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Abstract

For a given deBranges space H(E) we investigate de Branges sub-
spaces defined in terms of majorants on the real axis: if w is a non-
negative function on R, we consider the subspace

Ru(E) = Closypy {F € H(E): 3C > 0:|E"'F| < Cw on R}.

We show that R, (F) is a de Branges subspace, describe all subspaces
of this form, and study the majorants w such that R, (F) = H(E).
We give a criterion for the existence of positive minimal majorants
and characterize finite-dimensional subspaces of the form R, (F) in
terms of minimal majorants.
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1 Introduction and preliminaries

The theory of Hilbert spaces of entire functions introduced by L. de Branges
is an important branch of modern analysis. It is an intriguing example for
a fruitful interplay of function theory and operator theory, which has deep
applications in mathematical physics, namely in differential operators and
scattering theory.

One of the striking features of a de Branges space is the structure of its
de Branges subspaces (that is, subspaces which are themselves de Branges
spaces) revealed by deBranges’ Ordering Theorem. This theorem states,
roughly speaking, that, for a given space, the set of all its de Branges sub-
spaces ‘with the same real zeros’ is totally ordered with respect to set-
theoretic inclusion. However, given an individual de Branges space, there
is no explicit way to determine the chain of its de Branges subspaces.



In a recent series of papers V. Havin and J. Mashreghi introduced the
notion of admissible majorants for shift-coinvariant subspaces of the Hardy
space. Since de Branges spaces are, essentially, particular shift-coinvariant
subspaces of the Hardy space, this notion is applicable. Of course, due to
the rich structure of de Branges spaces, much more specific results than in
the general setting can be expected.

It is the aim of our present work to show that admissible majorants give
rise to de Branges subspaces and to study the structure of these subspaces.
Our main results are a description of all subspaces which are induced by ad-
missible majorants, a criterion for the existence of minimal majorants which
are separated from zero, and a description of finite-dimensional subspaces in
terms of minimal majorants.

As already indicated in the above abstract, an admissible majorant defines
a de Branges subspace by means of a restriction on the growth along the real
axis. It is an interesting observation that this concept is complementary to
imposing growth conditions off the real axis. In the recent paper [KW1]
de Branges subspaces were defined by means of restriction on mean type.
We will see that the subspaces defined by majorants cannot be described by
mean type conditions. Hence these two methods can, in conjunction, lead
to a description of the whole chain of subspaces of a de Branges space. An
elaboration of this idea will be subject of future work.

Let us describe the organization and content of the present paper in more
detail. After this paragraph we proceed with the preliminaries-part of this
introductory section. There we set up our notation and recall some basic
facts concerning de Branges spaces and admissible majorants. Also the exact
definitions of all the used terms will be given. Section 2 is devoted to the
study of subspaces induced by majorants by means of Definition 2.1 and
Proposition 2.2. The main result in this context is the characterization of
those subspaces which can be realized in this way, given in Theorem 2.6 and
Proposition 2.11. As corollaries we obtain a couple of conditions for density
of ‘small’” functions in a given de Branges space. Moreover, we give some,
rather general, examples to illustrate these results. In Section 3 we turn to
a thorough investigation of minimal majorants. Our main result is Theorem
3.2 where we relate minimal majorants to one-dimensional subspaces. In
combination with Theorem 2.6 this leads to a characterization of existence
of minimal majorants separated from zero, cf. Theorem 3.8. Finally, we
present a description of finite-dimensional subspaces induced by majorants
by means of minimal majorants, cf. Theorem 3.12 and Proposition 3.15.

a. de Branges spaces

An entire function FE is said to belong to the Hermite-Biehler class HB, if it



has no zeros in the open upper half plane C* and satisfies
|E(2)| < |E(2)|, z€ CT.

In what follows we denote by H?(C") the Hardy class in the upper half plane,
see e.g. [RR]. Moreover, throughout this paper we will, for any function F,
denote by F# the function F#(z) := F(z).

1.1 Definition. If £ € HB, the de Branges space H(E) is defined as the set
of all entire functions F' which have the property that

F F#
—, — € H*C").

Moreover, H(E) will be endowed with the norm

171 = ( [ |50

It is shown in [dB, Theorem 21] that H(E) is a Hilbert space with respect
to the norm ||| g.

2

1/2
dt) , FeM(E).

1.2 Remark. The definition of H(E) given above can be reformulated. In
fact, an entire function F' belongs to H(E) if and only if

F F# F F#

- - + _ <
T F € N(CT), mtE,mt Z <0,
and P
— L?*(R).
7l € L'(R)

Here N(C*) denotes the set of all functions of bounded type in C*, and mt f
denotes the mean type of a function f € N(C™), i.e.

1
mt f := limsup — log | f(iy)],
y

y—+o0

see e.g. [RR]. In fact, this is the original definition given in [dB].

It is an important feature that de Branges spaces can be characterized
axiomatically, cf. [dB, Problem 50, Theorem 23]. Let H be a nonzero Hilbert
space whose elements are entire functions. Then H is equal to a space H(E)
including equality of norms if and only if ‘H satisfies:

(dB1) for every v € C the point evaluation functional x, : F' — F(v) is
continuous on H;



(dB2) if F' € H, then also F'# € ‘H, and we have
IF#| = |IFIl, FeH;

(dB3) if FF€ H and z; € C\ R with F(zp) = 0, then also
o R

zZ— 20

F(2) € H, and H —|IF.

zZ— 20

1.3 Remark. If a Hilbert space H which satsifies (dB1)-(dB3) is given, the
function F € ‘HB which realizes H as H(FE) is not unique. In fact, if £y, Fy €
HB, then H(E;) = H(E,) including equality of norms, if and only if

(A9, Bs) = (A1, B))U
where 4, = 1(Ej + EF), By, = L(Ey — EF), k = 1,2, and where U is a
2 x 2-matrix with real entries and determinant 1.

By (dB1), a de Branges space H is a reproducing kernel Hilbert space of
entire functions. This means that there exists a (unique) function K (v, z),
entire in z and in v, such that for every fixed v € C we have

K(v,-) € Hand (F,K(v,-))=F(v), FeH.
If ‘H is realized as H(E) with some E € HB, the reproducing kernel of H

can be written explicitly in terms of E. In fact, we have
E(2)E(v) — E*(2)E(v)

Kv,2) = om0 — 2)

For an entire function G let 9(G) : C — N be the map which assigns to
a point v its multiplicity as a zero of GG. For a de Branges space 'H we put

0(H)(v) == %%D(F)(v) :

Then for any E € HB with H = H(E) we have
O(H(E))() = o(E)(), t €R,

cf. [dB, Problem 45]. Note that, by (dB3), we always have 3(H)|c\r = 0.
The following observation is often useful, cf. [dB, Problem 44].

1.4 Remark. If S is a real entire function (by real we mean that S = S7%)
which has no zeros off the real axis, then SE € HB if and only if £ € ‘HB.
Moreover, in this situation, the map F(z) — S(2)F(z) is an isometry of
H(FE) onto H(SE). This shows that one can often restrict considerations to
the case where E € ‘HB has no real zeros, or, equivalently, that H satisfies
the additional axiom



(Z) d(H)=0.

For a more general viewpoint on this subject see [KW1, Lemma 2.4].

Let v € C and F' € H(F) with F(v) = 0 be given. If either v € C\ R or
v € Rand 0(F)(v) > o(F)(v), then also

zZ—U

e H(E). (1.1)

b. dB-subspaces

A most prominent role in the theory of de Branges spaces is played by their
subspaces.

1.5 Definition. A subset L of a de Branges space H is called a dB-subspace,
if it is itself, with the norm inherited from H, a de Branges space. We shall
denote the set of all dB-subspaces of a given space H by Sub(H).

In view of the above axiomatic characterization of de Branges spaces, a
subset L of H is a dB-subspace if and only if

(Subl) L is a closed linear subspace of H;
(Sub2) if F € L, then also F# € L;
(Sub3) if '€ L and 2y € C\ R with F(2) = 0, then also Z=22F(2) € L.

Those dB-subspaces L of a given deBranges space H which additionally
satisfy

(SubZ) o(L) = d(H)

are of particular importance. The set of all such dB-subspaces will be de-
noted by Sub®*(H). Note that, if H and L are written as H(E) and H(E"),
respectively, with some F, E; € HB, then the validity of (SubZ) just means
that 9(E))|gr = 0(E)|r-

1.6 Remark. In the situation of Remark 1.4, we have L € Sub(H(F)) if
and only if S - L € Sub(H(SE)), and also L € Sub’(H(FE)) if and only if
S - L e Sub’(H(SE)).

One of the most fundamental and deep results in the theory of de Branges
spaces is the so-called Ordering Theorem of de Branges, cf. [dB, Theorem 35]
(we state only a somewhat weaker version which suffices for our needs):



1.7. de Branges’ Ordering Theorem: Let H be a de Branges space and
let 0 : R — NU{0} be given. Then the set

{L € Sub(H) : o(L) =0}
18 totally ordered with respect to set-theoretic inclusion.

1.8 Example. An important example of a deBranges space is the classical
Paley-Wiener space PW,, a > 0. It can be defined as the space of all entire
functions of exponential type at most a, whose restrictions to the real axis
belong to L?(R). The norm in the space PW, is given by the usual L?-norm,

) 1/2
IF|| = </R|F(t)| at) ", F e Pw,.

It is a consequence of a theorem of M.G. Krein, cf. [RR, Examples/Addenda
2, p. 134], that PW, = H(e~"*). The chain Sub®(PW,) is given as

Sub*(PW,) = {PW,: 0 <b<a}.

Recall that, by the Theorem of Paley-Wiener, the space PW, coincides with
the Fourier image of the space of square summable functions supported on
the interval [—a, a].

1.9 Example. More general examples of de Branges spaces occur in the theory
of canonical (or Hamiltonian) systems of differential equations, cf. e.g. [dB,
Theorems 37,38], [GK], [HSW]. Let H be a 2 x 2-matrix valued function
defined for ¢ € [0,1], such that H(t) is real and nonnegative, the entries of
H(t) belong to L'(]0,1]) and H(t) does not vanish on any nonempty interval.
We call an interval (a, 3) C [0,1] H-indivisible, if for some ¢ € R and some
scalar function h(t) we have

H(t) = h(t) (

Let W (t, z) be the (unique) solution of the initial value problem

cos?p  cospsinp
COs (p sin sin? ¢

) , ae te(a,p).

0
o5, W(t2)J = 2W (L 2)H(D), te (0,1,

W(0,z)=1

0 —1
J = ( ) )
and z € C. The function H is called the Hamiltonian of this system.

- Put (A:(2), Bi(2)) := (1,0)W(t,2), t € [0,1], and Ey(z) := Ai(2) —iB(2).

where J denotes the matrix



(Z) Et S HB, t e (O,Z], and EO =1.

(i1) If 0 < s <t <, then H(E,) C H(E;) and the set-theoretic inclusion
map is contractive. If sis not an inner point of an H-indivisible interval,
it is actually isometric.

(17i) We have

Sub®(H(E;)) = {H(E;) : t not inner point of H-indivisible interval } .

Paley-Wiener spaces can be realized in this way. In fact, if H(t) = I,t € [0, 1],
then E;(z) = e .

c. Admissible majorants

Let us recall the notion of an admissible majorant of a de Branges space

H(E), cf. [HM1, HM2].

1.10 Definition. Let F € HB. A nonnegative function w on the real axis
R is said to be an admissible majorant for the space H(F), if there exists a
nonzero function F' € H(FE) such that |E(z) ' F(z)| < w(z), € R. The set
of all admissible majorants for H(E) is denoted by Adm(E).

1.11 Remark. If Ey, E5 € HB generate the same space, i.e. H(FE,) = H(FE2)
including equality of norms, then Adm(E;) = Adm(E;). This follows from
an elementary estimate using Remark 1.3.

1.12 Remark. One may consider a slightly more general definition of admis-
sible majorants, if one assumes that the estimate |F~'F| < w holds almost
everywhere on R with respect to Lebesgue measure (as in [HM1, HM2]).
However, since E~!F is continuous on R for any F' € H(FE), the requirement
that |E~'F| < w everywhere on R does not lead to any substantial loss of
generality. In fact, if we restrict our attention to majorants w which are
semicontinuous from below, then these notions are equivalent.

A natural necessary condition for a function w to be an admissible majo-
rant is the convergence of the logarithmic integral

log™ w(x)
———d . 1.2
/R T+a22 = (1.2)

Here log™ t := max(—logt,0). Indeed, since F/E € H*(C"), we have

[, [ g 1M B

1+ 22 1+ 22

dr < o0,



see, e.g., [HJ], p. 32-36.

The description of admissible majorants for the Paley-Wiener spaces is a
classical problem of harmonic analysis. By what we just said, any admissible
majorant for a space PW, must satisfy (1.2). The fact that this, obvious,
necessary condition is in many cases also sufficient is the content of the
famous Beurling-Malliavin Multiplier Theorem, cf. [BM]:

1.13. Beurling-Malliavin Multiplier Theorem: Let w be a positive func-
tion on R satisfying (1.2), and assume that the function logw is Lipschitz on
R. Then w is an admissible majorant for every space PW,, a > 0.

This is one of the deepest results of harmonic analysis and several different
proofs of it are known (see [HJ, HMN, K]J). A typical example of a majorant
admissible for all spaces PW, is the function w(x) = exp(—|x|?) where 3 €
(0,1). This theorem is referred to as Multiplier Theorem since it means
that for any a > 0 there exists a nonzero multiplier f € PW, such that
fw=t e L*(R).

Admissible majorants for general de Branges spaces (and even in a more
general setting of the so-called star-invariant subspaces of the Hardy class)
were studied for the first time by V.P. Havin and J. Mashreghi in [HMI,
HM2], where a complete parametrization of the class Adm(F) is found and
a number of conditions sufficient for admissibility are obtained. Further
applications of this approach may be found in [BH, BBH| and in [HMN]
where a new and essentially simpler proof of the Beurling-Malliavin theorem
is given.

A certain subclass of admissible majorants is of particular interest.

1.14 Definition. Let £ € HB. We say that an admissible majorant w
for H(FE) is separated from zero, if each point x € R has a neighbourhood
U(z) C R such that

inf {w(t): t € U(z)} > 0.

The set of all admissible majorants for H(E) which are separated from zero
will be denoted by Adm™ (E).

Note that, clearly, the condition for w to be separated from zero is equiv-
alent to the following: for every interval [a,b] C R we have inf{w(t) : ¢ €
[a,b]} > 0.

1.15 Erample. Examples of admissible majorants can be obtained from ele-
ments of H(F). For F' € H(E) \ {0}, consider the function

wp(z) = ‘%

, r €R.

8



Then, by definition, |E(z) ' F(z)| < wp(z), and hence wy is an admissible
majorant for H(E). Clearly, in this situation, we have wp € Adm™ (E) if and
only if 0(F)|g = 0(E)|.

2 Subspaces in terms of admissible majorants

Throughout this paper we will use the following notation: we write f < g if
there exists a positive constant C' such that f < Cg for all admissible values
of variables. Moreover, we write f < g if f < gand g < f.

Since the relation < is reflexive and transitive, it induces an order on
equivalence classes of functions modulo the equivalence relation <. In par-
ticular, given E € HB, we obtain an order on the set Adm(F)/~ as well
as on Adm"(FE)/=. Clearly, Adm(F) and Adm™(FE) are saturated with re-
spect to <, i.e. if w € Adm(E), or w € Adm™(F), and w; < w, then also
w; € Adm(E), or w; € Adm™ (E), respectively.

Admissible majorants give rise to dB-subspaces of H(E).

2.1 Definition. For F' € HB and w € Adm(E) define
Ro(E) := Closyp) {F € H(E) : |E(z) 'F(z)| Sw(z),z € R}.

2.2 Proposition. Let E € HB and let w € Adm(E). Then the space R, (F)
is a dB-subspace of H(E). The assignment w — R, (E) defines a monotone
map of Adm(E)/~ into Sub(H(E)). Moreover, w € Adm™ (E) if and only if
R.(E) € Sub’(H(E)).

Proof. Since R, (F) is by definition the closure of the linear space
RA(E) = {F € H(E) : |E(@)" F(x)| $ wle),x € R},

it is a closed linear subspace of H(E). We need to show that R, (E) has the
properties (Sub2) and (Sub3).

Clearly, R,(F) is invariant under the map F ~— F#. Since this map is
continuous with respect to the norm of H(E), also R, (E) = Closy R, (E) is
invariant under F' — F# i.e. (Sub2) holds.

Let F € R,(E) and v € C\ R with F(v) = 0 be given. Then also

Z—

F(z) € R,(E),

z—v
i.e. R,(E)Nker x,, where x, is the point evaluation functional at v, is mapped
into R, (E) by the map ® : F(z) — 2=2F(z). Note that, in particular, one

z—

can always find an element G € R, (F) with G(v) = 1.

9



Since ¢ maps ker y, isometrically and, thus, continuously into H(FE), it
follows that

® ( Closy(p)(Ru(E) Nker x,)) C Closy gy Ru(E) = Ru(E).
We shall establish (Sub3) by showing that
Closy ) (Ro(E) Nker x,) = Ry (E) Nker x,, .

To see this let F' € R, (E) Nkerx, be given and choose F,, € R,(FE) such
that F,, — F. Moreover, choose G € R, (F) with G(v) = 1. Since F,(v) —
F(v) = 0, we have F,—F,,(v)G — F and hence I € Closy(g) (R, (E)Nker x,).
The converse inclusion is trivial.

If wi,ws € Adm(FE), w; S wy, then, clearly, R, (F) C R,,(F) and,
therefore, R, (F) C R,,(E). It follows that R,(F) depends only on the
equivalence class w/~ and is monotone.

We come to the proof of the last assertion. Let w € Adm(E). Assume
first that R, (F) € Sub®(H(E)) and let ¢ € R be given. Choose F' € R, (E)
with 9(F)(t) = ?(E)(t). Then, by continuity, there exists 6 > 0 and a
compact neighbourhood U(t) of ¢ such that |F(z)/E(z)| > §, x € U(t).
Choose a sequence G, € R,(F) such that G,, — F in the norm of H(E).
Then G,, also converges to F' locally uniformly. Since 9(G,)(z) > do(F)(x)
for all n € N and x € R, by the Maximium Modulus Principle, G,,/E —
F/E locally uniformly on C\ {v € C~ : E(v) = 0}. Hence there exists
n € N such that |G, (z)/E(x)] > /2, x € U(t). Let C > 0 be such that
|E(x)"'G,(z)| < Cw(x), x € R. Tt follows that

J
inf > — >0
zé%(t)w(x) — 20 ’
and we see that w € Adm™ (E).
Conversely, assume that w € Adm™(E). Let t € R be given and choose
F € R,(E)\ {0}. Put n:=0(F)(t) —o(E)(t), then n € NU {0} and the
function (i(f))n belongs to H(E). Let U(t) be a compact neighbourhood of ¢

such that inf ey w(z) > 0. Then, by continuity of (z — ¢)"F(x)/E(x),

G E@) Sw(z), xeU(t).

Since ﬁ is bounded for z ¢ U(t), it is clear that

Swiz), = ¢U(1).




We see that —2- € R,(E). Thus, R,(E) contains an element G with

z—=t)™

o(G)(1) = 2(E)(®).
Q

2.3 Remark. Let us note that taking the closure Closyg) in the definition
of R, (F) is actually necessary in order to obtain de Branges subspaces. Al-
though the linear space R, (F) always satisfies (Sub2) and (Sub3), it will not,
in general, be closed. In fact, if one assumes that w € L?(R), then the linear
space R, (FE) is not closed unless it is finite-dimensional. This is seen by an
application of a theorem of Grothendieck with the probability measure

w?(z)
du(z) = ) _
[L(l') waz(t) dt x,
cf. [R, Theorem 5.2]. Note that the assumption w € L?(R) is not too re-

strictive; for example, it is met by every admissible majorant of the form wp,
F € H(E)\ {0}, cf. Example 1.15.

In connection with Remarks 1.4 and 1.6 the following observation is often
useful.

2.4 Remark. Let E € HB and let S be a real entire function which has
no zeros off the real axis. Then Adm(FE) = Adm(SE) and Adm™*(E) =
Adm™(SE). Moreover, for any w € Adm(E), we have R,(SE) = S - R, (E).

Indeed, by Remark 1.4, the map F' +— SF is an isometry of H(E) onto
H(SE). Since, by analyticity, Egg;gg} = ‘gg}, x € R, for all F € H(F),
we have |[E~'F| < w if and only if |(SE) ' (SF)| < w. Thus Adm(E) =
Adm(SE) and R,(SE) = S - R,(E). By the bicontinuity of the map F
SF, we also have R, (SE) =5 R,(E).

2.5 Definition. Let ' € ‘HB. Denote by ‘R the map

. { Adm(Ecz - %io((;(m)

In the next theorem we characterize the dB-subspaces of a given space
H(E) which are of the form R, (F). This is the first main result of this

paper.
2.6 Theorem. Let E,E, € HB be given, such that H(E,) € Sub(H(E)).
Then H(Ey) € R(Adm(E)) if and only if mt 2 =

2.7 Remark. The mean type condition in this theorem does not depend on
the choice of F and E;. In fact, by Remark 1.3, if H(E)) = H(F:2) with

equality of norms, then mt % = mt g—f =0.
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In the proof of Theorem 2.6 we will use a class of dB-subspaces defined by
a growth condition, cf. [KW1]: If H(E) is a de Branges space and 3,5 <0,
denote by H(E)gs, s_) the linear subspace

F F#
H(E)@p, 5. = {F € H(E) : mtESBJr,mtfgﬁ,}.

Then the space H(E)s, ) is closed. Moreover, if ;. = (B_, it actually
belongs to Sub®(H(E)) U {0}, cf. [KW1, Lemma 2.6, Corollary 5.2].
)

2.8 Lemma. Let H(E) be a de Branges space, 3 < 0, and assume that
H(E) @, # {0}. Then, for all §' € (8,0], we have

dim (H(E) 5,5/ H(E)5,8) = 0.

Proof. It is enough to show that for all 3 with H(E) ) # {0} and 5’ € (3, 0]
we have H(E) g, 7# H(E) @ p). To see this, choose F e H(E)@p \{0} and
put o := mt £. Then the function G(z) := € @=#)2F(2) belongs to H(E),
cf. [KW1, Lemma 2.6], and satisfies mt % = ﬂ’. Moreover, since a < 3 < (3,

we have mt % =a—p0+ % <a—p'+3 <. Hence G € Hg p) \ Hizp)-
Q

2.9 Lemma. Let E,E, € HB, H(E,) € Sub(H(E)), and § < 0 be given.
Then H(E1) € H(E) s, if and only if mt 22 < 3.

Proof.  Assume that H(E)pss # {0}. Then [KWI1, Lemma 5.5] implies
that H(E) s = H(Es) with Eg € HB and mt 22 = 3. Hence, if H(E;) C
H(E) 3,8, we get

E, B, Es
mt — = t— t <
E B, Tt =h
——

<0

Conversely, if mt % < 3, we obtain for every F' € H(E;) \ {0}

A tF+ tE<ﬂ
= - mt —
mp=mtiE B B, E =

Hence F' € H(E) ). Since with F also F# belongs to H(E;), the same
argument will show that ' € H(E) g and, therefore, ' € H(E)3,3).-

Q

Proof (of Theorem 2.6). Let E,E, € HB, H(E;) € Sub(H(E)), be given.
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Sufficiency: Assume that mt % =

Since H(E,) € Sub(H(E)), we have 0(E1)|gr > 0(E)|g. Define w as
| Ex ()]
w(z) = , v eR, (2.1)
(1 + [z E(2)|
then w is a continuous and nonnegative function on R. Let v € C \ R and
consider the reproducing kernel
E\(2)Ei(v) — EY () Ei(0)
27i(v — 2)

8

Ki(v,z2) =

of H(Ey). Then we have for z € R,

xT— f&x 1(U
Koo = | B@EE - B @B

(2.2)

< s max{| )L B0} a2 - FE — Cutle)

where C' := < max{|E1(v)|, |E1(0)|} maxier % Hence |E(z) 'Ky (v, z)| <
w(z), E(x) # 0, and by continuity this inequality holds for all x € R. Hence
w € Adm(F) and K;(v,-) € R,(F). Since the linear span of the reproducing
kernels Ki(v,-), v € C\ R, is dense in H(F;), we conclude that H(E;) C
R(w).
Conversely, let F' € R,(E). Then F € H(FE) and, since by [KW1, §2]

always Ey € H(E) + zH(E),

F F FE

L ()

5 B BN
Moreover, by our assumption that mt % =0, we have

t tF~|— tE tF<O
mt— =mt — +mt — =mt — .
E E E; E —

Since F'# also belongs to H(E) whenever I does, this argument also applies
to F'# and we obtain

Since F € R,(E), i.e. |F(z)| Sw(z)|E(z)|, * € R, we have
‘ F(z) 1

It follows that F' € H(E,) for any F' € R,(FE). Thus, also R(w) C H(E,).
Altogether, we conclude that H(E;) = R(w).

€ L*(R).

13



Necessity: Assume that H(E,) = R(w) for some w € Adm(FE).

Let us assume on the contrary that mt % = (8 < 0. Then, by Lemma 2.9,
H(Er) € Hgp)-
Consider the map

) Hpe — HE)
(I)'{ F(z) = € F(z2)

cf. [KW1, Lemma 2.6]. This map is isometric and, therefore, continuous.
Since R, (E) C Hgp it follows that ®(R,(E)) € H(E). Clearly, we have
|O(F)(z)] = |F(x)|, z € R. Thus, ®(R,(E)) C R,(E) and, consequently,
O(R,(E)) C R,(E). Hence, if F € R,(E), then for every n € N we have

"(F) € Ro(E) C H(E).

However,

e (2) F
—mt L .
E E(z) ng o+ mt

If F # 0 and n is chosen sufficiently large, we have a contradiction since, due
to the inclusion ®™(F) € H(FE), always mt q)T(F) < 0 must hold.

Q

As a byproduct of the proof of Theorem 2.6 we obtain the following result
which will be of importance in our further investigation of the structure of
Adm(E).

2.10 Corollary. Let E € HB and w € Adm(FE). Then there exists F' €
H(E) \ {0} such that R(w) = R(wr).

Proof. Choose E; € HB such that R(w) = H(F;). Then mt % =0, and, as
we have seen in the proof of sufficiency of Theorem 2.6,

B
M) = KT e

Let K be the reproducing kernel of H(E;) and fix v € C*. Then, cf. (2.2),

|E1 ()]

Ki(v, )| < )

On the other hand,

Ka(0.2)| > 5 1B B~ B B >

2m|
14



L LA [t [Ea ()]
— min
T 271 teR |t — 0| 1+ ||
Since v € C*, we have |E1(v)| > |E;(0)|. Tt follows that

|E1(0)] — |E1(0)]] -

Ko, = DL
and hence By()]
m((l n |x|)|E(m)|) = R(Wk; ;) -

Q

The dB-subspaces of highest interest are those which satisfy (SubZ), i.e.
the elements of Sub®(H(F)). Correspondingly, the admissible majorants of
highest interest are the elements of Adm™ (E). From Theorem 2.6 we deduce
a characterization of R(Adm™ (E)).

2.11 Proposition. Let E, Ey € HB be such that H(E,) € Sub(H(E)). Then
the following are equivalent:

(i) H(E1) € R(Adm™ (E));
(it) H(E;) € Sub’(H(E)) and mt £+ = 0;
(iii) H(Er) € Sub*(H(E)) and H(E1) 2 Usco H(E) 5,5)-

Proof. Combining Theorem 2.6 and Proposition 2.2 we immediately see that
(1) is equivalent to (7).

Assume that (i) holds. Since Sub®(H(E)) U {0} is totally ordered with
respect to set theoretic inclusion, we either have

(1) Elﬁ <0: H(El) - H(E)(B”g);
(2) V<O : H(El) D) H(E)(B”g)

In the second case H(E1) 2 [Uz.o H(E) (), i-e. (i) is valid. In the first case
we obtain from Lemma 2.9 that mt % < (@ for some (8 < 0 which contradicts
(77). Hence the case (1) cannot take place and we are done.

Conversely, assume that (éi7) holds. If we had [y := mt % < 0, then
Lemma 2.9 would imply H(E1) € H(E)@s,,60)- By (77), Ugeo H(E) 5,8 C
H(E)(8,,3)- This contradicts Lemma 2.8, since H(£;) # {0}.

15



Q

From this result we obtain a criterion for density of a set R, (E) in H(E).
Results of this type are of interest since density of R,(E) means that all
elements of H(FE) can be approximated by functions F satisfying |[E~1F| < w
on the real axis, i.e. by, in a certain sense, ‘small’ functions.

2.12 Corollary. Let £ € HB.

(i) If the linear space Lo == Ug o H(E)s,p) is dense in H(E), then for
every w € Adm™ (E) the linear space R,(E) is dense in H(E). Unless
dim H(E) = 1, also the converse holds.

(i) Assume that Closypy Lo = H(E) and let Fy € H(E), 2(Fo)lr =
0(E)|g. Then the set

{FeHE): |F(z)| S |Fo(z)],z € R}
is dense in H(E).

Proof. The asserted implication in (i) follows immediately from Proposition
2.11, (i) = (4i7). To prove the converse, let dim H(E) > 1 and assume that
Ly is not dense in H(E). If Ly = {0}, let L be any element of Sub®(H(E)) \
{H(E)}. Note that this set is nonempty since dimH(FE) > 1. If Ly # {0},
put L := Closy gy Lo. Then, also in this case, L € Sub®(H(E)) \ {H(E)}.
By Proposition 2.11, we have L = R(wy) for some wy € Adm™ (E). We see
that R,,(F) is not dense in H(E).
To establish the assertion (i7), apply (i) with the majorant wpg,.

Q

We would like to illustrate the above statements by some examples. First
let us make explicit two extreme cases.

2.13 Example. Let E € HB.

(1) Assume that 75 = mt% < 0. Then R,(E) = H(F) for all w €
Adm™(E). Indeed, in the present situation we have, by [KW1, Theorem
2.7, (ii)],

Clossy) | H(E)(,8) = H(E).
£<0

(77) Assume that E' is of zero exponential type. Then every element L €
Sub®(E) can be written as L = R(w) for some w € Adm™*(E). In

16



particular, assuming dim H(F) > 1, there exist admissible majorants
in Adm™ (F) such that R, (E) is not dense.

To see this, note that, by [KW1, Lemma 5.6], we have H(E) g, = {0}
for all § < 0. An application of Proposition 2.11 yields the present
assertion.

Next we look at the classical setting of Paley-Wiener spaces.

2.1/ Ezample. The Paley-Wiener space PW, = H(e %), a > 0, satis-
fies the condition of Example 2.13, (7). We conclude that, whenever w €
Adm™(e7%), the set

(FePW,: |Fz)|<w)zecR} (2.3)

is dense in PW,.

In particular, this can be applied to w(z) = |Fy(z)| whenever Fy is an
entire function of exponential type at most a which belongs to L*(R) and
has no real zeros. By the Beurling-Malliavin Theorem, the set (2.3) is dense
also if w: R — (0, 00) satisfies (1.2) and logw is Lipschitz on R.

Finally, let us give an example where some, but not all, dB-subspaces
can be realized as R(w). This example also shows that the concepts of dB-
subspaces defined by majorants on the one hand and by mean type conditions
on the other, are in a way complementary.

2.15 Example. Consider a canonical system on [0, [] with Hamiltonian H, cf.
Example 1.9. Then we have 1 € H(E;) + zH(E;), t € (0,1]. The function E,
belongs to N(C*) and

7(t) :=mt B, = /t vdet H(s)ds.

Note that 7 is a continuous and nondecreasing function on [0,!]. We obtain
from Proposition 2.11 that a space H(E};), where t € (0, ] is not an inner point
of an indivisible interval, belongs to R(Adm™ (E;)) if and only if 7(t) = 7(I).
On the other hand, by Lemma 2.9, we have for 3 < 0

H(Es@), s(8)>0
{0}, otherwise

H(E) g6 = {

where

s(B) :=sup {t €[0,1]: 7(t) =7(I) + B} .

17



We close this section with a result which shows that subspaces JR(w)
where w € Adm(F) has a certain monotonicity property, are either finite
dimensional or, in a certain sense, quite big, cf. Proposition 2.17 below. Its
proof relies on the following lemma.

2.16 Lemma. Let H be a reproducing kernel Hilbert space whose elements
are entire functions, let « € C, |a| > 1, and assume that F(az) € H when-
ever F(z) € H. Then dimH < oo and H consists entirely of polynomials.

Proof. Consider the linear operator

. H — H
(P'{F(z) —  F(az)

Since point evaluation is continuous in H, its graph is closed. By the Closed
Graph Theorem, therefore, ® is bounded.

Put ®; := HéHq)' Then, for every F' € H and n € N, we have

F(a"z)

) = g

e M, |07 (F)] < [1F]]

Let M := supy,_; [[xz|| where x. denotes the point evaluation functional at
z. Then, by the Principle of Uniform Boundedness, M < oo and we have

F(a"z) "
e | S MISHE) < MIF], [l =1. (2.4)
Let F have the power series expansion F(z) = >.;° ax2z". Then for any
r>0 . F(0)
Ak = 5 dg
270 Jieiey CFHL
and, thus,

1
ar| < — max |F .
ax] < — max | F(C)

If we put r = o™ and use (2.4), it follows that
1 120"
< ——M||F|-||®|"=M|F| | +— ) -
ool < e MIF- ol = a5

In [|®|]

we must have
In |of

Since n € N was arbitrary, this implies that for £ >

ar = 0. Hence every element of H is a polynomial of degree at most llnn"li‘”.
In particular, dim H < oo.
d
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2.17 Proposition. Let E € HB and let w € Adm(E) be continuous. Then
(at least) one of the following holds true:

(1) dimR,(E) < oo and R, (E) consists entirely of polynomials;

(17) whenever k > 1 is such that w(kx)|E(kx)| S w(z)|E(x)|, there ezists
F(z) € R,(E) with F(kz) ¢ H(E).

Proof. Assume that there exists & > 1 such that w(kz)|E(kz)| S w(x)|E(z)|
and that F'(kz) € H(E) whenever F' € R, (E). By the preceding lemma, it
suffices to show that, actually, F'(kz) € R, (E) whenever F' € R, (E).

To this end, consider the map

] Ru(E) — H(E)
(I)'{ F(z) — F(kz)

By the Closed Graph Theorem, the present hypothesis implies that ¢ is
continuous. However,

|F(k2)| S wko)|E(kr)| S w(2)|E(r)], F € Ru(E),

and, thus, ®(R,(F)) C R,(F). By continuity, also (R, (F)) C R, (E).
Q

2.18 Remark. Note that, if F; € HB has no real zeros and d := dim H(E;) <
oo, then
H(E,) = span {1, Zy. ., zd’l} )

Hence in this case, F(kz) € H(E,) for all F' € H(E;). This shows that if in
Proposition 2.17 we have w € Adm™ (E), the cases (i) and (i) exclude each
other.

3 Minimal majorants

In this section we will have a closer look at the order structure of Adm(E)/~
and Adm™(E)/~, respectively.

It is, for example, trivial that if w € Adm(F) and w; : R — [0,00) is
such that w < wq, then also w; € Adm(FE). Consequently, every finite subset
of Adm(E) (or of Adm™(E), respectively) has an upper bound. Also, it is
trivial, that Adm(FE) cannot contain maximal elements. More intriguing is
the question of existence of lower bounds or minimal elements.
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3.1 Definition. An admissible majorant w is said to be minimal if its equiv-
alence class w/~ is a minimal element of Adm(F)/~. This means that for
every admissible majorant @ with @ < w, we must have @ =< w.

Our investigation is based on the following result, which shows that min-
imal admissible majorants correspond to one-dimensional dB-subspaces of
H(E).

3.2 Theorem. Let E € HB. Ifw € Adm(FE) is minimal in Adm(E)/~, then
dim R, (E) = 1. Conversely, if w € Adm(E) and dim R, (E) = 1, then there
exists wy € Adm(E), which is minimal in Adm(E)/~, such that

RW(E) = RWO(E) .

Proof.

Step 1: Let w € Adm(FE) and assume that dim R, (E) > 1. We show that w
is not minimal in Adm(E)/~.

Since dim R, (E) > 1, we also have dim R, (F) > 1. Choose linearly inde-
pendent elements F, Fy of R, (F). Fix v € C\ R and choose a1, ay € C, not
both zero, such that a; Fy(v) + aFy(v) = 0. Put

F(z) — O[lFl(Z) + OZQFQ(Z) .

zZ—0

Then F' € R,(F) and does not vanish identically. Hence wp S w. However,

we have
w(r)

+ |zf’

F(z)

< R
‘E(x)‘ ~1 FER
wr(z)

o) — 0. Thus, w £ wp. It follows that w is not minimal

and hence inf, cr
in Adm(E)/-.
Step 2: Let F € H(E)\ {0} and dim R, (E) = 1. Then wg is minimal in
Adm(FE)/~.

Let w € Adm(F) be given such that w < wp, and choose G € R, (F) \ {0}.
Then G also belongs to R,,(E). Our assumption that dimR,,(E) = 1

implies F' = MG for some A\ € C. It follows that, for some appropriate
constant C' > 0,

F(z)

G(z)
E(x)

< Cl A w(zx) .

:w\

or(o) = |
Hence wr < w, and we see that wp is minimal in Adm(FE)/~.
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Step 3: Let w € Adm(E) and dim R, (E) = 1. Then for every F € R,(E) \
{0} we have wp Sw and R,(E) = Ry, (E).

Fix F' € R,(E) \ {0}, and consider wp. Since R, (F) is finite-dimensional,
we have R, (E) = R,(F). Thus, wp S w and so R, (F) C R,(E). Since

dim R, (E) = 1, this implies that dimR,,.(E) = 1, and thus, clearly, also
RwF(E) = RW(E)

Step 4: The proof of the theorem is now easily completed. Assume that w is
minimal, then by Step 1 we must have dim R, (£) = 1. Assume conversely
that dim R, (E) = 1. Choose F' € R,(E) \ {0}, then, by Step 3, R, (E) =
R.p(E) and, by Step 2, wp is minimal.

Q

3.3 Corollary. Let w € Adm(FE). Then w is minimal in Adm(E)/~ if and
only if dimR,(F) = 1 and w < wg for some F € H(E) \ {0}. In this case
w = wr for any F € R,(E) \ {0}.

Proof. Assume that w € Adm(F) is minimal in Adm(FE)/~. By the above
theorem we have dim R, (F) = 1. By Step 3 of its proof, for F' € R, (F)\{0},
the majorant wp satisfies wp < w. By minimality of w, this implies wp < w.
The converse is just Step 2 of the above proof.

Q

3.4 Remark. Tt should be emphasized that, if w € Adm(FE) has the property
that dim R, (F) = 1, it does not necessarily follow that w itself is minimal.

For example, let E(z) := (2 + i)(z + 2i). Then H(E) = span{l, z}
and we see that w(x) := |E(z)|™! and w,(x) := |E(x)|"'/|z| + 1 belong to
Adm™(FE) and that

Ro(E) =R, (F) =span{l}.
However, clearly, w is essentially smaller than w.
Next let us note that minimal admissible majorants always exist.

3.5 Corollary. Let E € ‘HB and assume that dim H(FE) > 1. Then the set
Adm(FE)/~ contains uncountably many minimal elements.

Proof. Let 2y € R and consider the function S,(2) := ¢ “F(z) — e "“E#(2),
a € [0,7). Then there exists at most one number a € [0,7) such that
Se € H(E). Let t € R be given and assume that ¢ is not a zero of a function
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So which belongs to H(E). Then, by [dB, Theorem 22|, the space R, ,(E)
is one-dimensional; in fact

RWK(t,<) (E) = Span{K(tv >} .

By Corollary 3.3, wg,.) is minimal in Adm(£)/-.

Since dimH(F) > 1, no two of the elements K(t,-), t € R, are linearly
dependent. Hence no two of the spaces Ry, (E) coincide and, therefore, no
two of the majorants wg.) define the same equivalence class in Adm(F)/~.

Q

For admissible majorants separated from zero the situation is significantly
different. Below we will show that the set Adm™*(E)/~ need not necessarily
contain minimal elements and give a criterion for the existence of minimal
elements in Adm™(E)/~.

We start with a simple observation which shows that for a majorant
w € Adm™(F) minimality in Adm™(F)/~ is the same as minimality in
Adm(FE)/=.

3.6 Lemma. Let w € Adm™(E) be given. Then w/~ is a minimal element
in Adm™ (E) /= if and only if it is minimal in Adm(E)/~.

Proof. Let w/~ be a minimal element of Adm™(F)/~ and assume that
w; € Adm(F) is such that w; < w and infrw;/w = 0. It is elementary to
see that, since w € Adm™(E), there exists a function wy separated from zero
and such that w; < wy < w, infgwy/w = 0. Thus, wy € Adm™(E), wy S w,

~Y

but wy ¥ w, which contradicts the minimality of w/~ in Adm™(E)/-.
Q

Moreover, let us make the following observation.

3.7 Lemma. Let E € HB. Then the space H(E) contains a real function S
with
if and only if there exists L € Sub®(H(E)) such that dim L = 1. In this case

there exists, up to constant real multiples, exactly one real function S € H(E)

which satisfies (3.1).

Proof. 1f S = S# and (3.1) holds, then clearly L := span{S} satisfies
(Subl)-(Sub3) and (SubZ). Conversely, assume that L € Sub®(H(E)) is one-
dimensional. By (Sub2) there exists S = S# € L\ {0}. Since, for a zero
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v of S, the functions S(z) and % are linearly independent, it follows from
(Sub3) and (1.1) that S must satisfy (3.1).

If 51, So are real elements of H(E) which both satisfy (3.1), then span{S;}
and span{S,} are one-dimensional elements of Sub®(H(E)). Hence, by the
Ordering Theorem, span{S;} = span{Ss}.

Q

Combining Theorem 3.2 with Theorem 2.6 now leads to

3.8 Theorem. Let E € HB. Then there exists a minimal element in
Adm™(E) /= if and only if the following hold:

(1) there exists L € Sub®(H(E)) with dim L = 1;
(4d) for all B <0 we have H(E)ps,5 = {0}.

In this case there exists exactly one minimal element in Adm™ (E) /-, namely
wg/= where S is the (up to scalar multiples unique) real element of H(E)
with D(S)|R == D(E)|R, O(S)|C\R =0.

Proof.  Assume that the conditions (i) and (ii) hold. Let L be the one-
dimensional element of Sub®(H(F)), and let S be as in Lemma 3.7. By
Proposition 2.11 there exists w € Adm™ (E) such that L = R(w). By Step
3 of the proof of Theorem 3.2, we have R, (E) = L, and wg is minimal by
Step 2. Since S satisfies (3.1), we have wg € Adm™ (E).

Assume that w is a minimal element of Adm™(E)/=. By Lemma 3.6
and Theorem 3.2, we have dim R, (E£) = 1. Hence (i) holds. Moreover, by
Theorem 2.6, we must have R, (E) D Hg,g) for all 3 < 0. Thus, dim H g €
{0,1} for all 8 < 0. If for some 3 < 0 we have dim H 3,3 = 1, we would have
Hp) = H gy for all 3 € (3,0), which contradicts Lemma, 2.8.

Let wy,ws be minimal elements of Adm™(E)/~. By Lemma 3.6 and The-
orem 3.2 we have dimR,,,(E) =1, j = 1,2. Since R,,,(£) € Sub’(H(£)), it
follows that R, (E) = R.,(F) = span{S} where S is as in Lemma 3.7. By
Corollary 3.3 we have w; < wg, j =1, 2.

Q

3.9 Remark. The present Theorem 3.8 is a (slight) generalization of a result
of V.P. Havin and J. Mashreghi, cf. [HM1] (see also [B, BH]), which states
the following:

Assume that E € HB is of zero exponential type. Then there
exists a positive and continuous minimal majorant in Adm(E)
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if and only if 1 € H(E). Moreover, in case of existence, this
magjorant is given by w = |E|7', and any other continuous positive
minimal majorant w; € Adm(E) satisfies wy < |E|™ .

Note that, in the present setting, the inclusion 1 € H(F) is equivalent to
|E|~' € L*(R). A number of conditions sufficient for the inclusion 1 € H(F)
may be found in [B, KW2].

3.10 Example. Let H(E) = PW,. Then Adm™ (E)/~ does not contain mini-
mal elements, since Sub®(PWW,) does not contain a one-dimensional element.
A related example may be found in [HM1].

3.11 Example. Consider a canonical system defined on [0, /] with Hamiltonian
H. Then Adm™(E;) contains a minimal element if and only if for some ¢ > 0
the interval (0, €) is indivisible and det H(t) = 0, a.e. t € [0,]. In this case
the minimal majorant is given by |Ej(z)| ™.

Our final aim is to characterize finite dimensional spaces induced by majo-
rants in terms of minimal majorants, cf. Proposition 3.15. This result will be
deduced from Theorem 3.2 and the following statement, which is also of inde-
pendent interest. For an admissible majorant w € Adm(F) and k € NU {0}
we put wl(z) == (1 + |z|)fw(x).

3.12 Theorem. Let E € HB and w € Adm(E). Then for every k € NU{0}
we have
codimg ., () Rom(E) <1, 0(Rymin(E)) =0(Rym (EF)).
Assume that additionally dim R, (E) < oo, and put
N = —dimR,(F)+

+sup{dimL: L € Sub(H(E)),dim L < oo, 3(L)|r = 3(Ru(E))[r} -

Then
RW(E) C R, m (E) C ... C R (E) =R iv+1] (E) =...

Proof. The proof proceeds in several steps. Before we continue, let us note
that
Ww(z) < WwFHl(2), 2 e Rk € NU {0},

and hence R (E) C R w1 (E).

To shorten notation we will throughout the proof write R = R, (F),
R = Ru(E), R, = R,m(E) and Ry, = R, m(E). For a dB-subspace L
of H(E) we denote by S; the operator of multiplication by z in L and by
dom Sy, the domain of Sy, that is, the set of all functions F' in L such that
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zF(z) € L.

Step 1: For every k € NU {0} we have codimg,,, Ry < 1 and 0(Rjq1) =
o(Ry).

Let G € Rigy1. We fix v € C\ R such that G(v) # 0, and consider the

difference quotient operator

P, - Ri+1 — Ry
G- F(z) — F(z)G)-G()F(v)

Z—v

Then ®f is a bounded linear operator. The fact that G' € Ry, implies that
for every F' € Ry.1 we have

’(CI%F)(JJ)’ _ 1 |[FRGE) -GEFE)| -
E(x) | — v E(x) ~ (3.2)
< ;w[kﬂ](:p) < ¥ (z)
~ |.fl7 _ U| ~Y Y

i.e. ®%(Ry41) C Ry. By continuity, also
o, (RkJrl) CRy.

Let Spy1 := Sg,,,- It is easy to see that domSpyy C ®%(Ri+1). However,
by [dB, Theorem 29],

codimg, , | (Clost+1 dom 8k+1) <1,

and, thus, also codimg,,, Ry < 1. Since 9(Closg,,, dom Siy1) = 0(Ryq1)
and, as we have just seen, Closg,,, dom Sy € Ry, we find that 0(Ry) =
0(Rpt1)-

Step 2: Assume that dim R < oo, and that there exists L € Sub(H(E)) with
codim;, R =1 and 0(L) =0o(R). Then L =R,;.

Since dim L. < oo, dom Sy, is a dB-subspace of L with codim; dom Sy, = 1
and 9(dom Sy)|g = 0(L)|g = 9(R)|r. By the Ordering Theorem, R = R =
dom ;. Choose G € R and v € C with G(v) # 0. Such a choice is possible
since R # {0}. If F € L, then ®%LF € dom Sy, = R. Hence

1
G(v)

F(z)= [(z = v)(PLE)(2) + G(2)F(v)] € Ry

Thus, L C R4y and, by Step 1, L = R;.
Step 3: End of the proof.
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The desired assertion follows by an inductive argument. Since (w*h =
w1 we obtain from Step 2 that Rom S R wry as long as k < N,
since the existence of a finite-dimensional dB-subspace with L 2 R i and
(L) = ?(R) implies that there exists a dB-subspace L with d(L) = 2(R)
and codim; R = 1, cf. [dB, Problem 101, Problem 110].

Finally, assume that R v C R for some k£ > N. Then L := R is a
dB-subspace with 9(L) = ?(R) and, by what we have just proved,

codim;, R > codimp N R=N.

This contradicts the definition of V.
Q

The following example shows that the assumption dim R, (F) < oo in
the second part of Theorem 3.12 cannot be dropped.

.13 Ezample. We shall construct E € HB and w € Adm™ (E) such that there
exists L € Sub®(H(F)) with codim; R, (E) = 1, but R w (F) = R,(E) for
all k € NU{0}.

Consider the canonical system on [0, 2] with Hamiltonian

I ,tel01)
=) (10, e

and put F := Ey. Then E € HB, 9(F) =0, and £ := A — iB is explicitly
given as

(A, B) := (cos z,sin z + z cos z) = (cos z,sin 2) ((1) 7{) :

Hence

Sub®(H(E)) = {PW,: 0<a <1} U{H(E)}.
Moreover, codimy gy PW; = 1 and in fact
H(E) = PW;+ span{cos z} .

By Proposition 2.11, for every w € Adm™ (E) we have R, (E) 2 PW;.

The function E is explicitly given as F(z) = cosz — i(sinz + zcos z).
We will give some estimates of E. Let x € R, |z| > 1, and assume that
|cos x| < ﬁ Then |sinz| > v/3/2 and

V3-1

|sinz + x cos x| > ||sinz| — |z cosz|| >
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It follows that

V3—1 1 1
E(x) > min { min |B(t bz R. (33
B@)| = min { min |BOL 55} 2 o e e R 69
Trivially, we have the following estimate from above:
|E(zx)] <1+ |z|, z € R. (3.4)

We show that for all 3 € (0,1) the function wg(z) := e 121" belongs to
Adm™(E). Choose 8 € (3,1). By the Beurling-Malliavin Theorem, there
exists £ € PW; \ {0} such that

|F(z)] < e"x‘ﬁl, z €R.
It follows that F' € H(E) and, by (3.3),

‘F(x)‘

By S F@I0+ah) S e (e s e, 2 e R.

~Y

We show that R.,(E) = PW;. Assume that R,,(E) € PW;. Then there
exist A € C, A # 0, and Fy € PW, such that Fy + Acosz € R,,(E), i.e.

Fo(z) + Acosx
| By |~

By (3.4),
|cosz| S (1+ |z])ws(z) + |Fo(z)|, v € R.

We have a contradiction, since both Fy and (1 + |z|)ws(z) are in L*(R).

For all B € (0,1) and k € NU {0} we have R w(E) = PW;. Choose
B e (0,8), then (1 + |z|)ke#1” < e"x'B/, ie. wgc] S wgr. Hence R w(E) C
Ry (E) = PW;. ’

3.14 Exzample. The phenomenon considered in the previous example depends

upon the fact that w decreases rapidly. To see this, let E be as in Example
3.13, and consider the function

w(z) =

sin(z + 1)
(1+ [z E(z) I

Since the reproducing kernel K1(i,-) of the Paley-Wiener space PW; is equal
to
sin(z + 1)

Ki(i,z) = W

Y
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we conclude from the proof of Corollary 2.10 that R, (E) = PW;. However,
since |sin(x + )| > e+ e, we have

By S (1 (@) = ola)

and hence R (E) = H(E).

We come to our characterization of finite-dimensional spaces R(w).

3.15 Proposition. Let £ € HB and w € Adm(FE). Then dimR,(E) < oo
if and only if there exists wy, minimal in Adm(E)/~, and n € NU {0} such
that

Ru(E) = R j(E). (3.5)

In this case the minimal number n such that R, (E) can be represented as in

(3.5) is dim R, (E) — 1.

Proof. Assume that R, (E) can be represented as in (3.5) with some minimal
majorant wy and some n € N U {0}. Then, by Theorem 3.2 and the first
assertion of Theorem 3.12, we have

dim R, (F) =dimR @ (E) <n+1.
0

In particular, it follows that the number n in any representation (3.5) is at
least dim R, (E) — 1.

To complete the proof of the present proposition, it is enough to construct
for a given finite-dimensional space R, (F) a minimal majorant wy such that
RL(E) = Rwéd](E) with d = dim R, (E) — 1.

Write R, (E) = H(E;) with some E; € HB, then mt £ = 0. Since
dim R, (E) < oo, there exists a dB-subspace L of H(FE) with dim L = 1 and
(L) =3(Ru(FE)). Write L = H(E,) with some E, € HB. Then there exists
a 2 X 2-matrix polynomial P with det P = 1, such that

(Al, Bl) = (AQ, BQ)P

where Ay, = L(Ey, + EfY), B, = {(Ey — EJ), k = 1,2, cf. [dB, Theorem 33,
Problem 110]. It follows that mt £2 = mt £1 = 0, and hence there exists a
minimal majorant wy with R, (E) = L. Put d := dim R, (£) — 1. Then,
by the second part of Theorem 3.12, we have dim Rw([)d] (E) = dim R, (F).

Moreover, 0(R_u(FE)) = 0(L) = d(Ru(F)). By the Ordering Theorem,
0
R ja (E) =Ru(E).
Q
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We close the present paper with a discussion of the family w!*! () =
(1+ |z|)*w(x), k € Z, of possible majorants. For w € Adm(FE) put

N_(w):=inf{k€Z: w™ e Adm(E)}.

Then —oco < N_(w) < 0, and, if £ € Z is such that & > N_(w), then
W € Adm(E).

3.16 Example. Let us show by examples that all cases for N_ can occur.

(i) Consider the space PW, = H(e ). Then, by the Beurling-Malliavin
Theorem, all functions (1 + |z|)*e¢ 1" k e Z, 3 € (0,1) belong to
Adm(e~). Hence, if we put w(z) := e 1#!” we have N_(w) = —oc.

(17) Let P denote the linear space of all polynomials. Consider a space
H(E) which has the property that P C H(E) and Closy gy P = H(E)
(see [B, KW2]). Then wy = 1 is a minimal majorant in Adm™(E).
For a given number N € Z, N < 0, put w := wi M, Then, clearly,
wlkl = w[[)k_m. Hence, for k > N, we have w*l € Adm™(E). If k < N,

we have
WH(z) o))

and hence, by the minimality of wy, w* ¢ Adm(E). We conclude that
N_(w) = N.

Let us next introduce the two numbers
n_(w) :=sup{k € Z,k > N_(w) : R =R,V € Z,N_ <1<k},

ny(w):=inf{k € Z, k> N_(w): R(wt) = R, Vi e z,1 > k.

Then n_(w),ny(w) € [N_(w), 0.
To show that these numbers can have quite arbitrary behaviour, let us
provide one more example.

3.17 Example. Let d € N be given, and consider a canonical system defined
on [0,1], | := d + 2, with a Hamiltonian H such that

(1) H(t)=1,t € 0,1];

(17) each of the intervals (k,k+ 1), k = 1,...,d, is H-indivisible, but no
interval which contains an integer is H-indivisible;

(#74) no interval (d+ 1,d+ 1+ €), € > 0, is H-indivisible, and det H(t) = 0,
te(d+1,d+2].
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Note that H(E,) = PW;. Consider the function

| sin(x 4+ 1)
= [ ) B@

As in the proof of Corollary 2.10, we see that w € Adm™(F}), and R(w) =
H(Ey). Since the function K(i,z) := szijz belongs to H(E;) and has
infinitely many zeros, we conclude that N_(w) = —oo. Consider the space

H(E4t1). Then codimyg,,,) H(E) = d.

Consider the function Az = 5(Eq1 + Ejil). Since d + 1 is not a left
endpoint of an H-indivisible interval, A1 & H(E4y1). Since dim H(Ey.1) =
00, this function has infinitely many zeros, say ai, as,.... We have Azdtifl(f) €
H(E441), and hence

Ag(2)

(z—a1)(z — as)

S dOITlSH (Bgqa1) -

However‘, H‘(Ed) = Closy (g, 1) dpm St(E,4,.), and hence % € H(E,).
Proceeding inductively, we obtain
Aga(2)
(z—an-(z—ap)

EH(Ed+2_k), k=1,....,d+1.

There exists a 2 X 2-matrix polynomial P of degree d such that
(Ad+1(2), Bayi(2)) = (cos z,sin 2) P(z) .
Hence
Ag1(2)

(2 — a1) Ea()
and so A?iz € R w(E;). Since Ajil ¢ H(E,), we have R (E;) ¢
H(E4). It follows that R (E;) 2 H(Ed+1) Since codimg ., (m) H(E1) < d
we conclude that R (E;) = H(FEg41).

For every majorant @ € Adm™(F}) we must have H(E;) C R(w), and

so R(w) = H(E)), k < 0. On the other hand, if k > d and R uw(E;) 2
R (E;), then, by Theorem 3.12,

< (1+[a])w(@) = w!(2),

1< COdime[k] (E) H(Ed-i-l) = COdime[k] (E)) R (El) <k—-d< .
This contradicts our construction of Ej, cf. the requirement (7i7) on H. Thus
= R = R(WY) € RW) € ... € RWH) = R =

where

R = H(Er), k=0,....d.

30



References

[B] A.D. Baranov, Polynomials in the de Branges spaces of entire functions,
Ark. Mat. 44 (2006), to appear.

[BH] A.D. Baranov, V. P. Havin, Admissible majorants for model subspaces,
and arguments of inner functions, Funktsional. Anal. © Prilozhen. 40
(2006), to appear.

[BBH] A. D. Baranov, A. A. Borichev, V. P. Havin, Majorants of meromor-
phic functions with fixed poles, preprint.

[BM] A. Beurling, P. Malliavin, On Fourier transforms of measures with
compact support, Acta Math. 107 (1962), 291-309.

[dB] L. De Branges, Hilbert spaces of entire functions, Prentice Hall, Engle-
wood Cliffs (NJ), 1968.

[GK] I. Gohberg, M. G. Krein, Theory and applications of Volterra opera-
tors in Hilbert space, Translations of Mathematical Monographs, AMS,
Providence, Rhode Island, 1970.

[HSW] S. Hassi, H. de Snoo, H. Winkler, Boundary-value problems for two-
dimensional canonical systems, Integral Fquations Operator Theory 36

(2000), 4, 445-479.

[HJ] V. Havin, B. Joricke, The Uncertainty Principle in Harmonic Analysis.
Springer-Verlag, 1994.

[HM1] V. P. Havin, J. Mashreghi, Admissible majorants for model subspaces
of H?. Part I: slow winding of the generating inner function, Can. J.
Math. 55, 6 (2003), 1231-1263.

[HM2] V. P. Havin, J. Mashreghi, Admissible majorants for model subspaces
of H?. Part II: fast winding of the generating inner function, Can. J.
Math. 55, 6 (2003), 1264-1301.

[HMN] V. P. Havin, J. Mashreghi, F. Nazarov, Beurling—Malliavin multiplier
theorem: the 7th proof, Algebra i Analiz 17 (2005), 5, 3—68.

[KW1] M. Kaltenbéck, H. Woracek, De Branges spaces of exponential type:
general theory of growth, Acta Sci. Math. (Szeged) 71 (2005), 1-2, 231—
284.

31



[KW2] M. Kaltenbédck, H. Woracek, Hermite-Biehler functions with zeros
close to the imaginary axis, Proc. Amer. Math. Soc. 133 (2005), 1, 245-
255.

K] P. Koosis, Lecons sur le Théoréme de Beurling et Malliavin, Les Publi-
cations CRM, Montréal, 1996.

[RR] M. Rosenblum, J. Rovnyak, Topics in Hardy classes and univalent func-
tions, Birkhauser Verlag, Basel 1994.

[R] W. Rudin, Functional Analysis, International Series in Pure and Applied
Mathematics, 2nd Edition, McGraw-Hill 1991.

[W] H. Woracek, De Branges spaces of entire functions closed under forming
difference quotients, Integral Equations Operator Theory 37 (2000), 2,
238-249.

A. Baranov:

Saint Petersburg State University,
Department of Mathematics and Mechanics,
28, Universitetski pr., St. Petersburg,
198504, RUSSIA

and

Institute of Mathematics,
Royal Institute of Technology (KTH),
SE-100 44 Stockholm, SWEDEN

E-mail: antonbaranov@netscape.net

H. Woracek:

Institut fiir Analysis und Scientific Computing
Technische Universitat Wien

Wiedner Hauptstr. 8-10/101

A-1040 Wien

AUSTRIA

E-mail: harald.woracek@tuwien.ac.at

32



