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A symmetric Nevanlinna function Q is of the form Q(z) = zQs(z
2) where Qs and Q0(z) = zQs(z) are

also Nevanlinna functions. In such a situation Qs and −Q−1
0 are Stieltjes functions. An inverse result of L. de

Branges implies that each Nevanlinna function is the Titchmarsh-Weyl coefficient of a uniquely determined
canonical system with some nonnegative Hamiltonian matrix function H , and, according to M.G. Krein, each
Stieltjes function is the Titchmarsh-Weyl coefficient of a uniquely determined string. The Hamiltonians cor-
responding to Qs, Q0 and Q are constructed in terms of the string corresponding to Qs and the dual string
corresponding to −Q−1

0 . The relations between the associated Fourier transformations are described by com-
muting isometric isomorphisms between the considered spaces.
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1 Introduction

Recall [15] that if a function Qs(z) belongs to the class of Stieltjes functions S then the functions Q0(z) =
zQs(z) and Qd(z) = zQs(z2) belong to the class N of Nevanlinna functions. Let Q̂(z) = −Q(z)−1. Then
Q ∈ N if and only if Q̂ ∈ N, and the function −(zQs(z))−1 belongs as well to the Stieltjes class, see [15].
A well known inverse result of L. de Branges (see [7], [8], [23]) states that each Nevanlinna function is the
Titchmarsh-Weyl coefficient of a uniquely determined 2-dimensional system of canonical differential equations
(2.26) which is characterized by a real, nonnegative and trace normed matrix funtion H , called the Hamiltonian.
Moreover, according to M.G. Krein, (see [16], [21]) each Stieltjes function is the principal Titchmarsh-Weyl
coefficient of a unique string S[L,m] which is characterized by its length L and a measure m which may be
considered as the mass distribution of a physical string.

Let a string S[L,m] with principal Titchmarsh-Weyl coefficient Qs(z) be given. Then the problem arises
how to express the Hamiltonians Hs, H0 and Hd associated with the Nevanlinna functions Qs, Q0 and Qd, and
also the Hamiltonians corresponding to Q̂s, Q̂0 and Q̂d, in terms of the length L and the measure m of the string
S[L,m]. Partial results concerning this question are contained in e.g. [11], [8], [20], [19], [21], [18], see also [14],
[10], and [1], [2], [3], [22] for n-dimensional canonical systems. The Stieltjes function Qŝ(z) = −(zQs(z))−1

is the principal Titchmarsh-Weyl coefficient of the dual string of S[L,m], that is, roughly speaking, the string
which arises if length and mass in S[L,m] are interchanged (see, e.g., [16], [9]). It turns out that the Hamiltonian
Hs, which has the same Titchmarsh-Weyl coefficient as the string S[L,m], can be expressed in terms of the
corresponding dual string.

Let σ denote the spectral measure (see (2.1)) of some Nevanlinna function Q. If H is the associated Hamil-
tonian, there is a Fourier transformation mapping the space L2

H isometrically onto L2
σ such that the action of
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the selfadjoint differential operator determined by the canonical system in L2
H becomes the operator of multi-

plication with the independent variable in L2
σ, see e.g. [6], [13], [12]. An aim of this paper is to give a com-

prehensive description of all the isometric isomorphisms which connect the different Fourier transformations of
all the Hamiltonians associated with the Nevanlinna functions Qs, Q0 and Qd, and the Fourier transformations
which are determined by the string S[L,m] and its dual string. The fact that Qd(z) = −Qd(−z) implies that
the corresponding spectral measure σd is symmetric and that the associated Hamiltonian Hd = diag (h1, h2)
is of diagonal form. The function h1 is related to the length of the string, and the function h2 is related to the
corresponding mass function. It turns out that the decomposition of the vector functions f = (f1, f2)T ∈ L2

Hd

into its components f1 and f2 corresponds via the Fourier transformation to the splitting of L2
σ into the subspaces

L2
σ,o of the odd, and L2

σ,e of the even functions. There are isometric isomorphisms between L2
H0

and L2
σ,o and

L2
Hs

and L2
σ,e, and also between the space L2

m of the string S[L,m] and L2
σ,e.

The second chapter contains preliminary results from the literature about Nevanlinna and Stieltjes functions,
strings and canonical systems. The third chapter is concerned with dual strings, and a couple of partially known
results about the interaction between strings and dual strings are formulated for later use. Chapter 4 contains
explicit relations for all the Hamiltonians which are connected with the string as mentioned above, and the
isometries between the corresponding spaces are described. In chapter 5 the isometric isomorphisms which arise
between the different Fourier transformations are presented, see Theorem 5.1 below.

2 Preliminaries

2.1 Subclasses of Nevanlinna functions

A functionQ is said to belong to the set of Nevanlinna functions N if it is analytic onC\R, satisfies the symmetry
condition Q(z̄) = Q(z), and maps the upper half-plane C+ into C+ ∪R. In particular, the relation Im Q(z) ≥ 0
for z ∈ C+ holds. A Nevanlinna function Q ∈ N is said to belong to the set S, the class of Stieltjes functions, if
additionally the function Q̃ defined by Q̃(z) = zQ(z) has the property that Q̃ ∈ N, see [15]. Recall [17] that a
Nevanlinna function Q is is called symmetric, Q ∈ Nsym, if Q is odd, that is Q(z) = −Q(−z) for z ∈ C \ R.
Each Q ∈ N has a unique representation of the form

Q(z) = a+ bz +

+∞∫

−∞

(
1

t− z
− t

1 + t2

)
dσ(t), (2.1)

with a ∈ R, b ≥ 0, and a measure σ on R with the property that

+∞∫

−∞

dσ(t)
1 + t2

<∞.

Theorem 2.1 Let Q ∈ Nsym be given. Define functions Qs and Q0 by the relations

zQs(z2) = Q(z),
Q0(z2)
z

= Q(z). (2.2)

ThenQs,− 1
Q0

∈ S. Let σ, σs and σ0 be the spectral measures ofQ,Qs andQ0, respectively. Then the measures

σs and σ0 are given by

dσs(t2) = 2dσ(t), dσ0(t2) = 2t2dσ(t). (2.3)

Put

L2
σ,e :=

{
h ∈ L2

σ : h(−t) = h(t)
}
, (2.4)

L2
σ,o :=

{
k ∈ L2

σ : k(−t) = −k(t)} . (2.5)
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Then L2
σ = L2

σ,e ⊕ L2
σ,o, and we have the following isometric isomorphisms:

L2
σs
7→ L2

σ,e : f(t) → h(t) := f(t2), (2.6)

L2
σ0
7→ L2

σ,o : g(t) → k(t) := tg(t2). (2.7)

P r o o f. As Q ∈ Nsym is symmetric, the functions Q0 and Qs are well-defined. Note that Q0(z) = zQs(z).
The proposition 4.6 of [15] implies that Qs and Q0 are Nevanlinna functions, and the relations Qs,−Q−1

0 ∈ S

follow by a result also from the paper [15]. Recall the Stieltjes - Lifschitz inversion formula: Let Q ∈ N and
[a, b] ⊂ R, and let φ be real and analytic on [a, b]. If σ({a}) = σ({b}) = 0, then

b∫

a

φ(t)dσ(t) = lim
y↘0

π−1

b∫

a

Im (φ(t+ iy)Q(t+ iy))dt. (2.8)

In particular, if σ′(t) exists, then σ′(t) = π−1 limy↘0 Im Q(t + iy). By (2.8), the relations (2.3) follow from
(2.2). The measure dσ is symmetric, that is dσ(t) = −dσ(−t). If f ∈ L2

σs
, define the even function h on R as

h(t) = f(t2). It follows that

‖f‖2L2
σs

=

∞∫

0

|f(t2)|2dσs(t2) = 2

∞∫

0

|h(t)|2dσ(t) = ‖h‖2L2
σ
.

Analogously, if g ∈ L2
σ0

, define k on R by k(t) = tg(t2). It follows that

‖g‖2L2
σ0

=

∞∫

0

|g(t2)|2dσ0(t2) = 2

∞∫

0

|k(t)|2dσ(t) = ‖k‖2L2
σ
.

2.2 Strings

A string S[L,m] is given by its length L, 0 ≤ L ≤ ∞, and a non-negative (possibly infinite) Borel measure m
on R with suppm ⊆ [0, L] such that m([0, x]) <∞ for x ∈ [0, L) and m({L}) = 0. Define

m(x) := m((−∞, x)), x ∈ (−∞, L]. (2.9)

Then m is a non-decreasing left-continuous function defined on (−∞, L] if L < ∞, or on (−∞,∞) if L = ∞,
such that m(x) = 0 if x ≤ 0. Consider the integral equation boundary value problem with complex parameter z:

y′(x) +
∫

[0,x]

zy(u)dm(u) = 0, (2.10)

with the boundary conditions

y′(0−) = 0, and y(L) = 0 if L+m(L) <∞. (2.11)

This problem arises if Fourier’s method is applied to the partial differential equation which describes the vibra-
tions of a string with free left endpoint 0 on the interval [0, L) or [0, L], where m(x) is the mass of the string on
the interval [0, x). Let l := sup(supp m). The string S[L,m] is called singular if l + m(l) = ∞, otherwise, if
l +m(l) <∞, it is called regular.

There exists unique solutions ϕ(x, z) and ψ(x, z) (see [16]) of the equation (2.10) on [0, L) which satisfy the
initial conditions

ϕ(0, z) = 1, ϕ′(0−, z) = 0, ψ(0, z) = 0, ψ′(0−, z) = 1. (2.12)
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Note that if y is a solution of (2.10), then y′ is continuous from the right. It follows easily that ϕ and ψ are the
solutions of the following integral equations:

ϕ(x, z) =1− z

∫

[0,x]

(x− s)ϕ(s, z)dm(s), 0 ≤ x < L, (2.13)

ψ(x, z) =x− z

∫

[0,x]

(x− s)ψ(s, z)dm(s), 0 ≤ x < L. (2.14)

Note that

ϕ′(x, z) =− z

∫

[0,x]

ϕ(s, z)dm(s), 0 ≤ x < L, (2.15)

ϕ′(x−, z) =− z

∫

[0,x)

ϕ(s, z)dm(s), 0 ≤ x < L, (2.16)

ψ′(x, z) =1− z

∫

[0,x]

ψ(s, z)dm(s), 0 ≤ x < L, (2.17)

ψ′(x−, z) =1− z

∫

[0,x)

ψ(s, z)dm(s), 0 ≤ x < L. (2.18)

In particular, ψ′(0, z) = ψ′(0−, z) = 1 and ϕ′(0, z) = −zm(0+). As m({x}) = 0 for almost all x ∈ [0, L) with
respect to the Lebesgue measure, the relations

ϕ(x, z)− 1 =

x∫

0

ϕ′(s, z)ds=

x∫

0

ϕ′(s−, z)ds, (2.19)

ψ(x, z) =

x∫

0

ψ′(s, z)ds=

x∫

0

ψ′(s−, z)ds, (2.20)

follow. Let b := min(supp m), that is, m(x) = 0 if x ≤ b and m(x) > 0 if x > b. Note that b ≥ 0. The limit

qS(z) := lim
x→L

ψ(x, z)
ϕ(x, z)

, z ∈ C \ [0,∞), (2.21)

exists and admits the representation

qS(z) := b+

∞∫

0

dσS(t)
t− z

, (2.22)

where σS is a non-negative measure with the property

∞∫

0

dσS(t)
1 + t

<∞, (2.23)

that is, qS ∈ S (see [16]). According to M.G. Krein, the measure σS is called the principal spectral measure of
the string S[L,m]. We shall call the corresponding function qS the principal Titchmarsh-Weyl coefficient of the
string S[L,m]. A basic inverse result of M.G. Krein states (see [9], [21]): Any function q ∈ S is the principal
Titchmarsh-Weyl coefficient of a (regular or singular) string S[L,m]; this string is uniquely determined by q.

Denote by L2
m,0 the subset of L2

m of elements which vanish identically near L if S[L,m] is singular and define
for f ∈ L2

m,0 the following kind of Fourier transformation:

FS(f, z) :=

L∫

0

ϕ(x, z)f(x)dm(x). (2.24)
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It can be shown (see [16]) that the mapping FS : f 7→ F (f, ·) is an isometry from L2
m,0 onto a dense subset of

L2
σS

. Hence it can be continuously extended to all of L2
m. The inverse transformation, mapping L2

σS
onto L2

m, is
given by

f(x) = l.i.m.N→∞

N∫

0

ϕ(x, λ)FS(f, λ)dσS(λ), x ∈ [0, L), (2.25)

where l.i.m. denotes the limit in the norm ofL2
m.Note that the Parseval identity [f, g]L2

m
= [FS(f, ·), FS(g, ·)]L2

σS

for f, g ∈ L2
m holds.

2.3 Canonical systems

Let H be a real, symmetric and non-negative 2× 2–matrix function on the interval [0, lH):

H(x) =
(
h1(x) h3(x)
h3(x) h2(x)

)
, x ∈ [0, lH),

with locally integrable functions h1, h2 and h3. In this section we consider initial value problems of the form

Jy′(x) = −zH(x)y(x), x ∈ [0, lH), y1(0) = 0, (2.26)

with y(x) = (y1(x) y2(x))T , J =
(

0 −1
1 0

)
, and a complex parameter z. Here the differential equation in

(2.26) is considered to hold almost everywhere on [0, lH). The fundamental matrix function

W (x, z) =
(
w11(x, z) w12(x, z)
w21(x, z) w22(x, z)

)

of a canonical system (2.26) with Hamiltonian H is the unique solution of the integral equation

W (x, z)J − J = z

x∫

0

W (s, z)H(s)ds. (2.27)

Note that W (0, z) = I . At lH for the canonical system (2.26) Weyl’s limit point case prevails if and only if

lH∫

0

traceH(x)dx = ∞, (2.28)

and from now on we assume that for each Hamiltonian H the relation (2.28) holds, and that H is not identically
equal to diag (1 0) on the interval [0,∞). Then the limit point case prevails at lH , and it follows that for each
ω ∈ Ñ := N ∪ {∞} and z ∈ C+ the limit

Q(z) := lim
x→lH

w11(x, z)ω(z) + w12(x, z)
w21(x, z)ω(z) + w22(x, z)

(2.29)

exists, is independent of ω, and, as a function of z, belongs to the set of Nevanlinna functions N (see, e.g., [5]).
The function Q is called the Titchmarsh-Weyl coefficient of the canonical system (2.26) or of the Hamiltonian H.
The measure σ in the representation (2.1) of Q is called the spectral measure of the canonical system (2.26) or of
the Hamitonian H . In particular, if H = V V T a.e. on (l,∞) for some constant vector V = (v1, v2)T 6= 0 then

Q(z) :=
v1w11(l, z) + v2w12(l, z)
v1w21(l, z) + v2w22(l, z)

. (2.30)
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The following intervals play a special role in the sequel (see [13], [8]). Let ξφ := (cosφ, sinφ)T for some
φ ∈ [0, π). The open interval Iφ ⊂ [0, lH) is called H-indivisible of type φ if the relation

ξT
φ JH = 0, a.e. on Iφ, (2.31)

holds. In particular, detH = 0 a.e. on Iφ. An H-indivisible interval is called maximal if it is not a proper subset
of another H-indivisible interval.

With the HamiltonianH the following Hilbert spaceL2
H is associated (see [13]): It is the set of all (equivalence

classes of) 2-vector functions f(x) = (f1(x) f2(x))T on [0, lH) with the properties

(i)
lH∫
0

f(x)∗H(x)f(x)dx < +∞,

(ii) for every H-indivisible interval Iφ of type φ there is a constant cIφ,f ∈ C such that ξT
φ f = cIφ,f , a.e. on Iφ,

equipped with the inner product

(f, g)L2
H

:=

lH∫

0

g(x)∗H(x)f(x)dx.

A Hamiltonian H is called trace normed if traceH = h1 + h2 = 1 a.e. on [0,∞). For the class of trace
normed Hamiltonians a basic inverse result in [7] can be formulated as follows (see [23], [19]): Each function
Q ∈ N is the Titchmarsh-Weyl coefficient of a canonical system with a trace normed Hamiltonian H on [0,∞)
which is not equal to diag (1, 0) a. e. on [0,∞); this correspondence is bijective if two Hamiltonians which
coincide almost everywhere are identified.

We mention that in the representation (2.1) of a Titchmarsh-Weyl coefficient Q the number b ≥ 0 is positive
if and only if (0, b) is a maximal indivisible interval of the corresponding trace normed Hamiltonian H such
that H = diag (1, 0) a. e. on (0, b). Let QH denote the Titchmarsh-Weyl coefficient corresponding to some
Hamiltonian H , and let

Ĥ = JHJT . (2.32)

The relation (2.29) implies that QĤ(z) = −(QH(z))−1. For f ∈ L2
H the function f̂ := Jf belongs to L2

bH , and
it is easy to see that

‖f‖L2
H

= ‖f̂‖L2
cH
.

Hence, the mapping
L2

H 7→ L2
bH : f → f̂ ,

establishes an isometric isomorphism. We set

u(x, z) :=
(
w21(x, z)
w22(x, z)

)
.

Denote by L2
H,0 the subset of L2

H of elements which vanish identically near lH , and define for f ∈ L2
H,0 the

following sort of Fourier transformation:

FH(f, z) :=

lH∫

0

u(x, z)TH(x)f(x)dx. (2.33)

It can be shown (see [6]) that the mapping FH : f 7→ FH(f, ·) is an isometry from L2
H,0 onto a dense subset of

L2
σ . Hence it can be extended by continuity to all of L2

H . The inverse transformation, mapping L2
σ onto L2

H , is
given by

f(x) = l.i.m.N→+∞

+N∫

−N

u(x, λ)FH(f, λ)dσ(λ), x ∈ [0, lH), (2.34)
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where l.i.m. denotes the limit in the norm of L2
H . Parseval’s identity [f, g]L2

H
= [FH(f, ·), FH(g, ·)]L2

σ
holds for

f, g ∈ L2
H .

Lemma 2.2 If H is of diagonal form, that is H = diag (h1, h2), then QH ∈ Nsym.

P r o o f. Let M = diag (1,−1). Clearly, M2 = I and JM = −MJ , and MHM = H as H is of diagonal
form. With the last relations it follows from (2.27) that W (x, z) = MW (x,−z)M, and the relation (2.29)
implies that QH(z) = −QH(−z).

3 Dual strings

Let a string S[L,m] be given. As m is non-decreasing, its inverse function exists and determines also a string,
see, e.g., [16], [9]. Define

L̂ =

{
m(L) if L+m(L) = ∞,
∞ if L+m(L) <∞.

(3.1)

and

m̂(ξ̂) = inf{x ≥ 0 : ξ̂ ≤ m(x)}, ξ̂ ∈ [0,m(L)], (3.2)

with the additional conditions that m̂(ξ̂) = 0 for ξ̂ ∈ (−∞, 0) and, if L+m(L) <∞ then

m̂(ξ̂) = L for ξ̂ ∈ (m(L),∞).

The function m̂ is non-decreasing, and if L + m(L) = ∞, it follows that m̂(L̂) = l, the supremum of growth
points of m. The left continuity of m implies that m(L) = l̂, the supremum of growth points of m̂. To see that m̂
is also left-continuous, let ξ̂n ↗ ξ̂, an = m̂(ξ̂n), a = lim an, b = m̂(ξ̂). Assume that a < b, then ξ̂n ≤ m(t) < ξ̂

for t ∈ (a, b), and it follows that ξ̂ ≤ m(t) < ξ̂, a contradiction. Note that

m̂(ξ̂+) = sup{x ≤ L : m(x) ≤ ξ̂}, ξ̂ ∈ [0,m(L)]. (3.3)

To see this, let ξ̂n ↘ ξ̂, dn = m̂(ξ̂n), d = lim dn, c = sup{x : m(x) ≤ ξ̂}. If c < d, then ξ̂ < m(t) < ξ̂n for
t ∈ (c, d), and it follows that ξ̂ ≤ m(t) < ξ̂, a contradiction.

Let m̂ denote the corresponding measure generated by m̂. The string Ŝ[L̂, m̂] is called the dual string of
S[L,m], that is, roughly speaking, the string which arises if mass and length change their role in S[L,m]. Note
that m̂(L̂)+ L̂ <∞ if and only if the string S[L,m] is regular with L = ∞, in this case the relations L̂ = m(l+)
and m̂(L̂) = l hold. Moreover, the string Ŝ[L̂, m̂] is regular with L̂ = ∞ if and only if L + m(L) < ∞. It
follows that the string S[L,m] is regular if and only if its dual string Ŝ[L̂, m̂] is regular.

Lemma 3.1 Let S[L,m] be some string and Ŝ[L̂, m̂] be its dual string. Then the relation m(ξ+) ∈ supp m̂

holds. If ξ̂ < m(ξ) then m̂(ξ̂) < ξ, and if m(ξ+) < ξ̂ then ξ < m̂(ξ̂). If ξ ∈ suppm then m̂(m(ξ+)) = ξ.
Moreover, if m(ξ+) > m(ξ) then m̂(ξ̂) = ξ for ξ̂ ∈ (m(ξ),m(ξ+)]. If 0 ≤ ξ ≤ L and ξ 6∈ suppm, then m̂ has
a jump at m(ξ) and ξ ∈ (m̂(m(ξ)), m̂(m(ξ)+)).

P r o o f. The relation m(ξ+) ∈ supp m̂ is a consequence of the other statements of the present Lemma. If
ξ̂ < m(ξ), the left continuity of m implies that there is some x < ξ such that ξ̂ < m(x) < m(ξ), and m̂(ξ̂) < ξ

follows from (3.2). Now let m(ξ+) < ξ̂. As m(ξ+) is a limit from the right, there is some x > ξ such that
m(x) < ξ̂, and the relation (3.2) implies that m̂(ξ̂) ≥ x > ξ. Let ξ ∈ supp m. Then

m̂(m(ξ+)) = inf{x : m(ξ+) ≤ m(x)} = ξ.

Let m(ξ+) > m(ξ). If ξ̂ ∈ (m(ξ),m(ξ+)), then also

m̂(ξ̂) = inf{x : ξ̂ ≤ m(x)} = ξ.
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Let 0 ≤ ξ 6= suppm, then m is constant in an open neighborhood of ξ, and it follows that

m̂(m(ξ)) = inf{x : m(x) = m(ξ)} < ξ < sup{x : m(x) = m(ξ)} = m̂(m(ξ)+).

Lemma 3.2 Each string S[L,m] is equal to the dual string of its dual string Ŝ[L̂, m̂].

P r o o f. Let S[L,m] be regular. If L = ∞ then L̂+ m̂(L̂) <∞ and hence ˆ̂
L = ∞. Moreover, ˆ̂m(∞) = L̂ =

m(∞). If L <∞ then L̂ = ∞ and ˆ̂
L = m̂(l̂+) = L by the relation (3.3). It follows that ˆ̂m(L) = l̂ = m(L). If

S[L,m] is singular, then
ˆ̂
L = m̂(L̂) = inf{x ≥ 0 : m(L) ≤ m(x)} = L.

The Lemma 3.1 implies that

ˆ̂m(ξ) = inf{x ≥ 0 : ξ ≤ m̂(x)} = m(ξ), ξ ∈ [0, L]. (3.4)

The relation ˆ̂
S = S implies that to each result concerning S and Ŝ a corresponding dual result exists. In

particular, the relations

m(ξ) = inf{x̂ ≥ 0 : ξ ≤ m̂(x̂)}, ξ ∈ [0, l], (3.5)

m(ξ+) = sup{x̂ ≤ L̂ : m̂(x̂) ≤ ξ}, ξ ∈ [0, l]. (3.6)

hold. The dual result of the Lemma 3.1 is
Corollary 3.3 Let S[L,m] be some string and Ŝ[L̂, m̂] be its dual string. Then the relation m̂(ξ̂+) ∈ supp m

holds. If ξ < m̂(ξ̂) then m(ξ) < ξ̂, and if m̂(ξ̂+) < ξ then ξ̂ < m(ξ). Let ξ̂ ∈ supp m̂. Then m(m̂(ξ̂+)) = ξ̂.
Moreover, if m̂(ξ̂+) > m̂(ξ̂) then m(ξ) = ξ̂ for ξ ∈ (m̂(ξ̂), m̂(ξ̂+)]. If 0 ≤ ξ̂ ≤ L̂ and ξ̂ 6∈ supp m̂, then m has
a jump at m̂(ξ̂) and ξ̂ ∈ (m(m̂(ξ̂)),m(m̂(ξ̂)+)).

Corollary 3.4 Let f be a measurable function. Then
∫

[a,b]

f(ξ)dm(ξ) =
∫

[m(a),m(b+)]

f(m̂(ξ̂))dξ̂, (3.7)
∫

[a,b)

f(ξ)dm(ξ) =
∫

[m(a),m(b)]

f(m̂(ξ̂))dξ̂. (3.8)

Analogously, if g is a measurable function, then
∫

[a,b]

g(ξ̂)dm̂(ξ̂) =
∫

[m̂(a),m̂(b+)]

g(m(ξ))dξ, (3.9)
∫

[a,b)

g(ξ̂)dm̂(ξ̂) =
∫

[m̂(a),m̂(b)]

g(m(ξ))dξ. (3.10)

P r o o f. Let ξ ∈ suppm. Ifm(ξ+) > m(ξ), then ξ = m̂(ξ̂) for ξ̂ ∈ (m(ξ),m(ξ+)] by Lemma 3.1. It follows
that f(ξ)m({ξ}) =

∫
[m(ξ),m(ξ+)]

f(m̂(ξ̂))dξ̂. If m(ξ+) = m(ξ), Lemma 3.1 implies that m̂(m(ξ)) = ξ, hence,

with ξ̂ = m(ξ) the relations f(ξ) = f(m̂(ξ̂)) and dm(ξ) = dξ̂ follow. This proves the relations (3.7) and (3.8),
and a similar argument using the Corrollary 3.3 implies the relations (3.9) and (3.10).

Lemma 3.5 Let S[L,m] be some string and Ŝ[L̂,m] be its dual string. Let ϕ̂(ξ̂, z) and ψ̂(ξ̂, z) satisfy the
corresponding relations (2.14) and (2.13) for Ŝ[L̂, m̂] instead of S[L,m] with the corresponding initial conditions
(2.12). Then

ϕ̂(ξ̂, z) = ψ′(m̂(ξ̂), z), ξ̂ ∈ supp m̂, (3.11)

ψ̂(ξ̂, z) = −z−1ϕ′(m̂(ξ̂), z), ξ̂ ∈ supp m̂, (3.12)
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and

ϕ(ξ, z) = ψ̂′(m(ξ), z), ξ ∈ supp m, (3.13)

ψ(ξ, z) = −z−1ϕ̂′(m(ξ), z), ξ ∈ supp m. (3.14)

P r o o f. The main part of the proof is to check that the functions ψ′(m̂(ξ̂), z) and −z−1ϕ′(m̂(ξ̂), z) satisfy
the equations (2.13) and (2.14) for m̂ replaced by m and ξ̂ ∈ supp m̂: Let ξ̂ ∈ supp m̂ such that m̂(ξ̂+) > m̂(ξ̂).
Then m((m̂(ξ̂), m̂(ξ̂+)]) = 0 by Lemma 3.1, and the relations (2.15), (2.16), (2.17), and (2.18) imply for ξ ∈
(m̂(ξ̂), m̂(ξ̂+)) that ϕ′(m̂(ξ̂+)−, z) = ϕ′(ξ, z) = ϕ′(m̂(ξ̂), z) and ψ′(m̂(ξ̂+)−, z) = ψ′(ξ, z) = ψ′(m̂(ξ̂), z).
Note that the relation

inf{ŝ : u < m̂(ŝ)} = sup{ŝ : m̂(ŝ) ≤ u} = m(u+), u ∈ [0, L),

together with the Corollary 3.3 and the relation (3.8) imply
∫

[0,m̂(ξ̂+))

χ[0,s)(u)dm(s) =
∫

[0,ξ̂)

χ[0,m̂(ŝ))(u)dŝ = ξ̂ −m(u+), ξ̂ ∈ supp m̂.

With the last relation and Corollary 3.4 it follows that

ψ′(m̂(ξ̂), z) = 1− z

∫

[0,m̂(ξ̂)]

ψ(s, z)dm(s)

= 1− z

∫

[0,m̂(ξ̂+))

ψ(s, z)dm(s)

= 1− z

∫

[0,m̂(ξ̂+))2
χ[0,s)(u)ψ′(u, z)du dm(s)

= 1− z

∫

[0,m̂(ξ̂+))

(ξ̂ −m(u+))ψ′(u, z)du

= 1− z

∫

[0,ξ̂]

(ξ̂ − û)ψ′(m̂(û), z)dm̂(û).

The last equality sign is a consequence of (3.9) and the fact that m(u+) = m(u) on [0, L) with the exception of
a countable set. Hence, the function ψ′(m̂(ξ̂), z) satisfies the relation (2.13) for ξ̂ ∈ supp m̂. For any ξ̂ ∈ [0, L̂),
let x̂ = sup{u ∈ supp m̂ : u ≤ ξ̂} and define

φ(ξ̂, z) = ψ′(m̂(x̂), z)− z(ξ̂ − x̂)
∫

[0,x̂)

ψ′(m̂(û), z)dm̂(û).

In particular, φ(ξ̂, z) = ψ′(m̂(ξ̂), z) if ξ̂ ∈ supp m̂. It is easy to see that φ(ξ̂, z) satisfies the relation (2.13) for
all ξ̂ ∈ [0, L̂). As the solution of the equation (2.13) is unique, one finds that φ(ξ̂, z) = ϕ̂(ξ̂, z), and the relation
(3.11) follows as a special case. In the same way we find that

ϕ′(m̂(ξ̂), z) = −z
∫

[0,m̂(ξ̂)]

ϕ(s, z)dm(s)

= −z
∫

[0,m̂(ξ̂+))

ϕ(s, z)dm(s)

= −z
∫

[0,m̂(ξ̂+))

(
1 +

∫

[0,m̂(ξ̂+)

χ[0,s)(u)ϕ′(u, z)du

)
dm(s)

= −zξ̂ − z

∫

[0,m̂(ξ̂+))

(ξ̂ −m(u+))ϕ′(u, z)du

= −zξ̂ − z

∫

[0,ξ̂]

(ξ̂ − û)ϕ′(m̂(û), z)dm̂(û),

and the relation (3.12) follows as above from the last relation and the relation (2.14).
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Lemma 3.6 Let qS be the principal Titchmarsh-Weyl coefficient of some string S[L,m], and let qŜ denote the
principal Titchmarsh-Weyl coefficient of the corresponding dual string Ŝ[L̂, m̂]. Then

qŜ(z) =
−1

zqS(z)
. (3.15)

P r o o f. If the string S[L,m] is singular, the limit point case prevails at L. Then also (see [16])

qS(z) = lim
ξ→L

ψ′(ξ, z)
ϕ′(ξ, z)

, z ∈ C \ [0,∞).

As Ŝ[L̂, m̂] is also singular, the last relation together with the relations (3.11), (3.12), and m̂(L̂) = L imply that

qŜ(z) = lim
ξ̂→L̂

ψ̂(ξ̂, z)

ϕ̂(ξ̂, z)
=

−1
zqS(z)

.

Let L+m(L) <∞, then L̂ = ∞ and Ŝ[L̂, m̂] is regular. The relation (2.21) implies that

qŜ(z) =
ψ̂′(l̂, z)

ϕ̂′(l̂, z)
, z ∈ C \ [0,∞). (3.16)

The relations l̂ = m(L), l = m̂(l̂) and m̂({l̂}) = L− l hold. Ifm(l) < m(l+) = m(L), then m̂((m(l),m(L)) =
0. The relations (3.11) and (3.13) imply that

ϕ′(l, z) = ϕ′(m̂(l̂), z) = −zψ̂(l̂, z)

and
ϕ(l, z) = ψ̂′(m(l), z) = ψ̂′(l̂−, z).

As m is constant on (l, L), it follows that ϕ′(x, z) = ϕ′(l, z) for x ∈ (l, L), and hence

ϕ(L, z) = (L− l)ϕ′(l, z) + ϕ(l, z) = −zψ̂(l̂, z)m({l̂}) + ψ̂′(l̂−, z) = ψ̂′(l̂, z).

In the same way using the relations (3.12) and (3.14) one finds ψ(L, z) = −z−1ϕ̂′(l̂, z). Consequently, the
relation (3.16) implies that

qŜ(z) = −z−1ϕ(L, z)
ψ(L, z)

=
−1

zqS(z)
.

If the string S[L,m] is regular with L = ∞, the relation (2.21) implies that

qS(z) =
ψ′(l, z)
ϕ′(l, z)

, z ∈ C \ [0,∞). (3.17)

As above a straightforward calculation using the relations (3.11), (3.12), (3.13), and (3.14) leads to

ϕ̂(L̂, z) = ψ′(l, z), ψ̂(L̂, z) = −z−1ϕ′(l, z),

and using (3.17) we obtain

qŜ(z) = −z−1ϕ
′(l, z)

ψ′(l, z)
=

−1
zqS(z)

.
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4 Relations between strings and canonical systems

Let a string S[L,m] be given. Define x(t) := t+m(t) for t ∈ [0, L). Then the Lebesgue measure dt and dm(t)
are absolutely continuous with respect to dx(t) := dt+dm(t). Let Ix := ranx(·) denote the range of the function
x, then clearly [0,∞) \ Ix consists of the (at most countable) union of all intervals of the form (x(t), x(t+)),
where x(t+)− x(t) = m(t+)−m(t). Let

h1(x) :=
dt

dx(t)
, x ∈ Ix, h1(x) = 0, x ∈ [0,∞) \ Ix, (4.1)

h2(x) :=
dm(t)
dx(t)

, x ∈ Ix, h2(x) = 1, x ∈ [0,∞) \ Ix. (4.2)

Then h1(x) + h2(x) = 1 a.e. on [0,∞), and by

Hd(x) :=
(
h1(x) 0

0 h2(x)

)
, x ∈ [0,∞). (4.3)

a trace normed and diagonal Hamiltonian is defined.
Conversely, let a trace normed Hamiltonian Hd = diag (h1, h2) be given. Define ld = c if (c,∞) is a

maximal Hd-indivisible interval of type π/2, and ld = ∞ otherwise, and define l̂d = c if (c,∞) is a maximal
Hd-indivisible interval of type 0, and l̂d = ∞ otherwise. Let

ξ(x) :=

x∫

0

h1(t)dt, L :=

ld∫

0

h1(t)dt, (4.4)

ξ̂(x) :=

x∫

0

h2(t)dt, L̂ :=

l̂d∫

0

h2(t)dt. (4.5)

and

m(ξ) :=

inf{x: ξ(x)=ξ}∫

0

h2(t)dt, 0 ≤ ξ ≤ L, (4.6)

m̂(ξ̂) : =

inf{x: ξ̂(x)=ξ̂}∫

0

h1(t)dt, 0 ≤ ξ̂ ≤ L̂. (4.7)

Then the functionsm and m̂ are non-decreasing and left-continuous on [0, L) and [0, L̂), respectively, and S[L,m]
is the string associated with Hd, whereas Ŝ[L̂, m̂] is its corresponding dual string. The above indicated mappings
S[L,m] 7→ Hd and Hd 7→ S[L,m] are inverse to each other.

Let a string S[L,m] and its dual string Ŝ[L̂, m̂] be given. Define

H0(x) :=





(
1 −m(x)

−m(x) m(x)2

)
if 0 ≤ x ≤ L,

(
0 0
0 1

)
if L+

L∫
0

m(t)2dt <∞, L < x <∞.

(4.8)

Hs(x) :=





(
m̂(x)2 m̂(x)
m̂(x) 1

)
if 0 ≤ x ≤ L̂,

(
1 0
0 0

)
if L̂+

L̂∫
0

m̂(t)2dt <∞, L̂ < x <∞.

(4.9)
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Lemma 4.1 The fundamental matrices W0, Wd, and Ws corresponding to H0, Hd, and Hs are given by

W0(x, z) =
(
zm(x)ψ(x, z) + ψ′(x−, z) zψ(x, z)
m(x)ϕ(x, z) + z−1ϕ′(x−, z) ϕ(x, z)

)
, 0 ≤ x < L, (4.10)

Wd(x, z) =
(

ψ′(ξ−, z2) zψ(ξ, z2)
z−1ϕ′(ξ−, z2) ϕ(ξ, z2)

)
, x := ξ +m(ξ), 0 ≤ ξ < L, (4.11)

Ws(x, z) =
(

ϕ̂(x, z) −m̂(x)ϕ̂(x, z)− z−1ϕ̂′(x−, z)
−zψ̂(x, z) zm̂(x)ψ̂(x, z) + ψ̂′(x−, z)

)
, 0 ≤ x < L̂. (4.12)

In particular,

Ws(x, z) =
(
ψ′(m̂(x), z) ψ(m̂(x), z)− m̂(x)ψ′(m̂(x), z)
ϕ′(m̂(x), z) ϕ(m̂(x), z)− m̂(x)ϕ′(m̂(x), z)

)
, x ∈ supp m̂. (4.13)

P r o o f. First note that

W0(x, z)J =
(
zψ(x, z) −zm(x)ψ(x, z)− ψ′(x−, z)
ϕ(x, z) −m(x)ϕ(x, z)− z−1ϕ′(x−, z)

)
,

and

zW0(x, z)H0(x) =
(
zψ′(x−, z) −zm(x)ψ′(x−, z)
ϕ′(x−, z) −m(x)ϕ′(x−, z)

)
.

Integration by parts and the relations (2.19) and (2.20) imply that
∫

[0,x)

m(s)ϕ′(s−, z)ds = m(x)ϕ(x, z)−
∫

[0,x)

ϕ(s, z)dm(s), (4.14)
∫

[0,x)

m(s)ψ′(s−, z)ds = m(x)ψ(x, z)−
∫

[0,x)

ψ(s, z)dm(s). (4.15)

With the relations (2.16) and (2.17) we obtain that

−
∫

[0,x)

m(s)ϕ′(s−, z)ds = −m(x)ϕ(x, z)− z−1ϕ′(x−, z), (4.16)

−z
∫

[0,x)

m(s)ψ′(s−, z)ds− 1 = −zm(x)ψ(x, z)− ψ′(x−, z). (4.17)

The last relations and the relations (2.19) and (2.20) imply that for W0 and H0 the equation (2.27) holds, hence
W0 is the fundamental matrix corresponding to the Hamiltonian H0.

Note that Ws(x, z) = JŴ0(x, z)JT , where Ŵ0(x, z) arises from W0(x, z) if m is replaced by m̂ and the
functions ϕ and ψ are replaced by ϕ̂ and ψ̂. Thus Ws(x, z) is the fundamental matrix corresponding to Hs. If
x ∈ supp m̂, then x = m(m̂(x)+) by Lemma 3.1. As m̂(x) ∈ supp m, it follows with the relations (3.13) and
(3.14) that

ϕ̂′(x−, z) = ϕ̂′(m(m̂(x)+)−, z)
= ϕ̂′(m(m̂(x)), z) = −zψ(m̂(x), z),

and

ψ̂′(x−, z) = ψ̂′(m(m̂(x)+)−, z)
= ψ̂′(m(m̂(x)), z) = ϕ(m̂(x), z).

The last relations together with (3.11), (3.12) and (4.12) imply the relation (4.13). For (4.11), note that for
x = ξ +m(ξ)

Wd(x, z)J =
(
zψ(ξ, z2) −zψ′(ξ−, z2)
ϕ(ξ, z2) −z−1ϕ′(ξ−, z2),

)
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and

zWd(x, z)Hd(x) = z

(
ψ′(ξ−, z2)h1(x) zψ(ξ−, z2)h2(x)

z−1ϕ′(ξ−, z2)h1(x) ϕ(ξ, z2)h2(x)

)
.

The relations (4.4) and (4.5) imply that

∫ x

0

ψ′(ξ(s)−, z2)h1(s)ds =
∫ ξ(x)

0

ψ′(ξ̃−, z2)dξ̃ = ψ(ξ, z2),

and

−1 + z

∫ x

0

ψ(ξ(s)−, z2)h2(s)ds = −1 + z

∫ ξ(x)

0

ψ(ξ̃−, z2)dm(ξ̃) = −ψ′(ξ−, z2).

Similar relations hold for ϕ(ξ, z2) and ϕ′(ξ−, z2). Let x = ξ +m(ξ) and x+ = ξ +m(ξ+). If m(ξ) < m(ξ+),
then Hd = diag (0, 1) a.e. on the indivisible interval (x, x+). For u ∈ (x, x+) we set

Wd(u, z) = Wd(x, z)
(

1 0
−z(u− x) 1

)
. (4.18)

Then Wd(u, z)′J = zWd(x, z)diag (0, 1) = zWd(u, z)Hd(u) a.e. on (x, x+), that is, Wd(u, z) satisfies the
relation (2.27). Note that the relations (4.18) and (4.11) match, because the relations (2.15), (2.16), and (2.17),
(2.18) imply that

Wd(x+, z) =
(
ψ′(ξ+, z2) zψ(ξ, z2)
z−1ϕ′(ξ, z2) ϕ(ξ, z2)

)
= Wd(x, z)

(
1 0

−zm({ξ}) 1

)
.

It follows thatWd defined by the relations (4.11) and (4.18) satisfies the relation (2.27) for all x ∈ [0, L+m(L)).
Hence, it is the fundamental matrix corresponding to the Hamiltonian Hd.

Theorem 4.2 Let qS be the principal Titchmarsh-Weyl coefficient of some string S[L,m], and let Q0, Qd and
Qs denote the Titchmarsh-Weyl coefficients corresponding to the Hamiltonians H0, Hd and Hs, respectively.
Then the following relations hold:

Q0(z) = zqS(z), (4.19)

Qd(z) = zqS(z2), (4.20)

Qs(z) = qS(z). (4.21)

P r o o f. At first we show the relation (4.19). If L+
L∫
0

m(t)2dt = ∞, it follows easily from the relations (2.21),

(2.29) and (4.10). If L+
L∫
0

m(t)2dt <∞, the relation (4.8) implies that the interval (L,∞) is H0- indivisible of

type π/2. It follows from the relation (2.27) that the entries w12(·, z) and w22(·, z) ofW0 are constant on [L,∞),
and the relations (2.21), (4.10), and (2.30) imply that

Q0(z) = lim
x→L

z
ψ(x, z)
ϕ(x, z)

= zqS(z).

Analogously, if L̂+
L̂∫
0

m̂(t)2dt <∞, the relation (4.9) implies that the interval (L̂,∞) is Hs- indivisible of type

0. By relation (2.27), the entries w11(·, z) and w21(·, z) of Ws are constant on [L̂,∞), and the relations (3.15),
(4.13), and (2.30) imply that

Qs(z) = lim
x→L̂

−z−1 ψ̂(x, z)
ϕ̂(x, z)

= −z−1(qŜ(z))−1 = qS(z).
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If L +
L∫
0

m(t)2dt = ∞, the relations (3.15), (2.29) and (4.13) imply the relation (4.21). To show the relation

(4.20), note that if L+m(L) <∞, the interval (L+m(L),∞) is Hd-indivisible of type π/2, hence the entries
w12(·, z) and w22(·, z) of Wd are constant there. Consequently, with the relations (2.21), (4.11), and (2.30) one
finds that

Qd(z) = lim
ξ→L

z
ψ(ξ, z2)
ϕ(ξ, z2)

= zqS(z2).

The case that L+m(L) = ∞ is plain.

The following scheme describes how the principal Titchmarsh-Weyl coefficient qS of a string S[L,m] is related
to the Titchmarsh-Weyl coefficients of its dual string Ŝ[L̂, m̂] and the corresponding Hamiltonians Hd, H0 and
Hs given by the relations (4.3), (4.8) and (4.9), and the Hamiltonians Ĥd, Ĥ0 and Ĥs defined by (2.32).

S ⇔ qS(z) Hd ⇔ zqS(z2) H0 ⇔ zqS(z) Hs ⇔ qS(z)

Ŝ ⇔ −1
zqS(z)

Ĥd ⇔ −1
zqS(z2)

Ĥ0 ⇔ −1
zqS(z)

Ĥs ⇔ −1
qS(z)

Let Hd = diag (h1, h2) be some given trace normed Hamiltonian of diagonal form. In the following it is
assumed that the equivalence class f ∈ L2

Hd
is represented by an element f = (f1, f2)T with supp f1 ⊆ supph1

and supp f2 ⊆ supph2, and that f1 and f2 are constant on the closure of any maximal Hd-indivisible interval.
Let

L2
Hd,1

:= {f ∈ L2
Hd

: f2 = 0}, L2
Hd,2

:= {f ∈ L2
Hd

: f1 = 0}, (4.22)

and note that

L2
Hd

= L2
Hd,1

⊕ L2
Hd,2

, f = (f1, f2)T = (f1, 0)T ⊕ (0, f2)T . (4.23)

Let S[L,m] be the string associated with Hd, and let Ŝ[L̂, m̂] be its dual string. Recall that L + m(L) < ∞
implies that h1 = 0 a.e. on (L+m(L),∞), and if L̂+ m̂(L̂) <∞ then h2 = 0 a.e. on (L̂+ m̂(L̂),∞). Define
with ξ(x) and ξ̂(x) given by (4.4) and (4.5) the functions

r(ξ) = inf{u ≥ 0 : ξ(u) = ξ}, ξ ∈ [0, L], (4.24)

s(ξ̂) = inf{u ≥ 0 : ξ̂(u) = ξ̂}, ξ̂ ∈ [0, L̂], (4.25)

and note that ran r ⊆ supph1 and ran s ⊆ supph2 such that supph1 \ ran r and supph2 \ ran s are sets of
Lebesgue measure zero. Moreover, the functions r and s are injective, and satisfy the relations

m(ξ) =

r(ξ)∫

0

h2(t)dt, m̂(ξ̂) =

s(ξ̂)∫

0

h1(t)dt. (4.26)

If r(ξ+) > r(ξ) then (r(ξ), r(ξ+)) is a maximal Hd-indivisible interval of type π/2, and if s(ξ̂+) > s(ξ̂) then
(s(ξ̂), s(ξ̂+)) is a maximal Hd-indivisible interval of type 0. In particular, the relations

s(m(ξ+)) = r(ξ+), r(m̂(ξ̂+)) = s(ξ+),

follow. Let L2[0, L;m] be the subspace of the space of the square integrable functions L2[0, L] consisting of all
functions f with the property that if I1 is an interval contained in [0, L]\ suppm then f is constant on the closure
of I1. In the same way, let L2[0, L̂; m̂] be the subspace of L2[0, L̂] of all functions f with the property that if I2
is an interval contained in [0, L̂] \ supp m̂ then f is constant on the closure of I2.
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Let f ∈ L2
Hd

. Define functions

f1(ξ) = f1(r(ξ)), ξ ∈ [0, L], (4.27)

f2(ξ̂) = f2(s(ξ̂)), ξ̂ ∈ [0, L̂], (4.28)

and note that f1 ∈ L2[0, L;m] and f2 ∈ L2[0, L̂; m̂]. Conversely, as r and s are injective functions, each
f1 ∈ L2[0, L;m] defines via the relation (4.27) a function f ∈ L2

Hd1
, and each f2 ∈ L2[0, L̂; m̂] defines via the

relation (4.28) a function f ∈ L2
Hd2

. Clearly, if f ∈ L2
Hd

then

‖f‖2Hd
= ‖f1‖2L2[0,L;m] + ‖f2‖2

L2[0,L̂;m̂]
.

Let f0 ∈ L2
H0

and fs ∈ L2
Hs

be given, and let

f1(ξ) = f0
1 (ξ)−m(ξ)f0

2 (ξ), ξ ∈ [0, L], (4.29)

f2(ξ̂) = m̂(ξ̂)fs
1 (ξ̂) + fs

2 (ξ̂), ξ̂ ∈ [0, L̂]. (4.30)

Then f1 ∈ L2[0, L;m] and f2 ∈ L2[0, L̂; m̂], and the relations

‖f1‖L2[0,L;m] = ‖f0‖H0 , ‖f2‖L2[0,L̂;m̂] = ‖fs‖Hs ,

hold. Conversely, let f1 ∈ L2[0, L;m] and f2 ∈ L2[0, L̂; m̂] be given. Then there is a unique f0 ∈ L2
H0

satisfying the relation (4.29) and a unique fs ∈ L2
Hs

satisfying (4.30). To see this, let

f1(ξ) = f0
1 (ξ)−m(ξ)f0

2 (ξ) = f̃0
1 (ξ)−m(ξ)f̃0

2 (ξ).

It follows that f0, f̃0 ∈ L2
H0

, and that ‖f0 − f̃0‖H0 = 0, hence f0 and f̃0 are identical in L2
H0
. In the same

way the uniqueness of fs in L2
Hs

can be shown. In particular, f0 may be chosen to be equal to (f1, 0)T and fs

may be chosen to be equal to (0, f2)T , as f1 is constant on the H0-indivisible intervals and f2 is constant on the
Hs-indivisible intervals. Hence, the following mappings are isometric isomorphisms:

L2[0, L;m] 7→ L2
H0

: f → (f, 0)T , (4.31)

L2[0, L̂; m̂] 7→ L2
Hs

: f → (0, f)T . (4.32)

We are going to show that the following spaces are isometrically isomorphic:

L2
m
∼= L2

Hd,2
∼= L2[0, L̂; m̂] ∼= L2

Hs
, (4.33)

L2
m̂
∼= L2

Hd,1
∼= L2[0, L;m] ∼= L2

H0
. (4.34)

Let f ∈ L2
Hd

, and

g(ξ) = f2(r(ξ)), ξ ∈ [0, L], (4.35)

h(ξ̂) = f1(s(ξ̂)), ξ̂ ∈ [0, L̂]. (4.36)

Then g ∈ L2
m and h ∈ L2

m̂. Conversely, let g ∈ L2
m and h ∈ L2

m̂ be given. Put g = 0 on [0, L]\ supp m and h = 0
on [0, L̂] \ supp m̂, and define functions f2 and f1 via the relations (4.35) and (4.36), and the conditions that if
r(ξ) is the endpoint of an maximal Hd-indivisible interval Iπ/2 then f2 = g(ξ) on the closure of Iπ/2, and if s(ξ̂)
is the endpoint of an maximal Hd-indivisible interval I0 then f1 = h(ξ) on the closure of I0. These conditions
coincide with the general assumption that f1 and f2 are constant on the closure of any maximal Hd-indivisible
interval, hence f = (f1, f2) ∈ L2

Hd
.

Moreover, the relations (4.35) and (4.36) establish an isometric isomorphism between L2
Hd,1

and L2
m̂, and

L2
Hd,2

and L2
m. To see this, note that (4.26) implies that m({ξ}) = r(ξ+) − r(ξ) and that dm(ξ) is absolutely
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18 Kaltenbäck, Winkler, and Woracek: strings

continuous with respect to the measure dr(ξ). Hence dm(ξ)
dr(ξ) = h2(r(ξ)) a. e. on [0, L], and with r(L) = L+m(L)

it follows that
L∫

0

|g(ξ)|2dm(ξ) =

L∫

0

|f2(r(ξ))|2dm(ξ) =

∞∫

0

|f2(x)|2h2(x)dx.

The relations (4.7) and (4.25) imply the isometry between L2
Hd,1

and L2
m̂ in a similar way.

5 Fourier transformations

Let f ∈ L2
Hd

have compact support. As f = (f1, 0)T ⊕ (0, f2)T , corresponding to (2.33), (4.11) and (4.23) the
Fourier transformation FHd

can be written as

FHd
(f, z) = FHd,1(f1, z) + FHd,2(f2, z), (5.1)

with

FHd,1(f1, z) :=

∞∫

0

w21(x, z)f1(x)h1(x)dx, FHd,2(f2, z) :=

∞∫

0

w22(x, z)f2(x)h2(x)dx. (5.2)

The Fourier transformations of a string and its associated canonical systems are related as follows.
Theorem 5.1 Let S[L,m] be some string with related HamiltoniansHd,H0, andHs. The interaction between

the corresponding Fourier transformations FS , FHd
, FH0 , and FHs is presented in the following commutative

diagram of isometric isomorphisms.

L2
Hd,1

⊕ L2
Hd,2

= L2
Hd

L2
σd

= L2
σd,o

⊕ L2
σd,e

L2
H0

L2
σ0

FH0

L2
Hd,2

L2
Hd,1

L2
σd,o

L2
σd,e

FHd

L2
σS

L2
Hs

L2
m

FHs

FS
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The following two lemmas form the core of the proof of Theorem 5.1.

Lemma 5.2 The mappings

FHd,1 : L2
Hd,1

7→ L2
σ,o, (5.3)

FHd,2 : L2
Hd,1

7→ L2
σ,e. (5.4)

establish isometric isomorphisms.

P r o o f. With the functions f1 ∈ L2[0, L;m] defined in (4.27) and g ∈ L2
m defined in (4.35) the Fourier

transformations FHd,1 and FHd,2 can be written with the help of (4.11) as

FHd,1(f1, z) =

L∫

0

z−1ϕ′(ξ, z2)f1(ξ)dξ, (5.5)

FHd,2(f2, z) =

L∫

0

ϕ(ξ, z2)g(ξ)dm(ξ). (5.6)

It follows that FHd,1(f1, ·) is an odd function and that FHd,2(f2, ·) is an even function. Conversely, as w21(x, ·) is
odd and w22(x, ·) is even, and as the measure σ is symmetric, the relation (2.34) implies that the origins of L2

σ,e

in L2
H have representatives with f1 = 0, and the origins of L2

σ,o in L2
H have representatives with f2 = 0.

Lemma 5.3 Let f ∈ L2
Hd

have compact support, and let f0, fs and g satisfy the relations (4.29), (4.30) and
(4.35). Then

FS(g, z) = FHs(f
s, z), (5.7)

FHd
(f, z) = FHd,1(f1, z) + FHd,2(f2, z), (5.8)

FHd,2(f2, z) = FHs(f
s, z2), (5.9)

FHd,1(f1, z) = zFH0(f
0, z2). (5.10)

P r o o f. In (5.6) we already saw that FHd,2(f2, z) = FS(g, z2). Let f0 and fs be given by (4.29) and (4.30).
Corresponding to the relations (2.33) and (4.10), the Fourier transformation FH0 in L2

H0
reads as

FH0(f
0, z) =

L∫

0

z−1ϕ′(ξ−, z)(f0
1 (ξ)−m(ξ)f0

2 (ξ))dξ, (5.11)

and the relations (4.29) and (5.5) imply that FHd,1(f1, z) = zFH0(f
0, z2). Corresponding to the relations (2.33)

and (4.12), the Fourier transformation FHs in L2
Hs

reads as

FHs(f
s, z) =

L̂∫

0

ψ̂′(ξ̂−, z)(m̂(ξ)fs
1 (ξ̂) + fs

2 (ξ̂))dξ̂. (5.12)

Let ξ ∈ suppm, and put ξ̂ = m(ξ+). Then ψ̂′(m(ξ+)−, z) = ψ̂′(m(ξ), z) = ϕ(ξ, z) by the relation (3.13), and
hence

ϕ(ξ, z) = ψ̂′(ξ̂−, z), ξ ∈ suppm.

Moreover, the relations (4.30), (4.28) and (4.35), and the assumption that the elements of L2
Hd

are constant on
the closed maximal indivisible intervals imply that

m̂(ξ)fs
1 (ξ̂) + fs

2 (ξ̂) = f2(ξ̂) = f2(s(m(ξ+))) = f2(r(ξ+)) = f2(r(ξ)) = g(ξ).
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It follows from dξ̂ = dm(ξ) and the relation (5.12) that

FHs
(fs, z) =

L∫

0

ϕ(ξ, z)g(ξ)dm(ξ), (5.13)

and the relation (5.6) implies that FHd,2(f2, z) = FHs
(fs, z2).

All the Fourier transformations we have introduced for functions with compact support are isometries and
have dense ranges. Hence they can be extended by continuity to isometric isomorphisms defined on the whole
space. All assertions of Theorem 5.1 are proved.

In order to find an isometric isomorphism connecting the Fourier transformation FŜ of the dual string Ŝ[L̂, m̂]
withL2

Hd,1
we have to consider the dual Hamiltonian Ĥd. AsHd = diag (h1, h2), the relation Ĥd = diag (h2, h1)

follows. Let σ̂ be the spectral measure corresponding to the Titchmarsh-Weyl coefficient Q̂(z) = −Q(z)−1 of
Ĥd. If F bHd

denotes the Fourier transformation which maps L2
bHd

onto L2
σ̂, the isometry between L2

Hd
and L2

bHd

establishes an associated Fourier transformation F̂Hd
mapping L2

Hd
onto L2

σ̂ by

F̂Hd
(f, ·) := F bHd

(f̂ , ·), f ∈ L2
Hd
. (5.14)

Assume that f ∈ L2
Hd

has compact support. Then

F̂Hd
(f, z) =

∞∫

0

(w11(x, z)f1(x)h1(x) + w12(x, z)f2(x)h2(x))dx.

Defining

F̂Hd,1(f1, z) =

∞∫

0

w11(x, z)f1(x)h1(x)dx, (5.15)

F̂Hd,2(f2, z) =

∞∫

0

w12(x, z)f2(x)h2(x)dx, (5.16)

it follows as above that the mappings F̂Hd,1 : L2
Hd,1

7→ L2
σ̂,e, and F̂Hd,2 : L2

Hd,1
7→ L2

σ̂,o, establish isometric

isomorphisms. Let ξ̂ ∈ supp m̂ and assume that ξ = m̂(ξ̂+). Then

ψ′(ξ−, z2) = ψ′(m̂(ξ̂+)−, z2) = ψ′(m̂(ξ̂), z2) = ϕ̂(ξ̂, z2),

and if h and f1 are related via (4.36), the last relation in combination with (4.11) and (4.7) implies that

F̂Hd,1(f1, z) =

L̂∫

0

ϕ̂(ξ̂, z2)h(ξ̂)dm̂(ξ̂) = FŜ(h, z2). (5.17)
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