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SUBSPACES OF DE BRANGES SPACES
WITH PRESCRIBED GROWTH

© A. BARANOV, H. WORACEK

The growth properties of de Branges spaces and their subspaces are studied.
It is shown that, for each given pair of growth functions A(r) = O(r)
and A1 = o(A), there exist de Branges spaces of growth A\ that have a
de Branges subspace of growth Ai. This phenomenon cannot occur for a
class of de Branges spaces that, in a certain sense, behave regularly along
the real axis.

§1. Introduction

A de Branges space is a Hilbert space (H, (.,.)) with the following proper-
ties:
(dB1) The elements of H are entire functions, and for each w € C the
point evaluation F' — F(w) is a continuous linear functional on H.
(dB2) If F € H, then F#(z) := F(%) also belongs to H, and | F#| = ||F].
(dB3) lfweC\Rand F € H, F(w) =0, then

2 — W

F(z) €H and Hz -

“—2r@)| = 17

Z—Ww
The theory of such Hilbert spaces of entire functions was founded by L.
de Branges (cf. [dB]). It was further developed by many authors (see, e.g.,
[BI, B2, GM, KWW2, KWI1, KW3, RR]), and found applications in various
contexts (see, e.g., [BP1, DKI1, DK2, Li, OS, Re, PW]).
Throughout this paper it is assumed that a de Branges space is additionally
subject to the condition

(Z2) For every ¢ € R there exists F' € H with F(t) # 0.

In most respects, this assumption causes no loss of generality (ci. [dB, Prob-
lem 44; KW3, Lemma 2.4]).

Key words: de Branges space, growth function, de Branges subspace.
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Prominent examples of de Branges spaces are the so-called Paley—Wiener
spaces. For a real positive number a, let PW, be the set of all entire func-
tions of exponential type at most a whose restriction to R belongs to L%(R).
Endowed with the norm | F[| := |F|g|l2), the space PW, becomes a
de Branges space.

In complex analysis, in particular in the theory of entire functions, the
notion of growth plays a central role. A function A : Rt — RT is called a
growth function if it satisfies the following axioms:

(gfl)  The limit p := lim, . 101%2&7«) exists and is a finite nonnegative
number.
(gf2) For all sufficiently large values of r, the function A is differentiable,

and lim, o MA/((;"; = .

(gi3) logr = o(A(r)).

Conditions (gfl) and (gf2) ensure that Valiron’s theory of proximate orders is
available, cf. [L, 1.12] or [LG, 1.6], as well as the theory of value distribution
of meromorphic functions, cf. [Ru]. Condition (gf3), saying that A grows
sufficiently rapidly, is imposed to exclude trivial cases and is not an essential
restriction. Unless specified, “O”- and “o”-relations are always understood for
T — 00.

Classical examples of growth functions are presented by functions of the
form

Ar) = r®(logr)?,

where o, 6 € R, a > 0.

Since the elements of a de Branges space are entire functions, it is a natural
task to bring together the concepts of a de Branges space and a growth func-
tion, i.e., to study de Branges spaces from the viewpoint of growth properties
of their elements. For general growth functions, a systematic study was initi-
ated in [KW3]. For the particular case of exponential growth, i.e., A(r) = r,
such investigations go back to the very beginning of the theory of de Branges
spaces (see, e.g., [dB]).

Let us briefly describe the main theme of our present work. If F' is an entire
function and A is a growth function, the A-type of F is defined as the number

log® |F
01)‘; = limsupw

If H is a de Branges space and A is a growth function, the A-fype of H is the
number

€ [0, o0].

o, := sup op € [0, 0q).
FecH
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A closed linear subspace £ of a de Branges space H is called a dB-subspace
if £ itself, with the norm inherited from H, is a de Branges space. The set of
all dB-subspaces of a given space ‘H will be denoted by SubH. One of the most
important results in the theory of de Branges spaces, the so-called Ordering
Theorem, states that SubM is totally ordered with respect to inclusion; see
[dB, Theorem 35], where an even stronger version is proved.

We address our paper to the following question: Let A\ be a growth function
and let H be a de Branges space of finite and positive A-type. Do there exist
subspaces £ € SubH of strictly smaller growth?

Our answer is twofold. First, we show that, given a pair (A, \;) of growth
functions with

A(r) =o(A(r)) and A(r)=O(r),

there exists a de Branges space H of finite and positive A-type, such that
one of its dB-subspaces is of finite and positive A;-type, cf. Theorem 3.6. It
should be emphasized that, by [KW3, Theorem 3.10], the second condition
is in a sense necessary for the existence of subspaces with smaller growth,
see Remark 3.7. Second, for a de Branges space H with finite and positive
A-type we give a condition ensuring that no infinite dimensional dB-subspace
can be of finite Aj-type for any growth function A\; with A\i(r) = o(A(r)), see
Theorem 4.1.

For the proof of these results we apply methods of various kinds. On the
one hand, we use hard analysis, e.g., growth estimates; on the other hand, we
employ more functional analytic tools, e.g., the theory of symmetric and semi-
bounded de Branges space or the notion of transfer matrices for dB-subspaces.
A cornerstone for proving the existence of examples of dB-subspaces with
prescribed smaller growth is to establish the existence of de Branges spaces H
of finite and positive A-type (where A(r) = O(r)) that have the property that
the constant function 1 belongs to H + zH (cf. Theorem 3.1), a result which
is of interest on its own right. For the case where A(r) = r?, a result similar
to Theorem 3.1 was proved in [BP2] by different methods.

§2. Preliminaries

In this section we recall some basic facts concerning de Branges spaces
and set up some notation. Moreover, we provide a couple of results which
supplement [KW3], and which will be used later on.

a. The Hermite—Biehler class. [t is a basic fact that a given de Branges
space H is completely determined by a single entire function. We say that an
entire function E belongs to the Hermite—Biehler class HB if

|E*(2)| < |E(2)], 2€CT, (2.1)
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and F has no real zeros. For E € ‘HB, define

. F F# 20+
H(E) = {F entire : E, f e H ((C )},
where H?(C7T) denotes the Hardy class in the upper hali-plane, see, e.g.,

[RosR]. Moreover, we define

T :/}J%fcﬁ, F e H(E).

Then H(E) is a de Branges space. Conversely, every nonzero de Branges
space can be obtained in this way. For example, the Paley—Wiener space PW,
is obtained as H(e™%%).

By the axiom (dBl), a de Branges space H is a reproducing kernel Hilbert
space. If H is a de Branges space and E € HB is such that H = H(E), then
the reproducing kernel K(w,-) of H can be expressed in terms of E:

E(2)E*(w) — E(w)E"(2)
2mi(w — z) '

K(w,z)= (2.2)
2.1. Remark. (i) In the literature, the condition that E has no real zeros is
often dropped from the definition of HB. This corresponds to dropping the
condition (Z) in our definition of de Branges space. As we have already
remarked, dropping this condition is no essential gain in generality.
(ii) Condition (2.1) in the definition of HB means that the kernel K(w,z) is
positive semidefinite, i.e., that each of the quadratic forms (z1,...,2, €
C)

n
ij=1
is positive semidefinite. This is a classical result of analysis, see [P].
(iii) With an entire function E we associate a pair of entire functions A and
B:

E+ E# E — E#

A= — B:=i 5 (2.3)

Then A and B are real entire functions (we say that entire function F'
is real if it is real on the real axis or, equivalently, if F = F#), and we
have E = A—iB. If E € HB, then A and B have only real zeros, and
these zeros are simple and interlace, that is, between every two zeros of
A there is a zero of B and vice versa.

(iv) The Nevanlinna class Ny is defined as the set of all functions ¢ that are
analytic in C \ R, satisfy ¢ = ¢*, and have nonnegative imaginary part
in C*. This class of functions is closely related to HB. More precisely,
let £ be an entire function and write £ = A —iB with A and B as in
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(2.3). Then E € HB if and only if E has no real zeros, is not constant,
and % € No.

b. The growth of H(F).

2.2. Remark. In the context of growth properties of de Branges spaces, it is
a basic result that the growth of any function F' € H(FE) is governed by the
growth of E. In fact, we always have 07’\{ = o7, see [KW3, Theorem 3.4].

We come to the announced generalizations of two results of [KW3]. They
will be deduced from the next proposition, which also provides a more general
viewpoint on some results concerning the exponential growth of the so-called
Nevanlinna matrices, see, e.g., [BP1, Theorem 4.2; BP2, Theorem 4.8; K1].

2.3. Proposition. Let A, B be entire functions such that % € N, and let X
A A

be a growth function. Then o = o7.
Prooi. If both o} and o are equal to oo we are done. We show that ¢} < oo
implies o3y < o). Since with £ also —4 belongs to A, this will yield the
desired conclusion.

Since the function % belongs to N, it has, by the Herglotz theorem, an
integral representation of the form

B(z) 1 t "
A(z)—az+b+/<t_z—t2+1>d,u(t), zeCT,
R

where @ > 0, b € R, and p is a Borel measure on R such that [,(¢* +
1)71du(t) < oo. In the present case, in fact, p is a discrete measure with
point masses at the zeros of A. Hence,

‘B(z)‘ = ‘az—l—b—l—/Ldu(t)‘

A(2) J (t—2)(t2+1)
dpu(t)
g‘az—l—b—l—z/tzu_i(_ z +1) / t—z , z€Ct.
R R

Therefore,

1
log| B(2)] < log|A(2)| + C1 log(|2] +2) +log™ gy

for all z € C\ R. In particular,
log|B(z)| <log|A(z)| + Cilog(|z| +2), |Imz|> 1. (2.4)
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21

1 .
log | B(2)| < 5 [ 1og|B(: -+ )| do
s
0

1 .
<5 /log A(= + €)]dé + Ca log(|2] + 2)

1 1
— [ logt ———dé.
+5r [ 108" (i
0

Clearly,

—_— <
/ |IIHZ—|—€Z¢)| ¢\C3

for all z with [Im z| < 1. Consequently,
1 2
log |B(z)| < py /logJr |A(z+€')| dp+Calog(|z|+2)+C5,  |Imz| < 1. (2.5)
0

Since 0} < oo and logr = o(\(r)), from (2.4) and (2.5) it follows that o3 < oo
and o < 0.

For a function E € HB, we shall always use the notation £ = A — iB with
the real entire functions A, B as in (2.3). We denote

Sy :=Asing — Bcos¢p, ¢ €R.

The family of functions Sy contains significant information about the space
H(E). In fact, the reproducing kernel K(w,z) can be written in terms of
the functions Syg. Also, the functions S, describe the selfadjoint extensions of
the operator of multiplication by the independent variable in H(FE). Clearly,
A= Sg and B = S5,;. We note that

2.4. Corollary. Let E € HB. Then FE is of finite A-type if and only if there
exists one value ¢y € R such that Sy, is of finite A-type. In this case every
function Sy, ¢ € R, is of finite \-type, and

A A
UE:US¢, ¢6R
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Proof. It sulfices to show that a§¢ = oy, for any ¢ € R. Since the functions

E(z) and €"*~2) E(2) have the same A-type, we can restrict the explicit proof
to the case where ¢ = 7, i.e.,, Sy = A.
Assume that o)} < co. Then, by the definition of A and B and by Proposition

2.3,

oy <max{o),on} = o) < op.

It follows that o3 < oo and, in fact, o3, is equal to o). Conversely, if o3 < oo,
then, clearly, o) < o3 and, thus, 0} < co. e

We obtain a generalization of [KW3, Corollary 3.18], where the following
statement was proved under the additional assumption r = O(A(r)).

2.5. Corollary. Let ‘H be a de Branges space, and let \ be a growth function.
Then H is of finite X\-type if and only if for some ¢ € [0, 7) the function S,
is of finite X-type. In this case 07’\{ = a§¢.

Proof. Combine Corollary 2.4 with Remark 2.2. e

We also obtain a similar generalization of [KW3, Theorem 3.17], i.e., we
can drop the assumption » = O(A(r)) made there. In order to explain this
result, we need to recall the notion of a A-admissible sequence of complex
numbers, cf. [Ru].

We say that a sequence {z,} has a finite \-density if

When comparing with the definition in [Ru] one should be aware of the prop-
erty A\(r) =< A(er) for any ¢ > 1, which follows from the definition of a
growth function (we write f < ¢ if there exist constants ¢, co > 0 such that
cf(z) < g(x) < caf(x) for all admissible values of z). The sequence {z,} is
said to be A-balanced if, uniformly in k € N, we have

PS @)ol ), e

T T
T‘1<|Zn|<7‘2 1 2

Finally, the sequence {z,} is A-admissible if it is both of finite A-density and
A-balanced.

2.6. Corollary. A de Branges space H(E) is obtained from a de Branges
space H(E4) of finite A-type by multiplication by a zero [ree entire function
real on R, if and only if for one (and, hence, for all) ¢ € [0, 7) the sequence
of zeros of Sy is A\-admissible.
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Proof. We repeat briefly the proof in [KW3]. If the sequence {a,} of zeros
of Sy is A-admissible, then, by [Ru, Theorem 13.5.2], there exists an entire

function A; of finite A-type, 41 = Afé, having {a,} as its precise set of zeros.
Hence, C = i—‘f is a zero free entire function real on R. Put

Su@)—iSps(a)  ioE(y)
Eiz) = C() )

Then E; € HB and H(E) = H(CE1) = C'H(E1). Note also that El;j = A
is of finite A-type. By Corollary 2.4, F; is of finite A-type and, thus, H(E:) is
of finite A-type.

The converse implication is almost immediate, see [KW3] for the details. e

c. Functions associated with a de Branges space. An entire function S is
said to be associated with the space H(FE) if for each w € C the difference
quotient operator
F(2)S(w) — 5(2) F(w)
zZ—w

maps the space H(E) into itself. The set of all functions associated with a
space H(E) is denoted by Assoc H(FE).

The functions of class Assoc H(E) can be characterized in various ways.
For instance, it is straightforward to verify that

AssocH(E) = H(E) + zH(E).

Another characterization of Assoc H(E) employs a certain class of entire ma-
trix functions. This is a deep result, see [dB, Theorem 27].

The spaces H(FE) with the property that 1 € Assoc H(FE) are of particular
interest. Let us formulate explicitly the characterization [dB, Theorem 27]
(mentioned above) for this case. For this, we need to recall the notion of matrix
functions of class My, a notion closely related to the so-called Nevanlinna
matrices. A (2 x 2)-matrix W = (w;;);,j=1,2 is said to belong to the class M,
if its entries w;; are real entire functions, W(0) = I, detW = 1, and the
kernel

F(z) —

Hy (w, 2) = W(z)iﬂi*fbw) — J7

0 -1
7 (1 0), (2.6)

is positive semidefinite. We note that if

where
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then each of the functions Ay —iBw, Dw +iCw, Dw —iByw, and Ay +iCyw
belongs to HB.

The relationship between Mg and the spaces H(E) with the property that
1 € Assoc H(FE) is now the following.

2.7. Remark. Let W € Mg and define

Ew = Aw —iBw, (Aw,Bw) = (1,0)W.
Then Ey € HB and 1 € Assoc H(Eyw ). Conversely, if H is a de Branges space
with 1 € AssocH, and we write H = H(E), E = A—iB, with E(0) =1, then
there exist entire functions C, D such that

W= (é g) e Mo, @2.7)

In this case the functions D, C' can be chosen so that

1 D(i
lim —Im (Zy)
y—t+ooy  B(iy)

=0. (2.8)

We shall also employ the following result, which was proved in [W, Theorem
1.1], and from which a characterization of 1 € Assoc H(FE) can be deduced.

2.8. Remark. Let E = A—iB € HB and E(0) = 1. Then the set Assoc H(E)
contains a real and zero free function if and only if the following conditions
are satisfied:
(C1) Let (zx)keny be the sequence of zeros of A. Then the limit
lim, e Zlaklér ﬁ exists in R.
(C2) Let (z))ren and (z; )ren be the sequence of positive and negative,
respectively, zeros of A arranged according to increasing modulus.
Then the limits limg_, m% and limg_, oo f_ exist in R and are equal.

k k
(C3) Let X(z) :=limy oo [}, (1 -2 ) and Y'(2) := 2lim, o []},, 1< (1 —

o), where (yj)ren denotes the sequence of nonzero zeros of B. Then

1
%‘sz’(xk)Y(xk) < . (2.9)

In this case we have 34;(_,22)) € Assoc H(E).
The class My plays also in other respects an important role in the theory
of de Branges spaces, cf. [dB, Theorems 33,34].

2.9. Remark. If W and W; belong to Mg, then WW; € M,. We have
H(Ew) € H(Eww,), and the set-theoretic inclusion map is a contraction.
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IT the set H(Ew) is endowed with the norm || - ||gy,,,, then it becomes a
dB-subspace of H(Eww, ).

d. Transformation of matrices of class M. . We shall use some transfor-
mation of matrices.

2.10. Definition. Let W be a (2 x 2)-matrix function whose elements are

entire functions.
01
Vo (1 0),

(i) We put
and define
(W) := VW V.

(ii) For a € R, we define
w0, (W) (z) := W(a) ' W(z +a).

Then, as a computation of reproducing kernels shows, for a € R the maps
v and o, take My into itself; see, e.g., [KWWI1, Lemma 2.3; Wi].

If A is a growth function and W = (wjj); j=1,2 € Mo, then, by Proposition
2.3, all the entries w;; of W are of the same A-type. This allows us to put

OW = Ogys ] = 1,2.

2.11. Lemma. Let W € M. Then a;\{(EW) = o7y,. We have
A A by
UU(W) :Uma(W) :Uw, (IER
If, moreover, W1 € My, then
oy < UI>/\VW1 <oy + UI>/\V1. (2.10)

Proof. The first assertion follows from Corollary 2.4. The relation UG\(W) = opy,
is immediate from the explicit computation

o(W) = ( o ‘w21> .

—wi2 w22
The fact that Uéa(W
. . >\ o >\
for any entire function f we have Tt = TF(ea)
The first inequality in (2.10) is a consequence of the fact that, as a set,
H(Ew) is contained in H(Eww, ). The second inequality in (2.10) is trivial. e

) = opy Tollows because W (a) is invertible and because



SUBSPACES OF DE BRANGES SPACES WITH PRESCRIBED GROWTH 33

e. The square root transformation. The following transformation of entire
functions is a useful tool. Let E be an entire function and assume that E
satisfies the functional equation

E#(z) = E(—2). (2.11)

If £ is written as E = A —iB with A and B as in (2.3), we define £, :=
Ay —iB,, where A, and B, are defined by the relations

Ay (2%) = A(z), By(2?) = 2B(2). (2.12)

Note that the validity of (2.11) is equivalent to A being even and B being odd,
so that A, and B, are well-defined entire functions. Clearly, B4 (0) = 0.

The assignment E +— FE, maps the set of all entire functions satisfying
(2.11) bijectively onto the set of all entire functions that take a real value at 0.
[ts inverse is given by

E+ = A+ — ZB+ — B = A+(Z2) — %B_F(Zz)

In connection with this transformation, the so-called Stieltjes class S is of
importance. Recall that a function ¢ is said to belong to S if ¢ € Ajy and is
analytic and nonnegative on (—o0c, 0). The fact that ¢ € S can be characterized
in several ways, see [KaKl, KaK2]. We recall that

qES = zq(z%) e Np. (2.13)
Moreover, for any function ¢ € S we have limy_,+oo%Imq(iy) = 0 and
lim, o g(x) € R.

2.12. Remark. Let A — 7B € HB, and assume that A and B do not vanish on
(—00,0) while B(0) = 0. Then ¢ = —% € S. Indeed, ¢ € Ny, and therefore, by
the Herglotz theorem,

00 > 1 1)
- —_—— n — — b
q(2) . +n§:10 ( +a+bz

Tn— 2 Ip

for some a € R, b >0, and 0, >0, n =0,1,... Here the x,, are the nonzero

zeros of B. Clearly, lim,_,_g g(x) = +oc. Since ¢ does not change the sign on

(—00,0), it follows that ¢ > 0 on (—o0,0).

2.13. Remark. Let F = A —iB and Ey = A, — iB, be entire functions

related to each other as in (2.12). Then:

(i) £ € HB if and only if Ey € HB and A4 (z)Bi(z) < 0, z < 0, which is

equivalent to —’é—i € S. This follows by combining Remark 2.1(iv), with
(2.13) and the fact that ¢ € Nj if and only if —% e M.
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(if)

(iif)

If £ € HB and 1 € AssocH(E), then also 1 € Assoc H(E). This follows
from some geometric arguments concerning the generated de Branges
spaces. A proof can be found in [KWW2, Proposition 2.6], where even a
more general setting was considered.

Assume that E € HB and 1 € AssocH(E,.). Let Cy, D, be entire
functions as in Remark 2.7 and satisfying (2.8). Then 1 € Assoc H(E) if
and only if

D
lim +(z)

eR.
2——0c By (z)

On the first sight, this result may look surprising. It follows from a
deeper discussion concerning the reproducing kernel space generated by
the matrix W in (2.7) (see [KWW1, Proposition 3.14]), which involves
the theory of de Branges Pontryagin spaces, cf. [KW1]. No direct proof
is known to the authors.

§3. Existence of subspaces with prescribed growth

This section is devoted to the proof of the existence of de Branges spaces
that have subspaces of smaller growth, see Theorem 3.6. Our method is based
on the following result, which is also of interest on its own right.

3.1. Theorem. Let )\ be a growth function with A(r) = O(r). Then there
exists a de Branges space H of [inite and positive \-type with 1 € AssocH.

Before proceeding to the proof of this theorem, we discuss the statement in
more detail.

3.2. Remark. (i) By [KW3, Theorem 3.10], every de Branges space H with

(ii)

(iif)

1 € Assoc’H must be of finite exponential type. Hence, the condition
A(r) = O(r) is natural.

A different approach to this theorem could proceed via [BP2, Theorems
3.6, 5.1]; the method employed there is function theoretic in its nature
and goes back to a result of M.G.Krein, see [K2]. By means of this
approach the case where A\(r) = r” was treated in [BP2, Theorems 5.6].
In the present paper, however, we prefer a more Hilbert space theoretic
point of view.

The hard part of the theorem is to deal with the case where A\(r) grows
slower, but almost as fast, as r. If the growth function A\, A(r) = O(r),
satisfies a very mild additional condition, a space H with finite and
positive A-type and with 1 € Assoc’H can be constructed much more
explicitly. Indeed, denoting by u the inverse function of A, let us assume
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o dt

Put y,, := p(n), n € N. Then, by (3.1), we have > >, y% < oo. Hence,
we may define an entire function by
z
E(z):= (1 —)
(=) H " 1Yn
neN

Clearly, E € HB. Moreover, e.g., by [B2, Theorem 1], the space H(F)
contains the set of all polynomials as a dense linear subspace. In partic-
ular, 1 € Assoc H(E). Since

that

. 1 1
AX((Yn)nen) = 1,  limsup g — | = E — < oo,
r—oo ; Yn — Yn
liyn|<r n=1

the results of [L, I. Lehrsatz 17,18] imply that E is of finite and positive
A-type.

Note that if (3.1) fails, a similar construction is not possible. This
follows from the fact that, due to the presence of the Blaschke condition,
a function of finite and positive A-type must, in the case where (3.1) fails,
have most of its zeros close to the real axis in the sense that there exists
no angle {z € C: argz € (—m+4,—0)}, 6 > 0, containing all zeros of E.

Let us come to the proof of Theorem 3.1. It is based on a perturbation
argument. Let £ = A —iB € HB, E(0) = 1, and let (yx)ren be a monotone
nondecreasing sequence of positive real numbers. Assume the following:

(a) All zeros of A lie in (0, 00).

(b) Denote by (ay)rer the sequence of zeros of A arranged increasingly. Then
=1

Y — <o

k=1

Note that B(0) = 0 because E(0) = 1. Taking into account (a) and the fact

that the zeros of A and B interchange, we see that the zeros of B lie in [0, c0).

We construct a function E(z) by proceeding as follows.

(1) The function % belongs to the class Ny and is meromorphic in C. Hence,
if we put o, := —5((‘;’;)), then o, > 0, Y52, oa,? < oo, and we have

0= ()

where a > 0.
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(2) Define a sequence (ax)ken as ar := agpyk, k € N. Then
0<ap <ag<... and ax>mar, k€N
(3) We have

~ 1 1
035 - e

determines a function ¢ € Ay meromorphic in C and such that its poles
are the ay, and its residue at ag is —oy # 0.

(4) We have
[e.e] 1 [e.e]
Z -~ g Z < 007
i Yk 10k
so that the product
A(z) = H (1 - d_k>

deter[nines an entire function. 3 3
(5) Put B(z) := G(z) - A(z); then B is a real entire function and B(0) = 0. If
we now define

E:=A- iB,
then E € HB (see Remark 2.1(iv)).

3.3. Lemma. Assume that E € HB is subject to the above conditions (a)
and (b), and let E be constructed as in (1)-(5). If 1 € Assoc H(E), then also
1 € Assoc H(E).

Proof. Assume that 1 € AssocH(FE). In order to prove the lemma, we shall
verify the conditions (C1)-(C3) of Remark 2.8 for the function £ = A —iB.

Because of the positivity of the numbers aj, condition (Cl) is equivalent
to the convergence of the series ZkeNé, and this was already seen in the
item (4) above. Condition (C2) is fulfilled because (7yx)gen is monotone in-
creasing (thus, 1imk_>oo$k exists), and because, by the assumption of the
lemma, the sequence (ag)kery satisfies (C2). Indeed, since all zeros are posi-
tive, limg_, 0o % = 0 and hence also limy_. o % =0.

To establish (C3), we need to estimate A’(@). Since 1 € Assoc H(E) and
all zeros of A are positive, [KWW1, Proposition 3.12] implies that F, and
hence also A and B, are of order at most 3. Thus, A(z) = [[22,(1 — ) and

an
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B(2) = az[[;2,(1—¢), where (b,)nen denotes the sequence of nonzero zeros
of B, and a > 0. Note that, by locally uniform convergence of the respective
products and analyticity,

We have ££ = 2Lk whence
n n n

ak gg—: if & <n,
>

an, g—ﬁ it kK > n.
Moreover,
‘1_%: —g—iifk:<n o 1—g—iifk:<n :‘1_%'
an L1 ifk>n [T | &2-1ik>n an

It follows that
. 1
|A'ar)| = —|A'(ax)].
Yk
The series (2.9) for E can be written as
%‘ A’ak ak‘_z A’akzak

and, since by our construction the numbers o} are the same for F and E, the
series (2.9) for E is nothing else but

It follows that

1
Z S Z —Al(ax))? Z aQA’ (ak)%o% =

~
keN apA'( a’f)za’f keN (%ak)( Tk jen %k

i.e., condition (C3) is satisfied. e

The next lemma is completely elementary. It simply ensures that the num-
bers 7, can be chosen appropriately. Recall that for a growth function p the
upper u-density of a sequence (wg)gen of complex numbers is defined as

Au((wi)ken) == hfﬂf‘ip #{k € I\L(J)wk' r}
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3.4. Lemma. Let A\ and )\ be growth functions with A\1(r) = O(\(r)), and
let (ak)ren be a monotone increasing sequence of positive real numbers that
has a finite and positive upper A-density. Then there exists a monotone non-
decreasing sequence (Vi )ken Of positive real numbers such that the sequence
(vkar)ken has a finite and positive upper \1-density.

Proof. Without loss of generality we can assume that A; is continuous and
monotone increasing, and that lim,\ o A;(r) € (0, 1).

First, observe that, since A\i(r) < ¢\(r) for an appropriate real constant ¢,
we certainly have

AAl((ak)kGN) = %A)\((ak)keN) > 0.

If Ay, ((ag)ken) < oo, then we set v, := 1, n € N, and are done. Hence, for
the rest of the proof we may assume that Ay, ((ax)ken) = oco.
Inductively, we construct numbers n; € N and real numbers ~q,..., v,
such that
(i) np <ngr1, k€EN;
(i) 0 <y < <y
(iii) for all 0 < r < yp, an, we have

#{’I’L D Ynln < T}
)\1(’1")

Moreover, the construction will be carried out in such a way that

<1

(iv) for all £ > 1 there exists r; > 0 such that ry — oo and

#{Vnan < Tk} .

lim =1.

k—o0 )\1(Tk)
For k =1 we put ny := 1, and let 77 be such that A\i(y1a1) = 1. Then (i) and
(ii) are trivial, and (iii) is fulfilled because {vn,a, < r} = @ for r < y1a;.
We come to the inductive step. Assume that numbers ny and v; satisfying
(i)—(iii) are given for all k < K and [ =1,...,nk. Consider the sequence

. VG if n <ng,
Qp 1= )
Tngn In>ng.

Consider the function g(r) := #{fi’fff}' [t is continuous from the right, has

positive jumps at the points a,, and is monotone decreasing between two
successive jumps. By (iii) of the inductive hypothesis,

N n: an, < a
g(anK) _ #{ YnQn Tng nK}
)\l(lynKanK)

<1
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Moreover, since Aj(yn,7) < Ai(r) for any fixed K, we have Ay, ((an)nen) =
00, i.e., limsup,_, ., g(r) = co. Hence, there exists a smallest number r that
satisfies

r>ap, and g(r)>1.
Clearly, we must have r = a,, for some n € N. We define nx,1 as this number
n. Then ng.1 > ng, and (i) is satisfied. Consider the function
o) = ng + #{n > nf< DAl < &HKH}'
)‘l(anKH)
This is a monotone nonincreasing step function with jumps of height
AM(@ng,,) "t We have f(1) = g(an,,,) > 1, and

nK nK
fla) = = < —~ <1
) = ) S M)

whenever a > dnK+1a;II(+1' Thus, there exists a value ap € [1,00) such that
1> flag) 21— N (Gng,,) " We define

V= 00Yng, N << niyr

The requirement (iii) for the values r < ~,, is lIulfilled by the inductive
hypothesis. For 4y, <7 < yny,,, this requirement follows from our choice of
ni11 and the fact that ag > 1.

Finally, put 7, = A1(@ny,,) = AM(Yng@ng,, ). Then, by our choice of ay,

#{'Ynan < Tk} _ a -1
W = flag) > 1— )\I(GHKH) )

and condition (iv) is satisfied. e

Proof of Theorem 3.1. Consider the Paley-Wiener space PW; = H(E),
where E(z) := e™% = cosz — isinz. This is a de Branges space of finite
and positive exponential type, and with 1 € Assoc PWj.

We define a function E; = Ay — iB, by the relations

A (2%) =cosz, Bi(z%) =zsinz.

Then E, € HB and 1 € Assoc H(E.), see Remark 2.13(ii). Moreover, clearly,
H(E,) is of finite and positive \/r-type, and the zeros of A, are precisely the
numbers ay := 72(k — 1)?, k € N.

The sequence (ag)rer has /r-density 7%2 Since we assume that A\(r) =
O(r), we have \/A(r) = O(y/r). By Lemma 3.4, we can choose a monotone
nondecreasing sequence (7yx)gen of positive real numbers so that the sequence

(vkar)ken has finite and positive upper /A(r)-density.
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Clearly, E satisfies the assumptions (a) and (b). Therefore, we may apply
Lemma 3.3 to obtain a function £, = A} —iB, € HB with 1 € AssocH(E}),
B1(0) =0, and A (z) =[[z=,;(1 — ==-). By [L, I.Lehrsatz 17], the function

YOk
A, has finite and positive \/A(r)-type.
We choose C.y, D, as in Remark 2.7 (and satisfying (2.8)), and put
. (A+ By
W <C+ D+> '
By the properties of the class My, we have A, +iCy € HB and C(0) = 0.
Since the zeros of A, and C, should interlace and all zeros of A, are in
(0, 00), it follows that all zeros of C., are in [0, 00). We also have D, +iC, €
HB, and thus the zeros of Dy and C interlace. Consequently, there are two
possibilities:
(i) all zeros of Dy are in (0, 00);
(ii) there exists a unique a < 0 such that D (a) = 0.

In the case (i) the function ¢ = —% is in the class Ny, does not vanish

on (—o00,0), and has a pole at the zero. Hence, ¢ € S by Remark 2.12. We
conclude that _
Dy (z)
m ————-

2== By (x)
By Remark 2.13, (iii), this implies that 1 € Assoc H(E) where E is defined by

eR.

B(z) = A~ LBy(2).

In the case (ii) we make use of the transformation w, introduced in Sub-

section 2, d. Put X X
. A, B, -
W. =|"x - =10, (Wy).
L (O+ D+) ()
A computation shows that

W (2) = —B4(a)C(z+a) —B(a)D4(z+a)
+ —Cy(a)A4(z+a)+A1 (a)C4 (24a)  —Ci(a)Bi(2+a)+Ay(a)Di(z+a) )

Hence, we have

and
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By Remark 2.12, the functions _ Ay and Bi(zta) belong to the Stieltjes class.

By Dy (2+a)
Thus,
lim lIml?—iri(z.y):() and lim MER
vty By (iy) =25 By (2)
By Remark 2.13, (iii), we have 1 € Assoc H(E), where
B(z) = A (%) = ~Ba(2?).

Clearly, E is of finite and positive A-type. e

3.5. Remark. By using the construction of Remark 3.2(iii), for A\ growing
sufficiently slowly, it can be shown that the space H in Theorem 3.1 can be
chosen in such a way that the domain of the multiplication operator in H is
dense in H.

Now, from Theorem 3.1 we can deduce the existence of de Branges spaces
with subspaces of smaller growth.

3.6. Theorem. Let \, \1 be growth functions with
A(r)=o(A(r)) and X(r)=O(r).
Then there exists a de Branges space H of finite and positive \-type that has

a subspace L € Sub'H of finite and positive \i-type.

Prootf. By Theorem 3.1, we can choose W, W7 € My such that a{/\l}l,a{/\v €

(0,00). Then o), =0 and

A A A A A
oW S oww, S O + oy, = oy,

whence
UG\(WW1) = UI>/\VW1 = Uﬂ\v € (0, 00).
Consider the de Branges space H := H(Eyqww,)). Then, as we have just

established, H is of finite and positive A-type. Since o(WW7) = o(W7)o(W),
there exists £ € SubH such that £ = H(Eyw,)) as sets. However,

A1 A\ _ M
o7t = Oyiwy = ow, € (0,00). o

3.7. Remark. The following statement shows that the condition A(r) = O(r)
in Theorem 3.6 is natural. Let A, A\; be growth functions, and assume that

A(r) =o(A(r)) and r=o(A(r)).

Moreover, let H be a de Branges space of finite and positive A-type. Then no
nonzero subspace £ € Sub’H can be of finite A;-type.
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To see this, we recall that, by [KW3, Theorem 3.10], if r = O(u(r)) and
a de Branges space contains one nonzero function of finite u-type, then it is
itself of finite u-type. Applying this with
pu(r) == max{Ay(r),r},

yields the desired conclusion.

§4. A condition for nonexistence of subspaces with small growth

In this section we show that the existence of subspaces of a given de Branges
space ‘H that have smaller growth than H is by no means the generic situation.
To be more precise, we show that if H is written as H(FE) and the function E
has maximal admissible growth along the real axis, then the space H cannot
contain infinite-dimensional subspaces of smaller growth.

4.1. Theorem. Let A and A\ be growth functions with A\i(r) = o(A(r)), and
let H be a de Branges space of [inite and positive \-type. Assume that
for one (and hence for all) functions E € HB with H = H(E) we have
log |E(z)| < A(|z|), x € R. Then no infinite-dimensional subspace L € SubH
is of finite \1-type.

Proof. Suppose that an infinite-dimensional de Branges subspace H(E;) of
H(E) has finite A\;-type. Then

lim |Ey(z)/E(z)| = 0.

|z|—o00
On the other hand, we have

Recall that the reproducing kernel K7((, ) of the space H(FE1) corresponding
to the point { € C is of the form

E(2)E#(Q) — E(Q)E*(2)
273 (¢ — 2) '

We shall show that there exists a sequence z,

Kl(Cv Z) =

1K1 (20, )le = o([[K1(@n, )| E,), n— o0,
which contradicts (4.1).
Let R > 0 and x € R. We have

i = [ [P [ TAn [ e

[t|<KR [t|>R
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Choosing R sufficiently large, we can make the last summand smaller than
|| K1 (x, )||2E1 for any given ¢ > 0 and for all z € R. Thus, it suffices to show
that for a fixed R there exists a sequence {x,} such that

_ Ki(xp,t) 2

2 1\tn,

||K1(l‘n,-)||E1 / ‘7E(t) ‘ dt — 0, n— oo.
[tI<R

Observe that |K1(z,t)| < 77t — x| E(z)E(t)], and so

Ki(z,t)
/( (2, (dt R)|Ey ()2, |2| > R+1.
<R

We also recall that )
| B ()|} ()
F(a, )3, = EEE A,

where 1 is the so-called phase function for F;. Moreover,
B | Im z,, |
=a+ Z iz — 22

where the z, € C~ are the zeros of E; and a > 0 is the parameter in the factor
e~ of the standard factorization of the Hermite—Biehler functions ([L]; see
also [BI, KW2]).
To complete the proof, we need to show that
liminf 272 (¢} (x)) " = 0. (4.2)
|z|—00
If @ > 0, then (4.2) is trivial. Otherwise, F; has infinitely many zeros, because
we assumed the subspace H(E7) to be infinite dimensional. Put z,, = Re z,, +
sign (Re z,,)| Im z,,|. Then |z,,| — oo and

o () = |21mzn|_1 > |2xn|_1.

Thus, we have 22¢(x,,) — oo, which proves (4.2). e
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