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Abstract

A canonical differential equation is a system y′ = zJHy with a real,
nonnegative and locally integrable 2 × 2-matrix valued function H . The
theory of a canonical system is closely related to the spectral theory of a
symmetric operator Tmin(H) which acts in a Hilbert space L2(H), and,
moreover, is closely related to the theory of positive definite Nevanlinna
functions by means of the Titchmarsh-Weyl coefficient associated to it.

In the present paper we define an indefinite analogue of canonical
systems, construct an operator model which now acts in a Pontryagin
space, and show that the spectral theory of the indefinite model is the
perfect analogue of the classical theory of Tmin(H).
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1 Introduction

A canonical system, or Hamiltonian system, of differential equations is a system
of the form

y′(x) = zJH(x)y(x), x ∈ [0, L) , (1.1)

where H is a locally integrable, real and nonnegative 2× 2-matrix valued func-
tion, where

J :=

(
0 −1
1 0

)
,

and where z is a complex parameter. The function H is called the Hamiltonian
of the system (1.1). Canonical systems are intensively analyzed via various
approaches, see e.g. [AD], [dB], [GK], [HSW], [K1]–[K3], [KL3], [O], [S1], [S2],
for approaches by means of operator methods.

Equations of the form (1.1) frequently appear in natural sciences, for example
in Hamiltonian mechanics, cf. [Ar], [F], or as natural generalizations of Sturm-
Liouville equations, cf. [R], or in the study of a vibrating string with non-
homogeneous mass distribution, cf. [At], [KK].

In the theory of canonical systems an operator model is associated to the
equation (1.1). It consists of a Hilbert space L2(H), a linear operator Tmax(H)
and a boundary value map Γ(H). The operator theory of the symmetry
Tmin(H) := Tmax(H)∗ and its selfadjoint extensions governs the behaviour of
the system (1.1), and is of outstanding importance for the investigation of its
spectral theory.

Canonical systems are intimitely related to Nevanlinna functions. Assume
that in the equation (1.1) Weyl’s limit point case prevails, this means that

∫ L

0

trH(x) dx = ∞ ,
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and denote by W (x, z) = (wij(x, z))i,j=1,2 the (transposed of the) fundamental
solution of (1.1):

d

dx
W (x, z)J = zW (x, z)H(x), x ∈ [0, L), W (0, z) = I . (1.2)

Then, for each τ ∈ R ∪ {∞}, the limit

lim
xրL

w11(x, z)τ + w12(x, z)

w21(x, z)τ + w22(x, z)
=: qH(z)

exists locally uniformly on C \ R and does not depend on τ . The function qH
is called the Titchmarsh-Weyl coefficient associated to the Hamiltonian H . It
belongs to the Nevanlinna class N0, which means that

qH is analytic on C \ R, qH(z) = qH(z), z ∈ C \ R ,

Im qH(z) ≥ 0 for Im z > 0 .

The Inverse Spectral Theorem of L.de Branges states that to every function
q ∈ N0 there exists (up to reparameterization) one and only one Hamiltonian
H such that q = qH , cf. [dB], [W1]. This result tells us that the properties
of (1.1) must be fully reflected in properties of its Titchmarsh-Weyl coefficient.
Actually, there is a broad variety of results on the correspondence between H
and qH , see e.g. [GK], [K6], [W2], [WW].

The notion of the Nevanlinna class N0 admits a generalization to an indefi-
nite setting. Let the generalized Nevanlinna class Nκ, κ ∈ N∪{0}, be defined as
the set of all functions q which are meromorphic in C\R, satisfy qH(z) = qH(z),
z ∈ C \ R, and have the property that the kernel

Kq(w, z) :=
q(z) − q(w)

z − w

has κ negative squares.
It is a long standing open problem to find an indefinite generalization of

(1) the notion of a Hamiltonian,

(2) the operator theoretic interpretation of the equation (1.1),

and

(3) the Inverse Spectral Theorem.

In some situations partial answers or examples were obtained e.g. in [KL1],
[LLS], [LW], [RS2] or [RS4]. In the present paper we settle the problems (1)
and (2) in full generality, i.e. we define the notion of an indefinite Hamiltonian,
we construct an operator model associated to it, and we investigate its operator
theoretic properties. The solution of the problem (3), which is based on the
present work and on our previous work on Pontryagin spaces of entire functions
[KW2]–[KW5], will be presented in the forthcoming Part V of this series of
papers.

Our notion of indefinite Hamiltonian carries its name with full right. This is
shown by the following three facts: Firstly, the complete analogy of the spectral
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theory of the model relation in comparison to the positive definite case, secondly,
the validity of the Inverse Spectral Theorem, and, finally, the coincidence with
known particular cases.

The principal motivation of our present work is the intrinsic mathematical
interest of the problems (1)–(3). Motivation for the study of these problems,
however, can also be drawn from some investigations of differential operators
with singularities appearing in mathematical physics, or from the investigation
of indefinite versions of some problems of classical analysis. In this context let
us mention

– The continuation problem for positive definite functions as treated in [KL2],
[Ka], [KW1].

– The Stieltjes- or Hamburger- Moment problem, cf. [A], [K4], [K5], [KL1],
[RS1].

– Sturm Liouville operators with discrete singularities, arising e.g. from the
study of point interactions in quantum mechanics, cf. [AlKu], [GeS], [AGHH].

– Sturm-Liouville operators with non-integrable potential, cf. [G, Ku, SS, BDL].

– Differential operators with floating singularities which depend nonlinearly on
the eigenvalue parameter, arising in magnetohydrodynamics, astrophysics, or
polymerization chemistry, cf. [Ad], [Ko], [L].

For some of the mentioned differential operators Pontryagin space models were
constructed, cf. [vDT], [P], [Sh], [DL], [DLSZ], in other contexts Pontryagin
spaces anyway appear in an immediate and natural way.

We would like to indicate our intuition which led to the present work. From
the very beginning one has a picture of an indefinite canonical system as an
equation of the form (1.1) where H has some -finitely many- singularities. These
singularities may be of different types. In the simplest situation they can be a
kind of negative point-mass or a derivation of it. In more complicated situations,
they can also be a kind of non-integrable singularity of the function H , or a
combination of both. This, very rough, picture stems from

– inspecting existing examples: [KL1] deals with the indefinite moment prob-
lem. In [LLS] one example of a Hamiltonian with an inner (non-integrable)
singularity appears. In [LW] and [KWW2] generalized strings, a particular in-
stance of indefinite canonical systems, are studied.

– the structure theory of maximal chains of matrices, which are the indefinite
analogue of the fundamental solution (1.2) of (1.1), as provided in [KW5].

– inspecting the distributional model for selfadjoint operators in Pontryagin
spaces, and the corresponding representation of generalized Nevanlinna func-
tions, as given in [JLT].

The present construction is modelled after the construction given in the men-
tioned paper [JLT], taking into account the desired variety and structure of
singularities. The reader will maybe recognize this in our choice of notation,
for instance the appearance of elements δ0, δ1, . . . which one should think of
as Dirac-distribution and its derivatives. However, our construction is carried
out explicitly. We did not yet succeed in giving a proper interpretation of the
present model in a distributional context. This will be the task of future work.

In the remaining part of this introduction we shall describe the contents of
the present paper a bit more detailed. It is divided into several chapters:
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In Chapter 2 we deal with classical, i.e. positive definite, canonical systems. We
formulate the basic construction of L2(H) and Tmax(H) in a setting which is
sufficiently general for our later needs. For this purpose we have to introduce
an adopted version of the notion of a boundary triplet. The classical results
on the structure of Tmax(H) are recalled in Theorem 2.18 and Theorem 2.19.
We give some supplements to the classical theory, for instance we deal with the
multivalued part of powers of Tmax(H). Moreover, we are concerned with a
compactness property of Tmax(H).

In Chapter 3 we introduce and investigate the notion of H-polynomials.
These functions are buildt with help of ‘H-integration’,

f 7→

∫
JH(t)f(t) dt ,

in a similar way as polynomials can be buildt with help of normal integration.
Although on first sight a bit technical, H-polynomials are not only an indispens-
able tool for the later construction of indefinite Hamiltonians, but also reflect
a portion of the inner structure of a singularity. They will be used to measure
the growth of a Hamiltonian towards a singularity in the right way.

After these chapters of preliminary character we proceed in Chapters 4 and
5 to the definition and analysis of elementary indefinite Hamiltonians. This part
forms the core of the present paper.

In Chapter 4 we introduce elementary indefinite Hamiltonians, cf. Definition
4.1. They are composed of a Hamiltonian which has an inner singularity and is
of limited growth towards this singularity, a data-part which is concentrated at
the singularity, and a set of interface conditions. The purpose is to model the
simplest situation of an indefinite canonical system: a ‘regular indefinite system
with only one singularity’. Later on elementary indefinite Hamiltonians will be
used as building blocks for modelling the most general situation. Due to the
presence of different types of singularities which are in their nature essentially
different, we have to define three kinds of elementary indefinite Hamiltonians.

To an elementary indefinite Hamiltonian h an operator model is associated.
It consists of a Pontryagin space P(h), a linear relation T (h), and a boundary
relation Γ(h). Moreover, there is a map ψ(h) which allows us to associate a space
of functions with P(h). Thereby (P(h), T (h),Γ(h)) is the indefinite analogue of
(L2(H), Tmax(H),Γ(H)). The map ψ(h) realizes the idea that, as long as one
stays away from the singularity, the indefinite system behaves like a positive
definite one. After the actual definition of the model we provide some basic
results on the geometry of the model.
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Chapter 5 is devoted to the proof of the operator theoretic properties of
the model (P(h), T (h),Γ(h)), cf. Theorem 5.1. This result already shows the
analogy to the classical theory of canonical systems as stated in Theorem 2.18.
Cornerstones on the way are the verification of the abstract Green’s identity,
Proposition 5.2, and the fact that kerΓ(h) = T (h)∗, Proposition 5.4. Besides
this, we investigate reparameterizations, i.e. changes of the scale, in the setting
of elementary indefinite Hamiltonians.

The Chapters 6 and 7 are of intermediate character. In Chapter 6 we provide
a general construction of pasting of boundary value triplets, cf. Definition 6.1,
Proposition 6.2. It formalizes the, frequently appearing, idea of gluing together
boundary value problems by means of continuous boundary values, as for ex-
ample in [dSW1], [dSW2]. The machinery provided in this chapter is used later
on to paste elementary indefinite Hamiltonians; this is the way we wil obtain a
model for the general situation.

The first application of the operation of pasting can be found in Chapter
7, where we obtain a result on the further splitting up of elementary indefi-
nite Hamiltonians. This generalizes the natural splitting of a space L2(H) into
L2(H1) ⊕ L2(H2), when H is split into H1 := H |[0,a) and H2 := H |[a,L). Al-
though proofs are pretty technical, the results of this chapter are natural. They
play an important role in the forthcoming investigation of Titchmarsh-Weyl
coefficients, since they will enable us to split indefinite Hamiltonians at any
point.

Finally, in Chapter 8, we come to the definition of an indefinite Hamilto-
nian and the model associated to it. An indefinite Hamiltonian consists of a
Hamiltonian which has a finite number of inner singularities and is of restricted
growth towards them, a data-part concentrated at these singularities, and a set
of interface conditions at each of them, cf. Definition 8.1, Remark 8.3. The
construction of the model is done by partitioning the Hamiltonian into finitely
many elementary indefinite Hamiltonians, and plugging together their models
with help of the operation of pasting provided in Chapter 6. In a similar way
the results Theorem 8.6 and Theorem 8.7 are deduced. These theorems settle
the operator theory of indefinite canonical systems and can be viewed as the
main results of the present work. They are the perfect indefinite analogues of
the classical Theorem 2.18 and Theorem 2.19.

The paper closes with a discussion of the dependency on the choice of par-
titioning, and a short investigation of reparameterizations.

2 Positive definite canonical systems

In this section we consider classical, i.e. positive definite, canonical systems.
We recall the notion of a Hamiltonian and the associated model space in a
sufficiently general setting and state some well known facts concerning the model
relation. Moreover, we give some supplements to these results and deal with a
compactness property of the model relation.

2.1 The model associated to a Hamiltonian

a. Definition of a Hamiltonian
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Let I = (s−, s+) be an interval on the real axis where s− < s+, s−, s+ ∈
R∪ {±∞}. A Hamiltonian on I is a measurable function H defined on I which
takes real and nonnegative 2 × 2-matrices as values, is locally integrable on I,
and does not vanish on any set of positive measure.

An important role is played by the primitive t of trH . It is determined
up to an additive constant. Since trH is nonnegative, locally integrable, and
does not vanish on any set of positive measure, t is absolutely continuous and
strictly increasing. Thus t maps I bijectively onto some interval (L−, L+). Note
that, since trH does not vanish on any set of positive measure, also the inverse
function t−1 is absolutely continuous.

Since t is determined up to an additive constant, it is meaningful to call H
regular at the endpoint s− (at s+), if L− > −∞ (L+ < ∞, respectively). If H
is not regular at s− or s+, it is called singular at the respective endpoint.

Intervals where H is of a particularly simple form play a special role. For
φ ∈ R denote by ξφ the vector

ξφ :=

(
cosφ

sinφ

)
.

Note that ξφ1 and ξφ2 are linearly dependent if and only if φ1 − φ2 ∈ πZ. An
interval (α−, α+) ⊆ I, α− < α+, is called H-indivisible of type φ ∈ [0, π) if

ranH(t) = span{ξφ}, t ∈ (α−, α+) a.e.

In this case we have, with an appropriate measurable, scalar and a.e. positive
function h(t),

H(t) = h(t)ξφξ
T
φ , t ∈ (α−, α+) a.e.

If (α−, α+) is H-indivisible, the difference t(α+) − t(α−) ∈ (0,∞] is called the
length of this H-indivisible interval.

It is clear that, if (α−, α+) and (α′
−, α

′
+) are H-indivisible intervals with

nonempty intersection, then their types must coincide and their union is again
H-indivisible. Hence every H-indivisible interval is contained in a maximal
H-indivisible interval.

Given a HamiltonianH , we define numbers α−
k (H) inductively for k ∈ N∪{0}

by

(i) α−
0 (H) := s−.

and

(iia) If α−
k (H) is the left endpoint of an H-indivisible interval, let α−

k+1(H) be
the right endpoint of the maximal H-indivisible interval with left endpoint
α−
k (H).

(iib) If α−
k (H) is not the left endpoint of an H-indivisible interval, put

α−
k+1(H) := α−

k (H).

Note that no point α−
k (H) can be contained in an H-indivisible interval.

Numbers α+
k (H), k ∈ N ∪ {0}, are defined in the same way starting from

α+
0 (H) := s+ and proceeding downwards.

If it is clear from the context from which Hamiltonian H the points α±
k (H)

were constructed, we shall drop the argument H and just write α±
k . Similarly,
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if no confusion can occur, we shall just speak of indivisible intervals instead of
H-indivisible intervals.

Let us remark that the whole interval (s−, s+) is indivisible if and only if
one of the following three equivalent statements hold true: α−

1 = s+, α+
1 = s−,

α−
1 > α+

1 . In general, we have α−
n = s+ if and only if α+

n = s− if and only if
the Hamiltonian consists of n maximal indivisible intervals.

b. The space L2(H)

To a Hamiltonian H an inner product space L2(H) is associated. Denote by
M(I) the set of all measurable functions on I with values in C2 which possess
the property

(C) If (α−, α+) is indivisible of type φ, then ξTφ f is constant a.e. on
(α−, α+).

Moreover, denote by AC(I) the subset of M(I), which consists of all locally
absolutely continuous functions which satisfy (C).

Let L2(H) be the subset of M(I) containing all functions f ∈ M(I) which
satisfy

(L2)
∫
I
f∗Hf <∞.

An inner product is defined on L2(H) by

(f, g)L2(H) :=

∫

I

g∗Hf .

Here, and throughout this paper, integration is understood with respect to the
Lebesgue measure, unless explicitly indicated differently.

Let us remark that, if H is singular at s+, then for every f ∈ L2(H) we have
(Hf)(t) = 0, t ∈ (α+

1 , s+) a.e. The analogous statement holds for the endpoint
s−.

2.1 Remark. Our standard reference concerning the classical theory of canonical
systems will be [HSW]. But note that there the authors always assume that
trH = 1 a.e. on R. Moreover, the space L2(H) in the present work is in their
notation denoted by L2

s(H). What is called L2(H) in [HSW] is the space defined
by requiring (L2) but dropping the condition (C).

On M(I) we can define an equivalence relation =H by

f =H g :⇐⇒ H(f − g) = 0 a.e.

Clearly L2(H) ⊆ M(I) is saturated with respect to this equivalence relation.
Denote by π : M(I) → M(I)/=H

the canonical projection. On L2(H)/=H

an inner product is well-defined by

(
πf, πg

)
L2(H)/=H

:= (f, g)L2(H), f, g ∈ L2(H) .

We will use the following notational convention: The space L2(H)/=H
of equiv-

alence classes will again be denoted by L2(H), and its inner product again
by (., .)L2(H). In general, this abuse of language will not cause any confusion.
However, if the distinction between single functions and equivalence classes of
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functions is essential, which will indeed be the case in several of our later dis-
cussions, we will write f ∈ L2(H) ⊆ M(I) or f ∈ L2(H) ⊆ M(I)/=H

. When

f ∈ M(I)/=H
we will also use the notation Hf meaning the function Hf̂ where

f̂ is any representant of f .
It is fundamental that L2(H) ⊆ M(I)/=H

is a Hilbert space, cf. [K1], [K2]. It
is finite-dimensional if and only if I consists of finitely many maximal indivisible
intervals. In this case its dimension coincides with the number of those maximal
indivisible intervals which are of finite length.

The space L2(H) carries a conjugate linear and anti-isometric involution. In
fact, the complex conjugation

. : f(t) 7→ f(t),

is a conjugate linear involution on M(I), and induces a conjugate linear and
anti-isometric involution on L2(H).

c. The relation Tmax(H)

Let J be the matrix

J :=

(
0 −1
1 0

)
.

We define a linear relation Tmax(H) on L2(H) ⊆ M(I) as the set of all pairs
(f ; g) ∈ L2(H) × L2(H) where f is locally absolutely continuous and

f ′ = JHg, a.e. on I .

Let us note at this point that, if f : I → C2 is locally absolutely continuous
and f ′(t) ∈ ranJH(t) a.e., then f automatically satisfies (C), cf. [HSW, Lemma
3.3].

The linear relation Tmax(H) is also projected to L2(H)/=H
:

(π × π)Tmax(H) =
{
(πf ;πg) : (f ; g) ∈ Tmax(H)

}
⊆ (L2(H)/=H

)2 .

Following our general abuse of language, the projected relation will again be
denoted by Tmax(H).

In many places the following statement, given in [HSW] as Lemma 3.5, is of
importance:

2.2 Remark. Assume that (s−, s+) is not indivisible. Then for each pair (f ; g) ∈

Tmax(H) ⊆ (M(I)/=H
)2 there exists a unique representant f̂ ∈ AC(I) of the

equivalence class f ∈ M(I)/=H
which satisfies f̂ ′ = JHg.

d. Boundary values

If H is regular at the endpoint s− and (f ; g) ∈ Tmax(H) ⊆ M(I)2, then f
has a continuous extension to this endpoint, in fact f ∈ AC([s−, s+)), where
AC([s−, s+)) denotes the set of all locally absolutely continuous functions on
[s−, s+) with values in C2 which satisfy the condition (C). Clearly, we can
consider AC([s−, s+)) as a linear subspace of M(I). The analogous statement
holds for the endpoint s+.

This fact allows us to define boundary values Γ(H) ⊆ Tmax(H) × (C2 ×
C2) where Tmax(H) is understood as a subspace of (M(I)/=H

)2: A pair
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((f ; g); (a; b)) belongs to Γ(H) by definition if and only if there exists a rep-

resentant f̂ ∈ AC(I), f̂/=H
= f , with f̂ ′ = JHg, such that

a =

{
f̂(s−) , H regular at s−

0 , H singular at s−
, b =

{
f̂(s+) , H regular at s+

0 , H singular at s+

2.3 Remark. Assume that (s−, s+) is not indivisible. Then by Remark 2.2 the

representant f̂ is unique. Hence in this case mul Γ(H) = {0}. Thereby mul Γ(H)
denotes the multivalued part of the relation Γ(H), that is

mul Γ(H) :=
{
(a; b) ∈ C × C :

(
0; (a; b)

)
∈ Γ(H)

}
,

cf. [DS2].

e. The case that (s−, s+) is indivisible

This case will often play an exceptional, though mostly trivial, role. It will
usually be given an explicit treatment based on the following considerations.

If (s−, s+) is indivisible, then for some φ ∈ [0, π) and an appropriate scalar
function h we have

H(t) = h(t)ξφξ
T
φ , t ∈ (s−, s+) a.e.

Then f ∈ M(I), if and only if f is measureable and ξTφ f is constant on I. If
f ∈ M(I), we have

Hf = hξφξ
T
φ f = (ξTφ f)h · ξφ .

We see that f =H g if and only if ξTφ f = ξTφ g, and thus we can view M(I)/=H

as a linear subspace of C.
Assume first that H is regular at both endpoints, i.e. that

∫ s+
s−

h <∞. Then,

as a set of functions L2(H) = M(I), and thus, if L2(H) is considered as set of
equivalence classes, dimL2(H) = 1. The relation Tmax(H) ⊆ AC(I) ×M(I) is
given as

Tmax(H) =
{

(f ; g) ∈ AC(I)×M(I) : ∃ a ∈ C
2 : f(x) = ξTφ g · (

∫ x

s−

h) ·Jξφ+a
}
.

It follows that Tmax(H), as a set of equivalence classes, is equal to L2(H) ×
L2(H). In order to compute the relation Γ(H), note that for (f ; g) ∈ Tmax(H) ⊆
AC(I) × M(I) we have f/=H

= f(s−)/=H
. Hence, if (f ; g) ∈ Tmax(H) ⊆

AC(I)/=H
×M(I)/=H

is given, the set of all possible locally absolutely contin-

uous representants f̂ of f with f̂ ′ = JHg is equal to

{
(ξTφ f) · ξφ + (ξTφ g)(

∫ x

s−

h) · Jξφ + γJξφ : γ ∈ C

}
. (2.1)

It follows that

Γ(H)(f ; g) =
{(

(ξTφ f)ξφ + γJξφ; (ξ
T
φ f)ξφ +

[
γ + (ξTφ g)

∫ s+

s−

h
]
Jξφ

)
: γ ∈ C

}
.

(2.2)

We see that mul Γ(H) = span{(Jξφ; Jξφ)}.
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Assume now that H is regular at s− and singular at s+, i.e.
∫ t
s−
h < ∞ for

t ∈ (s−, s+) but
∫ s+
s−

h = ∞. Then as a set of functions L2(H) = {f ∈ M(I) :

ξTφ f = 0}, and hence as a set of equivalence classes L2(H) = {0}. Moreover, we
have

Tmax(H) =
{
(γJξφ; g) ∈ AC(I) ×M(I) : γ ∈ C, ξTφ g = 0

}
,

and hence mul Γ(H) = span{(Jξφ; 0)}.

f. Reparameterization

It is important to identify Hamiltonians which arise from each other by repa-
rameterization.

2.4 Lemma. Let H be a Hamiltonian defined on the interval (s−, s+). Let
(s̃−, s̃+) be another interval in R and let ϕ : (s̃−, s̃+) → (s−, s+) be an absolutely
continuous and increasing bijection such that also ϕ−1 is absolutely continuous.
Define

H̃(t) := H(ϕ(t)) · ϕ′(t), t ∈ (s̃−, s̃+) .

Then H̃ is a Hamiltonian on (s̃−, s̃+). It is regular or singular at s̃− (or s̃+) if
and only if H is regular or singular at s− (or s+, respectively). The map

Cϕ : f 7→ f ◦ ϕ

induces an isometric isomorphism of L2(H) onto L2(H̃) which is compatible
with conjugation, i.e.

Cϕf = Cϕf, f ∈ L2(H) .

We have
(Cϕ × Cϕ)Tmax(H) = Tmax(H̃)

Γ(H̃) ◦ (Cϕ × Cϕ) = Γ(H) ,
(2.3)

and ∫ s2

s1

trH(s) ds =

∫ ϕ−1(s2)

ϕ−1(s1)

tr H̃(t) dt . (2.4)

Proof. The fact that H̃ is a Hamiltonian is obvious. We show that Cϕ is an

isometry from L2(H) onto L2(H̃):

∫ s+

s−

f(s)∗H(s)g(s) ds =

∫ ϕ−1(s+)

ϕ−1(s−)

f(ϕ(t))∗H(ϕ(t))g(ϕ(t))ϕ′(t) dt =

=

∫ ϕ−1(s+)

ϕ−1(s−)

(f ◦ ϕ)(t)∗H̃(t)(g ◦ ϕ)(t) dt =

=

∫ s̃+

s̃−

(Cϕf)(t)∗H̃(t)(Cϕg)(t) dt .

Formula (2.4) can be verified in the same way. Let (f ; g) ∈ Tmax(H), then

(Cϕf)′ = (f ′ ◦ ϕ) · ϕ′ = J(H ◦ ϕ)(g ◦ ϕ) · ϕ′ = JH̃(Cϕg), a.e.

Since the same argument can be applied with ϕ−1, the first relation in (2.3)
follows. The second relation is clear since (Cϕf)(s̃±) = f(s±).
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❑

By means of the above lemma an equivalence relation “equal up to reparam-
eterization” is defined on the set of all Hamiltonians: We say that H and H̃ are
equivalent up to reparametrization, if and only if there exists an increasing bijec-
tion ϕ between the respective domains (s̃−, s̃+) and (s−, s+) of H̃ and H , such
that ϕ and ϕ−1 are absolutely continuous, and such that H̃(t) = H(ϕ(t)) ·ϕ′(t).

Particular reparameterizations of a Hamiltonian are obtained by using the
primitive of trH . If we put ϕ = t−1 in Lemma 2.4, then, by (2.4), we have
tr H̃ = 1 a.e.

2.5 Remark. A Hamiltonian with the property that trH = 1 a.e., is called trace
normed. We see from the above consideration that every equivalence class of
Hamiltonians modulo reparameterization contains trace normed Hamiltonians.
For this reason it is common to restrict to the case that H is trace normed.
However, in our context it is necessary to work with the general notion of a
Hamiltonian.

A statement similar to Lemma 2.4 holds true if the bijection ϕ is decreasing
instead of increasing. We shall, in this case, speak of an order-reversing repa-
rameterization. However, an essential difference is that in this case the relations
Tmax(H) and Tmax(H̃) are not anymore unitarily equivalent.

2.6 Lemma. Let H be a Hamiltonian defined on the interval (s−, s+). Let
(s̃−, s̃+) be another interval in R and let ϕ : (s̃−, s̃+) → (s−, s+) be an absolutely
continuous and decreasing bijection such that also ϕ−1 is absolutely continuous.
Define

H̃(t) := −H(ϕ(t)) · ϕ′(t), t ∈ (s̃−, s̃+) .

Then H̃ is a Hamiltonian on (s̃−, s̃+). It is regular or singular at s̃− (or s̃+)
if and only if H is regular or singular at s+ (or s−, respectively). The map Cϕ
induces an isometric isomorphism of L2(H) onto L2(H̃). We have

(Cϕ × Cϕ)Tmax(H) = −Tmax(H̃) ,

Γ(H̃) ◦ ((−Cϕ) × Cϕ) = ψ ◦ Γ(H) ,

where

ψ :

{
C2 × C2 → C2 × C2

(a; b) 7→ (b; a)

Moreover, ∫ s2

s1

trH(s) ds =

∫ ϕ−1(s1)

ϕ−1(s2)

tr H̃(t) dt .

Proof. The proof of this assertion is completely similar to the one of Lemma
2.4 and will therefore not be carried out explicitly.

❑

g. Restriction

We will frequently encounter the situation that a Hamiltonian H is restricted to
a smaller interval. If H is a Hamiltonian on I = (s−, s+) and L = (σ−, σ+) ⊆ I,
then H |L is a Hamiltonian on L. For the moment let us just note the following
statements which are immediate from the definition:
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(i) H |L is singular at σ+ or σ− if and only if σ+ = s+ (σ− = s−) and H is
singular at the respective endpoint.

(ii) If σ− ∈ [α−
l (H), α−

l+1(H)), then α−
n (H |L) = α−

n+l(H). A similar statement
holds for σ+.

(iii) If f ∈ L2(H), then f |L ∈ L2(H |L).

2.2 On the structure of the relation Tmax

First we wish to recall some classical and fundamental results on the operator
theory of Tmax. We will thereby include the case that (s−, s+) is indivisible.
In order to formulate these results in a concise way, we need to give a properly
adapted definition of boundary triplets and some of their spectral properties.

a. Boundary triplets of defect 2 and 1

The following notion turns out to be useful.

2.7 Definition. A triple (P , T,Γ) is called a boundary triplet, if P is a Pon-
tryagin space which carries a conjugate linear and anti-isometric involution
. : P → P , if T ⊆ P × P is a closed linear relation which is real, i.e.

(f ; g) ∈ T ⇐⇒ (f ; g) ∈ T ,

if Γ ⊆ T × (C2 × C2) is a closed linear relation with domΓ = T which is
compatible with the involution . in the sense that

(
(f ; g); (a; b)

)
∈ Γ ⇐⇒

(
(f ; g); (a; b)

)
∈ Γ , (2.5)

and if the following conditions are satisfied:

(i) The abstract Green’s identity holds:

[g, h]− [f, k] =

(
y1
y2

)∗(
J 0
0 −J

)(
x1

x2

)
,

((f ; g); (x1;x2)), ((h; k); (y1; y2)) ∈ Γ .

(2.6)

(ii) kerΓ = T ∗.

There is a vast literature on the notion of boundary triplets, for more details
see e.g. [DHMS] or [D]. However, it is not the purpose of this paper to further
develop the theory of boundary triplets, and hence we content ourselves with
what is needed in the later sections of this paper.

We also give an adopted definition of the defect of a boundary triplet. The
need for this will become clear in the subsequently stated Theorem 2.18 and
Theorem 2.19, as well as in the later Section 6, cf. Remark 6.10.

2.8 Definition. Let (P , T,Γ) be a boundary triplet. We say that (P , T,Γ) has
defect 2, if the following condition holds:

(Def 2) If mul Γ = {0}, then dimT/T ∗ = 4. If mul Γ 6= {0}, then
dimT/T ∗ = 2 and mul Γ is of the form span{(m;m)} for some
m ∈ C2.
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We speak of a boundary triplet of defect 1, if the following condition
holds:

(Def 1) We have ranΓ ⊆ C2 × {0}. If mul Γ = {0}, then dimT/T ∗ =
2. If mul Γ 6= {0}, then dimT/T ∗ = 0 and mulΓ is of the form
span{(m; 0)} for some m ∈ C2.

2.9 Remark. Let (P , T,Γ) be a boundary triplet of defect 2 (or 1).

(i) Write mul Γ = span{(m;m)} (or mulΓ = span{(m; 0)}, respectively).
Then the element m can be choosen real, since T is invariant with respect
to ..

(ii) Assume mul Γ = {0}. Then ranΓ = C2 × C2 or ranΓ = C2 × {0},
respectively. This follows since in this case

T/T ∗ = T/ kerΓ ∼= ranΓ .

2.10 Remark. One important feature of boundary value maps is that they allow
to describe the selfadjoint extensions of the symmetry S := T ∗. Let (P , T,Γ)
be a boundary triplet of defect 2 and assume that mul Γ = {0}. Then for any
linear relation A with S ⊆ A ⊆ T we have

A∗ = Γ−1
(
Γ(A)⊥J

)

where ⊥J refers to the inner product on C2 × C2 defined by the Gram-matrix

J :=

(
J 0
0 −J

)
.

In particular, A is symmetric if and only if Γ(A) is neutral, and A is selfadjoint
if and only if Γ(A) is hypermaximal neutral. Therefore examples of selfadjoint
extensions of S are obtained by

A(φ−;φ+) :=
{
(f ; g) ∈ T : (ξTφ−

, ξTφ+
)Γ(f ; g) = 0

}
, φ−, φ+ ∈ [0, π) .

If we deal with a boundary triplet of defect 1, mul Γ = {0}, the situation is
similar. Only we have to cancel the second component of Γ which is anyway
always zero and use the inner product (J., .) on C2:

A∗ = Γ−1
(
{(a; 0) ∈ C

2 × C
2 : a ⊥J Γ(x)1, x ∈ A}

)
,

where Γ(x)1 denotes the first component of Γ(x) ∈ C2 × C2, i.e. Γ(x) =
(Γ(x)1; 0). Selfadjoint extensions of S = T ∗ are given by

A(φ) :=
{
(f ; g) ∈ T : ξTφ Γ(f ; g)1 = 0

}
, φ ∈ [0, π) . (2.7)

In this case actually all selfadjoint extensions are obtained in this way.

2.11 Remark. Let us provide an example. The situation mul Γ 6= {0} will appear
in our context from blowing up an ordinary boundary map. Assume that T is a
closed linear relation dimT/T ∗ = 2 and let Λ : T → C2 be surjective and satisfy
the Green’s identity

[g, h] − [f, k] = Λ(h; k)∗JΛ(f ; g), (f ; g), (h; k) ∈ T . (2.8)
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A linear relation Γ is now defined as (if v ∈ C2, write v = (v1, v2)
T )

Γ :=
{
((f ; g); (x1;x2)) ∈ T × (C2 × C

2) :

x1,1 − x2,1 = Λ(f ; g)1, x1,2 = x2,2 = Λ(f ; g)2
}
.

(2.9)

Then (P , T,Γ) is a boundary triplet of defect 2, and

mul Γ = span
{
(

(
1

0

)
;

(
1

0

)
)
}
.

In fact, let ((f ; g); (x1;x2)), ((h; k); (y1; y2)) ∈ Γ and write x1 = (x1,1, x1,2)
T

etc., then

(
y1
y2

)∗

J

(
x1

x2

)
=
(
x1,1y1,2 − x1,2y1,1

)
−
(
x2,1y2,2 − x2,2y2,1

)
=

(x1,1 − x2,1)︸ ︷︷ ︸
Λ(f ;g)1

Λ(h; k)2 − (y1,1 − y2,1)︸ ︷︷ ︸
Λ(h;k)1

Λ(f ; g)2 = Λ(h; k)∗JΛ(f ; g) .

2.12 Definition. Let (P , T,Γ) and (P̃ , T̃ , Γ̃) be boundary triplets. A pair
(̟,φ) is called an isomorphism of (P , T,Γ) to (P̃ , T̃ , Γ̃) if:

(i) ̟ is an isometric isomorphism of P onto P̃ which is compatible with the
respective involutions in the sense that ̟(x) = ̟(x), x ∈ P . φ is an
isometric isomorphism of (C2 × C2, (J., .)) onto itself.

(ii) (̟ ×̟)(T ) = T̃ .

(iii) Γ̃ ◦ (̟ ×̟)|T = φ ◦ Γ.

Examples of isomorphisms between boundary triplets already appeared
in Lemma 2.4 when we studied reparameterizations. In this situation, and
with the notation of Lemma 2.4, the pair (Cϕ, id) is an isomorphism of

(L2(H), Tmax(H),Γ(H)) and (L2(H̃), Tmax(H̃),Γ(H̃)).

2.13 Remark.

(i) The condition (ii) of Definition 2.12 is equivalent to ̟ ◦ T = T̃ ◦̟.

(ii) If (̟1, φ1) is an isomorphism of (P1, T1,Γ1) to (P2, T2,Γ2), and (̟2, φ2)
is an isomorphism of (P2, T2,Γ2) to (P3, T3,Γ3), then (̟2 ◦̟1, φ2 ◦φ1) is
an isomorphism of (P1, T1,Γ1) to (P3, T3,Γ3).

(iii) If φ is of the special form φ = φ̂ × φ̂ with an isometric isomorphism φ̂ of

(C2, (J., .)) satisfying φ̂(x) = φ̂(x), the property (Def 2) as well as (Def 1)
is inherited.

2.14 Remark. Using isomorphisms is also a way of constructing boundary
triplets: Assume that (P , T,Γ) is a boundary triplet and that P̃ is another
Pontryagin space which carries a conjugate linear and anti-isometric involution.
Moreover, let ̟ be an isometric isomorphism of P onto P̃ which is compati-
ble with the respective involutions, and that φ is an isometric isomorphism of
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(C2×C2, (J., .)) onto itself. Define T̃ := (̟×̟)(T ) and Γ̃ := ϕ◦Γ◦(̟×̟)|−1
T .

Then, as a straightforward argument shows, (P̃ , T̃ , Γ̃) is a boundary triplet and
(̟,φ) is an isomorphism of (P , T,Γ) to (P̃ , T̃ , Γ̃).

If φ is again of the special form φ = φ̂ × φ̂ as in Remark 2.13, (iii), then
(P , T,Γ) being of defect 1 or 2 implies (P̃ , T̃ , Γ̃) having the respective property.

We will deal with two spectral properties of boundary triplets.

2.15 Definition. We say that a symmetric relation S has compact resolvents,
if

(CR) Whenever S ⊆ A ⊆ S∗ and z ∈ ρ(A), then (A − z)−1 is a compact
operator.

Note that by the resolvent identity it is equivalent to require that for every
A, S ⊆ A ⊆ S∗, there exists z ∈ ρ(A) such that (A−z)−1 is compact. Moreover,
if S has finite defect index, i.e. dimS∗/S <∞, then in order to ensure (CR) it
is enough to find one extension A and one number z ∈ ρ(A) such that (A−z)−1

is compact.

2.16 Definition. For a boundary triplet (P , T,Γ) of defect 2 (or defect 1) we
consider the following condition:

(E) If z ∈ C, (f ; zf) ∈ T , f 6= 0, and ((f ; zf); (a; b)) ∈ Γ, then a 6= 0
and b 6= 0 (in case of defect 1: a 6= 0, b = 0).

Note that this condition implies that

ker(T ∗ − z) = {0}, z ∈ C .

In case of defect 1 it is even equivalent to this property.

2.17 Remark. Assume that (P , T,Γ) and (P̃, T̃ , Γ̃) are boundary triplets and
that (̟,φ) is an isomorphism betweem them. Then T ∗ satisfies (CR) if and
only if T̃ ∗ does.

If φ is again of the form φ = φ̂ × φ̂ as in Remark 2.13, (iii), then they also
together do or do not satisfy the condition (E).

b. Operator theory of canonical systems

We assume that the reader is familiar with the basic notions of operator theory
in general and the theory of symmetric and selfadjoint operators in particular,
see e.g. [GGK], [AG].

The operator theory of the relation Tmax is settled by the following classical
results.

2.18 Theorem (see [GK]). Let H be a Hamiltonian on the interval I = (s−, s+)
and assume that H is regular at both endpoints. Then (L2(H), Tmax(H),Γ(H))
is a boundary triplet of defect 2 which satisfies the condition (E). The adjoint
Tmin(H) := Tmax(H)∗ is a completely nonselfadjoint symmetric operator. Its
defect index is (2, 2) unless (s−, s+) is indivisible, in which case it is (1, 1).
Moreover, the set r(Tmin(H)) of regular points of Tmin(H) equals C and Tmin
possesses the property (CR).
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2.19 Theorem (see [HSW, K1]). Let H be a Hamiltonian on the interval
I = (s−, s+) and assume that H is regular at s− and singular at s+. Then
(L2(H), Tmax(H),Γ(H)) is a boundary triplet of defect 1 which satisfies the
condition (E). The adjoint Tmin(H) = Tmax(H)∗ is a completely nonselfadjoint
symmetric operator. Its defect index is (1, 1) unless (s−, s+) is indivisible, in
which case it is selfadjoint.

Clearly, a result similar to Theorem 2.19 holds true if H is singular at s−
and regular at s+.

2.20 Remark. In Theorem 2.18 the abstract Green’s identity (2.6) reads as

(g, h)L2(H) − (f, k)L2(H) = ĥ(s−)∗Jf̂(s−) − ĥ(s+)∗Jf̂(s+) ,

whenever (f ; g), (h; k) ∈ Tmax(H), f̂ , ĥ ∈ AC([s−, s+]) with f̂/=H
= f , ĥ/=H

=

h, and f̂ ′ = JHg, ĥ′ = JHk. In Theorem 2.19 it takes the form

(g, h)L2(H) − (f, k)L2(H) = ĥ(s−)∗Jf̂(s−) . (2.10)

Let us explicitly state the following result which is a cornerstone in the proof
of Theorem 2.19.

2.21 Theorem (see [HSW]). Let H be a Hamiltonian on the interval I =
(s−, s+) and assume that H is regular at s− and singular at s+. Then for each

two pairs (f ; g), (h; k) ∈ Tmax and respective representants f̂ , ĥ with f̂ ′ = JHg,

ĥ′ = JHk, we have
lim
t→s+

ĥ(t)∗Jf̂(t) = 0 .

Here we also included the case that (s−, s+) is indivisible. Then the above
result is a consequence of following elementary observation: Assume that H is
a Hamiltonian on (s−, s+), that H is singular at s+ and that α+

1 < s+. Then,
for each two functions f, h ∈ L2(H) ⊆ M(I) we have

h(t)∗Jf(t) = 0, t ∈ (α+
1 , s+) a.e. (2.11)

To see this note that, if φ is the type of the indivisible interval (α+
1 , s+), ξTφ f(t) =

ξTφ h(t) = 0 on (α+
1 , s+) a.e. Hence we have f(t), h(t) ∈ span{Jξφ}. The relation

(2.11) follows from ξTφ J · J · Jξφ = 0.

2.22 Remark. Let us note that for every ∆ ∈ N,

domT∆
max = L2(H) . (2.12)

This follows e.g. since, by [HSW, Corollary 3.11], domTmax is dense and thus
Tmin has densely defined selfadjoint extensions.

c. The multivalued part of T nmax
The multivalued part of powers of Tmax can be determined explicitly, a result
which supplements [HSW, Proposition 3.10]. It will be deduced with help of
the next lemma. Before that let us note that, copying the proof of [HSW,
Lemma 3.8] word by word, we obtain the following statement: Let f be locally
absolutely continuous on I, f ′(t) ∈ ranJH(t) a.e., and assume that f =H 0.
Then f(s) 6= 0 implies that s is contained in an H-indivisible interval.

The crucial step in the proof of the following lemma is taken from [HSW,
Proposition 3.10].
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2.23 Lemma. Let H be an arbitrary Hamiltonian on the interval (s−, s+), let
f0, . . . , fn−1 ∈ AC(I), fn ∈ M(I), and assume that

f0 =H 0, f ′
k = JHfk+1, k = 0, . . . , n− 1 ,

almost everywhere on I. Then

fk(t) = 0, t ∈ [α−
k+1, α

+
k+1] ∩ (s−, s+), k = 0, . . . , n− 1,

(Hfn)(t) = 0, t ∈ (α−
n , α

+
n ) a.e.

(2.13)

If, additionally, f0, . . . , fn ∈ L2(H) andH is singular at s+, then in the relations
(2.13) we can write s+ instead of α+

k+1, α
+
n . The analogous assertion holds true

for the left endpoint.

Proof. We use induction on n. Consider the case n = 1, so that f0 ∈ AC(I),
f1 ∈ M(I) with f0 =H 0, f ′

0 = JHf1. Assume that f0(s) 6= 0 at a point
s ∈ (α−

1 , α
+
1 ). Then s is contained in an H-indivisible interval. Let (α, β) be

the maximal H-indivisible interval containing s. Then α 6= s− and β 6= s+ since
s ∈ (α−

1 , α
+
1 ). For t ∈ (α, β) a.e. we have H(t) = h(t)ξφξ

T
φ where φ is the type

of (α, β) and h(t) is an appropriate scalar function. Moreover, since α, β are
not contained in an H-indivisible interval, we know that f0(α) = f0(β) = 0. It
follows that

0 = f0(β) − f0(α) =

∫ β

α

JH(t)f1(t) dt = J

∫ β

α

h(t)ξφξ
T
φ f1(t) dt .

Since f1 ∈ M(I), we have ξTφ f1(t) = c, t ∈ (α, β) a.e., for some constant c.
Thus

0 = c

∫ β

α

h(t) dt

︸ ︷︷ ︸
>0

·Jξφ ,

and we conclude that c = 0. Hence (Hf1)(t) = 0, t ∈ (α, β) a.e. and by
continuity f0 is constant on [α, β]. Because of f0(α) = 0, we obtain f0(t) = 0,
t ∈ [α, β], and arrive at the contradiction f0(s) = 0. We conclude that f0(s) = 0,
s ∈ (α−

1 , α
+
1 ), and hence by continuity on [α−

1 , α
+
1 ] ∩ (s−, s+) in case α−

1 < α+
1 .

In the case α−
1 = α+

1 , we get f0(α
−
1 ) = 0 from f0 =H 0, the continuity of

f0 and f ′
0 ∈ ranJH . The fact that (Hf1)(t) = 0, t ∈ (α−

1 , α
+
1 ) a.e., follows

immediately.
Assume that the assertion has been proved for all n ≤ n0, and let

f0, . . . , fn0+1 be given and be subject to the hypothesis of the lemma. The
inductive hypothesis applied to the functions f0, . . . , fn0 gives the desired re-
lations (2.13) for k = 0, . . . , n0 − 1. Moreover, it implies that (Hfn0)(t) = 0,
t ∈ (α−

n0
, α+

n0
) a.e. An application of the inductive hypothesis to the functions

fn0 |(α−
n0
,α+

n0
), fn0+1|(α−

n0
,α+

n0
) and the Hamiltonian H |(α−

n0
,α+

n0
) yields the desired

relations (2.13) for k = n0 and n0 + 1. Note here that in case α−
n0

≥ α+
n0

there
is nothing to prove.

In order to prove the additional assertion we investigate the above proof
under the additional hypothesis that f0, . . . , fn ∈ L2(H) and H is singular at
s+. If α+

1 = s+, then also α+
k = s+ and hence there is nothing to prove. Thus,

assume moreover that α+
1 < s+.
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In the case n = 1 we had concluded that f0(t) = 0, t ∈ [α−
1 , α

+
1 ] ∩ (s−, s+),

and (Hf1)(t) = 0, t ∈ (α−
1 , α

+
1 ) a.e. Since f1 ∈ L2(H) we have in any case

(Hf1)(t) = 0, t ∈ (α+
1 , s+) a.e., so that (Hf1)(t) = 0, t ∈ (α−

1 , s+) a.e. Thus
f0 is constant on [α−

1 , s+) ∩ (s−, s+). If α−
1 = s+, there is nothing to prove,

otherwise [α−
1 , α

+
1 ]∩ (s−, s+) 6= ∅ and on this set f0 vanishes. It follows that f0

vanishes on [α−
1 , s+) ∩ (s−, s+).

In the inductive step we proceed similar as above, only applying the inductive
hypothesis with the Hamiltonian H |(α−

n0
,s+) instead of H |(α−

n0
,α+

n0
).

The case that f0, . . . , fn ∈ L2(H) and that H is singular at s− is treated in
a similar way.

❑

2.24 Proposition. Let H be a Hamiltonian on the interval (s−, s+) and let
∆ ∈ N. Put

β+
∆ :=

{
α+

∆ , H regular at s+

s+ , H singular at s+
, β−

∆ :=

{
α−

∆ , H regular at s−

s− , H singular at s−
.

Then the multivalued part of T∆
max is given by

mulT∆
max =

{
g ∈ L2(H) : (Hg)(t) = 0, t ∈ (β−

∆, β
+
∆) a.e.

}
. (2.14)

Proof. Assume that f ∈ mulT∆
max, so that there exist f1, . . . , f∆−1 ∈ L2(H) ⊆

M(I)/=H
with

(0; f1), (f1; f2), . . . , (f∆−1; f) ∈ Tmax ⊆ (M(I)/=H
)2 .

Let f̂0, . . . , f̂∆−1 ∈ AC(I) be the unique representants of 0, f1, . . . , f∆−1 ∈
M(I)/=H

such that (for arbitrary representants f̃k+1 of fk+1)

f̂ ′
k = JHf̃k+1, k = 0, . . . ,∆ − 1 .

We see that we can apply Lemma 2.23 to the functions f̂0, . . . , f̂∆−1 ∈ L2(H)∩
AC(I) and f̃∆ ∈ L2(H) ⊆ M(I) and obtain the inclusion ‘⊆’ in (2.14).

We come to the proof of the converse inclusion. Assume that H is regular
at s− and let g ∈ L2(H) be given such that (Hg)(t) = 0, t ∈ (α−

∆, s+) a.e. If
α−

∆ = s−, we have g =H 0 ∈ mulT∆
max, hence assume that α−

∆ > s−. Choose
∆0 ∈ N minimal with α−

∆0
= α−

∆, so that we have

s− = α−
0 < α−

1 < · · · < α−
∆0

= · · · = α−
∆ ≤ · · · ≤ s+ .

We define functions gk, k = 0, . . . ,∆0, recursively by

g0 := g, gk+1(t) :=

∫ t

α−
∆0−k

JHgk, k = 0, . . . ,∆0 − 1 .

Note that gk, k = 1, . . . ,∆0, belongs to AC(I). We use induction on k to prove
that

(Hgk)(t) = 0, t ∈ (α−
∆0−k

, s+) a.e., k = 0, . . . ,∆0 . (2.15)
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The case k = 0 is just our assumption on g. Assume that (2.15) holds for some
k, 0 ≤ k < ∆0. Then gk+1 is constant on [α−

∆0−k
, s+). As gk+1(α

−
∆0−k

) = 0,
the function gk+1 and, hence, also Hgk+1 vanishes on this interval. Since gk+1

satisfies (C), the function ξTφ gk+1 is constant on [α−
∆0−k−1, α

−
∆0−k

] and thus,

again by gk+1(α
−
∆0−k

) = 0, equal to 0 on this interval. We see that (2.15) holds
for k + 1.

In particular, (2.15) shows that g∆0 =H 0. Since gk, k = 1, . . . ,∆0, belongs
to AC(I), Hgk vanishes in a neighbourghood of s+, and H is regular at s−,
certainly gk ∈ L2(H). Clearly also (gk; gk−1) ∈ Tmax, and we conclude that
g ∈ mulT∆0

max ⊆ mulT∆
max.

The same construction can be done for the right endpoint, and thus the
inclusion ‘⊇’ in (2.14) follows.

❑

In some future statements we will, for a relation R, denote by R(x) the set
{y : (x; y) ∈ R}.

2.25 Corollary. Let g ∈ mulTmax(H) and (a; b) ∈ Γ(H)(0; g). Then

a ∈

{
∈ span{Jξφ} , β−

1 (H) > s−, φ type of (s−, β
−
1 (H))

= 0 , β−
1 (H) = s−

b ∈

{
∈ span{Jξφ} , β+

1 (H) < s+, φ type of (β+
1 (H), s+)

= 0 , β+
1 (H) = s+

Proof. This follows from the construction of mulTmax(H) in the proof of
the above proposition and the considerations in Section 2.1.e in the case that
(s−, s+) is indivisible.

❑

d. Formula on integration by parts

Next we give a formula which can be viewed as a supplement to the Green’s
identity (2.10).

2.26 Proposition. Let H be a Hamiltonian on I = (s−, s+) and assume that
H is regular at s−. Moreover, let ∆ ∈ N. Let f0, . . . , f∆−1, g0, . . . , g∆−1 ∈
AC([s−, s+)) and let f∆, g∆ ∈ M(I) be such that

f ′
k = JHfk+1, g

′
k = JHgk+1, k = 0, . . . ,∆ − 1 .

Assume that one of the following conditions is satisfied:

(i) fk, gk ∈ L2(H), k = 0, . . . ,∆, and H is singular at s+.

(ii) fk, gk ∈ L2(H), k = 0, . . . ,∆ − 1, H is singular at s+ and α+
1 (H) < s+.

(iii) There exists β ∈ (s−, s+) such that (Hf0)(t) = 0, t ∈ (β, s+) a.e., and
α−

∆(H |(β,s+)) < s+, f0, . . . , f∆ ∈ L2(H), H is singular at s+.

(iv) There exists β ∈ (s−, s+) such that (Hf0)(t) = 0, t ∈ (β, s+) a.e., and
α+

1 = s+.

19



Then ∫

I

g∗∆Hf0 =

∫

I

g∗0Hf∆ −
∆−1∑

j=0

gj(s−)∗Jf∆−1−j(s−) . (2.16)

Proof. In the case (i) we have (fk; fk+1), (gk; gk+1) ∈ Tmax, k = 0, . . . ,∆ − 1,
and hence (2.16) follows by repeated application of (2.10).

Let t ∈ (s−, s+) be fixed. Then repeated integration by parts gives

∫ t

s−

g∗∆Hf0 =

∫ t

s−

(JHg∆)∗Jf0 =

= g∗∆−1Jf0|
t
s− −

∫ t

s−

g∗∆−1J(JHf1) = g∗∆−1Jf0|
t
s− +

∫ t

s−

g∗∆−1Hf1 = . . .

. . . = g∗∆−1Jf0|
t
s− + . . .+ g∗0Jf∆−1|

t
s− +

∫ t

s−

g∗0Hf∆.

(2.17)
Thus we have to show that under either of the assumptions (ii) − (iv),

lim
t→s+

g∗j (t)Jf∆−1−j(t) = 0, j = 0, . . . ,∆ − 1 . (2.18)

Under the assumption (ii) this follows from (2.11). Assume that β ∈ (s−, s+)
is such that (Hf0)(t) = 0, t ∈ (β, s+) a.e. Apply Lemma 2.23 with the func-
tions fk|(β,s+), k = 0, . . . ,∆ and the Hamiltonian H |(β,s+). Under either of

the assumptions (iii) and (iv) we obtain fk(t) = 0, t ∈ [α−
∆(H |(β,s+)), s+),

k = 0, . . . ,∆−1. Since α+
1 = s+ implies that α−

∆(H |(β,s+)) < s+, we see that in
any case fk vanishes in a neighbourhood of s+. Hence, the limit relation (2.18)
holds true.

❑

2.3 Compactness property of canonical systems

a. The Hilbert-Schmidt condition

Let H be a Hamiltonian on I = (s−, s+) which is regular at s− and singular at
s+. The following condition on H will play a crucial role:

(HS) There exists a selfadjoint extension A ⊆ L2(H) × L2(H) of the
symmetric relation Tmin and z ∈ ρ(A) such that (A − z)−1 is a
Hilbert-Schmidt operator.

Note that (HS) implies that for every extension Ã of Tmin in L2(H) and every
z ∈ ρ(Ã), the resolvent (Ã − z)−1 is a Hilbert-Schmidt operator. Moreover, it
follows from Lemma 2.4 that two Hamiltonians H1 and H2 which are reparam-
eterizations of each other together do or do not satisfy (HS). Finally, note that
(HS) trivially holds if (s−, s+) is indivisible.

Let us recall that the validity of (HS) can be expressed explicitly in terms
of H . For the sake of simplicity we assume that H is trace normed and de-
fined on I = (0,∞). For general Hamiltonians one has to use an appropriate
reparameterization to obtain the analogous statement.
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2.27 Theorem (see [KW6]). Let H be a trace normed Hamiltonian on I =
(0,∞). Then H satisfies (HS) if and only if there exists φ = φ(H) ∈ [0, π) such
that ∫

I

ξTφHξφ <∞, (2.19)

and ∫

I

ξTφ+ π
2
Mξφ+ π

2
ξTφHξφ < +∞ , (2.20)

where

M(x) :=

∫ x

s−

H .

Note that for any Hamiltonian H which is singular at one endpoint there
exists at most one number φ(H) such that (2.19) holds. We will often restrict
ourselves ’without loss of generality’ to the case that φ(H) = 0 in the preceeding
theorem. This means that we will often assume that, besides (HS), also the
condition

(I) The constant function
(
1
0

)
belongs to L2(H)

is satisfied.
Note that if H satisfies (I), then every constant which is linearly independent

from
(
1
0

)
does not belong to L2(H).

2.28 Remark. Let us explain in more detail what it means to restrict ’without
loss of generality’ to the case that φ(H) = 0. If we put

Nα :=

(
cosα sinα
− sinα cosα

)
, (2.21)

then Nα is unitary and J-unitary, i.e. satisfies

N−1
α = N∗

α, NαJN
∗
α = J .

Moreover, N∗
α = N−α.

If H is any Hamiltonian given on an interval (s−, s+) and α ∈ [0, 2π), then
Ĥ := NαHN

∗
α is again a Hamiltonian on (s−, s+). In fact, if

̟ : f 7→ Nαf, φ̂ := Nα ,

and φ := φ̂ × φ̂, then (̟,φ) is an isomorphism of the boundary triplets
(L2(H), Tmax(H),Γ(H)) and (L2(Ĥ), Tmax(Ĥ),Γ(Ĥ)). Clearly, Ĥ is regular
or singular at an endpoint if and only if H has the respective property and H
and Ĥ together do or do not satisfy (HS). A straightforward argument shows
that, in the case (HS) holds,

φ(Ĥ) = φ(H) − α .

2.29 Remark. If H satisifes (HS), then, in particular, all the resolvents men-
tioned in (HS) are compact operators. The compactness of these resolvents is
equivalent to the fact that σ(A) is a discrete subset of R for any selfadjoint
extension A of Tmin in L2(H). In this case any real number belongs to the
spectrum of exactly one selfadjoint extension of Tmin in L2(H).
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b. The operator B

Assume that a Hamiltonian H , such that (s−, s+) is not indivisible, satisifes
(HS) and the normalization condition (I), and consider the selfadjoint extension

A(0) = {(f ; g) ∈ Tmax : (1, 0)Γ1(f ; g) = 0}

of Tmin, cf. (2.7). Then 0 ∈ ρ(A(0)) and

B := A(0)−1 ⊆ L2(H)/=H
× L2(H)/=H

(2.22)

is a Hilbert-Schmidt operator.
Since the boundary condition defining A(0) is real, clearly B is real with

respect to the involution . , i.e. B(f) = B(f).
We shall relate domT nmax with ranBn. To this end let us mention the

following elementary result.

2.30 Lemma. Let H be a linear space and let A, T be linear subspaces of H2.
Assume that there exists a sequence a0, a1, a2, . . . such that

a0 ∈ kerT, (an; an−1) ∈ A, n = 1, 2, 3, . . . , (2.23)

T = A+ span
{
(a0; 0)

}
. (2.24)

Then for all ∆ ∈ N we have

domT∆ = domA∆ + span
{
a0, . . . , a∆−1

}
. (2.25)

Proof. We use induction on ∆. Consider the case ∆ = 1. By (2.24) we
have domT = domA + span{a0}. Assume next that the relation (2.25) holds
true for some ∆ ∈ N and let x ∈ domT∆+1. Then there exist y, z ∈ H such
that (x; y) ∈ T , (y; z) ∈ T∆. By the inductive hypothesis there exist λi ∈ C,
i = 0, . . .∆ − 1, y1 ∈ domA∆, and by (2.24) there exists λ ∈ C, (x1; y) ∈ A,
such that

y = y1 +

∆−1∑

i=0

λiai, (x; y) = (x1; y) + λ(a0; 0) .

Let z1 ∈ H be such that (y1; z1) ∈ A∆. From (2.23) we conclude that

(x1; y) −
∆−1∑

i=0

λi(ai+1; ai) ∈ A.

However, this expression can be rewritten as

(
x− λa0 −

∆−1∑

i=0

λiai+1; y −
∆−1∑

i=0

λiai
)

=
(
x− λa0 −

∆−1∑

i=0

λiai+1; y1
)
.

Hence (x− λa0 −
∑∆−1

i=0 λiai+1; z1) ∈ A∆+1. We obtain that

x =
(
x−λa0−

∆−1∑

i=0

λiai+1

)
+λa0 +

∆−1∑

i=0

λiai+1 ∈ domA∆+1 +span{a0, . . . , a∆} .

The inclusion ’⊇’ is clear.

❑
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2.31 Lemma. Assume that H is a Hamiltonian on I = (s−, s+) which is
regular at s−, singular at s+, and which satisfies (HS) and (I). Moreover, let
n ∈ N. Then

domT nmax = ranBn + span
{
Bk
(

1

0

)
: k = 0, . . . , n− 1

}
. (2.26)

If H does not start with an indivisible interval, i.e. if α−
1 = s−, then this sum

is direct:

ranBn ∩ span
{
Bk
(

1

0

)
: k = 0, . . . , n− 1

}
= {0}.

If H starts with an indivisible interval of type φ 6= 0, then
(
1
0

)
∈ ranB. Hence,

in this case, (2.26) is for no n ∈ N a direct sum.

Proof. The relation (2.26) is immediate from the above Lemma 2.30 applied
with T = Tmax and A = A(0) = B−1.

Assume that H does not start with an indivisible interval. Then mulTmax =
{0} and thus also mulT nmax = {0} for all n ∈ N. Assume that for some λk ∈ C,
and g ∈ L2(H),

n−1∑

k=0

λkB
k

(
1

0

)
=H Bng.

Since (Bng; g), (
∑n−1
k=0 λkB

k
(
1
0

)
; 0) ∈ T nmax, we obtain g ∈ mulT nmax = {0},

and,hence, Bng =H 0. Thus (2.26) is a direct sum.
Assume that H starts with an indivisible interval of type φ 6= 0, so that

α−
1 > s− and H(t) = h(t)ξφξ

T
φ , t ∈ (s−, α

−
1 ). Consider the function

g(t) :=




−
(

sinφ
∫ α−

1

s−
h
)−1

· ξφ , t ≤ α−
1

0 , t > α−
1

.

Then certainly g ∈ L2(H). We have for some c ∈ span{
(
0
1

)
},

(Bg)(t) =

∫ t

s−

JHg + c =

=





−
∫ t
s−
Jh(ξφξ

T
φ )
(

sinφ
∫ α−

1

s−
h
)−1

ξφ + c , t ≤ α−
1

∫ α−
1

s−
JHg + c , t > α−

1

,

and (t ≤ α−
1 )

∫ t

s−

Jh(ξφξ
T
φ )
(

sinφ

∫ α−
1

s−

h
)−1

ξφ =

∫ t

s−

h
(

sinφ

∫ α−
1

s−

h
)−1

Jξφ.

In particular, ∫ α−
1

s−

JHg =

(
1

− cotφ

)
.

As Bg ∈ L2(H) it follows that

c =

(
0

cotφ

)
.
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Alltogether we obtain

(Bg)(t) =




−
∫ t
s−
h
(

sinφ
∫ α−

1

s−
h
)−1

Jξφ +
(

0
cotφ

)
, t ≤ α−

1(
1
0

)
, t > α−

1

,

and thus

H(t)(Bg)(t) =

{
h(t) · ξφ cosφ , t ≤ α−

1

H(t)
(
1
0

)
, t > α−

1

.

Since

H(t)

(
1

0

)
=

{
h(t) · ξφ cosφ , t ≤ α−

1

H(t)
(
1
0

)
, t > α−

1

,

Bg =H

(
1
0

)
and, therefore,

(
1
0

)
∈ ranB.

❑

c. Restriction

As it is seen from Theorem 2.27, the condition (HS) is stable with respect to
restriction: Let H be a Hamiltonian on the interval I = (s−, s+) which is regular
at s− and singular at s+. Moreover, let s ∈ [s−, α

+
1 ) and put L = (s, s+), so

that Ĥ := H |L is regular at s and singular at s+. Then

(i) H satisfies (HS) if and only if Ĥ does. In this case φ(H) = φ(Ĥ).

(ii) H satisfies (I) if and only if Ĥ does.

(iii) Assume that H satisfies (HS) and (I), and let B and B̂ be defined corre-
spondingly. If f ∈ L2(H), then there exists a unique number λ(f) ∈ C

such that

B̂(f |L) = (Bf)|L +

(
λ(f)

0

)
. (2.27)

An inductive application of (2.27) yields that for every N ∈ N ∪ {0},

span
{
B̂k(f |L) : k = 0, . . . , N

}
⊆ span

{
(Bkf)|L : k = 0, . . . , N

}
+

+ span
{(
Bj
(

1

0

))∣∣∣
L

: j = 0, . . . , N − 1
}

and

span
{
B̂k
((1

0

)∣∣∣
L

)
: k = 0, . . . , N

}
= span

{(
Bk
(

1

0

))∣∣∣
L

: k = 0, . . . , N
}
.

3 H-polynomials

Throughout this section let H be a Hamiltonian on I = (s−, s+) which is regular
at s−.
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Define an operator I by

I :

{
dom I → AC([s−, s+)) ⊆ M(I)

f 7→ (If)(x) :=
∫ x
s−
JHf

dom I :=
{
f : [s−, s+) → C

2 : f measureable, Hf ∈ L1
loc([s−, s+))

}
(3.1)

To see that I is well-defined, note that If satisfies (C) because (If)′(x) ∈
ranJH(x) a.e. Moreover, note that L2(H) ⊆ dom I.

Consider the linear space C2[z] of all polynomials in the variable z with
coefficients in C2 and denote by C2[z]n the linear subspace of all polynomials of
degree at most n. We shall identify C

2[z] in the natural way with C[z] × C[z].
A linear map γ is defined by

γ :

{
C2[z] → AC([s−, s+)) ⊆ M(I)∑n

k=0 akz
k 7→

∑n
k=0 I

kak
.

Note that, since AC([s−, s+)) ⊆ domI, the iterates of I are well-defined. More-
over, note that γ transforms multiplication by z into application of I. The
following subspaces of C2[z] will be of importance:

HPol := γ−1(L2(H)), HPoln := HPol∩C
2[z]n .

We shall refer to HPol as the space of H-polynomials.
For k ∈ N0 denote by πk : C

2[z] → C
2 the linear map which assigns to a

polynomial its coefficient of zk. Then πk(HPolk) is a linear subspace of C2, and
as such has dimension 0, 1 or 2.

3.1 Definition. Define a number ∆(H) ∈ N0 ∪ {∞} as

∆(H) := inf
{
k ∈ N0 : dimπk(HPolk) = 2

}
.

Note that H is regular at s+ if and only if ∆(H) = 0. There is another
instance when ∆(H) can be determined.

3.2 Lemma. Assume that H is singular at s+ and that α+
1 < s+. Then we

have ∆(H) = 1.

Proof. Since H is singular at s+, we have ∆(H) ≥ 1. Let v ∈ C2 be given and
consider the polynomial

p(z) := vz −

∫ α+
1

s−

JHv ∈ C
2[z]1 .

Then γ(p)(α+
1 ) = 0 and, since γ(p) ∈ AC([s−, s+) and thus satisfies (C), this

implies that H(x)γ(p)(x) = 0 for x ∈ (α+
1 , s+) a.e. It follows that γ(p) ∈ L2(H),

and we see that v ∈ π1(HPol1).

❑

We investigate these notions under some additional hypothesis on H : For
the remainder of this section assume that H is singular at s+ and satisfies (HS)
and (I). Moreover, let B always denote the Hilbert-Schmidt operator (2.22).
The fact that B is everywhere defined yields the following statement, which
also has a consequence on the structure of HPol.
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3.3 Lemma. For every f ∈ L2(H) ⊆ M(I) there exists a unique number
λ(f) ∈ C, such that

g := If +

(
0

λ(f)

)
∈ L2(H) .

We have g/=H
= B(f/=H

).

Proof. First assume that α−
1 < s+ and let f ∈ L2(H) ⊆ M(I) be given.

Then the unique representant g ∈ AC([s−, s+))∩L2(H) of the equivalence class
B(f/=H

) which satisfies g′ = JHf , can be written as

g(x) = g(s−) + (If)(x) .

Since A(0) is defined by the boundary condition (1, 0)Γ(g; f) = 0, we have
g(s−) ∈ span{

(
0
1

)
}. The relation g/=H

= B(f/=H
) holds by the definition of g.

The fact that the constant λ(f) is unique follows since
(
0
1

)
does not belong to

L2(H).
Secondly, let us assume that α−

1 = s+, so that

H(t) = h(t)

(
0 0
0 1

)
.

Then, as a subset of M(I),

L2(H) =
{(f1

0

)
: f measurable

}
,

and it follows that L2(H) ⊆ kerI. Since (0, 1)T 6∈ L2(H), the unique choice
is λ(f) = 0 so that in total g = 0. The relation g/=H

= B(f/=H
) is trivially

satisfied.

❑

3.4 Corollary. Let p ∈ HPol. Then there exists a unique number λ(p) ∈ C,
such that

q(z) := zp(z) +

(
0

λ(p)

)
∈ HPol .

We have γ(q)/=H
= B(γ(p)/=H

).

Since, by (I), we have (1, 0)T ∈ HPol, an inductive application of this result
leads to the following statement:

3.5 Corollary. There exist unique numbers ρ1, ρ2, . . . ∈ C, such that

rn(z) :=

(
1

0

)
zn +

n−1∑

k=0

(
0

ρn−k

)
zk ∈ HPol, n ∈ N0 .

We have γ(rn)/=H
= Bn(

(
1
0

)
/=H

), n ∈ N0.

By virtue of this result we can often ’reduce to the lower component’ as, for
example, in the following lemma.
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3.6 Lemma. The number ∆(H) is given by

∆(H) = inf
{
k ∈ N0 : HPolk ∩({0}×C[z]) 6= {0}

}
.

Proof. Since, by Corollary 3.5, for every n ∈ N0

(
1

0

)
∈ πn(HPoln) ,

we have dimπn(HPoln) = 2 if and only if there exists a H-polynomial of the
form

p(z) =

(
αn
1

)
zn +

n−1∑

k=0

(
αk
βk

)
zk .

If HPoln ∩({0}×C[z]) 6= {0}, then there exists a H-polynomial of this form.
Conversely, if p ∈ HPol is of this form, then

0 6= p(z) −
n∑

k=0

αkrk(z) ∈ HPoln ∩({0}×C[z]) .

❑

Assume that ∆ := ∆(H) < ∞. Then Lemma 3.6 implies that there exist
unique numbers ω1, . . . , ω∆ ∈ C, such that

w∆(z) :=

(
0

1

)
z∆ +

∆−1∑

k=0

(
0

ω∆−k

)
zk ∈ HPol .

An inductive application of Corollary 3.4 yields, moreover, that there exist
unique numbers ω∆+1, ω∆+2, . . . ∈ C, such that

wl(z) :=

(
0

1

)
zl +

l−1∑

k=0

(
0

ωl−k

)
zk ∈ HPol, l > ∆ .

Thereby we have γ(wl+1) = Bγ(wl), l ≥ ∆. We use the same formula to define
wl for l < ∆:

wl(z) :=

(
0

1

)
zl +

l−1∑

k=0

(
0

ωl−k

)
zk, l = 0, . . . ,∆ − 1 .

Clearly, wl 6∈ HPol for l < ∆. It is now obvious that

HPoln ∩({0}×C[z]) =




{0} , n < ∆

span{wl : l = ∆, . . . , n} , n ≥ ∆
,

and

HPoln =





span
{
rl : l = 0, . . . , n

}
, n < ∆

span
(
{rl : l = 0, . . . , n} ∪ {wk : k = ∆, . . . , n}

)
, n ≥ ∆

.
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3.7 Definition. Assume that ∆ := ∆(H) < ∞. Define functions wl ∈
AC([s−, s+)), l ∈ N0, by

wl := γ(wl), l ∈ N0 .

Note that, by Lemma 3.6, the set {w0, . . . ,w∆−1} is linearly independent
modulo L2(H).

3.8 Remark. Let us explicitly consider the case that α−
1 = s+. Then we have

I

(
0

1

)
(x) =

∫ x

s−

Jh(t)

(
0 0
0 1

)
·

(
0

1

)
=

(
−
∫ x
s−
h

0

)
,

Ik
(

0

1

)
= 0, k = 2, 3, . . .

and therefore ωk = 0, k = 1, 2, . . .. It follows that

w0(x) =

(
0

1

)
, w1(x) =

(
−
∫ x
s−
h

0

)
, w2 = w3 = . . . = 0 .

3.9 Lemma. For all l ∈ N we have ωl ∈ R and the functions wl, l = 0, 1, . . .
are real valued.

Proof. If α−
1 = s+, this is obvious from Remark 3.8. Thus assume that

α−
1 < s+. We use induction on l ≥ ∆.

Consider first the case l = ∆. Since γ(p) ∈ L2(H) if and only if γ(p) ∈
L2(H), where . is understood to act on polynomials by coefficientwise conjuga-
tion, we see that w∆ −w∆ ∈ HPol. However, the degree of w∆ −w∆ is less than
∆, and hence w∆ − w∆ = 0. It follows that ωk ∈ R for k = 1, . . . ,∆.

Assume it is readily proved that ωk ∈ R, k ≤ l. We have wl+1 = Bwl. We
use (2.10) with (wl+1; wl) and (

(
1
0

)
; 0) to obtain

(wl+1, 0) − (wl,

(
1

0

)
) =

(
1

0

)∗

Jwl+1(s−) = −wl+1(s−)2 .

It follows that

wl+1(s−)2 = (wl,

(
1

0

)
) =

∫ s+

s−

w∗
lH

(
1

0

)

and this number belongs by our inductive hypothesis to R. However,
wl+1(s−)2 = ωl+1.

❑

It is important to note that the functions wl are unique.

3.10 Lemma. Assume that ∆ := ∆(H) <∞. The functions (wk)k∈N0 satisfy

w′
0 = 0, w′

k = JHwk−1, k ∈ N,

wk(s−) ∈ span
{(0

1

)}
, k ∈ N0,

wk ∈ L2(H), k ≥ ∆.

(3.2)

Conversely, if for some n ≥ ∆ functions f0, . . . , fn ∈ AC([s−, s+)) are given
which satisfy the formulas (3.2) for k ≤ n, then there exists β ∈ C such that
fk = βwk for all k = 0, . . . , n.
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Proof. The fact that the functions wk satisfy (3.2) is clear from their definition.
Let n ≥ ∆ and f1, . . . , fn be given such that (3.2) holds. Reading the differential
equations in (3.2) backwards, we obtain

f∆ = f∆(s−) + If∆−1(s−) + . . .+ I∆−1f1(s−) + I∆f0 . (3.3)

Write fk(s−) =
(

0
βk

)
, k = 1, . . . ,∆, f0 =

(
0
β0

)
, then

f∆ = γ
( ∆∑

k=0

(
0

β∆−k

)
zk
)
.

Since f∆ ∈ L2(H), we conclude that β∆−k = β0ω∆−k, k = 0, . . . ,∆ − 1, and
hence that f∆ = β0w∆.

The same argument that led us to (3.3) shows that for every l = 0, . . . ,∆−1,

fl = fl(s−) + Ifl−1(s−) + . . .+ Il−1f1(s−) + Ilf0 =

= γ
( l∑

k=0

(
0

βl−k

)
zk
)

= β0wl .

We show inductively that fl = β0wl for all l ≥ ∆. Assume that fl−1 = β0wl−1,
then by (3.2) we have f ′

l = β0w
′
l, and hence fl − β0wl = a ∈ C2. Since

fl(s−),wl(s−) ∈ span{
(
0
1

)
}, we must have a =

(
0
α

)
, and since fl,wl ∈ L2(H), it

follows that α = 0. Thus fl = β0wl.

❑

3.11 Lemma. The following assertions hold true:

(i) Assume that ∆ := ∆(H) <∞ and that α+
1 = s+. Then

w∆+l ∈ domT lmax \ domT l+1
max, l = 0, 1, 2, . . . (3.4)

In particular, the set {w∆+l : l = 0, . . . , n} is linearly independent modulo
domT n+1

max.

(ii) Assume that α+
1 < s+ so that, in particular, ∆ = 1. Then w1 ∈ domTmax.

Proof.
ad(i): By (3.2) we have (w∆+l; w∆) ∈ T lmax and hence w∆+l ∈ domT lmax.

Assume that w∆+l ∈ domT l+1
max, so that there exist g0, . . . , gl ∈ AC(I),

gl+1 ∈ M(I), with

g0, . . . , gl+1 ∈ L2(H),

g0 =H w∆+l, g
′
k = JHgk+1, k = 0, . . . , l.

Apply Lemma 2.23 with

fk := gk − w∆+l−k, k = 0, . . . , l + 1 .

Since we assume that α+
1 = s+, it follows that H(gl+1 − w∆−1)(t) = 0, t ∈

(α−
l+1, s+) a.e. Again since α+

1 = s+, we surely have α−
l+1 < s+, i.e. w∆−1 is

H-equal to gl+1 ∈ L2(H) in a neighbourhood of s+. Since w∆−1 is continuous,
it follows that w∆−1 ∈ L2(H), a contradiction.
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ad(ii): First note that, since H satisfies (I), the type of the indivisible interval

(α+
1 , s+) must be equal to π

2 . We have w1(t) =
∫ t
s−
JH
(
0
1

)
+
(

0
ω1

)
. Put

f(t) :=

{
w1(t) , t ∈ (s−, α

+
1 )

w1(α
+
1 ) , t ∈ (α+

1 , s+)
.

Then, for t ∈ (α+
1 , s+), we have

w1(t) − f(t) =

∫ t

α+
1

JH

(
0

1

)
∈ span{

(
1

0

)
} .

Thus H(w1 − f)(t) = 0, t ∈ (α+
1 , s+), and it follows that w1 =H f .

We have f ′ = JHg where

g(t) :=

{(
0
1

)
, t ∈ (s−, α

+
1 )

0 , t ∈ (α+
1 , s+)

,

and this function belongs to L2(H). We see that w1 ∈ domTmax.

❑

Let us investigate how the functions wl transform when the Hamiltonian is
restricted. Let s ∈ [s−, α

+
1 ) and put L = (s, s+), so that Ĥ := H |L is regular at

s, singular at s+, satisfies α−
1 (Ĥ) < s+ and (HS) and (I). In the following let

Î be the integral operator defined as in (3.1) with s− replaced by s. Let B̂ be
defined similarly (see (2.27)).

3.12 Lemma. The following assertions hold true:

(i) For every f ∈ dom I there exist unique constants bk(f) ∈ C2, k ∈ N0,
such that

În(f |L) = (Inf)|L +

n−1∑

k=0

(Ikbn−k(f))|L .

(ii) ∆(H) = ∆(Ĥ).

Assume that ∆(H) <∞ and let functions ŵl be defined correspondingly. Then

there exist unique constants λk, λ̂k, k ∈ N0, such that

ŵl =
(
wl −

l−1∑

k=0

λl−kB
k

(
1

0

))∣∣∣
L

= wl

∣∣∣
L
−

l−1∑

k=0

λ̂l−kB̂
k

(
1

0

)
.

Proof. The first assertion follows by a straightforward inductive argument. We
come to the proof of (ii). Assume that p(z) =

(
0
1

)
zn +

∑n−1
k=0 akz

k ∈ HPol(Ĥ).
Then

γ̂(p) = În
(

0

1

)
+

n−1∑

k=0

Îkak ∈ L2(Ĥ) .

By (i) we have for appropriate constants ck ∈ C2,

γ̂(p) =
(
In
(

0

1

)
+
n−1∑

k=0

Ikck
)∣∣
L
,

30



and we see that
(
0
1

)
zn +

∑n−1
k=0 ckz

k ∈ HPol(H). It follows that ∆(Ĥ) ≥ ∆(H).
The converse inequality is seen similarly.

Let us establish the first equality sign in the remaining assertion. To this
end note that there is a unique choice of numbers λk ∈ C, k ∈ N, such that

(
wl −

l−1∑

k=0

λl−kB
k

(
1

0

))
(s) ∈ span{

(
0

1

)
}, l ∈ N .

We apply Lemma 3.10 with the functions

fl :=
(
wl −

l−1∑

k=0

λl−kB
k

(
1

0

))∣∣
L
,

and obtain the desired assertion.
The proof of the second equality sign is similar, and is therefore omitted.

❑

We will need the following corollary of the formula in Proposition 2.26 on
integration by parts.

3.13 Corollary. Assume that ∆(H) <∞. If λ0, . . . , λ∆−1 ∈ C and g ∈ L2(H)
are such that

∆−1∑

k=0

λkB
k

(
1

0

)
=H B∆g ,

then for all n ∈ N0,

(g,wn+∆)L2(H) = −
∆−1∑

k=0

λkwn+1+k(s−)∗
(

0

1

)
. (3.5)

Proof. Let us first settle the case that α−
1 = s+. Then L2(H) consists just of

the zero element, and hence on the left hand side of (3.5) we always have 0. By
Remark 3.8 also the right hand side of (3.5) is always equal to 0.

Assume now that α−
1 < s+. Consider the functions

fl := B∆−lg −
∆−1−l∑

k=0

λk+lB
k

(
1

0

)
, l = 0, . . . ,∆ ,

gl := wn+∆−l, l = 0, . . . ,∆ .

Then fl ∈ L2(H) for all l = 0, . . . ,∆ and (Hf0)(t) = 0 for t ∈ (s−, s+) a.e.
Moreover, f ′

k = JHfk+1 and g′k = JHgk+1. If α+
1 = s+, then certainly α−

∆ <
s+. If α+

1 < s+, then ∆(H) = 1 (see Lemma 3.2), and again α−
∆ < s+. Hence

we can apply Proposition 2.26, (iii), and obtain

0 =

∫

I

g∗∆Hf0 = (g,wn+∆)L2(H) −
∆−1∑

j=0

wn+∆−j(s−)∗Jf∆−1−j(s−) .
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We have

f∆−1−j(s−) = (B1+jg)(s−) −

j∑

k=1

λk+∆−1−j(B
k

(
1

0

)
)(s−)

︸ ︷︷ ︸
∈span{(0

1)}

−λ∆−1−j

(
1

0

)
.

Since wn+∆−j(s−) ∈ span{
(
0
1

)
}, we obtain

wn+∆−j(s−)∗Jf∆−1−j(s−) = −wn+∆−j(s−)∗Jλ∆−1−j

(
1

0

)
.

Formula (3.5) follows.

❑

Let z ∈ C be fixed and consider the differential equation f ′(t) = zJH(t)f(t),
t ∈ (s−, s+) a.e. For each c ∈ C2 the initial value problem f(s−) = c,

f ′(t) = zJH(t)f(t), (3.6)

has a unique solution in AC([s−, s+)), see e.g. [HSW]. Hence the space

Nz :=
{
f ∈ AC([s−, s+)) : f ′ = zJHf

}

has dimension 2.
Assume that α−

1 (H) < s+. By Theorem 2.19 the defect index of Tmin is
(1, 1). Since Tmin is completely nonselfadjoint and has compact resolvents by
the validity of (HS), we have r(Tmin) = C. It follows that for all z ∈ C

dim
(
Nz ∩ L

2(H)
)

= 1 .

3.14 Lemma. Assume that ∆ = ∆(H) < ∞ and α−
1 < s+. Let z ∈ C

and choose g1 ∈ AC([s−, s+)) such that span{g1} = Nz ∩ L2(H). Let φ ∈
[0, π) satisfy ξTφ Γ(g1; zg1) 6= 0, so that we have z ∈ ρ(A(φ)). Finally, let h ∈

AC([s−, s+)) be the unique representant of the equivalence class (A(φ)−z)−1w∆

with
h′ = JH(w∆ + zh) ,

which exists because of ((A(φ) − z)−1w∆; w∆ + z(A(φ)− z)−1w∆) ∈ Tmax, and
define

g2 :=

∆∑

k=0

zkwk + z∆+1h . (3.7)

Then
Nz = span{g1, g2} .

Proof. Since {w0, . . . ,w∆−1} is linearly independent modulo L2(H), we have
g2 6∈ L2(H) and thus, in particular, {g1, g2} is linearly independent. Thus it is
enough to show that g2 ∈ Nz. This, however, follows since

g′2 =
∆∑

k=0

zkw′
k + z∆+1h′ =

∆∑

k=0

zkJHwk−1 + z∆+1JH(w∆ + zh) =
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= zJH
(∆−1∑

k=0

zkwk + z∆w∆ + z∆+1h
)

= zJHg2 .

❑

3.15 Corollary. If, in the situation of the above lemma, (1, 0)g1(s−) 6= 0,
then with the choice φ = 0 we have (1, 0)g2(s−) = 0. On the other hand, if
(1, 0)g1(s−) = 0, then for every solution f of (3.6) with f 6∈ L2(H), we have
(1, 0)f(s−) 6= 0.

Proof. We have h ∈ domA(φ) and thus ξTφ h(s−) = 0. If φ = 0, this means
that (1, 0)h(s−) = 0. The functions wk anyway have this property, so that
alltogether (1, 0)g2(s−) = 0.

If (1, 0)g1(s−) = 0, then by the uniqueness of the solution of (3.6) any solu-
tion f with (1, 0)f(s−) = 0 is linearly dependent with g1 and, thus, contained
in L2(H).

❑

3.16 Remark. In order to cover all cases note that if α−
1 = s+ we have

Nz = span
{(1

0

)
,w0 + zw1

}
,

and therefore Nz ∩ L2(H) = span{(1, 0)T}.
This follows by explicit computation, cf. Remark 3.8: We have

w0 + zw1 =

(
0

1

)
− z

∫ x

s−

h ·

(
1

0

)
.

Thus
(
1
0

)
and w0 + zw1 are linearly independent and

(w0 + zw1)
′ = −zh

(
1

0

)
= zhJ

(
0

1

)
= zJH

(
0

1

)
= zJH(w0 + zw1) .

Finally we are going to prove a lemma which will be of importance later on.
Assume that ∆ = ∆(H) < ∞. Then, by Corollary 3.13, a linear functional φ0

is well-defined on the linear space

L := ranB∆ + span
{
Bi
(

1

0

)
: i = 0, . . . ,∆ − 1

}

by the requirements that

φ0(B
∆f) = (f,w∆) ,

φ0

(
Bi
(

1

0

))
= −w∗

i+∆(s−)

(
0

1

)
.

Note that in case α−
1 (H) = s+ we have L = {0} and thus also φ0 = 0.

3.17 Lemma. Assume that ∆ = ∆(H) < ∞. Let z ∈ C and let g1 ∈
AC([s−, s+)) be such that span{g1} = Nz ∩ L2(H). Then g1 ∈ L and
zφ0(g1) 6= (1, 0)g1(s−).
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Proof. The case that α−
1 (H) = s+ is clear since then g1 = (α, 0)T . The same

argument applies if α−
1 (H) < s+ and z = 0. Hence assume that α−

1 (H) < s+
and z 6= 0.

Consider first the case that (1, 0)g1(s−) = 0, so that (g1; zg1) ∈ A(0). It
follows that z ∈ σ(A(0)) ⊆ R and that g1 = z∆B∆g1. This shows that g1 ∈ L
and φ0(g1) = z∆(g1,w∆). Assume now on the contrary to our assertion that
zφ0(g1) = 0. Then w∆ ⊥ g1, and hence w∆ ∈ ran(Tmin − z). Choose φ ∈ [0, π)
as in Lemma 3.14. Then (A(φ) − z)−1w∆ ∈ domTmin, and we obtain (with h
also as in Lemma 3.14) that h(s−) = 0. Now it follows that (1, 0)g2(s−) = 0, a
contradiction to the second part of Corollary 3.15. The assertion follows.

Next consider the case that (1, 0)g1(s−) 6= 0, so that z ∈ ρ(A(0)). Without
loss of generality let us assume that (1, 0)g1(s−) = 1. In order to compute
φ0(g1), note that since 0, z ∈ ρ(A(0)) the operator

I + z(A(0) − z)−1 = I + zB(I − zB)−1

maps ker(Tmax) bijectively onto ker(Tmax − z), and thus

g1 = (I + zB(I − zB)−1)

(
α

0

)
.

Comparing the boundary values at s− yields α = 1. We obtain by an inductive
application of (I − zB)−1 = I + zB(I − zB)−1 that

g1 =
(
I + zB + · · · + z∆−1B∆−1 + z∆B∆(I − zB)−1

)(1

0

)
.

This shows that g1 ∈ L. As the wj are real valued, the definition of φ0 gives

φ0(g1) = −(0, 1)w1(s−) − . . .− z∆−1(0, 1)w∆(s−) + z∆
(
(I − zB)−1

(
1

0

)
, w∆

)

Since conjugation commutes with B, the inner product in the last summand is
equal to ((I − zB)−1)w∆, (1, 0)T ), and hence by the Green’s identity applied
with (

B(I − zB)−1w∆, (I − zB)−1w∆

)
,
((1

0

)
; 0
)
∈ Tmax ,

equal to (1, 0)Jh(s−) = (0, 1)h(s−), where h is as in Lemma 3.14. Note that
B(I − zB)−1 = (A(0) − z)−1.

By the first part of Corollary 3.15 and the uniqueness of the solution of the
inital value problem (3.6), we have (0, 1)g1(s−) 6= 0. However,

(0, 1)g2(s−) = 1+

∆−1∑

k=1

zk(0, 1)wk(s−)+z∆+1(0, 1)h(s−) = (1, 0)g1(s−)−zφ0(g1) ,

and the assertion of the lemma follows also in the present case.

❑

We will often have to apply the results of the present section to a Hamiltonian
which is regular at s+ and singular at s−. To this end let us state the following
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3.18 Remark. If H is a Hamiltonian on I = (s−, s+) which is regular at s+,
singular at s−, satisfies (HS) and (I), similar considerations can be carried out.
These, corresponding, results can be obtained either by repeating the above
given proofs or by using an order-reversing reparameterization, cf. Lemma 2.6.

For future reference let us, as an example, state that in this case formula
(3.5) will change to

(g,wn+∆)L2(H) =

∆−1∑

k=0

λkwn+1+k(s+)∗
(

0

1

)
. (3.8)

Finally note that the introduced concepts are compatible with reparameter-
izations:

3.19 Remark. Let H be a Hamiltonian on I = (s−, s+) which is regular at
s−, singular at s+ and satisfies (HS) and (I). Consider a reparameterization
H̃ := (H ◦ ϕ) · ϕ′ of H . Then H̃ is regular at s̃−, singular at s̃+ and satisfies
(HS) and (I). We have (cf. Lemma 2.4)

w̃j = Aϕwj , j ∈ N ∪ {0}, ∆(H̃) = ∆(H) .

The operators B̃ and B are unitarily equivalent via Aϕ.

4 Elementary indefinite Hamiltonians: The

model

In this section we introduce the notion of elementary indefinite Hamiltonians.
They model the simplest situation of indefinite canonical systems; in fact they
can be viewed as “regular indefinite Hamiltonians with only one singularity”.
Later on, in Chapter 8, we will use them as building blocks for general indefinite
canonical systems. Roughly speaking, an elementary indefinite Hamiltonian h

will consist of a Hamiltonian Hh which has a singularity s and is of not too fast
growth towards this singularity, some interface conditions at s, and a data part
which is concentrated at s.

To an elementary indefinite Hamiltonian h we will associate a model. This
model consists of a Pontryagin space P(h) together with a conjugate linear
and anti-isometric involution . : P(h) → P(h), a linear map ψ(h) : P(h) →
M(I)/=H

, a linear relation T (h) ⊆ P(h) × P(h) and a linear relation Γ(h) ⊆
T (h) × (C2 × C2). Moreover, we will distinguish a closed subspace C(h) and a
finite dimensional subspace Xδ of P(h).

The space P(h), the relation T (h) and the relation Γ(h) are the indefinite
analogues of the space L2(H) and the relations Tmax(H) and Γ(H) in the pos-
itive definite case. The map ψ(h) allows us to associate P(h) with a space of
functions. It formalizes the tight connection of P(h) with the Hilbert space
L2(Hh) and clarifies the meaning of the distinguished space C(h), in fact we will
see that ψ(h)(Ch) = L2(Hh). The space Xδ models the part of the space P(h)
which is concentrated at the singularity.

4.1 Definition of elementary indefinite Hamiltonians

We will introduce three kinds of elementary indefinite Hamiltonians, which
model different types of singularities. Each of them will involve the following
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data:

(i) Hamiltonians H− and H+ defined on intervals I− = (s−, s) and I+ =
(s, s+), respectively, which satisfy

H±(x) is regular at s± and singular at s,

(HS) and (I) hold for H−(x) and H+(−x),

∆ := max{∆(H−(x)),∆(H+(−x))} <∞.

(4.1)

(ii) A number ö ∈ N ∪ {0}, and numbers bj ∈ R, j = 1, . . . , ö+ 1 with b1 6= 0
in the case that ö ≥ 1.

(iii) Numbers d0, . . . , d2∆−1 ∈ R.

4.1 Definition. An elementary indefinite Hamiltonian h of kind (A) ( (B) or
(C), respectively) is the collection of data H+, H−, ö, b1, . . . , bö+1, d0, . . . , d2∆−1

as in (i)-(iii), which satisfies the respective of the following additional condi-
tions:

(A) α+
1 (H−) = s or α−

1 (H+) = s.

(B) α+
1 (H+) = s and α−

1 (H−) = s, d1 = 0, and b1 6= 0.

(C) α+
1 (H+) = s and α−

1 (H−) = s, d1 = 0, d0 < 0, and ö = 0, b1 = 0.

4.2 Remark. We see that the kinds (A), (B) and (C) exclude each other.

• If h is of kind (A) it may happen that one of α+
1 (H+) = s and α−

1 (H−) = s
holds, however, not both of these equalities can hold at the same time since
this would certainly violate our extra condition in (A).

• The condition “α+
1 (H−) = s or α−

1 (H+) = s” in (A) says that at least one
of H− and H+ does not end with an indivisible interval of infinite length
towards the singularity s. On the other hand, the condition “α+

1 (H+) = s
and α−

1 (H−) = s” in (B) and (C) says that both of H+ and H− are just
one indivisible interval of infinite length.

• The case that α+
1 (H−) < s, α−

1 (H+) > s, and either α+
1 (H+) > s or

α−
1 (H−) < s, is not covered in the above definition. However, this case

will be reduced to a combination of the cases (A), (B) and (C) by pasting
together the respective model spaces, cf. Sections 6, 8.

• If h is of kind (B) or (C) we have ∆ = 1. If h is of kind (A), ∆ can take
any value ≥ 1.

With the data (i) of Definition 4.1 we have associated spaces M(I±), equiva-
lence relations =H± , spaces L2(H±), the correspondingly defined linear relations
Tmax,±, Tmin,±, operators B± and elements wk,±. Put I := I− ∪ I+,

H(t) :=

{
H−(t) , t ∈ (s−, s)

H+(t) , t ∈ (s, s+)
,

M(I) := M(I−) ⊕M(I+) ,
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(f−; f+) =H (g−; g+) : ⇐⇒ f− =H− g−, f+ =H+ g+ ,

L2(H) := L2(H−) ⊕ L2(H+) ,

Tmax := Tmax,− ⊕ Tmax,+, Tmin := Tmin,− ⊕ Tmin,+ ,

B := B− ⊕B+ .

We identify an element (f−; f+) of M(I) with the function

f(t) :=

{
f−(t) , t ∈ (s−, s)

f+(t) , t ∈ (s, s+)
.

In particular

wk(t) =

{
wk,−(t) , t ∈ (s−, s)

wk,+(t) , t ∈ (s, s+)
.

Moreover, we set χ− := χ(s−,s), χ+ := χ(s,s+).

4.2 Definition of the model

We come to the actual definition of the model associated with an elementary
indefinite Hamiltonian. This construction is quite elaborate and involved for
Hamiltonians of kind (A). Therefore, we first settle the more elementary cases
of an elementary indefinite Hamiltonian of kind (B) or (C). Before doing this
we define in the case ö ≥ 1 numbers c1, . . . , cö uniquely by the equation

(c1, . . . , cö)



b1 · · · bö
...

. . .
...

0 · · · b1


 = (−1, 0, . . . , 0) . (4.2)

Note that c1 6= 0.

4.3 Definition. Assume that h is an elementary indefinite Hamiltonian of kind
(C). Let the model space P(h) be a one-dimensional linear space spanned by an
element denoted by p0 and equipped with an inner product defined by

[p0, p0] := d0 .

Define ψ : P(h) → M(I)/=H
by p0 7→ w0/=H

and linearity, and . : P(h) → P(h)
by p0 7→ p0 and conjugate linearity. The model relation is defined as T (h) :=
P(h) × P(h). The linear relation Γ(h) is defined by applying the construction
of Remark 2.11 with the linear map Λ : T (h) → C2 given by

(p0; 0) 7→

(
0

1

)
, (0; p0) 7→

(
[p0, p0]

0

)
. (4.3)

Explicitly, that means

Γ(h) :=
{
((f ; g); (x1;x2)) ∈ T (h) × (C2 × C

2) :

x1,1 − x2,1 = Λ(f ; g)1, x1,2 = x2,2 = Λ(f ; g)2
}
.

Moreover, put C(h) := {0} and Xδ := {0}.
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4.4 Remark. If in the above definition we would choose d0 > 0, we would end
up with the space L2(H) for the Hamiltonian

H(t) :=

(
0 0
0 1

)
, t ∈ (0, d0) .

This is seen by comparing the notions introduced in Definition 4.3 and Section
2.1.e. We can therefore think of an elementary indefinite Hamiltonian of kind
(C) as an ‘indivisible interval of negative length’.

4.5 Definition. Let h be an elementary indefinite Hamiltonian of kind (B). Let
Pc be a two-dimensional linear space spanned by elements denoted by δ0 and
p0, equipped with an inner product defined by

[δ0, δ0] := 0, [p0, p0] := d0, [δ0, p0] := −1 .

Let Xδ be an ö-dimensional linear space spanned by elements δ1, . . . , δö,
equipped with an inner product defined by (ci := 0 for i ≤ 0)

[δk, δl] := ck+l−ö, k, l = 1, . . . , ö .

Define the model space P(h) as the direct and orthogonal sum

P(h) := Pc[+̇]Xδ .

Let ψ : P(h) → M(I)/=H
be given by

p0 7→ w0/=H
, δj 7→ 0, j = 0, 1, . . . , ö

and linearity, and let . : P(h) → P(h) be defined by

p0 7→ p0, δj 7→ δj , j = 0, 1, . . . , ö

and conjugate linearity. The model relation T (h) ⊆ P(h) × P(h) is defined as

T (h) := span
{
(0; δ0)

}
+ span

{
(p0; 0)

}
+ span

{
(δk−1; δk) : k = 1, . . . , ö

}
+

+ span
{
(b; p0 + [p0, p0]δ0)

}
,

(4.4)

where b :=
∑ö+1

l=1 blδ1+ö−l. By the definition of case (B) we always have b 6= 0.
We define a linear map Λ : T (h) → C2 by

(0; δ0) 7→

(
−1

0

)
, (δk−1; δk) 7→

(
0

0

)
, k = 1, . . . , ö, (p0; 0) 7→

(
0

1

)
,

(b; p0 + [p0, p0]δ0) 7→

(
0

0

)
.

(4.5)

The relation Γ(h) is now again defined by applying the construction of Remark
2.11. Finally, put C(h) := span{δ0}.

4.6 Remark. Note that the choice of b is made such that

[b, δj ] =

{
−1 , j = 1

0 , j = 0, 2, . . . , ö
.
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This is seen by computation: Trivially [b, δ0] = 0. If j ≥ 1 we have

[b, δj ] =
[ ö+1∑

l=1

blδ1+ö−l, δj
]

=

ö∑

l=1

blc(1+ö−l)+j−ö =

= b1cj + b2cj−1 + . . .+ bjc1 =

{
−1 , j = 1

0 , j = 2, . . . , ö
.

Throughout the remainder of this subsection assume that h is an elementary
indefinite Hamiltonian of kind (A).

We denote by Xw and Xw, respectively, the spaces

Xw := span{w0, . . . ,w∆−1}, X
w := span{w∆, . . . ,w2∆−1} ,

where Xw is understood as a subspace of M(I)/=H
and Xw as a subspace of

L2(H) ⊆ M(I)/=H
. Moreover,

X1 := ranB∆ ⊆ L2(H) ,

X2 := span
{
Bkχ−

(
1

0

)
, Bkχ+

(
1

0

)
: k = 0, . . . ,∆ − 1

}
⊆ L2(H) .

By Lemma 3.6 the set {w0, . . . ,w∆−1} is linearly independent modulo L2(H).
In particular,

(domT∆
max +Xw) ∩Xw = {0} .

Since either α+
1 (H−) = s or α−

1 (H+) = s, we know from Lemma 3.11, (i), that
{w∆, . . . ,w2∆−1} is linearly independent modulo domT∆

max, and thus

domT∆
max ∩X

w = {0} . (4.6)

Finally, by Lemma 2.31, domT∆
max = X1 +X2. Let us put

d2∆+k := (w∆,w∆+k), k ∈ N ∪ {0} ,

so that a number dl is defined for all l ∈ N∪{0}. Note that, by the selfadjointness
of B, these numbers dl are all real.

We shall define linear functionals φj , j = 0, . . . ,∆ − 1, on the linear space

XL := domT∆
max +Xw = X1 +X2 +Xw ⊆ L2(H) .

4.7 Proposition. Let j ∈ {0, . . . ,∆ − 1}. By the requirements

φj :





B∆f 7→ (f,w∆+j) , f ∈ L2(H)

Biχ−

(
1
0

)
7→ −wi+j+1(s−)∗

(
0
1

)
, i = 0, . . . ,∆ − 1

Biχ+

(
1
0

)
7→ wi+j+1(s+)∗

(
0
1

)
, i = 0, . . . ,∆ − 1

wi 7→ di+j , i = ∆, . . . , 2∆ − 1

a linear functional φj : XL → C is well-defined. No nontrivial linear combina-
tion of φ0, . . . , φ∆−1 is continuous with respect to the norm ‖.‖L2(H).
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Proof. Assume that

B∆f +

∆−1∑

k=0

(
λk,−B

kχ−

(
1

0

)
+ λk,+B

kχ+

(
1

0

))
+

2∆−1∑

k=∆

µkwk = 0 .

It follows from (4.6) that µk = 0, k = ∆, . . . , 2∆ − 1, and hence

B∆
−f = −

∆−1∑

k=0

λk,−B
k
−χ−

(
1

0

)
,

and

B∆
+f = −

∆−1∑

k=0

λk,+B
k
+χ+

(
1

0

)
.

From Corollary 3.13 and Remark 3.18 it follows that

(f,w∆+j) +

∆−1∑

k=0

(
− λk,−wk+j+1(s−)∗

(
0

1

)
+ λk,+wk+j+1(s+)∗

(
0

1

))
= 0 ,

and thus φj is well-defined.
Assume that

φ =

∆−1∑

j=0

λjφj : XL → C,

is continuous with respect to ‖.‖L2(H). Then there exists g ∈ L2(H) such that

φ(h) = (h, g), h ∈ XL . (4.7)

Let f ∈ L2(H). By the definition of φj ,

φ(B∆f) =
(
f,

∆−1∑

j=0

λjw∆+j

)
.

On the other hand, by (4.7),

φ(B∆f) = (B∆f, g) = (f,B∆g) .

We conclude that
∆−1∑

j=0

λjw∆+j = B∆g ∈ domT∆
max ,

and hence, by (4.6), λj = 0, j = 0, . . . ,∆ − 1.

❑

4.8 Remark. If α+
1 (H+) = s, then by Remark 3.8 we have

φj(B
iχ+

(
1

0

)
) = 0, i, j = 0, . . . ,∆ − 1 .

The analogous assertion holds for H−.
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Denote by (C(h), [., .],O) the almost Pontryagin space completion of
(XL, (., .)L2(H), (φj)

∆−1
j=0 ), cf. [KWW1]. That is the completion of XL with re-

spect to the norm defined by ‖.‖2
φ = ‖.‖2

L2(H) +
∑∆−1

j=0 |φj(.)|2.

Note that, by (2.12), XL is a dense subspace of (L2(H), ‖.‖L2(H)). Recall
from [KWW1] that the completion (C(h), [., .],O) can be viewed as the space
(L2(H) ⊕ C

∆, [., .], T ) where

[(x; ξ), (y; η)] = (x, y)L2(H) ,

and T is the Hilbert space topology induced by the inner product
((x; ξ), (y; η)) = (x, y)L2(H) + η∗ξ. The required embedding of XL into this
space is given by

x 7→
(
x; (φj(x))

∆−1
j=0

)
. (4.8)

We will think of C(h) as an abstract object containing XL as a dense subspace,
and of L2(H)⊕C∆ as the realization of this completion which contains XL via
the embedding (4.8).

Moreover, recall from [KWW1] that dim C(h)◦ = ∆, and C(h)/C(h)◦ is
isometrically isomorphic to L2(H). In fact the canonical embedding f 7→
f + C(h)◦ of XL into C(h)/C(h)◦ extends to an isometric isomorphism of L2(H)
onto C(h)/C(h)◦. By composition of its inverse with the canonical projection
π : C(h) → C(h)/C(h)◦, we obtain an isometric and continuous surjection
ψ0 : C(h) → L2(H). Note that the topology of L2(H) coincides with the fi-
nal topology with respect to ψ0. Since dim C(h)◦ < ∞, it follows that ψ0 maps
closed subspaces onto closed subspaces. Note that in the realization L2(H)⊕C∆

of C(h) the map ψ0 is nothing else but the projection onto the first component.
This follows from the continuity of ψ0 since it holds by the form of (4.8) on the
dense subset XL.

Let Pc be a Pontryagin space which contains C(h) as a closed subspace of
codimension ∆. The map (4.8) can be extended to an isometric isomorphism

ι : Pc → L2(H)[+̇]
(
C

∆+̇C
∆
)

(4.9)

where the inner product on C∆+̇C∆ is defined such that each of the two copies
of C∆ is neutral and that, if {e0, . . . , e∆−1} and {f0, . . . , f∆−1} denote the re-
spective canonical bases,

[ei, fj ] =

{
0 , i 6= j

1 , i = j
.

Thereby C(h) corresponds to L2(H)[+̇] span{e0, . . . , e∆−1} and C(h)◦ to
span{e0, . . . , e∆−1}.

We wish to extend the functionals φj to Pc. First note that, since φj :

C(h) → C is continuous, there exist continuous extensions φ̃j : Pc → C.

If (φ̃j)
∆−1
j=0 is an extension of (φj)

∆−1
j=0 , i.e. φ̃j : Pc → C are continuous and

φ̃j |C = φj , we assign to it a matrix G[(φ̃j)
∆−1
j=0 ] as follows: Let pj ∈ Pc be such

that φ̃j(x) = [x, pj ], j = 0, . . . ,∆ − 1, and define

G[(φ̃j)
∆−1
j=0 ] :=

(
[pi, pj ]

)∆−1

i,j=0
.

We need the following elementary observation:
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4.9 Lemma. There is a bijective correspondence between the set of all exten-
sions (φ̃j)

∆−1
j=0 of (φj)

∆−1
j=0 and the set of all ∆ × ∆-matrices M . Thereby we

have G[(φ̃j)
∆−1
j=0 ] = 2 ReM .

Proof. Consider the space Pc in its realization (4.9) as L2(H)⊕ (C∆+̇C∆) and
again let {e0, . . . , e∆−1} and {f0, . . . , f∆−1} be the respective canonical bases.
We have

C(h)[⊥]Pc = span{e0, . . . , e∆−1} .

Hence, the extensions φ̃j of φj bijectively correspond to the elements pj =

fj +
∑∆−1

k=0 λjkek, λjk ∈ C. We compute

[pi, pj ] =
[
fi +

∆−1∑

k=0

λikek, fj +

∆−1∑

k=0

λjkek
]

= λji + λij .

If we set M = (λij)
∆−1
i,j=0, we have G[(φ̃j)

∆−1
j=0 ] = 2 ReM .

❑

Note that the elements pj ∈ Pc representing φ̃j as φ̃j = [., pj ] are linearly
independent, satisfy

C(h)+̇ span{p0, . . . , p∆−1} = Pc ,

and span(C(h)◦ ∪ {p0, . . . , p∆−1}) is nondegenerated. Moreover, if we set δj :=
−ι−1(ej), j = 0, . . . ,∆ − 1, then {δ0, . . . , δ∆−1} is a basis of C(h)◦ and by (4.8)

[δk, pj ] =

{
0 , k 6= j

−1 , k = j
.

Let (φ̃j)
∆−1
j=0 be the extension of (φj)

∆−1
j=0 which corresponds to M =

1
2 (di+k)

∆−1
i,k=0, so that

G[(φ̃j)
∆−1
j=0 ] = (di+k)

∆−1
i,k=0 .

We are now ready for the definition of the model space P(h), the map ψ(h), and
conjugation.

4.10 Definition. Let h be an elementary indefinite Hamiltonian of kind (A).
Let Xδ be an ö-dimensional linear space spanned by elements {δ∆, . . . , δ∆+ö−1},
equipped with an inner product defined by (ci := 0 for i ≤ 0)

[δk, δl] := ck+l+2−2∆−ö, k, l = ∆, . . . ,∆ + ö− 1 .

Define P(h) as the direct and orthogonal sum

P(h) := Pc[+̇]Xδ .

The canonical extension of the isomorphism (4.9) to all of P(h) by means of
δj 7→ δj , j = ∆, . . .∆ + ö− 1, yields an isomorphism (again be denoted by ι):

ι : P(h) → L2(H)[+̇]
(
C

∆+̇C
∆
)
[+̇]Xδ . (4.10)
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Let ψ(h) : P(h) → M(I)/=H
be the extension of ψ0 to all of P(h) which is given

by linearity and the requirements that

pj 7→ wj/=H
, j = 0, . . . ,∆ − 1, δk 7→ 0, k = ∆, . . . ,∆ + ö− 1 .

Moreover, let . : P(h) → P(h) be defined by

ι ◦ . ◦ ι−1 :

{
L2(H)[+̇]

(
C

∆+̇C
∆
)
[+̇]Xδ → L2(H)[+̇]

(
C

∆+̇C
∆
)
[+̇]Xδ

(
x, ξ, η,

∑∆+ö−1
j=∆ αjδj

)
7→

(
x, ξ, η,

∑∆+ö−1
j=∆ αjδj

)

(4.11)

Note that in the realization (4.10) of P(h) the map ψ(h) can be described
as follows:

ψ(h) ◦ ι−1 :

{
L2(H)[+̇]

(
C∆+̇C∆

)
[+̇]Xδ → M(I)/=H

(
x, ξ, η,

∑∆+ö−1
j=∆ αjδj

)
7→ x+

∑∆−1
j=0 ηjwj/=H

, η = (ηj)
∆−1
j=0

(4.12)
Let us come to the definition of the model relation.

4.11 Definition. Let h be an elementary indefinite Hamiltonian of kind (A).
Then we define T (h) ⊆ P(h) × P(h) as

T (h) := span
{
(Bh;h+ [h, p0]δ0) : h ∈ XL

}
+ (4.13)

+ span
{
(χ−

(
1

0

)
;−δ0), (χ+

(
1

0

)
; δ0)

}
+ (4.14)

+ span
{
(p0; 0)

}
+

+ span
{
(pk; pk−1 + [pk−1, p0]δ0) : k = 1, . . . ,∆ − 1

}
+

+ span
{
(w∆ + b; p∆−1 + [p∆−1, p0]δ0)

}
+

(4.15)

+ span
{
(δk−1; δk) : k = ∆, . . . ,∆ + ö− 1

}
, (4.16)

where b :=
∑ö+1

l=1 blδ∆+ö−l.

In order to increase the readability we use ‘(4.13)’ - ‘(4.16)’ not just as
references, but also as variables standing for the expressions in the corresponding
lines. Note that, similar as in Remark 4.6, it is seen that the choice of b is made
to ensure that

[b, δj] =

{
−1 , j = ∆

0 , j = 0, . . . ,∆ − 1,∆ + 1 . . . ,∆ + ö− 1

In order to introduce the relation Γ(h) note that, if the map Ψ := ψ × ψ is
restricted to T (h), it can be factorized. Let us define Ψac : T (h) → AC(I) ×
M(I)/=H

by linearity,

(p0; 0) 7→ (w0; 0), (pk; pk−1 + [pk−1, p0]δ0) 7→ (wk; wk−1), k = 1, . . . ,∆ − 1,

(w∆ + b; p∆−1 + [p∆−1, p0]δ0) 7→ (w∆; w∆−1),

43



(δk−1; δk) 7→ (0; 0), k = ∆, . . . ,∆ + ö− 1,

(χ−

(
1

0

)
;−δ0) 7→ (χ−

(
1

0

)
; 0), (χ+

(
1

0

)
; δ0) 7→ (χ+

(
1

0

)
; 0),

and the following procedure: If (f ; g) belongs to (4.13), then Ψ(f ; g) ∈ B−1

and, hence, there exists a unique function f̂ ∈ AC(I) with f̂(s−)1 = f̂(s+)1 = 0

such that f̂ =H f and f̂ ′ = JHg. Note that the condition f̂(s−)1 = 0 has

to be added only if α−
1 (H−) = s, and f̂(s+)1 = 0 only if α+

1 (H+) = s. Set

Ψac(f ; g) := (f̂ ; g).
It is immediate from this definition that the following diagram commutes:

T (h)
Ψ //

Ψac

''OOOOOOOOOOOO
(M(I)/=H

)2

AC(I) ×M(I)/=H

66lllllllllllll

(4.17)

where the right lower map is the canonical one. Moreover, we have

Ψac(T (h)) ⊆
{
(f ; g) ∈ AC(I) ×M(I)/=H

: f ′ = JHg
}
. (4.18)

4.12 Definition. Let h be an elementary indefinite Hamiltonian of kind (A).
Define Γ(h) ⊆ T (h) × (C2 × C2) by

Γ(h) :=
{(

(f ; g); (Ψac(f ; g)1(s−); Ψac(f ; g)1(s+))
)

: (f ; g) ∈ T (h)
}
,

where Ψac(f ; g)1 denotes the first component of Ψac(f ; g) ∈ AC(I)×M(I)/=H
.

4.3 Geometry of P, T and Γ

In this subsection we will establish some basic properties of the introduced
notions. First we discuss the geometry of P(h). In order to shorten notation
we will, if no confusion can occur, frequently drop the argument h from P(h),
ψ(h), etc.

4.13 Proposition. Let h be an elementary indefinite Hamiltonian. Then

(i) P(h) is a Pontryagin space with negative index

ind− P(h) = ∆ + [
ö

2
] +

{
1 , ö ∈ {1, 3, 5, . . .}, c1 < 0

0 , otherwise

(ii) The map . is a conjugate linear and anti-isometric involution of P(h). All
elements δj and pj are real, i.e. δj = δj , pj = pj.

If h is of kind (A) the involution . acts as complex conjugation on the
subset XL.

(iii) The map ψ is real with respect to ., i.e. ψ(f) = ψ(f), f ∈ P(h). We have

kerψ = C◦ +Xδ, ψ−1(L2(H)) = C + kerψ . (4.19)

Moreover, ψ|C : (C, [., .]) → (L2(H), (., .)L2(H)) is isometric.
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Proof. We establish the formula for the negative index of P(h). In the case that
h is of kind (C), trivially ind− P(h) = 1. Since in this case ∆ = 1 and ö = 1

2 , the
desired formula holds. Assume that h is of kind (B). Then ind− Pc = 1 = ∆.
Consider the space Xδ. With respect to the basis {δ1, . . . , δö} the inner product
is given by the Gram-matrix




0 · · · c1
... . .

. ...
c1 · · · cö




Hence ind−X
δ = [ ö2 ] + 1 or [ ö2 ] depending whether ö is odd and c1 < 0 or

not. We see that also in this case the desired formula holds true. In order to
compute ind−P(h) in the case that h is of kind (A), we consider the realization
(4.10). The first summand is positive definite, the second one has ∆ negative
squares, and the last one has by the above argument negative index [ ö2 ] + 1 or

[ ö2 ] depending whether ö is odd and c1 < 0 or not.
The fact that in any case . is a conjugate linear involution is obvious. More-

over, it follows immediately from the definitions that all elements δj are real. If
h is of kind (C) or (B), by definition all elements pj are real. If h is of kind (A)
this follows on inspecting the construction in Lemma 4.9 from the fact that all
numbers dl are real.

Assume that h is of kind (A). Denote by .r the canonical conjugation in
the realization (4.10) which was used for the definition of ., i.e. ι ◦ . = .r ◦ ι.
Moreover, denote by .c complex conjugation on XL. By Lemma 3.9 and their
definition, the functionals φj satisfy

φj(h
c
) = φj(h), h ∈ XL .

Hence, since ι extends (4.8), we have ι(h
c
) = ι(h)

r
for all h ∈ XL. We conclude

that h
c

= h.
The fact that ψ is real with respect to . follows in case of kinds (C),(B)

immediately from the definitions, in case of kind (A) it is a consequence of the
description of ψ in the realization (4.10).

In order to establish the relation (4.19) assume first that h is of kind (C).
Then kerψ = {0} since w0/=H

6= 0, and we have C = C◦ = Xδ = {0}
and L2(H) = {0}. Next assume that h is of kind (B). Then, again since
w0/=H

6= 0, we have kerψ = span{δ0, . . . , δö}. Moreover, C = C◦ = span{δ0},
Xδ = span{δ1, . . . , δö} and L2(H) = {0}. Finally assume that h is of kind
(A). From the description of ψ in the realization (4.10) we obtain that kerψ =
span{δ0, . . . , δ∆−1}+Xδ = C◦+Xδ. Moreover, from the same source, we see that
certainly ψ(C +Xδ) = ψ(C + kerψ) = L2(H). Since the elements w0, . . . ,w∆−1

are linearly independent modulo L2(H), also ψ−1(L2(H)) = C +Xδ.
If h is of kind (A) the isometry property of ψ holds by definition, since then

ψ|C = ψ0. If h is of kind (B) or (C) this is trivial.

❑

Next we will take a closer look at the relation between P(h) and L2(H). If
h is of kind (B) or (C) this question is not too intriguing, since then anyway
L2(H) = {0}. Thus let us consider the case that h is of kind (A).
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The map ψ projects C isometrically and continuously onto L2(H). On the
other hand it is in general not possible to embed L2(H) into P(h) in a proper
way. Note in this place that the embedding which is immediate from the realiza-
tion (4.10) is not properly adopted to the situation, since it does not take care of
the second components of (4.8). However, if we only consider elements of L2(H)
whose support stays away from the singularity s, we can find an appropriate
embedding.

For s− ∈ [s−, s) and s+ ∈ (s, s+] which are not inner points of indivisible
intervals put

J := (s−, s
−) ∪ (s+, s+) , (4.20)

L2(H |J) := L2(H−|(s−,s−)) ⊕ L2(H+|(s+,s+)) .

4.14 Proposition. Let h be an elementary indefinite Hamiltonian of kind (A).
For every set J of the form (4.20) there exists an isometric and bicontinuous
embedding ιJ of L2(H |J) into C ⊆ P(h). It satisfies

[ιJx, y]P(h) =

∫

J

(ψy)∗Hx, x ∈ L2(H |J ), y ∈ P(h) , (4.21)

and is compatible with conjugation in the sense that

ιJ (x) = ιJ(x), x ∈ L2(H |J) . (4.22)

Moreover, whenever J and J ′ are of the form (4.20) and J ⊆ J ′, then the
following diagram commutes:

C
ψ

// L2(H)

L2(H |J )

ιJ

<<xxxxxxxxx

⊆
// L2(H |J′)

ιJ′

ccFFFFFFFFFF ⊆

99sssssssss

Proof. For any set J of the form (4.20) denote by ρJ the restriction map

ρJ :

{
L2(H) → L2(H |J)

f 7→ f |J
.

This map is surjective and a contraction, in particular, continuous. The map
ψ|C maps C continuously onto L2(H), hence ρJψ|C maps C continuously onto
L2(H |J). Since ψ(pj) = wj/=H

∈ AC(I)/=H
, j = 0, . . . ,∆ − 1, and ψ(δj) = 0,

j = ∆, . . . ,∆ + ö− 1, since

P(h) = C+̇ span{pj : j = 0, . . . ,∆ − 1}+̇ span{δj : j = ∆, . . . ,∆ + ö− 1} ,

and since C is a closed subspace of P(h), it follows that ρJψ maps P(h) contin-
uously onto L2(H |J). Define

ιJ := (ρJψ)∗ : L2(H |J) → P(h) .

Then ιJ is continuous, injective, and satisfies (4.21). By the closed range theo-
rem ran ιJ is a closed subspace of P(h). Hence, by the open mapping theorem,
ιJ is bicontinuous. Since C◦ +Xδ = kerψ ⊆ ker ρJψ, it follows that

ran ιJ ⊆ (C◦ +Xδ)⊥ = C .
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We compute ιJ in the realization (4.9) of C. Let x ∈ L2(H |J) and write

ιJx =
(
x̂; (ξj)

∆−1
j=0

)
.

By (4.21) we have

ξj = [ιJx, pj ]P(h) =

∫

J

w∗
jHx, j = 0, . . . ,∆ − 1 .

Moreover, since in the realization (4.10) the action of ψ on C is just projecting
onto the first component, we have for every y ∈ L2(H)

(x̂, y)L2(H) = [(x̂; (ξj)
∆−1
j=0 ), (y; 0, . . . , 0)]P(h) =

∫

J

y∗Hx = (x, y)L2(H) .

It follows that x̂ = x. Alltogether we see that

ιJx =
(
x; (

∫

J

w∗
jHx)

∆−1
j=0

)
.

We conclude that (ψ ◦ ιJ )(x) = x, x ∈ L2(H |J), that ιJ is isometric, and that

ιJx = ιJ′x, x ∈ L2(H |J), J ⊆ J ′ .

Moreover, the relation (4.22) follows, since the functions wj are real-valued.

❑

¿From the fact that ψ ◦ ιJ acts as the identity on L2(H |J ) and that ιJ is an
embedding, we obtain the following

4.15 Corollary. We have ψ(ιJ (L2(H |J ))) ⊆ L2(H |J) and the map
ψ|ιJ (L2(H|J )) : ιJ(L2(H |J )) → L2(H |J ) is the inverse of ιJ .

Note that if, say, s− := α+
1 (H |(s−,s)) < s, then L2(H |(s−,s)) = L2(H |(s−,s−)).

Hence, in this case, L2(H |(s−,s)) is properly embedded in P(h).
Our next task is to establish some properties of the linear relation T (h). For

this we need another lemma.

4.16 Lemma. Let h be of kind (A). Then we have φj ◦B = φj+1, j = 0, . . . ,∆−
2, and φ∆−1 ◦B = (.,w∆).

Proof. First of all note that B(XL) ⊆ XL. We shall formulate the proof of the
present assertion for the case that α−

1 (H−) < s and α+
1 (H+) > s. If in one of

these relations equality holds, then in those steps marked by a star one has to
employ Remark 3.8 instead of the mentioned argument.

Let j ∈ {0, . . . ,∆ − 2}. We have

φj(B(B∆f)) = φj(B
∆(Bf)) = (Bf,w∆+j) =

= (f,Bw∆+j) = (f,w∆+j+1) = φj+1(B
∆f) .

Let i ∈ {0, . . . ,∆ − 2}, then

φj(B(Biχ±

(
1

0

)
)) = φj(B

i+1χ±

(
1

0

)
) = wi+j+2(s±)∗

(
0

1

)
= φj+1(B

iχ±

(
1

0

)
) .
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Moreover, an application of (2.10) with (χ−

(
1
0

)
; 0), (w∆+j+1,−; w∆+j,−) ∈

Tmax,− yields

φj(B(B∆−1χ−

(
1

0

)
)) = φj(B

∆χ−

(
1

0

)
) = (χ−

(
1

0

)
,w∆+j,−)

∗
=

= −w∆+j+1,−(s−)∗J

(
1

0

)
= φj+1(B

∆−1χ−

(
1

0

)
) .

The case of χ+

(
1
0

)
is treated similarly (cf. Remark 3.18).

Let i ∈ {∆, . . . , 2∆ − 2}, then

φj(Bwi) = φj(wi+1) = dj+i+1 = φj+1(wi) .

Moreover,

φj(Bw2∆−1) = φj(B
∆w∆) = (w∆,w∆+j) = d2∆+j = φj+1(w2∆−1) .

Next consider the functional φ∆−1. We have

φ∆−1(B(B∆f)) = φ∆−1(B
∆(Bf)) = (Bf,w2∆−1) = (B∆f,w∆) .

Let i ∈ {0, . . . ,∆ − 2}, then

φ∆−1(B(Biχ±

(
1

0

)
)) = ±wi+∆+1(s±)∗

(
0

1

)
.

On the other hand, by (2.10),

(Biχ±

(
1

0

)
,w∆) = (χ±

(
1

0

)
,w∆+i)

∗
= ±w∆+i+1(s±)∗

(
0

1

)
.

Moreover,

φ∆−1(B(B∆−1χ±

(
1

0

)
)) = φ∆−1(B

∆χ±

(
1

0

)
) = (χ±

(
1

0

)
,w2∆−1) =

= (B∆−1χ±

(
1

0

)
,w∆) .

Let i ∈ {∆, . . . , 2∆ − 2}, then

φ∆−1(Bwi) = φ∆−1(wi+1) = d∆+i = (wi,w∆) .

Finally,

φ∆−1(Bw2∆−1) = φ∆−1(B
∆w∆) = (w∆,w2∆−1) = (w2∆−1,w∆) .

❑

4.17 Proposition. Let h be an elementary indefinite Hamiltonian. Then

(i) T (h) is closed.
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(ii) T (h) is real with respect to ., i.e. we have (f ; g) ∈ T (h) if and only if
(f ; g) ∈ T (h).

(iii) Put Ψ := ψ × ψ : P(h)2 → (M(I)/=H
)2. Then Ψ(T (h) ∩ C2) = Tmax(H).

(iv) We have (δk−1; δk) ∈ T (h), k ∈ {1, . . . ,∆ − 1}.

(v) We have domT (h) = P(h).

Two somewhat technical properties are:

(vi) All sums in the definition of T (h) are direct sums. The set of generators
written in (4.14)-(4.16) or (4.4), respectively, is linearly independent.

(vii) Assume that h is of kind (A). Then T ∩ C2 = (4.13)+ (4.14) and
Ψ( (4.13) ) = B−1.

Proof.
ad(i): The cases of kind (C), (B) are trivial since all spaces involved are finite-
dimensional. If h is of kind (A) the fact that T (h) is closed follows since the
span of (4.14)-(4.16) is finite dimensional.

ad(ii): If h is of kind (C), this is trivial. If h is of kind (B) it is enough to note
that each of the generators written in (4.4) is real. Assume that h is of kind
(A). Each of the generators written in (4.14)-(4.16) is real. Moreover, since .
acts as complex conjugation on XL, with h also h belongs to XL and we have
Bh = Bh. Thus

(
Bh;h+ φ0(h)δ0

)
=
(
Bh;h+ φ0(h)δ0

)
∈ T (h) .

By the continuity of ., the assertion follows.

ad(iii): If h is of kind (C) this is trivial, if it is of kind (B) it follows from
C = span{δ0} ⊆ kerψ.

Assume that h is of kind (A). First of all note that the product topology on
(L2(H))2 is the final topology with respect to the map Ψ|C2 . Since the kernel
of Ψ|C2 is finite-dimensional, Ψ|C2 maps closed subspaces onto closed subspaces.
We have

Ψ(Bh;h+ [h, p0]δ0) = (Bh;h) ∈ B−1 .

As Ψ|C2 is continuous Ψ( (4.13) ) ⊆ B−1. Since XL is dense in L2(H), cf. (2.12),
and B × id is a continuous map of L2(H) onto B−1, it follows that in this
inclusion equality holds.

To see the desired assertion it suffices to recall that

B + span{(χ−

(
1

0

)
; 0), (χ+

(
1

0

)
; 0)} = Tmax

and (
χ±

(
1

0

)
; 0
)

= Ψ
(
χ±

(
1

0

)
;±δ0

)
.

Note that on the way we also proved the second assertion of (vii).
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ad(iv): This assertion is only nonvoid if ∆ > 1. Thus we may assume without
loss of generality that h is of kind (A). Fix k ∈ {1, . . . ,∆ − 1} and choose
hn ∈ XL such that hn → δk in C. It follows that

(hn, hn) → 0, φj(hn) →

{
−1 , j = k

0 , j 6= k
.

With hn also hn+[hn, p0]δ0 → δk. Since ‖hn‖L2(H) → 0, also ‖Bhn‖L2(H) → 0.
By Lemma 4.16 we have

φj(Bhn) →

{
−1 , j = k − 1

0 , j 6= k − 1
, j = 0, . . . ,∆ − 1.

Hence, (Bhn)n∈N is a Cauchy-sequence in (XL, ‖.‖φ) and thus convergent to
some element x ∈ C in the norm of P(h). Since [x − δk−1, x − δk−1] = 0 and
φj(x) = φj(δk−1), it follows that x = δk−1. We see that (δk−1; δk) ∈ (4.13).

ad(v): If h is of kind (C) or (B), we have by the definition of T (h) that
domT (h) = P(h). Hence assume that h is of kind (A).

Let f ∈ P(h), f ⊥ domT (h), be given. Our first aim is to show that f ⊥ C◦.
If ö > 0, then we have

δk ∈ domT (h), k = 0, . . .∆ + ö− 2 .

Since ∆ + ö− 2 ≥ ∆ − 1, we see that f ⊥ C◦.
Consider the case that ö = 0. Then we have

δk ∈ domT (h), k = 0, . . . ,∆ − 2 .

We show that δ∆−1 ∈ domT (h). To this end consider the functional (see Propo-
sition 4.7)

φ∆−1|ranB∆+1 : ranB∆+1 → C,

and assume that it were continuous in the norm of L2(H). Then there exists
g ∈ L2(H) with

φ∆−1(B
∆+1x) = (B∆+1x, g), x ∈ L2(H) .

We obtain from Lemma 4.16 and from the selfadjointness of B that

(x,w2∆) = (x,B∆w∆) = (B∆x,w∆) = φ∆−1(B
∆+1x) =

= (B∆+1x, g) = (x,B∆+1g), x ∈ L2(H) .

Hence w2∆ = B∆+1g ∈ ranB∆+1, a contradiction to Lemma 3.11, since h

satisfies (A).
We conclude that there exists a sequence hn ∈ L2(H) such that

B∆+1hn
L2(H)
→ 0, φ∆−1(B

∆+1hn) → −1 .

Put yn := B(B∆hn). Since B∆hn ∈ XL, we have yn ∈ domT (h) and [yn, yn] =
‖yn‖L2(H) → 0, φ∆−1(yn) → −1 = φ∆−1(δ∆−1). By adding appropriate linear
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combinations of δ0, . . . , δ∆−2 to yn, we can produce a sequence zn ∈ C∩domT (h)
with

[zn, zn] → 0, φ0(zn), . . . , φ∆−2(zn) = 0, φ∆−1(zn) → −1 .

It follows that [zn, x] → [δ∆−1, x] for every x ∈ P(h), i.e. that zn
w
→ δ∆−1. We

conclude that δ∆−1 ∈ domT . Thus f ⊥ C◦.

Since, in any case f ⊥ C◦, we can write f = f1 +
∑∆+ö−1

k=∆ αkδk with some
f1 ∈ C. If ö > 0, then we get from f ⊥ δ∆, . . . , δ∆+ö−2 that α∆+ö−1 = . . . =
α∆+1 = 0. Moreover, f ⊥ w∆ + b, i.e.

0 = [f1 + α∆δ∆,w∆ + b] = [f1,w∆] + α∆ [δ∆, b]︸ ︷︷ ︸
=−1

,

and it follows that α∆ = [f1,w∆].
We have f ⊥ dom(T ∩ C2). Thus also f1 has this property and hence

ψf1 ⊥ domΨ(T ∩ C2) = domTmax .

Thus ψf1 = 0, and it follows that f1 ∈ kerψ ∩ C = C◦. It readily follows that
α∆ = 0. Moreover, we know that f ⊥ p0, . . . , p∆−1, and this now implies that
f = 0.

ad(vii): Clearly, the span of (4.13) and (4.14) is contained in C2. Assume that

α0(p0; 0) +
∆−1∑

k=1

αk(pk; pk−1 + [pk−1, p0]δ0)+

+α∆(w∆ + b; p∆−1 + [p∆−1, p0]δ0) +

∆+ö−1∑

k=∆

βk(δk−1; δk) ∈ C2 .

Looking at the second component, we obtain βk = 0, k = ∆, . . . ,∆+ ö− 1, and
αk = 0, k = 1, . . . ,∆. The first component now reads as α0p0 ∈ C, and hence
α0 = 0. We see that the set of generators written in (4.15) and (4.16) is linearly
independent modulo C2. In particular, T ∩ C2 = (4.13)+ (4.14).

The second assertion was already proved, cf. proof of (iii).

ad(vi): In case of kind (C) there is nothing to prove. In case of kind (B) assume
that

α(0; δ0) + β(p0; 0) +

ö∑

k=1

λk(δk−1; δk) + γ(b; p0 + [p0, p0]δ0) = 0 .

Looking at the second component of this equation yields γ = 0 and then α = 0.
Now looking at the first component gives us β = 0 and λk = 0 for all k.

Assume that h is of kind (A). Note that at least one of the functions χ−

(
1
0

)

and χ+

(
1
0

)
is not equal to 0 in L2(H±). In fact, these functions are zero only if

α−
1 (H−) = s or α+

1 (H+) = s, respectively, and these equalities cannot hold at
the same time.

We conclude that the pairs (χ±

(
1
0

)
;±δ0) are linearly independent. Together

with the facts already established in the proof of (vi), we conclude that the set
of generators written in (4.14)-(4.16) is linearly independent.
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It remains to show that (4.13)∩ (4.14)= {0}. Assume that

(β−χ−

(
1

0

)
+ β+χ+

(
1

0

)
; (β+ − β−)δ0),

belongs to (4.13). Then

Ψ(β−χ−

(
1

0

)
+ β+χ+

(
1

0

)
; (β+ − β−)δ0) ∈ B−1.

If α−
1 (H−) < s and α+

1 (H+) > s, then χ±

(
1
0

)
6=H 0 and, hence we get β− =

β+ = 0. If, say α−
1 (H−) = s, then α+

1 (H+) > s, and we conclude β+ = 0. Since
[g, p0] = 0 for all (f ; g) which belong to (4.13), we also get β− = 0.

❑

Finally we state some elementary properties of Ψac and Γ(h).

4.18 Lemma. If α−
1 (H−) < s and α+

1 (H+) > s, then

kerΨac = kerΨ|T (h)

(
= T (h) ∩ (C◦ +Xδ)2

)
. (4.23)

If α+
1 (H+) = s, then

kerΨac+̇ span (χ+

(
1

0

)
; +δ0) = kerΨ|T (h) . (4.24)

The similar assertion holds with ‘−’ instead of ‘+’.

Proof. The respective inclusions ‘⊆’ are immediate from (4.17), and, in the case
α±

1 (H±) = s, from χ±(1 0)T =H 0. To establish the converse inclusion assume
that (f ; g) ∈ kerΨ|T (h). This means that Ψac(f ; g) = (f̃ ; 0) where f̃ =H 0.
Write

(f ; g) = (f1; g1) + α0(p0; 0) +

∆−1∑

k=1

αk(pk; pk−1 + [pk−1, p0]δ0)+

+α∆(w∆ + b; p∆−1 + [p∆−1, p0]δ0) +

∆+ö−1∑

j=∆

βj(δj−1; δj)

where (f1; g1) ∈ T (h) ∩ C2. Since the last sum is anyway contained in kerΨac,
we can assume without loss of generality that βj = 0, j = ∆, . . . ,∆ + ö − 1.
Hence

0 =H f̃ = f̂1 +
∆∑

k=0

αkwk,

where f̂1 ∈ AC(I) is the unique representant of f1 with f̂ ′
1 = JHψ(g1). It

follows from Lemma 3.6 and Lemma 3.11 that αk = 0, k = 0, . . . ,∆. Hence
f̃ = f̂1 =H 0. If α−

1 (H−) < s and α+
1 (H+) > s, then the continuity of f̃ implies

f̃ = 0.
If α−

1 (H−) = s, then α+
1 (H+) > s, and we conclude from f̃ =H 0 that

f̃I+ = 0. From the definition of Ψac we see that f̃ |I− is collinear with χ−(1 0)T .
Thus

(f ; g) − α(χ−(1 0)T ;−δ0) ∈ kerΨac,
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for a properly chosen α ∈ C. The case α+
1 (H+) = s is treated similarly.

❑

4.19 Lemma. The relation Γ(h) is closed and domΓ(h) = T (h). We have

mul Γ(h) =

{
{0} , h of kind (A)

span{(
(
1
0

)
;
(
1
0

)
)} , h of kind (B),(C)

Moreover, Γ(h) is compatible with the involution . in the sense of (2.5).
If h is of kind (A), the map Γ(h) is surjective.

Proof. To shorten notation we write P(h) = P , Γ(h) = Γ and T (h) = T .
The assertions that domΓ = T and that mul Γ has the desired form are

immediate from the respective definitions.
We show that Γ is closed. If h is of kind (B) or (C) this is trivial by finite-

dimensionality, hence assume that h is of kind (A). In this case we can consider
Γ as the map

Γ : (f ; g) 7→
(
Ψac(f ; g)1(s−); Ψac(f ; g)1(s+)

)
,

where Ψac(f ; g)1 denotes the first component of Ψac(f ; g) ∈ AC(I)×M(I)/=H
.

We show that this map Γ is continuous.
If α−

1 (H−) < s and α+
1 (H+) > s, the restriction Ψ|T∩C2 is by its definition

compatible with boundary values: We have

Γ(f ; g) = ΓL2(H) ◦ Ψ(f ; g), (f ; g) ∈ T ∩ C2 . (4.25)

This relation implies that Γ is continuous. In fact, because ΓL2(H) is continuous
on L2(H), Γ is continuous as a mapping of T ∩C2 into C2×C2. However, T ∩C2

is a closed subspace of T with finite codimension. Thus Γ is continuous as a
mapping from T into C2 × C2.

If α±
1 (H±) = s, then let R be the span of (4.13) and (χ∓(1 0)T ;∓δ0). The

restriction Γ|R coincides with ΓL2(H) ◦Ψ|R. As in the previous step we see also
here that Γ is continuous as a mapping from T into C2 × C2.

We show that Γ is compatible with conjugation. Assume that h is of kind
(A), then we have

Γ(f ; g) = Γ(f ; g), (f ; g) ∈ T .

This follows since ΓL2(H) has this property and since the generators written in
(4.14), (4.15) and (4.16) are real and mapped by Γ to real vectors. In the cases
that h is of kind (B) or (C), the desired relation is immediate from the fact that
Λ maps real elements of T to real vectors.

We come to the proof of the last assertion. From the definition of Γ(h) it is
clear that

(

(
0

1

)
;

(
0

1

)
), (

(
1

0

)
; 0), (0;

(
1

0

)
) ∈ ranΓ(h) .

Since h is of kind (A), one of (s−, s) and (s, s+) is not indivisible. Let us assume
that (s−, s) is not indivisible, then by the definition of Γ(h) its first component
can be obtained as

Γ(h)1(f ; g) = Γ(H−)
(
(χ− × χ−)Ψac(f ; g)

)
, (f ; g) ∈ T (h) ∩ C2 .
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By Proposition 4.17, (iii), (χ−×χ−)Ψac maps T (h)∩C2 onto Tmax(H−). Since
Γ(H−) is surjective, it follows from Proposition 4.17, (vii), that there exist
(f−; g−) ∈ B−1

− such that Γ(H−)(f−; g−) =
(
0
1

)
. Set f+ = g+ = 0, then

(f− + f+; g− + g+) ∈ B−1. From the definition of Γ(h) we obtain

Γ(h)(Bh;h+ [h, p0]δ0) = (

(
0

1

)
; 0) .

❑

5 Operator theory of elementary indefinite sys-

tems

In this section we build up the operator theory for the model associated with
an elementary indefinite Hamiltonian. It is our aim to prove the following
result, which is the indefinite analogue of Theorem 2.18 for elementary indefinite
Hamiltonians.

5.1 Theorem. Let h be an elementary indefinite Hamiltonian. Then
(P(h), T (h),Γ(h)) is a boundary triplet of defect 2 which has the property (E).
The adjoint

S(h) := T (h)∗

is a completely nonselfadjoint symmetric operator. Its defect index is (2, 2)
if h is of kind (A), and (1, 1) otherwise. It satisfies the condition (CR) and
r(S(h)) = C.

5.1 The abstract Green’s identity

The proof of the following proposition requires some elementary but tedious
work.

5.2 Proposition. Let h be an elementary indefinite Hamiltonian. Then Γ(h)
is a boundary relation for T (h), i.e. satisfies the identity (2.6).

Proof. We write P := P(h), Γ := Γ(h) and T := T (h). First let us settle the case
that h is of kind (C). By Remark 2.11 we have to show that the map Λ defined
by (4.3) satisfies (2.8). If (f ; g) = (h; k) = (0; p0) or (f ; g) = (h; k) = (p0; 0),
both sides of (2.8) vanish. Let (f ; g) = (0; p0) and (h; k) = (p0; 0). Then

[g, h] − [f, k] = [p0, p0]

and

Λ(h; k)∗JΛ(f ; g) =

(
0

1

)∗

J

(
[p0, p0]

0

)
= [p0, p0] .

Assume next that h is of kind (B). We have to show that the map Λ defined by
(4.5) satisfies (2.8).
Case (f ; g) = (0; δ0):
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·) (h; k) = (0; δ0), (h; k) = (δj−1; δj), j = 1, . . . , ö, (h; k) = (b; p0 + [p0, p0]δ0):
Both sides of (2.8) vanish.

·)(h; k) = (p0; 0): We have [g, h] − [f, k] = −1 and

Λ(h; k)∗JΛ(f ; g) =

(
0

1

)∗

J

(
−1

0

)
= −1 .

Case (f ; g) = (δj−1; δj), j = 1, . . . , ö: The right hand side of (2.8) is equal to
zero.
·)(h; k) = (δl−1; δl), l = 1, . . . , ö: By the definition of the inner product on Xδ

we have
[g, h] − [f, k] = cj+(l−1)−ö − c(j−1)+l−ö = 0 .

·)(h; k) = (p0; 0): We have [g, h] − [f, k] = [δl, p0] = 0.

·)(h; k) = (b; p0 + [p0, p0]δ0): If j = 1, then by the choice of b

[g, h] − [f, k] = [δ1, b] − [δ0, p0 + d0δ0] = (−1) − (−1) = 0 .

If j > 1, we have [g, h]− [f, k] = 0.

Case (f ; g) = (p0; 0): In both cases (h; k) = (p0; 0) and (h; k) = (b; p0 +
[p0, p0]δ0) both sides of (2.8) vanish.

Case (f ; g) = (b; p0 + [p0, p0]δ0), (h; k) = (b; p0 + [p0, p0]δ0): The right side of
(2.8) is zero. On the other hand

[g, h] − [f, k] = (−bö+1) − (−bö+1) = 0 .

In all cases the relation (2.8) holds.
Let us now assume that h is of kind (A). Then mul Γ = {0}, and thus (2.6)

writes as

[g, h] − [f, k] = Γ(h; k)∗
(
J 0
0 −J

)
Γ(f ; g) = −h∗Jf |s+s− ,

(f ; g), (h; k) ∈ T ,

(5.1)

where we use the notational convention Γ(f ; g) = (f(s−); f(s+)), Γ(h; k) =
(h(s−);h(s+)). In the case that α−

1 (H−) < s and α+
1 (H+) > s, if (f ; g) and

(h; k) both belong to T ∩ C2, the relation (5.1) follows from (4.25) and (2.10).
In the case that α±

1 (H±) = s let R be the span of (4.13) and (χ∓(1 0)T ;∓δ0).
For (f ; g), (h; k) ∈ R the relation (5.1) follows from (2.10) and the fact Γ|R =
ΓL2(H) ◦ Ψac. If (f ; g) ∈ R and (h; k) = λ(χ∓(1 0)T ;±δ0), λ ∈ C, then (5.1)
holds true, because both the left and the right hand side of the equality sign
are zero. The same reasoning verifies (5.1) if both (f ; g) and (h; k) are scalar
multiples of (χ∓(1 0)T ;±δ0).

We have proved in any case that (5.1) holds true for (f ; g), (h; k) ∈ T∩C2. By
the continuity of Γ it is enough to check the remaining cases for the generators
written in (4.13)-(4.16).
Case (f ; g) = (Bx;x+ [x, p0]δ0);x ∈ XL:

·)(h; k) = (δj−1; δj), j = ∆, . . . ,∆ + ö− 1: Both sides of (5.1) are equal to zero.

·) (h; k) = (p0; 0): [f, k] − [g, h] = −[x + [x, p0]δ0, p0] = 0 and h∗Jf |
s+
s− =

w∗
0JBx|

s+
s− = 0 since w0(s±), (Bx)(s±) ∈ span{(0 1)T }.
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·)(h; k) = (pj ; pj−1 + [pj−1, p0]δ0), j = 1, . . . ,∆ − 1: Write x as

x = B∆y +

∆−1∑

l=0

(
λl,−B

lχ−

(
1

0

)
+ λl,+B

lχ+

(
1

0

))
+

2∆−1∑

i=∆

µiwi .

Then

Bx = B∆By +

∆−1∑

l=0

(
λl,−B

l+1χ−

(
1

0

)
+ λl,+B

l+1χ+

(
1

0

))
+

2∆−1∑

i=∆

µiwi+1 .

We compute (see Proposition 4.7 and Lemma 4.16)

[f, k] = [Bx, pj−1] = (By,w∆+j−1)L2(H)+

∆−1∑

l=0

(
λl,−[Bl+1χ−

(
1

0

)
, pj−1] +λl,+[Bl+1χ+

(
1

0

)
, pj−1]

)
+

2∆−1∑

i=∆

µi[wi+1, pj−1] =

= (y,w∆+j)L2(H) +
∆−1∑

l=0

(
λl,−[Blχ−

(
1

0

)
, pj ] + λl,+[Blχ+

(
1

0

)
, pj ]

)
+

+

2∆−1∑

i=∆

µi[wi, pj ] = [g, h],

so that the left hand side of (5.1) is equal to 0. On the other hand h∗Jf |
s+
s− =

w∗
jJBx|

s+
s− = 0 since wj(s±), (Bx)(s±) ∈ span{(0 1)T }.

·) (h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0): Since [g, b] = 0 and Γ(h; k) =
(w∆(s−); w∆(s+))T the same computation as in the previous case gives the
desired result.

Case (f ; g) = (χ−

(
1
0

)
;−δ0):

·)(h; k) = (δj−1; δj), j = 1, . . . ,∆ + ö− 1:

[f, k] − [g, h] = 0 = h∗Jf |s+s− .

·)(h; k) = (p0; 0): [f, k] − [g, h] = −[−δ0, p0] = −1,

h(s+)∗Jf(s+) − h(s−)∗Jf(s−) = −w0(s−)∗Jχ−

(
1

0

)
(s−) = −1 .

·)(h; k) = (pj ; pj−1 + [pj−1, p0]δ0), j = 1, . . . ,∆ − 1:

[f, k] − [g, h] = [χ−

(
1

0

)
, pj−1] = −wj(s−)∗

(
0

1

)
,

h∗Jf |s+s− = −wj(s−)∗J

(
1

0

)
= −wj(s−)∗

(
0

1

)
.

·)(h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0):

[f, k] − [g, h] = [χ−

(
1

0

)
, p∆−1] = −w∆(s−)∗

(
0

1

)
,

h∗Jf |s+s− = −w∆(s−)∗J

(
1

0

)
= −w∆(s−)∗

(
0

1

)
.
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Case (f ; g) = (χ+

(
1
0

)
; δ0): Treated similar as the case (f ; g) = (χ−

(
1
0

)
;−δ0).

Case (f ; g) = (δj−1; δj), j = ∆, . . . ,∆ + ö− 1:

·)(h; k) = (δl−1; δl), l = ∆, . . . ,∆ + ö− 1: By the definition of the inner product
on Xδ we have

[f, k] − [g, h] = [δj−1, δl] − [δj , δl−1] = 0 ,

and by the definition of Γ surely h∗Jf |
s+
s− = 0.

·)(h; k) = (p0; 0): Both sides of (5.1) are equal to 0.

·)(h; k) = (pl; pl−1 + [pl−1, p0]δ0), l = 1, . . . ,∆ − 1: We have [f, k] = [g, h] = 0,
and again both sides of (5.1) are equal to 0.

·)(h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0): The right hand side of (5.1) is clearly
equal to 0. We compute

[f, k] = [δj−1, p∆−1] =

{
0 , j 6= ∆

−1 , j = ∆
,

and from the definition of b

[g, h] = [δj , b] =
ö+1∑

i=1

bi[δj , δ∆+ö−i] =
ö+1∑

i=1

bic−∆−i+j+2 =

=

j+1−∆∑

i=1

bicj+2−∆−i =





0 , j < ∆

−1 , j = ∆

0 , j > ∆

.

Case (f ; g) = (p0; 0):

·)(h; k) = (p0; 0): The left hand side of (5.1) is clearly equal to 0, the right hand
side is equal to 0 since w0(s±) ∈ span{(0 1)T }.

·)(h; k) = (pj ; pj−1 + [pj−1, p0]δ0), j = 1, . . . ,∆ − 1:

[f, k] = [g, h] = [p0, pj−1 + [pj−1, p0]δ0] = 0 ,

h∗Jf |s+s− = w∗
jJw0|

s+
s− = 0 ,

since wj(s±),w0(s±) ∈ span{(0 1)T }.

·)(h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0): The same argument as in the previous
case applies.

Case (f ; g) = (pj ; pj−1 + [pj−1, p0]δ0), j = 1, . . . ,∆ − 1:

·)(h; k) = (pl; pl−1 + [pl−1, p0]δ0), l = 1, . . . ,∆ − 1:

[f, k] = [pj, pl−1 + [pl−1, p0]δ0] = dj+l−1 =

= [pj−1 + [pj−1, p0]δ0, pl] = [g, h] ,

h∗Jf |s+s− = w∗
l Jwj |

s+
s− = 0 .
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·)(h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0): As [pj−1, b] = 0,

[f, k] = [pj , p∆−1 + [p∆−1, p0]δ0] = dj+∆−1 =

= [pj−1 + [pj−1, p0]δ0,w∆ + b] = [g, h] ,

h∗Jf |s+s− = w∗
∆Jwj |

s+
s− = 0 .

Case (f ; g) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0):

·)(h; k) = (w∆ + b; p∆−1 + [p∆−1, p0]δ0): Since [p∆−1, b] = 0,

[f, k] = [w∆ + b, p∆−1 + [p∆−1, p0]δ0] = d2∆−1 − bö+1 =

= [p∆−1 + [p∆−1, p0]δ0,w∆ + b] = [g, h] ,

h∗Jf |s+s− = w∗
∆Jw∆|s+s− = 0 .

In all cases the relation (5.1) holds.

❑

5.3 Corollary. If α−
1 (H−) < s and α+

1 (H+) > s, then we have

T (h) ∩ (C◦ +Xδ)2 = span
{
(δk−1; δk) : k = 1, . . . ,∆ + ö− 1

}
. (5.2)

If α+
1 (H+) = s or α−

1 (H−) = s, then

T (h) ∩ (C◦ +Xδ)2 =

span
{
(δk−1; δk) : k = 1, . . . ,∆ + ö− 1

}
+̇ span{(0; δ0)} .

(5.3)

In any case the kernel of Ψac coincides with the space on the right hand side of
(5.2).

Proof. The inclusions ‘⊇’ in (5.2) and (5.3) follow from Proposition 4.17 and the
fact that, if e.g. α+

1 (H+) = s we have χ+(1, 0)T =H 0 and thus (0; δ0) ∈ T (h).
Conversely, let (f ; g) ∈ T (h)∩ (C◦ +Xδ)2 be given. In order to prove that (f ; g)
belongs to the right side of (5.2) or (5.3), respectively, we can by the already
established inclusion ‘⊇’ assume without loss of generality that

(f ; g) =

∆+ö−1∑

k=0

αk(δk; 0) + α(0; δ0) ,

where α = 0 if α+
1 (H+) = s or α−

1 (H−) = s. Of course, it is sufficient to show
that any element of this form which belongs to T must be equal to 0.

We will use Proposition 5.2. To this end we need to know Γ(f ; g). If
α−

1 (H−) < s and α+
1 (H+) > s, Lemma 4.18 implies Γ(f ; g) = 0. Assume

that e.g. α+
1 (H+) = s. By Lemma 4.18 we can write

(f ; g) = (f1; g1) + β(χ+

(
1

0

)
; δ0)
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with some (f1; g1) ∈ kerΨac and β ∈ C. We apply Proposition 5.2 with (f ; g)
and (p0; 0). Since g = 0, the left side of (5.1) is zero. However, Γ(f1; g1) = 0
and thus Γ(f ; g) = β(0; (1, 0)T ). Hence the right side of (5.1) equals −β. We
conclude that β = 0 and hence Γ(f ; g) = 0.

In case that α+
1 (H+) = s or α−

1 (H−) = s, we have α = 0. If α−
1 (H−) < s and

α+
1 (H+) > s this follows from an application of (5.1) with (f ; g) and (p0; 0).

Using (pk; pk−1 + [pk−1, p0]δ0), k = 1, . . . ,∆ − 1, we obtain that αk = 0 for
k = 0, . . . ,∆− 2. With (w∆ + b; p∆−1 + [p∆−1, p0]δ0) it follows that α∆−1 = 0.
Finally, using (δk−1; δk), k = ∆, . . . ,∆ + ö − 1 and the fact that c1 6= 0, we
obtain that also αk = 0, k = ∆, . . . ,∆ + ö− 1.

The assertion that

kerΨac = span
{
(δk−1; δk) : k = 1, . . . ,∆ + ö− 1

}

is a consequence of (5.2) and (5.3), since we know that kerΨac ⊆ kerΨ =
(C◦ +Xδ)2.

❑

5.2 The adjoint of T

The second powerful condition in the definition of a boundary triplet besides the
Green’s identity is that kerΓ = T ∗. The first step in our study of S(h) = T (h)∗

is to establish this condition.

5.4 Proposition. We have ker Γ(h) = T (h)∗.

Proof. Assume first that h is of kind (C). Then T = P(h) × P(h), and thus
T ∗ = {0}. Assume that (λp0;µp0) ∈ ker Γ(h). Then, by the definition of Γ(h),
we have Λ(f ; g)1 = Λ(f ; g)2 = 0, where Λ is defined as in (4.3). It follows that
λ = 0. Since [p0, p0] = d0 6= 0, also µ = 0.

The case that h is of kind (B) is also treated explicitly. First of all note that,
by Proposition 5.2 and the definition of Γ(h),

span
{
(δk−1; δk) : k = 1, . . . , ö

}
+ span

{
(b; p0 + [p0, p0]δ0)

}
⊆

kerΓ(h) ⊆ T (h)∗ .
(5.4)

Let (f ; g) ∈ T (h)∗. Our aim is to show that (f ; g) belongs to the left linear span

in (5.4). Write f = αp0 +
∑ö

j=0 βjδj , g = λp0 +
∑ö

j=0 µjδj. In order to reach
our aim, we can without loss of generality assume that λ = µ1 = . . . = µö = 0.
Applying the Green’s identity with (f ; g) and (p0; 0), we obtain µ0 = 0, i.e.
g = 0. An application with (f ; g) and (0; δ0) yields α = 0. Since we already
have shown that g = 0, an application with (f ; g) and (δk−1; δk) yields

[f, δk] = 0, k = 1, . . . , ö .

Thus β1 = . . . = βö = 0. Finally, an application with (f ; g) and (b; p0+[p0, p0]δ0)
yields β0 = 0. It follows that in both inclusions in (5.4) the equality sign must
hold.

We come to the case that h is of kind (A). Let S be the linear relation
ker Γ(h). By the continuity of Γ the relation S is closed. Hence it is sufficient
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to show that S∗ = T . Since Γ is a boundary relation, certainly T ⊆ S∗. In
particular, S is symmetric. Moreover, Ψ(S ∩C2) = Tmin. Finally, let us remark
that S is real with respect to the involution . .

In the first step we show that S∗ ∩ (C◦)2 ⊆ T . Let (f ; g) ∈ S∗ ∩ (C◦)2, and

write f =
∑∆−1

k=0 αkδk, g =
∑∆−1

k=0 βkδk. For l = 1, . . . ,∆, choose hl ∈ XL such
that

ΓL2(H)(Bhl;hl) =

{
Γ(pl; pl−1 + [pl−1, p0]δ0) , l = 1, . . . ,∆ − 1

Γ(w∆ + b; p∆−1 + [p∆−1, p0]δ0) , l = ∆
.

Note that this is always possible, because, if α±
1 (H±) 6= s, then ΓL2(H) is sur-

jective. If α±
1 (H±) = s, we also have no difficulties, since then wj(s±) = 0 for

j = 1, . . . ,∆.
Since, by this choice, (pl−Bhl; pl−1−hl+[pl−1−hl, p0]δ0) ∈ S, l = 1, . . . ,∆−

1, we obtain

0 = [f, pl−1 − hl + [pl−1 − hl, p0]δ0] − [g, pl −Bhl] = −αl−1 + βl .

Similarly, (w∆ + b −Bh∆; p∆−1 − h∆ + [p∆−1 − h∆, p0]δ0) ∈ S yields

0 = [f, p∆−1 − h∆ + [p∆−1 − h∆, p0]δ0] − [g,w∆ + b −Bh∆] = −α∆−1 .

It follows that (f ; g) =
∑∆−2

k=0 αk(δk; δk+1) + β0(0; δ0). If α±
1 (H±) = s, we are

done since then (f ; g) ∈ T .
Otherwise let h0 ∈ XL be such that ΓL2(H)(Bh0;h0) = Γ(p0; 0). From

(p0 −Bh0;−h0 − [h0, p0]δ0) ∈ S we conclude

0 = [f,−h0 − [h0, p0]δ0] − [g, p0 −Bh0] = −[g, p0] = β0 ,

and, hence, (f ; g) ∈ T .
In the next step we show that S∗ ∩ C2 ⊆ T . Let (f ; g) ∈ S∗ ∩ C2. Then

Ψ(f ; g) ∈ Ψ(S ∩ C2)∗ = T ∗
min = Tmax .

Hence, there exists (f̃ ; g̃) ∈ T ∩ C2 with Ψ(f̃ ; g̃) = Ψ(f ; g). Since T ⊆ S∗ we
have (f̃ − f ; g̃ − g) ∈ S∗. Moreover, since kerΨ = (C◦)2, this pair belongs to
(C◦)2. By the first step of this proof it, therefore, belongs to T . We conclude
that also (f ; g) ∈ T .

In the last step let (f ; g) ∈ S∗ be given. Write

f = f0 +

∆+ö−1∑

j=∆

αjδj +

∆−1∑

i=0

βipi ,

g = g0 +

∆+ö−1∑

j=∆

γjδj +

∆−1∑

i=0

ǫipi ,

(5.5)

with f0, g0 ∈ C. Since (δk−1; δk) ∈ S, k = 1, . . . ,∆ − 1, we see that

0 = [f, δk] − [g, δk−1] = −βk + ǫk−1, k = 1, . . . ,∆ − 1 .

The element

(f1; g1) := β0(p0; 0) +
∆−1∑

k=1

βk(pk; pk−1 + [pk−1, p0]δ0)+
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+ǫ∆−1(w∆ + b; p∆−1 + [p∆−1, p0]δ0)

belongs to T . Hence it is enough to show that (f − f1; g − g1) ∈ T . This
element, however, belongs to S∗ and has the property that in its decomposition
(5.5) all βi and ǫi vanish. Therefore we can assume without loss of generality
that (f ; g) ∈ S∗ is given such that in (5.5) all βi and ǫi vanish. Moreover, since∑∆+ö−1

j=∆ γj(δj−1; δj) ∈ T , we can also assume without loss of generality that
γj = 0, j = ∆, . . . ,∆ + ö− 1.

Since (δk−1; δk) ∈ S, k = ∆, . . . ,∆ + ö− 1, we obtain

0 = [f, δk] − [g, δk−1] =

∆+ö−1∑

j=∆

αj [δj , δk], k = ∆, . . . ,∆ + ö− 1 ,

i.e.

(
[δj , δk]

)∆+ö−1

j,k=∆




α∆

...
α∆+ö−1


 = 0.

Since the matrix on the left hand side of this equation is invertible, we must
have αj = 0, j = ∆, . . . ,∆ + ö − 1. We see that (f ; g) ∈ C2, and hence have
reduced the problem to what was already proved in the previous step.

❑

The above proposition has a couple of corollaries:

5.5 Corollary. The relation S has defect index (2, 2) or (1, 1) dependig whether
h is of kind (A) or (B),(C).

Proof. In case that h is of kind (B) or (C), it follows from our explict compu-
tation of ker Γ(h) in the proof of Proposition 5.4 that dimT/T ∗ = 2.

Assume that h is of kind (A). Since in this case Γ(h) is a map and maps T
onto C

2 × C
2, we have dimT/ kerΓ(h) = 4.

❑

5.6 Corollary. For every pair (φ−;φ+) ∈ [0, π)2 the relation

A(φ−;φ+) :=
{
(f ; g) ∈ T : (ξTφ−

, ξTφ+
)Γ(f ; g) = 0

}

is a selfadjoint extension of S(h), cf. Remark 2.10. We have

Ψ
(
A(φ−;φ+) ∩ C2

)
= A−(φ−) ⊕A+(φ+) . (5.6)

Proof. That the left hand side of (5.6) is contained in the right hand side follows
from ψ(C) = L2(H) and from (4.18). The converse direction is a consequence
of Proposition 4.17.

❑

5.7 Corollary. We have mulS(h) = {0}.

Proof. Since mulS(h) = domT (h)⊥, this follows from Proposition 4.17.

❑
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5.8 Corollary. We have

S(h) ∩
(
C◦ +Xδ

)2
= span

{
(δk−1; δk) : k = 1, . . . ,∆ + ö− 1

}
.

Proof. This follows from Corollary 5.3.

❑

Our second aim in the study of S(h) is to show the validity of (CR).

5.9 Proposition. Put C := A(0, π2 )−1. Then C is a compact operator defined
on all of P.

Proof. If h is of kind (B) or (C), this is trivial. Hence assume that h is of kind
(A).

In the first step we show that ranA(0, π2 ) contains the set XL +
span{p0, . . . , p∆−1} +Xδ. Note that ranA(0, π2 ) ⊇ C◦, since

(χ+

(
1

0

)
; δ0), (δk−1; δk) ∈ A(0,

π

2
), k = 1, . . . ,∆ − 1 .

Next, let h ∈ XL be given. Then, for some λ1, λ2 ∈ C we have

Γ(Bh;h+ [h, p0]δ0) = (0, λ1, 0, λ2)
T .

It follows that (Bh−λ2p0;h+[h, p0]δ0) ∈ A(0, π2 ). Hence h+[h, p0]δ0, and with
it also h, belongs to ranA(0, π2 ). Since

Γ(pk; pk−1 + [pk−1, p0]δ0) ∈ span
{



0
1
0
0


 ,




0
0
0
1



}
, k = 1, . . . ,∆ − 1 ,

Γ(w∆ + b; p∆−1 + [p∆−1, p0]δ0) ∈ span
{



0
1
0
0


 ,




0
0
0
1



}
,

the same argument will show that span{p0, . . . , p∆−1} ⊆ ranA(0, π2 ). Since
(δk−1; δk) ∈ A(0, π2 ), k = ∆, . . . ,∆ + ö− 1, we also have Xδ ⊆ A(0, π2 ).

Our next objective is to show that ranA(0, π2 ) is closed. Since C2 has finite
codimension in P(h), also A(0, π2 ) ∩ C2 has this property in A(0, π2 ). Thus also
ran(A(0, π2 ) ∩ C2) has finite codimension in ranA(0, π2 ). As we saw in the proof
of the first step we have

ran
(
A(0,

π

2
) ∩ C2

)
= ran

(
A(0,

π

2
) ∩ C2

)
+ C◦ = ψ−1ψ

(
ran(A(0,

π

2
) ∩ C2)

)
=

= ψ−1
(
ran

(
Ψ(A(0,

π

2
) ∩ C2)

))
= ψ−1

(
ran

(
A−(0) ⊕A+(

π

2
)
))
.

Since A(0)⊕A(π2 ) is selfadjoint and has compact resolvents, its range is closed.
Hence ran(A(0, π2 ) ∩ C2) and with it also ranA(0, π2 ) is closed.
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We have proved in the previous paragraphs that ranA(0, π2 ) = P , and,
therefore, that 0 ∈ ρ(A(0, π2 )). Hence C := A(0, π2 )−1 is an everywhere defined
bounded operator. We come to the proof of compactness. Consider the set

D :=
{
h ∈ XL : φ0(h) = . . . = φ∆−1(h) = (h,w∆) = 0

}
.

Then D is a linear subspace of finite codimension in XL. Since B is an operator,
also {(Bh;h) : h ∈ D} is a subspace of finite codimension in {(Bh;h+[h, p0]δ0 :
h ∈ XL}. Hence T1 := {(Bh;h) : h ∈ D} has finite codimension in (4.13) and
thus also in T . Hence there exists a continuous projection P of T , regarded as
a Banach space with the graph norm, onto T1.

Let (xn)n∈N be a sequence in the unit ball of P . Then we have

‖(I − P )(Cxn;xn)‖ ≤ ‖I − P‖(‖C‖ + 1), n ∈ N .

Since ran(I−P ) is finite dimensional, we may extract a convergent subsequence
(I − P )(Cxn;xn). For notational convenience we will again denote this subse-
quence by (xn)n∈N. We have

‖P (Cxn;xn)‖ ≤ ‖P‖(‖C‖ + 1), n ∈ N .

Choose hn ∈ D, such that

‖P (Cxn;xn) − (Bhn;hn)‖ ≤
1

n
, n ∈ N .

Certainly,
‖hn‖ ≤ ‖P‖(‖C‖ + 1) + 1, n ∈ N .

By the compactness of B there exists a subsequence (hnk
)k∈N such that

(Bhnk
)k∈N is a Cauchy-sequence in L2(H). However, since all hnk

belong to D,
we obtain from Lemma 4.16

‖Bhnk
−Bhnl

‖ = ‖Bhnk
− Bhnl

‖L2(H), k, l ∈ N .

Thus the Bhnk
, and with them also the first components of P (Cxn;xn), form a

Cauchy-sequence in P . Alltogether we see that (Cxnk
)k∈N is convergent in P .

Thus C is compact.

❑

Let us determine the set of regular points of S(h).

5.10 Lemma. For all z ∈ C the subspace ran(S(h) − z) is closed and we have
ker(S(h) − z) = {0}.

Proof. Assume that (f ; zf) ∈ S. Consider the element (f̃ ; g̃) := Ψac(f ; zf).
Then, by (4.17),

g̃ =H zf̃

and hence, by (4.18), the function f̃ is a solution of the differential equation

f̃ ′ = zJHf̃, t ∈ I ,

with the initial conditions f̃(s−) = 0, f̃(s+) = 0. By the uniqueness of the
solution of this initial value problem we must have f̃ = 0. We see that (f ; zf) ∈
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kerΨac and, with the help of Corollary 5.3 we conclude that (f ; zf) can be
written as

(f ; zf) =

∆+ö−1∑

k=1

αk(δk−1; δk) .

This gives the equations

f =

∆+ö−1∑

k=1

αkδk−1, zf =

∆+ö−1∑

k=1

αkδk .

Comparing coefficients yields

αk = zαk+1, k = 1, . . . ,∆ + ö− 2, α∆+ö−1 = 0 .

Hence all αk must vanish, and we have f = 0. Thus ker(S(h) − z) = {0}.
The fact that 0 ∈ ρ(A(0, π2 )) implies that ranS is closed. Again let C denote

the compact and selfadjoint extension A(0; π2 )−1 of S−1. We have

(I − zC) · S = S − z .

Hence ran(S−z) = (I−zC) ranS. Since C is compact it follows that ran(S−z)
is closed.

❑

The fact that the relation S is completely nonselfadjoint will follow from the
next general observation.

5.11 Lemma. Let S be a closed symmetric operator in a Pontryagin space P
which satisfies (CR) and has no eigenvalues. Then S is completely nonselfad-
joint.

Proof. Choose a selfadjoint extension A of S and put C := A−1. Let X :=⋂
z∈C

ran(S − z), then

X⊥ = cls{ran(S − z)⊥ : z−1 ∈ ρ(C)} .

Since I + (z −w)(A− z)−1 maps ran(S − w̄)⊥ bijectively onto ran(S − z̄)⊥ the
space X is invariant under C.

Assume that X 6= {0}. If we had X◦ 6= {0}, then it would be a finite
dimensional invariant subspace of C and, hence, would contain an eigenvector
of C. If X were indefinite and nondegenerated, there would exist a maximal
nonpositive subspace of X which is invariant under C, cf. [IKL]. Thus, also in
this case we would find an eigenvector of C in X . Finally, if X were a Hilbert
space, then C|X would be a compact and selfadjoint operator in the Hilbert
space X , and hence would have an eigenvector.

Since C ∩X2 ⊆ S−1, we have reached a contradiction.

❑

5.12 Corollary. The relation S(h) is completely nonselfadjoint.
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Proof. By virtue of Corollary 5.7, Proposition 5.9 and Lemma 5.10 we may
apply Lemma 5.11 to S(h).

❑

Finally, we shall establish the condition (E). For this we need another lemma.

5.13 Lemma. Let (f ; zf) ∈ T (h) be a nonzero defect element, and let (f̃ ; h̃) =
Ψac(f ; zf). Moreover, write f as

f = f0 +

∆+ö−1∑

j=∆

αjδj +

∆−1∑

i=0

βipi, (5.7)

where f0 ∈ C. Then, f̃ |[s−,s) ∈ L2(H−) if and only if f̃ |(s,s+] ∈ L2(H+).
In this case β0 = · · · = β∆−1 = 0. Moreover, αj = 0, j = ∆, . . . ,∆ + ö− 1.

Proof. Clearly,

f̃ =H ψ(f0) +
∆−1∑

i=0

βiwi.

Assume that f̃ |[s−,s) ∈ L2(H−). Then by (4.18) we can apply Lemma 3.14
or Remark 3.16 to [s−, s), and we obtain from the fact that w0, . . . ,w∆−−1 are
linearly independent modulo L2(H−) that β0 = · · · = β∆−−1 = 0. Again by
Lemma 3.14 (or Remark 3.16), but this time applied to (s, s+], we obtain from
β0 = 0 that f̃ |(s,s+] ∈ L2(H+), and hence β0 = · · · = β∆−1 = 0. The converse
is proved in the same way.

By (5.1) we have

[f, δk] = z[f, δk−1], k = ∆, . . . ,∆ + ö− 1.

Since βi = 0, i = 0, . . . ,∆−1, for k = ∆ the previous relation yields c1α∆+ö−1 =
0. Hence α∆+ö−1 = 0. For k = ∆ + 1 we now obtain c1α∆+ö−2 = 0, and so on.
Finally, for k = ∆ + ö− 1 we get c1α∆ = 0.

❑

5.14 Proposition. The condition (E) holds for T (h).

Proof. Let z ∈ C, (f ; zf) ∈ T (h), f 6= 0, be given and assume that that
((f ; zf); (a; 0)) ∈ Γ(h). We shall derive a contradiction. If a = 0, we would have
(f ; zf) ∈ S(h), which contradicts Lemma 5.10. Thus assume that a 6= 0.

The cases that h is of kind (B) or (C) are treated by explicit inspection.
Consider now the case that h is of kind (A). Put (f̃ ; g̃) := Ψac(f ; zf), then
f+ := f̃ |(s,s+] is a solution of

y′(t) = zJH(t)y(t), y(s+) = 0, t ∈ (s, s+] ,

and thus f+ = 0. By Lemma 5.13 it follows that f ∈ C.
Since the function f− := f̃ |[s−,s) is a solution of

y′(t) = zJH(t)y(t), y(s−) = a, t ∈ [s−, s) ,

65



we have (a =: (a1, a2))

f− = a1χ−

(
1

0

)
+ a2χ−

(
0

1

)
+ zBf− .

Since f− ∈ L2(H) we conclude that a2 = 0.
By the definition of T (h), we have

(
f−; zf− + z[f−, p0]δ0 − a1δ0

)
∈ T (h) .

Hence

(h; k) := (f ; zf) −
(
f−; zf− + (z[f−, p0] − a1)δ0

)
∈ kerΨac ,

and Corollary 5.3 implies that

(h; k) =

∆+ö−1∑

l=1

αl(δl−1; δl) .

Since both, f and f−, belong to C, also (h; k) ∈ C2. Thus α∆ = . . . = α∆+ö−1 =
0, and we obtain

(f ; zf) =
(
f−; zf− + (z[f−, p0] − a1)δ0

)
+

∆−1∑

l=1

αl(δl−1; δl) .

Hence

z
(
f− +

∆−1∑

l=1

αlδl−1

)
= zf− + (z[f−, p0] − a1)δ0 +

∆−1∑

l=1

αlδl ,

and thus
∆−2∑

l=0

αl+1δl = (z[f−, p0] − a1)δ0 +

∆−1∑

l=1

αlδl .

We conclude inductively that α∆−1 = 0, . . . , α1 = 0, z[f−, p0] = a1. Since
a1 = (1, 0)f−(s−), the last relation contradicts Lemma 3.17

❑

As the reader has certainly recognized, we have by the time collected proofs
of all the assertions of Theorem 5.1. For completeness let us state this explicitly.
Proof. (of Theorem 5.1) The relation T (h) is closed by Proposition 4.17. The
relation Γ(h) is a boundary relation by Proposition 5.2. By Lemma 4.19 it is
closed, defined on all of T (h) and compatible with . . Proposition 5.4 states that
ker Γ(h) = T (h)∗.

If h is of kind (A), by Lemma 4.19 Γ(h) is an operator and by Corollary 5.5
we have dimT (h)/T (h)∗ = 4. If h is of kind (B) or (C) the same sources show
that mul Γ(h) = span{(m;m)} with m = (1, 0)T and dimT (h)/T (h)∗ = 2. We
see that (P(h), T (h),Γ(h)) is a boundary triplet of defect 2.

The relation S(h) is a completely nonselfajoint operator by Corollary 5.12
and Corollary 5.7. It satisfies (CR) and (E) by Proposition 5.9 and Proposition
5.14. Finally, an application of the closed graph theorem yields in view of
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Lemma 5.10 that r(S(h)) = C.

✌

We close this subsection with determining the multivalued part of T (h) ex-
plicitly. This follows from a result which deals with the embeddings of spaces
L2(H |J), cf. Proposition 4.14.

5.15 Lemma. Let h be an elementary indefinite Hamiltonian of kind (A). Let
s− ∈ (s−, s) and assume that s− is not inner point of an H-indivisible interval.
Put J := (s−, s

−), and let ιJ be the embedding of L2(H |J ) into P(h) as in
Proposition 4.14.

Let (f ; g) ∈ AC(J) × M(J) with f ′ = JHg be given, so that (f ; g) ∈
Tmax(H |J ). Assume that f(s−) = 0, then (ιJf ; ιJg) ∈ T (h). Moreover,
Γ(h)(ιJf ; ιJg) = (f(s−); 0). More abstractly expressed this says that

(ιJ × ιJ )(ker Γ(H |J )2) ⊆ ker Γ(h)2 .

Proof. Define functions f1, g1 by

f1(t) :=

{
f(t) , t ∈ J

0 , t ∈ I \ J
, g1(t) :=

{
g(t) , t ∈ J

0 , t ∈ I \ J

Note that, since H |J is regular at s− and s−, the function f is in fact absolutely
continuous on [s−, s

−]. Since we assume that f(s−) = 0, we have f1 ∈ AC(I).
Moreover,

f ′
1(t) = JHg1(t), t ∈ I a.e.

and, clearly, f1, g1 ∈ L2(H). Thus (f1; g1) ∈ Tmax(H), and we conclude from
Proposition 4.17 that there exists a pair (h; k) ∈ T (h) ∩ C2 with ψh = f1, ψk =
g1. Since ψ ◦ ιJ is the identity, it follows that

ψ(ιJf − h) = ψ(ιJg − k) = 0 ,

and hence
ιJf − h, ιJg − k ∈ span{δ0, . . . , δ∆−1} .

By adding an appropriate linear combination of (δ0; δ1), . . . , (δ∆−2; δ∆−1) to
(h; k), we can assume without loss of generality that

(ιJf − h; ιJ − g) =

∆−1∑

j=0

αj(δj ; 0) + α(0; δ0) .

We obtain
−α = [ιjg − k, p0] = [ιJg, p0] − [k, p0] .

Since Ψac(h; k) = (f1; g1), we have

Γ(h)(h; k) =
(
f(s−); 0

)
,

and hence by Proposition 5.2

[k, p0] = [k, p0] − [h, 0] = w0(s−)∗Jf(s−) .
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On the other hand

[ιJg, p0] =

∫

J

w∗
0Hg = (g,w0)L2(H|J ) .

Since (w0|J ; 0) ∈ Tmax(H |J ) it follows from the Green’s identity and our as-
sumption f(s−) = 0 that

(g,w0)L2(H|J ) = (g,w0)L2(H|J ) − (h, 0)L2(H|J ) = w0(s−)∗Jf(s−) .

We conclude that α = 0.
Let j ∈ {1, . . . ,∆ − 1}. Then

αj = [ιJg − k, pj] − [ιJf − h, pj−1 + [pj−1, p0]δ0] =

=
(
[ιJg, pj] − [ιJf, pj−1]

)
−
(
[k, pj] − [h, pj−1 + [pj−1, p0]δ0]

)

The respective Green’s identities yield ((wj |J ; wj−1|J ) ∈ Tmax(H |J))

[k, pj ] − [h, pj−1 + [pj−1, p0]δ0] = wj(s−)∗Jf(s−)

[ιJg, pj] − [ιJf, pj−1] = (g,wj)L2(H|J ) − (h,wj−1)L2(H|J ) = wj(s−)∗Jf(s−)

and it follows that αj−1 = 0. The same argument applied with the element
(w∆ + b; p∆−1 + [p∆−1, p0]δ0) ∈ T (h) yields α∆−1 = 0. It follows that

(ιJf ; ιJg) = (h; k) ∈ T (h) .

❑

5.16 Proposition. Let h be an elementary indefinite Hamiltonian. Then
Kind (A): We have

dimmulT (h) =





0 , α−
1 (H−) = s−, α

+
1 (H+) = s+

1 ,
α−

1 (H−)>s−,α
+
1 (H+)=s+

or α−
1 (H−)=s−,α

+
1 (H+)<s+

2 , α−
1 (H−) > s−, α

+
1 (H+) < s+

(5.8)

Γ(0; g)1





= 0 , α−
1 (H−) = s−

∈ span{Jξφ} ,
α−

1 (H−)>s−

φ type of (s−,α
−
1 (H−))

Γ(0; g)2





= 0 , α+
1 (H+) = s+

∈ span{Jξφ} ,
α+

1 (H+)<s+

φ type of (α+
1 (H+),s+)

(5.9)

Kind (B): We have mulT (h) = span{δ0} and

Γ(h)(0; δ0) =
{((λ

0

)
;

(
λ+ 1

0

))
: λ ∈ C

}

Kind (C): We have mulT (h) = span{p0} and

Γ(h)(0; p0) =
{((d0 + λ

0

)
;

(
λ

0

))
: λ ∈ C

}
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Proof. If h is of kind (C) this is trivial. Let h be of kind (B). Assume that
(0; g) ∈ T (h). Write (0; g) as a sum according to the definition of T (h):

(0; g) = α(0; δ0) + λ(p0; 0) +
ö∑

k=1

µk(δk−1, δk) + ν(b; p0 + [p0, p0]δ0) .

We see that

0 = λp0 +

ö∑

k=1

µkδk−1 + ν(b) . (5.10)

It follows that λ = 0. Since b1 6= 0 the relation (5.10) implies that ν = 0 and,
in turn, that also µ1 = . . . = µö = 0.

Assume throughout the following that h is of kind (A). First of all note that,
since mulS(h) = 0 by Corollary 5.7, the map

Γ(h)|mulT (h) : mulT (h) → C
2 × C

2

is injective.
Let (0; k) ∈ T (h) be given and put (f ; g) := Ψac(0; k). Then, by (4.17),

f =H 0 and by (4.18) we have f ′ = JHg.
Assume that s− < α−

1 (H−) < s. Then Lemma 2.23 implies that
f(α−

1 (H−)) = 0. Thus

f(t) =

∫ t

α−
1 (H−)

h(x)Jξφξ
T
φ g(x), t ∈ (s−, α

−
1 (H−))

and we obtain f(s−) ∈ span{Jξφ}. If s− = α−
1 (H−) < s, then Lemma 2.23

implies that f(t) = 0, t ∈ (s−, α
+
1 (H−)) 6= ∅, and thus f(s−) = 0.

Assume that α−
1 (H−) = s. Due to the condition (I) the interval (s−, s) is

H-indivisible of type π
2 . Write (0; k) as a sum according to Definition 4.11.

Inspecting the first component we see that from the summands (4.15) only a
multiple of (w∆ + b; p∆−1 + [p∆−1, p0]δ0) may occur. By Remark 3.8 we have
(0, 1)w∆ = 0. For the summand (x; y) ∈(4.13) we have ψx ∈ L2(H) and
thus (0, 1)Ψac(x; y)1 = 0. For the summand (4.14) the same relation holds
by definition, and Ψac((4.16)) = 0. We conclude that (0, 1)Ψac(0; k)1 = 0, in
particular Ψac(0; k)1 ∈ span{(1, 0)T}.

We have established the first relation in (5.9). The second relation is seen
in the same manner. It readily follows from the injectivity of Γ(h)|mulT (h) that
in (5.8) the inequality ‘≤’ holds.

Assume that α−
1 (H−) > s−. Then, by Proposition 2.24 we know that

mulT (H |(s−,α−
1 (H−))) 6= {0}. By Lemma 5.15 and the explicit construction

of mulT (H |(s−,α−
1 (H−))) in the proof of Proposition 2.24 it follows that

ι(s−,α−
1 (H−)) mulTmax(H |(s−,α−

1 (H−))) ⊆ mulT (h) ,

and we see that dim mulT (h) ≥ 1 in this case. The same argument works if
α+

1 (H+) < s+. If H starts with indivisible intervals on both ends, it is enough
to note that the correspondingly constructed elements of mulT (h) cannot be
linearly dependent, since they have disjoint support (if ψ is applied to them).
Hence, in this case, the dimension of mulT (h) is at least 2.

❑
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5.3 Reparameterization

Similarly as in the positive definite case, also in the indefinite setting the concept
of reparameterization of Hamiltonians is of importance. In the following we shall
discuss this topic for elementary indefinite Hamiltonians.

5.17 Proposition. Let h = (H±, ö, bj , dj) be an elementary indefinite Hamil-
tonian given on I = (s−, s) ∪ (s, s+), let s̃−, s̃+ ∈ R, s̃− < s̃+, and let ϕ be an
absolutely continuous and increasing bijection of [s̃−, s̃+] onto [s−, s+] such that
also ϕ−1 is absolutely continuous. Put s̃ := ϕ−1(s).

If h̃ = (H̃±, ˜̈o, b̃j , d̃j) is an elementary indefinite Hamiltonian on Ĩ :=
(s̃−, s̃) ∪ (s̃, s̃+) such that

H̃± = (H± ◦ ϕ) · ϕ′; ˜̈o = ö; b̃1 = b1, . . . , b̃ö = bö; (5.11)

d̃0 = d0, . . . , d̃2∆−2 = d2∆−2; d̃2∆−1 − b̃ö+1 = d2∆−1 − bö+1 .

then there exists an isometric isomorphism ̟ : P(h) → P(h̃) such that

(i) (̟, id) is an isomorphism of the boundary triplets (P(h), T (h),Γ(h)) and
(P(h̃), T (h̃),Γ(h̃)).

(ii) For all x ∈ P(h) we have

ψ(h̃)(̟(x)) = ψ(h)(x) ◦ ϕ .

Proof. Clearly, h̃ is an elementary indefinite Hamiltonian of the same kind
as h. Let us first deal with the case that h is of kind (A). We define a map
̟ : P(h) → P(h̃) in terms of the respective realizations (4.10). To this end note
that, by the definition of H̃± and Lemma 2.4, the map

Cϕ : f 7→ f ◦ ϕ

induces an isometric isomorphism of L2(H) onto L2(H̃). Moreover, by Remark
3.19, we have ∆(H) = ∆(H̃) =: ∆ and wj = w̃j ◦ϕ, j ∈ N∪{0}. Now we define

̟ : P(h) → P(h̃) by

δj 7→ δ̃j, j = ∆, . . . ,∆ + ö− 1, f 7→ Cϕ(f), f ∈ X1 +X2,

w∆−1+j + bö+1δ∆−j 7→ w̃∆−1+j + b̃ö+1δ̃∆−j , j = 1, . . . ,∆;

pj 7→ p̃j , j = 0, . . . ,∆ − 1.

It is elementary to check, that by our assumption this assignment operates
isometrically and that it has dense domain and dense range.

Hence it can be continued to the unitary mapping ̟ : P(h) → P(h̃) such
that

ι ◦̟ ◦ ι−1 :

{
L2(H)[+̇](C∆+̇C∆)[+̇]Xδ → L2(H̃)[+̇](C∆+̇C∆)[+̇]X̃δ

(x, ξ, η,
∑∆+ö−1

j=∆ αjδj) 7→ (Cϕx, ξ, η,
∑∆+ö−1

j=∆ αj δ̃j)

Clearly it is compatible with the respective conjugations. Moreover, by (4.11),
(4.12) and Remark 3.19, condition (ii) is satisfied.

70



Regarding to the summands of T (h) and T (h̃), respectively, in (4.13) and
(4.14)-(4.16) ̟ ×̟ acts as (j = 1, . . . ,∆ − 1)

(w∆+j ; w∆−1+j + [w∆−1+j , p0]δ0) + bö+1(δ∆−j−1; δ∆−j) 7→

(w̃∆+j ; w̃∆−1+j + [w̃∆−1+j , p̃0]δ̃0) + b̃ö+1(δ̃∆−j−1; δ̃∆−j),

(w2∆; w2∆−1 + [w2∆−1, p0]δ0) = (w2∆; w2∆−1 + bö+1δ0 + (d2∆−1 − bö+1)δ0) 7→

(w̃2∆; w̃2∆−1 + b̃ö+1δ̃0 + (d̃2∆−1 − b̃ö+1)δ̃0) = (w̃2∆; w̃2∆−1 + [w̃2∆−1, p̃0]δ̃0).

and
(w∆ + b; p∆−1 + [p∆−1, p0]δ0) =

(w∆ + bö+1δ∆−1 +
ö∑

l=1

blδ∆+ö−l; p∆−1 + [p∆−1, p0]δ0) 7→

(w̃∆ + b̃ö+1δ̃∆−1 +

ö∑

l=1

b̃lδ̃∆+ö−l; p̃∆−1 + [p̃∆−1, p̃0]δ̃0) =

(w̃∆ + b̃; p̃∆−1 + [p̃∆−1, p̃0]δ̃0).

All other summands in the definition of T (h) are mapped to the corresponding
elements in the definition of T (h̃). Thus,

(̟ ×̟)T (h) = T (h̃) .

It remains to show that ̟ × ̟ is compatible with boundary values. This,
however, is immediate since

Ψ̃ac ◦ (̟ ×̟)|T (h) = (Cϕ × Cϕ) ◦ Ψac .

Next let us deal with the case that h is of kind (B), where d2∆−1 = 0 = d̃2∆−1.
Then the last condition in (5.11) implies bö+1 = b̃ö+1. We define ̟ : P(h) →
P(h̃) by linearity and

̟(δj) := δ̃j , j = 0, . . . , ö, ̟(p0) := p̃0 .

Since d̃0 = d0 and c̃j = cj , j = 1, . . . , ö, this defines an isometric isomorphism.

Here the cj and c̃j are to be obtained from the data bj and b̃j according to
(4.2). Clearly it is compatible with the respective conjugations. The condition
(ii) follows from Remark 3.19. The fact that (̟×̟)T (h) = T (h̃) follows from
the definition (4.4) of T (h), since b̃j = bj , j = 1, . . . , ö+ 1.

Compatibility with boundary values follows since, by (4.5),

Λ(h) ◦ (̟ ×̟)|T (h) = Λ(h̃) .

Thus also the condition (i) holds.
Finally let us settle the case that h is of kind (C). We define ̟ : P(h) →

P(h̃) by linearity and ̟(p0) := p̃0. In the same manner as above the desired
properties of ̟ are verified.

❑

It is interesting to note that a converse of Proposition 5.17 holds.
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5.18 Proposition. Let h = (H±, ö, bj, dj) and h = (H̃±, ˜̈o, b̃j , d̃j) be elementary

indefinite Hamiltonians given on I = (s−, s)∪ (s, s+) and Ĩ := (s̃−, s̃)∪ (s̃, s̃+),
respectively. Assume that there exists an isometric isomorphism ̟ : P(h) →
P(h̃) and an absolutely continuous and increasing bijection ϕ of [s̃−, s̃+] onto
[s−, s+] with the property that also ϕ−1 is absolutely continuous, and such that
(i) and (ii) of Proposition 5.17 hold. Then the relations (5.11) hold.

Proof. Let ĥ be the elementary indefinite Hamiltonian given by the data

Ĥ± :=
(
H̃± ◦ (ϕ−1)

)
· (ϕ−1)′, ˆ̈o := ˜̈o, b̂j := b̃j, d̂j := d̃j .

By Proposition 5.17 there exists an isomorphism ̟′ of P(h̃) onto P(ĥ) which
satisfies (i) and (ii) of Proposition 5.17. In order to establish the present asser-
tion, we may therefore assume without loss of generality that ϕ = id.

The relation (ii) implies that ̟(kerψ(h)) = kerψ(h̃). It follows that ∆+ ö =
∆̃+˜̈o. Passing to the orthogonal complements, we conclude that̟(C(h)) = C(h̃).
Since ψ(h) maps C(h) isometrically onto L2(h) and ψ(h̃) has the respective
property, it follows that id maps L2(H) isometrically onto L2(H̃). Thus H = H̃ .
This implies ∆ = ∆̃ and, hence, ö = ˜̈o.

The condition (i) implies that (̟ ×̟)S(h) = S(h̃) and thus that

(̟ ×̟)
(
S(h) ∩ (C(h)◦+̇Xδ)2

)
=
(
S(h̃) ∩ (C(h̃)◦+̇X̃δ)2

)
. (5.12)

By Corollary 5.8 the relation S(h)∩(C(h)◦+̇Xδ)2 is just the shift operator given
by

δ0 7→ δ1, . . . , δ∆+ö−2 7→ δ∆+ö−1 . (5.13)

The same holds for S(h̃) ∩ (C(h̃)◦+̇X̃δ)2. Since

dom
(
S(h) ∩ (C(h)◦+̇Xδ)2

)∆+ö−1
= span{δ0} ,

we see that ̟δ0 = λδ̃0 for some λ ∈ C \ {0}.
We have (χ+

(
1
0

)
; δ0) ∈ T (h) and thus (̟χ+

(
1
0

)
;λδ̃0) ∈ T (h̃). By (ii)

̟χ+

(
1

0

)
= χ̃+

(
1

0

)
+ x̃ ,

for some x̃ ∈ kerψ(h̃). It follows that

(x̃; (λ− 1)δ̃0) = (̟χ+

(
1

0

)
;λδ̃0) − (χ̃+

(
1

0

)
; δ̃0) ∈ T (h̃) .

By (i)

(

(
1

0

)
; 0) ∈ Γ(h̃)(̟χ+

(
1

0

)
;̟δ0) ∩ Γ(h̃)(χ̃+

(
1

0

)
; δ̃0) ,

and thus (
x̃; (λ− 1)δ̃0

)
∈ S(h̃) .

If λ 6= 1, this would contradict the fact that

ran
(
S(h̃) ∩ (C(h̃)◦+̇X̃δ)2

)
= span{δ1, . . . , δ∆+ö−1} .
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Thus λ = 1, i.e. ̟δ0 = δ̃0. From (5.12) and (5.13) it now follows that also
̟δj = δ̃j , j = 1, . . . ,∆ + ö − 1. We conclude that c̃j = cj and hence b̃j = bj,
j = 1, . . . , ö.

By (i) we have ̟(kerT (h)) = kerT (h̃). Thus ̟p0 ∈ kerT (h̃) (=
span{p0,

(
1
0

)
} in case (A) and = span{p0} in case (B) and (C)). Using once more

(i) we get ((̟p0− p̃0; 0);
(
0
0

)
) ∈ Γ(h̃). As in any case (kerT (h̃)×{0})∩kerΓ(h̃) =

{(0, 0)} it follows that ̟p0 = p̃0, and in turn d0 = d̃0. We proceed inductively.
Assume that k ∈ {0, . . . ,∆ − 2} and that

̟pj = p̃j , j = 0, . . . , k, di = d̃i, i = 0, . . . , 2k .

We have
̟(pk + dkδ0) = p̃k + d̃k δ̃0 ,

and thus

(̟pk+1 − p̃k+1; 0) = (̟ ×̟)(pk+1; pk + dkδ0) − (p̃k+1; p̃k + d̃k δ̃0) ∈ T (h̃) .

Since H = H̃ , also wj = w̃j , j ∈ N ∪ {0}. Therefore, and by (i),

((̟pk+1 − p̃k+1; 0);

(
0

0

)
) ∈ Γ(h̃)

As above it follows that ̟pk+1 = p̃k+1. This implies

d̃2k+1 = [p̃k+1, p̃k] = [̟pk+1, ̟pk] = d2k+1

and, similarly, d̃2k+2 = d2k+2.
Thus ̟pj = p̃j , j = 0, . . . ,∆ − 1, and d̃j = dj , j = 0, . . . , 2∆ − 2.

Since we already know that ̟δj = δ̃j and b̃j = bj, j = 1, . . . , ö, we also have

(recall b :=
∑ö+1

l=1 blδ1+ö−l)

(̟(w∆+bö+1δ∆−1)−w̃∆+ b̃ö+1δ̃∆−1; 0) = (̟×̟)(w∆+b; p∆−1+d∆−1δ∆−1)−

−(w̃∆ + b̃; p̃∆−1 + d̃∆−1δ̃∆−1) ∈ T (h̃) ,

and the same argument as above allows us to conclude that̟(w∆+bö+1δ∆−1) =
w̃∆ + b̃ö+1δ̃∆−1. Scalar multiplication with p∆−1 (p̃∆−1) yields d̃2∆−1 − b̃ö+1 =
d2∆−1 − bö+1.

Finally let us remark that repeating the above arguments we also see that
(j = 1, . . . ,∆) ̟(w∆−1+j + bö+1δ∆−j) = w̃∆ + b̃ö+1δ̃∆−1.

❑

Similar as in the definite situation also order-reversing reparameterizations
can be studied.

5.19 Lemma. Let h = (H±, ö, bj, dj) be an elementary indefinite Hamiltonian
given on I = (s−, s)∪(s, s+), let s̃−, s̃+ ∈ R, s̃− < s̃+, and let ϕ be an absolutely
continuous and decreasing bijection of [s̃−, s̃+] onto [s−, s+] such that also ϕ−1

is absolutely continuous. Put s̃ := ϕ−1(s).
If h̃ = (H̃±, ˜̈o, b̃j , d̃j) is an elementary indefinite Hamiltonian on Ĩ :=

(s̃−, s̃) ∪ (s̃, s̃+) such that

H̃± = −(H± ◦ ϕ) · ϕ′, ˜̈o = ö; c̃j = (−1)j+öcj , j = 1 . . . , ö;
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d̃j = (−1)jdj , j = 0, . . . , 2∆ − 2;−d̃2∆−1 − b̃ö+1 = d2∆−1 − bö+1 ,

then there exists an isometric isomorphism ̟ : P(h) → P(h̃) which is compatible
with the respective involutions, such that

(i) We have
(̟ ×̟)T (h) = −T (h̃) ,

and
Γ(h̃) ◦ ((−̟) ×̟)|T (h) = ψ ◦ Γ(h) ,

where

ψ :

{
C2 × C2 → C2 × C2

(a; b) 7→ (b; a)

(ii) For all x ∈ P(h) we have

ψ(h̃)(̟(x)) = ψ(h)(x) ◦ ϕ .

Proof. The proof is in essence the same as that of Proposition 5.17. The
necessary changes, cf. the appearance of different signs in the correspondence of
h̃ and h, origins in the fact that in the present situation

w̃j = (−1)jwj , and Cϕ ◦B = −B̃ ◦ Cϕ .

We leave the details to the reader.

❑

6 Pasting of boundary value spaces

The idea of gluing together boundary value problems by means of “continuous
boundary values” appeared in various places, see e.g. [HSW]. We will use this
idea to glue together elementary indefinite Hamiltonians. For this reason we
need a formal definition of this proceedure in sufficient generality and we have
to establish some properties of it. We do not state results in their most general
form; we content ourselves with what is needed in the sequel.

6.1 Definition. Let (P1, T1,Γ1) be a boundary triplet of defect 2 and
(P2, T2,Γ2) a boundary triplet of defect 2 or 1. Consider the Pontryagin space
P1⊕P2, whose elements will be written as f1 + f2, f1 ∈ P1, f2 ∈ P2, and define

T1 ⊎ T2 :=
{
(f1 + f2; g1 + g2) ∈ (P1 ⊕ P2)

2 : (f1; g1) ∈ T1, (f2; g2) ∈ T2,

∃ a, b, c ∈ C
2 :
(
(f1; g1); (a; b)

)
∈ Γ1,

(
(f2; g2); (b; c)

)
∈ Γ2

} (6.1)

Γ1 ⊎ Γ2 :=
{(

(f1 + f2; g1 + g2); (a; c)
)
∈ (T1 ⊎ T2) × (C2 × C

2) :

∃ b ∈ C
2 :
(
(f1; g1); (a; b)

)
∈ Γ1,

(
(f2; g2); (b; c)

)
∈ Γ2

} (6.2)

We will use the notation

(
P1, T1,Γ1

)
⊎
(
P2, T2,Γ2

)
:=
(
P1 ⊕ P2, T1 ⊎ T2,Γ1 ⊎ Γ2

)

Note that, by definition, dom(Γ1 ⊎ Γ2) = T1 ⊎ T2. This choice of notation is
justified by the following result.
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6.2 Proposition. Let (P1, T1,Γ1) be a boundary triplet of defect 2 and
(P2, T2,Γ2) a boundary triplet of defect 2 (or of defect 1). Write mulΓ1 =
span{(m1;m1)} and mul Γ2 = span{(m2;m2)} (or mulΓ2 = span{(m2; 0)}, re-
spectively) with some (possibly vanishing) real elements m1 and m2. Assume
that:

(LI) If mul Γ1 6= {0} and mul Γ2 6= {0}, then m1 and m2 are linearly
independent.

Then
(
P1, T1,Γ1

)
⊎
(
P2, T2,Γ2

)
is a boundary triplet of defect 2 (or 1, respec-

tively). Moreover, mul(Γ1 ⊎ Γ2) = {0}.

The proof of Proposition 6.2 will be carried out in several steps.

Step 1: The fact that dom(Γ1 ⊎ Γ2) = T1 ⊎ T2 holds by definition. The com-
patibility of T1⊎T2 and Γ1⊎Γ2 with the (componentwise defined) involution . is
also immediate from the definition. We show that Γ1 ⊎ Γ2 satisfies the Green’s
identity (2.6). Let

(
(f1 + f2; g1 + g2); (x1;x2)

)
,
(
(h1 + h2; k1 + k2); (y1; y2)

)
∈ Γ1 ⊎ Γ2

be given, and let b, c ∈ C2 be such that

(
(f1; g1); (x1; b)

)
∈ Γ1,

(
(f2; g2); (b;x2)

)
∈ Γ2 ,

(
(h1; k1); (y1; c)

)
∈ Γ1,

(
(h2; k2); (c; y2)

)
∈ Γ2 .

Then
[g1 + g2, h1 + h2]P1⊕P2 − [f1 + f2, k1 + k2]P1⊕P2 =
(
[g1, h1]P1 − [f1, k1]P1

)
+
(
[g2, h2]P2 − [f2, k2]P2

)
=

=
(
y∗1Jx1 − c∗Jb

)
+
(
c∗Jb− y∗2Jx2

)
= y∗1Jx1 − y∗2Jx2 .

Step 2: We show that Γ1 ⊎ Γ2 is closed. Consider the map

Q :

{ (
P2

1 × (C2 × C2)
)
×
(
P2

2 × (C2 × C2)
)

→ (P1 × P2)
2 × (C2 × C2)(

(x1; y1), (a; b), (x2; y2), (c; d)
)

7→
(
((x1;x2), (y1; y2)), (a; d)

)

Then Q is continuous, surjective and kerQ is finite-dimensional. Hence Q maps
closed subspaces to closed subspaces. However, we have

Γ1 ⊎ Γ2 = Q
((

Γ1 ⊕ Γ2

)
∩
{
((x1; y1), (a; b), (x2; y2), (c; d)) : b = c

})
.

In order to see that T1 ⊎ T2 is closed we consider the map

R :

{
(P1 × P2)

2 × (C2 × C2) → (P1 × P2)
2

(
((x1;x2), (y1; y2)), (a; d)

)
7→

(
(x1;x2), (y1; y2)

)

Again this map is continuous, surjective, has a finite-dimensional kernel, and
thus maps closed subspaces onto closed subspaces. However,

T1 ⊎ T2 = R(Γ1 ⊎ Γ2) .
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Step 3: Next we show that Γ1⊎Γ2 is an operator. Assume that ((0; 0); (a; c)) ∈
Γ1 ⊎ Γ2 and let b ∈ C2 such that

((0; 0); (a; b)) ∈ Γ1, ((0; 0); (b; c)) ∈ Γ2 .

It follows that (a; b) = λ(m1;m1) and (b; c) = µ(m2;m2) (or (b; c) = µ(m2; 0)
in case of defect 1, respectively). If m1 = 0 then a = b = 0 and thus m2 = 0 or
µ = 0. We obtain c = 0. If m2 = 0 the same argument applies. If m1 and m2

are both nonzero, and thus linearly independent, we conclude from λm1 = µm2

that λ = µ = 0. Again it follows that a = b = c = 0.

To complete the proof of Proposition 6.2 it remains to establish two as-
sertions: Firstly, that ran(Γ1 ⊎ Γ2) = C2 × C2 or, in case of defect 1,
ran(Γ1 ⊎Γ2) = C2 ×{0}, respectively. Secondly, that (T1 ⊎T2)

∗ = ker(Γ1 ⊎Γ2).
In order to show these assertions, we need the following two statements which
deal, in essence, with the case that mul Γ 6= {0}.

6.3 Lemma. Let (P , T,Γ) be a boundary triplet of defect 2. Then

(i) For all x ∈ C2 there exists y ∈ C2 such that (x; y) ∈ ranΓ.

(ii) For all y ∈ C2 there exists x ∈ C2 such that (x; y) ∈ ranΓ.

(iii) Write mul Γ = span{(m;m)} with a real element m. Then we have

span{m} × span{m} ⊆ ranΓ . (6.3)

Let (P , T,Γ) be a boundary triplet of defect 1 and assume that mul Γ =
span{(m; 0)} 6= {0}. Then ranΓ = span{(m; 0)}.

Proof. Assume first that (P , T,Γ) is of defect 2. If mul Γ = {0} the assertions
(i)-(iii) immediately follow from Remark 2.9, (ii). Hence assume moreover, that
mul Γ 6= {0}, and write mul Γ = span{(m;m)} with a real and nonzero element
m.

Certainly, for x = m there exists y, namely y = m. Assume that ranΓ ⊆
span{m} × C2. Since (m;m) ∈ mul Γ, we obtain from (2.6) that for all (x; y) ∈
ranΓ

0 = m∗Jx−m∗Jy = −m∗Jy ,

and thus that y ∈ span{m}. Therefore we would have ranΓ ⊆ span{m} ×
span{m}. This, however, implies by (2.6) that T ⊆ T ∗, a contradiction. The
second assertion follows in the same way. To see (6.3) choose (f1; g1), (f2; g2) ∈ T
which are linearly independent modulo T ∗, and let (a; b), (c; d) ∈ C2 × C2 be
such that (

(f1; g1); (a; b)
)
,
(
(f2; g2); (c; d)

)
∈ Γ .

We show that (a; b), (c; d) and (m;m) are linearly independent: If λ, µ, ν ∈ C

are such that
λ(a; b) + µ(c; d) + ν(m;m) = 0 ,

then (
λ(f1; g1) + µ(f2; g2);λ(a; b) + µ(c; d) + ν(m;m)

)
∈ Γ

and thus λ(f1; g1) + µ(f2; g2) ∈ ker Γ = T ∗. This implies that λ = µ = 0 and
thus also that ν = 0. We can therefore choose a nonvanishing linear combination
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of these three elements which is of the form (x; 0). By (2.6) it follows that
0 = m∗Jx − m∗J0 = m∗Jx and hence that x ∈ span{m}. Since certainly
(m;m) ∈ ranΓ, the relation (6.3) follows.

Assume now that (P , T,Γ) is of defect 1. Certainly

{0} 6= span{(m; 0)} ⊆ ranΓ ⊆ C
2 × {0} .

Since in the present case T = T ∗, ranΓ must be neutral (with respect to the
J-inner product on C2 × {0}, cf. the second half of Remark 2.10). Therefore,
it is not possible that ranΓ = C2 × {0}. We conclude that ranΓ = mulΓ =
span{(m; 0)}.

❑

6.4 Corollary. Let (P , T,Γ) be a boundary triplet of defect 2. Write mulΓ =
span{(m;m)} with a (possibly vanishing) real element m. Let y, a ∈ C2 and
α ∈ C be given and assume that a 6∈ span{m}. Then there exist x, z ∈ C2 such
that (x; y) ∈ ranΓ, (y; z) ∈ ranΓ, and

x∗Ja = α, z∗Ja = α .

Proof. If mul Γ = {0}, choose any x ∈ C2 with x∗Ja = α. Then, by Remark
2.9, (ii), we have (x; y) ∈ ranΓ and the assertion is proved. Consider the case
that mul Γ 6= {0}. Choose x ∈ C2 such that (x; y) ∈ ranΓ. Since by our
assumption m∗Ja 6= 0, we can choose λ ∈ C such that (x + λm)∗Ja = α. By
(6.3) we have (x+ λm; y) ∈ ranΓ. The existence of z is established in the same
way.

❑

Step 4: We come to the proof that, in case that (P2, T2,Γ2) is of defect 2, the
relation Γ1 ⊎ Γ2 is surjective. The case that (P2, T2,Γ2) is of defect 1 is treated
similar and we will omit the details.

Let a, c ∈ C2 be given. Assume first that mul Γ1 = {0}. Choose b ∈ C2

such that (b; c) ∈ ranΓ2, cf. Lemma 6.3. By Remark 2.9, (ii), the element (a; b)
belongs to ranΓ1. It follows that (a; c) ∈ ran(Γ1 ⊎ Γ2). If mul Γ2 = {0}, we can
argue in the same way.

Assume now that

mul Γ1 = span{(m1;m1)} 6= {0}, mul Γ2 = span{(m2;m2)} 6= {0} .

Choose x, y ∈ C2 such that (a;x) ∈ ranΓ1 and (y; c) ∈ ranΓ2. Then, by our
assumption (LI), there exist λ, µ ∈ C such that y − x = λm1 − µm2. It follows
from (6.3) that

(a;x+ λm1) ∈ ranΓ1, (y + µm2; c) ∈ ranΓ2 .

Since x+ λm1 = y + µm2, we conclude that (a; c) ∈ ran(Γ1 ⊎ Γ2).

Step 5: Our final task is to prove that (T1 ⊎ T2)
∗ = ker(Γ1 ⊎ Γ2). By the

Green’s identity (2.6) clearly

ker(Γ1 ⊎ Γ2) ⊆ (T1 ⊎ T2)
∗ .
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Conversely, let (f1 + f2; g1 + g2) ∈ (T1 ⊎ T2)
∗ be given. For all (h1; k1) ∈ T ∗

1 =
kerΓ1 we have (h1 + 0; k1 + 0) ∈ T1 ⊎ T2, and hence

0 = [g1 + g2, k1 + 0] − [f1 + f2, h1 + 0] = [g1, k1] − [f1, h1] .

It follows that (f1; g1) ∈ T ∗∗
1 = T1. The same argument will show that (f2; g2) ∈

T2, and we conclude that (f1 + f2; g1 + g2) ∈ T1 ⊕ T2.
Next we show that in fact (f1 +f2; g1 +g2) ∈ T1⊎T2. Again, we will restrict

explicit proof to the case that (P2, T2,Γ2) is of defect 2. Choose (a; b), (b′; c) ∈
C2 × C2 such that

(
(f1; g1); (a; b)

)
∈ Γ1,

(
(f2; g2); (b

′; c)
)
∈ Γ2 .

Since mulΓi = span{(mi;mi)}, we can assume that a 6∈ span{m1} or a = 0 and
similarly that c 6∈ span{m2} or c = 0.

Let y ∈ C
2 be given. If a = c = 0, choose any x, z ∈ C

2 with (x; y) ∈ ranΓ1

and (y; z) ∈ ranΓ2, cf. Lemma 6.3, and let (h1; k1) ∈ T1, (h2; k2) ∈ T2 be such
that (

(h1; k1); (x; y)
)
∈ Γ1,

(
(h2; k2); (y; z)

)
∈ Γ2 .

Then we compute

0 = [g1 + g2, h1 + h2] − [f1 + f2, k1 + k2] =

=
(
[g1, h1] − [f1, k1]

)
+
(
[g2, h2] − [f2, k2]

)
=

=
(
x∗Ja− y∗Jb

)
+
(
y∗Jb′ − z∗Jc

)
= y∗J(b′ − b) .

(6.4)

If one of a and c is not zero, say, a 6= 0, choose z ∈ C2 with (y; z) ∈ ranΓ2. By
Corollary 6.4 there exists x ∈ C

2, with (x; y) ∈ ranΓ1 and x∗Ja = z∗Jc. Again
the computation (6.4) can be carried out. Since y was arbitrary, it follows that
b′ = b, and thus that

(f1 + f2; g1 + g2) ∈ T1 ⊎ T2 .

Since Γ1 ⊎Γ2 is surjective (or, in case of defect 1 satisfies ranΓ = C2 ×{0}),
we conclude from the (by the previous paragraph applicable) Green’s identity
(2.6) that in fact (f1 + f2; g1 + g2) ∈ ker(Γ1 ⊎ Γ2).

As an immediate consequence we obtain that

dim(T1 ⊎ T2)/(T1 ⊎ T2)
∗ = dim(T1 ⊎ T2)/ ker(Γ1 ⊎ Γ2) = 4

or, in case of defect 1, that dim(T1⊎T2)/(T1⊎T2)
∗ = dim(T1⊎T2)/ ker(Γ1⊎Γ2) =

2. This finishes the proof of Proposition 6.2.

❑

6.5 Remark. Let us note explicitly that (T1 ⊎T2)
∗ is a finite-dimensional exten-

sion of T ∗
1 ⊕ T ∗

2 :

T ∗
1 ⊕ T ∗

2 ⊆ (T1 ⊎ T2)
∗ ⊆ T1 ⊎ T2 ⊆ T1 ⊕ T2 . (6.5)

6.6 Remark. The operation of pasting boundary triplets is associative: Let
(P1, T1,Γ1), (P2, T2,Γ2) be boundary triplets of defect 2 and let (P3, T3,Γ3) be
of either defect 2 or 1. Then

(
P1⊕P2, T1⊎T2,Γ1⊎Γ2

)
⊎(P3, T3,Γ3) = (P1, T1,Γ1)⊎

(
P2⊕P3, T2⊎T3,Γ2⊎Γ3

)
.
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In fact

T1 ⊎ . . . ⊎ Tn =
{ ( n∑

j=1

fj;

n∑

j=1

gj
)
∈
(
P1 ⊕ . . .⊕ Pn

)2
:

∃ a0, . . . , an ∈ C
2 :
(
(fj ; gj); (aj−1; aj)

)
∈ Γj , j = 1, . . . , n

}

and

Γ1 ⊎ . . . ⊎ Γn =
{ (( n∑

j=1

fj ;

n∑

j=1

gj

)
; (a0; an)

)
∈
(
P1 ⊕ . . .⊕ Pn

)2
:

∃ a1, . . . , an−1 ∈ C
2 :
(
(fj ; gj); (aj−1; aj)

)
∈ Γj , j = 1, . . . , n

}
.

Note here that for n > 1, Γ1 ⊎ . . .⊎Γn is an operator and by Step 3 of the proof
of Proposition 6.2 it follows that, in fact, (

∑n
j=1 fj ;

∑n
j=1 gj) 7→ (a0; . . . ; an) is

a proper linear mapping.

Next we show that some spectral properties of boundary triplets are inherited
by pastings.

6.7 Lemma. Let (P1, T1,Γ1) be a boundary triplet of defect 2 and (P2, T2,Γ2)
be of either defect 2 or 1.

(i) If z ∈ C and both ran(T ∗
1 − z) and ran(T ∗

2 − z) are closed, so is ran((T1 ⊎
T2)

∗ − z).

(ii) If both T ∗
1 and T ∗

2 have the property (CR), so has (T1 ⊎ T2)
∗.

(iii) If both (P1, T1,Γ1) and (P2, T2,Γ2) satisfy (E), so does (P1 ⊕ P2, T1 ⊎
T2,Γ1 ⊎ Γ2).

Proof. The assertions (i) and (ii) are immediate since, by (6.5), we deal with
finite dimensional extensions and perturbations, respectively.

We come to the proof of (iii). Let ((f1 + f2; z(f1 + f2)); (a; c)) ∈ Γ1 ⊎ Γ2.
Then there exists b ∈ C

2 such that

(
(f1; zf1); (a, b)

)
∈ Γ1,

(
(f2; zf2); (b; c)

)
∈ Γ2 .

Assume that a = 0. Since (E) holds for Γ1, we conclude that f1 = 0 and hence
that (a; b) ∈ mulΓ1 = span{(m1;m1)}. Since a = 0, it follows that also b = 0.
The condition (E) for Γ2 now implies that f2 = 0.

❑

6.8 Remark. Let (Pj , Tj,Γj) and (P ′
j , T

′
j,Γ

′
j), j = 1, 2, be boundary triplets, and

assume that (̟j , φj), j = 1, 2, is an isomorphism of (Pj , Tj,Γj) and (P ′
j , T

′
j,Γ

′
j),

cf. Definition 2.12. Assume that φ1 and φ2 are of the particular form

φ1 = φ̂1 × φ̂, φ2 = φ̂× φ̂2 .

Then the pair (̟,φ), where

̟ := ̟1 ⊕̟2, φ := φ̂1 × φ̂2 ,
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is an isomorphism of
(P1, T1,Γ1) ⊎ (P2, T2,Γ2)

and
(P ′

1, T
′
1,Γ

′
1) ⊎ (P ′

2, T
′
2,Γ

′
2) .

We shall write (̟,φ) =: (̟1, φ1) ⊎ (̟2, φ2). Clearly, this construction can
iteratively be applied to any finite number of summands, and is associative.

b. An example

An instructive example of the introduced notion of pasting is found in the theory
of positive definite canonical systems.

6.9 Lemma. Let H be a Hamiltonian on I = (s−, s+) which is regular at s−,
and let s0 ∈ (s−, s+). Assume that s0 is not inner point of an H-indivisible
interval. Put J1 := (s−, s0), J2 := (s0, s+), and H1 := H |J1 , H2 := H |J2 . Then

(
L2(H), Tmax(H),Γ(H)

)
=

=
(
L2(H1), Tmax(H1),Γ(H1)

)
⊎
(
L2(H2), Tmax(H2),Γ(H2)

)
.

Proof. We consider M(J1) and M(J2) as subsets of M(I). Since s0 is not
contained in an indivisible interval, we have

M(I) = M(J1)+̇M(J2) (6.6)

Clearly, L2(H) = L2(H1) ⊕ L2(H2).
Let f ∈ AC(I), g ∈ M(I) be such that (f ; g) ∈ Tmax(H). Write f =

f1 + f2, g = g1 + g2 according to the decomposition (6.6). Then (f1; g1) ∈
Tmax(H1), (f2; g2) ∈ Tmax(H2), and, since f1(s0) = f(s0) = f2(s0), we have

(f ; g) ∈ Tmax(H1) ⊎ Tmax(H2) .

Moreover, if H is regular at s+,

Γ(H)(f ; g) = (f(s−); f(s+)) ∈
(
Γ(H1) ⊎ Γ(H2)

)
(f ; g) .

If H is singular at s+, the pair Γ(H)(f ; g) = (f(s−); 0) has the corresponding
property.

Conversely, if (f1 + f2; g1 + g2) ∈ Tmax(H1) ⊎ Tmax(H2), then there exist

representants f̂1, f̂2 of f1, f2 with f̂ ′
1 = JHg1, f̂

′
2 = JHg2 and f̂1(s0) = f̂2(s0).

Thus f̂1+f̂2 ∈ AC(I) and we conclude that (f1+f2; g1+g2) ∈ Tmax(H). Assume
that H is regular at s+. If (a; b) ∈ Γ(H1)(f1; g1) and (b; c) ∈ Γ(H2)(f2; g2),

the choice of f̂1, f̂2 can be made such that f̂1(s−) = a, f̂1(s0) = b = f̂2(s0),

f̂2(s+) = c. It follows that (a; c) ∈ Γ(H)(f1 + f2; g1 + g2). The case that H is
singular at s+ is treated similarly.

❑

6.10 Remark. This example for the appearance of pasting of boundary triplets
also explains the need to give the unusual definition of ‘defect 2’ and ‘defect
1’, when the defect of the boundary triplet (P , T,Γ) does not coincide with the
defect of the relation T ∗. Consider e.g. the case that J1 is indivisible.
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Moreover, it shows that the conditions of Proposition 6.2 are natural. For if
mul Γ(H1) 6= {0} and mul Γ(H2) 6= {0}, then J1 and J2 must end (start) with
indivisible intervals, however, their types must be different since we assumed
that s0 is not inner point of an indivisible interval. Thus the assumption of
Proposition 6.2 is satisfied. The assumption that s0 is not contained in an indi-
visible interval is however necessary. In fact, if s0 is contained in an indivisible
interval, then L2(H) is not equal to L2(H1) ⊕ L2(H2).

6.11 Corollary. Assume that H is singular at s+, that s0 = α+
1 (H), and let

φ be the type of (α+
1 (H), s+). Then, with the notation of Lemma 6.9, L2(H) =

L2(H1) and

Tmax(H) =
{
(f ; g) ∈ Tmax(H1) : ∃(a; b) ∈ Γ(H1)(f ; g) : ξTφ b = 0

}
(6.7)

If (f ; g) ∈ Tmax(H), then the element a appearing on the right side of this
formula is unique and Γ(H)(f ; g) = (a; 0).

Proof. Since in the present case L2(H2) = {0}, we have L2(H) = L2(H1). The
description (6.7) of Tmax(H) follows since Tmax(H2) = {(0; 0)} and Γ(H2) =
span{(Jξφ; 0)}. For every element a appearing on the right side of (6.7), we
have (a; 0) ∈ Γ(H)(f ; g). Since α+

1 (H) = s0 ∈ (s−, s+), mul Γ(H) = {0}. Thus
a is unique.

❑

7 Splitting of the model space

Let h be an elementary indefinite Hamiltonian of kind (A), let s− ∈ (s−, s)
be not inner point of an H-indivisible interval, put J := (s−, s

−), and let ιJ
be the embedding of the Hilbert space L2(H |J ) into P(h) as in Proposition
4.14. Denote by PJ the orthogonal projection of P(h) onto ιJ(L2(H |J )), and
set P̂ := I − PJ . Then, cf. Proposition 4.14, the space P(h) splits as

P(h) = ιJ (L2(H |J)) ⊕ P̂P(h) .

The present section is devoted to a detailed investigation of this splitting. In
fact, our aim is to give an appropriate analogue of Lemma 6.9.

First of all let us determine the action of PJ and P̂ in the realization (4.10)
of P(h).

7.1 Lemma. Consider P(h) as L2(H) ⊕ (C∆ × C∆) ⊕Xδ, cf. (4.10), and let

f = (x; ξ; η;α) ∈ P(h), ξ = (ξi)
∆−1
i=0 , η = (ηi)

∆−1
i=0 , α =

∑∆+ö−1
j=∆ αjδj, be given.

Then

PJf =
(
x|J +

∆−1∑

i=0

ηiwi|J ;
( ∫

J

w∗
jH(x+

∆−1∑

i=0

ηiwi)
)∆−1

j=0
; 0; 0

)
,

P̂ f =
(
x|I\J −

∆−1∑

i=0

ηiwi|J ;
(
ξj −

∫

J

w∗
jH(x+

∆−1∑

i=0

ηiwi)
)∆−1

j=0
; η;α

)
.
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Proof. For f = (x; ξ; η;α) ∈ P(h) denote the respective expression on the right

side of our asserted equalities by f0 and f̂ .
First we show that for each two elements f = (x; ξ; η;α), g = (y;σ; τ ;β) ∈

P(h) we have [f0, ĝ] = 0. This, however, is immediate from the definition of the
inner product:

[f0, ĝ] =
(
x|J +

∆−1∑

i=0

ηiwi|J , y|I\J −
∆−1∑

i=0

τiwi|J
)
L2(H)

+

+

∆−1∑

j=0

τj

∫

J

w∗
jH(x+

∆−1∑

i=0

ηiwi) = 0 .

Next note that, clearly, f0 + f̂ = f . Moreover,

f0 = ιJ
(
x|J +

∆−1∑

i=0

ηiwi|J
)
∈ ιJ (L2(H |J )) = PJP(h) .

Finally, by the explicit form of ιJ obtained in the proof of Proposition 4.14, we
see that f0 = f whenever f = ιJx for some x ∈ L2(H |J )

❑

We obtain a formula for the action of ψPJ and ψP̂ .

7.2 Corollary. Denote by χJ and χI\J the characteristic functions of J and
I \ J , respectively. Then

ψ(PJf) = χJψf, ψ(P̂ f) = χI\Jψf, f ∈ P(h) .

Proof. Let the notation be as in Lemma 7.1. Then

ψf = x+

∆−1∑

j=0

ηjwj .

By the above formulas for PJ , P̂ we have

ψ(PJf) = x|J +

∆−1∑

i=0

ηiwi|J = χJψf ,

ψ(P̂ f) = x|I\J −
∆−1∑

i=0

ηiwi|J +

∆−1∑

i=0

ηiwi = χI\Jψf .

❑

Our next task is to show that the relation T (h) also splits according to the
decomposition P(h) = PJP(h)[+̇]P̂P(h). To this end define

P0 := PJP(h), T0 := (PJ × PJ )T (h) ,

Γ0 :=
{(

(f0; g0); (x1;x2)
)
∈ T0 × (C2 × C

2) : ∃(f ; g) ∈ T (h) :

(PJ × PJ )(f ; g) = (f0; g0), x1 = Ψac(f ; g)1(s−), x2 = Ψac(f ; g)1(s
−)
}
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and
P̂ := P̂P(h), T̂ := (P̂ × P̂ )T (h) ,

Γ̂ :=
{(

(f̂ ; ĝ); (x1;x2)
)
∈ T̂ × (C2 × C

2) : ∃(f ; g) ∈ T (h) :

(P̂ × P̂ )(f ; g) = (f̂ ; ĝ), x1 = Ψac(f ; g)1(s
−), x2 = Ψac(f ; g)1(s+)

}

We do not yet know that Γ0 and Γ̂ are boundary maps. However, we have the
following

7.3 Proposition. Let h be an elementary indefinite Hamiltonian of kind (A),
let s− ∈ (s−, s) be not inner point of an H-indivisible interval, and let PJ , P̂
etc. be defined as above. Then T (h) = T0 ⊎ T̂ and Γ(h) = Γ0 ⊎ Γ̂ in the sense of
the formulas (6.1) and (6.2).

Proof. Let (f ; g) ∈ T (h), and put (f0; g0) := (PJ × PJ)(f ; g), (f̂ ; ĝ) := (P̂ ×

P̂ )(f ; g). Then (f0; g0) ∈ T0, (f̂ ; ĝ) ∈ T̂ and (f0; g0) + (f̂ ; ĝ) = (f ; g). Since

(
(f0; g0); (Ψ

ac(f ; g)1(s−); Ψac(f ; g)1(s
−))
)
∈ Γ0 ,

(
(f̂ ; ĝ); (Ψac(f ; g)1(s

−); Ψac(f ; g)1(s+))
)
∈ Γ̂ ,

we obtain

(f ; g) ∈ T0 ⊎ T̂ ,
(
(f ; g); (Ψac(f ; g)1(s−); Ψac(f ; g)1(s+)

)
∈ Γ0 ⊎ Γ̂ .

Thus T (h) ⊆ T0 ⊎ T̂ and, since mulΓ(h) = {0}, also Γ(h) ⊆ Γ0 ⊎ Γ̂.

Conversely, let ((f0; g0); (a; b)) ∈ Γ0, ((f̂ ; ĝ); (b; c)) ∈ Γ̂ be given. Then there
exist (f1; g1), (f2; g2) ∈ T (h) with

(PJ × PJ )(f1; g1) = (f0; g0), (P̂ × P̂ )(f2; g2) = (f̂ ; ĝ)

and
Ψac(f1; g1)(s−) = a, Ψac(f1; g1)(s

−) = b ,

Ψac(f2; g2)(s
−) = b, Ψac(f2; g2)(s+) = c .

Let functions h, k be defined by

(h; k) := Ψac
(
(f1; g1) − (f2; g2)

)
,

then h′ = JHk on I. It follows that (h|J ; k|J) ∈ Tmax(H |J ). Moreover, we have
h(s−) = 0. Thus, by Lemma 5.15, (ιJh|J ; ιJk|J) ∈ T (h). Put

(f ; g) := (ιJh|J ; ιJk|J) + (f2; g2) ,

then (f ; g) ∈ T (h) and, clearly, (P̂ × P̂ )(f ; g) = (P̂ × P̂ )(f2; g2) = (f̂ ; ĝ). We
have

ψ(f − f1) = ψ
(
ιJh|J + f2 − f1

)
= h|J +ψ(f2 − f1) =

{
0 , on J

ψ(f2 − f1) , on I \ J

and thus, by Corollary 7.2, ψ(PJ (f − f1)) = 0. By Corollary 4.15 the map ψ
acts injectively on ιJ (L2(H |J)) and we conclude that PJf = PJf1 = f0. The
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same argument applies to the second component and yields that also PJg = g0.
We see that (f0; g0) + (f̂ ; ĝ) = (f ; g) ∈ T (h). We have shown T (h) = T0 ⊎ T̂ .

Let us compute Γ(h)(f ; g). By Lemma 5.15 we have

Γ(h)(f ; g)1 = Γ(h)(ιJh|J ; ιJk|J)1 + Γ(h)(f2; g2)1 = h(s−) + Γ(h)(f2; g2)1 =

= Ψac
(
(f1; g1) − (f2; g2)

)
1
(s−) + Ψac(f2; g2)1(s−) = Ψac(f1; g1)1(s−) = a ,

and

Γ(h)(f ; g)2 = Γ(h)(ιJh|J ; ιJk|J)2 + Γ(h)(f2; g2)2 = Γ(h)(f2; g2)2 = c .

It follows that ((f ; g); (a; c)) ∈ Γ(h).

❑

It is no surprise that (P0, T0,Γ0) can be identified with
(L2(H |J ), Tmax(H |J),Γ(H |J )).

7.4 Proposition. The triple (P0, T0,Γ0) is a boundary triplet of de-
fect 2. The pair (ιJ ; id) is an isomorphism of the boundary triplets
(L2(H |J ), Tmax(H |J),Γ(H |J )) and (P0, T0,Γ0). The isomorphism ιJ is com-
patible with the map ψ in the sense that

(
χJ · ψ(h)

)
◦ ιJ = idL2(H|J ) . (7.1)

Proof. First of all note that, once we have proved that (ιJ , id) has the properties
(i), (ii), (iii) in the definition of an isomorphism of boundary triplets, it follows
that (P0, T0,Γ0) is a boundary triplet of defect 2, cf. Remark 2.14.

The fact that ιJ is an isometric isomorphism compatible with . was shown
in Proposition 4.14. The relation (7.1) is nothing else but Corollary 4.15; we
restated this property in this place just to point out the structural similarity
with the situation in the below Proposition 7.8.

We prove that (ιJ × ιJ )Tmax(H |J ) = T0. Assume first that (f0; g0) ∈ T0,
and define

(h; k) := (ψ × ψ)(f0; g0) .

By Corollary 4.15 it follows that (h; k) ∈ L2(H |J) and (ιJ × ιJ )(h; k) = (f0; g0).
Let (f ; g) ∈ T (h) be such that (PJ × PJ )(f ; g) = (f0; g0), and write

(f ; g) = (f1; g1) + (f2; g2) + (f3; g3)

with (f1; g1) ∈ T (h) ∩ C2, (f2; g2) ∈(4.15) and (f3; g3) ∈(4.16). Then
(ψf1;ψg1) ∈ Tmax(H) and hence (ρJψf1; ρJψg1) ∈ Tmax(H |J ). By the defi-
nition of ψ and the fact that ρJψ maps P(h) onto L2(H |J ) we find that also
(ρJψf2; ρJψg2) ∈ Tmax(H |J). Finally, f3, g3 ∈ ker ρJψ. Alltogether we see that
(ρJψf ; ρJψg) ∈ Tmax(H |J ). However, by Corollary 7.2, ρJψf = ψPJf = ψf0 =
h and ρJψg = ψPJg = ψg0 = k.

Conversely, let (h; k) ∈ Tmax(H |J) be given and choose (α;β)T ∈
Γ(H |J)(h; k)2. Put

(h1; k1) := (h; k) − α
((1

0

)∣∣
J
; 0
)
− β

((0

1

)∣∣
J
; 0
)
.
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Then (h1; k1) ∈ Tmax(H |J) and 0 ∈ Γ(H |J )(h1; k1)2. It follows from Lemma
5.15 that (ιJ × ιJ)(h1; k1) ∈ T (h). Since ιJh1, ιJk1 ∈ P0, it follows that (ιJ ×
ιJ )(h1; k1) ∈ T0. Since

(
ιJ

(
1

0

)∣∣
J
; 0
)

= (PJ × PJ )
((1

0

)
; 0),

(
ιJ

(
0

1

)∣∣
J
; 0
)

= (PJ × PJ)
(
p0; 0) ,

we see that also (ιJ × ιJ )(h; k) ∈ T0.
Finally we have to show that Γ0 ◦ (ιJ × ιJ ) = Γ(H |J). Let (h; k) ∈

Tmax(L
2(H |J ) be given. We use the same notation as in the previous para-

graph. Choose h̃1 ∈ AC(J) with h̃′1 = JHk1 and h̃1(s
−) = 0. By

the proof of Lemma 5.15, we have Ψac(ιJh1; ιJk1) = (χJ h̃1;χJk1). Hence
((ιJh1; ιJk1); (h̃1(s−); 0)) ∈ Γ0. Since Ψac((1; 0)T ; 0) = (1; 0)T and Ψac(p0; 0) =
(0; 1)T , the assertion follows.

❑

It is a more subtle topic to establish that the triplet (P̂ , T̂ , Γ̂) is isomorphic
to a triplet (P(h̃), T (h̃),Γ(h̃)) for a certain elementary indefinite Hamiltonian h̃

of kind (A).
Assume that h consists of the data H, (dl)

2∆−1
l=0 , ö, (bi)

ö+1
i=1 . Let w̃l be defined

relative to the Hamiltonian H |I\J , and let λk be the unique real numbers such
that

w̃k =
(
wk −

k−1∑

j=0

λk−jB
kχ−

(
1

0

))∣∣∣
I\J

, k ∈ N ∪ {0} ,

cf. Lemma 3.12. Here χ− denotes the indicator function of the interval (s−, s).
Set

dk :=
k−1∑

j=0

λk−jB
jχ−

(
1

0

)
∈ XL, k ∈ N ∪ {0} .

Note that (1, 0)dk(s−) = λk and that (1, 0)dk(s
−) = (1, 0)wk(s

−). Define num-
bers d̃k for k ∈ N ∪ {0} by

d̃k := dk − [dk, p0] + λk+1 .

Then the data H |I\J , (d̃k)
2∆−1
k=0 , ö, (bi)

ö+1
i=1 represents an elementary indefinite

Hamiltonian h̃ of kind (A). Define a linear map ̟ : P(h̃) → P̂ by

̟
(
(x; ξ; 0;α)

)
:=
(
x; ξ +

(
(x, dj)L2(H|I\J )

)∆−1

j=0
; 0;α

)
,

̟(p̃k) := P̂ (pk − dk), k = 0, . . . ,∆ − 1 .
(7.2)

The first formula has to be understood with respect to the respective realizations
(4.10) of P(h̃) and P(h). Moreover, we consider M(I \ J) naturally as a subset
of M(I).

7.5 Remark. It is useful to know that in the realizations (4.10) the following set
of correspondences hold. Hereby δij denotes the Kronecker-Delta.

p̃k =
(
0; (

1

2
d̃k+j)

∆−1
j=0 ; (δkj)

∆−1
j=0 ; 0

)
∈ P(h̃) ,

pk =
(
0; (

1

2
dk+j)

∆−1
j=0 ; (δkj)

∆−1
j=0 ; 0

)
∈ P(h) ,
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dk =
(
dk; ([dk, pj])

∆−1
j=0 ; 0; 0) ∈ P(h) ,

P̂ pk =
(
− wk|J ;

(1
2
dk+j − (wk,wj)L2(H|J )

)∆−1

j=0
; (δkj)

∆−1
j=0 ; 0

)
,

P̂dk =
(
dk|I\J ;

(
[dk, pj ] − (dk,wj)L2(H|J )

)∆−1

j=0
; 0; 0

)
,

wk =
(
wk; (dk+j)

∆−1
j=0 ; 0; 0

)
, w̃k =

(
w̃k; (d̃k+j)

∆−1
j=0 ; 0; 0

)
,

P̂wk =
(
wk|I\J ;

(
dk+j − (wk,wj)L2(H|J )

)∆−1

j=0
; 0; 0

)
,

̟(w̃k) =
(
w̃k;

(
d̃k+j + (w̃k, dj)L2(H|I\J )

)∆−1

j=0
; 0; 0

)
.

Moreover, note that ̟δj = δj , j = 0, . . . ,∆ + ö− 1.

We need the following technical lemmata, whose proofs are carried out by
persistent application of the Green’s identity in various spaces.

7.6 Lemma. Set pk := wk ∈ XL for k ≥ ∆, so that pk is a well-defined element
of P(h) for all k ∈ N ∪ {0}. Then

[
P̂ (pk − dk), P̂ (pl − dl)

]
= d̃k+l, k, l ∈ N ∪ {0} . (7.3)

Proof. Consider first the case that k ∈ N ∪ {0} and l = 0. Then the asserted
equality has the form [

P̂ (pk − dk), P̂ p0

]
= d̃k .

We compute

[
P̂ (pk − dk), P̂ p0

]
= [pk − dk, p0] −

[
PJ (pk − dk), PJp0

]
=

= dk − [dk, p0] − (wk − dk,w0)L2(H|J ) .

The last summand can be computed with the help of Green’s identity in the
space L2(H |J). Applied with the pairs (wk+1; wk), (w0; 0) ∈ T (H |J) we get

(wk,w0)L2(H|J ) = w0(s−)∗Jwk+1(s−) − w0(s
−)∗Jwk+1(s

−) =

= −(1, 0)wk+1(s
−) .

Applied with the pairs (dk+1; wk), (w0; 0) ∈ T (H |J) we get

(dk,w0)L2(H|J ) = w0(s−)∗Jdk+1(s−) − w0(s
−)∗Jdk+1(s

−) =

(1, 0)dk+1(s−) − (1, 0)dk+1(s
−) = λk+1 − (1, 0)wk+1(s

−) .

Hence

[
P̂ (pk−dk), P̂ p0

]
= dk− [dk, p0]+(1, 0)wk+1(s

−)+λk+1−(1, 0)wk+1(s
−) = d̃k .

Next we show that for all k ∈ N ∪ {0} and l ≥ 1,

[
P̂ (pk − dk), P̂ (pl − dl)

]
=
[
P̂ (pk+1 − dk+1), P̂ (pl−1 − dl−1)

]
. (7.4)

The relation (7.3) then follows from this relation. Assume that k ≤ ∆ − 2. We
apply the Green’s identity in P(h). To this end note that

dk+1 = B(dk) + λk+1χ−

(
1

0

)
,
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and hence, remember dk ∈ XL, that

(
dk+1; dk + [dk, p0]δ0 − λk+1δ0

)
∈ T (h) .

We now use the pairs

(
(pk+1 − dk+1; pk − dk + δ0(dk − [dk, p0] + λk+1)

)
∈ T (h) ,

(
(pl − dl; pl−1 − dl−1 + δ0(dl−1 − [dl−1, p0] + λl)

)
∈ T (h) ,

and obtain, remember l ≥ 1, that

[pk − dk, pl − dl] − [pk+1 − dk+1, pl−1 − dl−1] =

= (wl − dl)(s−)∗J(wk+1 − dk+1)(s−) − (wl − dl)(s+)∗J(wk+1 − dk+1)(s+)︸ ︷︷ ︸
=0

.

An application with the pairs

(wk+1 − dk+1; wk − dk), (wl − dl; wl−1 − dl−1) ∈ T (H |J)

gives
(wk − dk,wl − dl) − (wk+1 − dk+1,wl−1 − dl−1) =

= (wl − dl)(s−)∗J(wk+1 − dk+1)(s−) − (wl − dl)(s
−)∗J(wk+1 − dk+1)(s

−) .

Since (wl − dl)(s
−), (wk+1 − dk+1)(s

−) ∈ span{(0, 1)T}, the second summand
vanishes. We obtain that

[
P̂ (pk − dk), P̂ (pl − dl)

]
−
[
P̂ (pk+1 − dk+1), P̂ (pl−1 − dl−1)

]
=

=
(
[pk − dk, pl − dl] − [pk+1 − dk+1, pl−1 − dl−1]

)
−

−
([
PJ (pk − dk), PJ (pl − dl)

]
−
[
PJ (pk+1 − dk+1), PJ(pl−1 − dl−1)

])
= 0 .

The relation (7.4) follows. If k = ∆−1, we use the pair (w∆+b; p∆−1+d∆−1δ0) ∈
T (h), if k ≥ ∆ + 1, we use (wk+1; wk) ∈ T (h) in a similar computation.

❑

7.7 Lemma. Put p̃k := w̃k ∈ X̃L for k ≥ ∆, so that p̃k is a well-defined
element of P(h̃) for all k ∈ N ∪ {0}. Analogously, let again pk = wk, k ≥ ∆.
Then

̟(p̃k) = P̂ (pk − dk), k ∈ N ∪ {0} .

Proof. If k < ∆ this holds by definition. Thus let k ≥ ∆. We see from Remark
7.5 that in the realization (4.10)

̟(p̃k) − P̂ (pk − dk) =
(
0;
(
d̃k+j + (w̃k, dj)L2(H|I\J ) − dk+j + (wk,wj)L2(H|J )+

+[dk, pj ] − (dk,wj)L2(H|J )

)∆−1

j=0
; 0; 0

)
.

Inductive applications of the Green’s identity yields

[dk, pj ] = [dk+j , p0] +

j∑

l=1

wl(s−)∗Jdk+j+1−l(s−) ,
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(dk,wj)L2(H|J ) =

j∑

l=0

wl(s−)∗Jdk+j+1−l(s−) −

j∑

l=0

wl(s
−)∗Jdk+j+1−l(s

−) ,

(wk,wj)L2(H|J ) =

j∑

l=0

wl(s−)∗Jwk+j+1−l(s−)

︸ ︷︷ ︸
=0

−

j∑

l=0

wl(s
−)∗Jwk+j+1−l(s

−) ,

(w̃k, dj)L2(H|I\J ) =

j∑

l=1

dl(s
−)∗Jw̃k+j+1−l(s

−) .

The very last expression can be further rewritten. If we keep in mind that
w̃k+j+1−l(s

−) ∈ span{(0, 1)T} and (1, 0)dl(s
−) = (1, 0)wl(s

−), it follows that

j∑

l=1

dl(s
−)∗Jw̃k+j+1−l(s

−) =

j∑

l=1

wl(s
−)∗Jw̃k+j+1−l(s

−) =

=

j∑

l=0

wl(s
−)∗Jw̃k+j+1−l(s

−) =

j∑

l=0

wl(s
−)∗J

(
wk+j+1−l(s

−) − dk+j+1−l(s
−)
)
.

If we keep in mind that λk+j+1 = (1, 0)dk+j+1(s−) = w0(s−)∗Jdk+j+1(s−), and

plug all these expressions together, it follows that ̟(p̃k) − P̂ (pk − dk) = 0.

❑

7.8 Proposition. The triple (P̂ , T̂ , Γ̂) is a boundary triplet of defect 2. The pair
(̟; id), where ̟ is given by (7.2), is an isomorphism of the boundary triplets
(P(h̃), T (h̃),Γ(h̃)) and (P̂ , T̂ , Γ̂). It is compatible with the respective maps ψ in
the sense that (

χI\J · ψ(h)
)
◦̟ = ψ(h̃) .

Moreover, we have

̟|Xδ = idXδ , ̟(C(h̃)) = P̂ ∩ C(h) .

Proof.
Step 1: Our first task is to show that ̟ is an isometry of P(h̃) onto P̂ with
the desired compatibilities. Let f, g ∈ P(h̃) be given. If f, g both belong to
C̃ +Xδ, so that the first formula of our definition of ̟ has to be applied, the
validity of [̟f,̟g] = [f, g]∼ is clear. If f = (x; ξ; 0;α) and g = p̃k, we have

[
̟(x; ξ; 0;α), ̟p̃k

]
=
[(
x; ξ +

(
(x, dj)L2(H|I\J )

)∆−1

j=0
; 0;α

)
,
(
− wk|J − dk|I\J ;

(1
2
dk+j − (wk,wj)L2(H|J ) − [dk, pj ] + (dk,wj)L2(H|J )

)∆−1

j=0
; (δkj)

∆−1
j=0 ; 0

)]
=

= − (x,wk|J)L2(H)︸ ︷︷ ︸
=0

−(x, dk)L2(H|I\J ) + ξk + (x, dk)L2(H|I\J ) = ξk = [f, p̃k]∼ .

Finally assume that f = p̃k and g = p̃l. By virtue of Lemma 7.6 and the
definition of ̟ we have

[p̃k, p̃l]∼ = d̃k+l = [̟p̃k, ̟p̃l] .
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To show that ̟ is surjective, let f = (x; ξ; η;α) ∈ P(h) be given. Then

P̂ f −̟
(
(x|I\J +

∆−1∑

j=0

ηjdj |I\J ; 0; 0;α) +

∆−1∑

i=0

ηip̃i
)
∈ span{δ0, . . . , δ∆−1} .

Since ̟δj = δj , the assertion follows. The fact that ̟ is compatible with .
follows since all numbers λj are real, and thus dk = dk. Let f = (x; ξ; 0;α),

then ψ(h̃)f = x. On the other hand,

ψ(h)(̟f) = ψ(h)
(
x; ξ +

(
(x, dj)L2(H|I\J )

)∆−1

j=0
; 0;α

)
= x .

If f = p̃k, then ψ(h̃)f = w̃k and, by our choice of dk, also

ψ(h)(̟f) = ψ(h)(P̂ (pk − dk)) = χI\J(wk − dk) = w̃k .

Since, by its definition, ̟(δj) = δj for all j, we certainly have ̟|Xδ = idXδ .

The inclusion ̟(C̃) ⊆ C is also immediate from the definition. Assume that

̟(
∑∆−1

k=0 ηkp̃k) ∈ C. Since ̟ is compatible with ψ, this implies

ψ
(
P̂

∆−1∑

k=0

ηkpk − P̂
∆−1∑

k=0

ηkdk
)

= χI\J

∆−1∑

k=0

ηkwk − χI\J

∆−1∑

k=0

ηkdk ∈ L2(H |I\J) .

It follows that ηk = 0 for all k.

Step 2: We show that (̟×̟)(T (h̃)∩C(h̃)2) = T̂ ∩C(h)2. Let (f̃ ; g̃) ∈ T (h̃)∩
C(h̃)2 be given, and put (h̃; g̃) := Ψ̃ac(f̃ ; g̃). Then h̃, g̃ ∈ L2(H |I\J ) and h̃′ =
JHg̃. Define

h(t) :=

{
h̃(t) , t ∈ I \ J

h̃(s−) , t ∈ J
, k(t) :=

{
k̃(t) , t ∈ I \ J

0 , t ∈ J

Then h ∈ AC(I), k ∈ M(I)/=H
, h, k ∈ L2(H), and h′ = JHk, i.e. (h; k) ∈

Tmax(H). Thus there exists (f ; g) ∈ T (h) ∩ C(h)2 such that ψf = h, ψg = k
and, in fact Ψac(f ; g) = (h; k). We obtain

ψP̂f = χI\Jψf = h̃ = ψ̃f̃ = ψ̟f̃ ,

ψP̂ g = χI\Jψg = k̃ = ψ̃g̃ = ψ̟g̃ ,

and hence
̟f̃ − P̂ f,̟g̃ − P̂ g ∈ span{δ0, . . . , δ∆−1} .

Since P̂ δj = δj , we can assume without loss of generality that

(̟f̃ − P̂ f ;̟g̃ − P̂ g) =

∆−1∑

k=0

αk(δk; 0) + α(0; δ0) .

Our first task is to compute α = −[̟g̃ − P̂ g, p0]. Note that, since g ∈ C and
ψg|J = 0, we have P̂ g = g. Moreover,

[g, p0] = w0(s−)∗Jh(s−) − w0(s+)∗Jh(s+) = (1, 0)h(s−) − (1, 0)h(s+) =
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= (1, 0)h(s−) − (1, 0)h(s+) = [g̃, p̃0]∼ = [̟g̃,̟p̃0] .

If we write g̃ = (k̃; ξ; 0; 0), we get

̟g̃ = (k̃; ξ +
(
(k̃, dj)L2(H|I\J )

)∆−1

j=0
; 0; 0

)
.

Since

̟p̃0 =
(
− w0|J ;

(1
2
dj − (w0,wj)L2(H|J )

)∆−1

j=0
; (δ0j)

∆−1
j=0 ; 0

)

we see that
[̟g̃,̟p̃0] = ξ0 + (k̃, d0)L2(H|I\J ) = [̟g̃, p0] .

Hence α = 0, and thus ̟g̃ = P̂ g.
Let k ∈ {0, . . . ,∆− 2}. We have αk = −[̟f̃ − P̂ f, pk] = [P̂ f, pk]− [̟f̃, pk].

Write f̃ = (h̃; γ; 0; 0), then

̟f̃ =
(
h̃; γ +

(
(h̃, dj)L2(H|I\J )

)∆−1

j=0
; 0; 0

)
,

and hence
[̟f̃, pk] = γk + (h, dk)L2(H|I\J ) .

On the other hand

[P̂ f, pk] = [f, pk] − (h,wk)L2(H|J ) .

As g = P̂ g = ̟g̃,

[g, pk+1] = [̟g̃, pk+1] = ξk+1 + (k̃, dk+1)L2(H|I\J ) =

= ξk+1 + (h̃, dk)L2(H|I\J ) + dk+1(s
−)∗Jh(s−) .

Since h|J is constant, we have

−(h,wk)L2(H|J ) = wk+1(s−)∗Jh(s−) − wk+1(s
−)∗Jh(s−) .

Moreover,

[g, pk+1] − [f, pk] = wk+1(s−)∗Jh(s−) − wk+1(s+)∗Jh(s+) =

= wk+1(s
−)∗Jh(s−) − (h,wk)L2(H|J ) − wk+1(s+)∗Jh(s+) =

= w̃k+1(s
−)∗Jh(s−)+dk+1(s

−)∗Jh(s−)− (h,wk)L2(H|J )− w̃k+1(s+)∗Jh(s+) =

= [g̃, p̃k+1]∼ − [f̃ , p̃k]∼ + dk+1(s
−)∗Jh(s−) − (h,wk)L2(H|J ) =

= ξk+1 − γk + dk+1(s
−)∗Jh(s−) − (h,wk)L2(H|J ) .

We obtain
[f, pk] = γk + (h, dk)L2(H|I\J ) + (h,wk)L2(H|J ) ,

and thus
[P̂ f, pk] = γk + (h, dk)L2(H|I\J ) .

It follows that αk = 0. Finally, let k = ∆−1. If we keep in mind that g,w∆ ∈ C
and g̃, w̃∆ ∈ C̃, it follows that

[g,w∆] = (k,w∆)L2(H) = (k̃,w∆)L2(H|I\J )
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and

[g̃, w̃∆]∼ = (k̃, w̃∆)L2(H|I\J ) = (k̃,w∆)L2(H|I\J ) − (k̃, d∆)L2(H|I\J ) =

= (k̃,w∆)L2(H|I\J ) − (h̃, d∆−1)L2(H|I\J ) − d∆(s−)∗Jh(s−) .

Hence the same computation as above using the pair (w∆ + b; p∆−1 + d∆−1δ0)
yields α∆−1 = 0. Alltogether it follows that

(̟f̃ ;̟g̃) = (P̂ f ; P̂ g) ∈ T̂ .

We have shown the inclusion (̟ × ̟)(T (h̃) ∩ C̃2) ⊆ T̂ ∩ C2. Conversely, let

(f̃ ; g̃) ∈ T̂ ∩ C2 and choose (f ; g) ∈ T (h) with f̂ = P̂ f, ĝ = P̂ g. Since ker P̂ ⊆ C,
it follows that (f ; g) ∈ T (h) ∩ C2. Thus

(ψf̂ ;ψĝ) = (χI\Jψf ;χI\Jψg) ∈ Tmax(H |I\J) ,

and hence there exists (f̃ ; g̃) ∈ T (h̃) ∩ C̃2 with ψf̃ = ψf̂, ψg̃ = ψĝ. We have
therefore

(f̂ ; ĝ) − (̟f̃ ;̟g̃) ∈ T̂ ∩ ker(ψ × ψ) .

Since P̂ δj = δj and ̟δj = δj , it follows that (f̂ ; ĝ) ∈ (̟ ×̟)(T (h̃) ∩ C̃2).

Step 3: We deduce that (̟ ×̟)T (h̃) = T̂ . Certainly

(̟ ×̟)(T (h̃) ∩ (Xδ)2) = T̂ ∩ (Xδ)2 . (7.5)

Since ̟p̃0 = P̂ p0, we have (̟ ×̟)(p̃0; 0) ∈ T̂ . Let k ∈ {1, . . . ,∆ − 1}, then

(̟ ×̟)(p̃k; p̃k−1 + d̃k−1δ0) − (P̂ × P̂ )(pk; pk−1 + dk−1δ0)+

+(P̂ × P̂ )(dk; dk−1 + [dk−1, p0]δ0 − λkδ0) =
(
0; δ0(d̃k−1 − dk−1+

+[dk−1, p0] − λk)
)

= 0 .

Consider the case k = ∆. Note that, since the numbers bi are the same for h

and h̃, also the respective vectors b coincide. We obtain

(̟ ×̟)(w̃∆ + b; p̃∆−1 + d̃∆−1δ0) − (P̂ × P̂ )(w∆ + b; p∆−1 + d∆−1δ0)+

+(P̂ × P̂ )(d∆; d∆−1 + [d∆−1, p0]δ0 − λ∆δ0) =

=
(
̟w̃∆ − P̂w∆ + P̂d∆; δ0(d̃k−1 − dk−1 + [dk−1, p0] − λk

)
= 0 .

We have proved the inclusion ‘⊆’. If conversely, (f̂ ; ĝ) ∈ T̂ is given, choose

(f ; g) ∈ T (h) with P̂ f = f̂ , P̂ g = ĝ, and write (f ; g) = (f1; g1) + (f2; g2) where
(f1; g1) is the component in (4.15). By the above computations, we can realize
(f1; g1) as (̟ ×̟)(f̃ ; g̃), (f̃ ; g̃) ∈ T (h̃), up to a summand in T̂ ∩ C2. By Step 2

and (7.5), thus also (f̂ ; ĝ) ∈ (̟ ×̟)T (h̃).

Step 4: It remains to show that ̟ is compatible with boundary values. This,
however, is done with similar arguments as used in the previous discussion, and
we will not carry out the details.

❑

7.9 Remark. Let h be an elementary indefinite Hamiltonian of kind (A), and let
s+ ∈ (s, s+) be not inner point of an H-indivisible interval. Then the results
analogous to Proposition 7.3, Proposition 7.4 and Proposition 7.8 hold true.
This can be seen for example by applying an order reversing reparameterization,
cf. Lemma 5.19.
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8 Indefinite canonical systems

Let H be a Hamiltonian defined on the interval (s−, s+) which is singular at
both endpoints. Fix s0 ∈ (s−, s+). We say that H satisfies the condition (HS+)
or (HS−), if H |(s0,s+) or H |(s−,s0)(−x), respectively, satisfies (HS). Moreover,
we define (for the definition of φ(.) see Theorem 2.27)

∆+(H) := ∆(H |(s0,s+)), ∆−(H) := ∆(H |(s−,s0)(−x)) ,

φ+(H) := φ(H |(s0,s+)), φ−(H) := φ(H |(s−,s0)(−x)) .

By Section 2.3.c. and Lemma 3.12 these notions are well-defined, i.e. do not
depend on the choice of s0 ∈ (s−, s+).

8.1 Definition. A general Hamiltonian h is a collection of data of the following
kind:

(i) n ∈ N ∪ {0}, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1.

(ii) Hamiltonians Hi, i = 0, . . . , n, defined on the respective intervals
(σi, σi+1),

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with
bi,1 6= 0 in case öi ≥ 1,

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R, i = 1, . . . , n, where ∆i :=
max{∆+(Hi−1),∆−(Hi)},

(v) a finite subset E of {σ0, σn+1} ∪
⋃n
i=0(σi, σi+1),

which is assumed to be subject to the following conditions

(H1) H0 is regular at σ0 and, if n ≥ 1, singular at σ1. Hi is singular at
both endpoints σi and σi+1, i = 1, . . . , n − 1. If n ≥ 1, then Hn is
singular at σn.

(H2) We have α+
1 (Hi) > σi for i = 1, . . . , n−1. If Hn is singular at σn+1,

then also α+
1 (Hn) > σn.

(H3) We have ∆i < ∞, i = 1, . . . , n. Moreover, H0 satisfies (HS+), Hi

satisfies (HS−) and (HS+), i = 1, . . . , n− 1, and Hn satisfies (HS−).

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

(H5) Let i ∈ {1, . . . , n}. If α+
1 (Hi−1) < σi and α−

1 (Hi) > σi, then d1 = 0.
If additionally bi,1 = 0, then also d0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) 6= ∅ for i = 1, . . . , n − 1. If Hn

is singular at σn+1, then also E ∩ (σn, σn+1) 6= ∅. Moreover, E
contains all endpoints of indivisible intervals of infinite length.

(E2) No point of E is an inner point of an indivisible interval.

The general Hamiltonian h is called definite if n = 0, and indefinite otherwise.
It is called regular or singular, if Hn is regular or singular, respectively, at σn+1.
The common value of φ+(Hi−1) and φ−(Hi) will be denoted by φi. The subset
E is called an admissible partition.
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In order to shorten notation we shall write a Hamiltonian h which is given
by the data n, σ0, . . . , σn+1, H1, . . . , Hn, ö1, . . . , ön, bi,j , di,j , E as

h = (H, c, d)

where

• H represents the Hamiltonians Hi, including their number n and their
domains of definition (σi, σi+1),

• c represents the numbers öi and bi,j ,

• d represents the numbers di,j and the subset E.

Moreover, we set I :=
⋃n
i=0(σi, σi+1).

8.2 Remark. If just the data H and c are given, then it is elementary to check,
that one always can construct a finite subset E and numbers di,j , such that we
obtain an in general indefinite Hamiltonian.

8.3 Remark. Let us give an intuitive explanation of the definition of this notion.
Its purpose is to model an indefinite canonical system. So we deal with the
differential equation f ′ = JHf given on an interval (σ0, σn+1) which involves
some kind of singularities. These singularities are the points σi, i = 1, . . . , n.
The condition (H1) says that we deal with an initial value problem at σ0 and
that σ1, . . . , σn actually are singularities. Moreover, and this is the condition
(H2), no two singularities σi and σi+1 may lump together. The meaning of (H3)
is that the growth of Hi towards a singularity is, if measured appropriately, not
too fast. Moreover, (H4) is an interface condition at σi.

The numbers öi ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 model the part of the sin-
gularity σi which is concentrated at σi, whereas the numbers di,0, . . . , di,2∆i−1

model the part of this singularity which is in interaction with the local behaviour
around σi. The elements of E in the vicinity of σi determine what local here
means. The freedom of this interaction is, by (H5), restricted if α+

1 (Hi−1) < σi
and α−

1 (Hi) > σi.
Finally, the possibility that α+

1 (Hi−1) < σi, α
−
1 (Hi) > σi and bi,1 = 0

occurs only in the case of ’indivisible intervals of negative length’, i.e. elementary
indefinite Hamiltonians of kind (C).

In the following we will associate to a general Hamiltonian h a model which
consists of a space P(h) together with a conjugate linear involution, a linear
relation T (h) ⊆ P(h)×P(h) together with a boundary relation Γ(h), and a map
ψ(h) of P(h) onto spaces of functions on I. To do so, we shall split up h into
simpler pieces by cutting I at the points of E.

The next statement follows immediately on inspecting the definition of a
general Hamiltonian and of an elementary indefinite Hamiltonian. Therefore
we will not formulate its proof.

8.4 Lemma. Let h be a general Hamiltonian defined on I =
⋃n
l=0(σl, σl+1).

We write the corresponding admissible partition of I as E = {s0, . . . , sN+1},
s0 < s1 < . . . < sN+1. Then, for every l ∈ {0, . . . , N}, exactly one of the
following cases takes place:

(def) There exists i(l) ∈ {0, . . . , n} such that (sl, sl+1) ⊆ (σi(l), σi(l)+1),
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(indef) There exists i(l) ∈ {1, . . . , n} such that σi(l) ∈ (sl, sl+1) and σi 6∈
(sl, sl+1), i 6= i(l).

If for some l ∈ {0, . . . , N} we are in the case (def), then

hl := Hi(l)|(sl,sl+1)

is a Hamiltonian which is regular at sl. It is also regular at sl+1, unless h is
singular and l = N .

If h is singular and l = N , then we are in the case (def) and hN is singular
at sN+1.

If we are in the case (indef), then the data (for the definition of Nα see
(2.21))

Nφi(l)
Hi(l)−1|(sl,σi(l))N

T
φi(l)

, Nφi(l)
Hi(l)|(σi(l),sl+1)N

T
φi(l)

,

öi(l), bi(l),1, . . . , bi(l),öi(l)+1, di(l),0, . . . , di(l),2∆i(l)−1 ,

constitutes an elementary indefinite Hamiltonian hl. Thereby hl is of kind (B)
or (C) if and only if sl = α+

1 (Hi−1), sl+1 = α−
1 (Hi). If this happens we are in

case (C) if and only if b1 = 0.
Otherwise it is of kind (A).

8.5 Definition. Let h be a general Hamiltonian defined on I =
⋃n
l=0(σl, σl+1).

Let the (definite or indefinite) Hamiltonians hl be defined with as in Lemma
8.4.

If l ∈ {0, . . . , N} is in the case (indef), we define a boundary triplet
(P l, T l,Γl) as (for the definition of Nα see (2.21))

P l := P(hl), T l := T (hl),Γl :=

(
N−φi(l)

0

0 N−φi(l)

)
Γ(hl) .

If l ∈ {0, . . . , N} is in the case (def) put

(P l, T l,Γl) := (L2(hl), Tmax(h
l),Γ(hl)) .

The boundary triplet associated to h is defined as

(
P(h), T (h),Γ(h)

)
:=

N⊎

l=0

(
P l, T l,Γl

)
. (8.1)

Moreover, on P(h) = P0 ⊕ . . . ⊕ PN we define a conjugate linear involution
. by componentwise application of the respective involutions .l of P l. Also, a
linear map ψ(h) : P(h) → M(I)/=H

can be defined, if we canonically identify

M(I)/=H
with

∏N
l=0 M(I ∩ (sl, sl+1))/=l

:

f ≃
(
f |I∩(s0,s1), . . . , f |I∩(sN ,sN+1)

)
,

by componentwise application of ψl := id : P l → M(I ∩ (sl, sl+1))/=l
, for l in

the case (def), and

N−φi(l)
ψl : P l → M(I ∩ (sl, sl+1))/=l

for l in the case (indef).
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We are now in the position to formulate the main results of this paper, which
show the complete analogy of the operator theory of the model of a general
Hamiltonian in comparison to the classical (positive definite) case. They are
easily obtained by putting together what we have established so far. Let us first
deal with the regular case.

8.6 Theorem. Let h be a regular general Hamiltonian. Then P(h) is a Pon-
tryagin space with negative index

ind− P(h) =

n∑

i=1

(
∆i + [

ö

2
]
)

+
∣∣{1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣∣

and . is a conjugate linear isometric involution of P(h). The map ψ(h) is real
with respect to . and maps P(h) onto a subspace of M(I)/=H

which contains
L2(H) with codimension

∑n
i=1 ∆i.

The triple (P(h), T (h),Γ(h)) is a boundary triplet of defect 2 which satisfies
the condition (E). The adjoint

S(h) := T (h)∗

is a completely nonselfadjoint symmetric operator, satisfies the condition (CR)
and has the property that r(S(h)) = C. Its defect index is (2, 2) and mul(Γ(h)) =
{0} unless h consists of just one elementary indefinite Hamiltonian of kind (B)
or (C) or is positive definite and consists of just one indivisible interval. In
these cases the defect index of S(h) is (1, 1) and mul(Γ(h)) 6= {0}.

Proof. The asserted formula for the negative index of P(h) is immediate from
Proposition 4.13. The fact that . is a conjugate linear isometric involution and
is compatible with boundary values is obvious from the definition and the fact
that Nφ is real. The assertion concerning ψ(h) follows from Proposition 4.13.

We show that (P(h), T (h),Γ(h)) is a boundary triplet of defect 2. By The-
orem 2.18 and Theorem 5.1 each summand (P l, T l,Γl) has this property. If
N = 0, we are done. Hence assume that N ≥ 1. In order to apply Proposition
6.2, we have to show that mul Γ0 and mulΓ1 do not coincide unless both equal
{0}. However, by Lemma 4.19, we have

mul Γj = span
{
(Jξφj

, Jξφj
)
}
, j = 0, 1 ,

where φ0 is the type of the indivisible interval ending at s1 and φ1 is the type of
the indivisible interval beginning at s1. Since, by our choice, s1 is not contained
in an indivisible interval, we must have φ0 6= φ1 mod π. It now follows from
Proposition 6.2 that

(P0, T 0,Γ0) ⊎ (P1, T 1,Γ1)

is a boundary triplet of defect 2 with mul(Γ0 ⊎Γ1) = {0}. Thus we may step by
step add the remaining summands (P l, T l,Γl), and, finally, obtain a boundary
triplet of defect 2.

Note that we have mul Γ(h) = {0} unless N = 0 and mul Γ0 6= {0}. This is
the case if and only if h = h0 is either elementary indefinite of kind (B), (C), or
is positive definite and consists of just one indivisible interval. Our assertion on
the defect index of S(h) follows.
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Our next task is to show that mulS(h) = {0}. If N = 0, this is granted by
Corollary 5.7. Assume that N ≥ 1. Let (0; g) ∈ S(h) and write g = g0+ . . .+gN
according to P(h) = P0 ⊕ . . . ⊕ PN . Then (0; gl) ∈ T (hl) and there exist
a1, . . . , aN ∈ C2 with

((0; g0); (0; a1)) ∈ Γ0, ((0; g1); (a1; a2)) ∈ Γ1, . . . , ((0; gN); (aN ; 0)) ∈ ΓN .

It follows from Corollary 2.25, Proposition 5.16 and our definition of Γl that

a1 ∈





span{Jξφ+
0
} ,

α+
1 (H|(s0 ,s1))<s1,

φ+
0 type of (α+

1 (H|(s0,s1)),s1)

{0} , α+
1 (H |(s0,s1)) = s1

a1 ∈





span{Jξφ−
1
} ,

α−
1 (H|(s1,s2))>s1,

φ−
1 type of (s1,α

−
1 (H|(s1 ,s2)))

{0} , α−
1 (H |(s1,s2)) = s1

Since s1 is not contained in an indivisible interval, we have φ+
0 6= φ−1 mod π,

and thus a1 = 0. We see that (0; g0) ∈ S(h0) and thus that g0 = 0 (see Theorem
5.1). We now proceed inductively, to obtain g1 = . . . = gN = 0.

By Theorem 2.18 and Theorem 5.1 each summand in (8.1) satisfies (CR) and
(E). By Lemma 6.7 these properties transfer to their sum. The same sources
imply that ran(S(h) − z) is closed for all z ∈ C. Due to the property (E) we
have ker(S(h) − z) = {0}, z ∈ C, and thus conclude that r(S(h)) = C. An
application of Lemma 5.11 shows that S(h) is completely nonselfadjoint.

❑

In the case that h is singular we obtain:

8.7 Theorem. Let h be a singular general Hamiltonian. Then P(h) is a Pon-
tryagin space with negative index

ind− P(h) =
n∑

i=1

(
∆i + [

ö

2
]
)

+
∣∣{1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣∣

and . is a conjugate linear isometric involution of P(h). The map ψ(h) is real
with respect to . and maps P(h) onto a subspace of M(I)/=H

which contains
L2(H) with codimension

∑n
i=1 ∆i.

The triple (P(h), T (h),Γ(h)) is a boundary triplet of defect 1 which satisfies
(E). The adjoint S(h) := T (h)∗ is a symmetric operator with defect index (1, 1)
unless h is positive and consists of just one indivisible interval, in which case
S(h) is selfadjoint.

Proof. This result is established similar as Theorem 8.6, by putting together
our previous results. Only minor changes are necessary in the proof that the
pasting is well-defined and that mulS(h) = {0}, however, we will not carry this
out in detail.

❑

8.8 Remark. The operator S(h) is also completely nonselfadjoint. This, however,
will be seen only later.
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8.9 Remark. In the case that h does not consist of just one indivisible intervall -
by this we mean either a definite indivisible intervall or an elementary indefinite
Hamiltonian of kind (B) or (C) - we are going to define a mapping Ψac : T (h) →
AC(I)×M(I)/

=
on all of I. We will also write Ψac(h) if we want to emphasize

the underlaying Hamiltonian.
To do so, let (f ; g) = ((f0 + · · · + fN); (g0 + · · · + gN )) ∈ T (h). By our

assumption Γ(h) is a function. So let
a0 := Γ(h)((f ; g))1(∈ C2), and let a1, . . . , aN+1 ∈ C2 be such that

((fl; gl); (al; al+1)) ∈ Γl, l = 0, . . . , N . We define Ψac on (sl, sl+1) inductively for
l = 0, . . . , N . Note that by Remark 6.6 the numbers a0, . . . , aN+1 are uniquely
determined by (f ; g).

If hl is positive and no indivisible interval, then according to Remark 2.2
there is a unique f̂l ∈ AC(sl, sl+1) such that f̂ ′

l = JHi(l)gl a.e. on (sl, sl+1).

We define Ψac
l ((f ; g)) := (f̂l; gl). By the definition of boundary values for the

definite situation we have al+1 = Ψac
l ((f ; g))1(sl+1) in case of a regular hl.

If hl is indefinite of kind (A), then we set Ψac
l ((f ; g)) := ((N−φi(l)

·) ×

(N−φi(l)
·)) ◦Ψac(hl)((fl; gl)), where Ψac(hl) is the function definied as in (4.17)

for the elementary indefinite Hamiltonian hl and where N−φi(l)
· maps a two-

vector function f to N−φi(l)
f . Again by definition al+1 = Ψac

l ((f ; g))1(sl+1).

For a positive hl being an indivisible interval of type φ, i.e. Hi(l)(t) =
h(t)ξφξ

T
φ , t ∈ (sl, sl+1), we set

Ψac
l ((f ; g))(x) := ((ξTφ fl) · ξφ + (ξTφ gl)(

∫ x

sl

h) · Jξφ + γJξφ; gl(x)),

where γ ∈ C is chosen so that al = Ψac
l ((f ; g))1(sl). By (2.2) this is possible

and, in case of a regular hl, we have al+1 = Ψac
l ((f ; g))1(sl+1). Moreover, by

(2.1) Ψac
l ((f ; g))′1 = JHi(l)Ψ

ac
l ((f ; g))2.

If hl is indefinite of kind (B) or (C), we have

Nφi(l)
Hi(l)−1(t)N

T
φi(l)

=

(
0 0
0 h(t)

)
, t ∈ (sl, σi(l))

and

Nφi(l)
Hi(l)(t)N

T
φi(l)

=

(
0 0
0 h(t)

)
, t ∈ (σi(l), sl+1).

Moreover, using the notation from Definition 4.3 and Definition 4.5 we write fl
as λp0 + r and gl as µp0 + s, where λ, µ ∈ C and r, s are zero (case (C)) or are
sums of certain δj (case (B)). Note that (Nφi(l)

al)2 = (Nφi(l)
al+1)2 = λ.

For t ∈ (sl, σi(l)) we set

Ψac
l ((f ; g))(t) := ((N−φi(l)

·) × (N−φi(l)
·)) ◦ (

(
(Nφi(l)

al)1 − µ(
∫ t
sl
h)

λ

)
;

(
0
µ

)
),

and for t ∈ (σi(l), sl+1)

Ψac
l ((f ; g))(t) := ((N−φi(l)

·)× (N−φi(l)
·))◦ (

(
(Nφi(l)

al+1)1 − µ(
∫ t
sl+1

h)

λ

)
;

(
0
µ

)
).
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One easily sees that Ψac
l ((f ; g))′1 = JHi(l)−1Ψ

ac
l ((f ; g))2 on (sl, σi(l))

and Ψac
l ((f ; g))′1 = JHi(l)Ψ

ac
l ((f ; g))2 on (σi(l), sl+1) and that al+1 =

Ψac
l ((f ; g))1(sl+1).

Setting Ψac(f ; g)(t) := Ψac
l (f ; g)(t) for t ∈ I ∩ (sl, sl+1) we have defined

Ψac : T (h) → AC(I) ×M(I)/
=

such that Ψac((f ; g))′1 = JHΨac((f ; g))2.
Moreover, al = Ψac((f ; g))1(sl) for l = 0, . . . , N and, in the regular case,

also for l = N + 1. In particular, Ψac((f ; g))1(s0) = Γ(h)(f ; g)1 and, in case of
a regular general Hamiltonian, Ψac((f ; g))1(sN+1) = Γ(h)(f ; g)2.

Finally, it is easy to verify that Ψac is linear and commutes with conjugation.

The above construction of (P(h), T (h),Γ(h)) one first sight essentially de-
pends on the points E, which, in particular, determine the number of pieces,
into which one cuts the general Hamiltonian h. But if one choses different points
E and one changes the numbers di,j accordingly, we will see that we end up with
an isomorphic copy of the originally boundary triplet. Moreover, it is possible
to get an isomorphic copy of the originally boundary triplet if we reparametrize
the orginal Hamiltonian. Therefore, we define

8.10 Definition. Two general Hamiltonians h = (H, c, d) and h̃ = (H̃, c̃, d̃)
having the same number of singularities are called equivalent, if there exists an
absolutely continuous and increasing bijection ϕ from [σ̃0, σ̃n+1] onto [σ0, σn+1]
such that ϕ−1 is absolutely continuous and ϕ(σ̃i) = σi, and if there exists an
isometric isomorphism ̟ : P(h) → P(h̃), such that

(i) (̟, id) is an isomorphism of the boundary triplets (P(h), T (h),Γ(h)) and
(P(h̃), T (h̃),Γ(h̃)).

(ii) For all x ∈ P(h) we have

ψ(h̃)(̟(x)) = ψ(h)(x) ◦ ϕ . (8.2)

Clearly, this defines an equivalence relation on the set of all general Hamil-
tonians.

8.11 Proposition. Let h = (H, c, d) be a general Hamiltonian with the admis-
sible partitions E of I. Moreover, let Ẽ be another admissible partition of I.
Then there exist numbers d̃i,j such that

h̃ = (H, c, d̃) ,

is equivalent to h, where d̃ stands for the data d̃i,j and Ẽ. The corresponding
mapping ϕ (see Definition 8.10), hereby, is the identity on [σ0, σn+1], and the
isomorphism ̟ satisfies ((f ; g) ∈ T (h))

Ψac(h)(f ; g) = Ψac(h̃)(̟(f);̟(g)). (8.3)

Proof. With E and Ẽ also E ∪ Ẽ is an admissible partition of I. Since being
equivalent is an equivalence relation, it is enough to prove the present statement
for the case that E ⊆ Ẽ. Since an admissible partition is a finite set, it is for
this task enough to consider the case that Ẽ = E ∪ {s}, s 6∈ E.

Write E = {s0, . . . , sN+1}, s0 < s1 < . . . < sN+1, and assume that Ẽ =
E ∪ {s} and that l ∈ {0, . . . , N} with sl < s < sl+1.
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Case 1, (def): Assume that l is in the case (def). Then the obvious iden-
tification ̟l of P l = L2(Hl|(sl,sl+1) with L2(Hl|(sl,s)) ⊕ L2(Hl|(s,sl+1)) is an
isomorphism which satisfies (i) and (ii), cf. Lemma 6.9. Let

(
P(h), T (h),Γ(h)

)
=

N⊎

l=0

(P l, T l,Γl) .

If we put d̃i,j := di,j , we have

(
P(h̃), T (h̃),Γ(h̃)

)
= (P0, T 0,Γ0) ⊎ . . . ⊎ (P l−1, T l−1,Γl−1)⊎

⊎
[
(L2(Hl|(sl,s)), Tmax(Hl|(sl,s)),Γ(Hl|(sl,s)))⊎

⊎(L2(Hl|(s,sl+1)), Tmax(Hl|(s,sl+1)),Γ(Hl|(s,sl+1)))
]
⊎

⊎(P l+1, T l+1,Γl+1) ⊎ . . . ⊎ (P l−1, T l−1,Γl−1) ⊎ . . . ⊎ (PN , TN ,ΓN )

It follows that (cf. Remark 6.8)

(̟, id) := (idP0 , id) ⊎ . . . ⊎ (idPl−1 , id) ⊎ (̟l, id) ⊎ (idPl+1 , id) ⊎ . . . ⊎ (idPN , id)

is an isomorphism of (P(h), T (h),Γ(h)) and (P(h̃), T (h̃),Γ(h̃)) which satisfies
the requirements in Definition 8.10.

Finally, relation (8.3) follows from the corresponding property of the map-
ping ̟l which, in turn, is verified in an obvious way.

Case 2, (indef): Assume that l is in the case (indef). Note that, since s is not
inner point of an indivisible interval, the elementary indefinite Hamiltonian hl

must be of kind (A). Let us first consider the case that s < σ(i(l)). By Proposi-
tion 7.4 and Proposition 7.8 there exists an elementary indefinite Hamiltonian

h̃l which consists of data of the form

Hl|(s,σi(l)), Hl+1|(σi(l),sl+1), öi(l), bi(l),1, . . . , bi(l),öi(l)+1,

d̃i(l),0, . . . , d̃i(l),2∆i(l)−1 ,

and an isomorphism ̟l of P l onto L2(Hl|(sl,s)) ⊕ P(h̃l) which satisfies the
requirements in Definition 8.10. Moreover, in view of the definition of Ψac

(see Remark 8.9) (8.3) follows in a straight forward way from Proposition 7.4
and Proposition 7.8.

If s ∈ (σi(l), sl+1), we refer to Remark 7.9 to obtain the same conclusion.
The proof is finished similar as in Case 1.

❑

Inspecting the previous proof, we obtain without extra work the following
corollary.

8.12 Corollary. Let h = (H, c, d) be a general Hamiltonian. Let s ∈ I be not
an inner point of an indivisible interval, and let i be such that σi < s < σi+1.
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If we set

σ1
k := σk, k = 0, . . . , i, σ2

k := σk+i, k = 1, . . . , n− i+ 1, σ1
i+1 := s =: σ2

0 ;

H1
k := Hk, k = 0, . . . , i− 1, H1

i := Hi|(σi,s),

H2
k := Hk+i, k = 1, . . . , n− i, H2

0 := Hi|(s,σi+1);

ö1k := ök, k = 1, . . . , i, ö2k := ök+i, k = 1, . . . , n− i;

b1k,j := bk,j , k = 1, . . . , i, b2k,j := bk+i,j , k = 1, . . . , n− i;

E1 := (E ∩ [σ0, s)) ∪ {s}, E2 := (E ∩ (s, σn+1]) ∪ {s}

d1
k,j := dk,j , k = 1, . . . , i− 1, d2

k,j := dk+i,j , k = 2, . . . , n− i;

then there exist numbers d1
i,j and d2

1,j, such that building with these data the

general Hamiltonians h1 and h2 on [σ0, s] and [s, σn+1], respectively, there
exists an isomorphism (̟, id) of the boundary triplet (P(h), T (h),Γ(h)) onto
(P(h1), T (h1),Γ(h1)) ⊎ (P(h2), T (h2),Γ(h2)) such that for all x ∈ P(h) we have

(ψ(h̃1) × ψ(h̃2))(̟(x)) = ψ(h)(x) ,

and such that ((f ; g) ∈ T (h))

Ψac(h)(f ; g) = (Ψac(h1) × Ψac(h2))(̟(f);̟(g)).

At the end of this section we consider another situation when two general
Hamiltonians are equivalent.

8.13 Proposition. Let h = (H, c, d) and h̃ = (H̃, c̃, d̃) be two general Hamilto-
nians having the same number of singularities.

If there is an absolutely continuous and increasing bijection ϕ of [σ̃0, σ̃n+1]
onto [σ0, σn+1] such that also ϕ−1 is absolutely continuous, ϕ(σ̃i) = σi and

H̃i = (Hi ◦ ϕ) · ϕ′, ˜̈oi = öi; b̃i,1 = bi,1, . . . , b̃i,öi
= bi,öi

;

ϕ(Ẽ) = E and

d̃i,0 = di,0, . . . , d̃i,2∆i−2 = di,2∆i−2; d̃i,2∆i−1 − b̃i,öi+1 = di,2∆i−1 − bi,öi+1 ,

then h and h̃ are equivalent. Moreover, if these Hamiltonians do not consist of
only one indivisible intervall, then ((f ; g) ∈ T (h))

Ψac(h)(f ; g) ◦ (ϕ× ϕ) = Ψac(h̃)(̟(f);̟(g)). (8.4)

Proof. Assume that there is a bijection ϕ of [σ̃0, σ̃n+1] onto [σ0, σn+1] such that
ϕ(σ̃i) = σi with the indicated properties.

Both boundary triplets, (P(h), T (h),Γ(h)) and (P(h̃), T (h̃),Γ(h̃)), are ob-
tained as pasting of elementary indefinite Hamiltonians. As we have ϕ(Ẽ) = E
these building blocks have their counterpart. By our assumptions we can apply
Proposition 5.17 to each of the building blocks, and obtain for each of them an
isomorphism which has the desired properties. Putting together these isomor-
phisms by means of Remark 6.8 yields the equivalence of h and h̃.

The relation (8.4) is also shown by the corresponding property for the build-
ing blocks, which is elementary but a bit lengthy. We will not work out the
details.

❑

100



References

[A] N.I.Achieser: The classical moment problem and some related questions in anal-
ysis, Oliver & Boyd, Edinburgh 1965.

[AG] N.I.Achieser, I.M.Glasmann: Theorie der linearen Operatoren im Hilbertraum,
Akademie Verlag 1968.

[Ad] J.Adam: Critical layer singularities and complex eigenvalues in some differen-
tial equations of Mathematical Physics, Physics Report 142 (1986), 263-356.

[AGHH] S.Albeverio, F.Gesztesy, R.Hoegh-Krohn, H.Holden: Some exactly solvable
models in quantum mechanics, Springer, New York 1988.

[AlKu] S.Albeverio, P.Kurasov: Singular perturbations of differential operators, Cam-
bridge Univ. Press 1999.

[AD] D.Z.Arov, H.Dym: J-inner matrix functions, interpolation and inverse prob-
lems for canonical systems I. Foundations, Integral Equations Operator The-
ory 29 (1997), 373-454.

[Ar] V.I.Arnol’d: Mathematical methods of classical mechanics, Springer, New York
1989.

[At] F.V.Atkinson: Discrete and continuous boundary problems, Academic Press,
New York 1964.

[BDL] B.Bodenstorfer, A.Dijksma, H.Langer: Dissipative eigenvalue problems for a
Sturm-Liouville operator with a singular potential, Proc. Roy. Spc. Edinburgh
Sect. A 130 (2000), no. 6, 1237-1257.

[dB] L.de Branges: Hilbert spaces of entire functions, Prentice-Hall, London 1968.

[D] V.Derkach: On generalized resolvents of hermitian relations in Krein spaces,
Journal of Mathematical Sciences 97 (1999), 4420-4460.

[DHMS] V.Derkach, S.Hassi, M.Malamud, H.de Snoo: Boundary relations and their
Weyl families, Working Papers of the University of Vaasa, 2004.

[vDT] J.F.van Diejen, A.Tip: Scattering from generalized point interactions using
selfadjoint extensions in Pontryagin spaces, J. Math. Phys. 32 (1991), 630-
641.

[DL] A.Dijksma, H.Langer: Operator theory and ordinary differential operators,
Fields Inst. Monogr. 3, Amer. Math. Soc., Providence, RI, 1996.

[DLSZ] A.Dijksma, H.Langer, Yu.Shondin, C.Zeinstra: Self-adjoint operators with in-
ner singularities and Pontryagin spaces, Oper. Theory Adv. Appl. 118 (2000),
105-175.

[DS1] A.Dijksma, H.de Snoo: Selfadjoint extensions of symmetric subspaces, Pacific
J. Math. 54 (1974), 71-99.

[DS2] A.Dijksma, H.de Snoo: Symmetric and selfadjoint relations in Krein spaces I,
Oper. Theory Adv. Appl. 24 (1987), 145-166.

[F] H.Flanders: Differential forms with applications to the physical sciences, Dover
Publ., New York 1989.

[GeS] F.Gesztesy, B.Simon: Rank-one perturbations at infinite coupling, J. Funct.
Anal. 128 (1995), 245-252.

[GGK] I.Gohberg, S.Goldberg, M.A.Kaashoek: Classes of linear operators. Volume I,
Oper. Theory Adv. Appl. 49, Birkhäuser Verlag, Basel 1990.
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