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Abstract. We define and investigate the class of symmetric and the class
of semibounded de Branges spaces of entire functions. A construction is
made which assigns to each symmetric de Branges space a semibounded one.
By employing operator theoretic tools it is shown that every semibounded
de Branges space can be obtained in this way, and which symmetric spaces
give rise to the same semibounded space. Those subclasses of Hermite-Biehler
functions are determined which correspond to symmetric or semibounded, re-
spectively, nondegenerated de Branges spaces. The above assignment is de-
termined in terms of the respective generating Hermite-Biehler functions.
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1. Introduction and preliminaries

Let us describe the objects of our studies. An almost Pontryagin space is a triple
(L, [., .],O), where L is a linear space, [., .] is an inner product on L, and O a
Hilbert space topology on L such that the following two axioms hold:

(aPs1) [., .] is O-continuous.
(aPs2) There exists a O-closed linear subspace M of L with finite codimension

such that (M, [., .]) is a Hilbert space.

This type of inner product space is very close to a Pontryagin space. The fun-
damental difference is that here the occurence of degeneracy is allowed, i.e. the
isotropic part L◦ := {f ∈ L : f ⊥ L} might contain nonzero elements. If L◦ 6= {0},
we call L degenerated, otherwise nondegenerated. If (L, [., .],O) is a nondegener-
ated almost Pontryagin space, then (L, [., .]) is a Pontryagin space. In this case the
topology O meeting the above requirements is unique.
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In the present context a particular class of almost Pontryagin spaces is of
importance: We say that an inner product space (L, [., .]) is a reproducing kernel
almost Pontryagin space on the set Ω, if

(rk1) The elements of L are complex valued functions on Ω and the linear
operations of L are defined pointwise.

(rk2) There exists a Hilbert space topology O on L such that (L, [., .],O) is
an almost Pontryagin space.

(rk3) For each w ∈ Ω the point evaluation functional χw : f 7→ f(w) is
O-continuous.

If (L, [., .]) is a reproducing kernel almost Pontryagin space, then the topol-
ogy satisfying the requirements (rk2), (rk3) is unique. If, additionally, (L, [., .])
is nondegenerated, then there exists a reproducing kernel of the space. This is a
mapping K : Ω×Ω → C such that for every fixed w ∈ Ω the function z 7→ K(w, z)
belongs to L, and has the property that

[f, K(w, .)] = f(w), f ∈ L .

In the degenerated case it is obvious that there cannot exist a reproducing kernel
function. For a more elaborate discussion of almost Pontryagin spaces see [KWW1],
a detailed account on reproducing kernel Pontryagin spaces is given in [ADRS].

We can now give the definition of a de Branges space of entire functions, cf.
[dB], [KW1]:

1.1. Definition. An inner product space (P, [., .]) is called a de Branges space (dB-
space, for short), if the following axioms hold true:

(dB1) (P, [., .]) is a reproducing kernel almost Pontryagin space on C whose
elements are entire functions.

(dB2) If F ∈ P, then F# ∈ P, where F#(z) := F (z). Moreover,

[F#, G#] = [G, F ], F, G ∈ P .

(dB3) If F ∈ P and z0 ∈ C \ R with F (z0) = 0, then

z − z0

z − z0
F (z) ∈ P .

Moreover, if additionally G ∈ P with G(z0) = 0, then

[z − z0

z − z0
F (z),

z − z0

z − z0
G(z)

]

= [F, G] .

We will assume throughout this paper that also

(Z) For every t ∈ R there exists F ∈ P with F (t) 6= 0.

By [KW1] an equivalent formulation of (Z) is: Whenever F ∈ P and t ∈ R

such that F (t) = 0, then (z − t)−1F (z) ∈ P. Let us note that the assumption
of (Z) is no loss of generality. To every space satisfying (dB1)-(dB3) there exists
an isometrically isomorphic space which satisfies (dB1)-(dB3) and (Z), cf. [KW1,
Corollary 5.5].



De Branges spaces of entire functions symmetric about the origin 3

If (P, [., .]) is a nondegenerated dB-space, then we call it a dB-Pontryagin
space. In this case there exists a reproducing kernel K(w, z) : C×C → C which is
analytic in the variables w, z. It is an important feature that this kernel function
is of a very particular form, cf. [KW1]. To explain this in more detail let us recall:
The Hermite-Biehler class HBκ with negative index κ ∈ N ∪ {0}, is defined as the
set of all entire functions E, such that E and E# have no common nonreal zeros,
E−1E# is not constant, and the kernel

SE#

E

(w, z) := i
1 − E#(z)

E(z)
E#(w)
E(w)

z − w

has κ negative squares on C+. This condition means that for every choice of n ∈ N

and z1, . . . , zn ∈ C+, the quadratic form

q(ξ1, . . . , ξn) :=

n
∑

i,j=1

SE#

E

(zj , zi)ξiξj ,

has at most κ negative squares, and that for some choice of n and z1, . . . , zn this
upper bound is actually attained. Throughout this paper we shall always assume
additionally that E has no real zeros. This condition corresponds to (Z). For
notational convenience we set

HB≤κ :=
⋃

ν≤κ

HBν , HB<∞ :=
⋃

ν∈N∪{0}

HBν . (1.1)

The Hermite-Biehler class is related to the notion of dB-Pontryagin spaces by the
fact that, if (P, [., .]) is a dB-Pontryagin space, then its reproducing kernel K is of
the form

K(w, z) = i
E(z)E(w) − E#(z)E(w)

2π(z − w)
, (1.2)

for a (not unique) Hermite-Biehler function E. Conversely, every Hermite-Biehler
function generates in this way a dB-Pontryagin space.

In the general theory of dB-spaces the operator of multiplication with the
independent variable plays a decisive role. Let (P, [., .]) be a dB-space. We denote
by S the linear operator in P defined by

(SF )(z) := zF (z)

with domain
domS :=

{

F ∈ P : zF (z) ∈ P
}

.

The axiom (dB3) means nothing else than that S is a symmetric operator with
defect index (1, 1). Note that S is closed since point evaluation in P is continuous.

In the centre of our interests in the present paper are two particular classes
of dB-spaces.

1.2. Definition. A dB-space (P, [., .]) is called semibounded if the inner product

[F, G]S := [SF, G], F, G ∈ domS , (1.3)

has a finite number of negative squares on domS.
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If an operator in some almost Pontryagin space has the property that the
corresponding inner product (1.3) has a finite number of negative squares, we
shall also say that it is of finite negativity.

Denote by O(C) the set of all entire functions and let M : O(C) → O(C) be
defined as

M :

{

O(C) → O(C)
F (z) 7→ F (−z)

The map M is a linear involution of O(C).

1.3. Definition. A dB-space (P, [., .]) is called symmetric, if M induces an isometric
involution on P, i.e. if M(P) ⊆ P and

[MF, MG] = [F, G], F, G ∈ P .

Semibounded and symmetric dB-spaces on the other hand are most inti-
mately related. It is the aim of the present paper to investigate these classes of
dB-spaces and to describe the relationship among them. More concisely formu-
lated: We construct a map from the set of all symmetric dB-spaces to the set of
all semibounded dB-spaces, show that it is surjective and determine its kernel,
cf. Theorem 3.11. Moreover, in the case of dB-Pontryagin spaces, the action of
this map is determined in terms of the generating Hermite-Biehler functions, cf.
Theorem 4.5.

Besides the interest on its own right our motivation for the study of symmetry
in dB-spaces arises out of different sources.

On the one hand, symmetry appears in dB-spaces defined by certain func-
tions known from classical analysis as a consequence of the presence of functional
equations. Gauss’s hypergeometric functions, cf. [dB], or the Riemann Ξ-function,
cf. [KW4], may serve as examples for this phenomenon. A structural understanding
of symmetry in dB-spaces can therefore lead, in turn, to an analysis of functions
satisfying a functional equation.

Secondly, symmetry appears in dB-spaces associated with a certain type of
differential equations. For instance, we would like to quote here the equation of
a vibrating string with inhomogenous mass distribution, cf. [KK], or Regge type
boundary problems, cf. [MP]. The solution of inverse spectral problems depends in
many cases essentially on the underlying theory of dB-spaces, and hence a thorough
understanding of the structure of these spaces is necessary to give inverse results.

The notion of indefiniteness appears in such problems when singularities are
allowed, for example in the form of discontinuities of weight functions, for example
as in [LW] or [P]. In order to investigate such more general problems, a theory of
symmetry in generally indefinite dB-spaces is needed. Particular attention has
to be paid to the occurence of degeneracy, since an investigation of degenerated
situations generically means an investigation of the singularities themselves.

Forthcoming work will be devoted to the application of the present results in
some of the mentioned areas, for example to the investigation of the generalized
string, cf. [KWW4].
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The contents of this paper is divided into four sections. After this introductory
part we deal with symmetric dB-spaces, investigate some of their basic properties
and define the desired assignment by constructing a semibounded dB-space out of
a given symmetric one, cf. Proposition 2.6. In the next section we elaborate the
converse construction, cf. Proposition 3.4, Proposition 3.10. This construction de-
pends on an operator theoretic construction introduced in [KWW3]. We concisely
collect our results in Theorem 3.11. In the last section we consider the case of dB-
Pontryagin spaces. We characterize those subclasses of Hermite-Biehler functions
which give rise to symmetric or semibounded dB-Pontryagin spaces, cf. Proposi-
tion 4.3 and Proposition 4.4. Moreover, the correspondence between semibounded
and symmetric spaces which was set up in the previous section is characterized in
terms of the generating Hermite-Biehler functions, cf. Theorem 4.5.

2. Symmetric de Branges spaces

We start off with some fairly elementary observations. Let (P, [., .]) be a symmetric
dB-space. The presence of the isometric involution M implies that the space P

splits.

2.1. Lemma. Let (P, [., .]) be a symmetric dB-space and put

Pe := ker
(

I − M |P
)

=
{

F ∈ P : F is even
}

,

Po := ker
(

I + M |P
)

=
{

F ∈ P : F is odd
}

.

Then Pe and Po are closed subspaces of P, and we have

P = Pe[+̇]Po .

Proof. The spaces Pe and Po are closed subspaces of P because point evaluation
is continuous. Since M |P is an involution, the mappings

Pe :=
1

2

(

I + M |P
)

, Po :=
1

2

(

I − M |P
)

are projections on P. We have ranPe = kerPo = Pe and ranPo = kerPe = Po.
Since Pe + Po = I, it follows that P = ranPe+̇ ranPo. Since M |P is isometric, we
obtain for any F ∈ Pe, G ∈ Po,

[F, G] = [MF, MG] = [F,−G] = −[F, G] .

This shows that Pe ⊥ Po. �

Let us note that, by our overall assumption (Z), the space Pe contains nonzero
elements: For, if F ∈ P is chosen such that F (0) 6= 0, then (PeF )(0) = F (0) 6= 0.

Since Pe and Po are closed, the projections Pe and Po are continuous. More-
over, Pe and Po are, with the inner product and topology inherited from P,
themselves almost Pontryagin spaces.
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Let us recall the notion of functions associated to a dB-space, cf. [dB], [KW1]:
An entire function T is said to belong to AssocP, if

F (z)T (w) − F (w)T (z)

z − w
∈ P whenever F ∈ P, w ∈ C .

It is shown in [KW1] that T ∈ Assoc P if and only if there exist F, G ∈ P such
that

T (z) = F (z) + zG(z) .

In the case of a symmetric dB-space, the linear space Assoc P splits similarly as
P does. Let us denote

Assoce P := {F ∈ AssocP : F even
}

,

Assoco P :=
{

F ∈ AssocP : F odd
}

.

2.2. Lemma. Let (P, [., .]) be a dB-space and assume that M leaves P invariant.
Then M leaves Assoc P invariant, and we have

AssocP = Assoce P+̇Assoco P . (2.1)

Moreover,

Assoce P = Pe + zPo, Assoco P = Po + zPe = zPe . (2.2)

Proof. If T ∈ AssocP, choose F, G ∈ P such that T (z) = F (z) + zG(z). Then

(MT )(z) = (MF )(z) − z(MG)(z) ∈ AssocP .

The relation (2.1) follows since the mappings

1

2

(

I + M |Assoc P

)

,
1

2

(

I − M |Assoc P

)

,

are projections whose sum is the identity.
To prove (2.2) note first that the respective inclusions ‘⊇’ are obvious. Let

T ∈ Assoce P be given. Choose F ∈ Pe with F (0) = 1. Then

G(z) :=
F (z)T (0)− T (z)

z
∈ Po

and we obtain

T (z) = T (0) · F (z) − zG(z) ∈ Pe + zPo .

If T ∈ Assoco P, then T (0) = 0 and hence

G(z) :=
T (z)

z
∈ P .

Clearly, G is even, and therefore T ∈ zPe. �

Let us next investigate the multiplication operator S on a symmetric dB-
space. Since S transforms even functions into odd functions and vice-versa, it
splits accordingly.
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2.3. Lemma. Let (P, [., .]) be a symmetric dB-space and let S be the multiplication
operator in P. Then

domS =
(

domS ∩ Pe

)

[+̇]
(

domS ∩ Po

)

, (2.3)

ranS = {F ∈ P : F (0) = 0} =
(

ranS ∩ Pe

)

[+̇] Po ,

ranS ∩ Pe =
{

F ∈ Pe : F (0) = F ′(0) = 0
}

.
(2.4)

The operator S admits the following block operator representation:

S =

(

0 Soe

Seo 0

)

:
domS ∩ Pe

[+̇]
domS ∩ Po

−→
ranS ∩ Pe

[+̇]
Po

If domS = P, then domS ∩ Pe = Pe and domS ∩ Po = Po. Otherwise either

domS ∩ Pe = Pe, codimPo
domS ∩ Po = 1 ,

or
codimPe

domS ∩ Pe = 1, domS ∩ Po = Po .

Proof. Since M(zF (z)) = −z(MF )(z), F ∈ O(C), we have

M(domS) = domS and S ◦ M = −(M ◦ S) .

Hence also
Pe(domS) ⊆ domS, S ◦ Pe = Po ◦ S ,

Po(domS) ⊆ domS, S ◦ Po = Pe ◦ S .

From this the relation (2.3) is obvious. We have S(domS ∩ Pe) ⊆ Po. Moreover,
Po ⊆ ranS since F (0) = 0 implies that z−1F (z) ∈ P, and S(domS ∩ Po) ⊆ Pe.
Thus the first line of (2.4) as well as the desired block operator representation
follows.

We show the equality stated in the second line of (2.4). If F ∈ ranS, then
F (0) = 0. If F is even, then F ′(0) = 0, and the inclusion ‘⊆’ in the second equality
follows. The converse inclusion is clear.

Since the projections Pe and Po are continuous and map domS into domS,
we have

domS = domS ∩ Pe[+̇]domS ∩ Po .

From this and the fact that the codimension of domS in P is either 0 or 1, the
remaining assertions of the lemma follow. �

Let us moreover note that the isotropic part P◦ of P also splits accordingly
and that the dimensions of the isotropic parts of Pe and Po cannot differ too
much.

2.4. Lemma. Let (P, [., .]) be a symmetric dB-space. Then M leaves P◦ invariant,

P◦ = (Pe ∩ P◦) [+̇] (Po ∩ P◦) = P◦
e[+̇]P◦

o ,

and we have
∣

∣ dimP◦
e − dim P◦

o

∣

∣ ≤ 1 . (2.5)
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Proof. Let F ∈ P◦, then for all G ∈ P,

[MF, G] = [F, MG] = 0 ,

and, hence, MF ∈ P◦. From this and the fact that Pe[⊥]Po the first assertion
follows.

Let F ∈ P◦ ∩ ranS and G ∈ ranS, then using the fact that kerS = {0} we
get

[S−1F, G] = [S−1F,SS−1G] = [F,S−1G] = 0 .

Hence S−1 maps P◦ ∩ ranS into (ranS)[⊥]. Clearly, S−1 is injective. Since Po ⊆
ranS, we obtain

S−1(P◦
o) ⊆ (ranS)[⊥] ∩ Pe ,

and

S−1(P◦
e ∩ ranS) ⊆ (ranS)[⊥] ∩ Po ⊆ P⊥

o ∩ Po = P◦
o .

Since ranS is a hyperplane, we have

dim(P◦
e ∩ ranS) ≥ dimP◦

e − 1 ,

and it readily follows that

dimP◦
e ≤ dim(P◦

e ∩ ranS) + 1 ≤ dimP◦
o + 1 .

On the other hand (ranS)[⊥] ∩ Pe ⊆ (ranS ∩ Pe)
⊥Pe and, since ranS ∩ Pe is a

hyperplane in Pe, we find

dim
(

(ranS ∩ Pe)
⊥Pe

)

≤ dimP◦
e + 1 .

Thus

dimP◦
o ≤ dim

(

(ranS)⊥ ∩ Pe

)

≤ dimP◦
e + 1 .

Alltogether (2.5) follows. �

It is a basic observation that the space Pe almost carries a dB-space structure.
Consider the map

Φ :

{

O(C) → {F ∈ O(C) : F even}
F (z) 7→ F (z2)

The map Φ is a linear bijection.

2.5. Definition. Let (P, [., .]) be a symmetric dB-space. Define a linear space

P+ := Φ−1(Pe) ,

and let P+ be endowed with an inner product [., .]+ and a topology by the re-
quirement that Φ|P+ : P+ → Pe is isometric and homeomorphic.

By its definition P+ is an almost Pontryagin space and Φ|P+ is an almost
Pontryagin space isomorphism of P+ onto Pe. In the next proposition we show
that P+ is a semibounded dB-space. Thus we have assigned to each symmetric
dB-space a semibounded one.
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2.6. Proposition. Let (P, [., .]) be a symmetric dB-space. Then (P+, [., .]+) is a
semibounded dB-space. If S and S+ denote the respective multiplication operators
on P and P+, we have

Φ ◦ S+ ◦ Φ−1 = S2|Pe
. (2.6)

Moreover,

Assoce P ⊆ Φ(Assoc P+) .

Proof. To see that the point evaluation functionals

χw :

{

O(C) → C

F 7→ F (w)

are continuous on P+ it is enough to note that

χw2 = χw ◦ Φ, w ∈ C .

The axiom (dB2) is immediate since

Φ(F#) = (ΦF )#, F ∈ O(C) .

Let F ∈ P+ and z0 ∈ C \ R with F (z0) = 0 be given. Fix w ∈ C+ such that
w2 = z0. Then ΦF ∈ Pe and (ΦF )(±w) = 0. Hence

Φ
(z − z0

z − z0
F (z)

)

=
z2 − w2

z2 − w2
(ΦF )(z) =

=
z − w

z − w

z + w

z + w
(ΦF )(z) ∈ Pe .

Moreover, if G ∈ P+ also vanishes at z0, we find with help of this relation
[z − z0

z − z0
F (z),

z − z0

z − z0
G(z)

]

+
=

[

Φ
(z − z0

z − z0
F (z)

)

, Φ
(z − z0

z − z0
G(z)

)]

=

=
[z − w

z − w

z + w

z + w
(ΦF )(z),

z − w

z − w

z + w

z + w
(ΦG)(z)

]

= [ΦF, ΦG] = [F, G]+ .

We see that (P+, [., .]+) is a dB-space. Moreover it satisfies (Z). To see this let
t ∈ R be given. We have to find F ∈ Pe such that F (

√
t) 6= 0. We already saw

after Lemma 2.1 that there exists F ∈ Pe with F (0) 6= 0, hence the case t = 0
is settled. Let w be a square root of t. Assume first that dimP > 1 and hence
that domS 6= {0}. Choose F ∈ domS \ {0}. Since P satisfies (dB3) and (Z) we
can assume that F (w) 6= 0. If F (w) + F (−w) 6= 0, we have (PeF )(w) 6= 0 and
are done. Otherwise the function PeSF does the job, because F (w) + F (−w) = 0
implies that

(SF )(w) + (SF )(−w) = w(F (w) − F (−w)) = 2wF (w) 6= 0 .

If dimP = 1, we must have P = Pe, and thus are done.
To prove the semiboundedness of (P+, [., .]+), we show that the linear bijec-

tion

zΦ :

{

O(C) → {G ∈ O(C) : G odd}
F (z) 7→ zF (z2)
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induces an isometry of (domS+, [., .]S+) onto (domS ∩Po, [., .]). First assume that
F ∈ domS+. Then zF (z) ∈ P+ and hence

z( zΦ F )(z) = z2F (z2) = Φ(zF (z)) ∈ P .

It follows that zΦ F ∈ domS∩Po. Conversely, let G ∈ domS∩Po. Then G(0) = 0
and hence z−1G(z) ∈ Pe. Put F := Φ−1(z−1G(z)), then F ∈ P+ and zΦ F = G.
Moreover,

Φ(zF (z)) = zG(z) ∈ Pe ,

and thus zF (z) ∈ P+. We therefore have ( zΦ)−1G = F ∈ domS+.
In order to check the isometry property of zΦ, let F, G ∈ domS+ be given

and note that

(ΦS+F )(z) = z2(ΦF )(z) = z( zΦ F )(z) . (2.7)

It follows that

[F, G]S+ = [S+F, G]+ = [ΦS+F, ΦG] =

= [z( zΦ F )(z), (ΦG)(z)] = [ zΦF, zΦ G] .

The relation (2.6) is an immediate consequence of (2.7). In order to establish the
last assertion of the proposition let T ∈ Assoce P be given. By Lemma 2.2 there
exist F ∈ Pe and G ∈ Po such that

T (z) = F (z) + zG(z) .

We have H := Φ−1F ∈ P+ and, since z−1G(z) ∈ Pe, also

L(z) := Φ−1
(1

z
G(z)

)

∈ P+ .

Thus H(z) + zL(z) ∈ Assoc P+. However,

Φ
(

H(z) + zL(z)
)

= (ΦH)(z) + z2(ΦL)(z) = F (z) + zG(z) = T (z) .

�

The following considerations will point us the way to a converse of this assign-
ment. Let us recall a construction introduced in [KWW3]: To an almost Pontryagin
space (P, [., .],O) and a closed symmetric relation S in P which is of finite negativ-
ity there is assigned a triple (PS , [., .]S ,OS) of a linear space PS , an inner product
[., .]S and a Hilbert space topology OS . Thereby the space PS can be considered
as a linear subspace of P and, if this is done, the set theoretic inclusion map is
continuous.

If (P, [., .]) is a Hilbert space and S is an operator, PS is obtained as the
completion of domS with respect to the inner product

hS
m[F, G] := m[F, G] + [SF, G], F, G ∈ domS ,

where m is chosen sufficiently large, so that S + m is strictly positive. The inner
product [., .]S is given as the extension by continuity of

[F, G]S := [SF, G], F, G ∈ domS .
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Finally, the topology OS is the Hilbert space topology which PS carries as com-
pletion of (domS, hS

m[., .]). In the general -indefinite- case, the construction of
(PS , [., .]S ,OS) is carried out by reduction to the Hilbert space case.

An intrinsic characterization of the set PS can be given as follows: Let F ∈ P,
then F ∈ PS if and only if there exists a sequence (Fn; Gn) ∈ S such that Fn → F

with respect to O and limn,m→∞[Fn − Fm, Gn − Gm] = 0.

It is important to note that in the present setting of symmetric dB-spaces
the reduction to the Hilbert space case can always be achieved within the class of
symmetric dB-spaces.

2.7. Lemma. Let (P, [., .]) be a symmetric dB-space. Then there exists a finite rank
perturbation (., .) of [., .] such that (P, (., .)) is a symmetric dB-Hilbert space.

Proof. By [KW1, Theorem 3.3] there exist t1, . . . , tn ∈ R, c1, . . . , cn > 0 such that
the inner product

(F, G)1 := [F, G] +

n
∑

i=1

ciF (ti)G(ti), F, G ∈ P

turns P into a dB-Hilbert space. It follows that P also becomes a dB-Hilbert space
if endowed with the inner product

(F, G) := [F, G] +

n
∑

i=1

ci

(

F (ti)G(ti) + F (−ti)G(−ti)
)

, F, G ∈ P .

It is straightforward to check that, if (P, [., .]) is symmetric, then also (P, (., .))
has this property. �

The next result shows us how the space Po can -almost entirely- be recovered
from (P+, [., .]+).

2.8. Proposition. Let (P, [., .]) be a symmetric dB-space and let us denote by
(P+,S+ , [., .]S+ ,OS+) the triple constructed out of the space (P+, [., .]+) and the
multiplication operator S+ in P+. The map zΦ induces an isometric and homeo-
morphic bijection of (P+,S+ , [., .]S+ ,OS+) onto (domS ∩ Po, [., .]).

Proof. We saw in the proof of Proposition 2.6 that zΦ |domS+ is an isometry of
(domS+, [., .]S+) onto (domS∩Po, [., .]). Our aim is to show that it is bicontinuous
with respect to the topology OS+ |domS+ and the topology of P.

Assume first that (P, [., .]) is a dB-Hilbert space. Then the topology on

domS+ is induced by the inner product h
S+
m [., .]+ where m is sufficiently large,

and the one of P by [., .].

Since S is injective and has a closed range, 0 is a point of regular type for S.
Moreover, zΦ F = S(ΦF ), and by the isometry properties of Φ and zΦ we find for
F ∈ domS+

[F, F ]+ = [ΦF, ΦF ] ≤ ‖S−1‖2[ zΦ F, zΦ F ] = ‖S−1‖2[F, F ]S+ = ‖S−1‖2[S+F, F ]+ .
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Hence, in the Hilbert space case S+ is strictly positive with a lower bound satisfying

m(S+) ≥ 1

‖S−1‖2
> 0. (2.8)

Therefore, we can take m = 0 and the topology on domS+ is induced by the inner

product h
S+

0 [., .]+ = [., .]S+ . The isometry property

[ zΦ F, zΦ F ] = [F, F ]S+ = h
S+

0 [F, F ]+, F ∈ domS+

of zΦ now shows, in particular, that zΦ is bicontinuous.
Let (P, [., .]) be an arbitrary symmetric dB-space. Choose a finite rank per-

turbation (., .) of [., .] such that (P, (., .)) is a symmetric dB-Hilbert space. Since
point evaluation is continuous in (P, [., .]), the topology of (P, (., .)) is the same
as the one of (P, [., .]). Moreover, also the inner product (., .)+ is a finite rank
perturbation of [., .]+. By [KWW3, Corollary 4.11] the topology OS+ remains the
same, whether constructed from (P+, [., .]+) or (P+, (., .)+). Hence we may apply
what we proved in the previous paragraph and see that also in the general case

zΦ is bicontinuous.
The map zΦ |domS+ can be extended by continuity to PS+ and the map

zΦ
−1 |domS∩Po

to domS ∩ Po. Since in both spaces point evaluation is continuous
(remember that P+,S+ is continuously embedded in P+), those extensions must

be given by zΦ |P+,S+
and zΦ

−1 |domS∩Po
, respectively. Since the respective inner

products are continuous, also the isometry property is retained. �

We know that codimP0 domS ∩ Po is either 0 or 1. In the following we ex-
amine the latter case.

2.9. Lemma. Assume that codimP0 domS ∩ Po = 1. Then we have zΦ
−1(Po) ⊆

P+ and

zΦ
−1

(

domS ∩ Po
⊥Po

)

= (ranS+)⊥ .

Proof. The first assertion is clear since Po ⊆ ranS and zΦ
−1 |ran S = Φ−1 ◦ S−1.

Let F ∈ Po, F ⊥ domS ∩ Po be given. If H ∈ ranS+, then ΦH ∈ ranS2 ∩ Pe,
and therefore S−1ΦH ∈ domS ∩ Po. It follows that

[ zΦ
−1F, H ]+ = [Φ−1S−1F, H ]+ = [S−1F, ΦH ] = [F,S−1ΦH ] = 0 .

We have shown the inclusion ‘⊆’. The asserted equality follows since both spaces
have codimension 1 in P+. �

In order to formulate the next result which shows how to reconstruct Po in
case domS ∩ Po 6= Po, we need to recall one more notion introduced in [KWW3]:
To an almost Pontryagin space (P, [., .],O) and a closed symmetric relation S in
P of finite negativity and finite defect, there is assigned a linear space PS and
a Hilbert space topology OS on PS . Thereby PS contains PS as a subspace of
finite codimension and OS is the unique Hilbert space topology on PS such that
OS |PS

= OS and PS is OS-closed.
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If (P, [., .]) is a Hilbert space, every symmetric relation of finite negativity is
semibounded from below. Denote by m(S) its lower bound. In this case we have
for all m > −m(S)

PS = PS+̇ ker(S∗ + m) . (2.9)

The general indefinite case is again treated by reduction to the Hilbert space case.
An intrinsic characterization of PS is:

PS = PS + L

where L is the set of all a ∈ P such that

{

(x; [Sx, a]) : x ∈ domS
}

is (the graph of) an O-continuous linear functional on domS.

2.10. Proposition. Let (P, [., .]) be a symmetric dB-space and assume that we
have domS ∩ Po 6= Po. Then the map zΦ induces a linear homeomorphism of

(P
S+

+ ,OS+) onto (Po,O|Po
). If P

S+

+ is endowed with an inner product [., .]S+ by

the requirement that zΦ is an isometry of (P
S+

+ , [., .]S+) onto (Po, [., .]), then [., .]S+

satisfies

[., .]S+ |P+,S+
×P+,S+

= [., .]S+ ,

[F, G]S+ = [F (z), zG(z)]+, F ∈ PS+ , G ∈ domS+ .
(2.10)

Proof. In order to prove the first assertion we can by Lemma 2.7 and [KWW3,
Proposition 4.14] assume without loss of generality that (P, [., .]) is a Hilbert space.
In this case we saw in (2.8) that the operator S+ is strictly positive and that we

may chose m = 0 for the topology defining inner product h
S+
m [., .]+ on P+,S+ .

Thus, we may also chose m = 0 in (2.9) and obtain

P
S+

+ = P+,S++̇(ranS+)⊥ .

Since dim(ranS+)⊥ = 1, we conclude from Lemma 2.9 that zΦ
−1(Po) = P

S+

+ .

Moreover, since domS ∩ Po is a closed subspace of Po, P+,S+ is a closed subspace

of P
S+

+ , and since zΦ restricted to these spaces is a homeomorphism, it follows that

zΦ is also homeomorphic with respect OS+ and O|Po
.

Let P
S+

+ be endowed with the inner product [., .]S+ so that zΦ is an isometry

onto (Po, [., .]). The first of the two assertions concerning [., .]S+ is immediate from

Proposition 2.8. In order to see the second one, let F ∈ P
S+

+ and, G ∈ domS+ be

given. Then ΦG ∈ domS2 and hence, zΦ G ∈ domS. We compute

[F, G]S+ = [ zΦ F, zΦ G] = [ΦF, z2 · ΦG] = [ΦF, Φ(zG(z))] = [F, zG(z)]+ .

�
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3. Semibounded dB-spaces. The converse construction

Let a semibounded dB-space (P, [., .]) be given, then the multiplication operator
S is a closed symmetric operator with finite negativity. Applying the construction
of [KWW3] with (P, [., .]) and S, we obtain the triple (PS , [., .]S ,OS).

3.1. Lemma. Let (P, [., .]) be a semibounded dB-space. Then (PS , [., .]S ,OS) satis-
fies (dB1) and (dB2).

Proof. First of all note that, since PS ⊆ P, its elements are entire functions. In
order to show that (PS , [., .]S ,OS) is an almost Pontryagin space consider first the
case that (P, [., .]) is a Hilbert space. Choose a canonical selfadjoint extension A

of S. From [KW1, Proposition 6.1] we know that σ(A) is discrete. Since S is of
finite negativity and has finite defect indices, also A is of finite negativity. This
means nothing else but #(σ(A) ∩ (−∞, 0)) < ∞. It follows from the discreteness
of the spectrum that also for all ǫ > 0,

#
(

σ(A − ǫI) ∩ (−∞, 0)
)

< ∞ .

In particular, the operator S − ǫI is of finite negativity. By [KWW3, Proposition
4.7] this implies that (PS , [., .]S ,OS) is an almost Pontryagin space.

Let (P, [., .]) be an arbitrary semibounded dB-space. By [KW1, Theorem
3.3] there exists a finite rank perturbation (., .) of [., .] such that (P, (., .)) is a
dB-Hilbert space. By [KWW3, Corollary 4.11] and what we just proved it follows
that (PS , [., .]S ,OS) is an almost Pontryagin space.

Since the set theoretic inclusion of PS into P is continuous and point eval-
uation is continuous on P, it is also continuous on PS . Thus (PS , [., .]S) is a
reproducing kernel almost Pontryagin space.

The map F 7→ F# is continuous in the topology of (P, [., .]), leaves domS
invariant, and satisfies

S(F#) = (SF )#, F ∈ domS .

Hence it induces an anti-linear isometry of (domS, [., .]S) onto itself. The same
reasoning as above, using [KW1, Theorem 3.3] and [KWW3, Corollary 4.11], shows
that it is continuous with respect to OS . Hence it extends by continuity to PS .
Since point evaluation is continuous, this extension must actually be given by the
map F 7→ F#. �

From [KWW1, Proposition 3.1] we obtain:

3.2. Corollary. The linear space P × PS turns into an almost Pontryagin space
if it is endowed with the sum inner product [., .] + [., .]S and the product of the
topologies of (P, [., .]) and OS .

Consider the map defined as

Ψ :

{

O(C) ×O(C) → O(C)
(

F (z); G(z)
)

7→ (ΦF )(z) + ( zΦG)(z)
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The map Ψ is a linear bijection. Note that

Ψ(F, 0) = Φ(F ) and Ψ(0, F ) = zΦ(F ), F ∈ O(C) . (3.1)

3.3. Definition. Let (P, [., .]) be a semibounded dB-space. Define a linear space

Q(P) := Ψ(P × PS) .

Let Q(P) be endowed with an inner product [., .]Q(P) and a topology defined by
the requirement that Ψ|P×PS

is isometric and homeomorphic.

By its definition Q(P) is an almost Pontryagin space and (Ψ|P×PS
)−1 is an

almost Pontryagin space isomorphism of Q(P) onto P × PS .

3.4. Proposition. Let (P, [., .]) be a semibounded dB-space. Then Q(P) is a sym-
metric dB-space. We have

(

Q(P), [., .]Q(P)

)

+
= (P, [., .]) . (3.2)

Proof. First of all note that we have

P × PS
Ψ

//

χw2×wχw2

��

Q(P)

χw

��

C × C
+

// C

(3.3)

Hence, the point evaluation functional χw is continuous on Q(P).

The validity of the axiom (dB2) is immediate from the fact that it holds for
(P, [., .]) as well as for (PS , [., .]S), and from the relation

Ψ(F#, G#) = Ψ(F, G)# .

In order to establish that Q(P) is a dB-space, we shall show that the multiplication
operator SQ(P) in Q(P) is a symmetric operator with defect index (1, 1).

Let H ∈ Q(P) and write H = Ψ(F, G) with F ∈ P and G ∈ PS. Since

zH(z) = z
(

F (z2) + zG(z2)
)

= z2G(z2) + zF (z2) = Ψ(zG(z), F (z)) , (3.4)

we have zH(z) ∈ Q(P) if and only if zG(z) ∈ P and F ∈ PS . It follows that

Ψ−1
(

domSQ(P)

)

= Ψ−1
(

{H ∈ Q(P) : zH(z) ∈ Q(P)
})

=

=
{

(F, G) ∈ P × PS : zG(z) ∈ P, F ∈ PS

}

= PS × domS .

Moreover, relation (3.4) yields
(

Ψ−1 ◦ SQ(P) ◦ Ψ
)

(F, G) =
(

zG(z), F (z)
)

, (F, G) ∈ PS × domS .

To see that SQ(P) is symmetric note first that, since PS is continuously embedded
in P and domS is dense in PS ,

[F, G]S = [F (z), zG(z)], F ∈ PS, G ∈ domS . (3.5)
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Let H = Ψ(F, G), L = Ψ(C, D) ∈ domSQ(P) be given. By the isometric nature of
Ψ and the relations (3.4) and (3.5) we obtain

[SQ(P)H, L]Q(P) = [zG(z), C(z)] + [F, D]S =

= [G, C]S + [F (z), zD(z)] = [H,SQ(P)L]Q(P) .
(3.6)

Our next objective is to show that

ranSQ(P) =
{

H ∈ Q(P) : H(0) = 0
}

. (3.7)

The inclusion ‘⊆’ is clear. Conversely, assume that H ∈ Q(P), H(0) = 0, and
write H = Ψ(F, G). It follows that F (0) = 0 and thus (remember that P satisfies
(Z)) that z−1F (z) ∈ domS. Hence

Ψ
(

G(z),
1

z
F (z)

)

∈ domSQ(P) ,

and, by (3.4),

SQ(P)Ψ
(

G(z),
1

z
F (z)

)

= Ψ(F, G) = H .

Thus in (3.7) equality holds.
By (3.7), the range of SQ(P) is closed. Since SQ(P) is injective, this implies

that 0 is a point of regular type for SQ(P). Moreover, again by (3.7), the codimen-
sion of ranSQ(P) in Q(P) is 1. We conclude that SQ(P) has defect index (1, 1).
Alltogether it follows that Q(P) is a dB-space.

The fact that Q(P) is actually a symmetric dB-space is immediate from the
relation

(M ◦ Ψ)(F, G) = Ψ(F,−G), F, G ∈ O(C) . (3.8)

Finally, the assertion (3.2) follows from (3.1), the relation

Q(P)e = Ψ(P × {0}),
and the fact that by the definition of the inner product

[Ψ(F, 0), Ψ(G, 0)]Q(P) = [F, G] .

Finally we note that Q(P) satisfies (Z). For if t ∈ R, then there exists F ∈ P with
F (t2) 6= 0. �

3.5. Corollary. Let (P, [., .]) be a semibounded dB-space and let Q(P) be the sym-
metric dB-space as in the above proposition. Then

domSQ(P) ∩ Q(P)o = Q(P)o .

Proof. We have

Ψ−1
(

domSQ(P) ∩ Q(P)o

)

= {0} × domS ,

and

Ψ−1
(

Q(P)o

)

= {0} × PS .

Since domS is dense in PS , the assertion follows. �
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3.6. Remark. The splitting in Lemma 2.4 of the isotropic part of Q(P) corresponds
to the following facts which hold true in general: Let (L, [., .],O) be an almost
Pontryagin space, and let S be an injective and closed symmetric operator in L

with finite negativity and finite defect. Then

S−1
(

L◦ ∩ ranS
)

⊆ L◦
S and L◦

S ⊆ (ranS)⊥ .

To see the first relation let F ∈ L◦ ∩ ranS and G ∈ domS be given. Then
S−1F ∈ domS and

[S−1F, G]S = [SS−1F, G] = [F, G] = 0 .

Since domS is dense in LS , it follows that F ∈ L◦
S . The second relation is estab-

lished in a similar manner: Let F ∈ L◦
S and G ∈ ranS, then

[F, G] = [F,SS−1G] = [F,S−1G]S = 0 .

This computation is justified, since by the density of domS in LS ,

[H, K]S = [H,SK], H ∈ LS , K ∈ domS .

A similar construction is now made with PS in place of PS in order to obtain
also those symmetric dB-spaces Q with Q+ = P and domSQ ∩ Qo 6= Qo. We call
an inner product [., .]S on PS admissible, if it satisfies the relations (2.10).

3.7. Lemma. Let (P, [., .]) be a semibounded dB-space and let [., .]S be an admissible
inner product on PS. Then (PS , [., .]S ,OS) satisfies (dB1) and (dB2).

Proof. Since [., , .]S extends [., .]S and PS is a closed subspace of PS with codi-
mension 1, the validity of (aPs1) follows. For the subspace M required in (aPs2)
choose the same one which exists for PS . The same reasoning yields that point
evaluation is continuous on PS .

To see that PS is closed with respect to .#, we can by [KWW3, Proposition
4.14] assume without loss of generality that (P, [., .]) is a Hilbert space. Then
PS = PS+̇(ranS)⊥. Since PS is invariant under .#, S is real with respect to .#

and .# is an anti-linear isometry on (P, [., .]), also (ranS)⊥ is invariant under .#.
Let F ∈ PS and G ∈ domS be given. Then, by the second relation in (2.10),

[F#, G#]S = [F#(z), zG#(z)] = [F#(z), (zG(z))#] =

= [zG(z), F (z)] = [G, F ]S .

Since .# is continuous on PS , it is also continuous on PS . Thus this relation
extends to

[F#, G#]S = [G, F ]S , F ∈ PS , G ∈ PS . (3.9)

Since PS is invariant under .#, the real and the imaginary part of an element in
PS \PS belongs to PS , and at least one of them does not belongs to PS . Thus, we
can choose an H ∈ PS \PS with H = H#. Let F, G ∈ PS and write F = F1+λH ,

G = G1 + µH , with F1, G1 ∈ PS. Then F# = F
#
1 + λH#, G# = G

#
1 + µH# and

we compute

[F#, G#]S = [F#
1 , G

#
1 ]S + µ[F#

1 , H#]S + λ[H#, G
#
1 ]S + λµ[H#, H#]S =
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= [G1, F1]
S + µ[H, F1]

S + λ[G1, H ]S + λµ[H#, H#]S .

Since we chose H to be real, we have [H#, H#]S = [H, H ]S , and thus the last
expression is just [G, F ]S . �

3.8. Remark. The set of all admissible inner products [., .]S on PS can be param-
eterized by one real parameter. To see this it suffices to note that the action of
[., .]S is determined by (2.10) on PS × PS . Hence with the above notation, only
the choice of [H, H ] is free.

As a corollary we again obtain that, if PS is endowed with an admissible
inner product, P × PS becomes an almost Pontryagin space if endowed with the
sum inner product [., .] + [., .]S and the product topology O ×OS .

3.9. Definition. Let (P, [., .]) be a semibounded dB-space and let [., .]S be an ad-
missible inner product on PS . Define a linear space

Q[.,.]S(P) := Ψ(P × PS) .

Let Q[.,.]S(P) be endowed with an inner product [., .]Q
[.,.]S

(P) and a topology

defined by the requirement that Ψ|P×PS is isometric and homeomorphic.

The space Q[.,.]S(P) is an almost Pontryagin space and (Ψ|P×PS )−1 is an

almost Pontryagin space isomorphism of Q[.,.]S(P) onto P × PS .

3.10. Proposition. Let (P, [., .]) be a semibounded dB-space and let [., .]S be an
admissible inner product on PS. Then Q[.,.]S(P) is a symmetric dB-space. We
have

(

Q[.,.]S(P), [., .]Q[.,.]S (P)

)

+
= (P, [., .]) .

Proof. The fact that (Q[.,.]S(P), [., .]Q
[.,.]S

(P),OS) satisfies (dB1) and (dB2) follows

with the help of Lemma 3.7 in the same way as in the proof of Proposition 3.4,
since the diagram (3.3) is valid for arbitrary entire functions.

To show (dB3) we also proceed along the same lines as in the proof of Propo-
sition 3.4. In the present case we have, due to (3.4),

Ψ−1
(

domSQ
[.,.]S

(P)

)

= PS × domS .

The relation (3.5) holds for all F ∈ PS and G ∈ domS, since [., .]S is admissible.
The computation (3.6) remains valid and hence SQ

[.,.]S
(P) is symmetric. The fact

that

ranSQ[.,.]S (P) =
{

H ∈ PS : H(0) = 0
}

follows by repeating the argument used in the proof of Proposition 3.4 word by
word.

Also in this case (3.8) applies and proves that Q[.,.]S(P) is a symmetric dB-
space. The validity of (Z) follows since it already holds for the subspace Q(P).

Finally
(

Q[.,.]S(P), [., .]Q[.,.]S (P)

)

+
= (P, [., .]) is also proved in the same way

as in the end of the proof of Proposition 3.4. �
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Let us now collect our results and concisely formulate the connection between
symmetric and semibounded dB-spaces.

3.11. Theorem. The assigment Υ : (P, [., .]) 7→ (P+, [., .]+) maps the set of all sym-
metric dB-spaces surjectively onto the set of all semibounded dB-spaces. Whenever
(P+, [., .]) is a semibounded dB-space, then

Υ−1
(

(P+, [., .])
)

=
{

Q(P+)
}

∪
{

Q[.,.]S+ (P+) : [., .]S+ admissible
}

(3.10)

No two of the spaces Q listed on the right hand side of (3.10) are equal as
almost Pontryagin spaces. As topological vector spaces we have Q[.,.]S+ (P+) =

Q
[.,.]

S+
1

(P+) for any two admissible inner products [., .]S+ and [., .]
S+

1 . Moreover,

Q(P+) is a closed subspace of Q[.,.]S+ (P+) of codimension 1.

Proof. The fact that Υ maps symmetric dB-spaces to semibounded dB-spaces was
proved in Proposition 2.6. That every semibounded dB-space can be obtained in
this way and that in fact the inclusion ‘⊇’ in (3.10) holds, is the content of Propo-
sition 3.4 and Proposition 3.10. The inclusion ‘⊆’ is a consequence of Proposition
2.8 and Proposition 2.10.

Since the inner product [., .]S+ on PS+ can be recovered from the inner prod-
uct on Q[.,.]S+ (P+) by means of the isometry property of zΦ, it follows that dif-

ferent admissible inner products give rise to different almost Pontryagin spaces
Q[.,.]S+ (P+). However, as topological vector spaces we have

Q[.,.]S+ (P+) = Ψ
(

P+ × P
S+

+

)

,

and

Q(P+) = Ψ
(

P+ × P+,S+

)

.

Thus any two of the spaces Q[.,.]S+ (P+) are equal as topological vector spaces and

contain Q(P) as a closed subspace of codimension 1. �

4. Symmetric and semibounded Hermite-Biehler functions

In this section we consider in more detail the nondegenerated case. We will thereby
obtain generalizations of the results of [dB]. As already noted, any dB-Pontryagin
space P is generated by a function E ∈ HB<∞ by means of (1.2). In this case we
write P = P(E).

Hermite-Biehler functions are related to generalized Nevanlinna functions. In
order to describe this connection denote for E ∈ HB<∞ by A and B its ‘real’ and
‘imaginary’ parts

A(z) :=
E(z) + E#(z)

2
, B(z) := i

E(z) − E#(z)

2
. (4.1)

Note that, since E and E# do not have common zeros, also A and B cannot have
common zeros.
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By the formula

SE#

E

(w, z) = 2
1

E(z)A(z)

B(z)
A(z) −

(

B(w)
A(w)

)

z − w

( 1

E(z)A(z)

)

we have E ∈ HBκ if and only if the function q := A−1B belongs to the generalized
Nevanlinna class Nκ, i.e. the kernel

Lq(w, z) :=
q(z) − q(w)

z − w

has κ negative squares, see e.g. [KL]. Conversely, if A and B are real entire functions
which have no common zeros and are such that A−1B ∈ Nκ, then E := A − iB ∈
HBκ.

Let (P, [., .]) be a dB-Pontryagin space with negative index κ and let K(w, z)
be its reproducing kernel. A computation shows that (1.2) can be rewritten to

K(w, z) =
B(z)A(w) − A(z)B(w)

π(z − w)
. (4.2)

Let (P, [., .]) be a dB-Pontryagin space. We already noted in the very beginning
that the choice of E ∈ HB<∞ with (P, [., .]) = P(E) is not unique. Recall from

[KW1, Corollary 6.2] that two spaces P(E) and P(Ê) are equal isometrically, i.e.
coincide as sets of entire functions and carry the same inner product, if and only
if there exist real numbers u1, u2, v1, v2 with u1v2 − u2v1 = 1, such that

(Â, B̂) = (A, B)

(

u1 u2

v1 v2

)

. (4.3)

4.1. Definition. We define HBsym
κ to be the subset of HBκ consisting of all functions

E which have the property that E#(z) = E(−z). Moreover, we denote by HBsb
κ

the set of all functions E = A − iB ∈ HBκ such that B has only finitely many
zeros in C \ [0,∞).

The notations HB
sym
≤κ and HB

sym
<∞ as well as HBsb

≤κ and HBsb
<∞ are defined

correspondingly, cf. (1.1).

4.2. Remark.

(i) Note that the symmetry property E#(z) = E(−z) is equivalent to A being
even and B being odd.

(ii) Since for a function E ∈ HBκ the function A(z)−1B(z) belongs to Nκ, at
most finitely many zeros of B are located in C \R. Hence, E ∈ HBsb

<∞ if and
only if B has only finitely many zeros on R−.

(iii) Let E ∈ HB<∞ and put q := A−1B. Then E ∈ HBsb
<∞ if and only if q has

only finitely many poles in C \ [0,∞).
(iv) If E ∈ HB

sym
<∞ , then q is odd.

The items (iii) and (iv) of Remark 4.2 enable us to employ the theory of
symmetric and essentially positive generalized Nevanlinna functions developed in



De Branges spaces of entire functions symmetric about the origin 21

[KWW2], in particular, the powerful tool [KWW2, Theorem 4.1]. For the con-
venience of the reader we shall recall this result: If q ∈ N<∞ and has only
finitely many poles on R−, then the function q̂(z) := zq(z2) is odd and belongs to
N<∞. Conversely, if q̂ ∈ Nκ is odd, then the functions q defined by the relation
q̂(z) = zq(z2) belongs to N≤κ and has only finitely many poles on R−.

The following result generalizes [dB, Theorem 47].

4.3. Proposition. Let (P, [., .]) be a dB-Pontryagin space. Then (P, [., .]) is symmet-
ric if and only if there exists a function E ∈ HB

sym
<∞ such that (P, [., .]) = P(E). If,

in this case, we additionally demand that E(0) = 1, then the function E is unique.

Proof. Assume that (P, [., .]) = P(E) for some E ∈ HB
sym
<∞ . Then, by (4.2),

the reproducing kernel function K(w, z) has the symmetry property K(w,−z) =
K(−w, z). Consider the linear space

L := span
{

K(w, z) : w ∈ C
}

and the linear operator on L defined by

L : K(w, z) 7→ K(w,−z) .

By the symmetry of K this operator maps L onto itself and is isometric:

[LK(w1, z), LK(w2, z)] = [K(w1,−z), K(w2,−z)] = [K(−w1, z), K(−w2, z)] =

= K(−w1,−w2) = K(w1, w2) = [K(w1, z), K(w2, z)] .

Hence L has a continuation to an isometry of P(E) onto itself, cf. [ADRS]. Since
point evaluation in P(E) is continuous, we have (LF )(z) = F (−z) for all F ∈
P(E), i.e. L = M . This shows that P(E) is symmetric.

Conversely, assume that (P, [., .]) is symmetric, so that the map M |P is an
isometry of P onto itself. We obtain

[F (z), MK(w, z)] = [MF (z), K(w, z)] = F (−w) = [F, K(−w, z)], F ∈ P ,

and hence that K(w,−z) = MK(w, z) = K(−w, z).
Write (P, [., .]) = P(E) with some E ∈ HB<∞. We have to show that the

choice of E can be made such that E ∈ HB
sym
<∞ . If B(0) 6= 0 and A(0) = 0,

consider E1(z) := iE(z). If B(0) 6= 0 and A(0) 6= 0, consider E1(z) := A(z) −
i(B(z) − A(0)−1B(0)A(z)). In the case B(0) = 0, put E1(z) := E(z). In any case
P(E1) = P(E), B1(0) = 0 and A1(0) 6= 0. It follows that

B1(z)

z
A1(0) = K(0, z) = K(0,−z) =

B1(−z)

−z
A1(0) ,

and, hence, B1(−z) = −B1(z). Fix w0 ∈ R such that B1(w0) 6= 0, and put

E2(z) :=
(

A1(z) +
A1(−w0) − A1(w0)

2B1(w0)
B1(z)

)

− iB1(z) .

Then P(E2) = P(E), B2 is odd, B2(w0) 6= 0 and A2(−w0) = A2(w0). We have

−B2(z)A2(w0) + A2(−z)B2(w0) = B2(−z)A2(−w0) − A2(−z)B2(−w0) =

= (−z + w0)K(−w0,−z) = (−z + w0)K(w0, z) = −B2(z)A2(w0) + A2(z)B2(w0) ,
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and conclude that A2(z) = A2(−z). This yields E2 ∈ HB
sym
<∞ . Finally put

E3(z) :=
1

A2(0)
A2(z) − iA2(0)B2(z) .

Then we still have E3 ∈ HB
sym
<∞ , P(E3) = P(E), and in addition ensured that

E3(0) = 1.

To prove the uniqueness part of the present proposition let E, Ê ∈ HB
sym
<∞ ,

E(0) = Ê(0) = 1, and assume that P(E) = P(Ê) isometrically. Let u1, u2, v1, v2 ∈
R with u1v2 − u2v1 = 1 be such that (4.3) holds. Since B(0) = B̂(0) = 0 and

A(0) = Â(0) = 1 we conclude that u1 = 1 and u2 = 0. Since both A and Â are
even and B is odd, it follows that v1 = 0, and hence that v2 = 1. This means
E = Ê. �

Also the fact that P(E) is a semibounded dB-Pontryagin space can be read
off the function E.

4.4. Proposition. Let E ∈ HB<∞. Then P(E) is a semibounded dB-Pontryagin
space if and only if E ∈ HBsb

<∞. In this case for all φ ∈ [0, π) the function

Sφ(z) := sinφA(z) − cosφB(z)

has only finitely many zeros in C \ [0,∞).

Proof. Since a selfadjoint extension of S is a rank-one extension of S, the operator
S is of finite negativity if and only if one (and hence all) of its selfadjoint exten-
sions has this property. Recall from [KW1, Proposition 6.1] that the selfadjoint
extensions Aφ of S are related to the functions Sφ by

(

Aφ − w
)−1

F (z) =
F (z) − Sφ(z)

Sφ(w)F (w)

z − w

and

σ(Aφ) =
{

w ∈ C : Sφ(w) = 0
}

.

It follows from the spectral theory in Pontryagin spaces that the relation Aφ has
finite negativity if and only if #(σ(Aφ) ∩ R−) < ∞ and, in turn, if and only if
#(|σ(Aφ) ∩ C \ [0,∞)) < ∞. �

Finally let us deduce how the generating Hermite-Biehler functions transform
when we proceed from P(E) to P(E)+ and vice versa, respectively.

4.5. Theorem. The following assertions hold:

(ia) Let E ∈ HBsym
κ , E = A − iB, and γ ∈ R be given. Define an entire function

E+,γ := A+,γ − iB+,γ by

B+,γ(z2) := zB(z), A+,γ(z2) := A(z) + γzB(z) . (4.4)

Then E+,γ ∈ HBsb
≤κ, B+(0) = 0, and we have P(E+,γ) = P(E)+. If we

additionally assume that E(0) = 1, then also E+,γ(0) = 1.
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(ib) Let E ∈ HB
sym
<∞ , E(0) = 1, and E+ ∈ HBsb

<∞, E+(0) = 1, be such that
P(E+) = P(E)+. Then there exists a number γ ∈ R such that E+ = E+,γ .

(iia) Let E+ ∈ HBsb
<∞, E+ = A+ − iB+, B+(0) = 0, and let γ ∈ R. Define an

entire function Eγ := Aγ − iBγ by

Bγ(z) :=
1

z
B+(z2), Aγ(z) := A+(z2) − γB+(z2) . (4.5)

Then Eγ ∈ HB
sym
<∞ and we have P(E+) = P(Eγ)+. If γ 6= γ′, then the spaces

P(Eγ) and P(Eγ′) are not equal isometrically. If we additionally assume that
E+(0) = 1, then also Eγ(0) = 1.

(iib) Let E+ ∈ HBsb
<∞, E+(0) = 1, and E ∈ HB

sym
<∞ , E(0) = 1, be such that

P(E)+ = P(E+). Then there exists a number γ ∈ R such that E = Eγ .

Proof. ad (ia): The reproducing kernel Ke(w, z) of the space Pe is equal to

Ke(w, z) =
I + M

2
K(w, z) =

1

2

(

K(w, z) + K(w,−z)
)

.

We compute

K(w, z) + K(w,−z) =
B(z)A(w) − A(z)B(w)

π(z − w)
+

+
B(−z)A(w) − A(−z)B(w)

π(−z − w)
=

=
1

π(z2 − w2)

[

(z+w)
(

B(z)A(w)−A(z)B(w)
)

+(z−w)
(

B(z)A(w)+A(z)B(w)
)]

=

=
2

π(z2 − w2)

[

zB(z)A(w) − A(z)wB(w)
]

.

Since (P, [., .])+ is isometrically isomorphic to Pe via the mapping Φ : F (z) 7→
F (z2), the reproducing kernel K+(w, z) of (P, [., .])+ must satisfy K+(w2, z2) =
Ke(w, z). The functions A+,γ and B+,γ defined by (4.4) are real and entire, and
satisfy by the above computation

K+(w, z) =
B+,γ(z)A+,γ(w) − A+,γ(z)B+,γ(w)

π(z − w)
.

Hence E+,γ ∈ HB≤κ and P(E+,γ) = P(E)+. A zero of B+,γ located on R−

corresponds to a pair of nonreal zeros of B lying on the imaginary axis. Therefore,
B+,γ can have only finitely many zeros on R−, i.e. E+,γ ∈ HBsb

≤κ. The remaining

assertions of (ia) are obvious.

ad (ib): Consider the function E+,0. Then, by (ia), we have P(E+) = P(E)+ =
P(E+,0). Since E+(0) = E+,0(0) = 1, it follows that for some γ ∈ R

(A+, B+) = (A+,0, B+,0)

(

1 0
γ 1

)

= (A+,γ , B+,γ) .
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ad (iia): The functions Aγ and Bγ are real and entire. Moreover, Bγ is odd and
Aγ is even. We have

−Aγ(z)

Bγ(z)
= z

(

− A+(z2)

B+(z2)

)

+ γz .

Theorem 4.1 of [KWW2] implies that −Bγ(z)−1Aγ(z) is a generalized Nevanlinna
function, and thus Eγ ∈ HB

sym
<∞ . With the notation of (4.4) we have (Eγ)+,γ = E+,

and hence the already proved assertion (ia) implies P(Eγ)+ = P(E+).

Let γ < γ′ be given. Then

(Aγ′ , Bγ′) = (Aγ , Bγ)

(

1 0
(γ − γ′)z 1

)

.

In case Bγ 6∈ P(Eγ) we conclude that P(Eγ′) = P(Eγ)+̇ span{Bγ}. Otherwise
P(Eγ′) = P(Eγ) as sets but not isometrically. The last assertion of (iia) is obvious.

ad (iib): By the already proved assertion (ib) there exists a number γ ∈ R such
that E+ = E+,γ . Since by definition E+ = (Eγ)+,γ , it follows that E = Eγ . �

4.6. Remark. If (P, [., .]) is a dB-Pontryagin space, there exist functions E ∈ HB<∞

which generate this space, i.e. (P, [., .]) = P(E), and which additionally satisfy
E(0) = 1. Hence we may restrict all discussions to HB0 := {E ∈ HB<∞ : E(0) =
1}.

By Proposition 4.3 there is a bijective correspondence between HB
sym
<∞ ∩HB0

and the set of all symmetric dB-Pontryagin spaces. By Proposition 4.4 there is a
(surjective but not injective) correspondence between HBsb

<∞ ∩HB0 and the set of
all semibounded dB-Pontryagin spaces.

If (P, [., .]) = P(E) is a symmetric dB-Pontryagin space, then (P, [., .])+ is a
semibounded dB-Pontryagin space. The totality of all functions in HBsb

<∞ ∩ HB0

which generate (P, [., .])+ is given by {E+,γ : γ ∈ R}, cf. (4.4).

Conversely, let (P+, [., .]+) be a semibounded dB-Pontryagin space, and write
(P+, [., .]+) = P(E+) for some E+ ∈ HBsb

<∞ ∩ HB0. Then we have a bijec-
tive correspondence between all symmetric dB-Pontryagin spaces (P, [., .]) with

(P, [., .])+ = (P+, [., .]+) and {Eγ : γ ∈ R}, cf. (4.5). If E+, Ê+ ∈ HBsb
<∞ ∩ HB0

both generate (P+, [., .]+), then for some β ∈ R

(Â+, B̂+) = (A+, B+)

(

1 0
β 1

)

.

It follows that (Ê)γ = Eγ−β .

Let P+ be a semibounded dB-space. We use Theorem 4.5 to investigate the
structure of Υ−1(P+) more closely.

4.7. Proposition. Let P+ be a semibounded dB-Pontryagin space. Then there exists
exactly one space Q0 ∈ Υ−1(P+) which is degenerated. Choose E+ = A+ − iB+ ∈
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HBsb
<∞, E+(0) = 1, such that P+ = P(E+) and define

λ := lim
t→−∞

A+(t)

B+(t)
∈ R ∪ {±∞} .

Then Q0 = Q(P+) if and only if λ ∈ {±∞}. If λ ∈ R, we have Q(P+) = P(Eλ).

Proof. Let [., .]S+ be an admissible inner product. The space

Q[.,.]S+ (P+)
[

−
]

Q
[.,.]

S+
(P+)

Q(P+)

is one-dimensional and does, by (2.10), not depend on the choice of [., .]S+ . Fix
H ∈ Q[.,.]S+ (P+) so that it is equal to span{H}.

Assume first that H 6∈ Q(P+). Then Q(P+) is nondegenerated and

Q[.,.]S+ (P+) = Q(P+) [+]Q
[.,.]

S+
(P+) span{H} .

By Remark 3.8 the set of all admissible inner products [., .]S+ is in a bijective
correspondence with α ∈ R via [H, H ]S+ = α. We see that Q0 = Q[.,.]S+ (P+) if

and only if α = 0.
Next consider the case that H ∈ Q(P+). Then Q(P+) is degenerated, in

fact Q(P+)◦ = span{H}. Assume that for some admissible inner product [., .]S+

the space Q[.,.]S+ (P+) is degenerated. By [KW3, Lemma 2.2] it follows that H ∈
Q[.,.]S+ (P+)◦. Since H ∈ Q(P+) the condition H ⊥ Q[.,.]S+ (P+) does not depend

on the choice of the admissible inner product [., .]S+ . Hence all spaces Q[.,.]S+ (P+)

are degenerated. A contradiction, since we know from Theorem 4.5 that there exist
nondegenerated spaces P(E) with P(E)+ = P+.

In order to prove the remaining assertions we identify the element H . Choose
γ ∈ R such that P(Eγ) 6= Q(P+). Then

domSP(Eγ) = Q(P+)

and hence Q(P+)⊥ is of the form span{uAγ + vBγ}. Since P(Eγ)e = Q(P+)e is

nondegenerated and contained in domSP(Eγ), it follows that Q(P+)⊥ ⊆ P(Eγ)o,
i.e. uAγ + vBγ is odd. This implies that u = 0. Thus we can choose H = Bγ =
z−1B+(z2). Note that by its definition Bγ does not depend on γ.

If Q(P+) is nondegenerated, we can choose γ ∈ R such that P(Eγ) = Q(P+).
Since Bγ = H 6∈ Q(P+), the selfadjoint extension of SQ(P+) which is induced by
Bγ is an operator and hence, cf. [KW1, Lemma 6.4], [KW2, Lemma 5.2],

lim
y→+∞

1

iy

Aγ(iy)

Bγ(iy)
= 0 .

However, we have

lim
y→+∞

1

iy

Aγ(iy)

Bγ(iy)
= lim

y→+∞

1

iy

A+(−y2) − γB+(−y2)

(iy)−1B+(−y2)
= λ − γ .

It follows that λ = γ ∈ R.
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Conversely, if λ belongs to R, it follows that H = Bλ 6∈ P(Eλ). Hence
P(Eλ) = Q(P+), in particular Q(P+) is nondegenerated. �

4.8. Remark. The previous results could be used for ‘ad hoc’-definitions of semi-
bounded dB-Pontryagin spaces, the notion of P+ and the relation between P and
P+. However, when trying to incorporate the degenerated case, one would run by
use of this approach into serious difficulties.

Let E ∈ HBsym
κ . By the above results the space P(E)e is characterized as

the isomorphic image under the mapping Φ of P(E+) where e.g. E+ = E+,0. The
space P(E)o of all odd functions in P(E) can be obtained in a similar way.

4.9. Proposition. Let E = A − iB ∈ HBsym
κ . Define entire functions A−, B− by

A−(z2) := A(z), B−(z2) :=
B(z)

z
,

and put E− := A−−iB−. Then E− ∈ HB≤κ and the mapping zΦ : F (z) 7→ zF (z2)
is an isometry of P(E−) onto P(E)o.

Proof. Denote by K(w, z), Ko(w, z) and K−(w, z) the reproducing kernels of the
spaces P(E), P(E)o and P(E−), respectively.

First note that

z
B−(z2)

A−(z2)
=

B(z)

A(z)

is an odd generalized Nevanlinna function. Theorem 4.1 of [KWW2] implies that
also A−(z)−1B−(z) is a generalized Nevanlinna function, and this means E− ∈
HB≤κ.

We have (w, z 6= 0)

2Ko(w, z) = K(w, z) − K(w,−z) =
B(z)A(w) − A(z)B(w)

π(z − w)
−

−B(−z)A(w) − A(−z)B(w)

π(−z − w)
= 2

wB(z)A(w) − zA(z)B(w)

π(z2 − w2)
=

= 2wz

B(z)
z

A(w) − A(z)B(w)
w

π(z2 − w2)
= 2wzK−(w2, z2) .

It follows that zΦ maps K−(w2, z) into P(E)o. Moreover,

[

zΦ K−(w2, z), zΦ K−(v2, z)
]

P(E)o
=

[ 1

w
Ko(w, z),

1

v
Ko(v, z)

]

P(E)o
=

=
1

wv
Ko(w, v) = K−(w2, v2) =

[

K−(w2, z), K−(v2, z)
]

P(E−)
.

Since

cls
{

Ko(w, z) : w ∈ C \ {0}
}

= P(E)o, cls
{

K−(w2, z) : w ∈ C \ {0}
}

= P(E−) ,

and point evaluation is continuous in both spaces P(E−) and P(E)o it follows
that zΦ is in fact an isometry of P(E−) onto P(E)o. �
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[KWW3] M.Kaltenbäck, H.Winkler, H.Woracek: Symmetric relations of finite neg-

ativity, Operator Theory Adv.Appl. 162 (2006), 191-210.
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