On semibounded canonical systems

Henrik Winkler and Harald Woracek

Abstract. We present two inverse spectral relations for canonical differential equations $Jy'(x) = -zH(x)y(x), x \in [0, L)$: Denote by Q_H the Titchmarsh-Weyl coefficient associated with this equation. We show: If the Hamiltonian H is on some interval $[0, \epsilon)$ of the form

$$H(x) = \begin{pmatrix} v(x)^2 & v(x) \\ v(x) & 1 \end{pmatrix}$$

with a nondecreasing function v, then $\lim_{x \to 0} v(x) = \lim_{y \to +\infty} Q_H(iy)$. If H is of the above form on some interval [l, L), then $\lim_{x \nearrow L} v(x) = \lim_{z \nearrow 0} Q_H(z)$. In particular, these results are applicable to semibounded canonical systems, or canonical systems with a finite number of negative eigenvalues, respectively.

Mathematics Subject Classification (2000). Primary 34A55, 47E05, 34B20; Secondary 34L05, 47B25.

Keywords. canonical (Hamiltonian) system, Titchmarsh-Weyl coefficient, Inverse spectral problem.

1. Introduction

A canonical (or Hamiltonian) system is an boundary value problem of the form

$$Jy'(x) = -zH(x)y(x), \ x \in [0, L), \quad y_1(0) = 0, \tag{1.1}$$

where $L \in (0, \infty]$, and where H is a function which takes real, symmetric and nonnegative 2×2 -matrices as values, does not vanish on any set of positive measure, and belongs to $L^1_{loc}([0, L))$. Moreover, z is a complex parameter and

$$J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \,.$$

The first author was supported by the "Fond zur Förderung der wissenschaftlichen Forschung" (FWF,Austria), grant number P15540-N05.

The function H is called the Hamiltonian of the system (1.1). Canonical systems occur in mathematical physics and were intensively investigated, see e.g. [1], [3], [4], [7], [8].

The condition

$$\int_{0}^{L} \operatorname{trace} H(x) \, dx = +\infty \tag{1.2}$$

plays a crucial role in the spectral theory of canonical systems. In fact, (1.2) says that the so-called Weyl's limit point case prevails. To a system (1.1) which satisifes (1.2) there is associated a function $Q_H(z)$, its Titchmarsh-Weyl coefficient, which belongs to the Nevanlinna class \mathcal{N} . This is the set of all functions Q analytic on $\mathbb{C}\setminus\mathbb{R}$, $Q(\bar{z}) = \overline{Q(z)}$, with Im $Q(z) \geq 0$ for Im z > 0. The Inverse Spectral Theorem of L.de Branges states that the assignment $H \mapsto Q_H$ yields, up to changes of scale, a bijection of the set of all Hamiltonians which satisfy (1.2) onto $\mathcal{N} \cup \{\infty\}$.

Inverse spectral relations are statements which relate properties of Q_H to preoperties of H. In this paper we establish two statements of this kind. We show that, if the Hamiltonian is on some interval $[0, \epsilon)$ of the form

$$H(x) = \begin{pmatrix} v(x)^2 & v(x) \\ v(x) & 1 \end{pmatrix} ,$$

where v is nondecreasing, then $\lim_{x\searrow 0} v(x) = \lim_{y\to+\infty} Q_H(iy)$, cf. Theorem 3.3, and that, if H is of the above form on some interval [l, L), then $\lim_{x\nearrow L} v(x) = \lim_{x\nearrow 0} Q_H(z)$, cf. Theorem 3.9.

Our investigations are motivated by the study of semibounded canonical systems, that are systems with the property that their Titchmarsh-Weyl coefficient has an analytic continuation to some set of the form $\mathbb{C} \setminus [M, \infty)$, cf. Theorem 2.3, Corollary 3.5. Proofs are based on the theory of strings, cf. [15]. The statement in Corollary 3.5 also finds some application in the extension theory of symmetric relations, for, it shows a straightforward way to determine the Friedrichs extension in terms of the Hamiltonian, see [9], [11] and [23] for details.

In the preliminary Section 2 we set up our notation and recall some results which will be used later on. In Section 3 we prove and discuss our main results Theorem 3.3 and Theorem 3.9.

2. Preliminaries

A. Nevanlinna functions

By the Herglotz representation theorem, a Nevanlinna function Q has an integral representation of the form

$$Q(z) = bz + a + \int_{\mathbb{R}} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} \right) d\sigma(\lambda), \qquad (2.1)$$

with $b \ge 0$, $a \in \mathbb{R}$, and a measure σ satisfying $\int_{\mathbb{R}} (1 + \lambda^2)^{-1} d\sigma(\lambda) < \infty$. Thereby a, b and σ are uniquely determined by Q. Many interesting subclasses of \mathcal{N} can be

defined, or characterized, in terms of a, b and σ . In our context two subclasses will play an important role: the Kac class \mathcal{N}_1 and the Stieltjes class \mathcal{S} .

The Kac class \mathcal{N}_1 is defined as the set of all $Q \in \mathcal{N}$ with

$$b=0, \ \int_{\mathbb{R}} \frac{d\sigma(\lambda)}{1+|\lambda|} < \infty \,.$$

This means that $Q \in \mathcal{N}_1$ if and only if it can be represented as

$$Q(z) = \alpha + \int_{\mathbb{R}} \frac{d\sigma(\lambda)}{\lambda - z}$$
(2.2)

with some $\alpha \in \mathbb{R}$ and $\int_{\mathbb{R}} (1+|\lambda|)^{-1} d\sigma(\lambda) < \infty$. An analytic characterization of \mathcal{N}_1 was given in [13], see also [14, Theorem S1.3.1]: A Nevanlinna function Q belongs to \mathcal{N}_1 if and only if

$$\int_{1}^{\infty} \frac{\mathrm{Im} \ Q(iy)}{y} dy < \infty \,. \tag{2.3}$$

For a closer investigation of Kac classes and related subjects see also [2], [10] or [23].

The Stieltjes class S is defined as the set of all functions Q which are analytic in $\mathbb{C} \setminus [0, \infty)$, satisfy Im $Q(z) \ge 0$, $z \in \mathbb{C}^+$, and $Q(z) \ge 0$, $z \in (-\infty, 0)$. Clearly, $S \subseteq \mathbb{N}$. The history of the class S goes back to some investigations of T.J.Stieltjes on the moment problem and continued fractions, cf. [19]. Also the class S can be characterized in various ways, cf. [14, Theorem S1.5.1, Lemma S1.5.1]. In fact, for a function Q which is analytic in $\mathbb{C} \setminus [0, \infty)$ and satisfies $Q(\bar{z}) = \overline{Q(z)}$, the following conditions are equivalent:

- 1. $Q \in S$.
- 2. $Q \in \mathbb{N}_1$, supp $\sigma \subseteq [0, \infty)$, and the constant α in (2.2) is nonnegative. 3. $Q(z) \in \mathbb{N}$ and $zQ(z) \in \mathbb{N}$. 4. $zQ(z^2) \in \mathbb{N}$.

Further investigations and generalizations of the Stieltjes class can be found e.g. in [2], [5], or [16].

B. Canonical systems

Let us recall the construction of the Titchmarsh-Weyl coefficient associated to a Hamiltonian H: Denote by

$$W(x,z) = \begin{pmatrix} w_{11}(x,z) & w_{12}(x,z) \\ w_{21}(x,z) & w_{22}(x,z) \end{pmatrix}, \ W(0,z) = I \,,$$

the transposed of the fundamental matrix solution of the system (1.1). That is, W(x, z) is the unique solution of $\frac{\partial}{\partial x}W(x, z)J = zW(x, z)H(x), W(0, z) = I$. Then, since we assume that (1.2) holds, for each $\omega \in \mathbb{N} \cup \{\infty\}$ and $z \in \mathbb{C}^+$ the limit

$$Q_H(z) := \lim_{x \to L} \frac{w_{11}(x, z)\omega(z) + w_{12}(x, z)}{w_{21}(x, z)\omega(z) + w_{22}(x, z)}$$
(2.4)

exists, is independent of ω , and, as a function of z, belongs to $\mathbb{N} \cup \{\infty\}$, see e.g. [4]. This is the Titchmarsh-Weyl coefficient associated with H. The measure σ_H in the integral representation (2.1) of Q_H is called the spectral measure of H.

Two Hamiltonians H_1 on $[0, L_1)$ and H_2 on $[0, L_2)$ are said to be reparameterizations of each other, $H_1 \sim H_2$, if there exists a strictly increasing bijection λ of $[0, L_1)$ onto $[0, L_2)$ such that $H_1(x) = H_2(\lambda(x))\lambda'(x)$, $x \in [0, L_1)$. It is easy to see that, if $H_1 \sim H_2$, then $Q_{H_1} = Q_{H_2}$.

The basic inverse result of L.de Branges is, cf. [4], [20]:

Theorem 2.1 (Inverse Spectral Theorem). The assignment $H \mapsto Q_H$ sets up a bijection between the set of all Hamiltonians modulo \sim and $\mathbb{N} \cup \{\infty\}$.

To illustrate the nature of inverse spectral relations, let us mention two results of this kind, which will also be of good use later on:

Remark~2.2.

- 1. If we assume that trace $H(t) \equiv 1$, which can always be achieved by a suitable reparameterization, then the constant b in the integral representation of Q_H is the maximal number such that $H|_{[0,b)} = \text{diag}(1,0)$, cf. [15].
- 2. Let σ be the measure in the integral representation of Q_H . Then

$$\int_{0}^{L} (0,1)H(x) {\binom{0}{1}} dx = \frac{1}{\sigma(\{0\})}, \qquad (2.5)$$

where the right hand side is understood as $+\infty$ if $\sigma(\{0\}) = 0$. This fact was proved in [22, Theorem 2.2].

C. Transformation of canonical systems

We will employ two transformations of Hamiltonians. These, and others, were investigated in [21].

Let H be a Hamiltonian defined on [0, L). Then also

$$\widehat{H} := JHJ^T \tag{2.6}$$

is a Hamiltonian on [0, L). Clearly H and \widehat{H} together do or do not satisfy (1.2). The fundamental matrix \widehat{W} corresponding to \widehat{H} satisfies the relation $\widehat{W} = JWJ^T$. Hence, by (2.4), we have

$$Q_{\hat{H}}(z) = -Q_H(z)^{-1}.$$
 (2.7)

Let again H be a Hamiltonian defined on [0, L) and let $c \in \mathbb{R}$. Then also

$$\widehat{H} := CHC^T \,, \tag{2.8}$$

where $C := \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$, is a Hamiltonian on [0, L) and satisfies together with H the condition (1.2). In this situation we have $Q_{\widehat{H}}(z) = Q_H(z) + c$.

D. Semibounded canonical systems

One of the main objects of our studies are canonical systems whose spectral measure is semibounded from below. Recall the following result which was proved, in a slightly different formulation, in [22].

Theorem 2.3. Let $Q \in \mathbb{N}$ be a Nevanlinna function with $\inf \operatorname{supp} \sigma > -\infty$. Then there exists a number $L \in (0, \infty]$ and a nondecreasing and right-continuous function $\nu: [0, L) \to [0, +\infty)$ such that, with $v(x) := -\cot \nu(x), \nu(x) \notin \pi\mathbb{Z}$, the Hamiltonian

$$H(x) = \begin{cases} \begin{pmatrix} v(x)^2 & v(x) \\ v(x) & 1 \end{pmatrix} & \text{if } \nu(x) \notin \pi \mathbb{Z} \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \text{if } \nu(x) \in \pi \mathbb{Z} \end{cases}$$
(2.9)

satsifies (1.2) and $Q_H = Q$. If ν is normalized in such a way that $\nu(0) \in [0, \pi)$ and $\nu(x) - \nu(x-) < \pi$, then L and ν are unique.

The function ν (if normalized as above) is bounded if and only if $(-\infty, 0) \cap$ supp σ is finite. If $\nu(L-)/\pi \in \mathbb{N}$, then Q has n-1 poles on $(-\infty, 0)$, otherwise the number of poles of Q on $(-\infty, 0)$ is equal to the integer part of $\nu(L-)/\pi$.

It is not known to the authors whether or not the converse of this result holds. However, in a particular case a converse can be proved, cf. [22].

Theorem 2.4. Let H be a Hamiltonian of the form (2.9), and assume that ν is bounded. Then, for the spectral measure σ of H, we have $\inf \operatorname{supp} \sigma > -\infty$.

Let $Q \in \mathcal{N}$, inf supp $\sigma > -\infty$, and let ν be as in Theorem 2.3. Then the constant b in the integral representation (2.1) of Q is determined by

$$b = \sup (\{x \ge 0: \
u(x) = 0\} \cup \{0\})$$

Hence, if b = 0, there exists a nonempty interval $(0, \epsilon)$, such that $\nu(x) \notin \pi \mathbb{Z}$, $x \in (0, \epsilon)$.

A case of particular importance occurs if b = 0 and $\inf \operatorname{supp} \sigma \ge 0$. Then $\nu(x) \subseteq (0, \pi)$ and $L \ge \sigma(\{0\})^{-1}$. Thereby $L > \sigma(\{0\})^{-1}$ if and only if $\sigma(\{0\}) > 0$ and $\int_0^{\sigma(\{0\})^{-1}} v(x)^2 dx < \infty$, and in this case $H(x) \sim \operatorname{diag}(1,0), x \in (\sigma(\{0\})^{-1}, L)$.

E. Strings

A string is a pair consisting of a number $L \in [0, \infty]$, and a Borel measure \mathfrak{m} on \mathbb{R} with $\operatorname{supp} \mathfrak{m} \subseteq [0, L]$ such that $\mathfrak{m}([0, x]) < \infty$ for $x \in [0, L)$ and, in case $L < \infty$, $\mathfrak{m}(\{L\}) = 0$. We shall denote the string given by L and \mathfrak{m} by $S[L, \mathfrak{m}]$. The number L in $S[L, \mathfrak{m}]$ is referred to as the length of the string.

Define a function m as

$$m(x) := \mathfrak{m}((-\infty, x)), \ x \in (-\infty, L).$$
 (2.10)

Henrik Winkler and Harald Woracek

Then m is non-decreasing and left-continuous, and we have m(x) = 0 if $x \leq 0$. Consider the following boundary value problem:

$$y'(x) + \int_{[0,x]} zy(u) d\mathfrak{m}(u) = 0, \ x \in [0,L),$$
(2.11)

with boundary condition y'(0-) = 0 and, in case $L + m(L) < \infty$, y(L) = 0. Thereby z is a complex parameter. Also in this context a notion of Titchmarsh-Weyl coefficient is of significance: It was shown in [15] that there exist unique solutions $\varphi(x, z)$ and $\psi(x, z)$ of (2.11) which satisfy the initial conditions

$$\varphi(0,z) = 1, \ \varphi'(0-,z) = 0, \ \psi(0,z) = 0, \ \psi'(0-,z) = 1,$$
 (2.12)

and that, for all $z \in \mathbb{C} \setminus [0, \infty)$, the limit

$$q_S(z) := \lim_{x \to L} \frac{\psi(x, z)}{\varphi(x, z)}$$
(2.13)

exists. This function is called the Principal Titchmarsh-Weyl coefficient of the string $S[L, \mathfrak{m}]$.

Let $S[L, \mathfrak{m}]$ be a string. Then q_S admits a representation

$$q_S(z) := b + \int_0^\infty \frac{d\sigma_S(t)}{t-z},$$
 (2.14)

where σ_S is some non-negative measure with $\int_0^\infty \frac{d\sigma_S(t)}{1+t} < \infty$, and $b \ge 0$. In fact, $b = \min \operatorname{supp} \mathfrak{m}$. Hence, the Principal Titchmarsh-Weyl coefficient of any string belongs to the Stieltjes class \mathfrak{S} .

A basic inverse result going back to M.G.Krein is the following, cf. [17], [6], [18]:

Theorem 2.5 (Inverse Spectral Theorem; Strings). The mapping $S[L, \mathfrak{m}] \mapsto q_S$ is a bijection of the set of all strings onto the Stieltjes class S.

3. Inverse spectral relations

We start with an investigation of the limit $\lim_{z\to-\infty} Q_H(z)$.

Lemma 3.1. Let $Q \in \mathbb{N}$ and let a, b, σ be as in (2.1). Assume that $\inf \operatorname{supp} \sigma \geq 0$ and b = 0. Let v(x) be the (unique) function which corresponds to Q by means of Theorem 2.3, (2.9). Then

$$\lim_{z \to -\infty} Q(z) = \lim_{x \searrow 0} v(x) \,. \tag{3.1}$$

Proof. Note that both limits in (3.1) exist in $\mathbb{R} \cup \{-\infty\}$. We show that, for any $a \in \mathbb{R}$, $\lim_{z \to -\infty} Q(z) = a$ if and only if $\lim_{x \to 0} v(x) = a$. Once this is proved, it will also follow that $\lim_{z \to -\infty} Q(z) = -\infty$ if and only if $\lim_{x \to 0} v(x) = -\infty$.

Assume that $\lim_{z\to-\infty} Q(z) = a \in \mathbb{R}$ and choose c > -a. Then the function Q(z) + c is positive on the negative real axis, and hence belongs to the Stieltjes class. It follows that also $z(Q(z) + c) \in \mathbb{N}$ and hence that

$$Q_1(z) := \frac{-1}{z(Q(z)+c)} \in \mathcal{N}.$$
(3.2)

Clearly, $zQ_1(z) \in \mathbb{N}$, and thus $Q_1 \in \mathbb{S}$. Moreover, $\lim_{z \to -\infty} Q_1(z) = 0$. Hence Q_1 can be represented as $Q_1(z) = \int_{[0,+\infty)} \frac{d\tau(\lambda)}{\lambda-z}$, and

$$\int_{[0,+\infty)} d\tau(\lambda) = -\lim_{z \to -\infty} zQ_1(z) = \frac{1}{a+c} \,. \tag{3.3}$$

Let $S[L, \mathfrak{m}]$ be the (unique) string whose Principal Titchmarsh-Weyl coefficient q_S is equal to Q_1 . Then, by [15] and [18],

$$\lim_{x \searrow 0} m(x) = \left(\int_{[0,+\infty)} d\tau(\lambda) \right)^{-1} = a + c.$$

Let H_1 be a Hamiltonian with $Q_{H_1}(z) = zQ_1(z)$. It was shown in [18] that, if H_1 is parameterized appropriately, there exists l > 0 such that

$$H_1(x) = \begin{pmatrix} 1 & -m(x) \\ -m(x) & m(x)^2 \end{pmatrix}, \ 0 \le x \le l.$$
(3.4)

By (2.6) and (2.8), the Hamiltonian

$$H_2(x) := \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix} J H_1(x) J^T \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix}$$

has Titchmarsh-Weyl coefficient Q. Hence there exists a reparameterization λ with $H(x) = H_2(\lambda(x))\lambda'(x)$. For $x \in [0, l]$ we have

$$H_2(x) = \begin{pmatrix} (m(x) - c)^2 & m(x) - c \\ m(x) - c & 1 \end{pmatrix}$$

Comparing the right lower corners of H and H_2 yields that $\lambda|_{[0,l]} = \mathrm{id}$, and hence that v(x) = m(x) - c, $x \in [0, l]$. It follows that $\lim_{x \searrow 0} v(x) = a$.

Conversely, if $\lim_{x \to 0} v(x) = a$ and c + a > 0, the function v(x) + c is the mass function of the string with Principal Titchmarsh-Weyl coefficient Q_1 given by (3.2). According to [15], the fact that $\lim_{x \to 0} v(x) + c > 0$ implies that $\lim_{z \to -\infty} Q_1(z) = 0$, and that the relation (3.3) holds. By the definition of Q_1 , we find $\lim_{z \to -\infty} Q(z) = a$.

This lemma already has a noteworthy corollary.

Corollary 3.2. Let Q and v be as in Lemma 3.1. Then $Q \in S$ if and only if $\lim_{x\to 0} v(x) \ge 0$ In this case v is the mass function of the string whose Principal Titchmarsh-Weyl coefficient is equal to $-(zQ(z))^{-1}$. That is, v is the mass function of the dual string of the string whose Principal Titchmarsh Weyl coefficient is Q.

Now we are in position to prove our first main result.

Theorem 3.3. Let H be a Hamiltonian defined on [0, L) and assume that for some $\epsilon \in (0, L)$ we have

$$H(x) = \begin{pmatrix} v(x)^2 & v(x) \\ v(x) & 1 \end{pmatrix}, \ x \in (0, \epsilon)$$

with a nondecreasing function $v : (0, \epsilon) \to \mathbb{R}$. Then the limit $\lim_{y\to+\infty} Q_H(iy)$ exists in $\mathbb{R} \cup \{-\infty\}$ and in fact

$$\lim_{y \to +\infty} Q_H(iy) = \lim_{x \searrow 0} v(x) \,. \tag{3.5}$$

Proof. Define Hamiltonians H_1 and H_2 as

$$H_1(x) := \begin{cases} H(x) &, x \in (0, \epsilon) \\ \text{diag}(1, 0) &, x \in [\epsilon, +\infty) \end{cases}$$
$$H_2(x) := H(x + \epsilon), x \in [0, L - \epsilon).$$

Denote by W(x, z) the transposed of the fundamental matrix solution of the canonical system with Hamiltonian H. Then $Q_{H_1}(z) = \frac{w_{11}(\epsilon, z)}{w_{21}(\epsilon, z)}$, and Q is given by

$$Q(z) = \frac{w_{11}(\epsilon, z)Q_{H_2}(z) + w_{12}(\epsilon, z)}{w_{21}(\epsilon, z)Q_{H_2}(z) + w_{22}(\epsilon, z)}$$

A straightforward calculation, using the fact that $\det W(x, z) = 1$, will show that

$$Q(z) - Q_{H_1}(z) = -w_{21}(\epsilon, z)^{-2} \left(\frac{w_{22}(\epsilon, z)}{w_{21}(\epsilon, z)} + Q_{H_2}(z)\right)^{-1} = = \frac{-1}{z} \cdot \left(\frac{z}{w_{21}(\epsilon, z)}\right)^2 \cdot \frac{1}{z\left(\frac{w_{22}(\epsilon, z)}{w_{21}(\epsilon, z)} + Q_{H_2}(z)\right)}$$
(3.6)

Since $w_{22}(\epsilon, z)w_{21}(\epsilon, z)^{-1} + Q_{H_2}(z) \in \mathbb{N}$, the function

$$f(y) := y \operatorname{Im} \left(\frac{w_{22}(\epsilon, iy)}{w_{21}(\epsilon, iy)} + Q_{H_2}(iy) \right)$$

is nondecreasing for y > 0. In particular, the last factor in (3.6) is bounded for $z \in i[1,\infty)$. The function $g(z) := z^{-1}w_{12}(\epsilon, z)$ is a real entire function of exponential type, and all its zeros lie in $\mathbb{R} \setminus \{0\}$. Thus its Weierstrass product representation is of the form

$$g(z) = Ce^{Az} \prod \left(1 - \frac{z}{z_n}\right) e^{z/z_n}$$

where C and A are real constants and $z_n \in \mathbb{R}$. Hence |g(iy)| is a nondecreasing function of y > 0. In particular, the second factor in (3.6) is bounded for $z \in i[1, \infty)$. We see that

$$|Q(iy) - Q_{H_1}(iy)| = O(\frac{1}{y}), \ y \ge 1.$$
 (3.7)

This relation, and the fact that Q_{H_1} is by Theorem 2.3 analytic on $\mathbb{C} \setminus [0, \infty)$, implies that

$$\lim_{y \to +\infty} Q_H(iy) = \lim_{y \to +\infty} Q_{H_1}(iy) = \lim_{x \to -\infty} Q_{H_1}(x).$$

By our definition of H_1 the function Q_{H_1} satisfies the hypothesis of Lemma 3.1, and we conclude that $\lim_{y\to+\infty} Q_H(iy) = \lim_{x\to 0} v(x)$.

Remark 3.4. Assume that, for some $\epsilon > 0$, we have $H(x) = \text{diag}(1,0), x \in (0,\epsilon)$. Then $\lim_{z \to -\infty} Q_H(z) = -\infty$. This tells us that Theorem 3.3 remains true if we, formally, have $v(x) = -\infty$.

As a particular case of Theorem 3.3 we obtain that the assumption inf $\mathrm{supp}\,\sigma\geq 0$ in Lemma 3.1 can be relaxed.

Corollary 3.5. Let $Q \in \mathbb{N}$ and let a, b, σ be as in (2.1). Assume that $\inf \operatorname{supp} \sigma > -\infty$ and b = 0. Let v(x) be the (unique) function which corresponds to Q by means of Theorem 2.3, (2.9). Then $\lim_{z \to -\infty} Q(z) = \lim_{x \to 0} v(x)$.

Proof. According to Theorem 2.3, the assumptions of Theorem 3.3 are satisfied. To establish the present assertion it suffices to note that, since $\inf \operatorname{supp} \sigma > -\infty$, the relation $\lim_{y\to+\infty} Q(iy) = \lim_{z\to-\infty} Q(z)$ holds.

Corollary 3.6. Let $Q \in \mathbb{N}$ be such that some Hamiltonian H with $Q_H = Q$ satisfies the hypothesis of Theorem 3.3. Then $Q \in \mathbb{N}_1$ if and only if $\lim_{y\to+\infty} Q(iy) \in \mathbb{R}$.

Proof. Assume that $\lim_{y\to+\infty} Q(iy) =: a \in \mathbb{R}$. Consider the Hamiltonian H_1 as in the proof of Theorem 3.3. Then $Q_{H_1} - a \in S \subseteq \mathcal{N}_1$, and hence also $Q_{H_1} \in \mathcal{N}_1$. The relations (3.7) and (2.3) now imply that also $Q \in \mathcal{N}_1$.

Note that in general only the implication " $Q \in \mathbb{N}_1 \Rightarrow \lim_{y \to +\infty} Q(iy) \in \mathbb{R}$ " holds.

Remark 3.7. The canonical system (1.1) with the boundary condition $y_1(0) = 0$ corresponds to a selfadjoint extension of a symmetric operator with Dirichlet boundary conditions. In [9] the concept of a generalized Friedrichs extension is introduced and characterized by the condition that its *Q*-function does not belong to \mathcal{N}_1 , but $-Q^{-1} \in \mathcal{N}_1$. If the assumptions of Theorem 3.3 are satisfied, the condition $\lim_{x \to 0} v(x) = -\infty$ characterizes the generalized Friedrichs extension, which is equal to the common Friedrichs extension of semibounded symmetric operators under the assumptions of Corollary 3.5, see [11], [23] for more details.

Next we turn to an investigation of the limit $\lim_{z \nearrow 0} Q_H(z)$.

Lemma 3.8. Let $Q \in \mathbb{N}$ and let a, b, σ be as in (2.1). Assume that $\inf \operatorname{supp} \sigma \ge 0$, b = 0, and that $\sigma(\{0\}) = 0$. Let v(x) be the (unique) function which corresponds to Q by means of Theorem 2.3, (2.9). Then

$$\lim_{z \nearrow 0} Q(z) = \lim_{x \nearrow L} v(x) \,. \tag{3.8}$$

Proof. Note that both limits in (3.8) exist in $\mathbb{R} \cup \{+\infty\}$. Again we shall show that for any $a \in \mathbb{R}$ we have $\lim_{z \neq 0} Q(z) = a$ if and only if $\lim_{x \neq L} v(x) = a$.

Assume that $\lim_{z \nearrow 0} Q(z) = a$. Choose c < -a, then Q(x) + c < 0 for $x \in (-\infty, 0)$, and hence $-\frac{1}{Q(z)+c} \in \mathbb{S}$. Thus $Q_1(z) := z^{-1}(Q(z)+c) \in \mathbb{N}$. Since, clearly, $zQ_1(z) \in \mathbb{N}$, it follows that $Q_1 \in \mathbb{S}$.

Let $S[L, \mathfrak{m}]$ be the string with $q_S = Q_1$. According to [18], the first part of the Hamiltonian corresponding to Q(z) + z is of the form (3.4). Denoting the independent variable in (3.4) by u, a scale transformation of the form $x(u) = \int_{[0,u)} m(t)^2 dt$ brings the first part of the Hamiltonian corresponding to Q(z) + cinto the form

$$\widetilde{H}(x) = \begin{pmatrix} \widetilde{m}(x)^{-2} & -\widetilde{m}(x)^{-1} \\ -\widetilde{m}(x)^{-1} & 1 \end{pmatrix}$$

with $\widetilde{m}(x) = m(u)$, and it follows that $-\widetilde{m}(x)^{-1} = v(x) + c$. The assumption $\sigma(\{0\}) = 0$ implies that v is defined on $(0,\infty)$, hence $m(L) = \widetilde{m}(\infty)$, and $L + \int_{[0,L)} m(t)^2 dt = \infty$. Let $Q_2(z) = zQ_1(z^2)$. Then, by [18], the trace-normed Hamiltonian H corresponding to Q_2 is of diagonal form, and the relation $m(L) = \int_{[0,+\infty)} (0,1)H(t)(0,1)^T dt$ holds. By (2.5), we have $\int_{[0,+\infty)} (0,1)H(t)(0,1)^T dt = -(\lim_{y\searrow 0} iyQ_2(iy))^{-1}$. Note that $\lim_{y\searrow 0} iyQ_2(iy) = \lim_{z\nearrow 0} Q(z) + c$. Summing up, the last relations imply that $\lim_{z\nearrow 0} Q(z) = \lim_{x\nearrow L} v(x)$.

Conversely, assume that $\lim_{x \neq L} v(x) = a$. Again choose c < -a, and denote $\tilde{v}(x) = v(x) + c$. The Hamiltonian corresponding to Q(z) + c is then of the form (2.9) with \tilde{v} instead of v, and a scale transformation of the form $x(u) = \int_{[0,u)} v(t)^2 dt$ brings it into the form (3.4) with $m(x) = -\tilde{v}(x)^{-1}$, which implies that m is a mass distribution function of a string. It follows that $Q_1(z) = \frac{Q(z)+c}{z}$ is a Stieltjes function, and we find that $\lim_{z \neq 0} Q(z) = a$ by the first part of the proof. \Box

Theorem 3.9. Let H be a Hamiltonian defined on [0, L) and assume that for some $l \in (0, L)$ we have

$$H(x) = \begin{pmatrix} v(x)^2 & v(x) \\ v(x) & 1 \end{pmatrix}, \ x \in (l,L),$$

with a nondecreasing function $v : (l, L) \to \mathbb{R}$. Then Q_H is meromorphic in $\mathbb{C} \setminus [0, +\infty)$, the negative real poles of Q_H cannot accumulate at 0, and the limit $\lim_{z \neq 0} Q_H(z)$ exists in $\mathbb{R} \cup \{+\infty\}$. In fact we have

$$\lim_{z \nearrow 0} Q_H(z) = \lim_{x \nearrow L} v(x). \tag{3.9}$$

Proof. Consider the Hamiltonian $H_1(x) := H(x+l), x \in (0, L-l)$. Let a_1, b_1, σ_1 be the data in the integral representation of Q_{H_1} . By Theorems 2.4, 2.3, and Remark 2.2, (i), we have $b_1 = 0$ and $\operatorname{supp} \sigma_1 \in [0, \infty)$. Thus Q_{H_1} is analytic in $\mathbb{C} \setminus [0, \infty)$ and the limit $\lim_{z \neq 0} Q_{H_1}(z)$ exists in $\mathbb{R} \cup \{+\infty\}$.

If W denotes the transposed of the fundamental matrix solution of the canonical system with Hamiltonian H, we have

$$Q_H(z) = \frac{w_{11}(l,z)Q_{H_1}(z) + w_{12}(l,z)}{w_{21}(l,z)Q_{H_1}(z) + w_{22}(l,z)}.$$

Hence Q_H is meromorphic in $\mathbb{C} \setminus [0, \infty)$ and the limit $\lim_{z \nearrow 0} Q(z)$ exists, in fact $\lim_{z \nearrow 0} Q(z) = \lim_{z \nearrow 0} Q_{H_1}(z)$.

Consider the case that $\sigma_1(\{0\}) = 0$. Then Q_{H_1} satisfies the assumptions of Lemma 3.8. The relation (3.8) implies together with the last formula that (3.9)

holds. Assume now that $\sigma_1(\{0\}) > 0$. Then, certainly, $\lim_{z \nearrow 0} Q_{H_1} = +\infty$. The relation (2.5) yields that $L < \infty$, and hence, since Weyl's limit point prevails, $\int_l^L v(x)^2 dx = \infty$. In particular, $\lim_{x \nearrow L} v(x) = +\infty$. This shows that also in this case (3.9) holds.

Remark 3.10. Assume that, for some l < L, we have $H(x) = \text{diag}(1,0), x \in (l, L)$. Then $\lim_{z \neq 0} Q_H(z) = +\infty$. This follows, since in the described situation, we have $Q_H(z) = w_{21}(l,z)^{-1}w_{11}(l,z)$, where W is as in the above proof. Hence Q_H is meromorphic in \mathbb{C} and has a pole at 0. This statement just says that the assertion of Theorem 3.9 remains true when we, formally, have $v(x) = +\infty$.

Corollary 3.11. Let $Q \in \mathbb{N}$ and let a, b, σ be as in (2.1). Assume that $\operatorname{supp} \sigma \cap (-\infty, 0)$ is a finite set. Let v(x) be the (unique) function which corresponds to Q by means of Theorem 2.3, (2.9). Then $\lim_{z \neq 0} Q(z) = -\lim_{x \neq L} \cot \nu(x)$, where we understand $\cot \phi = -\infty$ for $\phi \in \pi \mathbb{Z}$.

Proof. By Theorem 2.3 ν is bounded. That is, there are at most finitely many intervals where the Hamiltonian H is of the form diag (1,0), and there are at most finitely many points where v has a negative jump or becomes singular. By (2.5), $\int_{(0,L)} (0,1)H(t)(0,1)^T dt = \sigma(\{0\})^{-1}$. If $\sigma(\{0\}) = 0$, then $L = +\infty$, and v is nondecreasing on some interval $(l, +\infty)$. Hence, the assumptions of Theorem 3.9 are satisfied. If $\sigma(\{0\}) > 0$, then either $L < +\infty$ and there is some l < L such that v is nondecreasing on (l, L) and $\int_{(l,L)} v(x)^2 dx = +\infty$, that is, $v(L-) = -\cot \nu(L-) = +\infty$, or H = diag(1,0) on some interval $(l_0, +\infty)$, that is $-\cot \nu(L-) = +\infty$ on $(l_0, +\infty)$. Clearly, if $\sigma(\{0\}) > 0$ then $Q(0-) = +\infty$.

References

- 1. V.I.Arnold, Mathematical methods of classical physics, Springer, New York, 1989.
- N.Aronszajn, W.Donoghue, "On the exponential representations of analytic functions in the upper half plane with positive imaginary part", J.Analyse Math. 5 (1956/57), 321–388.
- F.V.Atkinson, Discrete and continuous boundary problems, Academic Press, New York 1964.
- L. de Branges, *Hilbert spaces of entire functions*, Prentice Hall, Englewood Cliffs, N.J., 1968.
- V.Derkach, M.Malamud, "On some classes of holomorphic operator functions with nonnegative imaginary part", 16th OT Proceedings (1997), 113-147.
- H. Dym and H.P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic Press, New York, 1976.
- H.Flanders, Differential forms with applications to the physical sciences, Dover Publ., New York, 1989.
- 8. I.Gohberg, M.G.Krein, *Theory and applications of Volterra operators in Hilbert space*, Translations of Mathematical Monographs, AMS, Providence, Rhode Island, 1970.

- S. Hassi, H. Langer, and H.S.V. de Snoo, "Selfadjoint extensions for a class of symmetric operators with defect numbers (1,1)", 15th OT Conference Proceedings, (1995), 115–145.
- S. Hassi, H.S.V. de Snoo, "On some subclasses of Nevanlinna functions", Z. Analysis und ihre Anwendungen 15 (1996), 1–11.
- S. Hassi, H.S.V. de Snoo, and A.D.I. Willemsma, "Smooth rank one perturbations of selfadjoint operators", Proc. Amer. Math. Soc., 126 (1998), 2663–2675.
- S. Hassi, H.S.V. de Snoo, and H. Winkler, "Boundary-value problems for twodimensional canonical systems", Integral Equations Oper. Theory, 36 (2000), 445– 479.
- 13. I.S.Kac, "On integral representations of analytic functions mapping the upper half plane onto a part of itself", Uspeki Mat. Nauk 11 (1956), 139–144.
- 14. I.S. Kac and M.G. Krein, "*R*-functions-analytic functions mapping the upper halfplane into itself", Supplement II to the Russian edition of F.V. Atkinson, *Discrete* and continuous boundary problems, Mir, Moscow, 1968 (Russian) (English translation: Amer. Math. Soc. Transl., (2) 103 (1974), 1–18.
- I.S. Kac and M.G. Krein, "On the spectral functions of the string", Supplement II to the Russian edition of F.V. Atkinson, *Discrete and continuous boundary problems*, Mir, Moscow, 1968 (Russian) (English translation: Amer. Math. Soc. Transl., (2) 103 (1974), 19–102).
- 16. M.Kaltenbäck, H.Winkler, H.Woracek, "Generalized Nevanlinna functions with essentially positive spectrum", J.Oper.Theory, to appear.
- M.G.Krein, "On inverse problems for the nonhomogeneous cord", Dokl.Akad.Nauk 82 (1952), 669–672 (Russian).
- H. Langer and H. Winkler, "Direct and inverse spectral problems for generalized strings", Integral Equations Oper. Theory 30 (1998), 409 - 431.
- T.J.Stieltjes, *Œuvres completes/Collected papers. Vol. I, II*, reprint of the 1914–1918 edition. Springer-Verlag, Berlin 1993.
- H. Winkler, "The inverse spectral problem for canonical systems", Integral Equations Oper. Theory, 22 (1995), 360–374.
- H. Winkler, "On transformations of canonical systems", Oper. Theory Adv. Appl. 80 (1995), 276 - 288.
- 22. H. Winkler, "Canonical systems with a semibounded spectrum", Oper. Theory Adv. Appl. **106** (1998), 397 417.
- H. Winkler, "On generalized Friedrichs and Kreĭn-von Neumann extensions and canonical systems", Math. Nachr. 236 (2002), 175 - 191.

Henrik Winkler Institut für Mathematik, MA 6-4 Technische Universität Berlin Straße des 17. Juni 136 D-10623 Berlin Germany e-mail: winkler@math.tu-berlin.de Harald Woracek Institut für Analysis und Scientific Computing Technische Universität Wien Wiedner Hauptstr. 8–10/101 A–1040 Wien Austria e-mail: harald.woracek@tuwien.ac.at