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SUBSPACES OF DE BRANGES SPACES

WITH PRESCRIBED GROWTH

c© A. BARANOV, H. WORACEK

The growth properties of de Branges spaces and their subspaces are studied.
It is shown that, for each given pair of growth functions λ(r) = O(r)
and λ1 = o(λ), there exist de Branges spaces of growth λ that have a

de Branges subspace of growth λ1. This phenomenon cannot occur for a
class of de Branges spaces that, in a certain sense, behave regularly along

the real axis.

§1. Introduction

A de Branges space is a Hilbert space 〈H, (., .)〉 with the following proper-
ties:

(dB1) The elements of H are entire functions, and for each w ∈ C the
point evaluation F 7→ F (w) is a continuous linear functional on H.

(dB2) If F ∈ H, then F#(z) := F (z̄) also belongs to H, and ‖F#‖ = ‖F‖.
(dB3) If w ∈ C \ R and F ∈ H, F (w) = 0, then

z − w̄

z − w
F (z) ∈ H and

∥

∥

∥

z − w̄

z − w
F (z)

∥

∥

∥
=

∥

∥F
∥

∥.

The theory of such Hilbert spaces of entire functions was founded by L.
de Branges (cf. [dB]). It was further developed by many authors (see, e.g.,
[B1, B2, GM, KWW2, KW1, KW3, RR]), and found applications in various
contexts (see, e.g., [BP1, DK1, DK2, Li, OS, Re, PW]).

Throughout this paper it is assumed that a de Branges space is additionally
subject to the condition

(Z) For every t ∈ R there exists F ∈ H with F (t) 6= 0.

In most respects, this assumption causes no loss of generality (cf. [dB, Prob-
lem 44; KW3, Lemma 2.4]).

Key words: de Branges space, growth function, de Branges subspace.
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Prominent examples of de Branges spaces are the so-called Paley–Wiener
spaces. For a real positive number a, let PWa be the set of all entire func-
tions of exponential type at most a whose restriction to R belongs to L2(R).
Endowed with the norm ‖F‖ := ‖F |R‖L2(R), the space PWa becomes a
de Branges space.

In complex analysis, in particular in the theory of entire functions, the
notion of growth plays a central role. A function λ : R+ → R+ is called a
growth function if it satisfies the following axioms:

(gf1) The limit ρ := limr→∞
logλ(r)

log r exists and is a finite nonnegative

number.
(gf2) For all sufficiently large values of r, the function λ is differentiable,

and limr→∞ r λ′(r)
λ(r) = ρ.

(gf3) log r = o(λ(r)).

Conditions (gf1) and (gf2) ensure that Valiron’s theory of proximate orders is
available, cf. [L, I.12] or [LG, I.6], as well as the theory of value distribution
of meromorphic functions, cf. [Ru]. Condition (gf3), saying that λ grows
sufficiently rapidly, is imposed to exclude trivial cases and is not an essential
restriction. Unless specified, “O”- and “o”-relations are always understood for
r → ∞.

Classical examples of growth functions are presented by functions of the
form

λ(r) = rα(log r)β,

where α, β ∈ R, α > 0.
Since the elements of a de Branges space are entire functions, it is a natural

task to bring together the concepts of a de Branges space and a growth func-
tion, i.e., to study de Branges spaces from the viewpoint of growth properties
of their elements. For general growth functions, a systematic study was initi-
ated in [KW3]. For the particular case of exponential growth, i.e., λ(r) = r,
such investigations go back to the very beginning of the theory of de Branges
spaces (see, e.g., [dB]).

Let us briefly describe the main theme of our present work. If F is an entire
function and λ is a growth function, the λ-type of F is defined as the number

σλ
F := lim sup

|z|→∞

log+ |F (z)|
λ(|z|) ∈ [0,∞].

If H is a de Branges space and λ is a growth function, the λ-type of H is the
number

σλ
H := sup

F∈H
σλ

F ∈ [0,∞].
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A closed linear subspace L of a de Branges space H is called a dB-subspace
if L itself, with the norm inherited from H, is a de Branges space. The set of
all dB-subspaces of a given space H will be denoted by SubH. One of the most
important results in the theory of de Branges spaces, the so-called Ordering
Theorem, states that SubH is totally ordered with respect to inclusion; see
[dB, Theorem 35], where an even stronger version is proved.

We address our paper to the following question: Let λ be a growth function
and let H be a de Branges space of finite and positive λ-type. Do there exist
subspaces L ∈ SubH of strictly smaller growth?

Our answer is twofold. First, we show that, given a pair (λ, λ1) of growth
functions with

λ1(r) = o(λ(r)) and λ(r) = O(r),

there exists a de Branges space H of finite and positive λ-type, such that
one of its dB-subspaces is of finite and positive λ1-type, cf. Theorem 3.6. It
should be emphasized that, by [KW3, Theorem 3.10], the second condition
is in a sense necessary for the existence of subspaces with smaller growth,
see Remark 3.7. Second, for a de Branges space H with finite and positive
λ-type we give a condition ensuring that no infinite dimensional dB-subspace
can be of finite λ1-type for any growth function λ1 with λ1(r) = o(λ(r)), see
Theorem 4.1.

For the proof of these results we apply methods of various kinds. On the
one hand, we use hard analysis, e.g., growth estimates; on the other hand, we
employ more functional analytic tools, e.g., the theory of symmetric and semi-
bounded de Branges space or the notion of transfer matrices for dB-subspaces.
A cornerstone for proving the existence of examples of dB-subspaces with
prescribed smaller growth is to establish the existence of de Branges spaces H
of finite and positive λ-type (where λ(r) = O(r)) that have the property that
the constant function 1 belongs to H + zH (cf. Theorem 3.1), a result which
is of interest on its own right. For the case where λ(r) = rρ, a result similar
to Theorem 3.1 was proved in [BP2] by different methods.

§2. Preliminaries

In this section we recall some basic facts concerning de Branges spaces
and set up some notation. Moreover, we provide a couple of results which
supplement [KW3], and which will be used later on.

a. The Hermite–Biehler class. It is a basic fact that a given de Branges
space H is completely determined by a single entire function. We say that an
entire function E belongs to the Hermite–Biehler class HB if

|E#(z)| < |E(z)|, z ∈ C
+, (2.1)
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and E has no real zeros. For E ∈ HB, define

H(E) :=
{

F entire :
F

E
,
F#

E
∈ H2(C+)

}

,

where H2(C+) denotes the Hardy class in the upper half-plane, see, e.g.,
[RosR]. Moreover, we define

‖F‖2
E :=

∫R∣

∣

∣

F (t)

E(t)

∣

∣

∣

2
dt, F ∈ H(E).

Then H(E) is a de Branges space. Conversely, every nonzero de Branges
space can be obtained in this way. For example, the Paley–Wiener space PWa

is obtained as H(e−iaz).
By the axiom (dB1), a de Branges space H is a reproducing kernel Hilbert

space. If H is a de Branges space and E ∈ HB is such that H = H(E), then
the reproducing kernel K(w, ·) of H can be expressed in terms of E:

K(w, z) =
E(z)E#(w̄) − E(w̄)E#(z)

2πi(w̄− z)
. (2.2)

2.1. Remark. (i) In the literature, the condition that E has no real zeros is
often dropped from the definition of HB. This corresponds to dropping the
condition (Z) in our definition of de Branges space. As we have already
remarked, dropping this condition is no essential gain in generality.

(ii) Condition (2.1) in the definition of HB means that the kernel K(w, z) is
positive semidefinite, i.e., that each of the quadratic forms (z1, . . . , zn ∈
C)

n
∑

i,j=1

K(zj, zi)ζiζj

is positive semidefinite. This is a classical result of analysis, see [P].
(iii) With an entire function E we associate a pair of entire functions A and

B:

A :=
E + E#

2
, B := i

E − E#

2
. (2.3)

Then A and B are real entire functions (we say that entire function F
is real if it is real on the real axis or, equivalently, if F = F#), and we
have E = A − iB. If E ∈ HB, then A and B have only real zeros, and
these zeros are simple and interlace, that is, between every two zeros of
A there is a zero of B and vice versa.

(iv) The Nevanlinna class N0 is defined as the set of all functions q that are
analytic in C \ R, satisfy q = q#, and have nonnegative imaginary part
in C+. This class of functions is closely related to HB. More precisely,
let E be an entire function and write E = A − iB with A and B as in
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(2.3). Then E ∈ HB if and only if E has no real zeros, is not constant,
and B

A
∈ N0.

b. The growth of H(E).

2.2. Remark. In the context of growth properties of de Branges spaces, it is
a basic result that the growth of any function F ∈ H(E) is governed by the

growth of E. In fact, we always have σλ
H = σλ

E , see [KW3, Theorem 3.4].

We come to the announced generalizations of two results of [KW3]. They
will be deduced from the next proposition, which also provides a more general
viewpoint on some results concerning the exponential growth of the so-called
Nevanlinna matrices, see, e.g., [BP1, Theorem 4.2; BP2, Theorem 4.8; K1].

2.3. Proposition. Let A, B be entire functions such that B
A

∈ N0, and let λ

be a growth function. Then σλ
A = σλ

B .

Proof. If both σλ
A and σλ

B are equal to ∞, we are done. We show that σλ
A < ∞

implies σλ
B 6 σλ

A. Since with B
A

also −A
B

belongs to N0, this will yield the
desired conclusion.

Since the function B
A belongs to N0, it has, by the Herglotz theorem, an

integral representation of the form

B(z)

A(z)
= az + b +

∫R ( 1

t − z
− t

t2 + 1

)

dµ(t), z ∈ C
+,

where a > 0, b ∈ R, and µ is a Borel measure on R such that
∫R(t2 +

1)−1dµ(t) < ∞. In the present case, in fact, µ is a discrete measure with
point masses at the zeros of A. Hence,

∣

∣

∣

B(z)

A(z)

∣

∣

∣
=

∣

∣

∣
az + b +

∫R tz + 1

(t − z)(t2 + 1)
dµ(t)

∣

∣

∣

6

∣

∣

∣
az + b + z

∫R dµ(t)

t2 + 1

∣

∣

∣
+

∣

∣

∣
(z2 + 1)

∫R dµ(t)

(t − z)(t2 + 1)

∣

∣

∣
, z ∈ C

+.

Therefore,

log |B(z)| 6 log |A(z)|+ C1 log(|z|+ 2) + log+ 1

| Im z|
for all z ∈ C \ R. In particular,

log |B(z)| 6 log |A(z)|+ C1 log(|z|+ 2), | Im z| > 1. (2.4)
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Now, let | Im z| < 1. Then, by the subharmonicity of log |B|,

log |B(z)| 6
1

2π

2π
∫

0

log |B(z + eiφ)| dφ

6
1

2π

2π
∫

0

log |A(z + eiφ)|dφ + C2 log(|z|+ 2)

+
1

2π

2π
∫

0

log+ 1

| Im(z + eiφ)| dφ.

Clearly,

1

2π

2π
∫

0

log+ 1

| Im(z + eiφ)| dφ 6 C3

for all z with | Im z| < 1. Consequently,

log |B(z)| 6
1

2π

2π
∫

0

log+ |A(z+eiφ)| dφ+C2 log(|z|+2)+C3, | Im z| < 1. (2.5)

Since σλ
A < ∞ and log r = o(λ(r)), from (2.4) and (2.5) it follows that σλ

B < ∞
and σλ

B 6 σλ
A. •

For a function E ∈ HB, we shall always use the notation E = A − iB with
the real entire functions A, B as in (2.3). We denote

Sφ := A sinφ − B cosφ, φ ∈ R.

The family of functions Sφ contains significant information about the space
H(E). In fact, the reproducing kernel K(w, z) can be written in terms of
the functions Sφ. Also, the functions Sφ describe the selfadjoint extensions of
the operator of multiplication by the independent variable in H(E). Clearly,
A = Sπ

2
and B = Sπ. We note that

Sφ+π
2

=
1

2

(

eiφE + e−iφE#
)

.

2.4. Corollary. Let E ∈ HB. Then E is of finite λ-type if and only if there
exists one value φ0 ∈ R such that Sφ0

is of finite λ-type. In this case every
function Sφ, φ ∈ R, is of finite λ-type, and

σλ
E = σλ

Sφ
, φ ∈ R.
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Proof. It suffices to show that σλ
Sφ

= σλ
E for any φ ∈ R. Since the functions

E(z) and ei(φ−π
2
)E(z) have the same λ-type, we can restrict the explicit proof

to the case where φ = π
2 , i.e., Sφ = A.

Assume that σλ
A < ∞. Then, by the definition of A and B and by Proposition

2.3,

σλ
E 6 max{σλ

A, σλ
B} = σλ

A 6 σλ
E .

It follows that σλ
E < ∞ and, in fact, σλ

E is equal to σλ
A. Conversely, if σλ

E < ∞,

then, clearly, σλ
A 6 σλ

E and, thus, σλ
A < ∞. •

We obtain a generalization of [KW3, Corollary 3.18], where the following
statement was proved under the additional assumption r = O(λ(r)).

2.5. Corollary. Let H be a de Branges space, and let λ be a growth function.
Then H is of finite λ-type if and only if for some φ ∈ [0, π) the function Sφ

is of finite λ-type. In this case σλ
H = σλ

Sφ
.

Proof. Combine Corollary 2.4 with Remark 2.2. •
We also obtain a similar generalization of [KW3, Theorem 3.17], i.e., we

can drop the assumption r = O(λ(r)) made there. In order to explain this
result, we need to recall the notion of a λ-admissible sequence of complex
numbers, cf. [Ru].

We say that a sequence {zn} has a finite λ-density if
∑

|zn|6r

log
r

|zn|
= O(λ(r)).

When comparing with the definition in [Ru] one should be aware of the prop-
erty λ(r) ≍ λ(cr) for any c > 1, which follows from the definition of a
growth function (we write f ≍ g if there exist constants c1, c2 > 0 such that
c1f(x) 6 g(x) 6 c2f(x) for all admissible values of x). The sequence {zn} is
said to be λ-balanced if, uniformly in k ∈ N, we have

∣

∣

∣

1

k

∑

r1<|zn|6r2

( 1

zn

)k∣
∣

∣
= O

(λ(r1)

rk
1

+
λ(r2)

rk
2

)

, r1, r2 → ∞.

Finally, the sequence {zn} is λ-admissible if it is both of finite λ-density and
λ-balanced.

2.6. Corollary. A de Branges space H(E) is obtained from a de Branges
space H(E1) of finite λ-type by multiplication by a zero free entire function
real on R, if and only if for one (and, hence, for all) φ ∈ [0, π) the sequence
of zeros of Sφ is λ-admissible.
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Proof. We repeat briefly the proof in [KW3]. If the sequence {an} of zeros
of Sφ is λ-admissible, then, by [Ru, Theorem 13.5.2], there exists an entire

function A1 of finite λ-type, A1 = A#
1 , having {an} as its precise set of zeros.

Hence, C =
Sφ

A1
is a zero free entire function real on R. Put

E1(z) =
Sφ(z)− iSφ+π

2
(z)

C(z)
= −ieiφE(z)

C(z)
.

Then E1 ∈ HB and H(E) = H(CE1) = CH(E1). Note also that
E1+E

#
1

2 = A1

is of finite λ-type. By Corollary 2.4, E1 is of finite λ-type and, thus, H(E1) is
of finite λ-type.

The converse implication is almost immediate, see [KW3] for the details. •
c. Functions associated with a de Branges space. An entire function S is
said to be associated with the space H(E) if for each w ∈ C the difference
quotient operator

F (z) 7→ F (z)S(w)− S(z)F (w)

z − w
maps the space H(E) into itself. The set of all functions associated with a
space H(E) is denoted by AssocH(E).

The functions of class AssocH(E) can be characterized in various ways.
For instance, it is straightforward to verify that

AssocH(E) = H(E) + zH(E).

Another characterization of AssocH(E) employs a certain class of entire ma-
trix functions. This is a deep result, see [dB, Theorem 27].

The spaces H(E) with the property that 1 ∈ AssocH(E) are of particular
interest. Let us formulate explicitly the characterization [dB, Theorem 27]
(mentioned above) for this case. For this, we need to recall the notion of matrix
functions of class M0, a notion closely related to the so-called Nevanlinna
matrices. A (2× 2)-matrix W = (wij)i,j=1,2 is said to belong to the class M0

if its entries wij are real entire functions, W (0) = I , det W ≡ 1, and the
kernel

HW (w, z) :=
W (z)JW ∗(w)− J

z − w̄
,

where

J :=

(

0 −1
1 0

)

, (2.6)

is positive semidefinite. We note that if

W =

(

AW BW

CW DW

)

∈ M0,
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then each of the functions AW − iBW , DW + iCW , DW − iBW , and AW + iCW

belongs to HB.
The relationship between M0 and the spaces H(E) with the property that

1 ∈ AssocH(E) is now the following.

2.7. Remark. Let W ∈ M0 and define

EW := AW − iBW , (AW , BW ) := (1, 0)W.

Then EW ∈ HB and 1 ∈ AssocH(EW ). Conversely, if H is a de Branges space
with 1 ∈ AssocH, and we write H = H(E), E = A− iB, with E(0) = 1, then
there exist entire functions C, D such that

W :=

(

A B
C D

)

∈ M0. (2.7)

In this case the functions D, C can be chosen so that

lim
y→+∞

1

y
Im

D(iy)

B(iy)
= 0. (2.8)

We shall also employ the following result, which was proved in [W, Theorem
1.1], and from which a characterization of 1 ∈ AssocH(E) can be deduced.

2.8. Remark. Let E = A− iB ∈ HB and E(0) = 1. Then the set AssocH(E)
contains a real and zero free function if and only if the following conditions
are satisfied:

(C1) Let (xk)k∈N be the sequence of zeros of A. Then the limit
limr→∞

∑

|ak|6r
1
xk

exists in R.

(C2) Let (x+
k )k∈N and (x−

k )k∈N be the sequence of positive and negative,
respectively, zeros of A arranged according to increasing modulus.
Then the limits limk→∞

k

x+
k

and limk→∞
k

x−

k

exist in R and are equal.

(C3) Let X(z) := limr→∞
∏

|xk|6r(1− z
xk

) and Y (z) := z limr→∞
∏

|yk |6r(1−
z
yk

), where (yk)k∈N denotes the sequence of nonzero zeros of B. Then

∑

k∈N∣

∣

∣

1

x2
kX ′(xk)Y (xk)

∣

∣

∣
< ∞. (2.9)

In this case we have A(z)
X(z)

∈ AssocH(E).

The class M0 plays also in other respects an important role in the theory
of de Branges spaces, cf. [dB, Theorems 33,34].

2.9. Remark. If W and W1 belong to M0, then WW1 ∈ M0. We have
H(EW ) ⊆ H(EWW1

), and the set-theoretic inclusion map is a contraction.
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If the set H(EW ) is endowed with the norm ‖ · ‖EW W1
, then it becomes a

dB-subspace of H(EWW1
).

d. Transformation of matrices of class M0. . We shall use some transfor-
mation of matrices.

2.10. Definition. Let W be a (2 × 2)-matrix function whose elements are
entire functions.

(i) We put

V :=

(

0 1
1 0

)

,

and define

v(W ) := V W−1V.

(ii) For a ∈ R, we define

wa(W )(z) := W (a)−1W (z + a).

Then, as a computation of reproducing kernels shows, for a ∈ R the maps
v and wa take M0 into itself; see, e.g., [KWW1, Lemma 2.3; Wi].

If λ is a growth function and W = (wij)i,j=1,2 ∈ M0, then, by Proposition
2.3, all the entries wij of W are of the same λ-type. This allows us to put

σλ
W := σλ

wij
, i, j = 1, 2.

2.11. Lemma. Let W ∈ M0. Then σλ
H(EW ) = σλ

W . We have

σλv(W ) = σλwa(W ) = σλ
W , a ∈ R.

If, moreover, W1 ∈ M0, then

σλ
W 6 σλ

WW1
6 σλ

W + σλ
W1

. (2.10)

Proof. The first assertion follows from Corollary 2.4. The relation σλv(W ) = σλ
W

is immediate from the explicit computation

v(W ) =

(

w11 −w21

−w12 w22

)

.

The fact that σλwa(W ) = σλ
W follows because W (a) is invertible and because

for any entire function f we have σλ
f(z) = σλ

f(z+a).

The first inequality in (2.10) is a consequence of the fact that, as a set,
H(EW ) is contained in H(EWW1

). The second inequality in (2.10) is trivial. •
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e. The square root transformation. The following transformation of entire
functions is a useful tool. Let E be an entire function and assume that E
satisfies the functional equation

E#(z) = E(−z). (2.11)

If E is written as E = A − iB with A and B as in (2.3), we define E+ :=
A+ − iB+, where A+ and B+ are defined by the relations

A+(z2) = A(z), B+(z2) = zB(z). (2.12)

Note that the validity of (2.11) is equivalent to A being even and B being odd,
so that A+ and B+ are well-defined entire functions. Clearly, B+(0) = 0.

The assignment E 7→ E+ maps the set of all entire functions satisfying
(2.11) bijectively onto the set of all entire functions that take a real value at 0.
Its inverse is given by

E+ = A+ − iB+ 7→ E := A+(z2) − i

z
B+(z2).

In connection with this transformation, the so-called Stieltjes class S is of
importance. Recall that a function q is said to belong to S if q ∈ N0 and is
analytic and nonnegative on (−∞, 0). The fact that q ∈ S can be characterized
in several ways, see [KaK1, KaK2]. We recall that

q ∈ S ⇐⇒ zq(z2) ∈ N0. (2.13)

Moreover, for any function q ∈ S we have limy→+∞
1
y Im q(iy) = 0 and

limx→−∞ q(x) ∈ R.

2.12. Remark. Let A− iB ∈ HB, and assume that A and B do not vanish on
(−∞, 0) while B(0) = 0. Then q = −A

B
∈ S. Indeed, q ∈ N0, and therefore, by

the Herglotz theorem,

q(z) = −σ0

z
+

∞
∑

n=1

σn

( 1

xn − z
− 1

xn

)

+ a + bz

for some a ∈ R, b > 0, and σn > 0, n = 0, 1, . . . Here the xn are the nonzero
zeros of B. Clearly, limx→−0 q(x) = +∞. Since q does not change the sign on
(−∞, 0), it follows that q > 0 on (−∞, 0).

2.13. Remark. Let E = A − iB and E+ = A+ − iB+ be entire functions
related to each other as in (2.12). Then:

(i) E ∈ HB if and only if E+ ∈ HB and A+(x)B+(x) < 0, x < 0, which is

equivalent to −A+

B+
∈ S. This follows by combining Remark 2.1(iv), with

(2.13) and the fact that q ∈ N0 if and only if −1
q ∈ N0.
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(ii) If E ∈ HB and 1 ∈ AssocH(E), then also 1 ∈ AssocH(E+). This follows
from some geometric arguments concerning the generated de Branges
spaces. A proof can be found in [KWW2, Proposition 2.6], where even a
more general setting was considered.

(iii) Assume that E ∈ HB and 1 ∈ AssocH(E+). Let C+, D+ be entire
functions as in Remark 2.7 and satisfying (2.8). Then 1 ∈ AssocH(E) if
and only if

lim
x→−∞

D+(x)

B+(x)
∈ R.

On the first sight, this result may look surprising. It follows from a
deeper discussion concerning the reproducing kernel space generated by
the matrix W in (2.7) (see [KWW1, Proposition 3.14]), which involves
the theory of de Branges Pontryagin spaces, cf. [KW1]. No direct proof
is known to the authors.

§3. Existence of subspaces with prescribed growth

This section is devoted to the proof of the existence of de Branges spaces
that have subspaces of smaller growth, see Theorem 3.6. Our method is based
on the following result, which is also of interest on its own right.

3.1. Theorem. Let λ be a growth function with λ(r) = O(r). Then there
exists a de Branges space H of finite and positive λ-type with 1 ∈ AssocH.

Before proceeding to the proof of this theorem, we discuss the statement in
more detail.

3.2. Remark. (i) By [KW3, Theorem 3.10], every de Branges space H with
1 ∈ AssocH must be of finite exponential type. Hence, the condition
λ(r) = O(r) is natural.

(ii) A different approach to this theorem could proceed via [BP2, Theorems
3.6, 5.1]; the method employed there is function theoretic in its nature
and goes back to a result of M.G.Krein, see [K2]. By means of this
approach the case where λ(r) = rρ was treated in [BP2, Theorems 5.6].
In the present paper, however, we prefer a more Hilbert space theoretic
point of view.

(iii) The hard part of the theorem is to deal with the case where λ(r) grows
slower, but almost as fast, as r. If the growth function λ, λ(r) = O(r),
satisfies a very mild additional condition, a space H with finite and
positive λ-type and with 1 ∈ AssocH can be constructed much more
explicitly. Indeed, denoting by µ the inverse function of λ, let us assume
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that
∫ ∞

0

dt

µ(t)
< ∞. (3.1)

Put yn := µ(n), n ∈ N. Then, by (3.1), we have
∑∞

n=1
1
yn

< ∞. Hence,

we may define an entire function by

E(z) :=
∏

n∈N(

1 +
z

iyn

)

.

Clearly, E ∈ HB. Moreover, e.g., by [B2, Theorem 1], the space H(E)
contains the set of all polynomials as a dense linear subspace. In partic-
ular, 1 ∈ AssocH(E). Since

∆λ((yn)n∈N) = 1, lim sup
r→∞

∣

∣

∣

∣

∑

|iyn|6r

1

iyn

∣

∣

∣

∣

=

∞
∑

n=1

1

yn
< ∞,

the results of [L, I. Lehrsatz 17,18] imply that E is of finite and positive
λ-type.

Note that if (3.1) fails, a similar construction is not possible. This
follows from the fact that, due to the presence of the Blaschke condition,
a function of finite and positive λ-type must, in the case where (3.1) fails,
have most of its zeros close to the real axis in the sense that there exists
no angle {z ∈ C : arg z ∈ (−π +δ,−δ)}, δ > 0, containing all zeros of E.

Let us come to the proof of Theorem 3.1. It is based on a perturbation
argument. Let E = A − iB ∈ HB, E(0) = 1, and let (γk)k∈N be a monotone
nondecreasing sequence of positive real numbers. Assume the following:

(a) All zeros of A lie in (0,∞).
(b) Denote by (ak)k∈N the sequence of zeros of A arranged increasingly. Then

∞
∑

k=1

1

ak
< ∞.

Note that B(0) = 0 because E(0) = 1. Taking into account (a) and the fact
that the zeros of A and B interchange, we see that the zeros of B lie in [0,∞).

We construct a function Ẽ(z) by proceeding as follows.

(1) The function B(z)
A(z) belongs to the class N0 and is meromorphic in C. Hence,

if we put σn := − B(an)
A′(an) , then σn > 0,

∑∞
k=1 σka−2

k < ∞, and we have

B(z)

A(z)
= az +

∞
∑

k=1

( 1

ak − z
− 1

ak

)

σk,

where a > 0.
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(2) Define a sequence (ãk)k∈N as ãk := akγk, k ∈ N. Then

0 < ã1 < ã2 < . . . and ãk > γ1ak, k ∈ N.

(3) We have
∞
∑

k=1

σk

1 + ã2
k

6

∞
∑

k=1

σk

1 + γ2
1a2

k

< ∞.

Consequently, the series

q̃(z) :=

∞
∑

k=1

( 1

ãk − z
− 1

ãk

)

σk

determines a function q̃ ∈ N0 meromorphic in C and such that its poles
are the ãk, and its residue at ãk is −σk 6= 0.

(4) We have
∞
∑

k=1

1

ãk

6

∞
∑

k=1

1

γ1ak

< ∞,

so that the product

Ã(z) :=

∞
∏

k=1

(

1− z

ãk

)

determines an entire function.
(5) Put B̃(z) := q̃(z) · Ã(z); then B̃ is a real entire function and B̃(0) = 0. If

we now define
Ẽ := Ã − iB̃,

then Ẽ ∈ HB (see Remark 2.1(iv)).

3.3. Lemma. Assume that E ∈ HB is subject to the above conditions (a)

and (b), and let Ẽ be constructed as in (1)–(5). If 1 ∈ AssocH(E), then also

1 ∈ AssocH(Ẽ).

Proof. Assume that 1 ∈ AssocH(E). In order to prove the lemma, we shall

verify the conditions (C1)–(C3) of Remark 2.8 for the function Ẽ = Ã − iB̃.
Because of the positivity of the numbers ãk, condition (C1) is equivalent

to the convergence of the series
∑

k∈N 1
ãk
, and this was already seen in the

item (4) above. Condition (C2) is fulfilled because (γk)k∈N is monotone in-
creasing (thus, limk→∞

1
γk

exists), and because, by the assumption of the

lemma, the sequence (ak)k∈N satisfies (C2). Indeed, since all zeros are posi-

tive, limk→∞
k
ak

= 0 and hence also limk→∞
k
ãk

= 0.

To establish (C3), we need to estimate Ã′(ãk). Since 1 ∈ AssocH(E) and
all zeros of A are positive, [KWW1, Proposition 3.12] implies that E, and
hence also A and B, are of order at most 1

2 . Thus, A(z) =
∏∞

n=1(1 − z
an

) and
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B(z) = αz
∏∞

n=1(1− z
bn

), where (bn)n∈N denotes the sequence of nonzero zeros

of B, and α > 0. Note that, by locally uniform convergence of the respective
products and analyticity,

Ã′(ãk) = − 1

ãk

∏

n∈N
n6=k

(

1 − ãk

ãn

)

, A′(ak) = − 1

ak

∏

n∈N
n6=k

(

1 − ak

an

)

.

We have ãk

ãn
= ak

an

γk

γn
, whence

ãk

ãn

{

6
ak

an
if k < n,

>
ak

an
if k > n.

Moreover,

∣

∣

∣
1 − ãk

ãn

∣

∣

∣
=

{

1− ãk

ãn
if k < n

ãk

ãn
− 1 if k > n

}

>

{

1 − ak

an
if k < n

ak

an
− 1 if k > n

}

=
∣

∣

∣
1 − ak

an

∣

∣

∣
.

It follows that

|Ã′(ãk)| >
1

γk
|A′(ak)|.

The series (2.9) for E can be written as

∑

k∈N∣

∣

∣

1

a2
kA

′(ak)B(ak)

∣

∣

∣
=

∑

k∈N 1

a2
kA′(ak)2σk

,

and, since by our construction the numbers σk are the same for E and Ẽ, the

series (2.9) for Ẽ is nothing else but

∑

k∈N 1

ã2
kÃ

′(ãk)2σk

.

It follows that
∑

k∈N 1

ã2
kÃ

′(ãk)2σk

6
∑

k∈N 1

(γkak)2( 1
γk

A′(ak))2σk

=
∑

k∈N 1

a2
kA

′(ak)2σk

< ∞,

i.e., condition (C3) is satisfied. •

The next lemma is completely elementary. It simply ensures that the num-
bers γn can be chosen appropriately. Recall that for a growth function µ the
upper µ-density of a sequence (wk)k∈N of complex numbers is defined as

∆µ((wk)k∈N) := lim sup
r→∞

#{k ∈ N : |wk| 6 r}
µ(r)

.
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3.4. Lemma. Let λ and λ1 be growth functions with λ1(r) = O(λ(r)), and
let (ak)k∈N be a monotone increasing sequence of positive real numbers that
has a finite and positive upper λ-density. Then there exists a monotone non-
decreasing sequence (γk)k∈N of positive real numbers such that the sequence
(γkak)k∈N has a finite and positive upper λ1-density.

Proof. Without loss of generality we can assume that λ1 is continuous and
monotone increasing, and that limrց0 λ1(r) ∈ (0, 1).

First, observe that, since λ1(r) 6 cλ(r) for an appropriate real constant c,
we certainly have

∆λ1
((ak)k∈N) >

1

c
∆λ((ak)k∈N) > 0.

If ∆λ1
((ak)k∈N) < ∞, then we set γn := 1, n ∈ N, and are done. Hence, for

the rest of the proof we may assume that ∆λ1
((ak)k∈N) = ∞.

Inductively, we construct numbers nk ∈ N and real numbers γ1, . . . , γnk

such that

(i) nk < nk+1, k ∈ N;
(ii) 0 < γ1 6 · · · 6 γnk

;
(iii) for all 0 < r 6 γnk

ank
we have

#{n : γnan 6 r}
λ1(r)

6 1.

Moreover, the construction will be carried out in such a way that

(iv) for all k > 1 there exists rk > 0 such that rk → ∞ and

lim
k→∞

#{γnan 6 rk}
λ1(rk)

= 1.

For k = 1 we put n1 := 1, and let γ1 be such that λ1(γ1a1) = 1. Then (i) and
(ii) are trivial, and (iii) is fulfilled because {γnan 6 r} = ∅ for r < γ1a1.

We come to the inductive step. Assume that numbers nk and γl satisfying
(i)–(iii) are given for all k 6 K and l = 1, . . . , nK . Consider the sequence

ãn :=

{

γnan if n 6 nK ,

γnK
an if n > nK .

Consider the function g(r) :=
#{ãn6r}

λ1(r)
. It is continuous from the right, has

positive jumps at the points ãn, and is monotone decreasing between two
successive jumps. By (iii) of the inductive hypothesis,

g(ãnK
) =

#{n : γnan 6 γnK
anK

}
λ1(γnK

anK
)

6 1.
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Moreover, since λ1(γnK
r) ≍ λ1(r) for any fixed K, we have ∆λ1

((ãn)n∈N) =
∞, i.e., lim supr→∞ g(r) = ∞. Hence, there exists a smallest number r that
satisfies

r > ãnK
and g(r) > 1.

Clearly, we must have r = ãn for some n ∈ N. We define nK+1 as this number
n. Then nK+1 > nK , and (i) is satisfied. Consider the function

f(α) :=
nK + #{n > nK : αãn 6 ãnK+1

}
λ1(ãnK+1

)
.

This is a monotone nonincreasing step function with jumps of height
λ1(ãnK+1

)−1. We have f(1) = g(ãnK+1
) > 1, and

f(α) =
nK

λ1(ãnK+1
)

6
nK

λ1(ãnK
)

6 1

whenever α > ãnK+1
ã−1

nK+1. Thus, there exists a value α0 ∈ [1,∞) such that

1 > f(α0) > 1 − λ1(ãnK+1
)−1. We define

γl := α0γnK
, nK < l 6 nK+1.

The requirement (iii) for the values r 6 γnK
is fulfilled by the inductive

hypothesis. For γnK
< r 6 γnK+1

, this requirement follows from our choice of
nK+1 and the fact that α0 > 1.

Finally, put rk = λ1(ãnK+1
) = λ1(γnK

anK+1
). Then, by our choice of α0,

#{γnan 6 rk}
λ1(rk)

= f(α0) > 1 − λ1(ãnK+1
)−1,

and condition (iv) is satisfied. •

Proof of Theorem 3.1. Consider the Paley–Wiener space PW1 = H(E),
where E(z) := e−iz = cos z − i sin z. This is a de Branges space of finite
and positive exponential type, and with 1 ∈ AssocPW1.

We define a function E+ = A+ − iB+ by the relations

A+(z2) = cos z, B+(z2) = z sin z.

Then E+ ∈ HB and 1 ∈ AssocH(E+), see Remark 2.13(ii). Moreover, clearly,
H(E+) is of finite and positive

√
r-type, and the zeros of A+ are precisely the

numbers ak := π2(k − 1
2 )2, k ∈ N.

The sequence (ak)k∈N has
√

r-density 1
π2 . Since we assume that λ(r) =

O(r), we have
√

λ(r) = O(
√

r). By Lemma 3.4, we can choose a monotone
nondecreasing sequence (γk)k∈N of positive real numbers so that the sequence

(γkak)k∈N has finite and positive upper
√

λ(r)-density.
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Clearly, E+ satisfies the assumptions (a) and (b). Therefore, we may apply

Lemma 3.3 to obtain a function Ẽ+ = Ã+− iB̃+ ∈ HB with 1 ∈ AssocH(Ẽ+),

B̃+(0) = 0, and Ã+(z) =
∏∞

k=1(1 − z
γkak

). By [L, I.Lehrsatz 17], the function

Ã+ has finite and positive
√

λ(r)-type.

We choose C̃+, D̃+ as in Remark 2.7 (and satisfying (2.8)), and put

W̃+ :=

(

Ã+ B̃+

C̃+ D̃+

)

.

By the properties of the class M0, we have Ã+ + iC̃+ ∈ HB and C̃+(0) = 0.

Since the zeros of Ã+ and C̃+ should interlace and all zeros of Ã+ are in

(0,∞), it follows that all zeros of C̃+ are in [0,∞). We also have D̃+ + iC̃+ ∈
HB, and thus the zeros of D̃+ and C̃+ interlace. Consequently, there are two
possibilities:

(i) all zeros of D̃+ are in (0,∞);

(ii) there exists a unique a < 0 such that D̃+(a) = 0.

In the case (i) the function q = − D̃+

B̃+
is in the class N0, does not vanish

on (−∞, 0), and has a pole at the zero. Hence, q ∈ S by Remark 2.12. We
conclude that

lim
x→−∞

D̃+(x)

B̃+(x)
∈ R.

By Remark 2.13, (iii), this implies that 1 ∈ AssocH(Ẽ) where Ẽ is defined by

Ẽ(z) := Ã+(z2) − i

z
B̃+(z2).

In the case (ii) we make use of the transformation wa introduced in Sub-
section 2, d. Put

Ŵ+ =

(

Â+ B̂+

Ĉ+ D̂+

)

:= wa(W̃+).

A computation shows that

Ŵ+(z) =

(

−B̃+(a)C̃+(z+a) −B̃+(a)D̃+(z+a)

−C̃+(a)Ã+(z+a)+Ã+(a)C̃+(z+a) −C̃+(a)B̃+(z+a)+Ã+(a)D̃+(z+a)

)

.

Hence, we have

D̂+(z)

B̂+(z)
=

C̃+(a)

B̃+(a)

B̃+(z + a)

D̃+(z + a)
− Ã+(a)

B̃+(a)

and

−Â+(z)

B̂+(z)
= − C̃+(z + a)

D̃+(z + a)
.
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By Remark 2.12, the functions − Â+

B̂+
and

B̃+(z+a)

D̃+(z+a)
belong to the Stieltjes class.

Thus,

lim
y→+∞

1

y
Im

D̂+(iy)

B̂+(iy)
= 0 and lim

x→−∞

D̂+(x)

B̂+(x)
∈ R.

By Remark 2.13, (iii), we have 1 ∈ AssocH(Ê), where

Ê(z) := Â+(z2) − i

z
B̂+(z2).

Clearly, Ê is of finite and positive λ-type. •
3.5. Remark. By using the construction of Remark 3.2(iii), for λ growing
sufficiently slowly, it can be shown that the space H in Theorem 3.1 can be
chosen in such a way that the domain of the multiplication operator in H is
dense in H.

Now, from Theorem 3.1 we can deduce the existence of de Branges spaces
with subspaces of smaller growth.

3.6. Theorem. Let λ, λ1 be growth functions with

λ1(r) = o(λ(r)) and λ(r) = O(r).

Then there exists a de Branges space H of finite and positive λ-type that has
a subspace L ∈ SubH of finite and positive λ1-type.

Proof. By Theorem 3.1, we can choose W, W1 ∈ M0 such that σλ1

W1
, σλ

W ∈
(0,∞). Then σλ

W1
= 0 and

σλ
W 6 σλ

WW1
6 σλ

W + σλ
W1

= σλ
W ,

whence

σλv(WW1) = σλ
WW1

= σλ
W ∈ (0,∞).

Consider the de Branges space H := H(Ev(WW1)). Then, as we have just

established, H is of finite and positive λ-type. Since v(WW1) = v(W1)v(W ),
there exists L ∈ SubH such that L = H(Ev(W1)) as sets. However,

σλ1

L = σλ1v(W1)
= σλ1

W1
∈ (0,∞). •

3.7. Remark. The following statement shows that the condition λ(r) = O(r)
in Theorem 3.6 is natural. Let λ, λ1 be growth functions, and assume that

λ1(r) = o(λ(r)) and r = o(λ(r)).

Moreover, let H be a de Branges space of finite and positive λ-type. Then no
nonzero subspace L ∈ SubH can be of finite λ1-type.



42 A. BARANOV, H. WORACEK

To see this, we recall that, by [KW3, Theorem 3.10], if r = O(µ(r)) and
a de Branges space contains one nonzero function of finite µ-type, then it is
itself of finite µ-type. Applying this with

µ(r) := max{λ1(r), r},
yields the desired conclusion.

§4. A condition for nonexistence of subspaces with small growth

In this section we show that the existence of subspaces of a given de Branges
space H that have smaller growth than H is by no means the generic situation.
To be more precise, we show that if H is written as H(E) and the function E
has maximal admissible growth along the real axis, then the space H cannot
contain infinite-dimensional subspaces of smaller growth.

4.1. Theorem. Let λ and λ1 be growth functions with λ1(r) = o(λ(r)), and
let H be a de Branges space of finite and positive λ-type. Assume that
for one (and hence for all) functions E ∈ HB with H = H(E) we have
log |E(x)| ≍ λ(|x|), x ∈ R. Then no infinite-dimensional subspace L ∈ SubH
is of finite λ1-type.

Proof. Suppose that an infinite-dimensional de Branges subspace H(E1) of
H(E) has finite λ1-type. Then

lim
|x|→∞

|E1(x)/E(x)| = 0.

On the other hand, we have

‖F‖E1
= ‖F‖E , F ∈ H(E1). (4.1)

Recall that the reproducing kernel K1(ζ, ·) of the space H(E1) corresponding
to the point ζ ∈ C is of the form

K1(ζ, z) =
E(z)E#(ζ) − E(ζ)E#(z)

2πi(ζ − z)
.

We shall show that there exists a sequence xn ∈ R, |xn| → ∞, such that

‖K1(xn, ·)‖E = o(‖K1(xn, ·)‖E1
), n → ∞,

which contradicts (4.1).

Let R > 0 and x ∈ R. We have

‖K1(x, ·)‖2
E =

∫

|t|6R

∣

∣

∣

K1(x, t)

E(t)

∣

∣

∣

2
dt +

∫

|t|>R

∣

∣

∣

K1(x, t)

E1(t)

∣

∣

∣

2∣
∣

∣

E1(t)

E(t)

∣

∣

∣

2
dt.
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Choosing R sufficiently large, we can make the last summand smaller than
ε‖K1(x, ·)‖2

E1
for any given ε > 0 and for all x ∈ R. Thus, it suffices to show

that for a fixed R there exists a sequence {xn} such that

‖K1(xn, ·)‖−2
E1

∫

|t|6R

∣

∣

∣

K1(xn, t)

E(t)

∣

∣

∣

2
dt → 0, n → ∞.

Observe that |K1(x, t)| 6 π−1|t − x|−1|E(x)E(t)|, and so
∫

|t|6R

∣

∣

∣

K1(x, t)

E(t)

∣

∣

∣

2
dt 6 C(R)|E1(x)|2x−2, |x| > R + 1.

We also recall that

‖K1(x, ·)‖2
E1

=
|E1(x)|2ϕ′

1(x)

2π
,

where ϕ1 is the so-called phase function for E1. Moreover,

ϕ′
1(x) = a +

∑

n

| Im zn|
|x− zn|2

,

where the zn ∈ C− are the zeros of E1 and a > 0 is the parameter in the factor
e−iaz of the standard factorization of the Hermite–Biehler functions ([L]; see
also [B1, KW2]).

To complete the proof, we need to show that

lim inf
|x|→∞

x−2(ϕ′
1(x))−1 = 0. (4.2)

If a > 0, then (4.2) is trivial. Otherwise, E1 has infinitely many zeros, because
we assumed the subspace H(E1) to be infinite dimensional. Put xn = Re zn +
sign (Re zn)| Im zn|. Then |xn| → ∞ and

ϕ′
1(xn) > |2 Im zn|−1

> |2xn|−1.

Thus, we have x2
nϕ′(xn) → ∞, which proves (4.2). •
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