅, {0}, and assume that

∫

R

(
log+ mB(t)

|E(t)|
) dt

1 + t2
< ∞ . (3.1)

Then we define a function m⊥
B : C+ → [0,∞) as

m⊥
B(z) :=

∣∣e−i(mtH B)·z f|E|−1mB
(z)E(z)

∣∣, z ∈ C+ .

First of all, we have to show that m⊥
B is well-defined.

3.8 Lemma. Let B be a subset of B(H), B 6= ∅, {0}, which satisfies (3.1).
Then the following hold:

(i) We have
∫

R
| log(|E|−1mB)|(1 + t2)−1dt < ∞. Hence the outer function

f|E|−1mB
in Definition 3.7 exists.

(ii) Neither the validity of (3.1), nor the function m⊥
B itself depends on the

particular choice of E in Definition 3.7.

Proof. Choose F ∈ B \ {0}, then E−1F ∈ H2 and does not vanish identically.
Hence (log− x := −min{log x, 0})

∫

R

(
log−

mB(t)

|E(t)|
) dt

1 + t2
≤

∫

R

(
log−

|F (t)|
|E(t)|

) dt

1 + t2
< ∞ .
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Together with (3.1) this gives log(|E|−1mB) ∈ L1( dt
1+t2 ).

The fact that the validity of (3.1) does not depend on the choice of E, follows
from (2.5). Moreover, for each two functions E1, E2 ∈ HB with H(E1) = H(E2),
we have E−1

1 E2 = γf|E1|−1|E2| with some |γ| = 1. Hence,
∣∣f|E1|−1mB

(z)E1(z)
∣∣ =

∣∣f|E2|−1mB
(z)E2(z)

∣∣, z ∈ C+ .

❑

Let us show some properties of m⊥
B which will be needed later on.

3.9 Lemma. Let B ⊆ B(H), B 6= ∅, {0}, and assume that (3.1) holds. Then

(i) The function m⊥
B has a continuous extension to the closed half-plane C+∪

R, namely by setting m⊥
B(x) := mB(x), x ∈ R.

(ii) We have mB 4 m⊥
B.

Proof. In order to prove (i), we wish to apply Lemma 2.1 with the function
k(t) := |E(t)|−1mB(t). The required hypothesis for this application have been
established in Lemma 3.3, (i). Actually, the limit relation (2.1) holds for all
x0 ∈ R when we set n(x0) := dB(x0)−dE(x0). Remember here that, concerning
continuity and zeros, by Lemma 2.10, (i), it does not matter whether we consider
the quotient ∇−1

H mB or |E|−1mB.
If the function F is chosen as in Lemma 2.1, we can write

m⊥
B(z) =

∣∣e−i(mtH B)·z
∣∣ · |E(z)F (z)| ·

∣∣∣
f|E|−1mB

(z)

F (z)

∣∣∣, z ∈ C+ .

From this formula, it is apparent that m⊥
B has a continuous extension m̃⊥

B to
C+ ∪ R. Moreover, we see that for this extension

lim
z→x

z∈C
+∪R

m̃⊥
B(z)

|z − x|dB(x)
∈ (0,∞), x ∈ R .

Again by Lemma 2.1, the boundary values of m⊥
B along R are given by mB.

For the proof of (ii), let F ∈ B be given. Then E−1F ∈ H2 and mt(E−1F ) ≤
mtH B. Hence, the function

g(z) := ei(mtH B)·z F (z)

E(z)
, z ∈ C+ ,

belongs to the class N+. The function g is actually continuous on C+ ∪ R, and
along the real axis we have

|g(x)| =
∣∣∣F (x)

E(x)

∣∣∣ ≤ mB(x)

|E(x)| , x ∈ R, E(x) 6= 0 .

By the Smirnov Maximum Principle, it follows that

|g(z)| ≤
∣∣f|E|−1mB

(z)
∣∣, z ∈ C+ .

This, however, just says that |F | ≤ m⊥
B throughout the half-plane C+. Thus

mB(z) = sup
F∈B

|F (z)| ≤ m⊥
B(z), z ∈ C+ .

❑
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4 Division by Blaschke products

If majorization takes place along the real line, the situation is clear and simple.

4.1 Lemma. Let H be a de Branges space, let D ⊆ R, and let m ∈ AdmD L.
Moreover, let L be a de Branges subspace of H. Then Bm(H) ∩ L (= Bm(L))
is invariant with respect to division by Blaschke products.

Proof. It is well-known that each de Branges space is invariant with respect to
division by Blaschke products. Since the norm in a de Branges space can be
computed as a weighted L2-integral along R, even its unit ball has this property.
For the same reason, majorization along any subset of R will be preserved when
dividing by a Blaschke product. ❑

Things change when majorization is required off the real axis.

4.2 Example. Consider the function

E(z) :=
(
1 +

z

i

) ∏

n≥2

(
1 +

z

in2

)2

.

Then E is of order 1
2 , belongs to HB, and has no real zeros. By [B, Theorem 1],

the space H := H(E) contains the set C[z] of all polynomials as a dense linear
subspace. This yields that the chain of all de Branges subspaces L of H with
dL = 0 is equal to

{C[z]n : n ∈ N0} ∪ {H} .

Here C[z]n denotes the set of all polynomials of degree at most n. Moreover, it
follows from [KW, Theorem 3.4] that every element of H(E) has order at most
1
2 .

Denote by P0 the Blaschke product

P0(z) :=
∏

n≥2

1 − z/in2

1 + z/in2
.

Then the function

F0(z) := P0(z)
E(z)

1 + z/i

satisfies F#
0 = F0 and belongs to H. The zeros of F0 are all simple and located

at the points ±in2, n ≥ 2.
Let cn, n ≥ 2, be a sequence of positive real numbers with cn → 0. Choose

radii rn, n ≥ 2, with rn ≤ 1, such that

|F0(z)| ≤ cn, |z − in2| ≤ rn .

Let D ⊆ C+ be any subset which contains the points in2, n ≥ 2, and define
m : D → [0,∞) by

m(z) :=

{
cn, |z − in2| ≤ rn,

|F0(z)|, otherwise,
z ∈ D .

Then dm = 0 and F0 ∈ Rm(H), hence m ∈ AdmD H.
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Assume that F ∈ Rm(H) and F does not vanish in C+. Then, since F has
order ≤ 1

2 , it has the property that |F (iy)| is a nondecreasing function of y ≥ 0,
see e.g. [Bo]. Since

lim inf
y→+∞
iy∈D

m(iy) ≤ lim
n→+∞

cn = 0 ,

and |F (iy)| ≤ Cm(iy), iy ∈ D, for some C > 0, we obtain that also
lim infy→+∞ |F (iy)| = 0. Together with monotonicity this implies that F (iy) =
0, y > 0, and we have reached a contradiction.

It already follows that Rm(H) cannot be invariant with respect to division by
Blaschke products. We obtain even more information: Since Rm(H) is always
invariant with respect to division by polynomials whose zeros lie off the real axis,
every nonzero element of Rm(H) has infinitely many zeros in C+. In particular,
Rm(H) ∩ C[z] = {0}, and hence Rm(H) = H.

From this example we see that in general the situation may be complicated.
Still, under an additional hypothesis on the majorant m positive results can be
obtained. The crucial notion in this context is the following:

4.3 Definition. Let D ⊆ C+ be open, and let m : D → [0,∞). We say that m

is log-superharmonic, if the function (− log m) is subharmonic in D.

For log-superharmonic majorants the Phragmén-Lindelöf Principle, as stated in
[RR, Theorem 6.2], can be applied. This gives the following theorem, which in
turn leads to results on dividing out zeros of elements of Rm(H).

4.4 Theorem. Let D be an open subset of C+, and let m ∈ AdmD H be log-
superharmonic. Moreover, let F ∈ Bm(H)\{0} and let P be a Blaschke product
for C+ with dP |C+ ≤ dF |C+ . Denote by α ∈ [0,∞] the supremum of all nonneg-
ative real numbers α′, such that

α′
∣∣∣F (ζ)

P (ζ)

∣∣∣ ≤ lim inf
z→ζ
z∈D

m(z), ζ ∈ ∂D \ R . (4.1)

Then we have
∣∣∣F (z)

P (z)

∣∣∣ ≤ max{α−1, ‖F‖m}m(z), z ∈ D .

We always have
α ≥ inf

ζ∈∂D\R

|P (ζ)| .

Proof.
Step 1: Let F ∈ Bm(H), let P be a finite Blaschke product with dP |C+ ≤ dF |C+ ,
and let α′ ∈ (0, 1] be such that (4.1) holds.

Consider the function

u(z) = − logm(z) + log
∣∣∣α′ F (z)

P (z)

∣∣∣, z ∈ D ,

where u(z) is interpreted as −∞ if m(z) = ∞ or P (z)−1F (z) = 0. Note here
that always m(z) > 0 since z ∈ D ⊆ C+. Then u is subharmonic in D. Note
that, if P (z) 6= 0 for some z ∈ D, then we can also write

u(z) = − log m(z) + log |F (z)| + log α′ − log |P (z)| . (4.2)
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We write the boundary ∂∞D of D in the extended complex plane C ∪ {∞} as
the disjoint union of the two sets

R := ∂D \ R, S := (∂D ∩ R) ∪ {∞} .

By our hypothesis (4.1), for ζ ∈ R,

lim
z→ζ
z∈D

α′
∣∣∣F (z)

P (z)

∣∣∣ = α′
∣∣∣F (ζ)

P (ζ)

∣∣∣ ≤ lim inf
z→ζ
z∈D

m(z) .

and therefore

lim sup
z→ζ
z∈D

(
− log m(z)

)
≤ − lim

z→ζ
z∈D

log
(
α′

∣∣∣F (z)

P (z)

∣∣∣
)

.

Since dm(ζ) = 0 and P−1F is analytic at ζ, neither of these limits can be equal
to +∞. It follows that

lim sup
z→ζ
z∈D

u(z) = lim sup
z→ζ
z∈D

(
− log m(z)

)
+ lim

z→ζ
z∈D

log
(
α′

∣∣∣F (z)

P (z)

∣∣∣
)
≤ 0 .

Next, let ζ ∈ S, ζ 6= ∞, and let ǫ > 0 be given. Since ζ ∈ R there exists a
neighbourhood U of ζ, such that

− log |P (z)| < ǫ, z ∈ U .

Since F ∈ Bm(H) and α′ ≤ 1, we have

− log m(z) + log |F (z)| + log α′ ≤ 0, z ∈ U ∩ D .

Thus, by (4.2), u(z) < ǫ for z ∈ U ∩ D.
Finally, consider ζ = ∞ and let ǫ > 0 be given. Since P is a finite Blaschke

product, there exists a neighbourhood U of ζ such that − log |P (z)| < ǫ, z ∈
U \ {∞}. In the same way as above we now obtain that u(z) < ǫ, z ∈ U ∩ D.

We can apply the Phragmén-Lindelöf Principle, cf. [RR, Theorem 6.2], and
conclude that u(z) ≤ 0 throughout D, i.e. that

α′
∣∣∣F (z)

P (z)

∣∣∣ ≤ m(z), z ∈ D .

Since α′ ≤ 1 and ‖F‖H ≤ 1, we also have ‖α′P−1F‖H ≤ 1. Thus α′P−1F ∈
Bm(H).

Step 2: Let F ∈ Bm(H), let P be an arbitrary Blaschke product with dP |C+ ≤
dF |C+ , and let α′ ∈ (0, 1] be such that (4.1) holds.

For N ∈ N denote by PN the N -th partial product of P . Since |PN (z)| ≥
|P (z)|, z ∈ C+, the number α′ satisfies (4.1) also with PN instead of P .
Therefore, by Step 1, α′P−1

N F ∈ Bm(H). Since Bm(H) is weakly com-
pact, there is a sequence (Nk)k∈N and a function G ∈ Bm(H), such that
limw

k→∞ α′P−1
N F = G. Since weak convergence implies pointwise convergence,

it follows that G = α′P−1F .
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Step 3: Set
α := sup

{
α′ ≥ 0 : (4.1) holds

}
,

β := max
{
β′ ≥ 0 : β′F

P
∈ Bm(H)

}
.

Then we have

1 ≥
∥∥∥β

F

P

∥∥∥
m

≥ β‖F‖m ,

i.e. β ≤ ‖F‖−1
m . Also, β|P (z)−1F (z)| ≤ m(z), z ∈ D, and hence (4.1) holds with

α′ := β, i.e. β ≤ α.
On the other hand, let 0 < β′ < min{α, ‖F‖−1

m }. Then G := ‖F‖−1
m F ∈

Bm(H) and α′ := β′‖F‖m satisfies (4.1) for G. Moreover, α′ < 1, and hence

β′F

P
= α′ G

P
∈ Bm(H) .

This shows that β′ ≤ β. We conclude that β = min{α, ‖F‖−1
m }.

Step 4: The estimate α ≥ infζ∈∂D |P (ζ)| follows since F ∈ Bm(H) implies that
|F (ζ)| ≤ lim infz→ζ

z∈D
m(z), ζ ∈ ∂D. ❑

Let us demonstrate in two particular situations how Theorem 4.4 can be applied.

4.5 Corollary. Let m ∈ AdmC+ H be log-superharmonic. If F ∈ Bm(H) and
P is a Blaschke product for C+ with dP |C+ ≤ dF |C+ , then P−1F ∈ Bm(H).

Proof. This follows from Theorem 4.4, since ∂C+ = R and thus (4.1) is trivially
satisfied with α′ = 1. ❑

Combining this statement with Example 4.2 leads to the following observation.

4.6 Remark. Not for every majorant m0 there exists a log-superharmonic ma-
jorant m ∈ AdmC+ H which generates the same unit ball.

Note that this contrasts the situation which prevails for log-subharmonic
majorants, i.e. such majorants m ∈ AdmC+ H for which the function log m

is subharmonic. Remember that for each majorant m0 ∈ AdmH the function
m♭

0|C+ is log-subharmonic and Bm0(H) = B
m♭

0|C+
(H), cf. Lemma 3.3 and Lemma

3.4.

4.7 Corollary. Let δ ∈ (0, π
2 ), let D be the Stolz angle D := {z ∈ C : δ <

arg z < π − δ}, and let m ∈ AdmD H. If F ∈ Bm(H) and P is a Blaschke
product for C+ with dP |C+ ≤ dF |C+ and

∑

w∈C+

dP (w)
Im w

|w| < ∞ , (4.3)

then P−1F ∈ Rm(H).

Proof. We write

P (z) =
∞∏

k=1

1 − z/zk

1 − z/zk
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with the zeros repeated according to their multiplicities. We have

2 log |P (z)| =
∑

w∈C+

dP (w) log

(
1 − 4 Im z Im w

|z − w|2
)

< ∞. (4.4)

For each δ ∈ (0, π
2 ) there exists a constant C = C(δ) > 0, such that |z − w| ≥

C(|z| + |w|) for any z ∈ D, w ∈ C+. Now it follows from (4.3) and (4.4) that
there exist N = N(δ) ∈ N such that

PN (z) :=

∞∏

k=N

1 − z/zk

1 − z/zk
.

satisfies |BN (z)| ≥ 1/2 for any z ∈ D. Hence (PN )−1F ∈ Rm(H). ❑

5 Unit balls of log-superharmonic majorants

Our aim in the present section is to investigate which subsets B of a de Branges
space H can be realized as Bm(H) with some log-superharmonic majorant m ∈
AdmC+ H. It is an interesting result, that such balls can also be realized by
majorization along R in conjunction with a restriction of exponential growth
towards infinity, cf. Theorem 5.3. We will also discuss representability with more
particular kinds of majorants which appear naturally in this context, namely
N+-majorants and Hp-majorants, cf. Definition 5.1, Definition 5.13.

a. Representabilty by log-superharmonic majorants.

In the study of log-superharmonic majorants defined on all of C+ a smaller class
of majorants plays a key role.

5.1 Definition. Let H be a de Branges space and choose E ∈ HB with H =
H(E). A function m ∈ AdmC+ H is called an N+-majorant for H, if it is of the
form

m(z) =
∣∣e−iazf(z)E(z)

∣∣, z ∈ C+ ,

with some a ≤ 0 and f being outer for N .

The fact whether or not a given function m is an N+-majorant for H does not
depend on the particular choice of the function E in Definition 5.1. This follows
since, for two functions E1, E2 ∈ HB with H(E1) = H(E2), the quotient E−1

1 E2

is outer.

5.2 Example. Let H = H(E) be a de Branges space, and let B ⊆ B(H), B 6=
∅, {0}. Assume that (3.1) holds, i.e. that

∫
R
[log+(|E|−1mB)](1 + t2)−1 dt < ∞.

Then the function m⊥
B is an N+-majorant. We have

B ⊆ Bm⊥

B
(H) .

These assertions are immediate from the respective definitions, and the fact that
m⊥

B < mB, cf. Lemma 3.9.

For each N+-majorant m, the function log m is harmonic in C+. Hence, in
general, the set of all N+-majorants will be a fairly small subset of the set of
all log-superharmonic majorants.
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5.3 Theorem. Let H be a de Branges space, and let E ∈ HB be such that
H = H(E). Moreover, let B ⊆ B(H), B 6= ∅, {0}. Then the following are
equivalent:

(i) There exists a log-superharmonic majorant m ∈ AdmC+ H, such that B =
Bm(H).

(ii) There exists an N+-majorant m ∈ AdmC+ H, such that B = Bm(H).

(iii) There exists a subset D ⊆ R such that R \ D has measure zero, a number
a ≤ 0, and a measurable majorant m ∈ AdmD H(a) satisfying

∫

D

(
log+ m(t)

|E(t)|
) dt

1 + t2
< ∞ ,

such that B = Bm(H(a)).

(iv) We have B = BmB |R(H(mtH B)) and

∫

D

(
log+ mB(t)

|E(t)|
) dt

1 + t2
< ∞ . (5.1)

Proof. First of all note that the implications (ii) ⇒ (i) and (iv) ⇒ (iii) are
trivial. We will carry out the proof by showing the implications

(i) ⇒ (ii) ⇒ (iv), (iii) ⇒ (ii) .

Step 1: Assume that m ∈ AdmC+ H is log-superharmonic. In this step we will
show that then the subharmonic function log(|E(z)|−1m♭(z)), z ∈ C+, has a
nonnegative harmonic majorant.

Denote F := {F ∈ Bm(H) : F zerofree in C+}. We have, for any F ∈ F ,

log
∣∣F
E

∣∣ ≤ log
m♭

|E| ≤ log
m

|E|

throughout the half-plane C+. Since, by Corollary 4.5, F is nonempty, this tells
us in particular that the superharmonic function log(|E|−1m) has a harmonic
minorant. Thus it has the largest harmonic minorant, which we denote by h.
For each element F ∈ F , the function log(|E|−1|F |) is a harmonic minorant
of log(|E|−1m), and hence does not exceed h. Lemma 3.6 implies that also
log(|E|−1m♭) ≤ h. This tells us that the subharmonic function log(|E|−1m♭)
has a harmonic majorant. Thus it has the least harmonic majorant, which we
denote by h♭. Clearly, h♭ ≤ h, and altogether

log
∣∣∣F
E

∣∣∣ ≤ log
m♭

|E| ≤ h♭ ≤ h ≤ log
m

|E| , F ∈ F . (5.2)

Fix F0 ∈ F . Since E−1F0 ∈ H2 ⊆ N , the subharmonic function log+ |E−1F0|
has a harmonic majorant, let us denote one such function by k. Define

k♭ := h♭ + k − log
∣∣F0

E

∣∣ .
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Then k♭ is harmonic, and

k♭ = h♭ +
(
k − log

∣∣F0

E

∣∣
)

︸ ︷︷ ︸
≥0

≥ log
m♭

|E| , k♭ =
(
h♭ − log

∣∣F0

E

∣∣
)

︸ ︷︷ ︸
≥0

+k ≥ 0 .

We see that k♭ is a nonnegative harmonic majorant of log(|E|−1m♭).

Step 2: Assume that m ∈ AdmC+ H is log-superharmonic. In this step we
determine the least harmonic majorant h♭ of log(|E|−1m♭) explicitly.

In Step 1 we showed that log(|E|−1m♭) has a nonnegative harmonic majo-
rant. Hence, the least harmonic majorant h♭ of this function can be represented
as a Poisson integral:

h♭(z) = ay +
y

π

∫

R

dµ(t)

(t − x)2 + y2
, z = x + iy ∈ C+ ,

where a ∈ R and µ is a real (signed) Borel measure on R which satisfies
∫

R
(1 +

t2)−1d|µ|(t) < ∞. We employ the Theorem of Szegö–Solomentsev to determine
the data a, µ, see e.g. [RR, Theorem 3.13] where the version for the unit disk is
stated.

Since |E|−1m♭ has a continuous extension to the closed half-plane C+∪R, the
Radon–Nikodym derivative of µ with respect to the Lebesgue measure is equal
to log(|E|−1m♭), see [RR, Theorem 3.13, (iv)]. Since |E|−1m♭ does not vanish on
R with possible exception of a discrete set where it tends to zero polynomially,
the measure µ is absolutely continuous with respect to the Lebesgue measure.
To see this, use [RR, Theorem 3.13, (ii)] e.g. with the function ϕ(t) := t2.

Set B := Bm(H). We just showed that dµ = log(|E|−1m♭) dt, in particular
the integral

∫
R
| log(|E|−1m♭)|(1 + t2)−1dt converges. Hence, the function m⊥

B

is well-defined. Moreover, log(|E|−1m⊥
B) is harmonic and greater or equal to

log(|E|−1m♭), cf. Lemma 3.9, (ii). Since h♭ is the least harmonic majorant of
log(|E|−1m♭), this implies log(|E|−1m⊥

B) ≥ h♭. Using Lemma 3.3, (iv), and the
definition of m⊥

B, it follows that

mtH B = mt
m♭

|E| ≤ mt
[
exp(h♭)

]
︸ ︷︷ ︸

=a

≤ mt
m⊥

B

|E| = mtH B ,

i.e. a = mtH B. Altogether, we obtain that

h♭ = log
m⊥

B

|E| . (5.3)

Step 3, (i) ⇒ (ii): It is now easy to establish this implication. Let B be given,
and assume that m ∈ AdmC+ H is log-superharmonic and satisfies B = Bm(H).
By (5.2) and (5.3), we have

m♭ ≤ |E| · exp(h♭) = m⊥
B ≤ m , (5.4)

and it follows that Bm(H) = Bm⊥

B
(H).

Step 4: Let m : C+ → [0,∞) be a function of the form

m(z) =
∣∣e−iazf(z)E(z)

∣∣, z ∈ C+ ,
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where f is outer, and a = mtH m ≤ 0. Denote by D ⊆ R the set of all points
x ∈ R such that the nontangential limit f∗(x) := limz→̂x f(z) exists and that
E(x) 6= 0, and set

m∗(x) := lim
z→̂x

m(z) = |f∗(x)E(x)|, x ∈ D . (5.5)

Our aim in this step is to show that

Bm(H)=Bm♭|R(H(b))=Bm∗(H(b)), b ∈
[
mtH Bm(H), mtH m

]
. (5.6)

Thereby, the inclusion ‘⊆’ in the first asserted equality holds since b ≥
mtH Bm(H). The inclusion ‘⊆’ in the second equality follows from

m♭(x) = lim
z→̂x

m♭(z) ≤ lim
z→̂x

m(z) = m∗(x), x ∈ D , (5.7)

i.e. m♭|R 4 m∗. Let F ∈ Bm∗(H(b)) be given, and consider the function

g(z) := eiaz F (z)

E(z)
, z ∈ C+ ∪ R .

Note that g is continuous on C+ ∪R. Since F ∈ H(b) ⊆ H, we have E−1F ∈ H2

and mt(E−1F ) ≤ b ≤ a. It follows that g ∈ N+. Along the real axis we have

|g(x)| ≤ m∗(x)

|E(x)| = |f∗(x)|, x ∈ D .

Since f is outer, the Smirnov Maximum Principle implies that the inequality
|g(z)| ≤ |f(z)| prevails throughout the half-plane C+. This just says that

|F (z)| ≤ |e−iazE(z)| · |f(z)| = m(z), z ∈ C+ ,

and we obtain that F ∈ Bm(H). The proof of (5.6) is complete.

Step 5, (ii) ⇒ (iv): Again, this implication is now easy to see. Let B be
given, and assume that m ∈ AdmC+ H is an N+-majorant with B = Bm(H).
What we have shown in Step 4 applies to m. The first equality in (5.6) with
b = mtH Bm(H), however, is just the first condition in (iv). Moreover, we see
from (5.7) and the fact that R \ D has measure zero, that

∫

R

(
log+ m♭(t)

|E(t)|
) dt

1 + t2
≤

∫

D

(
log+ m∗(t)

|E(t)|
) dt

1 + t2
=

∫

D

[
log+f∗(t)

] dt

1 + t2
< ∞ .

Step 6, (iii) ⇒ (ii): Assume that B = Bm(H(a)) with data m, a as stated in

(iii). Since m♭(x) ≤ m(x), x ∈ D, and R \ D has measure zero, we have

∫

R

(
log+ m♭(t)

|E(t)|
) dt

1 + t2
≤

∫

D

(
log+ m(t)

|E(t)|
) dt

1 + t2
< ∞ .

Hence, the function m⊥
B is well-defined and an N+-majorant. What we have

shown in Step 4 thus applies to m⊥
B. The relation (5.6) with b = mtH m⊥

B =
mtH B gives

Bm⊥

B
(H) = B(m⊥

B
)∗(H(mtH B)) .
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However, by Lemma 3.9, (i), we have (m⊥
B)∗ = m♭|R. Moreover, since the domain

of m is contained in R, it follows from [BW1, Theorem 3.4] that mtH(a)
B = 0.

Hence,
mtH B = mtH H(a) = a , (5.8)

and we conclude that

B = Bm(H(a)) = Bm♭|R(H(a)) = Bm⊥

B
(H) .

Here, for the second equality, we have used Lemma 3.4. ❑

Let us explicitly point out the following facts, which have been established in
the course of the proof of Theorem 5.3. For a subset B of the unit ball of H
denote

M log(B) :=
{
m ∈ AdmC+ H : m log-superharmonic, Bm(H) = B

}
.

5.4 Corollary. Let H be a de Branges space, let B ⊆ B(H), B 6= ∅, {0}, and
assume that M log(B) 6= ∅. Then m⊥

B is well-defined, belongs to M log(B), and
is the smallest element of this set. In particular, M log(B) possesses a smallest
element, and this element is an N+-majorant.

Proof. The fact that m⊥
B is well-defined and belongs to M log(B) was established

in Steps 2 and 3 of the proof of Theorem 5.3. The relation (5.4) gives that
m⊥

B ≤ m whenever m ∈ M log(B), hence m⊥
B is the smallest element of this

set. ❑

5.5 Corollary. Let H be a de Branges space, and let E ∈ HB be such that
H = H(E). Then

{
Bm(H) : m ∈ AdmC+ H, m log-superharmonic

}
=

=

{
Bm(H(a)) :

a ≤ 0, m ∈ AdmR H(a), m continuous,∫
R
(log+ m(t)

|E(t)| )
dt

1+t2 < ∞

}

Proof. The inclusion ‘⊆’ holds because of Theorem 5.3, (i) ⇒ (iv). The converse
inclusion follows from the implication (iii) ⇒ (i). ❑

5.6 Corollary. Let H be a de Branges space, and let m ∈ AdmC+ H be an
N+-majorant. Then

Bm(H) = Bm∗(H(mtH m)) and mtH Bm(H) = mtH m .

Proof. These assertions follow immediately from (5.6) and (5.8). ❑

In order to gain in logical clarity, we wish to make the following point explicit.

5.7 Remark. In Lemma 4.1 and Corollary 4.5 we had obtained examples for unit
balls Bm(H) which are invariant with respect to division by Blaschke products.
Theorem 5.3 implies that the set of unit balls described in (the almost trivial)
Lemma 4.1 already includes the set of unit balls described by (the nontrivial)
Corollary 4.5. However, this does not make Corollary 4.5 superfluous; it was
essentially needed for the proof of Theorem 5.3.

In this context, let us note that the class given by Lemma 4.1 is generically even
strictly larger than the class of balls generated by log-superharmonic majorants.
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5.8 Example. Let E ∈ HB have no real zeros, and assume that there exists a
de Branges subspace L0 of H(E) which is not of the form H(a). Consider the
majorant

m(x) := ∇H(E)(x), x ∈ R .

Then, for each subspace L of H(E), we have Bm(L) = B(L). In particular, the
ball Bm(L0) is not of the form Bm(H(a)) with some a ≤ 0.

b. The condition (5.1).

The first condition in Theorem 5.3, (iv), can be viewed as a geometric require-
ment, whereas the second one, i.e. (5.1), is an analytic condition. We will in the
present subsection show that, generically, (5.1) plays only a minor role. Actu-
ally, it is satisfied in ”most” cases. First let us show when the integral condition
in Corollary 5.5 is superfluous.

5.9 Lemma. Let H be a de Branges space, choose E ∈ HB with H = H(E),
and denote by ϕE a phase function of E. Then

{
Bm(H) : m ∈ AdmC+ H, m log-superharmonic

}
=

=
{
Bm(H(a)) : a ≤ 0, m ∈ AdmR H(a), m continuous

}

if and only if ∫

R

[
log+ ϕ′

E(t)
] dt

1 + t2
< ∞ . (5.9)

Proof. By the formula for ∇H given in 2.9, we have |E|−1∇H = (
√

π)−1
√

ϕ′
E

along the real axis. Hence,

1

2
log+ ϕ′

E(t) − log
√

π ≤ log+ ∇H(t)

|E(t)| ≤ 1

2
log+ ϕ′

E(t), t ∈ R ,

and we conclude that convergence of the integral (5.9) is equivalent to
∫

R

(
log+ ∇H(t)

|E(t)|
) dt

1 + t2
< ∞ . (5.10)

Assume that the stated equality of sets holds. The unit ball of H can be written
as B(H) = B∇H|R(H). Since mB(H) = ∇H, the convergence of the integral in
(5.10) follows from Theorem 5.3.

Conversely, assume that (5.10) holds, and let a continuous majorant m ∈
AdmR H(a) be given. Since Bm(H(a)) = Bm♭|R(H(a)), and m♭ ≤ ∇H, we
obtain from Theorem 5.3 that Bm(H(a)) can be represented with some log-
superharmonic majorant. This shows the inclusion ‘⊇’ in the stated equality.
The inclusion ‘⊆’ holds in any case. ❑

In view of this fact, it is interesting to see that convergence of the integral in
(5.9) follows from a mild condition on the density of zeros of E.

5.10 Proposition. Let E ∈ HB and denote by n(t) the counting function for
the nonreal zeros of E, i.e. let n(t) be the number of nonreal zeros of E located
in the disk {z ∈ C : |z| ≤ t} counted according to their multiplicities. If

∫ ∞

1

log n(t)

t2
dt < ∞ , (5.11)

then (5.9) holds.
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Proof. Denote by zn = xn − iyn, n = 1, 2, . . ., the (finite or infinite) sequence
of nonreal zeros of E, and set c := −2−1 mt(E−1E#). Moreover, let ϕE be a
phase function of E. Then

∑

n

Im
1

zn
=

∑

n

yn

|zn|2
< ∞ and ϕ′

E(t) = c +
∑

n

yn

|t − zn|2
.

Let k ∈ N be fixed. Then, for t ∈ [k − 1, k] and |z| > 2k, we have

| Im z|
|t − z|2 =

| Im z|
|z|2 · 1

|1 − t
z |2

≤ 2
| Im z|
|z|2 .

Thus ∑

|zn|>2k

yn

|t − zn|2
≤ 2

∑

|zn|>2k

yn

|zn|2
≤ 2

∑

n

yn

|zn|2
.

Set A := 1 + c + 2
∑

n |zn|−2yn, then for t ∈ [k − 1, k] we have

log+ϕ′
E(t) ≤ log

(
1+ϕ′

E(t)
)
≤ log

(
1+c+

∑

|zn|>2k

yn

|t − zn|2
+

∑

|zn|≤2k

yn

|t − zn|2
)
≤

≤ log
(
A +

∑

|zn|≤2k

yn

|t − zn|2
)

.

By the Jensen inequality, we have

∫ k

k−1

log+ ϕ′
E(t) dt ≤

∫ k

k−1

log
(
A +

∑

|zn|≤2k

yn

|t − zn|2
)

dt ≤

≤ log

∫ k

k−1

(
A +

∑

|zn|≤2k

yn

|t − zn|2
)

dt ≤ log
(
A + πn(2k)

)
.

Here we have used the fact that

∫ k

k−1

yn

|t − zn|2
dt ≤

∫

R

yn

|t − zn|2
dt = π .

Now we can estimate

∫ ∞

0

[
log+ ϕ′

E(t)
] dt

1 + t2
=

∞∑

k=1

∫ k

k−1

[
log+ ϕ′

E(t)
] dt

1 + t2
≤

≤
∞∑

k=1

1

1 + (k − 1)2

∫ k

k−1

log+ ϕ′
E(t) dt ≤

∞∑

k=1

log(A + πn(2k))

1 + (k − 1)2
.

Our hypothesis (5.11) implies that the last series converges. The integral∫ 0

−∞
[log+ ϕ′

E(t)](1 + t2)−1dt can be estimated in the same way, and we obtain
that (5.9) holds. ❑

5.11 Corollary. If E ∈ HB is of finite order, then the condition (5.11) holds
true. Hence, for de Branges spaces H = H(E) where E is of finite order, the
analytic condition in (5.1) is always satisfied. ❑
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5.12 Example. Although the condition (5.11) is not necessary for (5.9) to hold,
the following example shows that it is pretty sharp. Let

zn = ln |n| + i

|n| ln2 |n|
, n ∈ Z, n 6= 0 .

Then c1e
t ≤ n(t) ≤ c2e

t with some constants c1, c2 > 0, and thus the integral
in (5.11) ”just” diverges. Let t ∈ [ln k, ln k + 1], k > 1. Then

ϕ′
E(t) >

∑

k/2≤n≤k−1

1

n ln2 n
[
(lnn − ln k)2 + n−2 ln−4 n

] .

Note that ln k − lnn ≍ k−n
n > 1

n ln2 n
. Then

ϕ′
E(t) > C

∑

k/2≤n≤k−1

n

(k − n)2 ln2 n
≥ C1

k

ln2 k
≥ C2t

−2et ,

and the log-integral diverges.

c. Hardy class majorants.

Let H = H(E) be a de Branges space, and let L = H(E1) be one of its
de Branges subspaces. A standard majorant, which was already used in [BW1]
and investigated in greater detail in [BW3], is the function

mE1(z) := |z + i|−1|E1(z)|, z ∈ C+ ∪ R .

This majorant reproduces the space L in the sense that RmE1
(H) = L. Since

we can write

mE1(z) =
∣∣∣e−i mt[(E−1E1)]z · ei[mt(E−1E1)]z

E1(z)

(z + i)E(z)
·E(z)

∣∣∣, z ∈ C+ , (5.12)

this function is an N+-majorant. Note here that E−1E1 is outer for N , since
it has a continuous extension to C+ ∪ R which vanishes only on a discrete set
and tends to zero at most polynomially, see once more [RR, Theorem 3.13].
However, the function

f(z) := ei[mt(E−1E1)]z
E1(z)

(z + i)E(z)

is not only outer for N , but actually outer for H2.

5.13 Definition. Let H be a de Branges space and choose E ∈ HB with
H = H(E). Moreover, let p ∈ (0,∞). A function m ∈ AdmC+ H is called an
Hp-majorant for H, if it is of the form

m(z) =
∣∣e−iazf(z)E(z)

∣∣, z ∈ C+ ,

with some a ≤ 0 and f being outer for Hp.

29



Since H(E1) = H(E2) implies not only that E−1
1 E2 is outer, but also that this

quotient is bounded above and bounded away from zero throughout the half-
plane C+, this notion does not depend on the particular choice of E in Definition
5.13.

For a subset B of the unit ball of H denote

Mp(B) :=
{
m ∈ AdmH : m is a Hp-majorant, Bm(H) = B

}
.

Clearly, Mp(B) ⊆ M log(B). The analogue of Theorem 5.3, including Corollary
5.4, corresponding to the set Mp(B) now reads as follows.

5.14 Proposition. Let H be a de Branges space, let B be a nonempty subset
of its unit ball, and let p ∈ (0,∞). Then the following are equivalent:

(i) Mp(B) 6= ∅, i.e. there exists an Hp-majorant m ∈ AdmC+ H, such that
B = Bm(H).

(ii) There exists a subset D ⊆ R such that R \ D has measure zero, a number
a ≤ 0, and a measurable majorant m ∈ AdmD H(a) satisfying

∫

D

( m(t)

|E(t)|
)p

dt < ∞ , (5.13)

such that B = Bm(H(a)).

(iii) We have B = BmB |R(H(mtH B)) and
∫

R

(
mB(t)
|E(t)|

)p
dt < ∞.

In this case, the set Mp(B) contains a smallest element. Actually, the majorant
m⊥

B is an Hp-majorant.

Proof. Assume that (i) holds, and let m ∈ AdmC+ H be an Hp-majorant with
B = Bm(H). Since m is in particular log-superharmonic, Theorem 5.3 yields
that B = BmB |R(H(mtH B)). Let m∗ be the boundary function of m, cf. (5.5).
Then |E|−1m∗ ∈ Lp(dt), and we conclude from mB 4 m∗ that also |E|−1mB ∈
Lp(dt).

The implication (iii) ⇒ (ii) is trivial. It remains to show that (ii) im-
plies (i). To this end assume that B = Bm(H(a)) with data m, a as in (ii).

Then, by Theorem 5.3, M log(B) 6= ∅, and we obtain from Corollary 5.4 that
B = Bm⊥

B
(H). Since mB 4 m, convergence of the integral (5.13) implies that

(|E|−1mB)|R ∈ Lp(dt). This, however, says that the outer function f|E|−1mB

used in the definition of m⊥
B is outer for Hp, i.e. m⊥

B is an Hp-majorant. ❑

Let m0 ∈ AdmH, choose E1 ∈ HB with Rm0(H) = H(E1), and let mE1 be the
H2-majorant defined in (5.12). Then Rm0(H) = RmE1

(H). But, of course, the
balls Bm0(H) and BmE1

(H) will in general by no means be comparable. The
next statement shows that, at least as far as majorization along R is concerned,
an H2-majorant realizing Rm0(H) can be choosen to be small.

5.15 Proposition. Let a ≤ 0 and m0 ∈ AdmR H(a) be given. Then there exists
an H2-majorant m ∈ AdmH, such that

Rm(H) = Rm0(H(a)) and Bm(H) ⊆ Bm0(H(a)).
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Proof. Since H is a separable Hilbert space, we can choose a countable set
{Fn : n ∈ N} ⊆ Bm0(H) which is dense in Bm0(H) in the norm of H. Set
Gn := 2−nFn, n ∈ N, and define a continuous function m1 : R → [0,∞) as

m1(x) := sup
n∈N

|Gn(x)|, x ∈ R .

The continuity follows since the functions Gn, n ∈ N, belong to B(H), and
hence form an equicontinuous family, cf. Step 1 of the proof of Lemma 3.3.

We have m1 ≤ m0, and hence

Bm1(H(a)) ⊆ Bm0(H(a)) . (5.14)

Since Gn ∈ Bm1(H(a)) for each n ∈ N, we see that m1 ∈ AdmR H(a), and actually
Rm1(H(a)) ⊇ span{Fn : n ∈ N}. This implies that Rm1(H(a)) ⊇ Rm0(H(a)).
However, by (5.14), the converse inclusion also holds, and it follows that

Rm1(H(a)) = Rm0(H(a)) .

Choose E ∈ HB with H = H(E). Then

(∫

R

∣∣∣Gn(t)

E(t)

∣∣∣
2

dt
) 1

2

= ‖Gn‖H =
1

2n
‖Fn‖H ≤ 1

2n
,

and therefore

∫

R

( m1(t)

|E(t)|
)2

dt =

∫

R

[
sup
n∈N

∣∣∣Gn(t)

E(t)

∣∣∣
]2

dt ≤
∫

R

∞∑

n=1

∣∣∣Gn(t)

E(t)

∣∣∣
2

dt =

=
∞∑

n=1

∫

R

∣∣∣Gn(t)

E(t)

∣∣∣
2

dt ≤
∞∑

n=1

1

4n
< ∞ .

Proposition 5.14 furnishes us with an H2-majorant m ∈ AdmC+ H such that
Bm(H) = Bm1(H(a)). Using that H(a) is a closed subspace of H, we obtain that
also Rm(H) = Rm1(H(a)). ❑

6 Non-representable unit balls

Let m0 ∈ AdmH, and consider the unit ball Bm0(H). Then, in general, this ball
need not be representable as Bm(H) with some log-superharmonic majorant m,
i.e. M log(Bm0(H)) may be empty. However, we may ask the question if the ball
Bm0(H) is contained or does contain some balls generated by such special kinds
of majorants.

This question is also of interest for the following reason: In the first case, we
obtain supersets B such that division of a function F in Bm0(H) by a Blaschke
product cannot lead further out than B and, in the second case, we obtain
subsets B which are invariant with respect to division by Blaschke products.

6.1 Definition. Let H be a de Branges space, and let m0 ∈ AdmH. Then we
denote

M log
≥ (m0) :=

{
m ∈ AdmC+ H : m log-superharmonic, m < m♭

0

}
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M log
≤ (m0) :=

{
m ∈ AdmC+ H : m log-superharmonic, m♭

4 m0

}

and
Blog

≥ (m0) := β
(
M log

≥ (m0)
)
, Blog

≤ (m0) := β
(
M log

≤ (m0)
)
,

where β is the map m 7→ Bm(H), cf. (2.4).

Note here that

m < m♭
0 ⇐⇒ Bm(H) ⊇ Bm0(H) ⇐⇒ m♭ ≥ m♭

0

m♭
4 m0 ⇐⇒ Bm(H) ⊆ Bm0(H) ⇐⇒ m♭ ≤ m♭

0

It will follow from the results of the previous section that the structure of the
sets M log

≥ (m0) and Blog
≥ (m0) is fairly simple. Contrasting this, we cannot say

much about M log
≤ (m0) and Blog

≤ (m0); the obvious obstacle being that in the

definition of M log
≤ (m0) not the function m itself but only m♭ appears.

a. The set M
log

≥ (m0).

Whether or not a log-superharmonic majorant belongs to M log
≥ (B) is decided

by behaviour of boundary values along R and exponential growth.

6.2 Proposition. Let H be a de Branges space, and choose E ∈ HB with
H = H(E). If m0 ∈ AdmH, then the following hold:

(i) We have

M log
≥ (m0) =

{
m ∈ AdmC+H :

m log-superharmonic, and
m♭|R ≥ m♭

0|R, mtH m♭ ≥ mtH m♭
0

}
=

=

{
m ∈ AdmC+H : m log-superharmonic, and

lim inf
z→x,z∈C+

m(z) ≥ m♭
0(x), x ∈ R, lim sup

|z|→∞,z∈C+

1

Im z
log

m♭
0(z)

m(z)
≤0

}
,

Blog
≥ (m0) =

=

{
Bm(H(a)) :

m ∈ AdmRH, m continuous, and∫
R
(log+ m(t)

|E(t)| )
dt

1+t2 < ∞, m ≥ m♭
0|R, a ≥ mtH m♭

0

}
.

(ii) Let m ∈ AdmC+ H be an N+-majorant, and denote by m∗ its boundary
function, cf. (5.5). Then

m ∈ M log
≥ (m0) ⇐⇒ m∗

< m♭
0, mtH m ≥ mtH m♭

0

Proof. Assume first that m ∈ M log
≥ (m0), then m♭ ≥ m♭

0, and hence in particular

m♭|R ≥ m♭
0|R, mtH m♭ ≥ mtH m♭

0 .
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Assume next that m is log-superharmonic and that these two inequalities hold.
Then m⊥

Bm(H) ≥ m⊥
Bm0(H), and hence m ≥ m⊥

Bm(H) ≥ m⊥
Bm0 (H) < m♭

0. In partic-

ular,

lim inf
z→x,z∈C+

m(z) ≥ m♭
0(x), x ∈ R, lim sup

|z|→∞,z∈C+

1

Im z
log

m♭
0(z)

m(z)
≤ 0 . (6.1)

We see that both inclusions ‘⊆’ in the first asserted line of equalities hold.
Assume that m is log-superharmonic and satisfies (6.1). An application of

the Phragmén–Lindelöf Principle [RR, Theorem 6.2] with the functions and sets

u(z) := log m♭
0 − log m, h(z) := Im z, R := R, S := {∞} ,

yields that m♭
0(z) ≤ m(z) for all z ∈ C+. Thus m ∈ M log

≥ (H).

In order to see the stated form of Blog
≥ (m0), it is in view of Corollary 5.5

enough to note that

Bm(H(a)) ⊇ Bm0(H) ⇐⇒ a ≥ mtH Bm0(H) = mtH m♭
0, m < m♭

0

Finally, assume that m is an N+-majorant. Since m < m♭ implies m∗ < m♭, the
implication ‘⇒’ in the asserted equivalence is immediate from what we already
know about M log

≥ (m0). Hence assume that m satisfies the conditions stated on

the right hand side. Then, by the definition of m⊥
Bm0 (H) and Lemma 3.9, (ii),

we have m ≥ m⊥
Bm0 (H) < m♭

0. ❑

It is now easy to state the analogoue of Theorem 5.3 and Corollary 5.4 corre-
sponding to the set M log

≥ (m0).

6.3 Theorem. Let H be a de Branges space, and choose E ∈ HB with H =
H(E). Moreover, let m0 ∈ AdmH. Then

M log
≥ (m0) 6= ∅ ⇐⇒

∫

R

(
log+ m♭

0(t)

|E(t)|
) dt

1 + t2
< ∞.

In this case the set M log
≥ (B) contains a smallest element, namely the N+-

majorant m⊥
Bm0 (H). Moreover, β(m⊥

Bm0 (H)) is the smallest element of Blog
≥ (m0).

Proof. The implication ‘⇒’ is obvious. Assume that the integral on the right
side of the asserted equivalence converges. Then the function m⊥

Bm0(H) is well-

defined, is an N+-majorant, and satisfies

(m⊥
Bm0(H))

∗ = m♭
0|R, mtH m⊥

Bm0(H) = mtH m♭
0.

Thus m⊥
Bm0 (H) ∈ M log

≥ (m0). Let m ∈ M log
≥ (m0) be given. Then the N+-majorant

m⊥
Bm(H) generates the same unit ball as m does, and satisfies m⊥

Bm(H) ≤ m, cf.

Corollary 5.4. Hence m⊥
Bm(H) ∈ M log

≥ (m0), and it follows that

(m⊥
Bm(H))

∗ ≥ m♭
0|R = (m⊥

Bm0 (H))
∗ ,

mtH m⊥
Bm(H) ≥ mtH m♭

0 = mtH m⊥
Bm0(H) .
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This implies that m ≥ m⊥
Bm(H) ≥ m⊥

Bm0 (H).

Since β is order-preserving and maps M log
≥ (m0) onto Blog

≥ (m0), the image of

the smallest element of M log
≥ (m0) is the smallest element in Blog

≥ (m0). ❑

6.4 Remark. The above statements concerning M log
≥ (m0) and Blog

≥ (m0) have
obvious analogues for arbitrary nonempty subsets B of B(H) instead of Bm0(H).
One only should everywhere replace m♭

0 by mB, and copy the above proofs word
by word. We have decided to stick to the case B = Bm0(H), in order to stress to
contrast between approximation from above and from below; compare Theorem
6.3 with Theorem 6.5 and Proposition 6.9 below.

b. The set M
log

≤ (m0).

Interestingly, the structure of M log
≤ (m0) is much more delicate, and is related

to a completely different topic, namely the existence of zerofree elements in
Bm0(H).

6.5 Theorem. Let H be a de Branges space, and let m0 ∈ AdmH. Then the
following are equivalent:

(i) M log
≤ (m0) 6= ∅.

(ii) There exists an H2-majorant m with m ≤ m♭
0|C+ .

(iii) There exists an element F ∈ Bm0(H) which satisfies F# = F and which
has no zeros in C \ R.

Let us formulate the crucial argument of the proof of this result separately.

6.6 Lemma. Let m ∈ AdmH and assume that Rm(H) is invariant with respect
to division by Blaschke products. Then Bm(H) contains a function F with F =
F# which has no zeros off the real axis. In fact, whenever G ∈ Rm(H) \ {0},
the choice of F can be made such that dF |R ≥ dG|R.

Proof. Let G ∈ Rm(H) \ {0} and set F1 := G + G# (in case G = −G#, use

F1 := i(G−G#) instead). Then F1 ∈ Rm(H)\{0}, F1 = F#
1 , and dF1 |R ≥ dG|R.

If F1 has no zeros in C+, then F := ‖F1‖−1
m F1 has all the desired properties,

and we are done. Otherwise, let P be the Blaschke product for C+ built with
the zeros of F1, and define

F2 :=
F1

P
+

(
F1

P

)#

= F1

(
1

P
+ P

)
.

Clearly, F2 = F#
2 and dF2 |R ≥ dF1 |R ≥ dG|R.

Let w ∈ C+ be given. If F1(w) 6= 0, then 0 < |P (w)| < 1. Hence also
P (w)−1 + P (w) 6= 0, and we obtain F2(w) 6= 0. In case F1(w) = 0, we have
F1(w)P−1(w) 6= 0 and (F1P )(w) = 0, and again it follows that F2(w) 6= 0.
Setting F := ‖F2‖−1

m F2, we obtain a function with all the required properties.

❑
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Proof (of Theorem 6.5). We first establish the implication (i) ⇒ (iii). Assume

that m ∈ M log
≤ (m0). Then by Corollary 4.5 the unit ball Bm(H) is invariant

with respect to division by Blaschke products, and hence also Rm(H) has this
property. An application of Lemma 6.6 yields a function F as required in (iii).

Next we show that (iii) ⇒ (ii). Let F be as in (iii), and set m(z) := |F (z)|,
z ∈ C+. Since F is zerofree in C+, we have dm(w) = 0, w ∈ C+. Since F
is real, we have F ∈ Bm(H). Moreover, m(z) = |(E−1F ) · E|, and hence m

is an H2-majorant. Finally, since F ∈ Bm0(H), we have m ≤ m♭
0|C+ . Thus

m ∈ M log
≤ (m0).

The implication (ii) ⇒ (i) is trivial. ❑

Similar as we have asked for minimal elements of M log
≥ (m0) and Blog

≥ (m0), it is

natural to seek for maximal elements M log
≤ (m0) or Blog

≤ (m0). It will turn out,
cf. item (iii) of the below Proposition 6.9, that in general such will not exist.
However, a positive result can be obtained, when restricting considerations to
a specific subclass of M log

≤ (m0).

6.7 Definition. Let H be a de Branges space, let m0 ∈ AdmH, and denote by
D ⊆ C+ ∪ R the domain of m0. Then we define

M̃ log
≤ (m0) :=

{
m ∈ M log

≤ (m0) : m(z) ≤ m0(z), z ∈ D ∩ C+
}

,

and set B̃log
≤ (m0) := β(M̃ log

≤ (m0)).

Of course, the additional requirement in the definition of M̃ log
≤ (m0) is a restric-

tion only if D ∩ C+ 6= ∅. In case D ⊆ R, we have M̃ log
≤ (m0) = M log

≤ (m0), and

hence also B̃log
≤ (m0) = Blog

≤ (m0).
Note that, by the equivalence of (i) and (ii) in Theorem 6.5, we have in

particular
M̃ log

≤ (m0) 6= ∅ ⇐⇒ M log
≤ (m0) 6= ∅

Let us explicitly state the following observation.

6.8 Remark. Let B be a nonempty subset of the unit ball of H. Then B ∈
B̃log

≤ (m0) if and only if the function m⊥
B is well-defined, satisfies m⊥

B(z) ≤ m0(z),

z ∈ D ∩ C+, and B = β(m⊥
B).

6.9 Proposition. Let H be a de Branges space, let m0 ∈ AdmH, and denote
by D the domain of m0. Assume that M̃ log

≤ (m0) 6= ∅. Then the following hold:

(i) If D ⊆ C+, then for each element m ∈ M̃ log
≤ (m0) there exists a maximal

element m̂ of M̃ log
≤ (m0), with m ≤ m̂.

(ii) If D∩C+ 6= ∅, then for each element B ∈ B̃log
≤ (m0) there exists a maximal

element B̂ of B̃log
≤ (m0), with B ⊆ B̂.

(iii) If D ⊆ R and
∫

R
[log+(|E|−1m♭

0)](1+ t2)−1dt < ∞, then Blog
≤ (m0) contains

the largest element, namely Bm0(H) itself.

(iv) If D ⊆ R and
∫

R
[log+(|E|−1m♭

0)](1 + t2)−1dt = ∞, then no element of

Blog
≤ (m0) is maximal in this set.
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Proof.
Step 1, Case D ⊆ C+: We establish the hypothesis of Zorn’s Lemma for the set
M̃ log

≤ (m0). Let an ascending chain M of elements of M̃ log
≤ (m0) be given, and set

m̃ := sup
m∈M

m .

Since m|D ≤ m0, m ∈ M, we also have m̃|D ≤ m0. Note that the domain
of m̃, i.e. C+, entirely contains the domain of m0, i.e. D. We conclude that
Bm̃(H) ⊆ Bm0(H).

The family (log m)m∈M is a nondecreasing net of superharmonic functions.
Pick an element m1 ∈ M. Then there exists a function F ∈ Bm1(H) which
has no zeros in C+. Hence log |F | is harmonic in C+ and satisfies log |F | ≤
log m1. Corollary 2.15 implies that log m̃ is superharmonic. We conclude that
m̃ ∈ M̃ log

≤ (m0) and have found an upper bound of M.

Step 2, Case D ∩ C+ 6= ∅: Let B be an ascending chain in Blog
≤ (m0). For each

B ∈ B, the majorant m⊥
B is well-defined, belongs to M log

≤ (m0), and we have

B = β(m⊥
B). Set

m̃ := sup
B∈B

m⊥
B ,

and
kB :=

mB

|E|
∣∣∣
R

, k := sup
B∈B

kB , a := sup
B∈B

mtH B .

First we are going to show that

m̃(z) =
∣∣e−iazfk(z)E(z)

∣∣, z ∈ C+ . (6.2)

To this end we verify the hypothesis of Corollary 2.16 for the family (kB)B∈B.
By Lemma 3.3, the function kB is continuous. The fact that B1 ⊆ B2 implies
kB1 ≤ kB2 is clear, and the condition log kB ∈ L1( dt

1+t2 ) is just the fact that m⊥
B

is well-defined.
It remains to establish the second condition in (2.7). Here we employ our

assumption that D ∩C+ 6= ∅. Choose z0 = x0 + iy0 ∈ D ∩C+, and let c > 0 be
such that

c
1

1 + t2
≤ y0

(t − x0)2 + y2
0

, t ∈ R .

Moreover, fix B0 ∈ B. Then, for each B ∈ B with B ⊇ B0,

c
(∫

R

[
log kB(t)

] dt

1 + t2
−

∫

R

[
log kB0(t)

] dt

1 + t2

)
≤

≤
∫

R

[
log kB(t) − log kB0(t)

] y0

(t − x0)2 + y2
0

dt = π log
∣∣∣ fkB

(z0)

fkB0
(z0)

∣∣∣ ,

|fkB
(z0)| = e−y0 mtH B m⊥

B(z0)

|E(z0)|
≤ e−y0 mtH B0

m0(z0)

|E(z0)|
,

∫

R

[
log− kB(t)

] dt

1 + t2
≤

∫

R

[
log− kB0(t)

] dt

1 + t2
.

Putting together these estimates yields
∫

R

[
log+ kB(t)

] dt

1 + t2
=

∫

R

[
log kB(t)

] dt

1 + t2
+

∫

R

[
log− kB(t)

] dt

1 + t2
≤

36



≤ π

c

(
log m0(z0) − y0 mtH B0 − log |E(z0)| − log |fkB0

(z0)|
)
+

+ 2

∫

R

∣∣ log kB(t)
∣∣ dt

1 + t2
=: C < ∞ .

Hence, by monotonicity,

sup
B∈B

∫

R

[
log+ kB(t)

] dt

1 + t2
= sup

B∈B

B⊇B0

∫

R

[
log+ kB(t)

] dt

1 + t2
≤ C .

An application of Corollary 2.16 gives fk(z) = limB∈B fkB
(z), z ∈ C+, and

hence (6.2) follows.

Next we are going to show that m̃ ∈ M̃ log
≤ (m0). Clearly, m̃ is an N+-

majorant, and satisfies

m̃(z) ≤ m0(z), z ∈ D ∩ C+ . (6.3)

Since, for each B ∈ B, we have B ⊆ Bm0(H), it follows that

exp
(
kB(x)

)
|E(x)| = mB(x) ≤ m♭

0(x), x ∈ R .

Thus also exp(k(x))|E(x)| ≤ m♭
0(x), x ∈ R. Let F ∈ Bm̃(H) be given. Then,

for each Lebesgue point of the function log k, we have

|F (x)| = lim
z→̂x

|F (z)| ≤ lim
z→̂x

m̃(z) = exp(k(x))|E(x)| ≤ m♭
0(x) .

By continuity, and the fact that the set of Lebesgue points of log k is dense in
R, it follows that

|F (x)| ≤ m♭
0(x), x ∈ R .

In particular, |F (x)| ≤ m0(x), x ∈ D ∩ R. Together with (6.3) this shows that

F ∈ Bm0(H). We conclude that indeed m̃ ∈ M̃ log
≤ (H). Moreover, clearly, β(m̃)

is an upper bound of B.

Step 3, Case D ⊆ R: If the integral
∫

R
[log(|E|−1m♭

0)](1 + t2)−1dt converges,

then by Theorem 5.3 we have Bm0(H) ∈ Blog
≤ (m0). Trivially, it is the largest

element of this set.
Assume that the above logarithmic integral diverges. If B ∈ Blog

≤ (m0), then

mB ≤ m♭
0 and

∫
R
[log(|E|−1mB)](1 + t2)−1dt < ∞. Hence, we cannot have

mB = m♭
0. Choose x0 ∈ R such that mB(x0) < m♭

0(x0), and let F ∈ Bm0(H) be
such that mB(x0) < |F (x0)|. Set

m1(x) := max
{
|F (x)|, mB(x)

}
, x ∈ R ,

then mB 4 m1 4 m0. However, F ∈ Bm1(H) \ B, and hence

B ( Bm1(H) ⊆ Bm0(H) .

Moreover, since E−1F ∈ H2, it follows that

∫

R

(
log+ m1(t)

|E(t)|
) dt

1 + t2
≤

≤
∫

R

(
log+

∣∣∣F (t)

E(t)

∣∣∣
) dt

1 + t2
+

∫

R

(
log+ mB(t)

|E(t)|
) dt

1 + t2
< ∞ .

We obtain from Theorem 5.3 that Bm1(H) ∈ Blog
≤ (m0). ❑
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