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Abstract. If H(E) is a de Branges space and ω is a nonnegative function on
R, define a de Branges subspace of H(E) by

Rω(E) = ClosH(E)

˘

F ∈ H(E) : ∃C > 0 : |E−1
F | ≤ Cω on R

¯

.

It is known that one-dimensional de Branges subspaces generated in this way
are related to minimal majorants. We investigate finite-dimensional de Branges
subspaces, their representability in terms of majorants, and their relation to
minimal majorants.
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1. Introduction

The theory of Hilbert spaces H(E) of entire functions founded by L.de Branges is
an important branch of analysis. After its foundation in [dB1]–[dB6], it was further
developed by many authors. It is an example for a fruitful interplay of function
theory and operator theory, and has applications in mathematical physics, see e.g.
[R].

Recently, in the context of model subspaces H2(C+)⊖ΘH2(C+) of the Hardy
space H2(C+), V. Havin and J. Mashregi introduced the notion of admissible ma-

jorants, i.e. functions ω on the real line which majorize a nonzero element of the
space, cf. [HM1], [HM2]. The interest to this problem was motivated by the famous
Beurling–Malliavin Multiplier Theorem, cf. [HJ], [K]. The approach suggested in
[HM1], [HM2] has led to a new, essentially simpler, proof of the Beurling–Malliavin
Theorem cf. [HMN]. These ideas were further developped in [BH], [BBH], where in-
teresting connections between majorization and other problems of function theory
(polynomial approximation, quasianalitycity) were discovered.
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A de Branges space H(E) is isomorphic to the model subspace H2(C+) ⊖
E#

E H2(C+). Hence the theory of admissible majorants can be applied to de Branges
spaces. Due to the rich (analytic) structure of de Branges spaces, however, much
more specific results than in the general case can be expected.

In de Branges’ theory the notion of de Branges subspaces, i.e. subspaces of
a space H(E) which are themselves de Branges spaces, plays an outstanding role.
At this point a link with the theory of admissible majorants occurs: Given an
admissible majorant ω for a de Branges space H(E), the space

Rω(E) := ClosH(E)

{

F ∈ H(E) : ∃C > 0 : |E−1F | ≤ Cω on R
}

(1.1)

is a de Branges subspace of H(E). This relationship was investigated in [BW].
There the set of all those de Branges subspaces of a given space H(E) which
can be represented in this way was determined, and it was shown that minimal
majorants correspond to one-dimensional de Branges subspaces.

In the present paper we investigate the representability of finite-dimensional
de Branges subspaces by means of admissible majorants. These considerations are
based on our previous work [BW]. Moreover, the relation of finite-dimensional
de Branges subspaces with minimal majorants is made explicit.

Let us briefly describe the content of this paper. In the preliminary Section
2, we set up some notation and recall some basic facts on de Branges spaces which
are essential for furher use. In Section 3 we prove our main result, Theorem 3.8.
Besides the results of [BW], it is based on a thorough understanding of the family
of majorants ω[k](x) := (1 + |x|)kω(x), k ∈ N0 := N ∪ {0}. Finally, in Section 4,
we turn to the case of infinite-dimensional de Branges subspaces. In this general
setting, the situation is more complicated. However, some positive result can be
established, cf. Proposition 4.2.

2. Preliminaries on de Branges spaces

An entire function E is said to belong to the Hermite-Biehler class HB, if it
satisfies

|E(z̄)| < |E(z)|, z ∈ C+ .

In what follows, for any function F , we denote by F# the function F#(z) := F (z̄).

2.1. Definition. If E ∈ HB, the de Branges space H(E) is defined as the set of all
entire functions F which have the property that

F

E
,
F#

E
∈ H2(C+) .

Moreover, H(E) will be endowed with the norm

‖F‖E :=
(

∫

R

∣

∣

∣

∣

F (t)

E(t)

∣

∣

∣

∣

2

dt
)1/2

, F ∈ H(E) .
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It is shown in [dB7, Theorem 21] that H(E) is a Hilbert space with respect
to the norm ‖.‖E .

2.2. Definition. A subset L of a de Branges space H(E) is called a de Branges

subspace, if it is itself, with the norm inherited from H(E), a de Branges space.
The set of all de Branges subspaces of a given space H(E) will be denoted as
Sub(E).

The fact that L is a de Branges subspace of H(E) thus means that there
exists E1 ∈ HB such that L = H(E1) and ‖F‖E1 = ‖F‖E, F ∈ L.

If F is an entire function, denote by d(F ) its zero-divisor, i.e. the map d(F ) :
C → N0 which assigns to each point w its multiplicity as a zero of F . If H(E) is a
de Branges space, set

d(H(E))(w) := min
{

d(F )(w) : F ∈ H(E)
}

.

It is shown in [dB7] that d(H(E))(w) = 0, w ∈ C\R, and d(H(E))(w) = d(E)(w),
w ∈ R.

If E ∈ HB and d : R → N0 are given, we denote

Subd(E) :=
{

L ∈ Sub(E) : d(L) = d
}

.

Those subspaces L ∈ Sub(E) with d(L) = d(H(E)) are the most interesting ones.

To shorten notation we put Subs(E) := Subd(H(E))(E).
A milestone in de Branges’ theory is the Ordering Theorem for subspaces of

a space H(E), cf. [dB7, Theorem 35] (we state only a somewhat weaker version
which suffices for our needs):

2.3. de Branges’ Ordering Theorem: Let H(E) be a de Branges space and let d :
R → N0. Then Subd(E) is totally ordered with respect to set-theoretic inclusion.

Even more about the structure of the chain Subd(E) is known. For every
H ∈ Subd(E), put

H− := Clos
⋃

L∈Subd(E)
L(H

L , H+ :=
⋂

L∈Subd(E)
L)H

L.

Then H−, H+ ∈ Subd(E) and

dim(H/H−), dim(H/H+) ∈ {0, 1} .

2.4. Example. Fundamental examples of de Branges spaces come from canonical
systems of differential equations, cf. e.g. [dB7, Theorems 37,38], [GK], [HSW]. Let
H be a 2 × 2-matrix valued function defined for t ∈ [0, l], such that H(t) is real
and nonnegative, the entries of H(t) belong to L1([0, l]) and H(t) does not vanish
on any nonempty interval. We call an interval (α, β) ⊆ [0, l] H-indivisible, if for
some ϕ ∈ R and some scalar function h(t) we have

H(t) = h(t)
(

cosϕ sin ϕ
)T (

cosϕ sin ϕ
)

, a.e. t ∈ (α, β).
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Let W (t, z) be the (unique) solution of the initial value problem

∂

∂t
W (t, z)

(

0 −1
1 0

)

= zW (t, z)H(t), t ∈ [0, l], W (0, z) = I ,

and put Et(z) := At(z) − iBt(z), t ∈ [0, l], where (At(z), Bt(z)) := (1, 0)W (t, z).
Then

(i) Et ∈ HB, t ∈ (0, l], and E0 = 1.
(ii) If 0 < s ≤ t ≤ l, then H(Es) ⊆ H(Et) and the set-theoretic inclusion map

is contractive. If s is not an inner point of an H-indivisible interval, it is
actually isometric.

(iii) We have

Subs(H(El)) =
{

H(Et) : t not inner point of an H-indivisible interval
}

.

2.5. Example. The Paley-Wiener space PWa, a > 0, is defined as the space of all
entire functions of exponential type at most a, whose restrictions to the real axis
belong to L2(R). The norm in PWa is given by the usual L2-norm,

‖F‖ :=
(

∫

R

|F (t)|2 dt
)1/2

, F ∈ PWa .

By a theorem of Paley and Wiener, the space PWa is the image under the Fourier
transform of L2(−a, a). If in Example 2.4 we take H(t) = I, t ∈ [0, l], we obtain
Et(z) = e−itz. It is a consequence of a theorem of M.G. Krein, cf. [RR, Exam-
ples/Addenda 2, p. 134], that the space H(e−itz) coincides with PWt.

We see from Example 2.4, (iii), that Subs(PWa) = {PWb : 0 < b ≤ a}.
In the present paper we will mainly deal with finite-dimensional de Branges

subspace of a given space H(E).

2.6. Definition. Let E ∈ HB and d : R → N0. Define

FSub(E) :=
{

L ∈ Sub(E) : dimL < ∞
}

,

FSubd(E) := FSub(E) ∩ Subd(E), FSubs(E) := FSub(E) ∩ Subs(E) .

Moreover, put

δ(d, E) := sup
{

dimL : L ∈ FSubd(E)
}

.

The structure of the chain FSubd(E) is very simple. This can be deduced
from the following statement which, in particular, applies to a finite-dimensional
de Branges subspace H(E1) of a given space H(E).

2.7. Example. If H(E1) is any finite-dimensional de Branges space, n := dimH(E1),
then there exists a function S ∈ H(E1), S = S#, such that

H(E1) = S · span{1, z, . . . , zn−1} .

The chain Subs(E1) is given as

Subs(E1) =
{

S · span{1}, S · span{1, z}, . . . , S · span{1, z, . . . , zn−1}
}

.
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3. Representation of finite-dimensional subspaces by majorants

3.1. Definition. Let E ∈ HB. A nonnegative function ω on the real axis R is
called an admissible majorant for the space H(E), if there exists a function F ∈
H(E) \ {0} such that |E(x)−1F (x)| ≤ ω(x), x ∈ R. The set of all admissible
majorants for H(E) is denoted by Adm(E).

If ω ∈ Adm(E), the space Rω(E) defined by (1.1) is a de Branges subspace of
H(E), cf. [BW, Proposition 3.2]. Moreover, by [BW, Theorem 3.4], a de Branges
subspace H(E1) of H(E) is of the form Rω(E) for some majorant ω if and only
if mt E1

E = 0. Here mt f is the mean type of a function f in the class N(C+) of
functions of bounded type in the upper half plane:

mt f := lim sup
y→+∞

1

y
log |f(iy)| ,

For a function ω : R → [0,∞), we define d(ω) : R → N0∪{∞} as the function
which assigns to a point v ∈ R the minimum of all numbers n ∈ N0 such that there
exists a neighbourhood U ⊆ R of v with the property

inf
z∈U

|z−v|n 6=0

|ω(z)|
|z − v|n > 0 .

For functions ω1, ω2 : R → [0,∞) we will write

ω1 . ω2 :⇔ ∃C > 0 : ω1(x) ≤ Cω2(x), x ∈ R ,

ω1 ≍ ω2 :⇔ ω1 . ω2 and ω2 . ω1 .

3.2. Lemma. Let E ∈ HB and ω ∈ Adm(E). Then d(Rω(E)) = d(H(E)) + d(ω).

Proof. Let v ∈ R be fixed. If F ∈ H(E), then E−1F is analytic in a neigh-
bourhood of v, and dE−1F (v) = dF (v) − dE(v). Hence, for some sufficiently small
neighbourhood U ⊆ R of v, we have

∣

∣

∣

F (x)

E(x)

∣

∣

∣
≍ |x − v|dF (v)−dE(v), x ∈ U .

If F ∈ Rω(E), we obtain |x − v|dF (v)−dE(v) . ω(x), x ∈ U , and thus d(ω)(v) ≤
dF (v) − dE(v). Since d(Rω(E))(v) = min{dF (v) : F ∈ Rω(E)}, this yields

d(Rω(E))(v) ≥ d(ω)(v) + d(H(E))(v) .

In order to prove the converse inequality, let F ∈ Rω(E) with dF (v) > d(ω)(v) +
d(H(E))(v) be given. Since dF (v) > d(H(E))(v) the function G(z) := (z −
v)−1F (z) belongs to the space H(E). Let U ⊆ R be a neighbourhood of v such
that

inf
z∈U∩D

|z−w|d(ω)(v) 6=0

|ω(z)|
|z − w|d(ω)(v)

> 0 .
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Moreover, let U be chosen so small that E−1F is analytic at every point of U .

Since d(E−1F )(v) > d(ω)(v), the function F (z)
(z−v)d(ω)(v)+1E(z)

is analytic, and hence

bounded, on U . It follows that
∣

∣

∣

F (x)

(x − v)d(ω)(v)+1E(x)

∣

∣

∣
.

ω(x)

|x − v|d(ω)(v)
, x ∈ U ,

and hence
∣

∣

∣

G(x)

E(x)

∣

∣

∣
=

∣

∣

∣

F (x)

(x − v)E(x)

∣

∣

∣
. ω(x), x ∈ U .

For x 6∈ U , we have 1
|x−v| . 1, and hence

∣

∣

∣

G(x)

E(x)

∣

∣

∣
=

∣

∣

∣

F (x)

(x − v)E(x)

∣

∣

∣
. |F (x)| . ω(x), x ∈ R \ U .

Altogether we see that G ∈ Rω(E).

Since d(Rω(E))(v) = min{dF (v) : F ∈ Rω(E)}, we conclude that

d(Rω(E))(v) ≤ d(ω)(v) + d(H(E))(v) .

❑

If d : R → N0 is given, we shall denote Admd(E) := {ω ∈ Adm(E) : d(ω) =
d}. The majorants with d(ω) = 0 are those of biggest interest. By Lemma 3.2 they
generate de Branges subspaces in Subs(E).

We now proceed to the study of a family ω[k] of majorants, which is vital for
our consideration of finite-dimensional de Branges subspaces.

3.3. Definition. Let ω : R → [0,∞). For k ∈ Z define

ω[k](x) := (1 + |x|)kω(x), x ∈ R .

If, additionally, E ∈ HB is given, put

α(ω, E) := inf
{

k ∈ Z : ω[k] ∈ Adm(E)
}

∈ Z ∪ {±∞} .

Note that, clearly, (ω[k])[l] = ω[k+l], d(ω[k]) = d(ω), and ω[k] ≤ ω[l] for k ≤ l.

As the following (trivial) example shows, α(ω, E) may assume any prescribed
value in Z ∪ {±∞}.

3.4. Example. Let E(z) := z + i, then H(E) = span{1}. Hence a function ω is an
admissible majorant for H(E) if and only if it is bounded away from zero. It is
obvious that for any given n ∈ Z ∪ {±∞} we can find ω : R → (0,∞) such that
α(ω, E) = n.

3.5. Lemma. Let E ∈ HB and ω ∈ Adm(E).

(i) We have dim
(

Rω[1](E)/Rω(E)
)

≤ 1.
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(ii) Assume that dimRω(E) < ∞ and that

∃ L ∈ Subd(ω)(E) : dim
(

L/Rω(E)
)

= 1 . (3.1)

Then dim(Rω[1](E)/Rω(E)) = 1, i.e. L = Rω[1](E).

Proof. Let G be entire and not identically zero, let v ∈ C \R such that G(v) 6= 0,
and consider the difference quotient operator

ρ : F (z) 7→
F (z) − F (v)

G(v)G(z)

z − v
.

If H is a de Branges space which contains the function G, then ρ|H is a bounded
linear operator of H into itself, and

ker
(

ρ|H
)

= span{G}, ran
(

ρ|H
)

= domS(H) .

Here S(H) denotes the operator of multiplication by z in H. In particular, by [dB7,

Theorem 29], we have dim(H/ran(ρ|H)) ∈ {0, 1}.
Proof of (i): Choose G ∈ Rω(E) \ {0}. We have the estimate

|(ρF )(x)| ≤ 1

|x − v| · |F (x)| + 1

|x − v|
∣

∣

∣

F (v)

G(v)

∣

∣

∣
· |G(x)|, x ∈ R .

Hence ρ(Rω[1](E)) ⊆ Rω(E) which, by the continuity of ρ|R
ω[1] (E), implies that

ρ(Rω[1](E)) ⊆ Rω(E). Thus also ρ(Rω[1](E)) ⊆ Rω(E). We conclude that

dim(Rω[1](E)/Rω(E)) ∈ {0, 1} .

Proof of (ii): Choose G in Rω[1](E) \ {0}. By the already proved part (i) of the

present lemma, and the fact that Subd(ω)(E) is a chain, we have Rω[1](E) ⊆ L.
The estimate

|F (x)| ≤
∣

∣

∣

F (v)

G(v)

∣

∣

∣
· |G(x)| + |x − v| · |(ρF )(x)|, x ∈ R ,

shows that

(ρ|L)−1(Rω(E)) ⊆ Rω[1](E) .

However, by finite-dimensionality,

ran(ρ|L) = domS(L) = domS(L) = Rω(E) = Rω(E) .

It follows that

L = (ρ|L)−1
(

ran(ρ|L)
)

⊆ Rω[1](E) = Rω[1](E) .

❑

An inductive application of this lemma yields the following result.
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3.6. Proposition. Let E ∈ HB, ω ∈ Adm(E), and assume that dimRω(E) < ∞.

Then

dim
(

Rω[k+1](E)/Rω[k](E)
)

=

{

1 , 0 ≤ k < δ(d(ω)) − dimRω(E)

0 , k ≥ δ(d(ω)) − dimRω(E)

Proof. We will show by induction on k that

dimRω[k](E) =

{

dimRω(E) + k, 0 ≤ k ≤ δ(d(ω)) − dimRω(E),

δ(d(ω)), k > δ(d(ω)) − dimRω(E).

For k = 0 this is trivial. Assume that 0 < k ≤ δ(d(ω)) − dimRω(E) and that
dimRω[k−1](E) = dimRω(E) + (k − 1). Then, by the definition of δ(d(ω)), there

exists L ∈ FSubd(ω)(E) with L ) Rω[k−1](E). By the structure of the chain

FSubd(ω)(E) we can choose L such that dim(L/Rω[k−1](E)) = 1. Lemma 3.5,
(ii), implies that dimRω[k](E) = dimRω[k−1](E) + 1.

If δ(d(ω)) = ∞, we are done. Otherwise, by the already proved, we have
dimRω[k0](E) = δ(d(ω)) for k0 := δ(d(ω)) − dimRω(E). It follows from Lemma
3.5, (i), and the definition of δ(d(ω)) that Rω[k](E) = Rω[k0](E) for all k ≥ k0.

❑

The relation . is reflexive and transitive, and hence induces an order on the
factor set Adm(E)/≍. If we speak of minimal elements we always refer to this
order.

3.7. Lemma. Let E ∈ HB and d : R → N0.

(i) Let ω ∈ Admd(E). Then ω/≍ is minimal in Admd(E)/≍ if and only if ω/≍
is minimal in Adm(E)/≍.

(ii) The set Admd(E)/≍ contains at most one minimal element.

Proof. The assertion (i) is seen in exactly the same way as [BW, Lemma 4.7]. The
second item is then a consequence of [BW, Corollary 4.4].

❑

We can now settle the question when, and in which way, finite-dimensional
de Branges subspaces can be represented by majorants. Put

R(E) :=
{

Rω(E) : ω ∈ Adm(E)
}

.

3.8. Theorem. Let E ∈ HB and d : R → N0. Then the following conditions are

equivalent:

(i) Admd(E)/≍ contains a minimal element;

(ii) FSubd(E) ∩ R(E) 6= ∅;
(iii) FSubd(E) 6= ∅ and Subd(E) ⊆ R(E).

In this case, if L ∈ FSubd(E), we have

L = R
ω

[k]
0

(E) ,
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where ω0 is any representant of the minimal element of Admd(E)/≍ and k =
dimL − 1.

Proof. (i) ⇒ (ii): Let ω/≍ be the minimal element of Admd(E) (unique by Lemma
3.7). Then, by Lemma 3.7, ω/≍ is minimal in Adm(E). By [BW, Theorem 4.2],
dimRω(E) = 1.

(ii) ⇒ (iii): Pick H(E1) ∈ FSubd(E) ∩ R(E). Then, by [BW, Theorem 3.4], we
have mt E1

E = 0. Let H(E2) ∈ Subd(E) be given. If H(E1) ⊆ H(E2), we conclude
from

mt
E2

E
= max

F∈H(E2)
mt

F

E
≤ 0, mt

E1

E2
= max

F∈H(E1)
mt

F

E2
≤ 0 ,

that mt E2

E = 0. Otherwise, if H(E2) ⊆ H(E1), we see from Example 2.7 that also

mt E2

E = 0. It follows from [BW, Theorem 3.4] that in either case H(E2) ∈ R(E).

(iii) ⇒ (i): Since FSubd(E) 6= ∅, there exists a one-dimensional subspace L ∈
Subd(E). Since L ∈ R(E), we obtain from [BW, Theorem 4.2] a minimal ele-
ment ω/≍ of Adm(E)/≍ such that L = Rω(E). Since d(ω) = d, ω/≍ minimal in
Admd(E).

Representation of L: Assume that one (and hence all) of (i)–(iii) hold and that L ∈
FSubd(E). Let ω0/≍ be the minimal element of Admd(E). Then dimRω0(E) = 1.
Since, clearly, δ(d) ≥ dimL, we obtain from Proposition 3.6 that

L = R
ω

[dim L−1]
0

(E) .

❑

3.9. Remark. Let us note that the (equivalent) conditions of Theorem 3.8 are not
always satisfied. This is seen for example by taking E(z) := (z + i)e−iz. For this
function E, the space H(E) contains the function 1. Thus span{1} ∈ FSubs(E).
However, by [BW, Theorem 3.4], we have R(E) = {H(E)}.

In Proposition 3.6 we have clarified the behaviour of Rω[k](E) for k ≥ 0. It
seems that the situation for k < 0 is more complicated. In this place let us only
note the following corollary of Proposition 3.6.

3.10. Corollary. Let E ∈ HB and ω ∈ Adm(E). Assume that dimRω(E) < ∞ and

that (3.1) holds. Then α(ω, E) ≤ 1 − dimRω(E) and

dim
(

Rω[k+1](E)/Rω[k](E)
)

= 1, 1 − dimRω(E) ≤ k < 0 .

Proof. The space Rω[−1](E) is finite dimensional and the assumption (3.1) holds
for it since it holds for the bigger space Rω(E). Hence we may apply Proposition
3.6, and obtain that

dimRω(E) = dimRω[−1](E) + 1 .
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The assertion follows by induction.

❑

4. The family ω
[k] for dimRω(E) = ∞

Our treatment of finite-dimensional de Branges subspaces in R(E) was based on
Lemma 3.5. Let us show by an example that the assumption ‘dimRω(E) < ∞’ in
part (ii) of this lemma cannot be dropped.

4.1. Example. We shall construct E ∈ HB and ω ∈ Adm0(E) such that (3.1) holds,
but Rω[k](E) = Rω(E) for all k ∈ N ∪ {0}.

Consider the canonical system on [0, 2] with Hamiltonian

H(t) :=











I , t ∈ [0, 1),
(

1 0
0 0

)

, t ∈ [1, 2],

and put E := E2, cf. Example 2.4. Then E ∈ HB, d(E) ≡ 0, and E is explicitly
given as

E(z) = cos z + i(sin z + z cos z) .

We have

Subs(H(E)) =
{

PWa : 0 < a ≤ 1
}

∪ {H(E)} ,

and codimH(E) PW1 = 1. In fact,

H(E) = PW1+̇ span{cos z} .

It follows from [BW, Theorem 3.4] that Rω(E) ⊇ PW1 for all ω ∈ Adm0(E), i.e.
Rω(E) ∈ {PW1,H(E)}.
We give some estimates on E. Let x ∈ R, |x| ≥ 1, and assume that | cosx| ≤ 1

2|x| .

Then | sinx| ≥
√

3/2 and

| sin x + x cosx| ≥
∣

∣| sin x| − |x cosx|
∣

∣ ≥
√

3 − 1

2
.

It follows that

|E(x)| ≥ min
{

min
t∈[−1,1]

|E(t)|,
√

3 − 1

2
,

1

2|x|
}

&
1

1 + |x| , x ∈ R . (4.1)

Trivially, we have the following estimate from above:

|E(x)| ≤ 1 + |x|, x ∈ R . (4.2)

We show that for all β ∈ (0, 1) the function ωβ(x) := e−|x|β belongs to Adm0(E).
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Choose β′ ∈ (β, 1). It is well known (see [HJ, p. 276] or [K, p. 159]) that there
exists F ∈ PW1 \ {0} such that

|F (x)| . e−|x|β
′

, x ∈ R .

It follows that F ∈ H(E) and, by (4.1),
∣

∣

∣

F (x)

E(x)

∣

∣

∣
. |F (x)|(1 + |x|) . e−|x|β

′

(1 + |x|) . e−|x|β , x ∈ R .

We show that Rωβ
(E) = PW1. We already know that Rωβ

(E) ⊇ PW1. Assume
that Rωβ

(E) ) PW1, then also Rωβ
(E) ) PW1. Hence there exist λ ∈ C, λ 6= 0,

and F0 ∈ PW1, such that F0 + λ cos z ∈ Rωβ
(E), i.e.

∣

∣

∣

F0(x) + λ cosx

E(x)

∣

∣

∣
. ωβ(x) .

By (4.2),

| cosx| . (1 + |x|)ωβ(x) + |F0(x)|, x ∈ R .

We have reached a contradiction, since both F0 and (1+|x|)ωβ(x) belong to L2(R).

For all β ∈ (0, 1) and k ∈ N ∪ {0} we have Rω[k](E) = PW1. Choose β′ ∈ (0, β),

then (1 + |x|)ke−|x|β . e−|x|β
′

, i.e. ω
[k]
β . ωβ′ . Hence R

ω
[k]
β

(E) ⊆ Rωβ′ (E) = PW1.

Although Example 4.1 shows that the statement of Proposition 3.6 is not
true without the assumption that dimRω(E) < ∞, still there always exist some
representing majorants which behave nicely in this respect.

For L ∈ Sub(E) define

δ+(L) := sup
{

dimH/L : H ∈ Subd(L)(E), dimH/L < ∞
}

.

4.2. Proposition. Let E ∈ HB and L ∈ R(E) ∩ Sub(E). Then there exists ω ∈
Adm(E) such that Rω(E) = L and

dim
(

Rω[k+1](E)/Rω[k](E)
)

=

{

1, 0 ≤ k < δ+(L),

0, k ≥ δ+(L).

Proof. Write L = H(E0). Assume that H(E1) ∈ Subd(L)(E) is such that n :=
dim(H(E1)/H(E0)) < ∞. Then there exists a 2 × 2-matrix polynomial M(z) of

degree n, such that (Aj := 1
2 (Ej + E#

j ), Bj := i
2 (Bj − B#

j ) for j = 0, 1)
(

A1(z), B1(z)
)

=
(

A0(z), B0(z)
)

M(z) . (4.3)

Put

ω(x) :=
|E0(x)|

(1 + |x|)|E(x)| , ω1(x) :=
|E1(x)|

(1 + |x|)|E(x)| .

Then, by the proof of sufficiency in [BW, Theorem 3.4], we have

L = H(E0) = Rω(E), H(E1) = Rω1(E) .
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However, we see from (4.3) that ω1 . ω[n]. This implies

H(E1) = Rω1(E) ⊆ Rω[n](E) .

By Lemma 3.5, (i), we have dim(Rω[n](E)/Rω(E)) ≤ n, and hence it follows that
H(E1) = Rω[n](E).

❑
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