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1. Introduction

A canonical system is a system of differential equations of the form

∂

∂t
x(t, z) = zJH(t)x(t, z), t ∈ [0, L), (1.1)

where x = (x1, x2)T, H(t) is a real and locally integrable 2 × 2-matrix-valued function
on [0, L), H(t) � 0, which does not vanish on any set of positive measure, J denotes the
symplectic matrix

J :=

(
0 −1
1 0

)

and z is a complex parameter. The function H is called the Hamiltonian of the sys-
tem (1.1). Canonical systems frequently arise in mathematical physics, for example,
in Hamiltonian mechanics or from the equation of a vibrating string (see, for exam-
ple, [2,4,13,24]). Also, canonical systems can be viewed as natural generalizations of
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Sturm–Liouville equations. There are various approaches to an analysis of equation (1.1);
some of them employ operator theoretic methods (see, for example, [3,17,19,21–23,35]).

A canonical system is said to be in the limit point case at L if∫ L

0
trH(t) dt = ∞.

A decisive role in the spectral analysis of canonical systems of this kind is played by the
Weyl coefficient qH associated with the Hamiltonian H. We will recall its construction
later (see (2.5)). At this stage we only state its most important properties. It belongs
to the class N0 of Nevanlinna functions, that is, qH is analytic in C \ R, qH(z̄) = qH(z)
and Im qH(z) � 0 for Im z > 0. The function qH completely describes the spectrum of
problem (1.1) with boundary condition x1(0, z) = 0, and the measure in its Herglotz
integral representation can be used to construct a generalized Fourier transform. The
inverse spectral theorem due to de Branges states that the assignment H �→ qH yields
a bijection of the set of all Hamiltonians (up to changes of scale) and the set N0 (see
[5–8, 37]. The proof of this deep result is contained in de Branges’s theory of Hilbert
spaces of entire functions [9]; many of its components can also be interpreted by means
of the theory of symmetric and self-adjoint operators in a Hilbert space, in particular by
means of Krein’s theory of entire operators [18].

Recently, a generalization of the notion of a Hamiltonian and a canonical system to
an indefinite (Pontryagin space) setting was given (see [28, 30]). Motivation to study
an indefinite generalization of canonical systems can be drawn from various sources. For
example, the class N0 has a generalization to an indefinite setting which has proved to be
useful in various contexts (namely, the set N<∞ of generalized Nevanlinna functions; we
will recall its definition later, see (2.7)) and thus has been studied intensively. In view of
de Branges’s inverse spectral theorem, it is natural to ask how the class of Hamiltonians
has to be enlarged in order to have a bijective correspondence H �→ qH onto the set N<∞
via a construction similar to the Weyl coefficient. On the other hand, in various contexts,
differential equations of Sturm–Liouville type appear which have singularities that do
not behave too badly; for example, the potential might be not locally integrable at a
single point but satisfies only a weaker growth condition. It turns out that constructions
similar to the construction of the Titchmarsh–Weyl coefficient are often possible and
lead to generalized Nevanlinna functions, which again describe the spectrum of the given
problem (see, for example, [1, 14–16, 31]). Hence, it is natural to ask what the most
general singular differential expression looks like, such that building up a Weyl theory in
the setting of N<∞ is possible.

The answer is given by the notion of general Hamiltonians, whose definition will be
provided in detail later (Definition 2.1). For the moment let us content ourselves with the
rough picture that a general Hamiltonian h consists of a Hamiltonian function H which
has finitely many inner singularities, i.e. is defined and locally integrable on a set of the
form [σ0, σ1) ∪ (σ1, σ2) ∪ · · · ∪ (σn, σn+1), and of two collections of real parameters b, d.
Thereby H models the potential which has singularities at σ1, . . . , σn, the parameters
b model a contribution of the singularities which is concentrated in these points and d
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models the part of the singularities which is in interaction with the local behaviour of H

at the singularities. Intuitively, we can think of a choice of (b, d) as a choice of singular
interface conditions at σ1, . . . , σn.

Our present work addresses the following question: how does a different choice of the
parameters (b, d), while keeping the Hamiltonian function H fixed, influence the spectral
theory of the indefinite canonical system under consideration? More specifically, given
a general Hamiltonian h = (H, b, d), we ask for an explicit description of the family of
all Weyl coefficients of general Hamiltonians ĥ = (H, b̂, d̂) with the same Hamiltonian
function than h and arbitrary parameters (b̂, d̂). The answer is given in Theorem 5.4,
which is the main result of this paper. In order to keep the technical effort of establishing
explicit formulae bearable, we restrict ourselves to a certain special case (Remark 2.3).
For the case of a general Hamiltonian that arises from a Sturm–Liouville equation with
a singularity at the left end point, the formulae can be significantly simplified (Corol-
lary 5.5).

The question we raise and answer in this paper seems natural from a theoretical point
of view. However, our major motivation is found in the spectral theory of Sturm–Liouville
problems with singular end points or inner singularities. We will explain this intriguing
topic in detail for potentials with a singular end point. In the case of inner singularities,
similar phenomena occur and similar arguments can be applied.

1.1. Sturm–Liouville equations with singular end points and
canonical systems

Let us review the classical theory of Sturm–Liouville equations. Consider an equation
of the form

−y′′(t) + q(t)y(t) = λy(t), t ∈ [0,∞), (1.2)

which is regular at 0 and in the limit point case at ∞. Then the minimal operator is a
symmetry with deficiency indices (1, 1), i.e. for every λ ∈ C\R there is, up to a constant,
exactly one solution of (1.2) that is in L2(0,∞). A realization of the Sturm–Liouville
equation, i.e. a self-adjoint extension of the minimal operator, describes the behaviour of
the equation and can be used to solve the eigenvalue problem. Direct and inverse spectral
problems play an important role in the analysis of the equation.

A scalar function can be associated with the potential q(t): its Titchmarsh–Weyl coef-
ficient. It is constructed as follows: let θ(t, λ) and φ(t, λ) be solutions of (1.2) that satisfy
the initial conditions

θ(0, λ) = 1, θ′(0, λ) = 0, φ(0, λ) = 0, φ′(0, λ) = 1. (1.3)

Such solutions exist for each λ ∈ C and are unique. Since the deficiency indices are (1, 1),
there exists a unique coefficient m(λ) such that for each λ ∈ C \ R

θ(·, λ) + m(λ)φ(·, λ) ∈ L2(0,∞). (1.4)

The function m(λ) is called the Titchmarsh–Weyl coefficient of the equation (1.2) and
is a Nevanlinna function. There is an intimate relation with the extension theory of the
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minimal operator, namely m(λ) is, up to a constant, Krein’s Q-function connected with
the minimal operator and one particular self-adjoint extension.

The Titchmarsh–Weyl coefficient describes the spectrum of every self-adjoint realiza-
tion of (1.2), and hence solves the direct spectral problem. An inverse spectral problem is
posed as follows: can the potential be recovered from the Titchmarsh–Weyl coefficient?
The answer is yes. This deep result contains some classical inverse theorems, e.g. the
recovery of the potential from two different spectra if they are discrete. As a Nevanlinna
function, m(λ) possesses a Herglotz integral representation. The measure involved in this
representation can be used as spectral measure for a generalized Fourier transform. In
particular, this shows that the spectral multiplicities of all self-adjoint realizations are 1.

If the potential q is regular at 0, then we may summarize as follows.

(i) The minimal operator has deficiency indices (1, 1). If the equation is considered
only on a finite interval (0, T ), the corresponding minimal operator has compact
resolvent.

(ii) For every λ ∈ C there exist solutions having the initial values in (1.3). They depend
analytically on λ ∈ C.

(iii) There exists a Fourier transform into an L2-space whose elements are scalar func-
tions. In particular, the spectral multiplicity of any self-adjoint realization is 1.

(iv) The Titchmarsh–Weyl coefficient determines the potential uniquely.

If the potential q is singular at 0, i.e. not integrable at 0, but still in the limit circle case,
then the situation is very similar except that the fundamental system of solutions θ(·, λ),
φ(·, λ) can no longer be defined by initial conditions; one has to use their asymptotic
behaviour at 0 instead.

One way to approach these matters is to rewrite the Sturm–Liouville equation (1.2) as
a canonical system (1.1). This is possible by making a suitable transformation from y to
the vector function x and setting z2 = λ. Thereby the facts that Weyl’s limit point case
prevails at infinity and Weyl’s limit circle case prevails at 0 mean that (x0 ∈ (0, L))∫ L

x0

trH(t) dt = ∞ and
∫ x0

0
trH(t) dt < ∞,

respectively. The respective Weyl coefficients are related by qH(z) = −z/m(z2). The
theory of canonical systems is more general than the theory of Sturm–Liouville equations,
i.e. there are many Hamiltonians which do not arise from rewriting a Sturm–Liouville
equation. However, items (i)–(iv) above are even valid for all canonical systems.

The situation changes drastically if the potential is so singular at 0 that at this end
point the equation is also limit point. Then the minimal operator is self-adjoint; hence,
there is only one self-adjoint realization of (1.2). Concerning the above-mentioned items
related to the spectral theory of the equation, one can say the following: for real values
of λ there need not exist any solution of (1.2) belonging to L2 at 0; if the equation
is considered only on a finite interval (0, T ), the corresponding minimal operator may
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have a continuous spectrum; a Fourier transform can be defined only into an L2-space
whose elements are 2-vector functions, and, actually, the spectral multiplicity of the (self-
adjoint) minimal operator can be 2; in general, the potential can be recovered not from
a scalar function, but only from a 2 × 2-matrix Titchmarsh–Weyl function.

We see that, for strong singularities of the potential, in general much of the spectral
theory breaks down. However, there are quite a few potentials known which, although
being limit point at both end points, show a behaviour similar to the regular case. For
example, in [16] a class of strongly singular potentials was found for which there exists a
family θ(·, λ) of solutions which belong to L2 at 0 and that is defined and analytic on a
neighbourhood of the real line. From this knowledge a scalar function m(λ) is constructed
quite similarly to the regular case. It is no longer a Nevanlinna function but it still gives
rise to a scalar measure which can be used to define a generalized Fourier transform
into a space of scalar functions (from which we obtain in particular that the spectral
multiplicity of the self-adjoint operator is 1). For inverse problems for equations with
certain types of singularities, the reader is directed to [20], where the potential can be
recovered from a scalar function.

When seeking to explain why some potentials (despite the fact that the limit point
case prevails) behave ‘as if they were regular’, probably the most convincing argument is
to come up with an operator model that is naturally related to the potential and where
the ‘minimal operator’ has deficiency indices (1, 1). For some potentials this goal can be
achieved by employing the theory of indefinite canonical systems. The fact that thereby
one leaves the Hilbert space setting and deals with operator models in Pontryagin spaces
(i.e. spaces with an indefinite inner product whose negative index is finite) is only a minor
inconvenience.

In order to treat a given singular potential in this way, one first has to rewrite equa-
tion (1.2) as an indefinite canonical system with some general Hamiltonian h = (H, b, d).
Since our potential is defined and locally integrable on the open interval (0,∞), it is
natural to use a general Hamiltonian which has just one singularity, namely at 0. Thus,
we may define the Hamiltonian function H on the interval (0,∞) from q by means of
the same formulae as in the regular case. To the left of 0 we will just put a ‘massless’
interval in order to regard 0 as a singularity of h; this interval is described by a so-called
indivisible interval (see (2.1)) in H. This choice is natural, since to the left of 0 there is
no potential anyway.

The singular interface condition at 0 represented by the parameters (b, d) of h, which
we have not yet chosen, can be thought of as a singular boundary condition. The mean-
ing of a choice of b and d is by no means clear. Actually, any choice has equal merit,
gives rise to realizations of equation (1.2) and can be used to deduce the desired direct
and inverse spectral results. Sometimes a specific choice of (b, d) might be motivated
from plausible physical conditions or from anticipating the outcome for the Titchmarsh–
Weyl coefficient, e.g. by analogy to related regular equations. However, in general, the
question arises of how a change in the singular boundary condition (b, d), while stick-
ing to the Hamiltonian function H naturally obtained from the potential, will affect the
Titchmarsh–Weyl coefficient of h. This is the question we answer in Theorem 5.4.
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1.2. Organization of the paper

We close this introductory section with a short description of the contents of this paper.
In § 2 we recall the definition of general Hamiltonians and maximal chains of matrices,
and some results from earlier work which are needed in the present considerations. Max-
imal chains of matrices are the generalization to the indefinite setting of fundamental
matrices of solutions of a canonical system. Between the singularities, the rows of such
a maximal chain of matrices satisfy the differential equation (1.1); at σ0 it is the iden-
tity matrix and at σ1, . . . , σn it is connected depending on b and d. In § 3 we deal with
a transformation Tm of matrices, which is the major technical tool for the proof of our
main result (Theorem 5.4). The definition of Tm may seem a little ad hoc, but one should
bear in mind that the same transformation has already been successfully applied in [27]
in order to study the local structure of singularities in matrix chains. In the latter, a
more intrinsic explanation of Tm was also provided.

Then, in § 4, we introduce a perturbation of matrix chains depending on a parameter
e ∈ R × R × [0,∞). It is shown that this perturbation is exactly a local version of
changing the data b, d in h = (H, b, d) translated into the language of matrix chains (cf.
Propositions 4.6 and 4.7). Section 5 is devoted to the statement and proof of Theorem 5.4.
A perturbation qe

h of the Weyl coefficient of a given general Hamiltonian h is thereby
introduced, and the maximal chain whose Weyl coefficient equals qe

h is computed explicitly
(see (5.9)). This is obtained in the following way: first the transformation Tm is applied
to one matrix chain that is connected with the given Hamiltonian function H. This moves
the singularity at σ1 to the right, so that the transformed matrix chain is now continuous
at σ1. Then the perturbation from § 4 and, finally, the inverse of the transformation Tm

are applied.
At the end of § 5, we illustrate the proposed method of approaching the spectral theory

of singular Sturm–Liouville equations with two examples. Firstly, we investigate the
Bessel equation. We have chosen this classical and well-studied equation since it beauti-
fully shows the indefinite phenomena. Also, it is accessible to explicit computation and
recently various attempts were made to obtain an intrinsic explanation for its compar-
atively nice behaviour known from classical studies (see [10,14,15,31]). Secondly, we
investigate a potential with an inner singularity, namely q(t) = 2/(t − 1)2, t ∈ [0,∞).
We have chosen this second example since we have found that the treatment of inner
singularities within the framework of indefinite canonical systems is even more natural
than for potentials with a singularity at the boundary. Moreover, this particular poten-
tial occurred previously in relation with a continuation problem for a positive definite
function, and hence many of the necessary computations are readily available [32].

Finally, let us remark that the method instantiated in these two examples will apply
to a wide class of potentials with singularities either at the boundary or in the interior
(for example, potentials involving a Dirac delta function and its derivatives). At the
present stage it is unclear ‘how strong’ the singularity may be so that the proposed
approach via indefinite canonical systems will work. To provide a thorough investigation
of such situations, in particular to find explicit measures for the allowed strength of the
singularity in the potential, will be the subject of future work.
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2. Indefinite canonical systems

In this section we provide the definitions of general Hamiltonians, maximal chains of
matrices and their Weyl coefficients.

2.1. Definition of general Hamiltonians

First we introduce some preliminary notation. An interval (α, β) is called H-indivisible
of type φ if

H(t) = h(t)ξφξT
φ , t ∈ (α, β), (2.1)

where ξφ := (cos φ, sin φ)T and h(t) is some scalar function that is positive almost every-
where.

With any Hamiltonian H a number ∆(H) ∈ N ∪ {0,∞} is associated (see [28, Def-
inition 3.1]) which in some sense measures the growth of H towards L. For example,
∆(H) = 0 means that

∫ L

0 trH(t) dt < ∞ or, if
∫ L

0 trH(t) dt = ∞ and the interval (L1, L)
is H-indivisible for some L1 < L, then ∆(H) = 1.

Assume that
∫ L

0 trH(t) dt = ∞. The Hamiltonian H is said to satisfy the Hilbert–
Schmidt (HS) condition if the resolvents of one and hence of all self-adjoint extensions of
the minimal operator Tmin(H) associated with H on [0, L) are Hilbert–Schmidt operators.
In this case, the growth of H towards L, as measured by ∆(H), is extremal in one direction
ξφ in the sense that, for a unique angle φ ∈ [0, π), we have∫ L

0
ξT
φ H(t)ξφ dt < ∞ (2.2)

(see [29, Theorem 2.4]). This angle will be denoted by φ(H).
Let H be a function defined on an interval (L−, L+) which takes real and non-negative

2×2-matrices as values, is locally integrable on (L−, L+) and does not vanish on any set
of positive measure. Fix α ∈ (L−, L+) and set H+(t) := H(α + t), t ∈ [0, L+ − α) and
H−(t) := H(α − t), t ∈ [0, α − L−). Then H± are Hamiltonians. We say that H is in the
limit point/circle case at L+ or L−, if H+ or H−, respectively, has this property. The
conditions (HS+) and (HS−) and the numbers ∆±(H) and φ±(H) are defined similarly.
These numbers do not depend on the choice of α. In the following we also call such a
function H defined on an open interval (L−, L+) a Hamiltonian.

Definition 2.1. A general Hamiltonian h is a collection of data of the following kind:

(i) n ∈ N ∪ {0}, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < · · · < σn+1;

(ii) Hamiltonians Hi, i = 0, . . . , n, defined on the respective intervals (σi, σi+1);

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with bi,1 �= 0
in the case öi � 1;

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R, i = 1, . . . , n, where

∆i := max{∆+(Hi−1), ∆−(Hi)};

(v) a finite subset E of {σ0, σn+1} ∪
⋃n

i=0(σi, σi+1).
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This collection of data is assumed to be subject to the following conditions.

(H1) H0 is in the limit circle case at σ0 and, if n � 1, in the limit point case at σ1. Hi

is in the limit point case at both end points σi and σi+1, i = 1, . . . , n − 1. If n � 1,
then Hn is in the limit point case at σn.

(H2) For i = 1, . . . , n−1 the interval (σi, σi+1) is not Hi-indivisible. If Hn is in the limit
point case at σn+1, then, in addition, (σn, σn+1) is not Hn-indivisible.

(H3) We have ∆i < ∞, i = 1, . . . , n. Moreover, H0 satisfies (HS+), Hi satisfies (HS−)
and (HS+) for i = 1, . . . , n − 1 and Hn satisfies (HS−).

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

(H5) Let i ∈ {1, . . . , n}. If for some ε > 0 the interval (σi − ε, σi) is Hi−1-indivisible and
the interval (σi, σi + ε) is Hi-indivisible, then d1 = 0. If additionally bi,1 = 0, then
also d0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) �= ∅ for i = 1, . . . , n − 1. If Hn is in the limit
point case at σn+1, then also E ∩ (σn, σn+1) �= ∅. Let i ∈ {0, . . . , n}; if (α, σi+1) or
(σi, α) is a maximal Hi-indivisible interval, then α ∈ E.

(E2) No point of E is an inner point of an indivisible interval.

The number

ind− h :=
n∑

i=1

(
∆i +

[
öi

2

])
+ |{1 � i � n : öi odd, bi,1 > 0}| (2.3)

is called the negative index of the general Hamiltonian h. Moreover, h is called definite
if ind− h = 0, and indefinite otherwise. We say that h is in the limit point case or limit
circle case if Hn has the respective property at σn+1.

In order to shorten notation we shall write a Hamiltonian h that is given by the data
n, σ0, . . . , σn+1, H0, . . . , Hn, ö1, . . . , ön, bi,j , di,j , E as

h = (H, b, d),

where H represents the Hamiltonians Hi, including their number n and their domains
of definition (σi, σi+1), b represents the numbers öi and bi,j , and d represents the num-
bers di,j and the subset E. However, we also identify H with a function defined on⋃n

i=0(σi, σi+1) such that H(t) = Hi(t) for t ∈ (σi, σi+1). Hopefully, this will not cause
any confusion.

Remark 2.2. Intuitively, this notion can be understood as follows: its purpose is to
model an indefinite canonical system. So we deal with the differential equation f ′ = zJHf

given on an interval (σ0, σn+1) which involves some kind of singularities which are located
at the points σi, i = 1, . . . , n. Condition (H1) says that the differential equation is regular
at σ0, so that the initial-value problem at σ0 is well posed, but that σ1, . . . , σn actually
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are singularities. Moreover, and this is condition (H2), two adjacent singularities σi and
σi+1 must be separated by more than just a single indivisible interval. The meaning of
(H3) is that the growth of Hi towards a singularity is not too fast. Moreover, (H4) is an
interface condition at σi.

The numbers öi ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 model the part of the singularity σi

which is concentrated at σi, whereas the numbers di,0, . . . , di,2∆i−1 model the part of this
singularity which is in interaction with the local behaviour around σi. The elements of E

in the vicinity of σi determine quantitatively what local here means; more precisely, the
points in E split the set

⋃n
i=0(σi, σi+1) into pieces that contain only one singularity. The

freedom of this interaction is, by the first part of (H5), restricted if indivisible intervals
adjoin both sides of σi. The possibility that on both sides of σi indivisible intervals adjoin,
and at the same time bi,1 = 0, can occur by the second part of (H5) only in the case of
‘indivisible intervals of negative length’, the simplest possible kind of singularity.

Remark 2.3. We will subsequently confine our interest to general Hamiltonians with
negative index 1. Let us explicitly state which data are needed to obtain an object of
this kind. In order to have ind− h = 1, the general Hamiltonian h must consist of: two
Hamiltonians H0 and H1 defined on intervals (σ0, σ1) and (σ1, σ2), respectively, which
are subject to the conditions of Definition 2.1 and satisfy ∆ = 1; a number ö ∈ {0, 1};
a number b1 ∈ R, which is negative if ö = 1; another number b2 ∈ R in the case when
ö = 1; real numbers d0, d1; and a finite subset E, which can be chosen to be of the form
{s0, s1} with s0 = σ0, s1 ∈ (σ1, σ2).

2.2. Weyl theory for indefinite canonical systems

Let us recall the construction of the Weyl coefficient of a canonical system: let
υ(t, z) = (υ(t, z)ij)2i,j=1 be the 2 × 2-matrix solution of

∂

∂t
υ(t, z)J = zυ(t, z)H(t), t ∈ [0, L),

υ(0, z) = I.

⎫⎬
⎭ (2.4)

Note that the rows of υ are solutions of (1.1). Then, for each fixed z ∈ C\R and t ∈ [0, L),
the function qz,t(τ) := υ(t, z)  τ , τ ∈ C

+ ∪ R ∪ {∞}, maps the closed upper half-plane
onto a disc; here we denote by C

+ the open upper half-plane, and for a 2 × 2-matrix
function M = (mij)2i,j=1 and a scalar function α we define

M  α :=
m11α + m12

m21α + m22
.

If t increases, the discs qz,t(C+ ∪ R ∪ {∞}) form a nested sequence. In the limit t ↗ L

we thus obtain a limit disc. It degenerates to a single point if and only if∫ L

0
trH(t) dt = +∞.

In this case, one says that for the Hamiltonian H Weyl’s limit point case prevails (other-
wise, one says that H is in the limit circle case) and defines the Weyl coefficient of H
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as
qH(z) := lim

t↗L
qz,t(τ), τ ∈ R ∪ {∞}. (2.5)

This limit does not depend on τ ∈ R ∪ {∞} and exists locally uniformly on C \ R.
In order to build up a Weyl theory for indefinite canonical systems, one has to have

available an analogue of the fundamental solution υ(t, z) in (2.4). This is achieved by
the notion of maximal chains of matrices. Their definition also requires some preliminary
notation.

Let W be a 2 × 2-matrix-valued function

W = (wij)2i,j=1 : C → C
2×2

such that the entries wij are entire functions, wij(z̄) = wij(z), detW ≡ 1, and W (0) = I.
If κ ∈ N ∪ {0}, we write W ∈ Mκ if the 2 × 2-matrix-valued kernel

HW (w, z) :=
W (z)JW (w)∗ − J

z − w̄

has κ negative squares on C. We set

M�κ :=
⋃

0�ν�κ

Mν , M<∞ :=
⋃

ν∈N∪{0}
Mν ,

and write ind− W = κ to express that a matrix function W belongs to Mκ.
Matrices of the class M<∞ which are linear polynomials play a special role. Recall

that a linear polynomial matrix W belongs to M<∞ if and only if

W (z) = W(l,φ)(z) :=

(
1 − lz sin φ cos φ lz cos2 φ

−lz sin2 φ 1 + lz sin φ cos φ

)
(2.6)

for some l ∈ R and φ ∈ [0, π). In this case the number of negative squares of the kernel
HW is equal to 0 or 1, depending on whether l � 0 or l < 0. Matrices of the form W(l,φ)

are related to indivisible intervals; actually we have

∂

∂t
W(t,φ)(z)J = zW(t,φ)(z)ξφξT

φ , t ∈ [0, l].

For a matrix function W we denote by t(W ) the trace functional t(W ) := tr(W ′(0)J).

Definition 2.4. A mapping ω : I → M<∞ is called a maximal chain of matrices if
the following axioms are satisfied.

(W1) Its domain I is of the form (σ0, σ1) ∪ · · · ∪ (σn, σn+1), where σ0 < σ1 < · · · < σn <

σn+1 � ∞.

(W2) The function ω is not constant on any interval contained in I.

(W3) For all s, t ∈ I, s � t, we have ω(s)−1ω(t) ∈ M<∞ and

ind− ω(t) = ind− ω(s) + ind− ω(s)−1ω(t).
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(W4) If t ∈ I and for some W ∈ M<∞, W �= I, we have W−1ω(t) ∈ M<∞ and
ind− ω(t) = ind− W + ind− W−1ω(t), then there exists a number s ∈ I such that
W = ω(s).

(W5) We have limt↗σn+1 t(ω(t)) = +∞. If n � 1, there exist numbers s, t ∈ (σn, σn+1),
such that ω(s)−1ω(t) is not a linear polynomial.

The set of all maximal chains will be denoted by M<∞. The matrices ωst := ω(s)−1ω(t)
are called transfer matrices.

It was proved in [27, Lemma 3.5] that the function ind− ω(t) is constant on each
connected component of I and takes different values on different components. Moreover,
by (W3), it is non-decreasing. In particular, it is bounded and attains its maximum on
I∞. This allows us to define ind− ω := maxt∈I ind− ω(t). The set of all maximal chains
ω with ind− ω = κ will be denoted by Mκ. It was also proved in [27, Lemma 3.5] that for
any chain ω ∈ M<∞ we have limt↘σ0 ω(t) = I. Hence, we can always extend a maximal
chain ω continuously to I ∪ {σ0} by putting ω(σ0) := I.

Due to the condition limt↗σn+1 t(ω(t)) = +∞ in (W5), for any maximal chain of
matrices the limit

qω := lim
t↗σn+1

ω(t)  τ

exists locally uniformly on C\R for τ ∈ R∪{∞} and does not depend on τ . The function
qω is a generalized Nevanlinna function, actually ind− qω = ind− ω (see [26, Lemmas 8.2,
8.5]). Recall here that a function q belongs to the class Nκ, κ ∈ N0, if it is meromorphic
in C \ R, q(z̄) = q(z) for every z in the domain of q and the kernel

Kq(w, z) =
q(z) − q(w)

z − w̄
(2.7)

has κ negative squares. We also write ind− q = κ if q ∈ Nκ. The set of generalized
Nevanlinna functions is then defined by N<∞ :=

⋃∞
κ=0 Nκ.

With a general Hamiltonian h there can be associated a maximal chain ωh (see [30]).
On the intervals (σi, σi+1) it is a solution of the differential equation in (2.4) and the initial
condition at σ0 is ωh(σ0) = I. The jump over the singularities σ1, . . . , σn is determined
by the data b, d; however, this relation is highly implicit; note that by (H1) the limits
limt↘σi ωh(t) and limt↗σi ωh(t) do not exist. Moreover, one has ind− ωh = ind− h.

The Weyl coefficient of h is defined as the function qh := qωh
. The indefinite analogue

of de Branges’s inverse spectral theorem states that the assignment h �→ qh yields a
bijection of the set of all general Hamiltonians (up to changes of scale) and the set N<∞
of all generalized Nevanlinna functions (see [30]).

2.3. Some more preliminaries on chains of matrices

Chains which can be obtained from each other by a change of variable will share their
important properties. This idea is formalized by the notion of reparametrization.
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Definition 2.5. Let J1, J2 be subsets of R and let ωi : Ji → M<∞, i = 1, 2. Then we
say that ω2 is a reparametrization of ω1 if there exists an increasing and bijective map
α : J2 → J1 such that ω2 = ω1 ◦ α. In this case we write ω2 � ω1.

The relation � yields an equivalence relation on M<∞. Clearly, each of the subsets
Mκ, κ ∈ N ∪ {0}, is saturated with respect to �.

Intervals where the chain is of a particularly simple form often play an exceptional
role. If s1, s2 ∈ [0, L) \ {σ1, . . . , σn}, s1 < s2, the interval (s1, s2) is called indivisible of
length l and type φ if ω(s1)−1ω(s2) = W(l,φ) (see (2.6) for the definition of W(t,φ)). If
l > 0, then (s1, s2) is contained in the domain of ω, and

(ω(s1)−1ω(t))t∈[s1,s2] � (W(t,φ))t∈[0,l].

Note that (W(t,φ))t∈[0,l] satisfies the differential equation (2.4) with H(t) = ξφξT
φ for t ∈

(0, l), i.e. the interval (0, l) is H-indivisible of type φ. If, on the other hand, l < 0, then
there exists exactly one point σi which is contained in (s1, s2), and

(ω(s1)−1ω(t))t∈[s1,s2]\{σi} � (W(−1/t+l/2,φ))t∈[2/l,−2/l]\{0}.

An interval (s1, σi) or (σi, s2) which has the property that for all t in this interval the
matrix ω(s1)−1ω(t) or ω(t)−1ω(s2), respectively, is a linear polynomial is called indivisible
of infinite length.

We will also need the notion of finite maximal chains, which are bounded analogues of
a maximal chain.

Definition 2.6. A mapping ω : I → M<∞ is called a finite maximal chain of matrices
if

(W1f) the set I is of the form [0, L] \ {σ1, . . . , σn}, where 0 < σ1 < · · · < σn < L < ∞

and it satisfies the axioms (W2)–(W4). The set of all finite maximal chains will be denoted
by Mf

<∞.

The same reasoning which led to the proof of [27, Lemma 3.5] shows that ω(0) = I

for any finite maximal chain ω.
A finite maximal chain can always be extended to a maximal chain in various ways

(see [27, Lemma 3.7]). In fact, such extensions are obtained by appending another chain.
A formalization of this procedure gives rise to the following notion of linking chains.

Definition 2.7. Let J1,J2 ⊆ R and let ωi : Ji → M<∞, i = 1, 2. Assume that
supJ1 ∈ J1 and inf J2 ∈ J2, ω2(inf J2) = I. Then we define a map ω as follows: choose
increasing bijections ϕ1 of [inf J1, supJ1] onto [0, 1], ϕ2 of [inf J2, supJ2] onto [1, 2], and
let ω1 � ω2 : ϕ1(J1) ∪ ϕ2(J2) → M<∞ be defined as

(ω1 � ω2)(t) :=

{
ω1(ϕ−1

1 (t)) for t ∈ ϕ1(J1),

ω1(supJ1)ω2(ϕ−1
2 (t)) for t ∈ ϕ2(J2).

Note that these definitions agree for t = 1. We say that the function ω1 � ω2 is obtained
by linking ω1 and ω2.
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It is easy to see that the operation � is associative up to reparametrization, i.e.

ω1 � (ω2 � ω3) � (ω1 � ω2) � ω3.

Moreover, if ω1 � ω′
1 and ω2 � ω′

2, then also ω1 � ω2 � ω′
1 � ω′

2.
In our context, the following fact, which follows from the discussion concerning linking

of chains at the end of [26, § 7], is of interest.

Remark 2.8. Let ω1 ∈ Mf
κ, ω2 ∈ M0 and assume that neither of the following hold:

(i) ω1 ends with an indivisible interval of infinite length and ω2 is just an indivisible
interval of the same type and infinite length;

(ii) ω1 ends with an indivisible interval of negative length l1 and ω2 starts with an
indivisible interval of the same type and length l2 � −l1.

Then ω1 � ω2 ∈ Mκ1 .

Sometimes the following notation is also practical.

Definition 2.9. Let J1,J2 ⊆ R and let ωi : Ji → M<∞, i = 1, 2. Assume that
supJ1 /∈ J1 and inf J2 /∈ J2. Then we define a map ω1 �̇ω2 by the following procedure:
again choose increasing bijections ϕ1 : [inf J1, supJ1] → [0, 1] and ϕ2 : [inf J2, supJ2] →
[1, 2]. Define ω1 �̇ω2 : ϕ1(J1) ∪ ϕ2(J2) → M<∞ as

ω1 �̇ω2(t) :=

{
ω1(ϕ−1

1 (t)), t ∈ ϕ1(J1),

ω2(ϕ−1
2 (t)), t ∈ ϕ2(J2).

In the same way as �, the operation �̇ is associative and compatible with reparametriza-
tions.

Definition 2.10. Let J ⊆ R and let ω : J → M<∞. Let Ĵ be the set of all
points t ∈ J̄ such that the limit lims→t, s∈J ω(s) exists. Then we can define a function
Cω : Ĵ → M<∞ by

Cω(t) :=

{
ω(t), t ∈ J ,

lims→t, s∈J ω(s), t ∈ Ĵ \ J .

We speak of completion of the given function ω.

Sometimes it is useful to apply the transformation

ω̂(t) := Nαω(t)N∗
α,

where

Nα :=

(
cos α sin α

− sin α cos α

)
(2.8)

and α ∈ [0, π). The corresponding transformation for the Hamiltonian is

Ĥ(t) = NαH(t)N∗
α, (2.9)

which changes the direction: φ(Ĥ) = φ(H) − α. For two general Hamiltonians of the
form h = (H, b, d), ĥ = (Ĥ, b, d) with Ĥ = NαHN∗

α, the Weyl coefficients are related as
follows: q

ĥ
= Nα  qh.
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3. The transformation Tm

We will employ the transformation Tm of matrices (see [27, § 4]). Let us recall the defi-
nition; later we extend the transformation to chains of matrices (which will be denoted
by Tm).

Definition 3.1. Let W = (Wij)2i,j=1 be an entire matrix function with W (0) = I, and
let m ∈ R \ {0}. Set

α(W, m) := 1 − mW ′
21(0)

and

β(W, m) := m
W ′′

21(0)
2

+ mW ′
21(0)W ′

11(0) − 2W ′
11(0).

We say W ∈ dom Tm if α(W, m) �= 0, and in this case define

Tm(W ) :=

⎛
⎝1 −m

z
0 1

⎞
⎠W (z)

⎛
⎝ 1

α(W, m)
m

(
β(W, m)
α(W, m)

+
1
z

)
0 α(W, m)

⎞
⎠ .

It was proved in [27] that Tm(W ) is entire and takes the value I at z = 0. Moreover,
if W ∈ Mκ then Tm(W ) ∈ Mκ′ with

κ′ = κ +

⎧⎪⎨
⎪⎩

0 if α(W, m) > 0,

1 if α(W, m) < 0, m < 0,

−1 if α(W, m) < 0, m > 0.

(3.1)

For later reference let us state the following facts, which were shown in [27].

Remark 3.2.

(i) The transformations Tm and T−m are inverses of each other: if W ∈ dom Tm, then
Tm(W ) ∈ dom T−m and

T−m(Tm(W )) = W.

This is also reflected in the formulae

α(Tm(W ),−m) =
1

α(W, m)
,

β(Tm(W ),−m)
α(Tm(W ),−m)

=
β(W, m)
α(W, m)

. (3.2)

(ii) The transformation Tm preserves indivisible intervals; i.e. if W1, W2 ∈ dom Tm

satisfy W−1
1 W2 = W(l,φ), then Tm(W1)−1Tm(W2) = W(l̃,φ̃) with some appropriately

chosen numbers l̃, φ̃.

(iii) The value t(Tm(W )) is explicitly given as

t(Tm(W )) = m
β(W, m)
α(W, m)

(
W ′

11(0) − m
W ′′

21(0)
2

)
+ m

W ′′
11(0)
2

− m2 W ′′′
21(0)
6

+ α(W, m)W ′
12(0) − α(W, m)m

W ′′
22(0)
2

− W ′
21(0)

α(W, m)
. (3.3)
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In the present context the following observation will be of importance.

Lemma 3.3. Let ω(t), ω(s), ω̂(t), ω̂(s) ∈ dom Tm. Then we have

Tm(ω(t))−1Tm(ω(s)) = Tm(ω̂(t))−1Tm(ω̂(s)) (3.4)

if and only if
ω̂(t)−1ω̂(s) = A(t)−1 · ω(t)−1ω(s) · A(s), (3.5)

with

A(t) :=

⎛
⎜⎜⎜⎝

α(ω̂(t), m)
α(ω(t), m)

−m(β(ω̂(t), m) − β(ω(t), m))
α(ω(t), m)α(ω̂(t), m)

+
m

z

(
1

α(ω̂(t), m)
− 1

α(ω(t), m)

)

0
α(ω(t), m)
α(ω̂(t), m)

⎞
⎟⎟⎟⎠

Proof. From the definition of Tm we see that

Tm(ω(t))−1Tm(ω(s))

=

⎛
⎜⎜⎜⎝

α(ω(t), m) −m

(
β(ω(t), m)
α(ω(t), m)

+
1
z

)

0
1

α(ω(t), m)

⎞
⎟⎟⎟⎠ωts

⎛
⎜⎝

1
α(ω(s), m)

m

(
β(ω(s), m)
α(ω(s), m)

+
1
z

)
0 α(ω(s), m)

⎞
⎟⎠

From this, and the same relation with ω replaced by ω̂, it follows that (3.4) is equivalent
to

ω̂ts =

⎛
⎜⎜⎜⎝

α(ω̂(t), m) −m

(
β(ω̂(t), m)
α(ω̂(t), m)

+
1
z

)

0
1

α(ω̂(t), m)

⎞
⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎝
α(ω(t), m) −m

(
β(ω(t), m)
α(ω(t), m)

+
1
z

)

0
1

α(ω(t), m)

⎞
⎟⎟⎟⎠

× ωts

⎛
⎜⎝

1
α(ω(s), m)

m

(
β(ω(s), m)
α(ω(s), m)

+
1
z

)
0 α(ω(s), m)

⎞
⎟⎠
⎛
⎜⎝

1
α(ω̂(s), m)

m

(
β(ω̂(s), m)
α(ω̂(s), m)

+
1
z

)
0 α(ω̂(s), m)

⎞
⎟⎠

−1

This is, however, equivalent to the asserted form of ω̂ts. �

We will employ an additivity property of the functions α(W, m) and β(W, m).

Lemma 3.4. Let W, V be entire, let W (0) = V (0) = I, det W = 1 and let m ∈ R.
Then

α(WV, m) = α(W, m) − mV ′
21(0),

β(WV, m) = β(W, m) + β(V, m) + 2mW ′
21(0)V ′

11(0).
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Proof. We have

(WV )′(0) = W ′(0) + V ′(0), (WV )′′(0) = W ′′(0) + 2W ′(0)V ′(0) + V ′′(0).

From this the first asserted relation is immediate. For the second relation we compute

β(WV, m) =
m

2
(W ′′

21(0) + 2[W ′
21(0)V ′

11(0) + W ′
22(0)V ′

21(0)] + V ′′
21(0))

+ m(W ′
21(0) + V ′

21(0))(W ′
11(0) + V ′

11(0)) − 2(W ′
11(0) + V ′

11(0))

= β(W, m) + β(V, m) + 2mW ′
21(0)V ′

11(0) + mW ′
22(0)V ′

21(0)

+ mV ′
21(0)W ′

11(0).

Since we assumed that det W = 1, we have W ′
22(0) = −W ′

11(0), and this gives the desired
equality. �

Corollary 3.5. Let ω be a chain of matrices and let (s−, s+) be an indivisible interval
of type 0. Then the functions α(ω(t), m) and β(ω(t), m) are constant on (s−, s+).

Proof. For a matrix W(l,0) (see (2.6)) we clearly have W ′
(l,0)21

(0) = W ′
(l,0)11

(0) = 0
and β(W(l,0), m) = 0. Let t ∈ (s−, s+) be given, then ω(t) = ω(s−)W(l(t),0), and hence

α(ω(t), m) = α(ω(s−), m) − mW ′
(l,0)21

(0) = α(ω(s−), m)

and

β(ω(t), m) = β(ω(s−), m) + β(W(l,0), m) + 2mω′
t,21(0)W ′

(l,0)11
(0) = β(ω(s−), m).

�

The transformation Tm can be applied to chains of matrices [27, §§ 4, 6]. In fact, it can
be used to locally decrease or increase the negative index of a chain depending whether
m > 0 or m < 0. In particular, it allows us to locally remove or produce singularities. We
shall, for the convenience of the reader, explicitly discuss the situation which occurs in
the present context. Let us first describe what happens when singularities are produced.

Let ω ∈ Mf
0, ω : [0, L] → M0, and assume that m < 0 is such that α(ω(L), m) < 0.

The function ω(t)′
21(0) depends continuously on t (see [27, Lemma 3.5]) and is locally

non-increasing. Hence, also α(ω(t), m) is continuous and, since m < 0, is locally non-
increasing. Moreover, α(ω(0), m) = 1, and hence there exist points σ−, σ ∈ (0, L) such
that

α(ω(t), m)

⎧⎪⎨
⎪⎩

> 0 for t ∈ [0, σ−),

= 0 for t ∈ [σ−, σ],

< 0 for t ∈ (σ, L].

(3.6)

The transfer matrix ωσ−σ belongs to M0 and has the property that

ω′
σ−σ,21(0) = − 1

m
(α(ω(σ), m) − α(ω(σ−), m)) = 0.
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Since ωσ−σ,11/ωσ−σ,21 ∈ N0 and ωσ−σ,11(0) = 1, ωσ−σ,21(0) = 0, this implies that ωσ−σ,21

vanishes identically and hence
ωσ−σ = W(l,0),

where l := t(ω(σ)) − t(ω(σ−)). This shows that we can write

ω � ω|[0,σ−] � (W(t,0))t∈[0,l] � (ωσt)t∈[σ,L].

From the results of [27] we now obtain the following.

Corollary 3.6. Let ω ∈ Mf
0, ω : [0, L] → M0, be given. Let m < 0 be such that

α(ω(L), m) < 0 and let σ− and σ be defined according to (3.6). Then the chain

Tm(ω) := Tm ◦ ω|(σ,L]

belongs to Mf
1. Its singularity has the property that (Tm(ω(t)))′

21(0) is unbounded when
t approaches the singularity.

Proof. By the definition of σ− and σ we have ω(t) ∈ dom Tm for all t ∈ [0, σ−)∪(σ, L].
By (3.1) we have Tm(ω(t)) ∈ Mκ(t), where

κ(t) =

{
0 for t ∈ [0, σ−),

1 for t ∈ (σ, L].

Note that, clearly, Tm(ω(0)) = I.
Let � ∈ Mf

1 be the finite maximal chain going downwards from Tm(ω(L)). By [27,
Lemma 4.5], we have

ind−(Tm(ω(t))−1Tm(ω(s))) = ind− Tm(ω(s)) − ind− Tm(ω(t));

hence, by (W4), each matrix Tm(ω(t)), t ∈ [0, σ−)∪(σ, L], occurs in �. However, by (3.3)
the function t(Tm(ω(t))) depends continuously on t ∈ [0, σ−) ∪ (σ, L] and satisfies

lim
t↗σ−

t(Tm(ω(t))) = +∞, lim
t↘σ

t(Tm(ω(t))) = −∞.

Hence, by [25, Theorem 13.1], every matrix �(s) is equal to a matrix Tm(ω(t)), i.e. we
have � = Tm(ω).

Since

(Tm(ω(t)))′
21(0) =

1
α(ω(t), m)

ω(t)′
21(0),

we see that (Tm(ω(t)))′
21(0) is unbounded when t approaches σ− from the left or σ from

the right. �

Now we shall describe how singularities can be removed. Let � ∈ Mf
1, � : [0, σ) ∪

(σ, L] → M<∞, and assume that �(t)′
21(0) is unbounded when t tends to σ. Moreover,
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let m > 0 be such that α(�(L), m) < 0. Since m > 0, the function α(�(t), m) is locally
non-decreasing. Moreover, α(�(0), m) = 1 and α(�(L), m) < 0; thus,

α(�(t), m)

{
> 0 for t ∈ [0, σ),

< 0 for t ∈ (σ, L].

It follows that �(t) ∈ dom Tm for all t ∈ dom � and Tm(�(t)) ∈ M0 (see (3.1)).
By [27, Lemma 4.5] each matrix Tm(�(t)) belongs to the finite maximal chain going
downwards from Tm(�(L)). Moreover, the chain (Tm(�(L)))t∈dom � is almost maximal,
as the following corollary shows.

Corollary 3.7. Consider a chain � ∈ Mf
1 with dom � = [0, σ) ∪ (σ, L] such that

limt→σ |�(t)′
21(0)| = ∞. Moreover, let m > 0 and assume that α(�(L), m) < 0. Then

the chain

Tm(�) : C(Tm ◦ �|[0,σ)) � (W(t,0))t∈[0,e] � C(Tm ◦ �|(σ,L]),

with e := limt↘σ t(Tm ◦ �(t)) − limt↗σ t(Tm ◦ �(t)), belongs to Mf
0.

Proof. Denote by ω the finite maximal chain going downwards from Tm(�(L)), and
let ι : dom � → dom ω be such that Tm(�) = ω ◦ ι. By (3.2) we have

lim
t↗σ

α(ω ◦ ι(t),−m) = lim
t↘σ

α(ω ◦ ι(t),−m) = 0.

By (3.3) the function t(Tm(�(t))) is continuous on [0, σ) ∪ (σ, L]. Clearly,

lim
t↘0

Tm(�(t)) = I and lim
t↗L

Tm(�(t)) = Tm(�(L)).

If we set σ− := limt↗σ ι(t), σ+ := limt↘σ ι(t), then

ω(σ−) = lim
t↗σ

Tm(�(t)), ω(σ+) = lim
t↘σ

Tm(�(t)).

Moreover, ω′
σ−σ+,21(0) = 0, and hence ωσ−σ+ = W(e,0) for some appropriate number e �

0. In summary, we obtain that the chain Tm(�) as defined in the statement of the
corollary is equal to ω. �

Remark 3.8. The transforms Tm and T−m are inverses of each other in the following
sense: let ω ∈ Mf

0, dom ω = [0, L], and m < 0 with α(ω(L), m) < 0 be given. Then the
construction of Corollary 3.7 can be applied to the chain Tm(ω) and the number −m,
and we have T−m(Tm(ω)) = ω. Conversely, let � ∈ Mf

1 and m > 0 be given such that
the hypotheses of Corollary 3.7 are satisfied. Then Corollary 3.6 can be applied to the
chain Tm(�) and the number −m, and we have T−m(Tm(�)) = �.
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4. A perturbation of chains

Throughout this section let ω ∈ Mf
0, ω : [0, L] → M0, let m < 0 be fixed and assume

that α(ω(L), m) < 0. Let σ− and σ be defined as in (3.6) and set l := t(ω(σ))− t(ω(σ−))
so that

ω � ω|[0,σ−] � (W(t,0))t∈[0,l] � (ωσt)t∈[σ,L].

Let e := (e1, e2, e3) ∈ R×R× [0,∞). We define a perturbed chain ωe (see Definition 4.3).
Before we can do so, however, we need the following supplement to [27, Lemma 4.2] and
one corollary of these results.

Lemma 4.1. Let M ∈ Mκ be given.

(i) Let χ, λ ∈ R \ {0}, v, ν ∈ R. Then the matrix

M̃ :=

⎛
⎝χ −v

0
1
χ

⎞
⎠M

⎛
⎝ 1

λ
ν

0 λ

⎞
⎠ (4.1)

is entire and satisfies M̃(0) = I if and only if χ = λ and v = ν. In this case
M̃ ∈ Mκ.

(ii) Assume that M ′
21(0) = 0, and let χ, λ, u, µ ∈ R \ {0}, v, ν ∈ R be given. Then the

matrix

M̃(z) :=

⎛
⎜⎜⎝

χ −v − u

z

0
1
χ

⎞
⎟⎟⎠M

⎛
⎝ 1

λ
ν +

µ

z

0 λ

⎞
⎠

is entire and satisfies M̃(0) = I, if and only if λ = χ, u = µ and

v = ν + µ

(
2M ′

11(0) − µ

λ

M ′′
21(0)
2

)
.

In this case M̃ ∈ Mκ.

Proof. Necessity in (i) is clear since we must have M̃(0) = I. Sufficiency follows since
the factors in (4.1) are iJ-unitary.

Assertion (ii) follows by inspecting the explicit form of M̃ (see the set of formulae at
the beginning of the proof of Lemma 4.2 in [27], in particular part (IV)) and by repeating
the arguments for counting the negative index of M̃ . �

Corollary 4.2. Let W be an entire matrix function with W (0) = I. Moreover, let
e1, e2, ε1, ε2 ∈ R, λ ∈ R \ {0}. Then the matrix function

Ŵ =

⎛
⎝1 −e1 − e2

z

0 1

⎞
⎠W

⎛
⎝ 1

λ
ε1 +

ε2

z

0 λ

⎞
⎠
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is entire and takes the value I at z = 0 if and only if

λ = 1 − e2W
′
21(0), ε2 = e2,

ε1 =
e1 − 2e2W

′
11(0) + e2

2W
′
21(0)W ′

11(0) + 1
2e2

2W
′′
21(0)

1 − e2W ′
21(0)

.

⎫⎪⎬
⎪⎭ (4.2)

Proof. Solve [27, Lemma 4.2, equations (1)–(3)] and the equations in Lemma 4.1,
respectively, for λ, ν and µ. �

Now we are ready to define the perturbed chain ωe.

Definition 4.3. Choose S ∈ (σ, L] such that 1 − e2ω
′
σt,21(0) > 0, t ∈ [σ, S]. Such a

choice is possible by the continuity of ω′
σt,21(0) and the fact that ω′

σσ,21(0) = 0. Define

Ŵσt :=

⎛
⎝1 −e1 − e2

z

0 1

⎞
⎠ωσt

⎛
⎝ 1

λ(t)
ε1(t) +

ε2(t)
z

0 λ(t)

⎞
⎠ , t ∈ [σ, S],

where λ, ε1, ε2 are given by

λ(t) := 1 − e2ω
′
σt,21(0), ε2(t) := e2,

ε1(t) :=
e1 − 2e2ω

′
σt,11(0) + e2

2ω
′
σt,21(0)ω′

σt,11(0) + 1
2e2

2ω
′′
σt,21(0)

1 − e2ω′
σt,21(0)

.

⎫⎪⎬
⎪⎭ (4.3)

With this notation set

ωe := ω|[0,σ−] � (W(t,0))t∈[0,e3] � (Ŵσt)t∈[σ,S].

We will always assume that ωe is parametrized such that ωe(t) = ω(σ−)W(e3,0)Ŵσt for
t ∈ [σ, S].

Lemma 4.4. We have ωe ∈ Mf
0.

Proof. In view of Remark 2.8 it is sufficient to show that (Ŵσt)t∈[σ,S] ∈ Mf
0. Clearly,

Ŵσσ = I. Next note that, since λ(t) > 0 for t ∈ [σ, S], by [27, Lemma 4.2] and Lemma 4.1,
all matrices

Ŵσt(z)−1Ŵσs(z) =

⎛
⎜⎜⎝

λ(t) −ε1(t) − ε2(t)
z

0
1

λ(t)

⎞
⎟⎟⎠ωts

⎛
⎝ 1

λ(s)
ε1(s) +

ε2(s)
z

0 λ(s)

⎞
⎠ ,

where σ � t � s � S, belong to M0. Moreover (cf. the explicit formulae for Ŵσt given
in the proof of [27, Lemma 4.2]),

Ŵ ′
σt,21(0) =

1
λ(t)

ω′
σt,21(0), (4.4)
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and

Ŵ ′
σt,12(0) = ε1(t)ω′

σt,11(0) + ε2(t)
ω′′

σt,11(0)
2

+ λ(t)ω′
σt,12(0)

− e1λ(t)ω′
σt,22(0) − e2λ(t)

ω′′
σt,22(0)

2
− e1ε1(t)ω′

σt,21(0)

− (e1ε2(t) + e2ε1(t))
ω′′

σt,21(0)
2

− e2ε2(t)
ω′′′

σt,21(0)
6

.

Hence, since ωσt depends continuously on t with respect to locally uniform convergence,
also t(Ŵσt) = Ŵ ′

σt,12(0) − Ŵ ′
σt,21(0) depends continuously on t ∈ [σ, S]. It follows that

(Ŵσt)t∈[σ,S] ∈ Mf
0. �

Lemma 4.5. We have

α(ωe(t), m) =
α(ω(t), m)

λ(t)
, t ∈ (σ, S].

In particular, α(ωe(t), m) < 0 for t ∈ (σ, S].

Proof. Since the chains ωe and ω coincide to the left of the indivisible interval whose
right end point is σ, and by Corollary 3.5 the number α(ωe(σ), m) is constant on this
interval, we have

α(ωe(σ), m) = α(ω(σ), m).

Since α(ω(σ), m) = 0, we obtain from Lemma 3.4 that

α(ω(t), m) = α(ω(σ), m) − mω′
σt,21(0) = −mω′

σt,21(0),

α(ωe(t), m) = α(ωe(σ), m) − mŴ ′
σt,21(0) = −mŴ ′

σt,21(0).

}
(4.5)

Using (4.4) we conclude that

α(ωe(t), m) = −m
ω′

σt,21(0)
λ(t)

=
α(ω(t), m)

λ(t)
.

�

By our assumptions and the previous lemma we may apply Corollary 3.6 to ω as well as
to ωe and, in this way, obtain two chains Tm(ω) and Tm(ωe) belonging to Mf

1. We assume
that Tm(ω) and Tm(ωe) are parametrized such that Tm(ω)(t) = Tm(ω(t)), t ∈ (σ, S], and
Tm(ωe)(t) = Tm(ωe(t)), t ∈ (σ, S].

Proposition 4.6. The chains Tm(ω) and Tm(ωe) coincide to the left of the singular-
ity σ. We have

Tm(ωe)ts = Tm(ω)ts, σ < t � s � S.
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Proof. We shall employ Lemma 3.3. To this end we must compute

α(ωe(t), m)
α(ω(t), m)

and β(ωe(t), m) − β(ω(t), m).

We have already seen in Lemma 4.5 that

α(ωe(t), m)
α(ω(t), m)

=
1

λ(t)
. (4.6)

From this and (4.5) it also follows that

1
α(ωe(t), m)

− 1
α(ω(t), m)

=
λ(t) − 1

α(ω(t), m)
=

(1 − e2ω
′
σt,21(0)) − 1

−mω′
σt,21(0)

=
e2

m
. (4.7)

Again, since to the left of the indivisible interval whose right end point is σ the chains ωe

and ω coincide and β(ωe(σ), m) is constant on this indivisible interval (see Corollary 3.5),
we have

β(ωe(σ), m) = β(ω(σ), m).

By Lemma 3.4 we have, for t > σ,

β(ωe(t), m) = β(ωe(σ), m) + β(Ŵσt, m) + 2mωe(σ)′
21(0)Ŵ ′

σt,11(0),

β(ω(t), m) = β(ω(σ), m) + β(ωσt,21, m) + 2mω(σ)′
21(0)ω′

σt,11(0).

Since mω(σ)′
21(0) = 1 − α(ω(σ), m) = 1 and also mωe(σ)′

21(0) = 1,

β(ωe(t), m) − β(ω(t), m) = β(Ŵσt, m) − β(ωσt,21, m) + 2(Ŵ ′
σt,11(0) − ω′

σt,11(0)).

From the definition of Ŵ σt and (4.4) we find that

Ŵ ′′
σt,21(0) =

ω′′
σt,21(0)
λ(t)

,

Ŵ ′
σt,11(0) =

ω′
σt,11(0)
λ(t)

− e1
ω′

σt,21(0)
λ(t)

− e2
ω′′

σt,21(0)
2λ(t)

.

Hence, we can further compute

β(ωe(t), m) − β(ω(t), m)

=
(

m

2
Ŵ ′′

σt,21(0) + mŴ ′
σt,21(0)Ŵ ′

σt,11(0) − 2Ŵ ′
σt,11(0)

)

−
(

m

2
ω′′

σt,21(0) + mω′
σt,21(0)ω′

σt,11(0) − 2ω′
σt,11(0)

)
+ 2(Ŵ ′

σt,11(0) − ω′
σt,11(0))



Dependence of the Weyl coefficient on singular interface conditions 467

=
m

2
ω′′

σt,21(0)
λ(t)

+ m
ω′

σt,21(0)
λ(t)

(
ω′

σt,11(0)
λ(t)

− e1
ω′

σt,21(0)
λ(t)

− e2
ω′′

σt,21(0)
2λ(t)

)

−
(

m

2
ω′′

σt,21(0) + mω′
σt,21(0)ω′

σt,11(0)
)

=
m

2
ω′′

σt,21(0)
(

1
λ(t)

− e2

λ(t)2
ω′

σt,21(0) − 1
)

− mω′
σt,21(0)2

e1

λ(t)2

+ mω′
σt,11(0)ω′

σt,21(0)
(

1
λ(t)2

− 1
)

.

It follows that

λ(t)2(β(ωe(t), m) − β(ω(t), m))

=
m

2
ω′′

σt,21(0)(λ(t) − e2ω
′
σt,21(0) − λ(t)2) − mω′

σt,21(0)2e1

+ mω′
σt,11(0)ω′

σt,21(0)(1 − λ(t)2)

=
m

2
ω′′

σt,21(0)(−e2
2ω

′
σt,21(0)2) − mω′

σt,21(0)2e1

+ mω′
σt,11(0)ω′

σt,21(0)(2e2ω
′
σt,21(0) − e2

2ω
′
σt,21(0)2)

= −mω′
σt,21(0)2

(
e2
2
ω′′

σt,21(0)
2

+ e1 − 2e2ω
′
σt,11(0) + e2

2ω
′
σt,11(0)ω′

σt,21(0)
)

= − 1
m

α(ω(t), m)2λ(t)ε1(t).

Using this computation and (4.6), we conclude that

−m(β(ωe(t), m) − β(ω(t), m))
α(ωe(t), m)α(ω(t), m)

=
−mλ(t)2(β(ωe(t), m) − β(ω(t), m))

λ(t)2α(ωe(t), m)α(ω(t), m)

=
α(ω(t), m)2λ(t)ε1(t)

λ(t)2α(ωe(t), m)α(ω(t), m)

= ε1(t). (4.8)

Since, for σ < t � s � S, we have

ωe(t)−1ωe(s) = Ŵ−1
σt Ŵσs =

⎛
⎝ 1

λ(t)
ε1(t) +

ε2(t)
z

0 λ(t)

⎞
⎠
−1

ωts

⎛
⎝ 1

λ(s)
ε1(s) +

ε2(s)
z

0 λ(s)

⎞
⎠ ,

we conclude from (4.6)–(4.8) that the hypothesis (3.5) of Lemma 3.3 is satisfied. �

Next we show that Proposition 4.6 has a converse, i.e. that every chain that has the
same transfer matrices as the given chain ω is of the form ωe.

Proposition 4.7. Let ω̂ ∈ Mf
0, ω̂ : [0, L̂] → M0, be given. Assume that α(ω̂(L̂), m) <

0 and let σ̂−, σ̂ be defined as in (3.6). Suppose that there exist continuous and strictly
increasing embeddings

ι+ : [σ̂, L̂] → [σ, L], ι− : [0, σ̂−] → [0, σ−],
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with ι+(σ̂) = σ and ι− bijective, such that

ω̂|[0,σ̂−] = ω ◦ ι−

and
Tm(ω̂)ts = Tm(ω)ι+(t)ι+(s), σ̂ < t � s � L̂.

Then there exists a triple e ∈ R × R × [0,∞) such that ωe ◦ ι+ = ω̂|[σ̂,L̂].

Proof. Without loss of generality let us assume that σ̂ = σ and that ι+ is the inclusion
map [σ̂, L̂] ⊆ [σ, L]. By Lemma 3.3 we have

ω̂ts = A(t)−1ωtsA(s), σ < t � s � L̂.

We now take a closer look at the entries of A(t). First note that, by our assumption that
Tm(ω̂) and Tm(ω) have the same transfer matrices,

α(Tm(ω̂(s)),−m) − α(Tm(ω(s)),−m) = α(Tm(ω̂(t)),−m) − α(Tm(ω(t)),−m)

for σ < t � s � L̂. Since, by [27, (4.21)], for any matrix W ∈ dom Tm,

α(Tm(W ),−m) =
1

α(W, m)
,

we conclude that the number

e2(ω̂, ω) := m

(
1

α(ω̂(t), m)
− 1

α(ω(t), m)

)
does not depend on t ∈ (σ, L̂]. Since limt↘σ α(ω(t), m) = 0, this also implies that

lim
t↘σ

α(ω(t), m)
α(ω̂(t), m)

= 1.

For arbitrary t ∈ (σ, L̂] we can write A(t) = ωtL̂A(L̂)ω̂L̂t. Hence, the limit limt↘σ A(t)
exists; in particular, the limit

e1(ω̂, ω) := −m lim
t↘σ

β(ω̂(t), m) − β(ω(t), m)
α(ω̂(t), m)α(ω(t), m)

also exists. Let s ∈ (σ, L̂] be fixed; then for arbitrary t ∈ (σ, L̂] we have ω̂ts =
A(t)−1ωtsA(s). If in this relation we let t tend to σ, we obtain

ω̂σs =

⎛
⎝1 −e1(ω̂, ω) − e2(ω̂, ω)

z

0 1

⎞
⎠ωσsA(s).

By Corollary 4.2 we must have

A(s) =

⎛
⎝ 1

λ(s)
ε1(s) +

ε2(s)
z

0 λ(s)

⎞
⎠
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where λ, ε1, ε2 are defined by (4.3) with e1 = e1(ω̂, ω) and e2 = e2(ω̂, ω). This just says
that we have

ω̂σs = Ŵσs, σ � s � L̂.

Set e3(ω̂) := t(ω̂(σ)) − t(ω̂(σ̂−)) and e := (e1(ω̂, ω), e2(ω̂, ω), e3(ω̂)); then

ω̂ = ω̂|[0,σ̂−] � W(e3(ω̂),0) � (ω̂σt)t∈[σ,L̂]

= ω|[0,σ−] � W(e3(ω̂),0) � (Ŵσt)t∈[σ,L̂]

= ωe|[0,L̂].

�

5. Main theorem

Let h = (H, b, d) be an indefinite Hamiltonian in the limit point case with negative
index 1. Since ind− h = 1, h can have only one singularity, i.e. H = (H0, H1), where H0

is defined on [σ0, σ1) and H1 on (σ1, σ2). Moreover, by Remark 2.3, ∆ = 1, and hence
d = (d0, d1). Also, ö ∈ {0, 1}, and b1 < 0 in the case ö = 1. Moreover, we assume that∫ σ1

σ0

(1, 0)H0(t)
(

1
0

)
dt < ∞, (5.1)

which is not an essential restriction because the Hamiltonian can always be transformed
using (2.9) such that (5.1) holds (see (2.2)). Denote the Weyl coefficient of h by qh, so
that qh ∈ N1.

Let υ ∈ M1 be the unique maximal chain of matrices whose Weyl coefficient is qh.
Without loss of generality we assume that υ is parametrized similarly to H, i.e. that
dom υ = [σ0, σ1) ∪ (σ1, σ2), and that υ(t) is a solution of the differential equation

∂

∂t
υ(t)J = zυ(t)H(t), t ∈ [σ0, σ1) ∪ (σ1, σ2),

υ(σ0) = I.

Note that the function υ(t) can be computed explicitly from H, by solving the canonical
differential equation, only on the interval [σ0, σ1). Moreover, note that v(t) is also a
function of z, and we identify v(t)(z) and v(t, z) as they appear, for example, in (5.8).

Due to our condition (5.1), we have limt→σ1 |υ(t)′
21(0)| = ∞. Hence, there exists L >

σ1, such that α(υ(L), 1) < 0. Define ω := T1(υ|[σ0,L]\{σ1}). Then ω ∈ Mf
0 and is, if

appropriately parametrized, explicitly given by

ω(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1(υ(t + l)), t ∈ [σ0 − l, σ−),

[lims↗σ1 T1(υ(s))]

(
1 (t − σ−)z

0 1

)
, t ∈ [σ−, σ1],

T1(υ(t)), t > σ1,
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where l and σ− are defined by the relation

l = σ1 − σ− = lim
s↘σ1

t(T1(υ(s))) − lim
s↗σ1

t(T1(υ(s))) (5.2)

(see Corollary 3.7). Note here that it follows from (5.1) that the limits on the right-hand
side of this relation exist. Actually, the limits

lim
s↘σ1

T1(υ(s)), lim
s↗σ1

T1(υ(s))

exist locally uniformly on C and belong to M0. Recall from [27, Theorem 4.4] that ω

can be continued to a maximal chain ω̂ whose Weyl coefficient is equal to qh(z) − 1/z.
To simplify notation, let us denote α(υ(t), 1) and β(υ(t), 1) as follows:

α(t) := 1 − υ(t, z)′
21(0),

β(t) := 1
2υ(t, z)′′

21(0) + υ(t, z)′
21(0)υ(t, z)′

11(0) − 2υ(t, z)′
11(0).

}
(5.3)

Here primes denote differentiation with respect to the variable z and an evaluation after
this denotes evaluation of z.

Proposition 5.1. The limit

M(z) := lim
t↗σ1

υ(t, z)

⎛
⎝ 1

α(t)
β(t)
α(t)

+
1
z

0 α(t)

⎞
⎠ (5.4)

exists locally uniformly on C \ {0}.
The function τ := M−1  qh belongs to N0 ∪ N1, and

lim
y→+∞

1
iy

τ(iy) = l.

Proof. We compute

υ(t, z)

⎛
⎝ 1

α(υ(t), 1)
β(υ(t), 1)
α(υ(t), 1)

+
1
z

0 α(υ(t), 1)

⎞
⎠

=

⎛
⎝1

1
z

0 1

⎞
⎠
⎛
⎝1 −1

z

0 1

⎞
⎠ υ(t, z)

⎛
⎝ 1

α(υ(t), 1)
β(υ(t), 1)
α(υ(t), 1)

+
1
z

0 α(υ(t), 1)

⎞
⎠

=

⎛
⎝1

1
z

0 1

⎞
⎠ T1(υ(t, z)). (5.5)

Thus, the limit (5.4) exists locally uniformly on C \ {0}.
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Let t ∈ [σ0, σ1). The matrix T1(υ(t)) belongs to ω and thus also to ω̂. Hence, there
exists τt ∈ N0 ∪ N1 such that T1(υ(t))  τt = qh − 1/z. We compute

⎡
⎣υ(t)

⎛
⎝ 1

α(υ(t), 1)
β(υ(t), 1)
α(υ(t), 1)

+
1
z

0 α(υ(t), 1)

⎞
⎠
⎤
⎦

−1

 qh =

⎡
⎣
⎛
⎝1

1
z

0 1

⎞
⎠ T1(υ(t))

⎤
⎦

−1

 qh

=

⎡
⎣T1(υ(t))−1

⎛
⎝1 −1

z

0 1

⎞
⎠
⎤
⎦  qh

= T1(υ(t))−1 

(
qh − 1

z

)
= τt.

The limit t ↗ σ1 on the left-hand side of this relation exists and is equal to τ . Since
N0 ∪ N1 is closed, we obtain τ ∈ N0 ∪ N1.

We have

lim
t↗σ1

T1(υ(t)) = ω(σ−), ω(σ1) = ω(σ−)

(
1 lz

0 1

)

and limt↗σ1 τt = τ . Hence, ω(σ1)  (τ(z) − lz) = qh − 1/z. This implies that τ(z) − lz

is the Weyl coefficient of the maximal chain ω̂(σ1)−1ω̂(t)|t�σ1 . Since this chain does not
start with an indivisible interval of type 0, we conclude from Theorem 5.7, Lemmas 5.2
and 7.5 and the proof of Theorem 7.1 in [26] that

lim
y→+∞

1
iy

(τ(iy) − liy) = 0.

�

Definition 5.2. For a triple e = (e1, e2, e3) ∈ R × R × [0,∞) let us define a function
qe
h(z) on C \ R as

qe
h(z) := M(z)

⎛
⎝1 (e3 − l)z − e1 − e2

z

0 1

⎞
⎠M(z)−1  qh(z), (5.6)

where the matrix function M is defined by (5.4).

The definition (5.6) of qe
h can be rewritten in two (sometimes more convenient) ways.

Proposition 5.3. Denote by qh,σ1 the intermediate Weyl coefficient

qh,σ1(z) := lim
t↗σ1

υ(t, z)  ∞

and let

M21 = lim
t↗σ1

υ21(t, z)
α(t)
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be the left lower entry of M . Moreover, set

pe(z) := (e3 − l)z − e1 − e2

z
.

Then

qe
h(z) =

(
I + pe(z)M21(z)2

(
qh,σ1(z)

1

)(
−1 qh,σ1(z)

))
 qh(z) (5.7)

and

qe
h(z) = qh(z) +

(qh,σ1(z) − qh(z))2pe(z)M21(z)2

(qh,σ1(z) − qh(z))pe(z)M21(z)2 + 1
.

Proof. To see the first formula, compute

M

(
1 pe

0 1

)
M−1 =

(
M11 M12

M21 M22

)(
1 pe

0 1

)(
M22 −M12

−M21 M11

)

=

(
M11 peM11 + M12

M21 peM21 + M22

)(
M22 −M12

−M21 M11

)

=

(
1 − peM11M21 peM

2
11

−peM
2
21 1 + peM11M21

)

= I + pe

(
M11

M21

)(
−M21 M11

)

= I + peM
2
21

(
qh,σ1

1

)(
−1 qh,σ1

)
.

In the last line we used the fact that

M11(z)
M21(z)

=
limt↗σ1 υ11(t, z)/α(t)
limt↗σ1 υ21(t, z)/α(t)

= qh,σ1(z).

In order to show the second formula, we furthermore compute(
I + peM

2
21

(
qh,σ1

1

)(
−1 qh,σ1

))
=

(
1 − peM

2
21qh,σ1 peM

2
21q

2
h,σ1

−peM
2
21 1 + peM

2
21qh,σ1

)

and hence

qe
h − qh =

(1 − peM
2
21qh,σ1)qh + peM

2
21q

2
h,σ1

−peM2
21qh + (1 + peM2

21qh,σ1)
− qh

=
(1 − peM

2
21qh,σ1)qh + peM

2
21q

2
h,σ1

+ peM
2
21q

2
h − (1 + peM

2
21qh,σ1)qh

−peM2
21qh + 1 + peM2

21qh,σ1

=
peM

2
21(qh,σ1 − qh)2

peM2
21(qh,σ1 − qh) + 1

.

�
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The functions qe
h can be used to describe the set of all Weyl coefficients q

ĥ
of indefinite

Hamiltonians which differ from h only in the scalar parameters d0, d1, ö, b1, and b2 (in
the case when ö = 1). The following theorem is the main result of this paper.

Theorem 5.4. Let h = (H, b, d) be an indefinite Hamiltonian in the limit point case
with negative index 1 and Weyl coefficient qh, where H is defined on [σ0, σ1) ∪ (σ1, σ2)
with a singularity at σ1. Assume without loss of generality that∫ σ1

σ0

(1, 0)H(t)
(

1
0

)
dt < ∞.

Let υ(t, z) be the solution of the initial-value problem

∂

∂t
υ(t, z)J = zυ(t, z)H(t), t ∈ [σ0, σ1), υ(σ0, z) = I, (5.8)

and let M and qe
h be defined by (5.4) and (5.6). Moreover, let WH denote the set of all

Weyl coefficients q
ĥ

of indefinite Hamiltonians ĥ = (Ĥ, b̂, d̂), ind− ĥ = 1, with Ĥ = H.
Case 1. Assume either that for all s− ∈ [σ0, σ1) the interval (s−, σ1) is not indivisible,

or that for all s+ ∈ (σ1, σ2) the interval (σ1, s+) is not invisible. Then the assignment
e �→ qe

h maps R × R × [0,∞) bijectively onto WH .
Case 2. Assume that there exist s− ∈ [σ0, σ1) and s+ ∈ (σ1, σ2) such that both

intervals (s−, σ1) and (σ1, s+) are maximal indivisible. Then the assignment e �→ qe
h is a

bijection of

(R × R × [0,∞)) \
{

{−b1} × (−∞, d0] × {0} if ö = 0,

{−b2} × (−∞, d0] × {0} if ö = 1

onto WH .
If ö = 0 and e ∈ {−b1} × (−∞, d0] × {0} or ö = 1 and e ∈ {−b2} × (−∞, d0] × {0},

then qe
h is the Weyl coefficient of the positive definite Hamiltonian

He(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(t + s− − s+ + (d0 − e2)), t ∈ (σ0 − s− + s+ − (d0 − e2), s+ − (d0 − e2)),(
0 0

0 1

)
, t ∈ (s+ − (d0 − e2), s+),

H(t), t � s+.

Proof. The proof of this result is carried out in several steps. In the first three steps
we deal with Case 1. Without loss of generality we assume that σ0 = 0, σ2 = ∞ and set
σ := σ1.

Step 1 (construction of chains with Weyl coefficient qe
h

(Case 1)). Let e ∈
R × R × [0,∞) be given, and let S and ωe be defined as in Definition 4.3. Set

υe(t) := T−1(ωe) � (υSt)t∈[S,∞), (5.9)
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and assume that υe is parametrized such that

υe(t) =

⎧⎪⎨
⎪⎩

υ(t), t ∈ [0, σ),

T−1(ωe)(t), t ∈ (σ, S],

T−1(ωe)(S)υSt, t ∈ (S, ∞).

Let σ < t � s � S; then

T−1(ωe)(t)−1T−1(ωe)(s) = T−1(ω)(t)−1T−1(ω)(s) = υ(t)−1υ(s).

From the definition of υe it is now immediate that

υe(t)−1υe(s) = υ(t)−1υ(s), σ < t � s < ∞.

Since υ is a maximal chain, the interval (σ, ∞) is not indivisible. Since we assume that
Case 1 prevails, in particular the singularity σ of T−1(ωe) cannot lie in an indivisible
interval with negative length. It follows that we can apply Remark 2.8, and conclude
that υe ∈ M1.

Let q be the Weyl coefficient of the chain υe, and let he be the indefinite Hamiltonian
with Weyl coefficient q. Since υ and υe have the same transfer matrices, they satisfy
equation (1.1) with the same H between the singularities; hence, he is of the form he =
(H, be, de).

We will now show that q = qe
h. Since υe,ts = υts for σ < t � s < ∞, by Lemma 3.3 we

have that
T1(υe(t))−1T1(υe(s)) = A(t)−1T1(υ(t))−1T1(υ(s))A(s) (5.10)

whenever all transforms are defined, and where A(t) is equal to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(T1(υe(t)),−1)
α(T1(υ(t)),−1)

β(T1(υe(t)),−1) − β(T1(υ(t)),−1)
α(T1(υ(t)),−1)α(T1(υe(t)),−1)

−1
z

(
1

α(T1(υe(t)),−1)
− 1

α(T1(υ(t)),−1)

)

0
α(T1(υ(t)),−1)
α(T1(υe(t)),−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let σ < t � S. Then T1(υe(t)) = ωe(t) and T1(υ(t)) = ω(t). Hence, by (4.6)–(4.8), we
have

A(t) =

⎛
⎝ 1

λ(t)
ε1(t) +

ε2(t)
z

0 λ(t)

⎞
⎠ , t ∈ (σ, S],

where λ, ε1, ε2 are defined by (4.3). From their definition we see that

lim
t↘σ

A(t) =

⎛
⎝1 e1 +

e2

z
0 1

⎞
⎠ . (5.11)
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Let σ < t � s < ∞. By (5.10) we have

T1(υe(s)) = T1(υe(t))A(t)−1T1(υ(t))−1T1(υ(s))A(s).

Letting t tend to σ from above yields

T1(υe(s)) = ωe(σ)

⎛
⎝1 −e1 − e2

z
0 1

⎞
⎠ω(σ)−1T1(υ(s))A(s)

= ωe(σ−)W(e3,0)

⎛
⎝1 −e1 − e2

z
0 1

⎞
⎠W−1

(l,0)ω(σ−)−1T1(υ(s))A(s)

= ωe(σ−)

⎛
⎝1 (e3 − l)z − e1 − e2

z
0 1

⎞
⎠ω(σ−)−1T1(υ(s))A(s).

It follows from (5.5) and the definition of T1 that

υe(s)

⎛
⎝ 1

α(υe(s), 1)
β(υe(s), 1)
α(υe(s), 1)

+
1
z

0 α(υe(s), 1)

⎞
⎠

=

⎛
⎝1

1
z

0 1

⎞
⎠ T1(υe(s))

=

⎛
⎝1

1
z

0 1

⎞
⎠ωe(σ−)

⎛
⎝1 (e3 − l)z − e1 − e2

z
0 1

⎞
⎠ω(σ−)−1T1(υ(s))A(s)

= M

⎛
⎝1 (e3 − l)z − e1 − e2

z
0 1

⎞
⎠M−1υ(s)

⎛
⎝ 1

α(υ(s), 1)
β(υ(s), 1)
α(υ(s), 1)

+
1
z

0 α(υ(s), 1)

⎞
⎠A(s).

We conclude that

υe(s)  ∞ = M

⎛
⎝1 (e3 − l)z − e1 − e2

z
0 1

⎞
⎠M−1υ(s)  ∞ (5.12)

whenever s ∈ (σ, ∞) is such that both υe(s) and υ(s) belong to dom T1. Let a ∈ (σ, ∞]
be such that (a,∞) is a maximal indivisible interval of type 0 of the chain υ, and thus
also of the chain υe. Then

qh = lim
t↗a

υ(t)  ∞, q = lim
t↗a

υe(t)  ∞.

We have

sup{t ∈ (σ, a) : υ(t) ∈ dom T1} = sup{t ∈ (σ, a) : υe(t) ∈ dom T1} = a,

and hence we obtain from (5.12) that q = qe
h.
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Step 2 (surjectivity (Case 1)). Let ĥ be an indefinite Hamiltonian with ind− ĥ = 1
which is of the form ĥ = (H, ĉ, d̂), and let q̂ be its Weyl coefficient. Let υ̂ be the maximal
chain whose Weyl coefficient is q̂, and assume that υ̂ is parametrized such that dom υ̂ =
dom υ, υ̂(t) = υ(t), t ∈ [0, σ), and υ̂ts = υts for σ < t � s < ∞. Choose L̂ ∈ (σ, L]
such that α(υ̂(L̂), 1) < 0, and put ω̂ := T1(υ̂|[0,L̂]\{σ}). By Proposition 4.7 there exists
e ∈ R × R × [0,∞) such that ω̂ = ωe. Let υe be the maximal chain constructed in Step 1.
We have

υe(L̂) = T−1(ωe(L̂)) = T−1(ω̂(L̂)) = υ̂(L̂).

Since υ
e,L̂t = υL̂t = υ̂L̂t for all t ∈ (σ, ∞), this shows that υ̂ = υe.

Step 3 (injectivity (Case 1)). Let e1 = (e1
1, e

1
2, e

1
3), e2 = (e2

1, e
2
2, e

2
3) ∈ R×R×[0,∞),

and assume that qe
1

h = qe
2

h .
For any e ∈ R×R×[0,∞) the number e3 can be reconstructed from the Weyl coefficient

qe
h as the limit

e3 = lim
y→+∞

1
iy

(M−1  qe
h(iy))

by Proposition 5.1 and (5.6). We conclude that in the present situation e1
3 = e2

3.
Let υ1, υ2 ∈ M1 be the corresponding maximal chains and assume that they are

parametrized such that

υ1(t) = υ(t) = υ2(t), t ∈ [0, σ),

and
υ1

ts = υts = υ2
ts, σ < t � s < ∞.

Since these chains have the same Weyl coefficient, there exists a continuous and increasing
bijection φ of [0, σ) ∪ (σ, ∞) onto itself, such that υ2 = υ1 ◦ ϕ. It follows that, for
σ < t � s < ∞,

υts = υ2
ts = υ1

ϕ(t)ϕ(s) = υϕ(t)ϕ(s). (5.13)

In particular, this implies that

t(υ(ϕ(s))) − t(υ(ϕ(t))) = t(υ(s)) − t(υ(t)),

and hence the number
γ := t(υ(ϕ(t))) − t(υ(t))

does not depend on t ∈ (σ, ∞).
Consider the case when γ = 0. Then it follows that υ(ϕ(t)) = υ(t), and hence that

ϕ = id, i.e. υ1 = υ2. We see from (5.11) that this implies e1
1 = e2

1 and e1
2 = e2

2.
Assume now that γ �= 0. We shall derive a contradiction. Assume without loss of

generality that γ > 0. Then we always have ϕ(t) > t. Since H1 satisfies the (HS) condi-
tion (see [28, § 2.3]), there exists φ ∈ [0, π) such that (cos φ, sin φ)H1(t)(cos φ, sin φ)T is
integrable at σ. With Nα defined in (2.8) it follows that

(Nφ+π/2υ(t)N−φ−π/2)′
21(0)
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remains bounded when t → σ. However, by (5.13),

υ(ϕ−n(0)) = υ(0)υ0,ϕ−1(0) = · · · = υ(0)υ0,ϕ−1(0) · · · υϕ−n+1(0)ϕ−n(0) = υ(0)υ−n
0ϕ(0).

It follows that

(Nφ+π/2υ0ϕ(0)N−φ−π/2)′
21(0) = 0,

and hence that υ0,ϕ(0) = W(v,φ+π/2) for some v > 0.
Let σ < t � s < ∞ be given. Since t(υ(ϕn(0))) = t(υ(0)) + nγ, this number tends to

±∞ if n → ±∞, respectively. Hence, there exist n−, n+ ∈ Z such that ϕn−(0) � t and
s � ϕn+(0). Thus, we have

W(n+−n−,φ+π/2) = υϕn− (0)ϕn+ (0) = υϕn− (0)tυtsυsϕn+ (0),

where all three factors belong to M0. This, however, implies that each of these fac-
tors, in particular υts, is of the form W(u,φ+π/2) with some u � 0. We have reached a
contradiction, since the whole interval (σ, ∞) cannot be indivisible.

In order to settle Case 2, we first start with a particular case which is accessible to
explicit computation.

Step 4 (Case 2 and [0, σ) indivisible). Assume that [0, σ) is indivisible. Then the
chain υ(t) is given on the interval [0, σ) as

υ(t) =

(
1 0

−γ(t)z 1

)

with some increasing function γ(t) with γ(0) = 0 and limt↗σ γ(t) = +∞. It follows that

α(t) = 1 + γ(t), β(t) = 0

and

M = lim
t↗σ

(
1 0

−γ(t)z 1

)⎛
⎝ 1

1 + γ(t)
1
z

0 1 + γ(t)

⎞
⎠

= lim
t↗σ

⎛
⎜⎜⎝

1
1 + γ(t)

1
z

− γ(t)
1 + γ(t)

z 1

⎞
⎟⎟⎠

=

⎛
⎝ 0

1
z

−z 1

⎞
⎠ . (5.14)
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This yields (with pe(z) := (e3 − l)z − e1 − e2/z)

qe
h = M

(
1 pe

0 1

)
M−1  qh =

(
1 0

−z2pe 1

)
 qh

=
qh

−z2peqh + 1
=

−1
−1/qh + [(e3 − l)z3 − e1z2 − e2z]

. (5.15)

Now we use the assumption that there is an indivisible interval also to the right of σ.
Let s+ be the right end point of the maximal indivisible interval to the right of σ, i.e.
s+ = sup{s > σ : (σ, s) indivisible} > σ. Then, by the definition of the maximal chain
associated with an indefinite Hamiltonian (see [30]),

υ(s+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

−zd0 + z2b1 1

)
, ö = 0,

(
1 0

−zd0 + z2b2 + z3b1 1

)
, ö = 1.

Moreover, the chain υ(t) is given on the interval (σ, s+] as

υ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

−z(d0 + γ̂(t)) + z2b1 1

)
, ö = 0,

(
1 0

−z(d0 + γ̂(t)) + z2b2 + z3b1 1

)
, ö = 1,

with some increasing function γ̂(t) with γ̂(s+) = 0 and limt↘σ γ̂(t) = −∞.
From (3.3), we compute

t(T1(υ(t))) =
γ(t)

1 + γ(t)
,

for t < σ and

t(T1(υ(t))) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−b2
1 + d0 + γ̂(t)

1 + d0 + γ̂(t)
, ö = 0,

−b2
2 + d0 + γ̂(t)

1 + d0 + γ̂(t)
− b1, ö = 1

for t > σ. It follows from this, (5.2), limt↗σ γ(t) = ∞ and limt↘σ γ̂(t) = −∞ that

l =

{
0, ö = 0,

−b1, ö = 1.

Let q ∈ N0 be the Weyl coefficient of the positive definite maximal chain (υs+,t)t�s+ ,
and set

p(z) :=

{
d0z − b1z

2, ö = 0,

d0z − b2z
2 − b1z

3, ö = 1.
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Then
qh =

q

−pq + 1
=

−1
−(1/q) + p

,

and using (5.15) we get

qe
h =

−1
−(1/q) + p + [(e3 − l)z3 − e1z2 − e2z]

.

Since

p + [(e3 − l)z3 − e1z
2 − e2z] =

{
e3z

3 − (e1 + b1)z2 + (d0 − e2)z, ö = 0,

e3z
3 − (e1 + b2)z2 + (d0 − e2)z, ö = 1,

we conclude that

qe
h ∈ N0 ⇐⇒

{
e3 = 0, e1 = −b1, e2 � d0 if ö = 0,

e3 = 0, e1 = −b2, e2 � d0 if ö = 1.

Note here that, since s+ is not the left end point of an indivisible interval of type π/2,
we have

lim
y→+∞

1
y

−1
q(iy)

= 0.

Consider the case when qe
h ∈ N0. Then

qe
h =

−1
(−1/q) + (d0 − e2)z

=
q

−(d0 − e2)zq + 1
=

(
1 0

−(d0 − e2)z 1

)
 q.

Hence, qe
h is the Weyl coefficient of the positive definite Hamiltonian

He(t) :=

⎧⎪⎪⎨
⎪⎪⎩
(

0 0

0 1

)
, t ∈ (s+ − (d0 − e2), s+),

H(t), t � s+.

Next consider the case that qe
h ∈ N1. Again the maximal chain whose Weyl coefficient is

equal to qe
h can be guessed easily. We have

qe
h =

(
1 0

−(p + [(e3 − l)z3 − e1z
2 − e2z]) 1

)
 q,

which implies that p + [(e3 − l)z3 − e1z
2 − e2z] ∈ N1. Hence, the maximal chain with

Weyl coefficient qe
h is given by

υe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−γ(t)z 1

)
, t ∈ [0, σ),

(
1 0

−(p + [(e3 − l)z3 − e1z
2 − e2z]) − γ̂(t)z 1

)
, t ∈ (σ, s+],

(
1 0

−(p + [(e3 − l)z3 − e1z
2 − e2z]) 1

)
υs+t, t � s+,
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because s+ is not the left end point of an indivisible interval of type π/2. Moreover, the
indefinite Hamiltonian he corresponding to this chain is given by he = (H, be, de), where

de,0 = d0 − e2, de,1 = 0, öe =

{
0, e3 = 0,

1, e3 > 0.

be,1 =

⎧⎪⎨
⎪⎩

e1 + b1 if öe = 0, ö = 0,

e1 + b2 if öe = 0, ö = 1,

−e3 if öe = 1,

be,2 =

{
e1 + b1 if öe = 1, ö = 0,

e1 + b2 if öe = 1, ö = 1.

We see that, if e runs through the set

R × R × [0,∞) \
{

{−b1} × (−∞, d0] × {0}, ö = 0,

{−b2} × (−∞, d0] × {0}, ö = 1,
(5.16)

then he runs through all possible indefinite Hamiltonians of the form (H, b̂, d̂).
We will use the following general observation to reduce Case 2 to the situation treated

above.

Step 5 (q �→ qe is compatible with cutting off). Assume that s− ∈ [0, σ) is not
an inner point of an indivisible interval. Then we can consider the maximal chain

υ̃(t) := υs−,t, t ∈ [s−, σ) ∪ (σ, ∞)

and the corresponding indefinite Hamiltonian h. Its Weyl coefficient q
h̃

equals υ(s−)−1qh.
We shall prove that

qe

h̃
= υ(s−)−1  qe

h, e ∈ R × R × [0,∞).

Let α, β, M be defined by (5.3) and (5.4), respectively, and let α̃, β̃ and M̃ be defined
correspondingly for the chain υ̃ instead of υ.

We compute

υ(t)

⎛
⎝ 1

α(t)
β(t)
α(t)

+
1
z

0 α(t)

⎞
⎠

= υ(s−)υ̃(t)

⎛
⎝ 1

α(t)
β(t)
α(t)

+
1
z

0 α(t)

⎞
⎠

= υ(s−)υ̃(t)

⎛
⎜⎝ 1

α̃(t)
β̃(t)
α̃(t)

+
1
z

0 α̃(t)

⎞
⎟⎠
⎛
⎜⎜⎜⎝

α̃(t)
α(t)

[
α̃(t)
α(t)

β(t) − α(t)
α̃(t)

β̃(t)
]

+
1
z
[α̃(t) − α(t)]

0
α(t)
α̃(t)

⎞
⎟⎟⎟⎠ .
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We see that the last matrix on the right-hand side of this relation possesses a limit B for
t ↗ σ, and that M = υ(s−)M̃B.

We have α(t) = α̃(t) − υ(s−)′
21(0). Since limt↗σ α(t) = +∞, the relation

lim
t↗σ

α(t)
α̃(t)

= 1

holds. It follows that B is of the form

B =

⎛
⎝1 γ + δ

1
z

0 1

⎞
⎠

with some γ, δ ∈ C. Again set pe(z) = (e3 − l)z − e1 − (e2/z). We obtain

qe
h = M

(
1 pe

0 1

)
M−1  qh

= υ(s−)M̃B

(
1 pe

0 1

)
B−1M̃−1υ(s−)−1  qh

= υ(s−)M̃

(
1 pe

0 1

)
M̃−1  (υ(s−)−1  qh︸ ︷︷ ︸

=q
h̃

)

= υ(s−)  qe

h̃
.

Step 6 (finishing Case 2). Assume that s− := inf{s ∈ [0, σ) : (s, σ) indivisible} > 0
and let h̃ be as in Step 5. Let h1 be a general Hamiltonian with negative index 1 of the form
h1 = (H, b1, d1). Then, by Step 4, the Weyl coefficient q

h̃1
of h̃1 := (H|[s−,σ)∪(σ,∞), b1, d1)

can be written as qe

h̃
with a unique triple e. It follows from Step 5 that

qh1 = υ(s−)  q
h̃1

= υ(s−)  qe

h̃
= qe

h;

in particular, q
h̃1

must belong to N1.
Conversely, let e be in the set of parameters described in Step 4 (see (5.16)), so that

qe

h̃
∈ N1. Then the general Hamiltonian whose Weyl coefficient equals qe

h̃
is of the form

(H|[s−,σ)∪(σ,∞), be, de).

Since s− is not an inner point of an indivisible interval in H, the maximal chain with
Weyl coefficient υ(s−)  qe

h̃
= qe

h corresponds to the general Hamiltonian (H, be, de).
If e is a parameter such that qe

h̃
∈ N0, then clearly υ(s−)  qe

h̃
∈ N0, and it is the Weyl

coefficient of the positive definite Hamiltonian given in Theorem 5.4.
All assertions of Theorem 5.4 are proved. �

Let us point out one particular case.
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Corollary 5.5. Let h be as in Theorem 5.4 and assume that [σ0, σ1) is indivisible.
Then the function qe

h can be written as

qe
h =

−1
(−1/qh) + [(e3 − l)z3 − e1z2 − e2z]

,

and

l = lim
y→+∞

1
iy3qh(iy)

.

Proof. The first formula is just (5.15). From Proposition 5.1 and (5.14) we get

τ = M−1  qh =

⎛
⎝1 −1

z
z 0

⎞
⎠  qh =

qh − 1/z

zqh

=
1
z

− 1
z2qh

and hence
l = lim

y→+∞

1
iy

τ(iy) = lim
y→+∞

1
iy3qh(iy)

by Proposition 5.1. �

We illustrate the above results with two examples.

Example 5.6. Consider the Bessel equation, a classical and well-studied object. This
is the equation

−y′′(t) +
ν2 − 1

4

t2
y(t) = λy(t), t ∈ (0,∞), (5.17)

where ν is a non-negative parameter. For a discussion of this equation and corresponding
integral transforms, see, for example, [11,12,34,36]. Recently, some attempts were made
to use indefinite inner product structures in its study [10,14,15,31].

At the point ∞ the limit point case always prevails. At the point 0 we have the limit
circle case if and only if ν < 1, and for such values of ν the Weyl coefficient m(λ) is given
by

m(λ) = −1
c
λν ,

where c := 22ν−1π−1Γ (ν)2 sin ν · eiνπ. Moreover, it is known that the self-adjoint realiza-
tions of (5.17) show a nice behaviour, regardless of whether the equation is in the limit
circle or the limit point case at 0.

For ν < 1, the Bessel equation can be transformed into a canonical system (1.1). In
fact, if we set

x1(t) =
1
z
t−α/2

(
y′(t) +

α

2t
y(t)

)
, x2(t) = tα/2y(t), z2 = λ, (5.18)

then we obtain a canonical system with Hamiltonian

Hα(t) =

(
tα 0
0 t−α

)
, (5.19)

where α = 2ν − 1.
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Consider now the case when ν � 1. Following our general rule on how to rewrite a
Sturm–Liouville equation that is in limit point case at both end points as an indefinite
canonical system, we should use a general Hamiltonian which has only one singularity,
namely 0, and whose Hamiltonian function is defined to the right of 0 by the potential
and to the left of 0 just as one indivisible interval. This gives

Hα(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t2

(
0 0

0 1

)
, t ∈ (−1, 0),

(
tα 0

0 t−α

)
, t ∈ (0,∞).

In [33] it is shown that this function actually qualifies for being the Hamiltonian function
of a general Hamiltonian. Moreover, for a certain choice of parameters b0 and d0, the
corresponding maximal chain of matrices and its Weyl coefficient is computed. It is shown
that for α ∈ (0,∞) \ (2N − 1) the function ωα(t, z) defined as

ωα(t, z) :=

⎛
⎜⎝ 1 0(

1 +
1
t

)
z 1

⎞
⎟⎠ , t ∈ (−1, 0)

and

ωα(t, z) :=

(
2ν−1Γ (ν)z−ν+1t−ν+1Jν−1(zt) 2ν−1Γ (ν)z−ν+1tνJν(zt)

−2−νΓ (1 − ν)zνt−ν+1J−ν+1(zt) 2−νΓ (1 − ν)zνtνJ−ν(zt)

)
, t ∈ (0,∞),

is a maximal chain of matrices with negative index κ = [(α + 1)/2] whose corresponding
general Hamiltonian hα consists of the Hamiltonian function Hα and some parameters
b0, d0, and whose Weyl coefficient qhα is equal to

qhα(z) = cz−α, Im z > 0, (5.20)

where

c :=
2α

π

(
Γ

(
α + 1

2

))2
sin

(
α + 1

2

)
exp

{
i
α + 1

2
π

}
.

Here the power z−α is defined such that there is a cut at the negative real axis and z−α

is positive for positive z.
If α ∈ 2N − 1, naturally, formulae must be modified and get more complicated. For

this case a maximal chain whose corresponding general Hamiltonian has Hamiltonian
function Hα is given explicitly in [33]:

ωα(t, z) =

⎛
⎜⎜⎜⎜⎜⎝

2ν−1Γ (ν)z−ν+1t−ν+1Jν−1(zt) 2ν−1Γ (ν)z−ν+1tνJν(zt)

2−ν

Γ (ν)
zνt−ν+1(−πYν−1(zt) + 2 log(z)Jν−1(zt))

2−ν

Γ (ν)
zνtν(−πYν(zt) + 2 log(z)Jν(zt))

⎞
⎟⎟⎟⎟⎟⎠
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where α and ν are again related by α = 2ν − 1. Its negative index is equal to (α + 1)/2,
and its Weyl coefficient is

qhα
(z) =

ĉz−α

log(−iz)
, Im z > 0, (5.21)

where

ĉ := 2α−1
((

α − 1
2

)
!
)2

.

We see that our present results, Theorem 5.4 and Corollary 5.5, will cover the cases
α ∈ [1, 3). For such values of α, the parameters b0 and d0 leading to the above Weyl
coefficients (5.20) and (5.21) are actually given as

E := {−1, t0}, ö = 0, b1 = d1 = 0, d0 =

⎧⎪⎨
⎪⎩

1
1 − α

t1−α
0 , α ∈ (1, 3),

ln 1
2 t0 − γ, α = 1,

where t0 is an arbitrary number in (0,∞) and γ denotes the Euler–Mascheroni constant.
An application of Corollary 5.5 yields that, for α ∈ [1, 3), all possible Titchmarsh–

Weyl coefficients of general Hamiltonians with negative index 1 which are of the form
h = (Hα, b, d) are given by

qhα
(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
−e3z3 + e1z2 + e2z + (zα/c)

if 1 < α < 3,

1
−e3z3 + e1z2 + e2z + z log(−iz)

if α = 1,

where (e1, e2, e3) ∈ R × R × [0,∞).

Example 5.7. Consider the following equation of Sturm–Liouville type:

−y′′(t) +
2

(t − 1)2
y(t) = λy(t), t ∈ [0,∞).

This appeared in [32] in connection with an extension problem of positive definite func-
tions. Apparently the potential has a singularity at the point 1 and is not integrable at
this point.

If we consider this equation only on the interval [0, 1), then we have a Sturm–Liouville
problem which is regular at 0 and in the limit point case at 1. Using a transforma-
tion similar to (5.18), this problem could be rewritten as a canonical system (1.1) with
Hamiltonian (t ∈ [0, 1))

H(t) =

⎛
⎝(t − 1)2 0

0
1

(t − 1)2

⎞
⎠ . (5.22)

Let us consider the equation over the whole interval [0,∞) and proceed according to
our method of associating a general Hamiltonian with a singular potential. Thus, we
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should choose a general Hamiltonian h which has one singularity, namely 1, and whose
Hamiltonian function is obtained by applying the same transformations as used above
for t ∈ [0, 1) to the right of the singularity. In this way we obtain that the Hamiltonian
function of h is simply given by the formula (5.22) for all t ∈ [0,∞) \ {1}.

Of course it is now unclear how to choose the parameters b and d. For a certain choice,
namely, for

E = {0, t0}, ö = 0, b1 = d1 = 0, d0 =
t0

1 − t0

with t0 ∈ (1,∞), the corresponding maximal chain of matrices ω(t, z), t ∈ [0, 1)∪ (1,∞),
and its Weyl coefficient q(z) have been computed in [32]. There it is shown that

ω(t, z) =

⎛
⎜⎜⎝

sin zt − z cos zt

z(t − 1)

(
1
z2 − (t − 1)

)
sin zt − t cos zt

z

sin zt

t − 1
sin zt

z
− (t − 1) cos zt

⎞
⎟⎟⎠ (5.23)

for t ∈ [0, 1) ∪ (1,∞), and that

qh(z) = i +
1
z
.

Moreover, it is seen that the negative index of the chain ω is equal to 1.
Next we must compute the data needed for an application of Theorem 5.4. From (5.23),

however, we easily obtain

M(z) =

⎛
⎝cos z − sin z

z
sin z +

cos z

z

− sin z cos z

⎞
⎠

and

τ(z) = i, l = 0, qh,1(z) =
1
z

− cot z.

Hence, the totality of all Weyl coefficients of general Hamiltonians with negative index
1 which are of the form h = (H, b, d) with H as in (5.22) is

qe
h(z) = i +

1
z

+
(e3z − e1 − (e2/z))(1 + i tan z)
1 − (i + e3z − e1 − (e2/z)) tan z

,

where (e1, e2, e3) ∈ R × R × [0,∞).
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29. M. Kaltenbäck and H. Woracek, Canonical differential equations of Hilbert–Schmidt
type, Operator Theory, Advances and Applications, Volume 175, pp. 159–168 (Birkhäuser,
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