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Abstract. A canonical system of differential equations, or Hamiltonian sys-
tem, is a system of order two of the form Jy′(x) = −zH(x)y(x), x ∈ R+. We
characterize the property that the selfadjoint operators associated to a canon-
ical system have resolvents of Hilbert-Schmidt type in terms of the Hamilton-
ian H as well as in terms of the associated Titchmarsh-Weyl coefficient.

Mathematics Subject Classification (2000). Primary 47B25, 47E05, 34B20; Sec-
ondary 34A55, 34L05, 47A57.

Keywords. Canonical differential equation, Hilbert-Schmidt.

1. Introduction

A canonical system of differential equations is an equation of the form

Jy′(x) = −zH(x)y(x), x ∈ R+, (1.1)

where y(x) is a C2-valued function on R+,

J =
(

0 −1
1 0

)
,

and H(x) is a R2×2-valued function on R+ such that H(x) ≥ 0 and H|(0,x] ∈ L1

for all x ∈ R+. The function H(x) is called the Hamiltonian corresponding to the
canonical differential equation (1.1). We always assume that moreover tr(H(x)) =
1, x ∈ R+.

Canonical differential equations are usually studied with operator theoretic
methods. A very good and detailed account on the operator model associated with
the equation (1.1) can be found in [5]. Let us recall the basic notions: Denote by
L2(H,R+) the Hilbert space of all measurable C2-valued functions f(x) on R+

such that

‖f‖2 =
∫ +∞

0

f(x)∗H(x)f(x)dx < +∞.
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One considers the closed subspace L2
s(H,R+) of L2(H,R+) consisting of all f ∈

L2(H,R+) such that H(x)f(x) is constant on H-indivisible intervals. Thereby an
interval I ⊆ R+ is called H-indivisible if for some ϕ ∈ R

H(x) =
(

cosϕ
sinϕ

)(
cosϕ
sinϕ

)T

, x ∈ I a.e.

Moreover one considers the linear relation

Tmax,s = {(f ; g) ∈ L2
s(H,R+)2 : f is loc. abs. cont., Jf ′ = −Hg}, (1.2)

and its restriction

Tmin,s = {(f ; g) ∈ Tmax,s : f(0+) = 0}, (1.3)

which turns out to be a symmetric operator such that

T ∗min,s = Tmax,s.

All the selfadjoint extensions of Tmin,s are given by

A(ν) = {(f ; g) ∈ Tmax,s : sin νf1(0+) = cos νf2(0+)}, ν ∈ R , (1.4)

and thereby we have A(ν1) = A(ν2) if and only if ν1 − ν2 ∈ πZ. For a detailed
discussion of linear relations in Hilbert spaces see [2].

A fundamental notion in the theory of canonical systems is the Titchmarsh-
Weyl coefficient associated with the equation (1.1). LetW (x, z) = (wij(x, z))i,j=1,2, x ∈
R+, z ∈ C, be the 2× 2-matrix valued solution of the initial value problem

dW (x, z)
dx

J = zW (x, z)H(x), x > 0, W (0+, z) = I,

and define

qH(z) = lim
x→+∞

w11(x, z)τ + w12(x, z)
w21(x, z)τ + w22(x, z)

. (1.5)

This limit exists for z ∈ C \ R and does not depend on τ ∈ R. The function qH is
called the Titchmarsh-Weyl coefficient of (1.1). It belongs to the Nevanlinna class
N0, i.e. is holomorphic, satisfies qH(z̄) = qH(z), z ∈ C \ R, and has the property
that the kernel

LqH (w, z) =
qH(z)− qH(w)

z − w̄
is positive semidefinite.

The inverse spectral theorem, a deep result due to L.de Branges (see [1]),
shows that (1.5) sets up a bijective correspondence between the set of all trace
normed Hamiltonians and the Nevanlinna class N0.

In a generalization to the indefinite setting one allows the Titchmarsh-Weyl
coefficient q to belong to the generalized Nevanlinna class N<∞, i.e. allows the
kernel Lq to have a finite number of negative squares, and asks for an equation
of similar type as (1.1), or for an operator model similar to L2

s(H,R+), Tmax,s,
such that again there is a bijective correspondence between N<∞ and the resective
indefinite Hamiltonians.
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It turns out that an indefinite Hamiltonian is composed out of a finite num-
ber H1, . . . , Hn of positive Hamiltonians and a finite number of real parameters.
Thereby the occuring Hamiltonians and parameters are subject to certain condi-
tions. One among them is that selfadjoint extensions of the symmetry Tmin,s in
L2

s(Hi,R+) have resolvents of Hilbert-Schmidt type.
It is the aim of this note to characterize this property explicitly in terms

of the Hamiltonian as well as in terms of the spectral measure of the associated
Titchmarsh-Weyl coefficient. In §2 we prove our main result Theorem 2.4 which
gives a necessary and sufficient integrability condition on H in order that selfad-
joint extensions have resolvents of Hilbert-Schmidt type. To this end we reduce the
problem to a specific boundary condition and apply classical criteria for integral
operators which can be found e.g. in [3]. It is the subject of §3 to reformulate
these conditions in terms of the spectral measure of the Titchmarsh-Weyl coeffi-
cient qH , see Theorem 3.1. Thereby we use the theory of integral representations
and operator models for Nevanlinna functions as developed e.g. in [4]. In general
our exposition relies on the material presented in [5] and the classical theory of
integral operators, otherwise is fairly elementary.

2. Integral Operators of Hilbert-Schmidt Type

In the subsequent lemma we are going to use a well known criterion on whether
an integral operator is of Hilbert-Schmidt type. Concerning this lemma note that
the square root of H(t) exists because H(t) is assumed to be positive semidefinite.

Lemma 2.1. Let H(t) = (hij(t))i,j=1,2 be a trace normed Hamiltonian on R+ such
that ∫ +∞

0

h11(t)dt < +∞. (2.1)

Consider the space L2(R+)2 of all C2-valued functions on R+ which are square
integrable with respect to the Lebesgue-measure, and consider the kernel

K(x, y) = H(x)
1
2

(
0 −χ{y<x}

−χ{y>x} 0

)
H(y)

1
2 . (2.2)

On L2(R+)2 define the integral operator

(Cg)(x) =
∫ +∞

0

K(x, y)g(y)dy (2.3)

with g ∈ dom(C) if the integral exists for almost every x and Cg ∈ L2(R+)2.
Moreover, we set

M(x) = (mij(x))i,j=1,2 =
∫ x

0

H(t)dt.
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Then C is a continuous, everywhere defined operator which belongs to the Hilbert-
Schmidt class if and only if

2
∫ +∞

0

m22(t)h11(t)dt < +∞. (2.4)

In this case the Hilbert-Schmidt norm of C coincides with this number.

Proof. Its well known (see for example [3]) that C is a continuous, everywhere
defined operator which belongs to the Hilbert-Schmidt class if and only if

∫ +∞

0

∫ +∞

0

tr(K(x, y)∗K(x, y))dxdy < +∞.

In this case ‖C‖22 coincides with the value of integral. We calculate

K(x, y)∗K(x, y) =

H(y)
1
2

(
0 −χ{y>x}

−χ{y<x} 0

)
H(x)

(
0 −χ{y<x}

−χ{y>x} 0

)
H(y)

1
2 =

H(y)
1
2

(
χ{y>x}

(
0 1
0 0

)
H(x)

(
0 0
1 0

)
+ χ{y<x}

(
0 0
1 0

)
H(x)

(
0 1
0 0

))
H(y)

1
2 =

H(y)
1
2

(
χ{y>x}h22(x)

(
1 0
0 0

)
+ χ{y<x}h11(x)

(
0 0
0 1

))
H(y)

1
2 . (2.5)

Set (kij(y))i,j=1,2 = H(y)
1
2 , and note that k12 = k21. We then rewrite (2.5) as

χ{y>x}h22(x)
(
k11(y)k11(y) k11(y)k12(y)
k11(y)k12(y) k12(y)k12(y)

)
+

+χ{y<x}h11(x)
(
k12(y)k12(y) k12(y)k22(y)
k12(y)k22(y) k22(y)k22(y)

)
.

As k2
11(y) + k2

12(y) = h11(y) and k2
12(y) + k2

22(y) = h22(y) we obtain

tr(K(x, y)∗K(x, y)) = χ{y>x}h22(x)h11(y) + χ{y<x}h11(x)h22(y),

and by Fubini’s theorem
∫ +∞

0

∫ +∞

0

tr(K(x, y)∗K(x, y))dxdy =

∫ +∞

0

h11(y)
∫ y

0

h22(x)dxdy +
∫ +∞

0

h22(y)
∫ +∞

y

h11(x)dxdy =

2
∫ +∞

0

h11(y)
∫ y

0

h22(x)dxdy = 2
∫ +∞

0

m22(y)h11(y)dy.

¤
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Lemma 2.2. Let H(t) = (hij(t))i,j=1,2 be a trace normed Hamiltonian on R+ such
that (2.1) holds. Moreover, let B be the operator defined in L2

s(H,R+) by

(Bf)(x) =
∫ x

0

JH(t)f(t)dt−
(

0 0
0 1

) ∫ +∞

0

JH(t)f(t)dt,

with f ∈ dom(B) if f ∈ L2
s(H,R+) such that (Bf)(x) exists for almost every

x ∈ R+ and Bf ∈ L2
s(H,R+).

Then B is a continuous, everywhere defined operator which belongs to the
Hilbert-Schmidt class if and only if (2.4) holds true.

Proof. The integral operator B can be written as

(Bf)(x) =
∫ +∞

0

k(x, y)f(y)dy,

where k(x, y) is the kernel

k(x, y) =
(
χ{y<x} 0

0 −χ{y>x}

)
JH(y).

Now we consider the mapping φ from L2
s(H,R+) into L2(R+)2 given by

φ(f)(t) = H(t)
1
2 f(t).

It is straightforward to show that φ is an isometry. Let K(x, y) be as in (2.2) and
the operator C defined as in (2.3). By Lemma 2.1 the operator C is a continuous,
everywhere defined operator which belongs to the Hilbert-Schmidt class if and
only if (2.4) holds true.

We have Cφ = φB. In fact, φB ⊆ Cφ is obvious from the definitions of the
respective kernels. For the other inclusion let f ∈ dom(Cφ). From (2.2) we see
that C(φ(f))(x) is of the form H(x)

1
2 g(x) for g ∈ L2(H,R+) with

g(x) =
∫ +∞

0

k(x, y)f(y)dy =

∫ x

0

JH(t)f(t)dt−
(

0 0
0 1

) ∫ +∞

0

JH(t)f(t)dt.

It remains to show that g ∈ L2
s(H,R+). So let (a, b) be an indivisible interval of

type ϕ ∈ R and calculate for x ∈ (a, b)

d

dx
ξT
ϕ g(x) = ξT

ϕJH(x)f(x) = ξT
ϕJξϕξ

T
ϕ f(x) = 0.

Hence g ∈ L2
s(H,R+), and we proved that Cφ = φB.

If g ∈ L2(R+)2 ª φ(L2
s(H,R+)), then

(Cg)(x) = H(x)
1
2

(∫ x

0

JH(y)
1
2 g(y)dy −

(
0
1

) ∫ +∞

0

(
1
0

)T

H(y)
1
2 g(y)dy

)
.



6 Michael Kaltenbäck, Harald Woracek

The second integral vanishes because

H(y)
1
2

(
1
0

)
∈ φ(L2

s(H,R+)).

If x is contained in an indivisible interval (a, b) of type ϕ ∈ R, we assume that
(a, b) is maximal, i.e. (a, b) is not contained in a larger indivisible interval. For
a < y < x we have

H(x)
1
2 JH(y)

1
2 = ξϕξ

T
ϕJξϕξ

T
ϕ = 0.

Therefore,

(Cg)(x) = H(x)
1
2

∫ a

0

JH(y)
1
2 g(y)dy.

Since the columns of the matrix function χ{y≤a}H(y)
1
2 JT belong to φ(L2

s(H,R+)),
we see that Cg = 0.

We conclude that dom(C) = φ(dom(B))⊕φ(L2
s(H,R+))⊥ and C = φBφ−1P ,

where P is the orthogonal projection onto φ(L2
s(H,R+)). Thus C is a Hilbert-

Schmidt operator if and only if B is. ¤

The previous lemma is of importance if we consider the operator theoret-
ical background of canonical differential equations. Using the notation from the
introduction we obtain the subsequent result.

Corollary 2.3. Let H(t) = (hij(t))i,j=1,2 be a trace normed Hamiltonian on R+

such that (2.1) holds true. Then the selfadjoint extensions A(ν), ν ∈ (−π
2 ,

π
2 ] of

Tmin,s have a resolvent

(A(ν)− z)−1, z ∈ ρ(A(ν))

which is of Hilbert-Schmidt type if and only if (2.4) holds.

Proof. Because of the resolvent identity and since the product of a bounded op-
erator and a Hilbert-Schmidt operator is of Hilbert-Schmidt type, the selfadjoint
extension A(ν) of Tmin,s has a resolvent which is of Hilbert-Schmidt type if and
only if (A(ν)− z)−1 is of Hilbert-Schmidt type for one z ∈ ρ(A(ν)).

Moreover, by Krein’s formula (see Proposition 4.4 in [5]) the resolvents of
different selfadjoint extensions are one-dimensional perturbations of each other.
Thus, the resolvents of A(ν), ν ∈ (−π

2 ,
π
2 ] being of Hilbert-Schmidt type is equiv-

alent to the fact that
(A(

π

2
)− z)−1 (2.6)

is a Hilbert-Schmidt operator for some z ∈ ρ(A(π
2 )).

Note that by our assumption (2.1)

span{
(

1
0

)
} = kerTmax,s, (2.7)

and hence kerA(π
2 ) = {0}. This means that A(π

2 )−1 is a densely defined selfadjoint
operator on L2

s(H,R+). Moreover, as the elements f ∈ domA(π
2 ) vanish at 0 in

the upper entry we see that B ⊆ A(π
2 )−1, where B is defined as in Lemma 2.2.
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If (2.4) is satisfied, then B is an everywhere defined, bounded operator be-
longing to the Hilbert-Schmidt class. We conclude B = A(π

2 )−1, and 0 ∈ ρ(A(π
2 )).

For the converse direction assume that (2.6) is of Hilbert-Schmidt type. We
are going to show that A(π

2 )−1 is an everywhere defined, bounded operator be-
longing to the Hilbert-Schmidt class. If z = 0, we are done. Otherwise, besides zero
the spectrum of (2.6) consists of eigenvalues. Since kerA(π

2 ) = {0}, the number
−z−1 cannot be an eigenvalue of (2.6). Because of

A(
π

2
)−1 =

1
z
(A(

π

2
)− z)−1(

1
z

+ (A(
π

2
)− z)−1)−1, (2.8)

A(π
2 )−1 is an everywhere defined, bounded operator belonging to the Hilbert-

Schmidt class.
If g ∈ L2

s(H,R+) and f = A(π
2 )−1g, then f ′ = JHg. It follows from Lemma

7.8, [5] and from (2.7) that f(x) tends to zero in the lower component for x→ +∞.
Moreover, f(0+) is zero in the upper component. Thus Bg exists and coincides
with f = A(π

2 )−1g, and we proved that B = A(π
2 )−1. By Lemma 2.2 condition

(2.4) holds true. ¤

The above assertions yield a criterion for a canonical differential equation to
have a compact resolvent of Hilbert-Schmidt type. Put

ξϕ :=
(

cosϕ
sinϕ

)
.

Theorem 2.4. Let H(t) = (hij(t))i,j=1,2 be a trace normed Hamiltonian on R+.
Then the selfadjoint extensions A(ν), ν ∈ (−π

2 ,
π
2 ] of Tmin,s have a resolvent

(A(ν)− z)−1, z ∈ ρ(A(ν)),

which is of Hilbert-Schmidt type if and only if there exists a real ϕ such that
∫ +∞

0

ξT
ϕH(t)ξϕdt < +∞, (2.9)

and ∫ +∞

0

ξT
ϕ+ π

2
M(t)ξϕ+ π

2
ξT
ϕH(t)ξϕdt < +∞. (2.10)

Here M(x) is defined by

M(x) = (mij(x))i,j=1,2 =
∫ x

0

H(t)dt.

Proof. First we consider a transformation of the Hamiltonian H(t). For µ ∈ R set

Nµ =
(

sinµ − cosµ
cosµ sinµ

)
,

and Hµ(t) = N∗
µH(t)Nµ (see [5]). It is straightforward to verify that ψ : f 7→ Nµf

is an isomorphism from L2
s(H,R+) onto L2

s(Hµ,R+).
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If we denote by Tµ
min,s (Tµ

max,s) the respective differential operators on the
space L2

s(Hµ,R+) and by Aµ(ν) the corresponding selfadjoint extensions of Tµ
min,s,

then
ψTmin,s = Tµ

min,sψ, ψTmax,s = Tµ
max,sψ,

and ψA(ν) = Aµ(π
2 +ν−µ)ψ. Thus, the A(ν)’s have resolvents of Hilbert-Schmidt

type if and only if the Aµ(ν)’s do so.
Condition (2.9) for the given H(t) is equivalent to condition (2.1) when h11(t)

now denotes the left upper entry of Hµ(t) with µ = π
2 − ϕ. Similarly condition

(2.10) for H(t) is equivalent to condition (2.4) when h11(t), h22(t) (m11(t),m22(t))
now denote the diagonal entries of Hµ(t) (the primitive of Hµ(t)) with µ = π

2 −ϕ.
If there exists a real ϕ such that (2.9) and (2.10) hold, then by Corollary

2.3 the resolvents of the Aµ(ν)’s are Hilbert-Schmidt type for µ = π
2 − ϕ. As

we mentioned above this is equivalent to the A(ν)’s having resolvents of Hilbert-
Schmidt type.

Conversely, assume that A(ν), ν ∈ (−π
2 ,

π
2 ], have resolvents of Hilbert-

Schmidt type. If there exists a ϕ ∈ R such that ξϕ ∈ L2
s(H,R+), then we set

µ = π
2 − ϕ and see that (2.9) holds. We just mentioned that this is the same

as saying that (2.1) holds true when h11(t) denotes the left upper entry of Hµ(t).
Since also the Aµ(ν)’s have resolvents of Hilbert-Schmidt type, Corollary 2.3 shows
that (2.4) holds for Hµ(t) which in turn yields (2.10).

It remains to exclude the case that none of the constant functions ξϕ belong to
L2

s(H,R+). In fact, if we were in this situation, then all of the selfadjoint relations
A(ν) would have a trivial kernel because the scalar multiples of ξϕ are the only
possible candidates for elements of L2

s(H,R+) to belong to kerA(ϕ).
Thus all A(ν)−1 are operators, and by (2.8) with A(π

2 ) replaced by A(ν)
obtain that the operators A(ν)−1 are everywhere defined, bounded and of Hilbert-
Schmidt type. Hence the closed one-dimensional restriction (Tmin,s)−1 is a bounded,
symmetric operator with a closed domain of co-dimension one. It is easy to check
that

D = (Tmin,s)−1 ⊕ ({0} × dom((Tmin,s)−1)⊥)
is a selfadjoint extension of (Tmin,s)−1. Its inverse would then be a selfadjoint
extension of Tmin,s, and would, therefore, coincide with A(ν) for some ν. But this
contradicts the fact that D−1 has a non-trivial kernel. ¤

3. Titchmarsh-Weyl Coefficients and the Hilbert-Schmidt property

Recall that a Nevanlinna function has a unique integral representation

a+ bz +
∫

R

(
1

t− z
− t

t2 + 1

)
dσ(t), (3.1)

where a, b ∈ R, b ≥ 0 and σ is a non-negative Borel measure on R such that∫

R

1
t2 + 1

dσ(t) < +∞.
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Theorem 3.1. Let H(t) = (hij(t))i,j=1,2 be a trace normed Hamiltonian on R+, and
let qH(z) be the Titchmarsh-Weyl coefficient of the canonical differential equation
(1.1). Assume that (3.1) is the integral representation of qH(z).

Then H(x) satisfies (2.9) and (2.10) if and only of σ is a discrete measure

σ =
∑

n

αnδtn , (3.2)

such that ∑
n

1
t2n

< +∞. (3.3)

Proof. Corollary 4.2, [5] shows that Tmin,s is a completely non-selfadjoint symmet-
ric relation with defect index (1, 1), and by Theorem 4.3, [5] the Titchmarsh-Weyl
coefficient qH(z) is the Q-function of A(π

2 ) and Tmin,s.
Thus according to Theorem 2.5, [4] the triplet (L2

s(H,R+), Tmin,s, A(π
2 )) is

unitarily equivalent to (H, S, A), where

H = L2(σ),

A = {(ϕ(t); tϕ(t)) : ϕ(t), tϕ(t) ∈ L2(σ)},

S = {(ϕ(t); tϕ(t)) : ϕ(t), tϕ(t) ∈ L2(σ),
∫

R
ϕ(t)dσ(t) = 0},

in the case that b = 0 in the representation (3.1) of qH(z) and

H = L2(σ)⊕ C,

A =
{((

ϕ(t)
0

)
;
(
tϕ(t)
c

))
: ϕ(t), tϕ(t) ∈ L2(σ), c ∈ C

}
,

S =
{((

ϕ(t)
0

)
;
(
tϕ(t)
c

))
: ϕ(t), tϕ(t) ∈ L2(σ), bc+

∫

R
ϕ(t)dσ(t) = 0

}
,

otherwise. We conclude that A(π
2 − z)−1 is of Hilbert-Schmidt type if and only if

the operator

ϕ(t) 7→ ϕ(t)
t− z

,

on L2(σ) is of Hilbert-Schmidt type. This in turn is equivalent to the fact that σ
is a discrete measure (3.2) such that (3.3) holds. ¤
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