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1. Introduction

In this note we provide an axiomatic treatment of a generalization of the Pon-
tryagin space concept to the case of degenerated inner product spaces. Pontryagin
spaces are inner product spaces which can be written as the direct and orthogonal
sum of a Hilbert space and a finite dimensional anti Hilbert space. The subject
of our paper are spaces which can be written as the direct and orthogonal sum of
a Hilbert space, a finite dimensional anti Hilbert space and a finite dimensional
neutral space.

The necessity of a systematic approach to such “almost” Pontryagin spaces
became clear in the study of various topics: For example in the investigation of
indefinite versions of various classical interpolation problems (e.g. [7]). Related to
these questions is the generalization of Krein’s formula for generalized resolvents of
a symmetric operator (e.g. [8]). Another topic where the occurrence of degeneracy
plays a crucial role is the theory of Pontryagin spaces of entire functions which
generalizes the theory of Louis de Branges on Hilbert spaces of entire functions.

In Section 2 we generalize the concept of Pontryagin spaces by giving the
definition of almost Pontryagin spaces and investigating the basic notion of Gram
operator and fundamental decomposition. Moreover, the role played by the topol-
ogy of an almost Pontryagin space is made clear. In the subsequent Section 3 we
investigate some elementary constructions which can be made with almost Pon-
tryagin spaces. We deal with subspaces, product spaces and factor spaces. Related
to the last one of these constructions is the notion of morphism between almost
Pontryagin spaces. Section 4 deals with the concept of completion. This topic is
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much more involved than the previous constructions. However, it is clearly of par-
ticular importance to be able to construct almost Pontryagin spaces from given
linear spaces carrying an inner product. In Section 5 we turn our attention to a
particular class of almost Pontryagin spaces, so-called almost reproducing kernel
Pontryagin spaces. The intention there is to prove the existence of the correct ana-
logue of a reproducing kernel of a reproducing kernel Pontryagin space. Finally, in
Section 6, we explain some circumstances where almost Pontryagin spaces actually
occur.

2. Almost Pontryagin spaces

Before we give the definition of almost Pontryagin spaces, recall the definition of
Pontryagin spaces. A pair (P, [., .]) where P is a complex vector space and [., .] is
a hermitian inner product on P is called a Pontryagin space if one can decompose
P as

P = P−[+̇]P+, (2.1)

where (P−, [., .]) is a finite dimensional anti Hilbert space, (P+, [., .]) is a Hilbert
space, and [+̇] denotes the direct and [., .]-orthogonal sum. Such decompositions
of P are called fundamental decompositions. It is worthwhile to note (see [2] or
see below) that every Pontryagin space carries a unique Hilbert space topology O
(there exists an inner product (., .) such that (P, (., .)) is a Hilbert space and such
that (., .) induces the topology O, i.e. O = O(.,.)) such that the inner product [., .]
is continuous with respect to O. This topology is also called the Pontryagin space
topology on P.

With respect to this topology the subspace P+ is closed for any fundamen-
tal decomposition (2.1). Conversely, the product topology induced on P by any
fundamental decomposition (2.1) coincides with the unique Hilbert space topology.

It will turn out that for almost Pontryagin spaces the uniqueness assertion
about the topology is no longer true. Thus we will include the topology into the
definition.

Definition 2.1. Let L be a linear space, [., .] an inner product on L and O a Hilbert
space topology on L. The triplet (L, [., .],O) is called an almost Pontryagin space,
if

(aPS1) [., .] is O-continuous.
(aPS2) There exists a O-closed linear subspace M of L with finite codimen-

sion such that (M, [., .]) is a Hilbert space.

Let (R, [., .]) be any linear space equipped with a inner product [., .] and
assume that

sup
{

dim U : U negative definite subspace of R } < ∞.

Then (see for example [2, Corollary I.3.4]) the dimensions of all maximal negative
definite subspaces of R are equal. We denote this number by κ−(R, [., .]) and refer
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to it as the negative index (or the degree of negativity) of (R, [., .]). If the above
supremum is not finite, we set κ−(R, [., .]) = ∞.

The isotropic part of an inner product space (R, [., .]) is defined as

R[◦] =
{

x ∈ R : [x, y] = 0, y ∈ R
}

.

We will denote its dimension by ∆(R, [., .]) ∈ N∪ {0,∞} and call this number the
degree of degeneracy of (R, [., .]).

Remark 2.2. It immediately follows from the definition that if (L, [., .],O) is an
almost Pontryagin space, then κ−(L, [., .]) and ∆(L, [., .]) are both finite.

The fact that a given triplet (L, [., .],O) is an almost Pontryagin space can be
characterized in several ways. First let us give one characterization via a spectral
property of a Gram operator.

Proposition 2.3. Let L be a linear space, [., .] an inner product on L and O a
Hilbert space topology on L.

(i) Assume that (L, [., .],O) is an almost Pontryagin space and let (., .) be any
Hilbert space inner product which induces the topology O. Then there exists
a unique (., .)-selfadjoint bounded operator G(.,.) with

[x, y] = (G(.,.)x, y), x, y ∈ L.

There exists ǫ > 0 such that σ(G(.,.)) ∩ (−∞, ǫ) consists of finitely many
eigenvalues of finite multiplicity. If we denote by E(M) the spectral measure
of G(.,.), this just means that

dim ranE(−∞, ǫ) < ∞. (2.2)

Moreover

∆(L, [., .]) = dimkerG(.,.), κ−(L, [., .]) = dim ranE(−∞, 0).

We will refer to G(.,.) as the Gram operator corresponding to (., .).
(ii) Let (L, (., .)) be a Hilbert space, and let G be a bounded selfadjoint operator

on (L, (., .)) which satisfies (2.2) where E(M) denotes the spectral measure of
G. Moreover, let O be the topology induced by (., .) and define [., .] = (G., .).
Then (L, [., .],O) is an almost Pontryagin space.

Proof. ad(i): Since [., .] is continuous with respect to the topology O, the
Lax-Milgram theorem ensures the existence and uniqueness of G(.,.). Moreover,
since [., .] is an inner product, G(.,.) is selfadjoint.

Let M be a O-closed linear subspace of L with finite codimension such that
(M, [., .]) is a Hilbert space. By the open mapping theorem [., .]|M and (., .)|M are
equivalent. Hence PMG(.,.)|M, where PM denotes the (., .)-orthogonal projection
onto M, is strictly positive. Choose ǫ > 0 such that ǫIM < PMG(.,.)|M. Assume
that dim ranE(−∞, ǫ) > codimL M, then ranE(−∞, ǫ) ∩ M 6= {0}. For any x ∈
ranE(−∞, ǫ) ∩ M, (x, x) = 1, we have

ǫ < (PMG(.,.)|Mx, x) = (G(.,.)x, x) ≤ ǫ,
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a contradiction.
ad(ii): Choose M = ranE[ǫ,∞). Then M is (., .)-closed, codimL M =

dim ranE(−∞, ǫ) < ∞ and [., .] = (G., .) is a Hilbert space inner product on M

since G|M is strictly positive.

�

Corollary 2.4. Let an almost Pontryagin space (L, [., .],O) be given. If (., .) and
〈., .〉 are two Hilbert space inner products on L which both induce the topology O
and T is the (., .)-strictly positive bounded operator on L with 〈., .〉 = (T., .), then
the Gram operators G(.,.) and G〈.,.〉 are connected by

G(.,.) = TG〈.,.〉.

There exists a Hilbert space inner product (., .) on L which induces O such that its
Gram operator G(.,.) is a finite dimensional perturbation of the identity.

Proof. The first assertion is clear from

(G(.,.)x, y) = [x, y] = 〈G〈.,.〉x, y〉 = (TG〈.,.〉x, y), x, y ∈ L.

For the second assertion choose a Hilbert space inner product 〈., .〉 on L which
induces O. Let G〈.,.〉 be the corresponding Gram operator, E(M) its spectral
measure, and choose ǫ > 0 as in Proposition 2.3, (i). Define

(x, y) = 〈(E[ǫ,∞)G〈.,.〉 + E(−∞, ǫ))x, y〉, x, y ∈ L.

Then

G(.,.) = (E[ǫ,∞)G〈.,.〉 + E(−∞, ǫ))−1G〈.,.〉 = E[ǫ,∞) + E(−∞, ǫ)G〈.,.〉.

�

In the study of Pontryagin spaces so-called fundamental decompositions play
an important role. The following is the correct analogue for almost Pontryagin
spaces. In particular, it gives us another characterization of this notion.

Proposition 2.5. The following assertions hold true:

(i) Let (L, [., .],O) be an almost Pontryagin space. Then there exists a direct and
[., .]-orthogonal decomposition

L = L+[+̇]L−[+̇]L[◦], (2.3)

where L+ is O-closed, (L+, [., .]) is a Hilbert space and L− is negative definite,
dimL− = κ−(L, [., .]).

(ii) Let (L+, (., .)+) be a Hilbert space, (L−, (., .)−) be a finite dimensional Hilbert
space, and let L0 be a finite dimensional linear space. Define a linear space

L = L++̇L−+̇L0,

and inner products

[x+ + x− + x0, y+ + y− + y0] = (x+, y+) − (x−, y−),

(x+ + x− + x0, y+ + y− + y0) = (x+, y+) + (x−, y−) + (x0, y0)0,
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where (., .)0 is any Hilbert space inner product on L0. Moreover, let O be
the topology on L induced by the Hilbert space inner product (., .). Then
(L, [., .],O) is an almost Pontryagin space. Thereby κ−(L, [., .]) = dimL−

and L[◦] = L0.

Proof. Let (L, [., .],O) be an almost Pontryagin space. Choose a Hilbert space inner
product (., .) which induces O, let G(.,.) be the corresponding Gram operator, and
denote by E(M) the spectral measure of G(.,.). Define

L+ = ranE(0,∞), L− = ranE(−∞, 0).

Then L+ is O-closed. The inner products [., .] and (., .) are equivalent on L+ since
G|L+ is strictly positive. Hence (L+, [., .]) is a Hilbert space. Clearly (L−, [., .]) is
negative definite and dimL− = κ−(L, [., .]). Since E(−∞, 0)+E{0}+E(0,∞) = I,
the space L is decomposed as in (2.3).

Conversely, let (L+, (., .)+), (L−, (., .)−) and L0 be given. The Gram operator
of [., .] with respect to (., .) is equal to

G =





I 0 0
0 −I 0
0 0 0



 .

Obviously, ranE(−∞, 1
2 ) = L− + L0, kerG = L0 and ranE(−∞, 0) = L−. �

Corollary 2.6. We have

(i) Let (L+, (., .)+), (L−, (., .)−) and L0 be as in (ii) of Proposition 2.5, and
let (L, [., .],O) be the almost Pontryagin space constructed there. Then L =
L+[+̇]L−[+̇]L0 is a decomposition of the same kind as in (2.3).

(ii) Let (L, [., .],O) be an almost Pontryagin space, and assume that L is de-
composed as L = L+[+̇]L−[+̇]L[◦] where (L+, [., .]) is a Hilbert space and
(L−, [., .]) is negative definite. Let (L1, [., .]1,O1) be the almost Pontryagin
space constructed by means of Proposition 2.5, (ii), from (L+, [., .]), (L−,−[., .]),
L0 = L[◦]. Then L1 = L and [., .]1 = [., .]. We have O1 = O if and only if
L+ is O-closed.

Proof. The assertion (i) follows immediately since L+ is (., .)-closed. We come to
the proof of (ii). The facts that L1 = L and [., .]1 = [., .] are obvious.

Assume that L+ is O-closed. Note that by the assumption on their dimensions
the subspaces L− and L0 are closed, too. By the Open Mapping Theorem the linear
bijection

(x+; x−; x0) 7→ x+ + x− + x0,

is bicontinuous from L+ × L− × L0 provided with the product topology onto L

provided with O. On the other hand by the definition of O1 this mapping is also
bicontinuous if we provide L with O1. Thus O1 = O.

Finally, assume that O1 = O. By the construction of (., .)1 the space L+ is
O1-closed and, therefore, also O-closed. �
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From the above results we obtain a statement which shows from another
point of view that almost Pontryagin spaces can be viewed as a generalization of
Pontryagin spaces.

Corollary 2.7. Let (P, [., .]) be a Pontryagin space, and let O be the unique topology
on P such that [., .] is continuous (see [2], compare also Corollary 2.10). Then
(P, [., .],O) is an almost Pontryagin space. Moreover, ∆(P, [., .]) = 0.

Conversely, if (P, [., .],O) is an almost Pontryagin space with ∆(P, [., .]) = 0,
then (P, [., .]) is a Pontryagin space.

Proof. Let (P, [., .]) be a Pontryagin space. Choose a fundamental decomposi-
tion P = P+[+̇]P−. Then P+ is O-closed, (P+, [., .]) is a Hilbert space and
codimP P+ = dimP− < ∞.

Let (P, [., .],O) be an almost Pontryagin space with ∆(P, [., .]) = 0. Choose
a decomposition P = P+[+̇]P− according to (2.3). By Corollary 2.6, (ii), the
topology O coincides with the topology of the Pontryagin space (P+[+̇]P−, [., .]).

�

It is a noteworthy fact that in certain cases the topology of an almost Pon-
tryagin space (L, [., .],O) is uniquely determined by the inner product, see the
Proposition 2.9 below. However, in general this is not true. This fact goes back to
[4],[5].

Lemma 2.8. For any infinite dimensional almost Pontryagin space (L, [., .],O) with
∆(L, [., .]) > 0 there exists a topology T different from O such that also (L, [., .], T )
is an almost Pontryagin space.

Proof. Choose a Hilbert space inner product (., .) on L inducing O. Let h ∈ L[◦]

and K = h(⊥), and let f be a non-continuous linear functional on K. We define the
linear mapping U from L = K(+̇) span{h} onto itself by

U(x + ξh) = x + (ξ + f(x))h, x ∈ K, ξ ∈ C.

The mapping U is bijective and non-continuous. In fact, if it were continuous, then
also f would be continuous. Nevertheless, U is isometric:

[U(x+ξh), U(y+ηh)] = [x+(ξ+f(x))h, y+(η+f(y))h] = [x, y] = [x+ξh, y+ηh].

Therefore, with (L, [., .],O) also its isometric copy (L, [., .], U−1(O)) is an almost
Pontryagin space. As U is not continuous we have T = U−1(O) 6= O. �

The existence of a sufficiently large family of functionals which are required
to be continuous guarantees the uniqueness of the topology. Such a family of
functionals will show up, in particular, when we deal with spaces consisting of
functions such that the point evaluation functionals are continuous.

A family (fi)i∈I of linear functionals on a linear space L is said to be point
separating if for each two x, y ∈ L, x 6= y, there exists i ∈ I such that fi(x) 6= fi(y).
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Proposition 2.9. Let (L, [., .],O) be an almost Pontryagin space and assume that
there exists a point separating family of continuous linear functionals (fi)i∈I . Then
O is the unique Banach space topology on L such that all functionals fi, i ∈ I, are
continuous.

Proof. Let T be a Banach space topology on L such that every fi is continuous.
The identity mapping id : (L,O) → (L, T ) has a closed graph. In fact, if xn → x
with respect to O and xn → y with respect to T , then by assumption

fi(x) = lim
n→∞

fi(xn) = fi(y), for all i ∈ I,

and hence x = y. By the Closed Graph Theorem the identity map is bicontinuous,
and therefore T = O. �

As a corollary we obtain the well known result that a Pontryagin space carries
a unique Hilbert space topology with respect to which [., .] is continuous.

Corollary 2.10. If an almost Pontryagin space (P, [., .],O) is a Pontryagin space,
i.e. ∆(P, [., .]) = 0, then O is the unique Banach space topology T on P such that
[., .] is continuous with respect to T . In particular, it is the unique Hilbert space
topology T on P such that (P, [., .], T ) is an almost Pontryagin space.

Proof. The assumption ∆(P, [., .]) = 0 is equivalent to the fact that the family of
functionals fx = [., x], x ∈ P, is point separating. Hence we can apply Lemma
2.9. �

3. Subspaces, products, factors

The next result shows that the class of almost Pontryagin spaces is closed under
the formation of subspaces and finite direct products. Note that the first half of
this statement is not true for Pontryagin spaces.

Proposition 3.1. Let (L, [., .],O) be an almost Pontryagin space, K a closed linear
subspace of L, and denote by O∩K the subspace topology induced by O on K. Then
(K, [., .],O∩K) is an almost Pontryagin space. We have κ−(K, [., .]) ≤ κ−(L, [., .]).

Let (L1, [., .]1,O1) and (L2, [., .]2,O2) be two almost Pontryagin spaces, and
denote by O1 ×O2 the product topology on L1 × L2. Define the inner product

[(u; v), (x; y)] = [u, x]1 + [v, y]2, (u; v), (x; y) ∈ L1 × L2.

Then (L1 × L2, [., .],O1 ×O2) is an almost Pontryagin space. We have

κ−(L1 × L2, [., .]) = κ−(L1, [., .]1) + κ−(L2, [., .]2),

∆(L1 × L2, [., .]) = ∆(L1, [., .]1) + ∆(L2, [., .]2).

Proof. To establish the first part of the assertion choose an O-closed linear sub-
space M of L with finite codimension such that (M, [., .]) is a Hilbert space. We
already saw that by the closed graph theorem [., .] induces the topology O ∩ M

on M. Thus K ∩ M is at the same time O ∩ K-closed linear subspace of K with
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finite codimension in K, and a O∩M-closed (i.e. [., .]-closed) subspace of M. Hence
(K∩M, [., .]) is a Hilbert space. Thus (K, [., .],O∩K) is an almost Pontryagin space.
The relation between the negative indices is clear.

To prove the second assertion take for j = 1, 2 a Oj-closed subspace Mj with
finite codimension in Lj such that (Mj , [., .]j) is a Hilbert space. Then M1×M2 is a
O1×O2-closed subspace of L1×L2 of finite codimension such that (M1×M2, [., .])
is a Hilbert space. �

We conclude from Corollary 2.7 together with Proposition 3.1 that every
closed subspace of a Pontryagin space is an almost Pontryagin space. Also the
converse holds true:

Proposition 3.2. Let (L, [., .],O) be an almost Pontryagin space. Then there exists
a Pontryagin space (P, [., .]) such that L is a closed subspace of P with codimen-
sion ∆(L, [., .]) and O is the subspace topology on L induced by the Pontryagin
space topology on P. Moreover, κ−(P, [., .]) = κ−(L, [., .]) + ∆(L, [., .]). Any two
Pontryagin spaces with the listed properties are isometrically isomorphic.

Conversely, let (P, [., .]) be a Pontryagin space. If L is a closed subspace of
P, so that L with the inner product and topology inherited from (P, [., .]) is an
almost Pontryagin space, then codimP L ≥ ∆(L, [., .]).

Proof. Fix a decomposition L = L+[+̇]L−[+̇]L[◦] according to (2.3). Let L′ be a
linear space of dimension ∆(L, [., .]) and define

P = L++̇L−+̇L[◦]+̇L′.

We declare an inner product [., .]1 on P by

[x, y]1 = [x, y], x, y ∈ L+ + L−, (L+ + L−)[⊥]1(L
[◦] + L′),

and the requirement that L[◦] and L′ are skewly linked neutral subspaces, i.e. for
every non-zero x ∈ L[◦] there exists a y ∈ L′ such that [x, y] 6= 0 and, conversely,
for every non-zero y ∈ L′ there exists an x ∈ L[◦] such that [x, y] 6= 0.

Then (P, [., .]1) is a Pontryagin space because it can be seen as the product
of the Pontryagin spaces (L++̇L−, [., .]) and (L[◦]+̇L′, [., .]1).

Clearly, codimP L = ∆(L, [., .]) and [., .]1|L = [., .]. Since L = (L[◦])[⊥]1 , the
space L is a closed subspace of P. Let T be the subspace toplogy on L induced
by the Pontryagin space topology on P. Then T coincides with the topology on
L obtained from the construction of Proposition 2.5, (ii), applied with (L+, [., .]),
(L−,−[., .]) and L[◦]. Since L+ is O-closed, Corollary 2.6, (ii), yields T = O.

Let (P2, [., .]2) be another Pontryagin space which contains L with codimen-
sion ∆(L, [., .]). Then P2 can be decomposed as

P2 = L+[+̇]L−[+̇](L[◦]+̇L′′),

where L′′ is a neutral subspace skewly linked to L[◦]. It is now obvious that there
exists an isometric isomorphism of P2 onto the above constructed space P.
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The second part of the assertion follows from [2, Theorem I.10.9]: Consider
the ∆(L, [., .])-dimensional subspace L[◦] of P. Then certainly L ⊆ (L[◦])[⊥] and
thus

codimP L ≥ codimP(L[◦])[⊥] = dimL[◦] = ∆(L, [., .]).

�

Let us introduce the correct notion of morphism between almost Pontryagin
spaces.

Definition 3.3. Let (L1, [., .]1,O1) and (L2, [., .]2,O2) be almost Pontryagin spaces.
A map φ : L1 → L2 is called a morphism between (L1, [., .]1,O1) and (L2, [., .]2,O2)
if φ is linear, isometric, continuous and maps O1-closed subspaces of L1 onto O2-
closed subspaces of L2.

A linear mapping φ from an almost Pontryagin space (L1, [., .]1,O1) onto an
almost Pontryagin space (L2, [., .]2,O2) is called an isomorphism if φ is bijective,
bicontinuous and isometric with respect to [., .]1 and [., .]2.

Let us collect a couple of elementary facts.

Lemma 3.4. The identity map of an almost Pontryagin space onto itself is an iso-
morphism. Every isomorphism is a morphism. The composition of two (iso)morphisms
is a(n) (iso)morphism.

Let φ : (L1, [., .]1,O1) → (L2, [., .]2,O2) be a morphism. Then

(i) kerφ ⊆ L[◦]1

(ii) (ranφ, [., .]2,O2 ∩ ranφ) is an almost Pontryagin space.
(iii) If φ is surjective, then φ is open.
(iv) If φ is bijective, then φ is an isomorphism.

If K is a closed subspace of an almost Pontryagin space (L, [., .],O), then the in-
clusion map ι : (K, [., .],O ∩ K) → (L, [., .],O) is a morphism.

Proof. The first statement of the lemma is obvious.
ad(i): Since φ is isometric an element x ∈ kerφ must satisfy

[x, y]1 = [φx, φy]2 = 0, y ∈ L,

and hence x ∈ L[◦]1 .
ad(ii): Since ranφ is O2-closed, we may to refer to Proposition 3.1.
ad(iii): Apply the Open Mapping Theorem.
ad(iv): This is an immediate consequence of the previous assertion.

The last statement follows since K is a closed subspace of L. �

Morphisms can be constructed in a canonical way from subspaces of L[◦].

Proposition 3.5. Let (L, [., .],O) be an almost Pontryagin space and let R be a
subspace of L[◦]. We consider the factor space L/R endowed with an inner product
[., .]1 defined by

[x + R, y + R]1 = [x, y], (3.1)
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and with the quotient topology O/R. Then (L/R, [., .]1,O/R) is an almost Pon-
tryagin space. We have

κ−(L/R, [., .]1) = κ−(L, [., .]),

∆(L/R, [., .]1) = ∆(L, [., .]) − dim R.

The quotient map π : L → L/R is a morphism of (L, [., .],O) onto (L/R, [., .]1,O/R).

Proof. The inner product on L/R is well defined by (3.1) because of R ⊆ L[◦].
Since O is a Hilbert space topology and R is a finite dimensional and, hence, closed
subspace of L, the topology O/R is also a Hilbert space topology.

Denote by π : L → L/R the canonical projection. Since the inner product on
L/R is defined according to

(L/R)2
[.,.]1 // C

L2

π×π

OO

[.,.]

<<
x

x
x

x
x

x
x

x
x

,

and the quotient topology is the final topology with respect to π, we obtain that
[., .]1 is O/R-continuous.

Choose an O-closed subspace M of L such that codimL M < ∞ and such
that (M, [., .]) is a Hilbert space. Since R is finite dimensional M + R is O-closed.
Thus π(M) = (M + R)/R satisfies the requirements of axiom (aPS2).

The formulas for the negative index and the degree of degeneracy are obvious.

The quotient map π is clearly linear, isometric and continuous. If U is any O-
closed subspace of L, then also U+R is O-closed and therefore π(U) = (U+R)/R

is O/R-closed. This shows that π is a morphism. �

We conclude this section with the 1st homomorphy theorem.

Lemma 3.6. Let φ : (L1, [., .]1,O1) → (L2, [., .]2,O2) be a morphism. Then φ in-

duces an isomorphism φ̂ between (L1/ kerφ, [., .]1,O1/ kerφ) and (ranφ, [., .]2,O2∩
ranφ) with

(L1, [., .]1,O1)
φ //

π

��

(L2, [., .]2,O2)

(L1/ kerφ, [., .]1,O1/ kerφ)
φ̂

// (ranφ, [., .]2,O2 ∩ ranφ)

ι

OO
.

Proof. The induced mapping φ̂ is bijective, isometric and continuous. By the Open
Mapping Theorem it is also open. Thus it is an isomorphism. �
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4. Completions

The generalization of the concept of completion to the almost Pontryagin space
setting is a much more delicate topic.

Remark 4.1. Let an inner product space (A, [., .]) with κ−(A, [., .]) = κ < ∞
be given. Then there always exists a Pontryagin space which contains A/A[◦] as a
dense subspace. We are going to sketch the construction of this so-called completion
of (A, [., .]) (see e.g. [4]).

Take any subspace M of A which is maximal with respect to the property
that (M, [., .]) is an anti Hilbert space. If e1, . . . , eκ is an orthonormal basis of
(M,−[., .]), then

PM = −[., e1]e1 · · · − [., eκ]eκ,

is the orthogonal projection of A onto M. By the maximality property of M the
orthogonal complement ((I−PM)A, [., .]) is positive semidefinite. Therefore, setting
JM = I − 2PM we see that [JM., .] = (., .)M is a positive semidefinite product on
A. We then have (JM., .) = [., .]M, and JM and [., .] are continuous with respect
to the topology induced by (., .)M.

Note that if M′ is another subspace of L which is maximal with respect to
the property that (M′, [., .]) is an anti Hilbert space, then PM′ , and hence JM′ and
(., .)M′ are continuous with respect to (., .)M. By symmetry we obtain that (., .)M

and (., .)M′ are equivalent scalar products, i.e. there exist α, β > 0 such that

α(x, x)M ≤ (x, x)M′ ≤ β(x, x)M, x ∈ A. (4.1)

This in turn means that these two scalar products induce the same topology T on
A. In particular, T is determined by [., .] and not by a particularly chosen M.

A completion of (A, [., .]) is given by (P, [., .]), where P is the completion of
A/A[◦] with respect to (., .)M. Note that

A(◦)M = {x ∈ A : (x, x)M = 0} = {x ∈ A : [x, y] = 0 for all y ∈ A} = A[◦],

and that A[◦] ∩ M = {0}.

After factoring out A[◦] by continuity we can extend PM, JM, [., .] to P. Then
we have JM = I − 2PM and [., .] = (JM., .)M also on P. The extension PM is the
orthogonal projection of P onto M/A[◦]. It is straightforward to check that

P = PMP[+̇]((I − PM)P) (4.2)

is a fundamental decomposition of (P, [., .]). Therefore, (P, [., .]) is a Pontryagin
space and by (4.1) its construction does not depend on the chosen space M. More-
over, it is the unique Pontryagin space (up to isomorphisms) which contains A/A[◦]

such that [., .] on P is a continuation of [., .] on A/A[◦].
To see this let (P′, [., .]) be another such Pontryagin space, and let P′ =

P−[+̇]P+ be a fundamental decomposition of P′. By a density argument we find
a subspace M of A with the same dimension as P− such that M/A[◦] is sufficiently
close to P− in order that (M, [., .]) is an anti Hilbert space. It follows that M is
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maximal with respect to this property. Let P be the orthogonal projection of P′

onto M/A[◦], and let (., .) be the Hilbert space inner product [(I − 2P )., .] on P.
If (P, [., .]) is the completion as constructed above, then the identity φ on

A/A[◦] is a [., .]-isometric linear mapping from a dense subspace of P onto a dense
subspace of P′. By construction φPM = Pφ. Hence φ is isometric with respect to
(., .)M and (., .). As both induce the topology on the respective spaces P and P′

we see that φ can be extended to an isomorphism from P onto P′.

Definition 4.2. Let (A, [., .]) be an inner product space such that κ−(A, [., .]) = κ <
∞. An almost Pontryagin space with a linear mapping ((L, [., .],O), ι) is called a
completion of A, if ι is an isometric mapping (with respect to [., .]) from A onto a
dense subspace ι(A) of L.

Two completions ((L1, [., .]1,O1), ι1) and ((L2, [., .]2,O2), ι2) are called iso-
morphic if there exists an isomorphism φ from (L1, [., .]1,O1) onto (L2, [., .]2,O2)
such that φ ◦ ι1 = ι2.

Remark 4.3. We saw above that, up to isomorphism, there always exists a unique
Pontryagin space which is a completion of (A, [., .]).

If we allow the almost Pontryagin space of a completion ((L, [., .],O), ι) to be
degenerated, i.e. ∆(L, [., .]) > 0, then (L, [., .],O) is not uniquely determined if we
assume dim A/A[◦] = ∞. This can be derived immediately from Proposition 2.8.

For dimA/A[◦] = ∞ it follows from the subsequent result that for any ∆ ≥ 0
there exists a completion ((L, [., .],O), ι) of (A, [., .]) such that ∆(L, [., .]) = ∆. Also
for fixed ∆ Proposition 2.8 shows that (L, [., .],O) is not uniquely determined.

Proposition 4.4. Let (A, [., .]) be an inner product space with κ−(A, [., .]) = κ < ∞,
and let T be the topology determined by [., .] on A (see Remark 4.1).

If f1, . . . , f∆ are complex linear functionals on A such that no linear combina-
tion of them is continuous with respect to T , then there exists an (up to isomorphic
copies) unique completion ((L, [., .],O), ι) with ∆(L, [., .]) = ∆ such that f1, . . . , f∆

are continuous with respect to ι−1(O).

Proof. The construction made in this proof stems from [6].
Let (P, [., .]) be the unique Pontryagin space completion of (A, [., .]), i.e. the

completion with respect to T . Let (., .)M be the Hilbert space inner product on P

from Remark 4.1 constructed with the help of a subspace M of A being maximal
with respect to the property that (M, [., .]) is an anti Hilbert space. We define

L = P × C
∆,

and provide L with the inner product (., .) such that (., .) coincides with (., .)M on
P and with the euclidean product on C∆, and such that L = P(+̇)C∆. Let [., .]
be defined on L by

[(x; ξ), (y; η)] = [x, y].

By definition (L, [., .],O(.,.)) is an almost Pontryagin space. Hereby O(.,.) is the
topology induced by (., .) on L.
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Now we embed A in L via the mapping ι

ι(x) = (x + A[◦]; (f1(x), . . . , f∆(x))).

Then ι(A) is dense in L. In fact, if not, then we could find (y; η) ∈ L such that
(y; η)(⊥)ι(A). It would follow that

(x + A[◦],−y) =
∆

∑

j=1

η̄jfj(x), x ∈ A,

and, therefore, the right hand side would be continuous with respect to T . By
assumption η = 0 and further y(⊥)A in P. This is not possible as A is dense in P.

The mapping ι is isometric with respect to [., .]. Thus by defining O = O(.,.),
((L, [., .],O), ι) is a completion of (A, [., .]). By the definition of ι the functionals
f1, . . . , f∆ are continuous with respect to ι−1(O).

Assume now that ((L′, [., .]′,O′), ι′) is another completion of (A, [., .]) such
that ∆(L′, [., .]′) = ∆ and such that f1, . . . , f∆ are continuous with respect to

ι′
−1

(O′). Let (., .)′ be a Hilbert space scalar product on L′ which induces O′. By
elementary considerations from the theory of locally convex vector spaces we can
factor f1, . . . , f∆ through the isotropic part A(◦)′ of A with respect to (ι(.), ι(.))′.

Note that A(◦)′ is also the set of all points in A which have exactly the same

neighbourhoods as 0 with respect to the topology ι′
−1

(O′).

Clearly, (L′, (., .)′) is isomorphic to the completion of A/A(◦)′ with respect to
(ι(.), ι(.))′. Hence by continuation to the completion we obtain continuous linear
functionals g1, . . . , g∆ on (L′, [., .]′,O′) such that f1 = g1 ◦ ι′, . . . , f∆ = g∆ ◦ ι′.

By Proposition 3.5 (L′/L′[◦]
′

, [., .]′) is a Pontryagin space. We denote by π the
factorization mapping. As (A/A[◦], [., .]) is isometrically embedded by π ◦ ι′ in this

Pontryagin space Remark 4.1 shows that (L′/L′[◦]
′

, [., .]′) is an isomorphic copy of

(P, [., .]). Let φ : L′/L′[◦]
′

→ P be this isomorphism, which satisfies φ◦π◦ ι′ = idA.

Let 0 6= x ∈ L′[◦]
′

be such that g1(x) = · · · = g∆(x) = 0. By elementary linear
algebra we find a non-trivial linear combination g of the functionals g1, . . . , g∆

which vanishes on L′[◦]
′

. Hence, we find a functional f on P such that g = f ◦
φ ◦ π. But then a 7→ f(a + A[◦]) is a non-trivial linear combination of f1, . . . , f∆

which is continuous with respect to T . By assumption this is ruled out. Thus the

intersection of the kernels of gj, j = 1, . . . , ∆, has no point in common with L′[◦]
′

except of 0. Since the intersection of ∆ hyperplanes has codimension at most ∆,
we have

L′[◦]
′

+̇(ker(g1) ∩ · · · ∩ ker(g∆)) = L′, (4.3)

and see that the mapping

ϕ : L′ → L, x 7→ (φ ◦ π(x); (g1(x), . . . , g∆(x))),

is bijective. Moreover, ϕ is isometrically with respect to [., .] and satisfies ϕ ◦ ι′ =
ι. Since in the decomposition (4.3) all subspaces are closed, the Open Mapping
Theorem implies that ϕ is bicontinuous with respect to O′ and O. �
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Remark 4.5. With the notation from Proposition 4.4

〈., .〉 = (., .)M +

∆
∑

j=1

fj(.)f̄j(.), (4.4)

is a non-negative inner product on A. It is easy to see that ι induces an isomorphism
from the completion of (A/A〈◦〉, 〈., .〉) onto (L, (., .)). In particular, O〈.,.〉 = ι−1(O).

The completion constructed in Proposition 4.4 appeared in implicit forms
already in various papers. See for example [7].

Definition 4.6. We call the completion of (A, [., .]) constructed in Proposition 4.4
the completion of (A, [., .], (fi)i=1,...,∆).

Corollary 4.7. Let (A, [., .]) be an inner product space with κ−(A, [., .]) = κ < ∞,
and let T be the topology determined by [., .] on A (see Remark 4.1).

Let (fi)i=1,...,∆ and (f ′
i)i=1,...,∆ be two sets of complex linear functionals on

A such that no linear combination of (fi)i=1,...,∆ and no linear combination of
(f ′

i)i=1,...,∆ is continuous with respect to T .
The completion of (A, [., .], (fi)i=1,...,∆) is isomorphic to the completion of

(A, [., .], (f ′
i)i=1,...,∆) if and only if the functionals f ′

1, . . . , f
′
∆ are continuous with

respect to the topology induced by 〈., .〉 defined in (4.4) on A.

Proof. We denote by ((L, [., .],O), ι) and ((L′, [., .]′,O′), ι′) the completions of the
triplets (A, [., .], (fi)i=1,...,∆) and (A, [., .], (f ′

i)i=1,...,∆), respectively. Moreover, let
(gi)i=1,...,∆ and (g′i)i=1,...,∆ be the continuous linear functionals on L and L′, re-
spectively, such that fi = gi ◦ ι and f ′

i = g′i ◦ ι′, respectively.
If the two completions are isomorphic by the isomorphism φ : (L, [., .],O) →

(L′, [., .]′,O′), then g′i ◦ φ, i = 1, . . . , ∆, are continuous functionals on (L, [., .],O).
By Remark 4.5 f ′

i = g′i ◦ ι′ = g′i ◦ φ ◦ ι is continuous on A with respect to the
topology induced by 〈., .〉.

Conversely, if f ′
1, . . . , f

′
∆ are continuous with respect to the topology induced

by 〈., .〉, then by continuation to the completion we obtain continuous linear func-
tionals (h′

i)i=1,...,∆ on (L, [., .],O) such that f ′
i = h′

i◦ι. By the uniqueness assertion
in Proposition 4.4 ((L, [., .],O), ι) is also a completion of (A, [., .], (f ′

i)i=1,...,∆) . �

5. Almost reproducing kernel Pontryagin spaces

Objects of intensive studies are the so-called reproducing kernel Pontryagin spaces.
These are Pontryagin spaces (P, [., .]) which consist of functions F mapping some
set M into C such that there exist K(., t) ∈ P, t ∈ M , with

F (t) = [F, K(., t)], F ∈ P, t ∈ M. (5.1)

An equivalent definition of reproducing kernel Pontryagin spaces is the assumption
that (P, [., .]) consists of complex valued functions on a set M such that the point
evaluations are continuous at all points of M .
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The first approach to reproducing kernel Pontryagin spaces does not have an
immediate generalization to almost Pontryagin spaces but the second does.

Definition 5.1. Let (L, [., .],O) be an almost Pontryagin space, and assume that
the elements of L are complex valued functions on a set M . This space is a called
an almost reproducing kernel Pontryagin spaces on M , if for any t ∈ M the linear
functional

ft : F 7→ F (t), F ∈ L,

is continuous on L with respect to O.

Remark 5.2. As the elements of L are functions we see that the family (ft)t∈M of
point evaluation functionals is point separating. Hence Proposition 2.9 yields the
uniqueness of the topology O for which the functionals ft, t ∈ M , are continuous.
Consequently, we are going to skip the topology and write almost reproducing
kernel Pontryagin spaces as pairs (L, [., .]).

A major setback to the study of almost reproducing kernel Pontryagin spaces
is the fact that in the case ∆(L, [., .]) > 0 we do not find a reproducing kernel
K(s, t) which satisfies (5.1). However, we do have the following

Proposition 5.3. Let (L, [., .]) be an almost reproducing kernel Pontryagin space on
a set M and put ∆ = ∆(L, [., .]). Moreover, let N be a separating subset of M , i.e.
assume that the family (ft)t∈N is point separating. Then there exist t1, . . . , t∆ ∈ N ,
c ∈ R, and R(., t) ∈ L such that

F (t) = [F, R(., t)] + c
(

F (t1)R(t, t1) + · · · + F (t∆)R(t, t∆)
)

, F ∈ L, t ∈ M.

Proof. The number ∆ is by definition the dimension of L[◦] = kerG, where G =
G(.,.) is the Gram operator with respect to a Hilbert space product (., .) inducing
the topology of (L, [., .]). By Corollary 2.4 we may choose (., .) such that G = I+L,
where L is a selfadjoint finite rank operator.

Because of the assumption on N by induction one can easily show the exis-
tence of points t1, . . . , t∆ ∈ N , such that h ∈ L[◦] and h(tj) = 0, j = 1, . . . , ∆,
implies h = 0.

Because of the continuity of point evaluations we find elements K(., t) ∈ L

with
F (t) = (F, K(., t)), F ∈ L.

We define the following selfadjoint operator H of finite rank on L

H(F ) =

∆
∑

j=1

F (tj)K(., tj).

Let K = ker(H) ∩ ker(L), then K(⊥) is finite dimensional since the selfadjoint
operators H and L are of finite rank, and K(⊥) contains the range of L and H . For
z ∈ C it follows that the restriction of the operator I + L + zH onto K is equal
to the identity. Hence I + L + zH is invertible on L if and only if it is invertible
on K(⊥). To show that I + L + zH is invertible for z = i, let (I + L + iH)F = 0.
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Then (HF, F ) = 0 = ((I +L)F, F ), and the form of H implies that F (tj) = 0, j =

1, . . . , ∆. It follows that H(F ) = 0, and hence (I + L)F = 0, or F ∈ L[◦] as I + L
is the Gram operator. The definition of the points t1, . . . , t∆ implies that F = 0,
that is, the operator (I + L + iH) is invertible.

Thus det((I + L + zH)|K[⊥]) is not identically zero, and therefore has only a
discrete zero set. In particular, we find c ∈ R such that (I + L + cH) is invertible.
Now set

R(., t) = (I + L + cH)−1K(., t).

Note that because of the selfadjointness of I + L + cH ,

R(s, t) = (R(., t), K(., s)) = (K(., t), R(., s)) = R(t, s).

For F ∈ L and t ∈ M we have

[F, R(., t)] = ((I + L + cH)F, R(., t)) − c(HF, R(., t)) = F (t) − c

∆
∑

j=1

F (tj)R(t, tj).

�

6. Examples of almost Pontryagin spaces

As the first topic of this section we are going to sketch the continuation problem for
hermitian functions with finitely many negative squares on intervals [−2a, 2a] to
the whole real axis. We will meet inner product spaces and completions in the sense
of Section 4. Taking into account also a possible degeneracy of this completion one
obtains a refinement of classical results on the number of all possible extensions
of the given hermitian functions with finitely many negative squares to R. For a
complete treatment of this topic see [7].

Definition 6.1. Let a > 0 be a real number, and assume that f : [−2a, 2a] → C is

a continuous function. We say that f is hermitian if it satisfies f(−t) = f(t), t ∈
[−2a, 2a], and f is said to be hermitian with κ(∈ N ∪ {0}) many negative squares
if the kernel f(t − s), s, t ∈ (−a, a), has κ negative squares. The set of all such
functions we denote by Pκ,a.

By Pκ we denote the set of all continuous hermitian functions with κ negative
squares on R, i.e. f(t − s), s, t ∈ R, has κ negative squares.

For κ = 0 the function f is called positve definite.
The continuation problem is to find for given f ∈ Pκ,a and κ̃ ∈ N ∪ {0} all

possible extensions f̃ of f to the whole real axis such that f̃ ∈ Pκ̃. Trivially, by
the definition of the respective classes a necessary condition for the existence of
such extensions is κ ≤ κ̃. The following classical result can be found for example
in [3].

Theorem 6.2. Let f ∈ Pκ,a. Then either f has exactly one extension belonging
to Pκ, or it has infinitely many extensions in Pκ. In the latter case f also has
infinitely many extensions in Pκ̃ for every κ̃ ≥ κ.
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This result originates from the following operator theoretic considerations.
First let (P(f), [., .]) be the reproducing kernel Pontryagin space on (−a, a) having
k(s, t) = f(s − t) as its reproducing kernel. As we assume f ∈ Pκ,a the degree of
negativity of (P(f), [., .]) is κ. Clearly, (P(f), [., .]) is the completion of (A(f), [., .])
where A(f) is the linear hull of {k(., t) : t ∈ (−a, a)}.

Moreover, a certain differential operator S(f) is constructed on (P(f), [., .]).
This operator is symmetric and densely defined. Its defect elements are given by

ker (S(f)∗ − z) = eizs, z ∈ C \ R,

as a function of s ∈ (−a, a) if they belong to P(f). Thus S(f) has either defect
indices (1, 1) or (0, 0) depending on whether eizs belongs to this space or not.

A crucial fact in verifying Theorem 6.2 is that all extensions of f belonging
to Pκ correspond bijectively to all P(f)-minimal selfadjoint extensions A of S(f)

in a possibly larger Pontryagin space P̃ ⊇ P(f) with κ−(P̃, [., .]) = κ. Hereby
P(f)-minimal means

cls(P(f) ∪ {(A − z)−1x : x ∈ P(f), z ∈ ρ(A)}) = P̃.

Hence, in the case that S(f) has defect index (0, 0) or, equivalently, that S(f) is
selfadjoint there are no P(f)-minimal selfadjoint extensions of S(f) other than
S(f) itself. Therefore, f has exactly one extension in Pκ.

If S(f) has defect index (1, 1), then there are infinitely many P(f)-minimal
selfadjoint extensions A of S(f) and, hence, infinitely many extensions in Pκ.
Moreover, in this case the extensions of f in Pκ̃ for κ̃ ≥ κ correspond bijectively to
all P(f)-minimal selfadjoint extensions A of S(f) in a Pontryagin space P̃ ⊇ P(f)

with κ−(P̃, [., .]) = κ̃, and there are also infinitely many of them for an arbitrary
κ̃ ≥ κ.

Theorem 6.2 seems to give a sufficiently satisfactory answer to the continu-
ation problem. But as some examples show it can happen that f has exactly one
extension in Pκ but infinitely many extensions in Pκ̃ for some κ̃ > κ. How does
this fit in with the operator theoretic approach mentioned above?

Here almost Pontryagin spaces come into play. In the case that S(f) has defect
index (1, 1) the fact that eizs, z ∈ C \ R belongs to P(f) can be reformulated by
saying that

Fz :
∑

j

αjk(., tj) 7→
∑

j

αje
iztj

are continuous linear functionals on (A, [., .]) for all z ∈ C \ R.
If f has a unique extension f0 ∈ Pκ, i.e. S(f) has defect (0, 0), then these

functionals are not continuous. But it can happen that by refining the topology
on (A, [., .]) by finitely many functionals Fz1 , . . . , Fz∆ , zj ∈ C\R as in Remark 4.5
we obtain a topology O on (A, [., .]) such that all functionals Fz , z ∈ C \ R, are
continuous. Hereby let ∆ ∈ N always be chosen such that Fz1 , . . . , Fz∆ is a minimal
set of functionals such that all the functionals Fz , z ∈ C \ R, are continuous with
respect to O. Then no linear combination of Fz1 , . . . , Fz∆ is continuous with respect
to the topology induced by [., .] on A as in Remark 4.1.
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Now let ((Q(f), [., .],O(f)), ι) be the completion of (A, [., .], (Fzj
)j=1,...,∆).

On (Q(f), [., .],O(f)) one can find a symmetric operator T (f) with defect index
(1, 1). For the concept of symmetric operators on almost Pontryagin spaces see
[8]. In that paper almost Pontryagin spaces were always considered as degenerate
subspaces of Pontryagin spaces, and they were not yet called almost Pontryagin
spaces. Similarly as for S(f) the extensions f̃ ∈ Pκ̃ of f which differ from f0

correspond bijectively to all Q(f)-minimal selfadjoint extensions A of T (f) in a

Pontryagin space P̃ ⊇ Q(f) with κ−(P̃, [., .]) = κ̃.

Since every Pontryagin space P̃ which contains Q must satisfy κ−(P̃, [., .]) ≥

∆(Q, [., .]) + κ−(Q̃, [., .]), there exist extensions f̃ ∈ Pκ̃, f̃ 6= f0 of f if only if
κ̃ ≥ ∆+κ. In fact, for these κ̃ there always exist infinitely many extensions in Pκ̃.
These considerations yield the following refinement of Theorem 6.2.

Theorem 6.3. Let f ∈ Pκ,a. Then there exists ∆ ∈ {0} ∪ N ∪ {∞} such that

• If ∆ > 0, then f has a unique extension in Pκ.
• f has no extensions in Pκ̃ for κ < κ̃ < ∆ + κ.
• f has infinitely many extensions in Pκ̃ for κ̃ ≥ ∆ + κ.

As a second topic in the present section we give an example of an interesting
class of almost reproducing kernel Pontryagin spaces. In fact, we are going to
consider the indefinite generalization of Hilbert space of entire functions introduced
by Louis de Branges (see [1], [9],[10],[11]).

Definition 6.4. An inner product space (L, [., .]) is called a de Branges space (dB-
space) if the following three axioms hold true:

(dB1) (L, [., .]) is an almost reproducing kernel Pontryagin space on C con-
sisting of entire functions.

(dB2) If F ∈ L then F# ∈ L, where F#(z) = F (z̄). Moreover,

[F#, G#] = [G, F ].

(dB3) If F ∈ L and z0 ∈ C \ R with F (z0) = 0, then

z − z̄0

z − z0
F (z) ∈ L,

as a function of z. Moreover, if also G ∈ L with G(z0) = 0, then
[z − z̄0

z − z0
F (z),

z − z̄0

z − z0
G(z)

]

= [F, G].

In many cases one can assume that a dB-space also satisfies

For all t ∈ R there exists F ∈ L such that F (t) 6= 0. (6.1)

One of the main results about dB-spaces is that the set of all admissible dB-
subspaces of a given dB-space is totally ordered. To explain this in more detail, let
us start with a dB-space satisfying (6.1). We call a subspace K of L a dB-subspace
of (L, [., .]) if (K, [., .]) itself is a dB-space. It is called an admissible dB-subspace
if (K, [., .]) also satisfies (6.1). The following result originates from [1] and was
generalized to the indefinite situation in [9].
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Theorem 6.5. Let (L, [., .]) be a dB-space satisfying (6.1). Then the set of all ad-
missible dB-subspaces is totally ordered with respect to inclusion, i.e. if P and Q

are two admissible dB-subspaces of (L, [., .]), then P ⊆ Q or Q ⊆ P.

One may think of the degenerate members of the chain of admissible dB-
subspaces of a given dB-space as singularities. Thus it is desirable not to have too
many of this kind. In [9] the following result was obtained.

Theorem 6.6. With the same assumptions as in Theorem 6.5 the number of ad-
missible dB-subspaces K of (L, [., .]) with ∆(K, [., .]) > 0 is finite.

The presence of singularities is exactly what distinguishes the classical -
positive definite- case from the indefinite situation. Thus, to obtain a thorough
understanding of the structure of an indefinite dB-space, it is inevitable to deal
with degenerated spaces.
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[6] P. Jonas, H. Langer, B. Textorius, Models and unitary equivalence of cyclic selfadjoint

operators in Pontryagin spaces, Oper. Theory Adv. Appl. 59(1992), 252-284
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