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Abstract

We investigate the subclass of symmetric indefinite Hermite-Biehler func-
tions which is obtained from positive definite Hermite-Biehler functions
by means of the square-transform. It is known that functions of this class
can be characterized in terms of the location of their zeros. We give an-
other, more elementary and geometric, proof of this result. The present
proof employs a ‘shifting-of-zeros’ perturbation method. We apply our
results to obtain information on the eigenvalues of a concrete boundary
value problems.
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1 Introduction and main result

The Hermite-Biehler class is the set of all entire functions E which have no
zeros in the open upper half-plane C+ and satisfy

|E(z)| ≤ |E(z)|, z ∈ C
+ . (1.1)

An indefinite generalization of this notion is obtained when (1.1) is replaced by
the a kernel condition: If Ω ⊆ C is a domain and K(w, z) is a function defined
on Ω × Ω, which is analytic in the variables z and w and has the property
that K(w, z) = K(z, w), then K is called an analytic symmetric kernel (shortly
kernel) on Ω. Let κ ∈ N∪{0}. We say that the kernel K has κ negative squares,
if for each choice of n ∈ N and z1, . . . , zn ∈ Ω the quadratic form

QK(ξ1, . . . , ξn) :=

n∑

i,j=1

K(zj , zi)ξiξj

has at most κ negative squares, and if for some choice of n, z1, . . . , zn this upper
bound is actually attained.

1.1 Definition. Let κ ∈ N ∪ {0}. The set HBκ of Hermite-Biehler functions
with κ negative squares is defined to be the set of all entire functions E which
satisfy

(i) E and E# have no common nonreal zeros;

(ii) the kernel

KE(w, z) := i
E(z)E(w) − E#(z)E#(w)

z − w
, z, w ∈ C , (1.2)

has κ negative squares.

†V.Pivovarchik was supported by U.S. Civil Research and Development Foundation Award
No. UK2-2811-OD-06V, and is grateful to the Vienna University of Technology for hospitality.

1



Moreover, we define the set of indefinite Hermite-Biehler functions as

HB<∞ :=
⋃

κ∈N∪{0}

HBκ .

If E ∈ HB<∞, we will denote by ind− E the actual number of negative squares
of the kernel (1.2).

The fact that positive definiteness of the kernel KE coincides with the condition
(1.1) is a classical result, see e.g. [Pi].

In this paper we are concerned with two subclasses of indefinite Hermite-
Biehler functions and the relationship between them.

1.2 Definition.

(i) The set HBsym
κ of symmetric Hermite-Biehler functions with κ negative

squares is defined as the set of all functions E ∈ HBκ which satisfy the
functional equation

E(z) = E(−z) . (1.3)

(ii) The set HBsb
κ of semibounded Hermite-Biehler functions with κ negative

squares is defined as the set of all functions E ∈ HBκ which have the

property that the meromorphic function E(z)+E(z)

E(z)−E(z)
has only finitely many

poles in C \ [0,∞).

The notations HB
sym
<∞ and HBsb

<∞ are defined correspondingly.

To any entire function F an entire function sqF , its square-transform, can be
associated: Put A(z) := 1

2 (E(z) + E(z)), B(z) := 1
2i

(E(z) − E(z)), and define

(sqF )(z) := A(z2) + izB(z2) .

Clearly, sqF satisfies the functional equation (1.3), i.e., sqF (z) = sqF (−z). It
is a consequence of [KWW1, Theorem 4.1], and was explicitly shown in [PW],
that sq induces a bijection of the set

{
F ∈ HBsb

<∞ : F has no zeros in (−∞, 0)
}

onto HB
sym
<∞. Hence we obtain a partitioning of HB

sym
<∞ into the classes

sq
( {

F ∈ HBsb
κ : F has no zeros in (−∞, 0)

} )
, κ ∈ N ∪ {0} .

In [PW] the following result was proved, and, as a consequence, information on
the distribution of eigenvalues of some concrete boundary value problems was
obtained.

1.3 Theorem. Let E ∈ HB
sym
<∞ . Then

E ∈ sq
({

F ∈ HBsb
0 : F has no zeros in (−∞, 0)

})

(1.4)

if and only if its zeros are distributed according to the following two rules:

(Z1) All zeros of E in C
+ are simple and located on the imaginary axis.
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(Z2) Denote the zeros of E which lie in C+ by iy1, . . . , iyκ with 0 < y1 <

. . . < yκ. Then, for every k = 2, . . . , κ, the number of zeros of E in
(−iyk−1,−iyk) is odd. The number of zeros of E in [0,−iy1) is even.
Thereby all zeros are counted according to their multiplicities.

The proof of necessity, that the zeros of an element of (1.4) are distributed ac-
cording to (Z1) and (Z2), is a bit elaborate but in essence elementary. In contrast
to necessity, the proof of sufficiency of these conditions which is given in [PW]
is more involved and rather implicit. It relies on the theory of (symmetric and
semibounded) de Branges Pontryagin spaces as developed in [KW], [KWW2].
The geometric meaning of the conditions (Z1) and (Z2) remains unrevealed.

It is our aim in the present note we give another proof of the sufficiency
part of Theorem 1.3, which is more elementary and beautifully explains the
geometry behind (Z1) and (Z2). We use a perturbation method, which was
already employed in [P2] for the case of polynomials.

Moreover, we will, as another application of Theorem 1.3, determine the
distribution of eigenvalues of the boundary value problem

−y′′ + ipλy + q(x)y = λ2y, x ∈ (0, b) ∪ (b, a) , (1.5)

y(0) = 0, y(a) = 0, y(b − 0) = y(b + 0) , (1.6)

y′(b − 0) − y′(b + 0) + (β + iαλ − mλ2)y(b − 0) = 0 , (1.7)

where b ∈ (0, a), p > 0, α > 0, m > 0, β ∈ R, q(x) is real valued and its
restrictions belong to L2(0, b) and L2(b, a), correspondingly. This problem arises
in the study of small transversal vibrations of a smooth inhomogeneous string
with damping. The conditions (1.6) mean that the ends of the string are fixed,
the conditions (1.7) describe a ring of mass m which is located at x = b and
which moves with damping proportional to α in the direction orthogonal to the
equilibrium position of the string. The parameter p is the coefficient of damping
of the string. We will show:

1.4 Theorem. Let σ be the spectrum of the problem (1.5)-(1.7). There exist two
disjoint sets Σ1, Σ2, where Σ1 consists of a finite number of pairs of conjugate
purely imaginary and nonzero points which lie in the strip {z ∈ C : | Im z| ≤ p

2},
and Σ2 satisfies the conditions (Z1) and (Z2), such that σ is represented as
follows:

(I) if α = mp, then Σ2 ⊆ R, and σ = (Σ1 ∪ Σ2) + ip

2 ;

(II) if α < mp, then Σ2 is contained in the half-plane {z ∈ C : | Im z| ≥ − p

2},

and σ = (Σ1 ∪ Σ2) + ip
2 ;

(III) if α > mp, then Σ2 is contained in the half-plane {z ∈ C : | Im z| ≤ p
2},

and σ = (Σ1∪Σ2)+
ip

2 , where Σ2 denotes the reflection of Σ2 with respect
to the real line.

The content of the present paper is divided into three sections. In Section 2 we
set up our notation and provide some preliminary results. In Section 3 we give
the proof of the sufficiency part of Theorem 1.3. Finally, in Section 4, we apply
Theorem 1.3 to the boundary value problem (1.5)–(1.7), and establish Theorem
1.4.
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2 Preliminaries

Let H(C) denote the set of all entire functions. Throughout this paper all
topological terms concerning elements of H(C) will refer to locally uniform
convergence, that is the topology induced by the metric

ρ(F, G) :=

∞∑

n=1

1

2n

sup|z|≤n |F (z) − G(z)|

1 + sup|z|≤n |F (z) − G(z)|
, F, G ∈ H(C) .

For F ∈ H(C) put F#(z) := F (z). The map F 7→ F# is a conjugate linear and
isometric involution of H(C). We can decompose any entire function into its
‘real-’ and ‘imaginary-’ part with respect to this involution: For F ∈ H(C) put

ReF :=
F + F#

2
, ImF :=

F − F#

2i
.

Then (ReF )# = ReF , (ImF )# = ImF , and F = ReF + iImF . An entire
function F is called real, if ImF = 0, i.e., if F = F#.

2.1 Remark. The real- and imaginary- part of a complex number w is denoted
by Re w and Imw, respectively. One has to distinguish the entire functions ReF

and ImF from the C∞-functions Re F and ImF which assign to a point z ∈ C

the value Re(F (z)) and Im(F (z)), respectively.

a. Symmetry

We deal with entire functions which satisfy the functional equation (1.3):

2.2 Definition. Denote by H(C)sym the set

H(C)sym :=
{
F ∈ H(C) : F#(z) = F (−z)

}
.

Note that H(C)sym is a closed subset of H(C). Moreover, it contains the sum
and product of each two of its elements, and all real multiples of each of its
elements.

Since F#(z) = ReF (z)− iImF (z) and F (−z) = ReF (−z) + iImF (−z), we
have F ∈ H(C)sym if and only if ReF is an even function and ImF is odd. This
enables us to make the following construction:

2.3 Definition. Let F ∈ H(C)sym. Then real entire functions A±(z), B±(z)
are well-defined by the equations

A+(z2) = A−(z2) = ReF (z) ,

B+(z2) = zImF (z), B−(z2) =
ImF (z)

z
.

Define mappings T± : H(C)sym → H(C) by

(T+F )(z) := A+(z) + iB+(z), (T−F )(z) := A−(z) + iB−(z) .

The following properties of the transformations T± are seen by elementary
computation. We will, therefore, omit their proof.

(i) The map T+ is a bijection of H(C)sym onto {F ∈ H(C) : ImF (0) = 0}.
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(ii) The map T− is a bijection of H(C)sym onto H(C), and (T−)−1 = sq .

(iii) T+ and T− are continuous.

(iv) We have T±(F#) = (T±F )#.

(v) Let G ∈ H(C) be real and even, and let g ∈ H(C) be defined by the
equation g(z2) = G(z). Then T±(GF ) = gT±F .

b. The indefinite Hermite-Biehler class

Let us discuss the class HB<∞ in a bit more detail.

2.4 Remark.

(i) The powerful condition in Definition 1.1 is the requirement that KE(w, z)
has a finite number of negative squares. However, the innocent looking
condition that E and E# have no common nonreal zeros will, especially
in the present context, play an important role. For example its presence
allows us to evaluate the number of negative squares of KE(w, z) in terms
of the zeros of E, cf. [PW, Remark 2.3, (ii)], [KL1]:

Let E ∈ HB<∞, then ind− E is equal to the number of zeros of E which
are located in the open upper half plane counted according to their mul-
tiplicities.

(ii) The condition that a kernel has a finite number of negative squares is
stable with respect to convergent sequences of uniformly bounded negative
index. If En → E and each of the kernels KEn

has at most κ negative
squares, then also the kernel KE has at most κ negative squares. I.e., in
the limit the negative index may decrease but cannot increase. This shows
the following statement:

Assume that En ∈
⋃κ

ν=0 HBν converges to an entire function E, and as-
sume that E has no pairs of conjugate nonreal zeros. Then E ∈

⋃κ

ν=0 HBν .

The set Nκ of generalized Nevanlinna functions with κ negative squares is de-
fined as the set of all functions q which are meromorphic in C \ R, satisfy
q(z) = q(z), and have the property that the kernel

Lq(w, z) :=
q(z) − q(w)

z − w
, z, w ∈ C

+ (2.1)

has κ of negative squares. The set of all generalized Nevanlinna functions is then
N<∞ :=

⋃

κ∈N∪{0}Nκ. For q ∈ N<∞, the actual number of negative squares of

the kernel (4.5) will be denoted by ind− q.
This is a generalization of a classical class of functions also known as the

Nevanlinna class (not to be mixed up with the set of all functions of bounded
characteristic, which is sometimes also referred to as the ‘Nevanlinna class’). It
follows e.g. from [Pi] that q ∈ N0 if and only if q is analytic in C \R, symmetric
with respect to the real axis, and satisfies Im q(z) ≥ 0 for all z ∈ C+.

Indefinite Hermite-Biehler functions are closely related to generalized Nevan-
linna functions: Let E ∈ H(C) be such that E and E# have no common nonreal
zeros, and put q := ReE

ImE
. Then E ∈ HB<∞ if and only if q ∈ N<∞, and, in this

case, ind− E = ind− q.
A product representation of an indefinite Hermite-Biehler function can be

given, cf. [K], [PW]:
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2.5. Krĕın’s Factorization Theorem: Let E ∈ HB<∞, then only finitely
many zeros of E lie in C+, E has no pairs of conjugate nonreal zeros, and the
nonreal zeros a1, a2, . . . of E satisfy the Blaschke condition

∑

n

∣
∣ Im

1

an

∣
∣ < ∞ .

Whenever numbers pn ∈ N ∪ {0} are chosen such that
∑

n
1

|an|pn+1 < ∞, the

function E can be factorized as a convergent product

E(z) = γD(z)e−iaz
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

, (2.2)

where D is real and has only real zeros, |γ| = 1, and a ≥ 0.
Conversely, if γ, D, a, a1, a2, . . ., p1, p2, . . ., are given and subject to the men-

tioined conditions, then (2.2) defines an entire function which belongs to HB<∞.

As a consequence we obtain that HB<∞ is stable with respect to dividing
out zeros.

2.6 Corollary. Let E ∈ HB<∞ and let P be a polynomial such that E
P

∈ H(C).

Then E
P

∈ HB<∞ and

ind−
E

P
= ind− E − N ,

where N is the number of zeros of P in C
+ counted according to their multi-

plicities.

Proof. Write

E(z) = γD(z)e−iaz
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

according to Krĕın’s Factorization Theorem. Since every zero of P must also be
a zero of E with at least the same multiplicity, we can enumerate the nonreal
zeros a1, a2, . . . of E in such a way that P (z) = P̃ (z)

∏k

n=1

(
1− z

an

)
where P̃ (z)

has only real zeros. It follows that

E(z)

P (z)
= γ ·

[D(z)

D̃(z)
exp

( k∑

n=1

pn∑

l=1

zl

l
Re

1

al
n

) ]

×

× e−iaz
∏

n>k

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

.

From the converse statement in Krĕın’s Factorization Theorem we obtain that
E
P

∈ HB<∞. The assertion on negative indices follows from Remark 2.4, (i).

❑

c. More on the relation between HB
sym
<∞

and HB
sb
<∞
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Since T− = sq−1, we know from [PW, Proposition 2.10] that, if E ∈ HB
sym
<∞,

then the transformed function T−E is again an indefinite Hermite-Biehler func-
tion. It was proved in [KWW2] under the additional assumption that E has no
real zeros, that also T+ has this property. It is an important observation, which
appears as a consequence of [KWW1, Proposition 3.2], that thereby negative
indices sum up. Since this fact is essential for our further arguments, we provide
an explicit proof.

2.7 Lemma. Let E ∈ HB
sym
<∞. Then T±E ∈ HBsb

<∞ and we have

ind− T+E + ind− T−E = ind− E .

Proof. Let A±, B± be as in Definition 2.3. Assume that w ∈ C\ [0,∞) is a zero
of A+ or A−. Let z ∈ C+ be such that z2 = w. Then, by the definition of A±,
it follows that ReE(z) = 0. Similarly, we see that if B+(w) = 0 or B−(w) = 0,
then z is a zero of ImE.

Hence, if w ∈ C \ [0,∞) is a common zero of A+ and B+, or of A− and B−,
then z is a common zero of ReE and ImE, a contradiction. In particular it
follows that T+E as well as T−E has no pair of conjugate nonreal zeros.

Consider the functions

q(z) :=
ReE(z)

ImE(z)
, q+(z) :=

A+(z)

B+(z)
, q−(z) :=

A−(z)

B−(z)
.

Then q ∈ N<∞ and ind− q = ind− E. By the definition of A± and B±, we have

q(z) = zq+(z2) =
q−(z2)

z
.

Now we can apply [KWW1, Proposition 3.2], and obtain that q+, q− ∈ N<∞

and ind− q+ + ind− q− = ind− q. This shows that T−E, T+E ∈ HB<∞, and
that ind− T−E + ind− T+E = ind− E.

As we have seen above in the first paragraph of this proof, a zero w ∈
C\ [0,∞) of B+ or B− gives rise to a zero z ∈ C+ of ReE or ImE, respectively.
However, since ReE

ImE
∈ N<∞, this function can have only finitely many poles in

C+. Since ReE and ImE have no common nonreal zeros, the function ImE,
and with it also B+ and B−, can have only finitely many zeros in C \ [0,∞). In
particular, T−E and T+E satisfy the requirement of Definition 1.2, (ii).

❑

3 Proof of sufficiency in Theorem 1.3

The present proof is based on a ‘shifting-of-zeros’ perturbation argument. We
present its core in the form of three lemmata. The first one is an immediate
consequence of Krĕın’s Factorization Theorem.

3.1 Lemma. Let E ∈ HB<∞ and let η1, . . . , ηN : [0, 1] → C be continuous and
such that for each t ∈ [0, 1] the set

Mt :=
{
z ∈ C : E(z) = 0

}
∪ {η1(t), . . . , ηN (t)}
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×
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×

•

×

•

×

•

×

⋄
⋄

• ... zeros of E

× ... conjugates (forbidden points)

η(t)

forbidden curve

η(t) for t with
Im η(t) > 0

Figure 1: Path of η(t) (N = 1)

does not contain pairs of conjugate nonreal points, cf. Figure 1. Define

e(t) :=

N∏

j=1

(z − ηj(t)) · E(z), t ∈ [0, 1] .

Then e maps [0, 1] continuously into HB<∞ and we have

ind− e(t) = ind− E + #{j : Im ηj(t) > 0}

Proof. The fact that e(t) is a continuous map into H(C) is obvious. Write

E(z) = γD(z)e−iaz
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

according to Krĕın’s Factorization Theorem. Put c(t) :=
∏

j:ηj(t) 6=0 ηj(t) and

let k(t) := #{j : ηj(t) = 0}. Then

e(t) =
(
γ

c(t)

|c(t)|

)
·
[

|c(t)|(−1)N−k(t)zk(t)D(z)
]

· e−iaz ×

×
∏

j:ηj(t) 6=0

(
1 −

z

ηj(t)

)
·
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

.

From the converse part of Krĕın’s Factorization Theorem, we obtain e(t) ∈
HB<∞. The assertion on negative indices follows from Remark 2.4, (i).

❑

3.2 Lemma. Let κ ∈ N ∪ {0}, let I be a nonempty and connected subset of
R, and let e : I → HBsym

κ be continuous. Then the functions ind− T+e(t) and
ind− T−e(t) are constant on I.
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Proof. Put κ0 := mint∈I ind− T+e(t). By Lemma 2.7 we have κ0 ≤ κ. More-
over, if κ0 = κ, we must have ind− T+e(t) = κ and ind− T−e(t) = 0 for all t ∈ I,
and we are done. Hence let us assume that κ0 < κ.

Consider the set

J :=
{
t ∈ I : ind− T+e(t) = κ0

}
.

Then J is nonempty. Remark 2.4, (ii), and the continuity of T+ imply that J

is closed, for if s ∈ J , then

κ0 ≤ ind− T+e(s) ≤ sup
t∈J

ind− T+e(t) = κ0 .

Consider the set I \ J . By Lemma 2.7 we have

I \ J =
{
t ∈ I : ind− T+e(t) > κ0

}
=

{
t ∈ I : ind− T−e(t) < κ − κ0

}
=

=
{
t ∈ I : ind− T−e(t) ≤ κ − κ0 − 1

}
.

From Remark 2.4, (ii), and the continuity of T−, it now follows that also I \ J

is closed.
Since I is connected, we conclude that I = J . This means that ind− T+e(t) =

κ0 and ind− T−e(t) = κ − κ0 for all t ∈ I.

❑

3.3 Lemma. Let E ∈ HB
sym
<∞ and assume that E has a simple zero at the origin.

Let I = (α, β), α ∈ [−∞, 0), β ∈ (0,∞], be the largest interval which contains
zero and is such that E has no zeros in (−iβ,−iα) \ {0}. Define a function
e : I → H(C) by

e(t) :=
z − it

z
E(z), t ∈ I .

Then e maps I continuously into HB
sym
<∞, and the function ind− T−e(t) is con-

stant on I.

Proof. We have E(z)
z

∈ HB<∞ and e(t) = (z− it)E(z)
z

. Hence, by the definition
of I, we may apply Lemma 3.1 and obtain that e(t) ∈ HB<∞ for all t ∈ I, and
that

ind− e(t) =

{

ind− E + 1 , t > 0

ind− E , t ≤ 0
.

Since
(z − it

z

)#

=
z + it

z
=

(−z) − it

(−z)
,

we see that e(t) ∈ H(C)sym.
By Lemma 3.2 both of the functions ind− T+e(t) and ind− T−e(t) are con-

stant on (α, 0] as well as on (0, β). Put

ν± := ind− T±e(t), t ∈ (α, 0] ,

π± := ind− T±e(t), t ∈ (0, β) .

Then, by Remark 2.4, (ii), and the continuity of T−,

ν− = ind− T−e(0) ≤ π− . (3.1)
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We claim that
π+ ≥ ν+ + 1 . (3.2)

Assuming this claim, it follows that

ν+ + ν− = ind− E = π+ + π− − 1 ≥ (ν+ + 1) + π− − 1 = ν+ + π−

and hence ν− ≥ π−. Together with (3.1) we obtain ν− = π−, and this is the
assertion of the lemma.

It remains to establish the claim (3.2). To this end let us compute T+e(t)
more explicitly: We have

e(t) =
(
1 − i

t

z

)
E(z) =

(
1 − i

t

z

)(
ReE(z) + iImE(z)

)
=

=
[
ReE(z) + t

ImE(z)

z

]

︸ ︷︷ ︸

=Ree(t)(z)

+i
[
ImE(z) − t

ReE(z)

z

]

︸ ︷︷ ︸

=Ime(t)(z)

.

To shorten notation put A := ReT−E and B := ImT−E. Then the above
formula rewrites as

Ree(t)(z) = A(z2) + tB(z2), Ime(t)(z) =
1

z

(
z2B(z2) − tA(z2)

)
.

The definition of T+ now gives
(
ReT+e(t)

)
(z) = A(z) + tB(z),

(
ImT+e(t)

)
(z) = zB(z)− tA(z) ,

i.e.,
T+e(t)(z) =

[
A(z) + tB(z)

]
+ i

[
zB(z) − tA(z)

]
. (3.3)

Since E(0) = 0, we have ReE(0) = ImE(0) = 0, and it follows from the
definition of T− that A(0) = 0. Since ReE is even, it has a zero of multiplicity
at least 2 at 0. Due to our assumption that 0 is a simple zero of E, the function
ImE must therefore have a simple zero at the origin. This implies that B(0) =
ImT−E(0) 6= 0, and that ImT+E has a simple zero at 0. Hence T+E = T+e(0)
has a simple zero at the origin.

By Hurwitz’s Theorem there exist r1 > 0 and ǫ1 > 0 such that, for every
t ∈ (−ǫ1, ǫ1), the function T+e(t) has exactly one zero ζ(t) in the disk U0 :=
{z ∈ C : |z| < r1} and this zero is simple. By the generalized Theorem of
Logarithmic Residues, ζ(t) depends real-analytically on t.

We differentiate the identity T+e(t)(ζ(t)) = 0 with respect to t using the
representation (3.3) of T+e(t) (a prime denotes derivation with respect to the
complex variable z, a dot the derivative with respect to the real variable t):

0 =
[
A′(ζ(t))ζ̇(t) + B(ζ(t)) + tB′(ζ(t))ζ̇(t)

]
+

+i
[
ζ̇(t)B(ζ(t)) + ζ(t)B′(ζ(t))ζ̇(t) − A(ζ(t)) − tA′(ζ(t))ζ̇(t)

]
=

= ζ̇(t)
[
A′(ζ(t)) + tB′(ζ(t)) + iB(ζ(t)) + iζ(t)B′(ζ(t)) − itA′(ζ(t))

]
+

+
[
B(ζ(t)) − iA(ζ(t))

]
.

Evaluating at t = 0, and keeping in mind that ζ(0) = 0 and A(0) = 0, yields

0 = ζ̇(0)
[
A′(0) + iB(0)

]
+ B(0) .

10



Since B(0) 6= 0, we obtain

ζ̇(0) =
−B(0)

A′(0) + iB(0)
=

−B(0)A′(0) + iB(0)2

|A′(0) + iB(0)|2
,

and thus
Im ζ̇(0) > 0 .

Since t is a real variable,

d

dt

(
Im ζ(t)) = Im

( d

dt
ζ(t)

)
.

We conclude that, locally at 0, the function Im ζ(t) is strictly increasing. In
particular, there exists δ ∈ (0, ǫ1] such that

Im ζ(t)

{

> 0 , t ∈ (0, δ)

< 0 , t ∈ (−δ, 0)
.

Let a1, . . . , an denote the zeros of T+E in the open upper half plane, and let
α1, . . . , αn be their multiplicities, so that α1 + . . . + αn = ind− T+E = ν+.
By Hurwitz’s Theorem, there exist r2 > 0 and ǫ2 > 0 such that the disks
Uj := {z ∈ C : |z − aj | < r2} are pairwise disjoint, are entirely contained in
the open upper half plane, do not intersect the disk U0, and have the property
that for every t ∈ (−ǫ2, ǫ2) and j = 1, . . . , n the function T+e(t) has zeros
inside Uj whose total multiplicity is equal to αj . It follows that, for every
t ∈ (0, min{δ, ǫ2}), the total multiplicity of zeros of T+e(t) in the open upper
half plane is at least equal to α1 + . . . + αn + 1 = ν+ + 1.

❑

We are now ready for our new proof of the sufficiency part of Theorem 1.3.
Proof. Assume that E ∈ HB

sym
<∞ and that the zeros of E are distributed

according to the rules (Z1) and (Z2). Since sq−1 = T−, we have to show that
ind− T−E = 0. We will use induction on ind− E.

Step 1, ind− E = 0: In this case the fact that ind− T−E = 0 is immediate from
Lemma 2.7.

Step 2, reduction to the case that E has no zeros in (−iy1, iy1): Assume that
ind− E > 0, let y1 be as in Theorem 1.3, and denote by ia1, . . . , ia2k the zeros of
E in the interval [0,−iy1) listed according to their multiplicities and enumerated
such that 0 ≥ a1 ≥ . . . ≥ a2k. We will move these zeros away from the imaginary
axis. Since their total number is even, this can be done retaining the symmetry
property of E.

If k = 0, there is nothing to do. Assume that k > 0. Put

ηj(t) := t
−iy1

2
+ (1 − t)iaj , t ∈ [0, 1], j = 1, . . . , 2k ,

and consider the map

e(t) :=

2k∏

j=1

(
z − ηj(t)

)
·

E(z)
∏2k

j=1(z − iaj)
, t ∈ [0, 1] ,

11
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Figure 2: Producing one multiple zero with even multiplicity

cf. Figure 2. For all values of t and j, the point ηj(t) lies on the imaginary axis.
Hence

[z − ηj(t)

z − iaj

]#

=
z + ηj(t)

z + iaj

=
(−z)− ηj(t)

(−z) − iaj

,

and it follows that e(t) ∈ H(C)sym. Since ηj depends continuously on t and
Im ηj(t) ≤ 0, Corollary 2.6 and Lemma 3.1 give e(t) ∈ HB<∞ and ind− e(t) =
ind− E, t ∈ [0, 1]. We therefore may apply Lemma 3.2 and conclude that

ind− T−e(1) = ind− T−E .

Choose ǫ > 0 such that no zero of e(1) lies in [−iy1

2 − ǫ, −iy1

2 + ǫ] \ {−iy1

2 }. Put

λl(t) :=
−iy1

2
− tǫ, λr(t) := t

−iy1

2
+ tǫ, t ∈ [0, 1] ,

and consider the map

f(t) := λl(t)
kλr(t)

k ·
e(1)(z)

(z + iy1

2 )2k
, t ∈ [0, 1] ,

cf. Figure 3. The same argument as above will show that

ind− f(t) = ind− f(0)
(

= ind− e(1) = ind− E
)
, t ∈ [0, 1] ,

ind− T−f(1) = ind− T−f(0) (= ind− T−e(1) = ind− T−E
)
.

The function f(1) belongs to HB
sym
<∞, its zeros are distributed according to the

rules (Z1) and (Z2), and we have

ind− f(1) = ind− E, ind− T−f(1) = ind− T−E .

12
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Figure 3: Moving the zeros symmetrically away from the imaginary axis

Moreover, f(1) has no zeros in (−iy1, iy1).

Step 3, the inductive step: Due to the considerations in Step 2, we may assume
that E has no zeros in (−iy1, iy1). Put

Ê(z) :=
zE(z)

z − iy1
,

then Ê ∈ H(C)sym. Moreover, by Corollary 2.6, Ê ∈ HB<∞ and ind− Ê =
ind− E − 1. Let I = (α, β) be the largest interval which contains 0 and is such
that Ê has no zeros in (−iβ,−iα) \ {0}. Then β > y1, in particular y1 ∈ I. An
application of Lemma 3.3 to Ê, cf. Figure 4, yields

ind− T−Ê = ind− T−E .

However, the function Ê belongs to HB
sym
<∞ and satisfies the conditions (Z1)

and (Z2) since the total number of zeros in (−iy2,−iy1) is odd and we have
produced a simple zero at the origin. Moreover, ind− Ê < ind− E. Hence, by
the inductive hypothesis, ind− T−Ê = 0. This completes the proof of Theorem
1.4, sufficiency.

✌

4 An application

We come to the proof of Theorem 1.4. Here we will actually use the necessity
part in Theorem 1.3, the proof of which can be found in [PW]. First let us
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Figure 4: Moving one zero out of C+

substitute λ := z + ip
2 for the spectral parameter λ. Then (1.5)-(1.7) become

y′′(x) + z2y(x) +
(p2

4
− q(x)

)
= 0, x ∈ (0, b) ∪ (b, a) (4.1)

y(0) = y(a) = 0, y(b − 0) = y(b + 0) (4.2)

y′(b − 0) − y′(b + 0) +
(
β1 + i(α − mp)z − mz2

)
y(b − 0) = 0 (4.3)

where β1 := β + mp2

4 − αp
2 .

Let s1(ζ, x), c1(ζ, x), x ∈ (0, b), and s2(ζ, x), c2(ζ, x), x ∈ (b, a), be the
solutions of the equation

y′′(x) + ζy(x) +
(p2

4
− q(x)

)
= 0

on the interval (0, b) and (b, a), respectively, which satisfy

s1(ζ, 0) = 0, s′1(ζ, 0) = 1 s2(ζ, b) = 0, s′2(ζ, b) = 1
c1(ζ, 0) = 1, c′1(ζ, 0) = 0 c2(ζ, b) = 1, c′2(ζ, b) = 0

We will use the following standard properties of these functions, see e.g. [KK],
[A], [M].

4.1 Remark.

(i) All zeros of each of the functions s1(ζ, b), c1(ζ, b), s2(ζ, a), c2(ζ, a), are real,

simple, and lie in [− p2

4 ,∞).

(ii) The functions s1(ζ, b) and c1(ζ, b) have no common zeros. The same holds
for each of the pairs s1(ζ, b) and s′1(ζ, b), s2(ζ, b) and c2(ζ, b), s2(ζ, b) and
s′2(ζ, b).
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(iii) The functions
s1(ζ, b)

c1(ζ, b)
,
s1(ζ, b)

s′1(ζ, b)
,
s2(ζ, b)

c2(ζ, b)
,
s2(ζ, b)

s′2(ζ, b)

belong to the Nevanlinna class N0, i.e. have nonnegative imaginary part
throughout the upper half-plane.

A standard argument will show that the spectrum of the problem (4.1)-(4.3)
coincides with the set of zeros of the function

φ(z) := s′1(z
2, b)s2(z

2, b) + s1(z
2, b)c2(z

2, b)+

+
(
β1 + i(α − mp)z − mz2

)
s1(z

2, b)s2(z
2, b) .

This function belongs to H(C)sym and, hence, can be written as a square-
transform of some entire function. In fact,

φ(z) =
[

s′1(z
2, b)s2(z

2, b) + s1(z
2, b)c2(z

2, b) + (β1 − mz2)s1(z
2, b)s2(z

2, b)
]

+

+iz
[

(α − mp)s1(z
2, b)s2(z

2, b)
]

= sqF (z) ,

where

F (z) :=
[

s′1(z, b)s2(z, b) + s1(z, b)c2(z, b) + (β1 − mz)s1(z, b)s2(z, b)
]

+

+i
[

(α − mp)s1(z, b)s2(z, b)
]

.

Case (I), α = mp: In this case the term i(α − mp)z in (4.3) is not present.
Hence, if we substitute ζ = z2, the problem (4.1)-(4.3) rewrites as

y′′(x) + ζy(x) +
(p2

4
− q(x)

)
= 0, x ∈ (0, b) ∪ (b, a) (4.4)

y(0) = y(a) = 0, y(b − 0) = y(b + 0) (4.5)

y′(b − 0) − y′(b + 0) + (β1 − mζ)y(b − 0) = 0 (4.6)

It is known, see e.g. [P1], that the eigenvalues of this problem are all real, simple,

and lie in [− p2

4 ,∞). However, the eigenvalues of (4.4)-(4.6) are just the zeros
of the function F , hence the zeros of F are all real, simple, and contained in

[− p2

4 ,∞).
Changing back the spectral parameter ζ to z, we see that the spectrum of

(4.1)-(4.3) can be written as disjoint union of the set Σ1 which contains all
square-roots of negative zeros of F (each with multiplicity 1), and of the set Σ2

which contains all square-roots of positive zeros of F , each with multiplicity 1,
and, in case F (0) = 0, the point 0 with multiplicity 2. Clearly, for all z ∈ Σ1,
we have ‖ Im z‖ ≤ p

2 . Changing back the spectral parameter z to λ, yields the
assertion of Theorem 1.4 in the present case.

Cases (II),(III), α 6= mp: By Remark 4.1, (iii), and since m > 0, we have

q(z) := −
s′1(z, b)s2(z, b) + s1(z, b)c2(z, b) + (β1 − mz2)s1(z, b)s2(z, b)

s1(z, b)s2(z, b)
=
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= −
s′1(z, b)

s1(z, b)
−

c2(z, b)

s2(z, b)
− β1 + mz ∈ N0 .

It follows that
ReF

ImF
∈

{

N0, α < mp

−N0, α > mp
.

By property Remark 4.1, (i), all zeros of ImF are real. In particular, ReF and
ImF cannot have common nonreal zeros.

In order to apply Theorem 1.3, we have to take care about possible zeros
of F located on the negative real line. Assume that w ∈ (−∞, 0) is such that
F (w) = 0. Then ReF (w) = 0 and ImF (w) = 0. We see from the second
relation that either s1(w, b) = 0 or s2(w, a) = 0. If , say, s1(w, b) = 0, then
by Remark 4.1, (ii), we have s′1(w, b) 6= 0, and hence the first relation implies
that s2(w, a) = 0. Similarly, if s2(w, a) = 0, then c2(w, a) 6= 0, and hence
s1(w, b) = 0. Thus ImF has a zero of multiplicity 2 at w. The multiplicity of
w as a zero of ReF is, by what was said in Case (I) above, equal to 1. Hence
F (z)
z−w

takes a nonzero real value at w.
All real negative zeros of s1(ζ, b), and hence also all real negative zeros of

F , lie in [− p2

4 ,∞). Denote them by w1, . . . , wN , and put

F̂ (z) :=
F (z)

∏N

j=1(z − wj)
.

From now on we have to distiguish the cases whether α < mp or α > mp.

Case (II), α < mp: In this case we have F ∈ HBsb
0 , and thus also F̂ ∈ HBsb

0 .
However, F̂ has no real negative zeros, and hence the zeros of sq F̂ are distributed
according to (Z1) and (Z2). We have

sqF (z) =
N∏

j=1

(z2 − wj) · sq F̂ (z) .

Let Σ1 denote the set of all square-roots of the numbers w1, . . . , wN , each with
multiplicity 1, and let Σ2 be the collection of zeros of sqF̂ . Then Σ1 is distributed
as required in the assertion of Theorem 1.4, and Σ2 satisfies (Z1) and (Z2). Since
all eigenvalues of the problem (4.1)-(4.3) are geometrically simple, we must have
Σ1 ∩ Σ2 = ∅. Changing back the spectral parameter z to λ, yields the asserted
representation of the spectrum of (1.5)-(1.7) with these sets Σ1 and Σ2. Now it
also follows that Im z ≥ p

2 for all z ∈ Σ2, since we know that, by our conditions
on β and q, the spectrum of (1.5)-(1.7) lies in the closed upper half-plane, cf.
[P1].

Case (III), α > mp: In this case we have F# ∈ HBsb
0 , and thus Theorem 1.3

may be applied to F̂#. Let Σ1 be as above and let Σ2 be the collection of zeros
of F̂#. The same arguments as above will yield the assertion of Theorem 1.4
also in this case.

❑
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