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Abstract

We establish a unique factorization result into irreducibel elements in the
partial semigroup of 2×2-matrices with entries in K[x] whose determinant
is equal to 1, where K is a field, and where multiplication is defined as
the usual matrix-multiplication if the degrees of the factors add up. This
investigation is motivated by a result on matrices of entire functions.
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1 Introduction

Let K be a field. We consider divisability and factorization into irreducibel
elements in the partial semigroup of 2 × 2-matrices with entries in K[x] and
determinant 1, where multiplication is defined as matrix-multiplication if the
degrees of the factors add up, cf. Section 2. Our aim is to establish a unique
factorization result, cf. Theorem 3.1.

Although our considerations are purely algebraic and in fact quite elemen-
tary, they should be seen in connection with some results of complex analysis.
Let us explain this motivation: Let W (z) = (wij(z))i,j=1,2 be a 2 × 2-matrix
function whose entries are entire functions, i.e. are defined and holomorphic in
the whole complex plane. We say that W belongs to the class Mκ where κ is
a nonnegative integer, if wij(z) = wij(z), W (0) = I, detW (z) = 1, and if the
kernel

KW (w, z) :=
W (z)JW (w)∗ − J

z − w

has κ negative squares. Thereby

J :=

(

0 −1
1 0

)

The latter condition means that for every choice of n ∈ N, z1, . . . , zn ∈ C,
a1, . . . , an ∈ C2, the quadratic form

Q(ξ1, . . . , ξn) :=

n
∑

l,k=1

(

KW (zk, zl)al, ak

)

C2

ξlξk

has at most κ negative squares and that this bound is actually attained for some
choice of n, zl, al.

The following result lies at the core of the theory of L.de Branges on Hilbert
spaces of entire functions [dB] and its generalization to the Pontryagin space
setting [KW1], [KW2], [KW3].
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Maximal Chain Theorem:

Let W ∈ Mκ be given. Then there exists a (essentially unique)
family (Wi)i∈I of entire 2× 2-matrix functions, where the index set
I is of the form I = [0, 1] \ {σ1, . . . , σn}, σi ∈ (0, 1), such that

(i) W0 = I, W1 = W .

(ii) Wi ∈ Mκ(i) and κ(i) is a nondecreasing function of i which is
constant on each connected component of I.

(iii) If i, j ∈ I, i ≤ j, then W−1
i Wj ∈ Mκ(j)−κ(i).

(iv) If j ∈ I and M ∈ Mν , ν ≤ κ(j), is such that M−1Wj ∈
Mκ(j)−ν , then M = Wi for some i ∈ I, i ≤ j.

This result tells us, in particular, that the family (Wi)i∈I gives all possible
factorizations W = M · M̂ so that the number of negative squares add up
(M̂ = M−1W ).

If W (z) is a 2 × 2-matrix function whose entries are polynomials with real
coefficients, W (0) = I and detW (z) = 1, then the number of negative squares
of KW is finite, in fact it is less than or equal to the maximal degree of an entry
of W , cf. [KW1]. The simplest example is a matrix polynomial with degree 1.
Due to the conditions W (0) = I and detW (z) = 1 those matrix polynomials
are of the form (l ∈ R, φ ∈ [0, π))

W(l,φ) :=

(

1 − lz sin φ cosφ lz cos2 φ

−lz sin2 φ 1 + lz sin φ cos φ

)

.

For a matrix polynomial W the chain (Wi)i∈I given by the Maximal Chain
Theorem is of a particularly simple form: There exist unique matrix polynomials
Mk, k = 1, . . . , n, with Mk ∈ Mνk

, values φk ∈ [0, π) and indices ik ∈ I with
ik < ik+1, such that

(i)
M1 · . . . · Mk = Wik

, k = 1, . . . , n ,

in = 1, i.e. M1 · . . . · Mn = W .

(ii) If ik−1 ≤ i ≤ ik then for some l, l′ ∈ R,

W−1
i Wik

= W(l,φk), W−1
ik−1

Wi = W(l′,φk)

Thereby k = 1, . . . , n and we have put i0 := 0.

The factorization W = M1 · . . . ·Mn has the property that degrees add up: For
a matrix polynomial P denote by δP the maximal degree of one of its entries.
Then

δW = δM1 + . . . + δMn .

In fact, it is characterized by this property: If W = M̂1 · . . . · M̂m is any
factorization of W into matrix polynomials with M̂i(0) = I, det M̂i(z) = 1,
such that δW = δM̂1 + . . . + M̂m, then n = m and M̂i = Mi, i = 1, . . . , n. We
conclude in particular that the following result holds true:
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Unique Factorization Theorem:

Let W be a 2×2-matrix polynomial with real coefficients, W (0) = I

and det W (z) = 1. Then there exists a unique number n ∈ N and
unique 2 × 2-matrix polynomials M1, . . . , Mn with real coefficients,
Mi(0) = I and detMi(z) = 1, such that

W = M1 · . . . · Mn, δW = δM1 + . . . + δMn ,

and no Mi can be further decomposed.

It was noted by A.Dijksma (personal communication, see also [ADL]) that this
fact can also be proved without employing the deep machinery of L.de Branges
theory and the Maximal Chain Theorem. In fact, the desired factorization of
a matrix polynomial can be constructed with the help of the so-called Schur
algorithm, first invented by I.Schur in the study of some classical interpolation
and moment problems.

Although the proof of the stated Maximal Chain Theorem relies heavily on
the theory of analytic functions, it seems to be promising to try to generalize
the Maximal Chain Theorem to matrix functions with values in fields different
to the complex number field, e.g. in a locally compact field. Of course then in
particular a similar Unique Factorization Theorem would have to hold. It is
therefore a noteworthy fact that the Unique Factorization Theorem actually is
true for 2×2-matrix polynomials over arbitrary fields. It is the aim of this note
to establish this result.

We give a purely algebraic and elementary proof of the Unique Factorization
Theorem for 2 × 2-matrix polynomials with coefficients in an arbitrary field K

based on the euclidean algorithm in the polynomial ring K[x]. It is seen that the
Unique Factorization Theorem boils down to the fact that the greatest common
divisor of two polynomials a, b can be written as a linear combination of a and b

and that the coefficients of this linear combination can be constructed explicitly
from the factors and remainders in the euclidean algorithm.

In the particular case K = R our result gives another proof of the above
stated Unique Factorization Theorem. It is worth to be noted that the previous
approaches to factorization in the case K = R, via the theory of de Branges
spaces or via the Schur algorithm, involve deep methods of complex analysis,
whereas the proof obtained as a specialization of the present Theorem 3.1 is
completely elementary.

A possible direction of future work is also motivated from recent develop-
ments in the theory of the Schur algorithm. In fact a factorization result for
rational matrix functions with real coefficients which is obtained via the Schur
algorithm was recently communicated to the authors by Aad Dijksma. It seems
a promising task to find a similar factorization theorem for rational matrix func-
tions over arbitrary fields. Another direction of future development could be
motivated from [AADL] where a factorization theorem for a certain class of
rational matrix functions over the complex field is given. Thereby this class of
functions is related to the unit circle in a similar way as the class of real matrix
functions is related to the real axis. Thus it seems likely that the present result
can be carried over.
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2 The partial semigroup (S, ·)

Let K be a field and let M(2, K[x]) be the ring of 2× 2-matrices whose entries
are elements of the polynomial ring K[x]. For p ∈ K[x] denote by deg p the
degree of p where we put deg 0 := −∞. We will use in the sequel that the
function deg : K[x] → N0 ∪ {−∞} satisfies

deg(p1 + p2) ≤ max{deg p1, deg p2} ,

where strict inequality can hold only if deg p1 = deg p2, and that

deg(p1 · p2) = deg p1 + deg p2 ,

where −∞ + n = n + (−∞) = −∞ + (−∞) = −∞.
Let A ∈ M(2, K[x]) and write

A =

(

a b

c d

)

.

We define the degree δA of A as

δA := max{deg a, deg b, deg c, deg d} .

Note that δA is nothing else but the degree of A if we identify M(2, K[x])
canonically with M(2, K)[x]. We clearly have

δ(AB) ≤ δA + δB, A, B ∈ M(2, K[x]) .

Consider the set S := {A ∈ M(2, K[x]) : detA = 1}. Then S is closed with
respect to matrix multiplication and, by Cramers rule, with respect to taking
inverses. We will endow S with the partially defined binary operation

· :

{

D ⊆ S × S → S
(A, B) 7→ AB

where
D := {(A, B) ∈ S × S : δ(AB) = δA + δB} .

For further reference let us collect a couple of elementary properties of (S, ·).

2.1 Lemma. We have

(i) If A ∈ S then δA ≥ 0.

(ii) If A, B, C ∈ S and B ·C as well as A · (B ·C) are defined, then also A ·B
and (A · B) · C are defined and

A · (B · C) = (A · B) · C

(iii) Denote by I the 2 × 2-identity matrix. Then for all A ∈ S we have
(A, I), (I, A) ∈ D and

A · I = I · A = A

(iv) Put S× := {U ∈ S : (U, U−1) ∈ D}. Then S× = {U ∈ S : δU = 0}. If
U ∈ S×, then for all A ∈ S we have (U, A), (A, U) ∈ D. Hence (S×, ·) is
a (totally defined) subgroup of S, the subgroup of units of (S, ·).
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(v) If A, B, C ∈ S, (A, C), (B, C) ∈ D, and A · C = B · C, then A = B.
Similarly the left-cancellation law holds.

Proof.
ad(i): Obvious, since 0 6∈ S.

ad(ii): By assumption

δ[A(BC)] = δA + δ(BC) = δA + δB + δC

It follows that
δ[A(BC)] = δ[(AB)C] ≤ δ(AB) + δC ≤

≤ δA + δB + δC = δ[A(BC)]

Hence δ(AB) = δA + δB and δ[(AB)C] = δ(AB) + δC.

ad(iii): Obvious.

ad(iv): If (U, U−1) ∈ D, then 0 = δI = δ(UU−1) = δU + δ(U−1). This is only
possible if δU = 0. Conversely, assume that δU = 0. Then also δU−1 = 0 and
we obtain

0 = δI = δU + δ(U−1)

Let A ∈ S, U ∈ S×. Then

δA = δ[(AU)U−1] ≤ δ(AU) + δ(U−1) = δ(AU) ≤

≤ δA + δU = δA ,

and hence δ(AU) = δA+ δU . The fact that (U, A) ∈ D follows in the same way.

ad(v): Obvious, since S contains only invertible matrices.

❑
2.2 Remark. Note that (A, B) ∈ D not necessarily implies (B, A) ∈ D, as is
seen from the example

A =

(

1 + x2 x

x 1

)

, B =

(

1 x

0 1

)

.

Notational Convention:

We agree that, whenever we use the notation A · B, this implies that
(A, B) ∈ D.

The following property plays a technically important role: We say that a
matrix

A =

(

a b

c d

)

∈ S (2.1)

satisfies the property (D), if deg b > deg a.

2.3 Lemma. Let A ∈ S be written as in (2.1).

(i) Assume that a, b, c, d 6= 0. Then

deg d − deg c = deg b − deg a (2.2)
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(ii) Assume that δA > 0. Then A satisfies (D) if and only if deg d > deg c.

Proof.
ad(i): If δA = 0, the desired relation trivially holds true. Hence assume that
δA > 0. Since a, b, c, d 6= 0, in this case at least one of deg(ad) and deg(bc) is
greater than 0. It follows from ad− bc = detA = 1 that deg(ad) = deg(bc), and
hence that (2.2) holds.

ad(ii): Assume that A satisfies (D). If a = 0, we have −bc = 1, and hence
deg b = deg c = 0. Since δA > 0, we obtain deg d > 0, and thus deg d > deg c.
If c = 0, we have ad = 1, and hence deg a = deg d = 0. Thus also in this case
deg d > deg c. It remains to consider the case that a, c 6= 0. Then, by (D),
deg b > 0 and hence also deg(bc) > 0. Since ad − bc = 1, and hence the desired
conclusion follows, in fact (2.2) holds.

The converse implication follows in the same way.

❑
The validity of (D) can always be achieved by multiplying with units:

2.4 Lemma. Let A ∈ S, δA > 0, be given. Then there exist U, V ∈ S× such
that V AU satisfies (D). Let A be written as in (2.1). If b 6= 0, we can choose
V = I. If c = 0, we can choose U = V = I. If b = 0, we can choose V = U = J ,
where

J :=

(

0 −1
1 0

)

Assume that A satisfies (D) and U ∈ S×. Then AU satisfies (D) if and only if
U is upper triangular.

Proof. If c = 0, we have deg a = deg d = 0, and since δA > 0, this implies
that deg b > 0. Thus A satisfies (D). If b = 0, the same argument yields
deg a = deg d = 0 and deg c > 0. Hence

JAJ =

(

−d c

0 −a

)

satisfies (D).
It remains to consider the case that b, c 6= 0.

Case 1 deg b > deg a or deg d > deg c: Then we can, by Lemma 2.3, (ii), choose
U = V = I.

Case 2 deg b < deg a or deg d < deg c: Then Case 1 can be applied to the ma-
trix

AJ =

(

b −a

d −c

)

and we see that we can choose V = I, U = J .

Case 3 deg b = deg a and deg d = deg c: Choose λ ∈ K such that deg(a+λb) <

deg a = deg b. Then

A

(

1 0
λ 1

)

=

(

a + λb b

c + λd d

)

satisfies (D), i.e. we can choose V = I and

U =

(

1 0
λ 1

)
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We come to the proof of the uniqueness statement. Write U ∈ S× as

U =

(

α β

γ δ

)

Then

AU =

(

αa + γb βa + δb

αc + γd βc + δd

)

Hence in order that AU satisfies (D) it is necessary and sufficient that γ = 0.

❑

The next statement is an important step towards factorization results.

2.5 Proposition. Let A ∈ S. Assume that for some p ∈ K[x], deg p > 0, and
A1 ∈ S the matrix A can be factorized as

A = A1 ·

(

1 p

0 1

)

(2.3)

Then A satisfies (D) and δA > 0. Conversely, if A satisfies (D) and δA > 0,
then there exists a unique polynomial p with p(0) = 0, and a unique element
A1 ∈ S, such that A factorizes as in (2.3).

Proof. Assume that A factorizes as in (2.3). Clearly δA > 0. The relation (2.3)
writes explicitly as

(

a b

c d

)

=

(

a1 b1

c1 d1

) (

1 p

0 1

)

=

(

a1 pa1 + b1

c1 pc1 + d1

)

Since
δA = δA1 + deg p > δA1 ≥ max{deg a1, deg c1}

we have either deg b > deg a or deg d > deg c, and hence see that A satisfies
(D), cf. Lemma 2.3, (ii).

Let A be given, δA > 0, such that (D) holds. We show existence of a
factorization (2.3).
Case 1 c = 0: Then deg a = deg d = 0, deg b = δA > 0, and thus

A =

(

a b(0)
0 d

)

·

(

1 b−b(0)
a

0 1

)

is a factorization of the desired form.

Case 2 a = 0: Apply Case 1 to the matrix

JA =

(

−c −d

0 b

)

to obtain

JA = A1 ·

(

1 p

0 1

)

Then

A = (−JA1) ·

(

1 p

0 1

)

is a factorization of A of the desired form (2.3).
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Case 3 a, c 6= 0: Choose p, r ∈ K[x] with p(0) = 0, deg r ≤ deg a, such that
b = pa + r. Define

A1 =

(

a1 b1

c1 d1

)

:= A

(

1 −p

0 1

)

=

(

a r

c d − pc

)

It follows that deg(d − pc) ≤ deg c: For if deg(d − pc) = 0, this relation is true
since c 6= 0, and if deg(d− pc) > 0, we must have r 6= 0 and by Lemma 2.3, (i),

deg(d − pc) − deg c = deg r − deg a ≤ 0 .

We conclude that
δA1 = max{deg a, deg c} .

Since
deg(b − pa) = deg r ≤ deg a < deg b

we must have deg b = deg(pa). Similarly, deg(d−pc) ≤ deg c < deg d, cf. Lemma
2.3, (ii), and thus deg d = deg(pc). Alltogether, we conclude that

δA1 + deg p = max{deg a, deg c} + deg p =

= max{deg(pa), deg(pc)} = max{deg b, deg d} = δA

Hence, A1 and p yield a factorization of the desired form.

Finally, let us prove uniqueness. If p ∈ K[x], p(0) = 0, and A1 ∈ S, are such
that A factorizes as in (2.3), then a1 = a, c1 = c, b = pa1 + b1, d = pc1 + d1.

We have δA = max{deg b, deg d}. Say δA = deg b; the case δA = deg d can
be treated in the same way. Then

deg b = δA = δA1 + deg p ≥ deg b1 + deg p .

Hence deg b > deg b1, and we see that deg b = deg(pa1). In particular, a1 6= 0.
Moreover,

deg p + deg a1 = deg b ≥ deg b1 + deg p ,

and hence deg b1 ≤ deg a1. Thus p ∈ K[x], is such that p(0) = 0 and
deg(b − pa) ≤ deg a. By this condition, however, p is determined uniquely.
Clearly with p also A1 is determined uniquely.

❑

3 The unique factorization theorem

An element B ∈ S, δB > 0, is called irreducible if for all A, A′ ∈ S with
B = A · A′ we must have A ∈ S× or A′ ∈ S×. This amounts to saying that for
any A, A′ ∈ S with B = AA′ and δB = δA+ δA′ necessarily δA = 0 or δA′ = 0.

Let us define a relation ∼ on S by

A ∼ B : ⇐⇒ ∃U, V ∈ S× : A = U · B · V

By Lemma 2.1, ∼ is an equivalence relation. Clearly, the set of all irreducible
elements is saturated with respect to the relation ∼.
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In the following theorem, which basically follows from the euclidean algo-
rithm in K[x], we characterize the set of irreducible elements (up to ∼) and show
that every element of S can be factorized uniquely (up to ∼) into irreducibles.
Thereby item (iii) is exactly the general version of the Unique Factorization
Theorem mentioned in the introduction.

3.1 Theorem. We have

(i) An element B ∈ S is irreducible if and only if there exists p ∈ K[x],
p(0) = 0, such that

B ∼

(

1 p

0 1

)

(ii) Let A ∈ S, δA > 0. Then there exist n ∈ N and W1, . . . , Wn, δWi > 0,
irreducible in S, such that

A = W1 · . . . · Wn

If A = Ŵ1 · . . . · Ŵm is another factorization of A into irreducibles in S,
δŴi > 0, then n = m and Wi ∼ Ŵi, i = 1, . . . , n.

(iii) Assume that A ∈ S, δA > 0, A(0) = I. Then there exists a unique
number n ∈ N and unique irreducible elements Wi, i = 1, . . . , n, δWi > 0,
Wi(0) = I, such that A = W1 · . . . · Wn.

For the sake of completeness let us remark that the case of matrices A or B

with δA = 0 or δB = 0, respectively, is trivial.
The rest of this section is devoted to the proof of Theorem 3.1, which will

be carried out in several steps.
Proof. (of (i), sufficiency) We show that whenever p ∈ K[x], deg p > 0, the
matrix

B :=

(

1 p

0 1

)

is irreducible.
Assume on the contrary that B = AA′ where (A, A′) ∈ D and δA, δA′ > 0.

From δB = δA + δA′ it thus follows that δA, δA′ < δB. Write

A =

(

a b

c d

)

, A′ =

(

a′ b′

c′ d′

)

so that

B =

(

1 p

0 1

)

=

(

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)

First note that

c′ = c′(cb′ + dd′) − d′(ca′ + dc′) = c(c′b′ − d′a′) = −c

and that
d = d(aa′ + bc′) − b(ca′ + dc′) = a′(da − bc) = a′

Next let us exclude the cases that one of the entries of A or A′ is equal to 0.
Assume that b = 0. Then deg a = deg d = 0 and p = ab′. Thus δB =

deg p = deg b′ ≤ δA′, and we have reched a contradiction. The cases that either
of a, b′ or d′ vanishes can be excluded in the same way.
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Assume that c, and with it also c′, is equal to 0. Then a, d, a′, d′ are nonzero
constants. Hence

δB = deg p = deg(ab′ + bd′) ≤ max{deg b′, deg b} ≤

≤ max{δA′, δA} < δB ,

and again we obtained a contradiction. The case that d, and with it also a′,
vanishes is treated in the same way.

If U ∈ S×, then
B = (AU−1) · (UA′)

is again a factorization with δ(AU−1), δ(UA′) > 0.
From the above elaborations and the Lemmata 2.3, 2.4, we conclude that

it can be assumed without loss of generality that all entries of A and A′ are
nonzero and that

deg b − deg a = deg d − deg c > 0

In particular then deg b, deg d > 0.
It follows from 1 = aa′ + bc′ and 1 = cb′ + dd′ that

deg a + deg a′ = deg b + deg c′, deg c + deg b′ = deg d + deg d′ .

Summing up and using that c′ = −c, d = a′, we obtain

deg a + deg b′ = deg b + deg d′ .

We obtain a contradiction:

δB = deg p = deg(ab′ + bd′) ≤ max{deg(ab′), deg(bd′)} =

= deg a + deg b′ < deg b + deg b′ ≤ δA + δA′ .

❑

Proof. (of (ii), existence) In fact the existence of a factorization of A into ir-
reducibles is clear, either by a descending chain argument or by inductive ap-
plication of Proposition 2.5. However, we shall establish an algorithmic way to
obtain a factorization of a specific form.

Let A ∈ S be given and write A as in (2.1). Since detA = 1, we have
gcd{a, b} = 1. Define n ∈ N and polynomials r−1, r0, . . . , rn, p1, . . . , pn by
carrying out the euclidean algorithm for (a, b):

r−1 := b, r0 := a ,

rk−2 = pkrk−1 + rk, k = 1, . . . , n ,

where deg rk < deg rk−1, k = 1, . . . , n. Thereby let n ∈ N be such that rn is the
first vanishing remainder, so that we have deg rn−1 = 0.

Define matrices Vk, Dk, k = 1, . . . , n, by

Vk :=























(

1 −pk

0 1

)

, k odd

(

1 0

−pk 1

)

, k even
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Dk := A · V1 · . . . · Vk .

We show that for all k = 1, . . . , n

(1, 0)Dk =

{

(rk−1, rk) , k odd

(rk, rk−1) , k even

For k = 1 we have

(1, 0)D1 = (1, 0)AV1 = (a, b)

(

1 −p1

0 1

)

=

= (r0, r−1)

(

1 −p1

0 1

)

= (r0,−p1r0 + r−1) = (r0, r1)

Let 1 < k ≤ n be given and assume that the assertion for (1, 0)Dk−1 has already
been proved.
Case k odd: Then k − 1 is even and we obtain

(1, 0)Dk = (1, 0)Dk−1Vk = (rk−1, rk−2)

(

1 −pk

0 1

)

=

= (rk−1,−pkrk−1 + rk−2) = (rk−1, rk) .

Case k even: Then k − 1 is odd and thus

(1, 0)Dk = (1, 0)Dk−1Vk = (rk−2, rk−1)

(

1 0
−pk 1

)

=

= (rk−2 − pkrk−1, rk−1) = (rk, rk−1) .

Consider the matrix Dn. Since detDn = 1, we must have

Dn =























(

rn−1 0

q 1
rn−1

)

, n odd

(

0 rn−1

− 1
rn−1

q

)

, n even

for some polynomial q.
We have found a factorization of A in M(2, K[x]), in fact

A = DnV −1
n · . . . · V −1

1 (3.1)

We can write

Dn = U

(

1 − q
rn−1

0 1

)

U ′

with

U := −J =

(

0 1
−1 0

)

, U ′ :=























(

0 − 1
rn−1

rn−1 0

)

, n odd

(

1
rn−1

0

0 rn−1

)

, n even
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Moreover,

V −1
k =























(

1 pk

0 1

)

, k odd

U

(

1 −pk

0 1

)

U ′ , k even

where U = U ′ = J .
We have δ(V −1

k ) = deg pk and in the euclidean algorithm

max{deg a, deg b} = deg p1 + . . . + deg pn .

Since (with appropriate ĉ, d̂)

V −1
n · . . . · V −1

1 = D−1
n A =























(

1
rn−1

a 1
rn−1

b

ĉ d̂

)

, n odd

(

−ĉ −d̂
1

rn−1

a 1
rn−1

b

)

, n even

(3.2)

we obtain

max{deg a, deg b} ≤ δ(V −1
n · . . . · V −1

1 ) ≤ deg(V −1
n ) + . . . + δ(V −1

1 ) =

= deg pn + . . . + deg p1 = max{deg a, deg b} .

This means that the product V −1
n ·. . .·V −1

1 is defined in S. Moreover, δ(D−1
n A) =

max{deg a, deg b}, and hence in (3.2)

max{deg ĉ, deg d̂} ≤ max{deg a, deg b}

We have

A = Dn(D−1
n A) =























(

rn−1 0

q 1
rn−1

)(

1
rn−1

a 1
rn−1

b

ĉ d̂

)

, n odd

(

0 rn−1

− 1
rn−1

q

)(

−ĉ −d̂
1

rn−1

a 1
rn−1

b

)

, n even

=

(

a b
qa

rn−1

+ ĉ
rn−1

qb
rn−1

+ d̂
rn−1

)

It follows that δA = δDn + max{deg a, deg b} = δDn + δ(D−1
n A). Hence the

factorization (3.1) is actually a factorization in S.
Since in the euclidean algorithm deg rk < deg rk−1 for k = 1, . . . n, we have

deg pk > 0 for k = 2, . . . , n. Hence, for k = 2, . . . , n the matrices V −1
k are

irreducible in S. The matrices V −1
1 and Dn are either irreducible or belong

to S×, depending whether deg p1 > 0 or deg p1 ≤ 0 (deg q > 0 or deg q ≤ 0,
respectively).

We have proved that A admits a factorization

A = W1 · . . . · Wn′ , (3.3)
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where Wi are irreducible elements of S of the form

Wi = Ui

(

1 qi

0 1

)

U ′
i = Ui

(

1 qi − qi(0)
0 1

) (

1 qi(0)
0 1

)

U ′
i

with appropriate qi ∈ K[x], deg qi > 0, and Ui, U
′
i ∈ S×.

❑

Proof. (of (i), necessity) Assume that B ∈ S is irreducible. Then in the
factorization (3.3) only one factor can appear, i.e. B = W1, and hence B is of
the desired form.

❑

Proof. (of (iii), existence) Let A, A(0) = I, be given. Choose any factorization
A = W1 · . . . · Wn into irreducible elements and define

Vn := Wn(0)−1Wn

Vn−1 := Wn(0)−1Wn−1(0)−1 Wn−1 Wn(0)
...

V1 := Wn(0)−1 · · ·W1(0)−1 W1 W2(0) · · ·Wn(0) = W1 W2(0) · · ·Wn(0)

Then Vi ∼ Wi and Vi(0) = I. Moreover,

V1 · . . . · Vn = W1 · . . . · Wn = A

❑

Proof. (of (iii), uniqueness) We use induction on the minimum number n such
that A admits a factorization A = W1 · . . . ·Wn with Wi irreducible, Wi(0) = I.

Assume that n = 1. Then A can be written as A = W1 and thus is irre-
ducible. Hence in any other factorization A = Ŵ1 · . . . ·Ŵm we must have m = 1
and W1 = Ŵ1.

Let A = W1 ·. . .·Wn = Ŵ1 ·. . .·Ŵm, 1 < n ≤ m, be given. Choose U, U ′ ∈ S×

according to Lemma 2.4 such that U ′AU satisfies (D), and let p be the unique
polynomial as in Proposition 2.5. It follows from the already established item
(i) of the present theorem that we can write

Wn = V −1

(

1 q

0 1

)

V

with appropriate q, deg q > 0, q(0) = 0, and V ∈ S×. Thus

U ′AU = U ′W1 · . . . · Wn−1 · V
−1

(

1 q

0 1

)

V U

and hence by Proposition 2.5 and Lemma 2.4

V U =

(

α β

0 1
α

)

=

(

1 αβ

0 1

)(

α 0
0 1

α

)

It follows that

U ′AU = U ′W1 · . . . · Wn−1V
−1

(

1 q

0 1

)(

1 αβ

0 1

)(

α 0
0 1

α

)

=

13



= U ′W1 · . . . · Wn−1V
−1

(

1 αβ

0 1

)(

α 0
0 1

α

)

·

(

1
α

0
0 α

)(

1 q

0 1

)(

α 0
0 1

α

)

=

= U ′W1 · . . . · Wn−1U

(

1 q
α2

0 1

)

We conclude from Proposition 2.5 that q

α2 = p and hence that

A′ := AU

(

1 −p

0 1

)

U−1 = W1 · . . . · Wn−1

The same argument starting from A = Ŵ1 · . . . · Ŵm yields that A′ = Ŵ1 · . . . ·
Ŵm−1. Our inductive hypothesis applied to A′ now implies that n− 1 = m− 1
and

Wi = Ŵi, i = 1, . . . , n − 1 .

Thus also Wn = Ŵn.

❑

Proof. (of (ii), uniqueness) Let A be given and assume that A = W1 ·. . .·Wn and
also A = Ŵ1 · . . . · Ŵm. By the proof of item (iii), existence, we find V1, . . . , Vn

and V̂1, . . . , V̂m such that

Vi ∼ Wi, Vi(0) = I, i = 1, . . . , n ,

V̂i ∼ Ŵi, V̂i(0) = I, i = 1, . . . , m ,

AA(0)−1 = V1 · . . . · Vn = V̂1 · . . . , ·V̂m .

By the already established item (iii), uniqueness, it follows that

n = m, Vi = V̂i, i = 1, . . . , n .

Thus also Wi ∼ Ŵi, i = 1, . . . , n.

❑

To conclude let us note that the euclidean algorithm or -better to say- its
corollary that the greatest common divisor of two polynomials a, b can be written
as a linear combination of a and b, can be viewed as a solution of the following
completion problem:

3.2 Remark. Let a, b ∈ K[x] with gcd{a, b} = 1 be given.

(i) There exists a matrix A ∈ S such that

(1, 0)A = (a, b) (3.4)

The matrix A can be chosen such that, with (c, d) := (0, 1)A,

deg c ≤ deg a, deg d ≤ deg b (3.5)

(ii) Let A0 ∈ S be fixed such that (3.4) and (3.5) hold. Then a matrix A ∈ S
satisfies (3.4) if and only if there exists p ∈ K[x] such that

A =

(

1 0
p 1

)

A0

14
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