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Abstract. We construct and investigate a space which is related to a symmet-
ric linear relation S of finite negativity on an almost Pontryagin space. This
space is the indefinite generalization of the completion of dom S with respect
to (S., .) for a strictly positive S on a Hilbert space.
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1. Introduction

It is well known that for a symmetric, semibounded and densely defined operator
S on a Hilbert space (H, (., .)) there exists a distinguished selfadjoint extension, the
Friedrichs extension SF of S. Besides other maximal properties (see e.g. [9],[5]) the
Friedrichs extension is distinguished among all semibounded selfadjoint extensions
A of S by the fact that dom(|A|

1
2 ) is minimal.

The domain dom(|SF |
1
2 ) coincides with the closure HS of domS with respect

to the inner product hS
m(., .) = (S., .) − m(., .) where m ∈ R is sufficiently small.

In fact, the usual construction of SF is done with the help of the space HS (see
Section 3).

Later on Friedrichs extensions were generalized for the case of nondensely
defined operators or even for the case of symmetric linear relations ([5]). For the
concept of linear relations, see for example [1].

The main subject of this note is to generalize the construction of the space
HS to the almost Pontryagin space setting and to study the properties of these
spaces.

An almost Pontryagin space (L, [., .],O) can be seen as a in general degener-
ated closed subspace of a Pontryagin space (P, [, .]), and O is the subspace topol-
ogy induced by the Pontryagin space topology of (P, [, .]) on L. For an axiomatic
treatment of such spaces see [7].

The linear relation S will be assumed to be closed and symmetric on an
almost Pontryagin space (L, [., .],O) such that S is contained in its adjoint with
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finite codimension. Moreover, we assume that the form hS [., .], which is [S., .] for
operators S and which is defined accordingly if S is a proper relation, has finitely
many negative squares on domS. Such relations S will be called to be of finite
negativity and the resulting space will be denoted by LS . We will also provide LS

with a Hilbert space topology OS such that (LS ,OS) is continuously embedded in
(L,O).

In order to construct LS it is not necessary to impose special spectral as-
sumptions on S. In particular, it can happen that S has no points of regular type.

Among other results we will see that S − ǫI is of finite negativity for some
ǫ > 0 if and only if (LS , hS[., .],OS) is an almost Pontryagin space. This and other
results about symmetries of finite negativity will be of great importance in one of
our forthcoming papers about symmetric de Branges spaces ([8]).

In the short Section 2 we will introduce notations used throughout this note
in the Hilbert space case as well as in the general almost Pontryagin space setting.
In Section 3 we will recall well-known results in the Hilbert space situation and
for convenience we will also provide short proofs. In the final section we introduce
the proper analogue of the space HS in the almost Pontryagin space case so that
we can generalize most of the results from Section 3 to the indefinite case.

2. Symmetric relations on almost Pontryagin spaces

We are going to consider a closed symmetric relation S on an almost Pontryagin
space (L, [., .],O), i.e. a closed linear subspace of L2 = L × L with the property
that

[f1, g2] − [g1, f2] = 0, (f1; g1), (f2; g2) ∈ S.

Remark 2.1. We know from Proposition 3.2 in [7] that any almost Pontryagin
space (L, [., .],O) can be viewed as a closed subspace of codimension ∆(L, [., .])
of a Pontryagin space (P, [., .]) with degree κ−(L, [., .]) + ∆(L, [., .]) of negativity.
Then a linear relation S on (L, [., .],O) is symmetric (closed) if and only if it is
symmetric (closed) as a linear relation on (P, [., .]).

If, in addition, J is a fundamental symmetry on (P, [., .]), then S is symmetric
(closed) on (L, [., .],O) if and only if the linear relation JS is a symmetric (closed)
relation on the Hilbert space (P, [J., .]). This fact is as easily verifiable by the
following connection between the adjoint relation S[∗] of S in (P, [., .]) and the
adjoint relation (JS)∗ of JS in the Hilbert space (P, [J., .]):

(JS)∗ = JS[∗].

Definition 2.2. Let S be a symmetric relation on an almost Pontryagin space
(L, [., .],O). We define a scalar product hS [., .] on

domS = {x ∈ L : (x; y) ∈ S for some y ∈ L}.

For x, u ∈ domS let y, v ∈ L be such that (x; y), (u; v) ∈ S and set

hS [x, u] = [y, u].
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This scalar product is well defined and hermitian. In fact, if ỹ ∈ L with
(x; ỹ) ∈ S, then the fact that S is symmetric yields

hS [x, u] = [y, u] = [x, v] = [ỹ, u],

and

hS [x, u] = [y, u] = [x, v] = [v, x] = hS [u, x].

Note also that hS [x, u] = [Sx, u], if S is an operator.

Remark 2.3. If (P, [., .]) is a Pontryagin space containing (L, [., .],O) as a closed
subspace (see Remark 2.1) and J is a fundamental symmetry on it, then it is
straight forward to check that

hS [., .] = hJS [J., .]. (2.1)

The following little lemma will be of use later on. Hereby an orthogonal
projection P in an almost Pontryagin space (L, [., .],O) is an everywhere defined
linear operator on L which satisfies P 2 = P and [Px, y] = [x, Py] for x, y ∈ L.

Lemma 2.4. Let S be a symmetric relation on an almost Pontryagin space (L, [., .],O).
If P is an orthogonal projection in (L, [., .],O) such that dom(S) ⊆ P (L), then

hS [., .] = hPS [., .].

Proof. For (x1; y1), (x2; y2) ∈ S we have

hS [x1, x2] = [y1, x2] = [y1, Px2] = [Py1, x2] = hPS [x1, x2].

�

3. Semibounded linear relations on Hilbert spaces

In this section we recall some results about semibounded relations on Hilbert
spaces which are going to be important for us later on. A symmetric relation S on
a Hilbert space is called semibounded if there exists a real number m such that

m(x, x) ≤ hS(x, x), for all x ∈ domS. (3.1)

The maximum of all m ∈ R such that (3.1) holds true is denoted by m(S) and is
called the lower bound of S.

In order to avoid complicated formulas in the sequel we define the scalar
product (m ∈ R)

hS
m(., .) = hS(., .) − m(., .).

For m < m(S) the inner product hS
m(., .) is a positive definite inner product.

Note further that with S also its closure in H2 is semibounded with the same
lower bound, i.e. m(S) = m(S).

Definition 3.1. Let S be a semibounded relation on a Hilbert space (H, (., .)), and
let m < m(S). By HS we denote the completion of domS with respect to hS

m(., .).

The following remarks are more or less explicitly contained in [5].
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Remark 3.2. For m2 ≤ m1 < m(S) and x ∈ domS we have

hS
m1

(x, x) = hS(x, x) − m1(x, x) ≤ hS(x, x) − m2(x, x) = hS
m2

(x, x),

and
m(S) − m1

m(S) − m2
hS

m2
(x, x) =

m(S) − m1

m(S) − m2
(hS(x, x) − m(S)(x, x)) + (m(S) − m1)(x, x).

As hS(x, x) − m(S)(x, x) ≥ 0 and m(S) −m1 ≤ m(S)− m2 this expression is less
or equal to

(hS(x, x) − m(S)(x, x)) + (m(S) − m1)(x, x) = hS
m1

(x, x).

Therefore, the topology induced by hS
m(., .) on domS and, hence, the Hilbert space

HS does not depend on the choice of m < m(s).
By Lemma 2.4 with hS

m(., ) also HS remains unaltered if we switch from S
to PS where P is an orthogonal projection onto a subspace of H which contains
domS, i.e. HS = HPS .

Since ((a; b); (x; y)) 7→ hS
m(a, x) is continuous with resect to the graph norm,

we have HS = HS .

Remark 3.3. For m < m(S) and x ∈ domS we have

(m(S) − m)(x, x) ≤ hS(x, x) − m(S)(x, x) + (m(S) − m)(x, x) = hS
m(x, x).

Thus by continuity one can extend (., .) to HS . Having done this we can define
hS

l (., .) on HS for all l ∈ R by

hS
l (., .) = hS

m(., .) + (m − l)(., .).

Clearly, hS
l (., .) is the unique extension by continuity of the originally on dom S

defined scalar product hS
l (., .).

Remark 3.4. From Remark 3.3 we conclude that the embedding

ι : (domS, hS
m(., .)) → (H, (., .))

is bounded and can therefore be continued to a bounded mapping ι : (HS , hS
m(., .)) →

(H, (., .)). The latter operator is in fact an embedding. For if ι(x) = 0, then let
xn ∈ domS converge to x within HS . By continuity ι(xn) = xn → 0 within H. For
(a; b) ∈ S we have

hS
m(a, x) = lim

n→∞
hS

m(a, xn) = lim
n→∞

(hS(a, xn) − m(a, xn)) =

lim
n→∞

((b, xn) − m(a, xn)) = 0,

and, hence, x is orthogonal to domS within HS which yields x = 0.
As a consequence of the injectivity of ι we can consider HS as a linear subspace

of H where x ∈ H belongs to HS if there exists a sequence ((xn; yn)) in S such that

lim
n→∞

(x − xn, x − xn) = 0, lim
k,l→∞

(xk − xl, yk − yl) = 0. (3.2)
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Finally, it is elementary to see that for x ∈ HS and (a; b) ∈ S we have

hS
m(a, x) = (b − ma, x).

We will use this fact without giving explicit references.

The space HS is used to define the Friedrichs extension of S as defined in
[5]. The following way to introduce the Friedrichs extension is slightly different
from the conventional access and is closely connected to the constructions given
in [10],[11] and [12]. See also [2].

Theorem 3.5. Let S be a symmetric and semibounded linear relation on the Hilbert

space (H, (., .)). Let m < m(S) and consider the Hilbert space (HS , hS
m(., .)) and

the embedding

ι : (HS , hS
m(., .)) → (H, (., .)).

Then the linear relation SF = (ιι∗)−1 + mI is a selfadjoint and semibounded ex-

tension of S with m(SF ) = m(S). Moreover, it does not depend on the particularly

chosen m < m(S). In fact,

SF = {(x; y) ∈ S∗ : x ∈ HS}. (3.3)

Proof. Clearly, ιι∗ is a selfadjoint and bounded linear operator on H. Using stan-
dard arguments about linear relations we see that (ιι∗)−1 is a selfadjoint linear
relation. Since for y ∈ dom(ιι∗)−1 = ran ιι∗ with ιι∗x = y we have

h(ιι∗)−1

(y, y) = (x, y) = hS
m(ι∗x, ι∗x) ≥ 0, (3.4)

this relation is semibounded with a non-negative lower bound. With (ιι∗)−1 also
SF is selfadjoint and semibounded. If (a; b) ∈ S − mI and u ∈ domS, then
(a; b + ma) ∈ S and ι(u) = u because we identify HS with a subspace of H.
Therefore

hS
m(a, u) = (b + ma, u) − m(a, u) = (b, u) = (b, ι(u)) = hS

m(ι∗b, u),

and we obtain from the density of domS in HS that a = ι∗b = ιι∗b. This proves
S ⊆ SF , and by the selfadjointness of SF we see that SF is contained in the right
hand side of (3.3). Conversely, if (x; y) ∈ S∗ − mI and x ∈ HS , let (xn) be a
sequence in dom S which converges to x within HS and, hence, also within H. We
calculate for (u; v) ∈ S

hS
m(u, ι∗(y)) = (ι(u), y) = (u, y) = (v, x) − m(u, x) =

lim
n→∞

((v, xn) − m(u, xn)) = lim
n→∞

hS
m(u, xn) = hS

m(u, x),

and obtain ιι∗(y) = x. Thus we verified (3.3) which, in turn, together with Remark
3.2 implies the independence of SF from m < m(S).

Finally, from m((ιι∗)−1) ≥ 0 we get m(SF ) ≥ m and from the independence
of SF from m < m(S) the relation m(SF ) ≥ m(S). The converse inequality is an
immediate consequence of S ⊆ SF . �

Definition 3.6. The selfadjoint linear relation SF is called the Friedrichs extension
of S.
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Remark 3.7. It is easy to see that HS+rI = HS and (S +rI)F = SF +rI for r ∈ R.
With the notation from the proof of Theorem 3.5 we have

SF (0) = (ιι∗)−1(0) = ker ιι∗ = (domS)⊥.

Remark 3.8. First note that since S has a selfadjoint extension any closed, sym-
metric and semibounded relation has equal defect indices, i.e. the Hilbert space
dimension of ker(S∗ − zI) is the same for all z ∈ r(S) where r(S) (⊇ C \R) is the
set of all points of regular type for S.

For m < m(S) = m(SF ) and (x; y) ∈ SF we have

‖x‖‖y − mx‖ ≥ (y − mx, x) ≥ (m(S) − m)(x, x).

We conclude m ∈ ρ(SF ) and

‖(SF − mI)−1‖ ≤
1

m(S) − m
. (3.5)

Therefore C \ [m(S),∞) ⊆ ρ(SF ) and, hence, C \ [m(S),∞) ⊆ r(S).
The fact that (−∞, m(S)) ⊆ ρ(SF ) can also be seen from the proof of The-

orem 3.5. In fact, if we provide HS with hS
m(., .), m < m(S), then we constructed

SF such that (SF − mI)−1 is the bounded operator ιι∗.

We are going to consider arbitrary selfadjoint and semibounded extensions H
of S in H and for m < m(H) the relation between the Hilbert spaces (HH , hH

m(., .))
and (HS , hS

m(., .)). This well-known result is strongly connected with the second
representation theorem from Kato, [9]. See also Chapter 10 of [3].

Theorem 3.9. Let S be semibounded on the Hilbert space (H, (., .)) and H be a

selfadjoint and semibounded extension of S. Moreover, let H = Hs ⊕ H∞ be the

decomposition of H into the purely relational part H∞ = {0} × H(0) and the

operator part Hs, which is a selfadjoint operator on H(0)⊥.

Then the space HH as a subspace of H coincides with dom |Hs|
1
2 , and for

m < m(H) the Hilbert space inner product hH
m(., .) can be calculated as

hH
m(x, y) = ((Hs − mI)

1
2 x, (Hs − mI)

1
2 y), x, y ∈ HH . (3.6)

The space HH contains HS as a closed subspace, and on this closed subspace the

products hH
m(., .) and hS

m(., .) coincide. If HH is provided with hH
m(., .), then

HH ⊖ HS = HH ∩ ker(S∗ − mI). (3.7)

We have HH = HS if and only if H = SF .

Proof. The assumption S ⊆ H immediately yields hH
m(., .) = hS

m(., .) on domS.
Thus the completion HS of domS with respect to hS

m(., .) is a closed subspace of
HH .

Since H is semibounded and m < m(H), the selfadjoint operator Hs − mI
is strictly positive on H(0)⊥. Therefore, we can consider the square root of it. For
x, y ∈ domHs = domH we have (x; Hsx), (y; Hsy) ∈ Hs, and hence

hH
m(x, y) = (Hsx, y) − m(x, y) = ((Hs − mI)x, y) = ((Hs − m)

1
2 x, (Hs − m)

1
2 y).
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Using the boundedness of (Hs − mI)−1 we see that the norm induced by hH
m(., .)

is equivalent to the graph norm of (Hs − mI)
1
2 on domHs. By the functional

calculus for selfadjoint operators dom(Hs − mI)
1
2 = dom |Hs|

1
2 , and domHs is

dense in dom(Hs −mI)
1
2 with respect to the the graph norm of (Hs −mI)

1
2 . Thus

HH = dom |Hs|
1
2 , and relation (3.6) extends to all x, y ∈ HH .

If H = SF , we obtain from (3.3) that domSF ⊆ HS . As we already identified
HS as a subspace of HH we get HH = HS . Conversely, if we assume HH = HS ,
then by definition domH ⊆ HH and hence

H ⊆ {(x; y) ∈ S∗ : x ∈ HH} = {(x; y) ∈ S∗ : x ∈ HS} = SF .

As both relations are selfadjoint we obtain SF = H . To verify (3.7) note that for
x ∈ HH and (a; b) ∈ S

hH
m(a, x) = ((Hs − m)

1
2 a, (Hs − m)

1
2 x) = ((Hs − m)a, x) = (b − ma, x).

The final equality follows from Hsa − b ∈ H(0) and the fact that

HH = dom |Hs|
1
2⊥H(0).

Thus x ∈ HH ⊖ HS if and only if x ∈ ran(S − mI)⊥ = ker(S∗ − mI). �

Remark 3.10. If we choose H = SF in (3.7), then we see that HS is disjoint to
ker(S∗ − mI) for all m < m(S).

Remark 3.11. If S is closed with finite defect indices, then any selfadjoint extension
H of S in H is a finite dimensional perturbation of SF . Hence every canonical self-
adjoint extension is semibounded. Hereby canonical means that H is a selfadjoint
extension within H.

Moreover, by Theorem 3.9 any space HH contains HS and is contained in
HS+̇ ker(S∗ −mI). We are going to show that any linear space G with HS ⊆ G ⊆
HS+̇ ker(S∗ − mI) equals a space HH for some H .

From now on we assume that S is a closed, symmetric and semibounded
linear relation with finite defect indices.

Remark 3.12. As already mentioned the space HS+̇ ker(S∗ − mI) is of particular
interest for m < m(S). If z ∈ ρ(SF ), we have

HS+̇ ker(S∗ − zI) = HS + domS∗. (3.8)

As (−∞, m(S)) ⊆ ρ(SF ) we conclude that HS+̇ ker(S∗ −mI) does not depend on
m < m(S).

To verify (3.8) recall that for z, w ∈ ρ(SF ) the operator

I + (z − w)(SF − z)−1,

maps ker(S∗ − wI) bijectively onto ker(S∗ − zI). Since domSF ⊆ HS (Theorem
3.9), we see that the space on the left hand side of the equality sign in (3.8) is
independent from z ∈ ρ(SF ). The relation (3.8) is now an immediate consequence
of the von Neumann formula (see e.g. Theorem 6.1 in [6]).
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Definition 3.13. By HS we denote the space in (3.8).

Proposition 3.14. Assume that S is a closed, symmetric and semibounded linear

relation with finite defect indices. Let G be a subspace of HS which contains HS.

Then there exists a canonical selfadjoint extension H of S such that HH = G.

Proof. We provide G with a Hilbert space inner product hG
m(., .) which extends

hS
m(., .), m < m(S), such that

G = HS ⊕hG
m(.,.) (ker(S∗ − mI) ∩ G). (3.9)

As dim ker(S∗−mI) < ∞ the Hilbert space (G, hG
m(., .)) is continuously embedded

in H, and we denote by ιG the corresponding inclusion map.
Similar as for ι in the proof of Theorem 3.5 we see that (ιGι∗

G
)−1 is a semi-

bounded selfadjoint linear relation with a non-negative lower bound. Then also
H := (ιGι∗

G
)−1 + mI is a semibounded selfadjoint linear relation.

If (a; b) ∈ S − mI and u = u1 + u2 ∈ domS+̇(ker(S∗ − mI) ∩ G), then
(a; b + ma) ∈ S and ιG(u) = u as we identify G with a linear subspace of H. As
ker(S∗ − mI) = ran(S − mI)⊥

hG

m(a, u) = hS
m(a, u1) = (b + ma, u1) − m(a, u1) =

(b, u1) = (b, u) = (b, ιG(u)) = hG

m(ι∗Gb, u),

and we obtain from the density of domS+̇(ker(S∗−mI)∩G) in G that a = ιGι∗
G

b.
Thus we verified S ⊆ H .

Since ιG is injective, its adjoint has a dense range in G. This range clearly
coincides with domH . Moreover,

hH
m(a, x) = (b − ma, x) = (b − ma, ιGι∗

G
(y − mx)) =

hG

m(ι∗G(b − ma), ι∗G(y − mx)) = hG

m(a, x),

for (a; b), (x; y) ∈ H , and hence HH = G. �

As an immediate consequence of the previous results we obtain

Corollary 3.15. With the same assumptions as in Proposition 3.14 the space HS

contains HH for all canonical selfadjoint extensions H of S, and for some canonical

selfadjoint extensions H of S we have HS = HH .

Let G be such that HS ⊆ G ⊆ HS , and let G be provided with a Hilbert
space scalar product hG

m(., .) which coincides with hS
m(., .) on HS such that (3.9)

holds. We denote by P the orthogonal projection of G onto HS . Now we set

T = S ∩ (G × G).

Proposition 3.16. Under the above assumptions the linear relation T considered in

(G, hG
m(., .)) is closed, symmetric and semibounded with a lower bound larger than

m.

It is of defect index (r, r) with r ≤ n. If H satisfies the minimality condition

H = cls(dom S ∪ ranS), (3.10)

then r = n.
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Proof. The closedness is an immediate consequence of the boundedness of the
inclusion map ιG. For (a; b), (x; y) ∈ T we have Pa = a, Px = x. Using ker(S∗ −
mI)⊥(.,.) ran(S − mI), the fact that T is symmetric follows from

hG

m(a, y) = hS
m(a, Py) = (b − ma, Py) = (b − ma, y) = (b, y − mx) = hG

m(b, x).

For later use we point out that more generally we have for (a; b) ∈ S, y ∈ G

hG

m(a, y) = hS
m(a, Py) = (b − ma, Py) = (b − ma, y). (3.11)

As
hG

m(a, b) = (b − ma, b) = (b − ma, b − ma) + m(b − ma, a) =

(b − ma, b − ma) + mhG

m(a, a),

T is semibounded with a lower bound larger or equal to m. For ǫ > 0, m+ǫ < m(S)
we obtain from (3.5)

(b − ma, b − ma) = (b − (m + ǫ)a, b − (m + ǫ)a) + 2ǫ(b − (m + ǫ)a, a) + ǫ2(a, a) =

‖b − (m + ǫ)a‖2 + 2ǫhG

m(a, a) − ǫ2(a, a) ≥

(m(S) − (m + ǫ) − ǫ2)‖a‖2 + 2ǫhG

m(a, a).

For sufficiently small ǫ we get

hG

m(a, b) ≥ (m + 2ǫ)hG

m(a, a),

and therefore m(T ) > m.
As domS ⊆ HS ⊆ G we have for z ∈ r(T ),

ran(T − zI) = ran(S − zI) ∩ G =

{x ∈ G : (ιG(x), y) = 0, y ∈ ker(S∗ − z̄I)} =

(ι∗G ker(S∗ − z̄I))
⊥

hG
m(.,.) .

Therefore, T has defect index (r, r) where r ≤ n.
If r < n, then ι∗

G
(y) = 0 for some y ∈ ker(S∗− z̄I), y 6= 0. From y ∈ ker ι∗

G
=

(ran ιG)⊥ ⊆ S∗(0) we conclude y ∈ ker(S∗). Hence, condition (3.10) cannot be
satisfied. �

As a consequence of the previous proof note that

ι∗G(ker(S∗ − mI)) = ker(T ∗ − mI),

where this correspondence between the defect spaces is bijective if (3.10) holds
true. On ran(S − mI) = ker(S∗ − mI)⊥ we have (x ∈ G)

hG

m(ι∗
G

(b − ma), x) = (b − ma, x) = hG

m(a, x).

Hence, ι∗
G

(b − ma) = a.
In the following, hT hG

m(., .) is the scalar product and GT is the space con-
structed from G, hG

m(., .), T in the same as hS(., .) and HS were constructed from
H, (., .), S.

As already noted we have for (a; b), (x; y) ∈ T

hT hG

m(a, x) = hG

m(a, y) = hG

m(a, Py) = (b − ma, Py) =
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(b − ma, y − mx) + m(b − ma, x) = (b − ma, y − mx) + m(hG(a, x) − m(a, x)) =

(b − ma, y − mx) + mhG

m(a, x),

and hence hT
mhG

m(a, x) = (b − ma, y − mx).

Proposition 3.17. With the above assumptions and notations ι∗
G

maps (G∩ran(S−

mI), (., .)) unitarily onto (GT , hT
mhG

m(., .)), where GT coincides with dom(S∩ (G×
G)) and hT

mhG
m(., .) induces the graph norm on GT .

If we denote by R the symmetry T ∩ (GT × GT ) on (GT , hT
mhG

m(., .)), then

((ι∗G)−1 × (ι∗G)−1)(R) = S ∩ ((G ∩ ran(S − mI)) × (G ∩ ran(S − mI))).

Proof. For the proof we first mention that the fact that ran(S − mI) has finite
codimension in H ensures

G ∩ ran(S − mI) = G ∩ ran(S − mI).

As

hT
mhG

m(ι∗G(b − ma), ι∗G(y − mx)) = hT
mhG

m(a, x) = (b − ma, y − mx), (3.12)

we see that ι∗
G
|ran(S−mI) = (S−mI)−1 maps ran(T −mI) unitarily onto domT . By

continuity ι∗
G
|ran(S−mI) = (S−mI)−1 then maps (G∩ ran(S−mI), (., .)) unitarily

onto (GT , hT
mhG

m(., .)). Thus

GT = (S − mI)−1(G ∩ ran(S − mI)) = dom(S ∩ (G × G)).

The continuity of (S − mI)−1 together with (3.12) shows that hT
mhG

m(., .) induces
the graph norm on GT .

For x, y ∈ G∩ran(S−mI) we have (x; y) ∈ S if and only if x = (H−m)−1(y−
mx), where H is the selfadjoint extension (ιGι∗

G
)−1 + mI of S (see Proposition

3.14). As ιG(G)⊥ = ker ι∗
G

= H(0) this is equivalent to (H − m)−2(y − mx) =
(H −m)−1x or because of (H −m)−1y −m(H −m)−1x = x ∈ ran(S −m) in turn
equivalent to

(ι∗
G

x; ι∗
G

y) = ((H − m)−1x; (H − m)−1y) ∈ S ∩ (GT × GT ) = R.

�

Thus we showed that for a closed and semibounded symmetry S with finite
defect index (n, n) one can partially reconstruct H and S from HS and T by
focusing on G ∩ ran(S − mI).

4. Symmetric relations of finite negativity

Definition 4.1. Let (L, [., .],O) be an almost Pontryagin space, and let S be a
closed symmetric relation on L such that S has finite codimension in

S[∗] = {(a; b) ∈ L × L : [a, y] = [b, x] for all (x; y) ∈ S}.

Then S is called to be of finite negativity κS in (L, [., .],O) if the inner product
hS [., .] has κS negative squares on domS. If κS = 0, we shall call S non-negative.
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By well-known results in the theory of inner product spaces (see e.g. [4])
hS [., .] has finitely many negative squares if and only if there exists a linear sub-
space of dom S of finite codimension such that hS[., .] restricted to this subspace
is positive semidefinite. Moreover, hS [., .] has κS negative squares on domS if and
only if there exists a κS-dimensional subspace N of domS such that (N,−hS[., .])
is a Hilbert space, and there is no higher dimensional subspace of dom S with this
property. In this case we can decompose dom S as

domS = M+̇N,

where M is the orthogonal complement of N with respect to hS [., .], and hS [., .] is
non-negative on M.

Remark 4.2. It is easy to see that S is of finite negativity κS in (L, [., .],O), if and
only if it is of finite negativity κS as a relation on a Pontryagin space (P, [., .])
containing (L, [., .],O) as a closed subspace with finite codimension (see Remark
2.1).

If J is a fundamental symmetry of (P, [., .]), then we see from (2.1) that S is
of finite negativity κS in (L, [., .],O) if and only if JS is of finite negativity κS in
the Hilbert space (P, [J., .]).

Thus certain questions related to symmetries with finite negativity can be
considered in a Hilbert space setting. There symmetries have the following impor-
tant property.

Lemma 4.3. Every symmetric relation of finite negativity on a Hilbert space is

semibounded. Moreover, ran(S − mI) is closed and of finite codimension for all

m < 0.

Proof. Let S be a symmetry in a Hilbert space (H, (., .)) of finite negativity κS .
Now we consider G = H ⊕ H with the symmetric relation T = S ⊕ S−1 on it. As
T ∗ = S∗ ⊕ S−1∗ it is straightforward to check that T is of finite negativity 2κS

and that T has finite and equal defect indices.
Let A be a canonical selfadjoint extension of T in G. Since domS ⊆ domA

with finite codimension, also A is of finite negativity. Using the functional calculus
for selfadjoint relations we derive from this fact that σ(A) ∩ (−∞, 0) consists of
finitely many eigenvalues of finite multiplicity. The proof for this assertion is very
similar to the proof of Proposition 2.3 in [7] and is therefore omitted.

So we see that A and with A also its restriction S is semibounded. From
the mentioned spectral properties for A we also see that ran(A − mI) is closed
and of finite codimension for m < 0. The mapping (x; y) 7→ y − mx from A
onto ran(A − mI) is continuous and has a finite dimensional kernel. Hence the
closed subspace T of A is mapped onto a closed subspace of ran(A−mI) of finite
codimension. The structure of T shows that ran(S − mI) is closed and of finite
codimension. �

Due to the previous lemma we can define a space associated to a symmetry
of finite negativity.
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Definition 4.4. Let (L, [., .],O) be an almost Pontryagin space, and let S be a
symmetric relation of finite negativity on (L, [., .],O). Moreover, let (P, [., .]) be a
Pontryagin space which contains (L, [., .],O) as a closed subspace of finite codi-
mension, and let J be a fundamental symmetry on this Pontryagin space. Then
we define the space LS by

LS = PJS ,

where PJS is the space corresponding to the symmetry JS on the Hilbert space
(P, [J., .]) defined as in Definition 3.1.

We provide LS with the inner product hJS [J., .] and denote it by hS [., .]
(see Remark 3.3). Moreover, let OS denote the Hilbert space topology induced by
hJS

m [J., .], m < m(JS) on LS .

Remark 4.5. By Remark 3.4 PJS is continuously embedded in P. Denoting the
inclusion mapping by ι its continuity yields

ι(PJS) = ι(dom JS) = ι(domS) ⊆ domS ⊆ L.

Hereby the latter closure is taken with respect to the topology O (which coincides
with the topology induced by [J., .], see [7]) and the others are taken with respect
to OS .

Thus LS is a linear subspace of L. Moreover, it is independent from the
fundamental symmetry J and even from the space P. For by (3.2) a vector x ∈ L

belongs to LS if and only if there exists a sequence ((xn; yn)) in S such that xn → x
with respect to O and

lim
k,l→∞

[xk − xl, yk − yl] = 0.

This characterization also shows that LS = LS−mI whenever S − mI is of finite
negativity.

By the closed graph theorem and by the fact that ι is continuous the topology
OS is also independent from J and from P.

Finally, the OS-continuous scalar product hS [., .] (on LS) restricted to the
the OS-dense linear subspace dom S coincides with hS [., .] as it was defined in
Definition 2.2. Hence hS [., .] on LS is the unique continuation of hS[., .] on domS
by continuity. Therefore, also hS [., .] is independent from J and from P.

Remark 4.6. With the same assumptions as in Definition 4.4 let M be a closed
subspace of (L, [., .],O) such that S ⊆ M × M. Then (M, [., .],O ∩ M) is also an
almost Pontryagin space (see [7]). By similar arguments as in the previous remark
it is easy to verify that the triple (LS , hS [., .],OS) coincides with (MS , hS [., .], (O∩
M)S). The latter is defined as above but just with the use of (M, [., .],O ∩ M)
instead of (L, [., .],O).

Proposition 4.7. The triple (LS , hS[., .],OS) is an almost Pontryagin space if and

only if there exists an ǫ > 0 such that S − ǫI is of finite negativity.

Proof. Let (P, [., .]) be a Pontryagin space which contains (L, [., .],O) as a closed
subspace, and let J be a fundamental symmetry on this Pontryagin space. By
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definition (LS , hS [., .],OS) = (PJS , hJS [J., .],OJS), where OJS denotes the Hilbert
space topology induced by hJS

m [J., .], m < m(JS), on PJS .
By Remark 4.2 the symmetric relation S − ǫI is of finite negativity on

(L, [., .],O) if and only if JS − ǫJ is of finite negativity on the Hilbert space
(P, [J., .]). Since the fundamental symmetry operator J is a finite dimensional
perturbation of I, the scalar product hJS−ǫJ [J., .] is a finite dimensional pertur-
bation of hJS−ǫI [J., .] on domS. Hence JS − ǫJ is of finite negativity if and only
if JS − ǫI has this property.

We just showed that in order to prove the present proposition we may
assume that (L, [., .]) is a Hilbert space. Under this additional assumption let
(LS , hS [., .],OS) be an almost Pontryagin space. By the definition of almost Pon-
tryagin spaces (see [7]) there exists a closed subspace MS of finite codimension
of (LS , hS[., .],OS) such that (MS , hS[., .]) is a Hilbert space. Hence, if we choose
m < m(S), then there exist c, d > 0 such that for all x ∈ MS

chS [x, x] ≤ hS
m[x, x] ≤ dhS [x, x]. (4.1)

The space MS ∩ domS has finite codimension in domS, and for x ∈ MS ∩ domS
we have

dhS−
m(S)−m

d
I [x, x] ≥ hS

m[x, x] − (m(S) − m)[x, x] = hS [x, x] − m(S)[x, x] ≥ 0.

If we set

ǫ =
m(S) − m

d
,

then ǫ > 0 and hS−ǫI [., .] has finitely many negative squares, i.e. S − ǫI is of finite
negativity.

Conversely, if S− ǫI is of finite negativity, then we can find a linear subspace
M of domS of finite codimension such that

0 ≤ hS−ǫI [x, x] = hS[x, x] − ǫ[x, x],

for all x ∈ M. Since hS [., .] and [., .] are continuous with respect to OS on LS , we
see that hS [x, x] ≥ ǫ[x, x] for all x belonging to the closure MS of M with respect
to OS . Thus hS [., .] induces a topology on MS with respect to which [., .], and
hence also hS

m[., .], m ∈ R, is continuous. If m < 0 and m < m(S), we see that
(4.1) holds for x ∈ MS and for some c, d > 0. This means that OS is also induced
by hS [., .] on MS , and as this closed subspace has finite codimension in LS the
triple (LS , hS [., .],OS) is an almost Pontryagin space. �

Remark 4.8. As the sum of hermitian scalar products with finitely many negative
squares also has this property we see that if S − ǫI, ǫ > 0 is of finite negativity,
then S − ηI is of finite negativity for all η ≤ ǫ.

Remark 4.9. If the condition from the previous proposition is satisfied, then ranS
is closed and of finite codimension. In fact, this assertion is equivalent to the fact
that ranJS is closed and of finite codimension in the Hilbert space (P, [J., .]). We
saw in the previous proof that JS− ǫI is of finite negativity. Therefore, by Lemma
4.3, ranJS is closed and of finite codimension.
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As ranS⊥[.,.] kerS we in particular obtain dim kerS < ∞.

The following lemma has an interesting consequence.

Lemma 4.10. Let (L, [., .],O) be an almost Pontryagin space, and let S be a sym-

metric relation of finite negativity. Moreover, assume that

domS = domT + N,

where T is a closed restriction of S such that the adjoint of T contains T with

finite codimension. Moreover, assume dimN < ∞. Then

LS = LT + N.

Proof. Let P and J be as in Definition 4.4. As JT ⊆ JS it follows from Def-
inition 3.1 that PJT (= LT ) is a closed subspace of PJS(= LS). Since N is fi-
nite dimensional, LT + N is also a closed subspace of LS . On the other hand
domS = domT + N(⊆ LT + N) is dense in LS . �

In the following we will consider two scalar products [., .]1 and [., .] on L. Then
[., .]1 is said to be finite dimensional perturbation of [., .], if for some linear subsapce
M of L of finite codimension one has [x, y]1 − [x, y] = 0 for all x ∈ M, y ∈ L.

Corollary 4.11. Let (L, [., .],O) be an almost Pontryagin space, and let [., .]1 be

another scalar product on L which is continuous with respect to O and which is a

finite dimensional perturbation of [., .]. Moreover, let S be a symmetric relation of

finite negativity on (L, [., .],O) such that S is also symmetric with respect to [., .]1.
Under these assumptions (L, [., .]1,O) is an almost Pontryagin space. The

symmetry S is of finite negativity on (L, [., .]1,O). Moreover, the space LS and

the topology OS remain the same if they are defined with (L, [., .]1,O) instead of

(L, [., .],O). Finally, (LS , hS [., .],OS) is an almost Pontryagin space if and only if

(LS , hS [., .]1,OS) is an almost Pontryagin space.

Proof. By our assumptions there exists a closed subspace M of L of finite codi-
mension such that

[x, y]1 − [x, y] = 0, x ∈ M, y ∈ L.

By the definition of almost Pontryagin spaces there exists a closed subspace N

of L of finite codimension such that [., .] restricted to N is a Hilbert space inner
product which induces O∩N on N. Hence, M∩N is a closed subspace of L of finite
codimension such that [., .]1 restricted to M ∩ N is a Hilbert space inner product
which induces O∩ (M∩N) on M ∩N. This in turn means that (L, [., .]1,O) is an
almost Pontryagin space.

By what was mentioned after Definition 4.1 the finite negativity of S on
(L, [., .],O) is equivalent to the fact that hS [., .] is positive semidefinite on a linear
subspace Q of finite codimension of domS. With Q also Q ∩ M is a subspace of
finite codimension of domS, and hS [., .] coincides with hS [., .]1 on Q ∩ M. Hence
S is of finite negativity on (L, [., .]1,O).

Clearly, the almost Pontryagin spaces (M, [., .],O∩M) and (M, [., .]1,O∩M)
coincide. If we set T = S ∩ (M × M), then we obtain from Remark 4.6 that the
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space LT remains unchanged if we used (L, [., .]1,O) instead of (L, [., .],O) for its
construction. Since domT is of finite codimension in domS, we can apply Lemma
4.10 and see that also LS remains unchanged. Using the fact that the inclusion
mapping from LS into L is injective and continuous the closed graph theorem
implies that the topology OS is also independent from the scalar product, which
was used for its construction , i.e. [., .] or [., .]1.

By what was proved above S − ǫI is of finite negativity on (L, [., .],O) if and
only if it has this property on (L, [., .]1,O). Thus the final assertion is an immediate
consequence of Proposition 4.7. �

Definition 4.12. Let (L, [., .],O) be an almost Pontryagin space, and let S be a
closed symmetric linear relation of finite negativity on (L, [., .],O). Moreover, let
(P, [., .]) be a Pontryagin space which contains (L, [., .],O) as a closed subspace
of finite codimension, and let J be a fundamental symmetry on this Pontryagin
space. Then we define the space LS as

LS = PJS ∩ L,

where PJS is the space corresponding to the symmetry JS on the Hilbert space
(P, [J., .]) defined as in Definition 3.13.

Remark 4.13. As J(JS)(∗) = S[∗] we obtain from (3.8) and Remark 4.5

LS = LS + (domS[∗] ∩ L).

By S[∗] we mean here the adjoint relation within (P, [., .]).
We can describe dom S[∗] ∩ L as the set of all a ∈ L such that for (x; y) ∈ S

x 7→ [y, a],

is a well defined and O continuous linear functional on domS. Hence LS neither
depends on J nor on P.

If S − mI is also of finite negativity, then we immediately see that LS =
LS−mI .

Since we always assume that codimS[∗] S < ∞, LS contains LS as a subspace
of finite codimension. It therefore carries a unique Hilbert space topology such
that (LS ,OS) is a closed subspace of it. We are going to denote this topology by
OS .

In analogy to Corollary 4.11 we have

Proposition 4.14. Let (L, [., .],O), [., .]1 and S be as in Corollary 4.11. Moreover,

assume that for all a ∈ L the mapping

x 7→ [y, a] − [y, a]1, for (x; y) ∈ S,

is a well defined and O continuous linear functional on domS. Then the space LS

is the same whether it is defined via (L, [., .]1,O) or via (L, [., .],O).

Proof. This result immediately follows from the corresponding invariance property
for LS (Corollary 4.11) and from the characterization of domS[∗] ∩ L given in
Remark 4.13. �
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The rest of the paper is devoted to indefinite generalizations of the results in
the part of Section 3 which comes after Corollary 3.15. These results will be an
essential tool in our forthcoming paper [8].

From now on we will study the case that (LS , hS[., .],OS) is an almost Pon-
tryagin space. We introduce a linear relation T on any subspace G ⊆ LS which
contains LS :

T = S ∩ (G × G).

By OG we denote the Hilbert space topology OS ∩ G.

Definition 4.15. An admissible scalar product hG[., .] on G is a hermitian contin-
uation of hS [., .] such that (LS , hS [., .],OS) is an almost Pontryagin subspace of
(G, hG[., .],OG) and such that

hG[b, x] = [b, y],

for all b ∈ G, (x; y) ∈ S.

Such an admissible product always exists. To see this note that LS = PJS ⊆
G ⊆ LS ⊆ PJS . If (., .) = [J., .], m < m(JS), and hG

m(., .) is defined as in
Proposition 3.16 with S replaced by JS, then we set

hG[., .] = hG

m(., .) + m(., .).

This hermitian product is a continuation of hJS(., .) = hS [., .] and for b ∈ G, (x; y) ∈
S we obtain from (3.11) that

hG[b, x] = hG

m(b, x) + m(b, x) = (b, Jy − mx) + m(b, x) = (b, Jy) = [b, y].

Proposition 4.16. Assume that (LS , hS [., .],OS) is an almost Pontryagin space and

let hG[., .] be an admissible hermitian inner product on G such that (LS , hS [., .],OS)
is an almost Pontryagin subspace of (G, hG[., .],OG).

Then T considered in (G, hG[., .],OG) is closed, symmetric, of finite codimen-

sion in T hG[∗] and it is of finite negativity κT , where κT coincides with the degree

of negativity κ−(ran(T ), [., .]) of (ran(T ), [., .]).
Finally, for sufficiently small ǫ > 0 also T − ǫI is of finite negativity.

Proof. For (a; b), (x; y) ∈ T we see from

hG[b, x] = [b, y] = hG[a, y], (4.2)

that T is symmetric. Moreover, this relation proves that hT hG[., .] has as many
negative squares as [., .] on ran(T ).

We see from Proposition 3.16 that R = (JS) ∩ (G × G) is a symmtry with
finite defect indices, or equivalently it is contained in its adjoint (with respect to
hG

m(., .)) with finite codimension. Let M be a OG-closed subspace of G on which
J = I and such that hG[., .] is a Hilbert space inner product on M. With R also
R ∩ (M × M) has finite defect index. Clearly,

R ∩ (M × M) = S ∩ (M × M) = T ∩ (M × M).
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It is straightforward to show that also the adjoint of R∩ (M×M) within M with
respect to hG[., .] contains R∩ (M×M) with finite codimension. The same is true
for the adjoint of R ∩ (M × M) within G. Hence also the symmetric extension T

of R∩ (M×M) is contained in T hG[∗] with finite codimension. Thus according to
Definition 4.1 the symmetry T is of finite negativity in (G, hG[., .],OG).

By Proposition 4.7 S − ǫI is of finite negativity for sufficiently small ǫ > 0.
For (a; b), (x; y) ∈ T we have

hG[b − ǫa, x] = [b, y] − hS [ǫa, x] = [b − ǫa, y] =

[b − ǫa, y − ǫx] + ǫhS−ǫI [a, x].

So we identify hT−ǫI(hG[., .]) as the sum of two hermitian scalar products with
finitely many negative squares. Therefore, it also has finitely many negative squares
and T − ǫI is of finite negativity. �

By Proposition 4.7 (GT , hT hG[., .], (OG)T )) is an almost Pontryagin space.

Proposition 4.17. The space GT coincides with the domain of the relation

X = S ∩ (G × G),

where the closure is taken in L with respect to O.

The topology (OG)T coincides with the graph topology of the closed operator

{(x; y + X(0)) : (x; y) ∈ X} ⊆ G × (G/X(0)),

where G is provided with O∩G and G/X(0) with the factor topology (O∩G)/X(0).

Proof. From Remark 4.5 we know that GT is the set of all x ∈ G such that there
exists a sequence ((xn; yn)) in T which satisfies

xn → x w.r.t. OG and [yn − ym, yn − ym] = hG[yn − ym, xn − xm] → 0. (4.3)

The convergence of xn with respect to OG implies

[yn − ym, y] = hG[xn − xm, y] → 0,

for all y ∈ G. Therefore (4.3) is equivalent to xn → x with respect to OG and the

fact that (yn+G
[o]

) is a Cauchy sequence within the Pontryagin space (G/G
[o]

, [., .])
with respect to its Pontryagin space topology.

Using Remark 4.5 once more we see that x ∈ GT if and only if there exists a
sequence ((xn; yn)) in T such that xn → x with respect to O,

[yn − ym, xn − xm] → 0,

and (yn + G
[o]

) is a Cauchy sequence within the Pontryagin space (G/G
[o]

, [., .]).
By the Cauchy-Schwartz inequality here the second condition is a consequence of
the remaining two.

Hence, GT is the domain of the linear relation Q ⊆ G × G/G
[o]

where Q is

the closure of T + ({0} × G
[o]

). As G
[o]

is finite dimensional

Q = T + {0} × G
[o]

.
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On the other hand as ranS is closed and of finite codimension (see Remark 4.9)
we obtain

ranT = ranS ∩ G.

Since the mapping (x; y) 7→ y from S onto ranS has a finite dimensional kernel
(see Remark 4.9),

ranT = ranT ,

and we see that

T + ({0} × S(0) ∩ G) = S ∩ (G × G),

and hence

GT = dom(Q) = dom(T ) = dom(S ∩ (G × G)).

The assertion about the topology follows from the closed graph theorem since
all involved topologies are Hilbert space topologies. �

Corollary 4.18. In addition to the assumptions in Proposition 4.16 suppose that S
is an invertible operator. Then S−1|ran S∩G

sets up an isomorphism from the almost

Pontryagin space (ranS ∩ G, [., .],O ∩ ranS ∩ G) onto (GT , hT hG[., .], (OG)T ).

If we denote by R the symmetry T ∩ (GT × GT ) on (GT , hT hG[., .], (OG)T ),
then

{(Sx; Sy) : (x; y) ∈ R} = S ∩ ((ranS ∩ G) × (ranS ∩ G)).

Proof. Using the notation from Proposition 4.16 and its proof with S also X is an
invertible operator. By the proof of Proposition 4.16

domX = GT , ranX = ranS ∩ G.

Since ranX is closed, the closed graph theorem implies that X−1 is even contin-
uous. Hence, by Proposition 4.17 the topology (OG)T is just the initial topology
induced by X .

Because of (4.2) we have

[b, y] = hT hG[X−1b, X−1y],

for y ∈ ranS ∩ G. By continuity we can extend this relation to ranS ∩ G.

For x, y ∈ ranS ∩ G we conclude from (x; y) ∈ S that S−1y = x = SS−1x
and y = SS−1y ∈ G. Hence (S−1x; S−1y), (S−1y, y) ∈ X (see Proposition 4.17),
and further

(S−1x; S−1y) ∈ S ∩ (dom(X) × dom(X)) = T ∩ (dom(X) × dom(X)) = R.

Conversely, if (S−1x; S−1y) ∈ R, then S−1x ∈ GT ⊆ domS and x = SS−1x =
S−1y, or (x; y) ∈ S. �
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