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Abstract

A de Branges space is a reproducing kernel Hilbert space of entire
functions which satisfies additional axioms. We consider such de Branges
spaces whose elements possess a certain growth behaviour (e.g. are all of
exponential type) and investigate the interplay of Hilbert space structure
and growth behaviour. We characterize the presence of certain growth
behaviour, prove the existence of spaces with prescribed growth and in-
vestigate the structure of subspaces defined by growth restrictions.
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1 Introduction

A de Branges Hilbert space (dB-space for short) is a Hilbert space whose ele-
ments are entire functions and which satisfies certain axioms (for the exact defi-
nition we refer to Definition 2.1). Such spaces arise for example by M.G.Krein’s
method of directing functionals, in which case all elements of the so obtained
dB-spaces are of exponential type. This method finds various applications, e.g.
to interpolation- or extrapolation type problems. Another source is the inves-
tigation of canonical systems of differential equations, where the connection to
the theory of dB-spaces plays a prominent role. All elements of a dB-space
turning up that way are of exponential type. Hence, it seems that the class of
dB-spaces H whose elements F satisfy the growth condition

lim sup
|z|→∞

log |F (z)|
|z| <∞,

is an object worth being investigated. Indeed, a discussion of the interplay of
the dB-space structure on the one hand and growth conditions imposed on the
elements on the other hand leads to a fruitful theory.

The aim of the present work is to give some results on dB-spaces H subject
to growth conditions of the type

lim sup
|z|→∞

log |F (z)|
λ(|z|) <∞, F ∈ H, (1.1)

where λ is any growth function, e.g. one might think of λ(r) = r, of λ(r) = rρ

for some ρ > 0, or, even more general, of λ(r) = rρ(log r)α for some α ∈ R,
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ρ > 0. The fact that we consider this more general setting is motivated, besides
the undoubtedly big gain in generality, by the study of dB-spaces connected
to some functions of classical analysis which satisfy the growth condition (1.1)
with λ(r) =

√
r log r.

We give an outline the contents of the following sections. In order not to
overload this introduction consider the respective sections for the exact defini-
tions of the terms used here to explain the results.

In §2 we recall some basic facts about dB-spaces and give a result on the
structure of a given space (Theorem 2.7) which is not connected to any growth
conditions but will often be used later on. It says that investigating the struc-
ture of a space H = H(E) where E is a function of Hermite-Biehler class (cf.
Definition 2.1 and the paragraph following it) one can often restrict to the case
that

mt
E#

E
= lim

y→+∞
1

y
log
∣

∣

∣

E(−iy)
E(iy)

∣

∣

∣ = 0.

In the consecutive section we define the main objects of our considerations,
dB-spaces of finite λ-type (understanding that (1.1) holds for each element of the
space, cf. Definition 3.2), and state three basic results which give conditions for a
space to be of finite λ-type. These are: Theorem 3.4, which says that the growth
of any function of the space H = H(E) is governed by the growth of E. Secondly,
Theorem 3.10 asserting that if λ grows comparatively fast (r = O(λ(r))), the
existence of a single element of a dB-space H satisfying the finiteness condition
(1.1), implies that also all other elements have this property. Finally Theorem
3.17 which characterizes growth behaviour by means of asymptotic distribution
of zeros. This result can be viewed as a link to the spectral theory of the
operator of multiplication by the independent variable in the space H(E). We
also give a product representation of functions of Hermite-Biehler class of finite
order (a particular form of the Hadamard product, cf. Lemma 3.12) which is
not only of great help in many proofs, but also explains that the structure of the
space H(E) must be in an intimate connection with the distribution of zeros of
E. The section is concluded with a discussion of the indicator function of the
elements of H(E) and with some results on slowly growing functions. In the
considerations of this section we encounter the phenomenon that the cases of
slowly growing and fast growing λ (e.g. think of λ(r) = o(r) vs. r = O(λ(r)))
are essentially different from each other and that the case of exponential type
(λ(r) = r) is somewhat special. This fact will also show up in various other
places.

The fourth section is mainly concerned with functions E of Hermite-Biehler
class which are of completely regular growth. For such functions E the indicator
function can be determined explicitly. Conversely, to a prescribed indicator
there exist (in the generic case) a function E possessing this indicator function
(cf. Theorem 4.3 and Theorem 4.5). These considerations not only give an
insight into the growth behaviour of functions of Hermite-Biehler class, but also
provides us with a rich variety of examples. Also in this context it is interesting
to note how different the behaviour of fast and slow growing λ is (cf. case (B)
versus all other cases of the above mentioned theorems), and to observe that
the case of exponential type (i.e. λ(r) = r) plays a special role. The reader will
recognize this when going through the proof of Theorem 4.5, Case (D).

In §5 we study dB-subspaces of a given dB-space defined by growth condi-
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tions. On the first sight there are two natural ways to define such subspaces:
One can restrict the growth of F ∈ H(E) by either demanding a bound for
the growth of F itself or for the growth of F in comparison to E. It turns out
that the second method is more general. It is a main task of our considerations
to find conditions when such growth restrictions give nontrivial (i.e. nonzero)
subspaces.

Finally let us make two remarks. Firstly, all considerations of this paper
remain valid in the case of dB-Pontryagin spaces (as introduced in [KW2]).
This origins in the fact that, as the reader will surely recognize, our arguments
employ mainly function theoretic methods and rely on the topology of the space
H, but not on the particular inner product. Since a dB-Pontryagin space can
be turned into a dB-Hilbert space by a finite dimensional perturbation of the
inner product (cf. [KW2, Theorem 3.3]), which clearly does not change the
topology of the space, the same arguments will apply. Secondly, dB-spaces are
intimitely related to certain operator theoretic concepts like the theory of entire
operators or the extension theory of symmetric operators. Growth restrictions
on the elements of the space mean restrictions on the asymptotics of the zeros
of these functions. Many spectral properties of the related operator model can
be expressed in terms of zeros of certain elements of the dB-space, and thus
are highly influenced by growth restrictions. As an illustration of this principle
let us mention the Q-function of the multiplication operator in the dB-space,
in which case this connection is very explicitly given via [KW2, §6]. In the
present work we will, however, concentrate on the function theoretic viewpoint.
A discussion of connections to these more operator theoretic notions and topics
will be subject of forthcoming work.

For the convenience of the reader we tried to recall at least the definitions
of the employed notions from either the theory of functions or the theory of
dB-spaces. However, it is of course inevitable to refer to lots of results of both
of these fields. Our standard references in this respect are [L], [R] and [dB].

2 Some preliminary remarks on dB-spaces

Let us give the definition of a dB-space.

2.1 Definition. A Hilbert space (H, (., .)) is called a dB-(Hilbert) space if it
satisfies the following axioms:

(dB1) The elements of H are entire functions and for each w ∈ C the point
evaluation F 7→ F (w) is a continuous linear functional on H.

(dB2) If F ∈ H, also F#(z) := F (z) belongs to H and we have

(F#, G#) = (G,F ), F,G ∈ H.

(dB3) If w ∈ C \ R and F ∈ H, F (w) = 0, then z−w
z−wF (z) ∈ H, and

(

z − w

z − w
F (z),

z − w

z − w
G(z)

)

=
(

F,G
)

, F,G ∈ H, F (w) = G(w) = 0.
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Recall from [dB] that such spaces can be constructed from certain entire
functions. The Hermite-Biehler class HB is defined as the set of all entire
functions E which have no zeros in the open upper half plane C+ and satisfy

|E(z)| ≤ |E(z)|, z ∈ C+.

We denote by HB× the set of all functions in HB which have no zeros on R.
The notation N(C+) is used for the ring of all analytic functions on C+ which
can be represented as a quotient of two bounded analytic functions and Ñ(C+)
will denote its quotient field. We refer to the functions in N(C+) as functions
of bounded type, and to those in Ñ(C+) of bounded characteristic. If f ∈ N(C+)
the number

mt f := lim sup
y→+∞

1

y
log |f(iy)|

is finite and will be referred to as the mean type of f .
Let us recall that the Hardy space H2(C+) is defined to be the set of all

functions f analytic in C+ such that

sup
y>0

∫ ∞

−∞
|f(x+ iy)|2 dx <∞.

The space H2(C+) is endowed with the norm ‖f‖H2(C+) = ‖f(t)‖L2(R) where
f(t) denotes the (nontangentially almost everywhere existing) boundary func-
tion of f . Furthermore, N+(C+) will denote the set of all functions of bounded
type such that in the inner-outer factorization the singular inner function in the
denominator is not present (cf. e.g. [RR]) and H∞(C+) those functions analytic
on C+ which are bounded throughout this half plane. We have

N(C+) ⊇ N+(C+) ⊇ H2(C+), H∞(C+).

In case f ∈ N+(C+) the mean type of f is nonpositive. If, moreover, the
boundary function of f on R is contained in L2(R) (L∞(R)), then f ∈ H2(C+)
(f ∈ H∞(C+)). This fact can be seen as a kind of maximal principle (cf. e.g.
[RR]).

For a function f of bounded type with a continuous continuation to the
real axis also the converse is true: If f has a nonpositive mean type, then
f ∈ N+(C+). This can be deduced from the Stieltjes inversion formula (cf. e.g.
[RR]).

If E ∈ HB is given, the set H(E) is defined as follows: F belongs to H(E)

if and only if F is an entire function, F
E

and F#

E
are of bounded type and

nonpositive mean type in C+, and
∫ ∞

−∞

∣

∣

∣

F (t)

E(t)

∣

∣

∣

2

dt <∞.

Endowed with the inner product

(F,G) =

∫ ∞

−∞
F (t)G(t)

dt

|E(t)|2 , F,G ∈ H(E),

H(E) is a dB-space. Conversely, every dB-space is obtained in this way. Note
that, if t ∈ R is a zero of E of multiplicity r, then F (t) = 0 with multiplicity at
least r for all F ∈ H(E).
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The reproducing kernel K(w, z) of the space H = H(E) can be expressed in
terms of the function E as follows:

K(w, z) =
E(z)E#(w) − E(w)E#(z)

2πi(w − z)
, z 6= w̄,

K(z̄, z) =
i

2π
(E′(z)E#(z) − E(z)E#(z)′).

It also can be written using the real and imaginary parts of E. Put

A :=
E + E#

2
, B := i

E − E#

2
,

so that E = A− iB. For φ ∈ R define

Sφ := sinφ ·A(z) − cosφ ·B(z),

then independently of φ ∈ R,

K(w, z) =
Sφ(w)Sφ+ π

2
(z) − Sφ(z)Sφ+ π

2
(w)

π(z − w)
, z 6= w,

K(z, z) =
1

π

(

Sφ(z)S
′
φ+ π

2
(z) − S′

φ(z)Sφ+ π
2
(z)
)

.

(2.1)

The space H(E) also can be defined as

H(E) =
{

F entire :
F

E
,
F#

E
∈ H2(C+)

}

, ‖F‖H(E) = ‖F
E
‖H2(C+),

or as

H(E) = E(H2(C+) ⊖ E#

E
H2(C+)).

If H is a dB-space, we will denote by AssocH the set of all entire functions
F such that for some G ∈ H and w ∈ C, G(w) 6= 0,

F (z)G(w) − F (w)G(z)

z − w
∈ H.

Recall that (cf. [dB, Theorem 25], compare also [LW, Corollary 3.4]) for E ∈ HB
such that H = H(E)

AssocH =
{

F entire :
F (z)

(z + i)E(z)
,

F#(z)

(z + i)E(z)
∈ H2(C+)

}

.

It is easily seen from the definitions that AssocH = H + zH. Moreover let us
note that, if F ∈ AssocH and F (w) = 0, then (z − w)−1F (z) ∈ H, and that
E ∈ AssocH(E) \ H(E).

A subspace L of a dB-space H will be called a dB-subspace if it is itself,
with the inner product inherited from H, a dB-space. Let us recall that by de
Branges’ ordering theorem the set of all dB-subspaces H(Ẽ) of a given space
H(E) where Ẽ has the same real zeros (including multiplicities) as E is totally
ordered (with respect to set-theoretic inclusion). Moreover, let us recall that
for each such dB-subspace H(Ẽ) ⊆ H(E) there exists a transfer matrix M(z)
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which has the property that (write E = A− iB and Ẽ = Ã− iB̃ with A = A#,
B = B#, etc.)

(A,B) = (Ã, B̃)M(z).

This transfer matrix measures the difference between H(Ẽ) and H(E).
It is a result of [dB] that if H(Et) is an increasing sequence of dB-subspaces

of H(E) and Mt denotes the transfer matrix of H(Et) ⊆ H(E), then

⋃

t

H(Et) = H(E)

if and only if limMt = 1. Dually, if H(Et) is a decreasing sequence of dB-
subspaces, H(Ẽ) ⊆ ⋂

tH(Et), and M̃t denotes the transfer matrix of H(Ẽ) ⊆
H(Et), then H(Ẽ) =

⋂

tH(Et) if and only if lim M̃t = 1.
According to [L, Kapitel V] we denote by A the set of all entire functions F

whose zeros are close to the real axis in the sense that

∑

n∈N

∣

∣ Im
1

zn

∣

∣ <∞, (2.2)

where (zn)n∈N denotes the sequence of (nonzero) zeros of F counted according
to their multiplicities. Note that, if all points zn are contained in the half
plane C+ (or C−, respectively), then (2.2) is exactly the condition insuring the
convergence of the Blaschke product (see e.g. [RR])

B(z) :=
∏

n∈N

z − zn

z − zn
,

hence is also frequently called the Blaschke condition. For later reference let us
state some elementary properties of complex sequences.

2.2 Lemma. Let (zn)n∈N be a sequence of nonzero complex numbers which does
not accumulate at 0. If (zn)n∈N satisfies (2.2), then:

(i) For all k ∈ N
∑

n∈N

∣

∣ Im
1

zkn

∣

∣ <∞. (2.3)

(ii) If for some δ > 0 all points zn lie in the region

{

w ∈ C : argw ∈ [−π + δ,−δ] ∪ [δ, π − δ]
}

, (2.4)

then
∑

n∈N

1
|zn| <∞.

(iii) For all k ∈ N

∑

|zn|≤r
Re

1

zkn
=
∑

|zn|≤r

(

Re
1

zn

)k

+O(1).

Proof.
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ad(i): Write zn = rne
iψn , then

Im
1

zkn
=

sin(kψn)

rkn
=

sinψn
rn

·
i
∑k
l=0,l odd

(

k
l

)

(−1)
l−1
2 sinl−1 ψn cosk−l ψn

rk−1
n

.

Since the second factor is uniformly bounded with respect to n, the convergence
of (2.3) follows.

ad(ii): This assertion follows since in the angle (2.4) the estimate |Rew| ≤
cot δ · | Imw| holds.

ad(iii): Similar as in (i)

Re
1

zkn
=

cos(kψn)

rkn
=

(cosψn)
k

rkn
+

sinψn
rn

·
∑k

l=2,l even

(

k
l

)

(−1)
l
2 sinl−1 ψn cosk−l ψn

rk−1
n

.

The second factor of the second summand is again bounded uniformly with
respect to n, and hence by (2.2) the series

∑

n∈N

sinψn
rn

·
∑k
l=2,l even

(

k
l

)

(−1)
l
2 sinl−1 ψn cosk−l ψn

rk−1
n

is absolutely convergent.

Let us state the following (well known) fact which gives a connection with
the theory of dB-spaces.

2.3 Lemma. Let H be a dB-space and F ∈ AssocH, F 6≡ 0. Then F is of
class A. If (zn)n∈N, zn ∈ C+, is any sequence of zeros of F and B(z) denotes

the Blaschke product formed with the sequence (zn)n∈N, then F (z)
B(z) ∈ AssocH. If

F ∈ H, then F (z)
B(z) ∈ H. The same conclusions hold if all zn belong to the lower

half plane.

Proof. Choose E ∈ HB such that H = H(E). Since F
E

and F#

E
are of bounded

type in C+, both satisfy the Blaschke condition. Thus F ∈ A.
In order to establish the second assertion it suffices to prove that F ∈ H

implies F
B

∈ H. Let

F (z)

E(z)
= B1(z)S1(z)U1(z),

F#(z)

E(z)
= B2(z)S2(z)U2(z)

be the inner-outer factorization of the elements F
E
, F

#

E
∈ H2(C+) (cf. [RR]).

Put G(z) := F (z)
B(z) , then

G(z)

E(z)
=
B1(z)

B(z)
S1(z)U1(z),

G#(z)

E(z)
= B(z)B2(z)S2(z)U2(z),

and hence both functions belong to H2(C+).

The following elementary construction is useful.
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2.4 Lemma. Let E ∈ HB, C entire, and put E1 := E
C

. Assume that E1 ∈ HB
and C#

C
∈ N+(C+). Then CH(E1) ⊆ H(E) isometrically. If C = C#, then

equality holds.

Proof. Since |C
#(t)
C(t) | = 1, t ∈ R, we conclude that in fact C#

C
is inner. Let

F ∈ H(E1), i.e. F
E1
, F

#

E1
∈ H2(C+). Then G := CF satisfies

G

E
=

CF

CE1
=

F

E1
∈ H2(C+),

G#

E
=
C#

C

F#

E1
∈ H2(C+). (2.5)

Moreover,

‖G‖H(E) =

∫ ∞

−∞

∣

∣

∣

G(t)

E(t)

∣

∣

∣

2

dt =

∫ ∞

−∞

∣

∣

∣

F (t)

E1(t)

∣

∣

∣

2

dt = ‖G‖H(E1).

Assume that C = C#. Since E
C

is entire, C can have only real zeros which are

also zeros of E. Thus, with G ∈ H(E) the function F := G
C

is entire. Reversing
the argument (2.5) yields F ∈ H(E1).

The above lemma yields in particular that if E1, E2 ∈ HB, then E1H(E2) ⊆
H(E1E2). The following result provides a more detailed description of the space
H(E1E2).

2.5 Lemma. Let E1, E2 ∈ HB. Then

H(E1E2) = E1H(E2) ⊕ E
#
2 H(E1). (2.6)

Proof. We calculate for the reproducing kernel of H(E1E2)

KE1E2
(w, z) =

E1(z)E2(z)E
#
1 (w)E#

2 (w) − E1(w)E2(w)E#
1 (z)E#

2 (z)

2πi(w − z)
=

E1(z)KE2
(w, z)E1(w) + E

#
2 (z)KE1

(w, z)E#
2 (w).

By a standard complementation theory argument (For an overview see for
example [ADSR], Chapter 1.) the reproducing kernel Hilbert spaces E1H(E2)

and E
#
2 H(E1) with their respective reproducing kernels E1(z)KE2

(w, z)E1(w)

and E1(w) + E
#
2 (z)KE1

(w, z)E#
2 (w) are contained contractively in H(E1E2).

Since by Lemma 2.4 the space E1H(E2) is contained isometrically in H(E1E2),

the same is true for E#
2 H(E1) and (2.6) holds (see [ADSR], Chapter 1).

The application of Lemma 2.4 will be of special interest in three particular
cases: C(z) is real and zerofree; C(z) is the canonical product associated with
the real zeros of E; C(z) = e−icz, c ≥ 0. The first case tells us that two spaces
H(E) and H(E1) such that E

E1
is real and zerofree behave the same with respect

to Hilbert space theory. The second shows that in many cases we can restrict
our considerations to spaces H(E) with E(t) 6= 0 for all real t, i.e. E ∈ HB×.
The significance of the third possibility will be apparent from the subsequent
discussion. First let us make the following observation:
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2.6 Lemma. Let H be a dB-space and let numbers τ+, τ− ≤ 0 and σ ∈ [τ−,−τ+]
be given. The mapping ψ : F (z) 7→ e−iσzF (z) is an isometry of

H(τ+,τ−) :=
{

F ∈ H : mt
F

E
≤ τ+,mt

F#

E
≤ τ−

}

onto

H(τ++σ,τ−−σ) =
{

F ∈ H : mt
F

E
≤ τ+ + σ,mt

F#

E
≤ τ− − σ

}

.

For all τ+, τ− ≤ 0 the space H(τ+,τ−) is closed.

Proof. Clearly
∫ ∞

−∞

∣

∣

∣

(ψF )(t)

E(t)

∣

∣

∣

2

dt =

∫ ∞

−∞

∣

∣

∣

F (t)

E(t)

∣

∣

∣

2

dt. (2.7)

If F ∈ H, mt F
E

≤ τ+ and mt F
#

E
≤ τ−, then ψF

E
is of bounded type and

mt
ψF

E
≤ τ+ + σ ≤ 0.

By (2.7) it follows that ψF
E

∈ H2(C+). Since mt (ψF )#

E
≤ τ− − σ ≤ 0, similarly

(ψF )#

E
∈ H2(C+). Thus ψH(τ+,τ−) ⊆ H(τ++σ,τ−−σ).

Applying this fact once again with −σ, τ+ + σ and τ− − σ in place of σ, τ+
and τ−, yields

ψ−1H(τ++σ,τ−−σ) ⊆ H(τ+,τ−).

To prove the last assertion it suffices to show that for all τ+ ≤ 0 the space
H(τ+,0) is closed. The mapping (compare [Ka, Lemma 3.2]):

ψ : F (z) 7→ eiτ+zF (z)

is an isometry of H(τ+,0) into H, hence can be extended by continuity to an

isometry ψ : H(τ+,0) → H. Since point evaluation is continuous, for each F ∈
H(τ+,0) we have (ψF )(z) = eiτ+zF (z), in particular eiτ+zF (z) ∈ H. Thus

mt
F (z)

E(z)
= mt

[

e−iτ+z · e
iτ+zF (z)

E(z)

]

≤ τ+,

and we obtain F ∈ H(τ+,0).

Standard examples of dB-spaces are the so-called Paley-Wiener spaces. A
Paley-Wiener space is defined as H(e−iaz) for a > 0 . The structure of such
spaces is well understood. For example the chain of dB-subspaces of H(e−iaz)
is given by {H(e−itz) : 0 ≤ t ≤ a}.

2.7 Theorem. Let H = H(E) be a dB-space. Put τE := mt E
#

E
and Eτ (z) :=

E(z)e−i
τ
2
z. We have Eτ ∈ HB if and only if τ ≥ τE.

(i) For each τ ∈ [τE , 0] the space H(E) can be decomposed as

H(E) = EτH(ei
τ
2
z) ⊕ e−i

τ
2
zH(Eτ ).
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(ii) For each τ ∈ [τE , 0] the space H(Eτ ) is a dB-subspace of H(E). In fact,
H(Eτ ) = H( τ

2
, τ
2
). The interval [H(EτE

),H(E)] in the chain of all dB-

subspaces H(Ẽ) of H(E) where Ẽ has the same real zeros as E, is given
by

[H(EτE
),H(E)] =

{

H(Eτ ) : τ ∈ [τE , 0]
}

.

Proof. From τ ≥ mt E
#

E
we conclude that

E#
τ

Eτ
∈ N+(C+). Since |E

#
τ (t)
Eτ

(t)| = 1
for t ∈ R, this function is inner, i.e. Eτ belongs to HB. Of course for τ < τE
the function Eτ does not belong to HB since in this case

mt
E#
τ

Eτ
= mt

E#

E
− τ > 0.

ad(i): This assertion is an immediate consequence of Lemma 2.5.

ad(ii): Let F ∈ H(Eτ ). Then F
Eτ
, F

#

Eτ
∈ H2(C+) and therefore

F (z)

E(z)
=

F (z)

Eτ (z)
· e−i τ

2
z ∈ H2(C+),

F#(z)

E(z)
=
F#(z)

Eτ (z)
· e−i τ

2
z ∈ H2(C+),

and mt F
E
,mt F

#

E
≤ τ

2 . Since |Eτ (t)| = |E(t)|, t ∈ R, the L2-conditions are
trivially satisfied, i.e. we obtain

H(Eτ ) ⊆
{

F ∈ H(E) : mt
F

E
,mt

F#

E
≤ τ

2

}

= H( τ
2
, τ
2
).

Thus by Lemma 2.6

e−i
τ
2
zH(Eτ ) ⊆ H(τ,0) = e−i

τ
2
zH( τ

2
, τ
2
). (2.8)

If F is contained in H(τ,0), then with F
E
, F

#

E
also e

i τ
2

z
F

Eτ
,

(ei τ
2

z
F )#

Eτ
satisfy the

L2-condition and are of bounded type. Moreover,

mt
ei

τ
2
zF

Eτ
= mt

F

E
− τ ≤ 0, mt

(ei
τ
2
zF )#

Eτ
=
F#

E
≤ 0.

Thus ei
τ
2
zF ∈ H(Eτ ), and equality holds in (2.8).

So far we have proved that H(Eτ ) = H( τ
2
, τ
2
) is a dB-subspace of H, i.e.

[H(EτE
),H(E)] ⊇

{

H(Eτ ) : τ ∈ [τE , 0]
}

.

To complete the proof it is therefore sufficient to show that for every s ∈ [τE , 0]

⋂

t∈(s,0]

H(Et) = H(Es) =
⋃

t∈[τE,s)

H(Es).

This, however, is an immediate consequence of the relation (write Et = At− iBt
with A#

t = At, B
#
t = Bt)

(At(z), Bt(z)) = (Au(z), Bu(z))

(

cos t−u2 z sin t−u
2 z

− sin t−u
2 z cos t−u2 z

)

,

10



which holds true since (E = A− iB with A# = A, B# = B)

(At(z), Bt(z)) = (A(z), B(z))

(

cos t2z sin t
2z

− sin t
2z cos t2z

)

,

and
(

cos t2z sin t
2z

− sin t
2z cos t2z

)

=

(

cos u2 z sin u
2 z

− sin u
2 z cos u2 z

)

·
(

cos t−u2 z sin t−u
2 z

− sin t−u
2 z cos t−u2 z

)

.

If τE > 0 we shall, for obvious reasons, say that the space H(E) ends with
an interval of Paley-Wiener type.

3 deBranges spaces of finite λ-type

In this section we give some basic results on the interplay of the dB-space
structure of the space under consideration and growth conditions imposed on
its elements.

3.1 Definition. A function λ : R+ → R+ will be called a growth function if it
satisfies the following axioms:

(i) The limit ρ := limr→∞
log λ(r)

log r exists and is a finite nonnegative number.

(ii) For all sufficiently large values of r, the function λ is differentiable and

limr→∞ r
λ′(r)
λ(r) = ρ.

(iii) log r = o(λ(r)).

Hereby the conditions (i) and (ii) ensure that we have available Valiron’s
theory of proximate orders (cf. [L, I.12], [LG, I.6]) as well as the theory of value
distribution of meromorphic functions (cf. [R]).

Recall that, if log λ(r)
log r is a proximate order, then

lim
r→∞

λ(Cr)

λ(r)
= Cρ (3.1)

uniformly in C on compact subsets of R+, and that for sufficiently large values
of r the function λ(r) strictly increases (cf. [L, I.12 Hilfssatz 5], [LG, Theorem
1.18, Proposition 1.19]). Since the whole importance of a growth function lies
in its behaviour at +∞ we can therefore always assume that λ is increasing and
bounded away from 0.

The condition (iii), that λ grows sufficiently rapidly, is imposed in order to
rule out some more or less trivial cases and to avoid some technical details. It
is no significant restriction of generality (compare Lemma 3.3).

Important examples of growth functions are functions of the form

λ(r) = rα(log r)β (3.2)

11



where α, β ∈ R, α > 0.
For an entire function F denote by M(F, r) the maximum modulus

M(F, r) := max
|z|=r

|F (z)|.

The function F is said to be of finite λ-type if (all ’O’- and ’o’-relations are,
unless otherwise specified, understood for r → ∞)

log+M(F, r) = O(λ(r)).

In this case the λ-type of F is defined as the number

σλF := lim sup
r→∞

log+M(F, r)

λ(r)
,

and the indicator function hλF of F with respect to λ is

hλF (φ) := lim sup
r→∞

log |F (reiφ)|
λ(r)

. (3.3)

Let us recall (cf. [L, I.Lehrsatz 29]) that, if F is of finite λ-type,

σλF = max
φ∈(−π,π]

hλF (φ).

Recall that (cf. [L]) in case ρ = 1 the function hλF is the support function of a
nonempty convex set, the so-called indicator diagram of F .

The set of all entire functions of finite λ-type will be denoted by Λ. If, for
example, λ(r) = rρ for some ρ > 0, then Λ is the set of all entire functions of
growth at most order ρ, finite type. If λ is any growth function and the number
ρ is as in (i) of Definition 3.1, then for any ε > 0 we have λ(r) = O(rρ+ε).
Hence Λ exclusively contains functions of finite order at most ρ.

If, for a set E ⊆ R+ the limit (µ denotes the Lebesgue measure)

m∗(E) := lim
r→∞

µ
(

E ∩ (0, r)
)

r

exists, we call m∗(E) the relative measure of E (cf. [L, II.1]).
A function F is said to be of completely regular λ-growth on a ray {reiφ :

r > 0} if, with some exceptional set Eφ of relative measure 0,

hλF (φ) = lim
r→∞,r 6∈Eφ

log |F (reiφ)|
λ(r)

.

It is proved in [L, III.1] that, if F is of completely regular λ-growth on a set of
rays which is dense in the plane, then there exists a set E of relative measure
zero such that

hλF (φ) = lim
r→∞,r 6∈E

log |F (reiφ)|
λ(r)

uniformly for all φ ∈ (−π, π]. In this case we will call F of completely regular
λ-growth.

Let us recall the notion of Nevanlinna characteristic. For a function f , mero-
morphic in the whole plane, denote by wj = ρje

iψj its nonzero poles (enlisted

12



according to their multiplicities) and let k− be the order of the (possible) pole
at 0, i.e. k− = −min{k, 0} where k is such that f(z) ∼ zk at 0. Put

N(f, r) :=
∑

ρj≤r
log

r

ρj
+ k− log r,

m(f, r) :=
1

2π

∫ π

−π
log+ |f(reiθ)| dθ.

Then the Nevanlinna characteristic T (f, r) of f is defined to be

T (f, r) := m(f, r) +N(f, r).

It gives a measure for the total affinity of f to the value ∞.
It is elementary to see that

T (fg, r) ≤ T (f, r) + T (g, r).

If F is an entire function then (cf. [R, §8]) for any R > r

T (F, r) ≤ log+M(F, r) ≤ R+ r

R− r
T (F,R). (3.4)

If we substitute R = 2r in (3.4) we see from (3.1) that an entire function F is
of finite λ-type if and only if

T (F, r) = O(λ(r)).

The First Fundamental Theorem of Nevanlinna (cf. [R, §4]) states that, if f is
a meromorphic function in the whole plane and a ∈ C, then

T (
1

f − a
, r) = T (f, r) +O(1).

We denote by Λ̃ the set of all meromorphic functions f which satisfy T (f, r) =
O(λ(r)). Obviously Λ̃ is a field and contains Λ. It is a rather deep result (the
Miles-Rubel-Taylor Theorem, see [R, §13,14]) that in fact Λ̃ is the quotient field
of Λ.

3.2 Definition. A dB-space H is said to be of finite λ-type if every element F
of H has this property, i.e. if H ⊆ Λ. In this case the λ-type of H is defined to
be the value

σλH := sup
F∈H

σλF .

According to whether σλH = 0 or 0 < σλH <∞, we shall say that H is of minimal
type or normal type, respectively (we will see in the subsequent Theorem 3.4
that the case σλH = ∞ cannot occur).

In the particular case λ(r) = r we shall speak of a dB-space of exponential
type and will suppress the upper index λ. A dB-space of minimal exponential
type is then a space of exponential type with σH = 0. This convention will
also apply to all other notations, e.g. hF (θ) always means hλF (θ) with respect
to λ(r) = r.

First of all let us clarify that the condition (iii) of Definition 3.1 does not
essentially reduce the generality of our considerations.
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3.3 Lemma. Assume that the function λ satisfies (i) and (ii) of Definition
3.1 but not (iii), and let H be a dB-space, H ⊆ Λ. Then dimH < ∞ and H
contains only polynomials.

Proof. Since lim supr→∞
log r
λ(r) > 0, the set Λ is contained in the set C[z] of

all polynomials (cf. e.g. [R, 10.2]). Hence H ⊆ C[z] and thus also AssocH =
H + zH ⊆ C[z]. As mentioned in Section 2 we have H = H(E) for some
E ∈ HB, which is always contained in AssocH\H. In particular, E ∈ C[z] and
we conclude

H(E) =
{

p ∈ C[z] : deg p ≤ degE − 1
}

.

We already saw that a dB-space H = H(E) is uniquely determined by a
single function E ∈ HB. Also the growth behaviour of H can therefore be read
off E.

3.4 Theorem. Let H be a dB-space, H = H(E) for some E ∈ HB. Then H is
of finite λ-type if and only if the function E has this property. In this case

σλH = max
F∈AssocH

σλF = σλE .

For the proof of Theorem 3.4 we need a couple of auxiliary results. Let us
first state a consequence of the Phragmen-Lindelöf theorem. It just says that,
when knowing in advance that a function F is of finite order, one need only
consider its behaviour on a couple of rays in order to get F ∈ Λ.

3.5 Lemma. Let F be an entire function of finite order ρ̂ and let λ be a growth

function, ρ = limr→∞
log λ(r)

log r . Put ρ0 := max{ρ, ρ̂}. Assume that there exist

φ1, . . . , φn ∈ (−π, π], φj ≤ φj+1, such that

max(
{

φj+1 − φj : j = 1, . . . , n− 1
}

∪
{

φ1 − φn + 2π
}

) =: γ < min
{ π

ρ0
, 2π
}

.

hλF (φj) ≤ s <∞, j = 1, . . . , n.

Then F ∈ Λ and σλF ≤ (cos ργ2 )−1s.
In particular, if F is any entire function of finite order and there exists a

dense set M ⊆ (−π, π] such that hλF (φ) ≤ s for all φ ∈ M , then F ∈ Λ and
σλF ≤ s.

Proof. Obviously it suffices to prove the following statement: Let f(z) be a
function analytic on the angle A := {w ∈ C : | argw| ≤ γ

2} which satisfies for
all δ > 0 an estimation of the form

log |f(z)| ≤M |z|ρ̂+δ, z ∈ A,

where γ < min{ π
ρ0
, 2π}, and assume that

lim sup
r→∞

log |f(re±i
γ
2 )|

λ(r)
≤ s <∞.
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Then for all ǫ > 0

lim sup
r→∞

log |f(reiφ)|
λ(r)

≤ s

cos ργ2
+ ǫ, φ ∈ [−γ

2
,
γ

2
],

uniformly in φ.
To establish this assertion fix ǫ > 0 and choose a function W (z) analytic and

zerofree on the whole angle A, such that

lim
r→∞

log |W (reiφ)|
λ(r)

= −
( s

cos ργ2
+ ǫ
)

cos ρφ

uniformly for φ ∈ [−γ
2 ,

γ
2 ]. Such a choice is possible by [L, I.17.Hilfssatz 10].

The function fW is analytic on A and bounded on the rays argw = ± γ
2 (note

that ργ
2 < π

2 and therefore cos ργ2 > 0). Moreover, it satisfies for all δ > 0 an
estimate

log |f(z)W (z)| ≤M |z|ρ0+δ, z ∈ A.

By the principle of Phragmen and Lindelöf it follows that fW is bounded
throughout A,

|f(z)W (z)| ≤ C, z ∈ A.

In particular,

lim sup
r→∞

log |f(reiφ)|
λ(r)

≤ − lim
r→∞

log |W (reiφ)|
λ(r)

, φ ∈ [−γ
2
,
γ

2
].

3.6 Lemma. Let (zn)n∈N be a sequence of points in C+ and denote by ρ1

its convergence exponent. Assume that ρ1 < ∞ and that (zn)n∈N satisfies the
Blaschke condition (2.2). Denote by B(z) =

∏

n∈N

z−zn

z−zn
the associated Blaschke

product. Then for any ǫ > 0

T (B, r) = O(rρ1+ǫ).

The same assertion holds if zn ∈ C−, n ∈ N.

Proof. Denote by p the genus of the sequence (zn)n∈N. In view of Lemma 2.2,
(i), we may write B in the form

B(z) = γ
D1(z)

D2(z)
exp

[

− 2i
(

z
∑

n∈N

Im
1

zn
+ . . .+

zp

p

∑

n∈N

Im
1

z
p
n

)]

,

where |γ| = 1 and D1 and D2 denote the canonical products

D1(z) :=
∏

n∈N

(

1 − z

zn

)

exp
[ z

zn
+ . . .+

zp

pz
p
n

]

,

D2(z) :=
∏

n∈N

(

1 − z

zn

)

exp
[ z

zn
+ . . .+

zp

pzn
p

]

.

Since the order of D1 and D2 is ρ1 and the genus p does not exceed the
convergence exponent, the assertion of the lemma follows by an application of
Nevanlinna’s First Fundamental Theorem.
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3.7 Corollary. Let F be an entire function and assume that (zn)n∈N, zn ∈ C+,
is a sequence of zeros of F whose convergence exponent is finite and which
satisfies the Blaschke condition. Then the (finite or infinite) orders of F and F

B

coincide. The same assertion holds if all zn belong to C−.

Proof. Let ρ1 be the convergence exponent of the sequence (zn)n∈N. Then
ρ1 does not exceed the order ρ of F . By Lemma 3.6 and the 1.Fundamental
Theorem we have (ǫ > 0)

T (
F

B
, r) ≤ T (F, r) + T (

1

B
, r) =

= T (F, r) + T (B, r) +O(1) = O(rρ+ǫ),

hence the order of F
B

does not exceed that of F . Applying the same argument

to F
B

and the sequence (zn)n∈N in place of F and (zn)n∈N, we conclude that in

fact the orders of F and F
B

are equal.

Finally let us recall the following perturbation result given in [KW1, The-
orem 1.3,Proposition 1.4]: Assume that F,G ∈ HB and F

G
is of bounded type.

Then F is of finite order if and only if G has this property.
Proof. (of Theorem 3.4) In the first step assume that H is of finite λ-type and
let F ∈ AssocH. Choose G ∈ H \ {0} and w ∈ C such that G(w) 6= 0. Then

H(z) :=
F (z) − F (w)

G(w)G(z)

z − w
∈ H.

From F (z) = H(z)(z − w) − F (w)
G(w)G(z) we obtain

log+ |F (z)| ≤ max
{

log+ |H(z)(z − w)|, log+
∣

∣

∣

F (w)

G(w)
G(z)

∣

∣

∣

}

+ log 2

Since

log+
∣

∣

∣

F (w)

G(w)
G(z)

∣

∣

∣ ≤ log+
∣

∣

∣

F (w)

G(w)

∣

∣

∣+ log+ |G(z)|,

log+ |H(z)(z − w)| ≤ log+ |H(z)| + log+ |(z − w)|,
and the second summand in the last relation is a o(λ(|z|)), we obtain

σλF = lim sup
|z|→∞

log+ |F (z)|
λ(|z|) ≤ max{σλG, σλH} ≤ σλH.

We conclude that every F ∈ AssocH is of finite λ-type, in particular E has this
property, and that

sup{σλF : F ∈ AssocH} = σλH.

In the second step we shall show that the existence of a function F ∈ (AssocH)\
{0} of finite order implies that every function G ∈ AssocH has finite order.

With a function F also F1 = F + F# (F1 = iF , respectively, in case F =
−F#) is of finite order. By Corollary 3.7 also F2 = F1

B
, where B is the Blaschke

product associated with the zeros of F1 located in the upper half plane, has
finite order. Note that F2 ∈ HB. It readily follows that every function G2 ∈
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(AssocH)∩HB is of finite order. If G1 ∈ AssocH is real, the function G2 = G1

B

(B is now the Blaschke product for the zeros of G1 in C+) belongs to HB, is
thus of finite order, and we conclude from Corollary 3.7 that also G1 = G2B

has finite order. Since every function G ∈ AssocH can be written as a linear
combination of real functions the assertion of the present step follows.

It is the subject of the third step of this proof to show that, if F ∈ H and
φ ∈ (−π, π], φ 6= 0, π, we have hλF (φ) ≤ σλE . An application of the Phragmen-
Lindelöf principle (cf. Lemma 3.5) will then yield F ∈ Λ, σλF ≤ σλE , and hence-
forth complete the proof of the theorem.

To this end note that the reproducing kernel

K(w, z) =
E(z)E#(w) − E#(z)E(w)

2πi(w − z)

of the space can easily be estimated off the real axis: If | Im z| ≥ 1, we have
|2πi(z − z)| ≥ 4π, and therefore

|K(z, z)| ≤ 1

2π
max

{

|E(z)|2, |E#(z)|2
}

.

Thus
log+ |K(z, z)|

λ(|z|) ≤ o(1) + 2 max
{ log+ |E(z)|

λ(|z|) ,
log+ |E#(z)|

λ(|z|)
}

, (3.5)

and it follows from the relation

|F (z)| = |(F (.),K(z, .))| ≤ ‖F‖
√

K(z, z)

that for φ 6= 0, π we must have hλF (φ) ≤ σλE .

3.8 Remark. Let us explicitly point out the statement of Step 2 of the pre-
vious proof: Let H be a dB-space and assume that there exists a function
F ∈ (AssocH)\{0} which is of finite order. Then every G ∈ AssocH is of finite
order.

3.9 Remark. Since E can be written as a linear combination of Sφ and Sφ+ π
2
,

we see that H ⊆ Λ if and only if for one (and hence for all) φ ∈ R both of Sφ
and Sφ+ π

2
are of finite λ-type. In this case

σλH = max
{

σλSφ
, σλSφ+ π

2

}

.

Note that this also can be deduced similarly as the above theorem from the
representation (2.1) of K(w, z).

The next theorem can be viewed as the second main result of this section.

3.10 Theorem. Assume that r = O(λ(r)). If there exists one (not identically
vanishing) function F ∈

(

AssocH
)

∩ Λ, then H is of finite λ-type.

Proof. The crucial point is to recall (see e.g. [GG, Theorem 4.4] together with
[B, 7.2.3]) that for a function f meromorphic in C+ and of bounded character-
istic we have on a dense set of rays φ ∈ (0, π)

lim
r→∞

log |f(reiφ)|
r

= mt f · sinφ. (3.6)
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It follows that for any two functions F,G ∈ AssocH (on a dense set of φ ∈
(−π, π])

lim
r→∞

1

r
log
∣

∣

∣

G(reiφ)

F (reiφ)

∣

∣

∣ =

{

mt G
F
· sinφ , φ > 0

mt G
#

F# · | sinφ| , φ < 0
.

Let us assume that F ∈ (AssocH)∩Λ, F 6≡ 0, and that G ∈ AssocH. We have

1

λ(r)
log
∣

∣G(reiφ)
∣

∣ =
1

λ(r)
log
∣

∣F (reiφ)
∣

∣+
r

λ(r)
· 1

r
log
∣

∣

∣

G(reiφ)

F (reiφ)

∣

∣

∣

The assumption of the theorem concerning λ tells us that r
λ(r) ≤ C and we

conclude

hλG(φ) ≤ hλF (φ) + Cmax
{

mt
G

F
,mt

G#

F#

}

.

It remains to recall that F , and hence also G (cf. Remark 3.8), is of finite order
and to appeal to the Phragmen-Lindelöf principle Lemma 3.5.

3.11 Remark. Let us compare the preceeding two theorems. The first one states
that if the particular function E belongs to Λ, then H ⊆ Λ. In the above theorem
the same conclusion follows on the weaker hypothesis that there exists some
function of AssocH which belongs to Λ if we know in advance that r = O(λ(r)).
The fact that there cannot be a weaker assumption on λ in order to get this
result follows already from the example of Paley-Wiener space H(e−iaz), a > 0,
since 1 ∈ AssocH(e−iaz). This counterexample is of course somehow trivial
since there are no zeros of E and since the structure of Paley-Wiener space is
most easily understood. However, also if we exclude the possibility that the
space H ends with an interval of Paley-Wiener type (cf. Theorem 2.7), the
assumption r = O(λ(r)) cannot be essentially weakened. We will see that for
each λ with λ(r) = o(r) there exist counterexamples (see also Remark 3.26 or
Example 5.15).

If H(E) is a dB-space with H(E) ⊆ Λ, then E is necessarily of finite order.
Hermite-Biehler functions allows a particular product representation (see [KW1,
Proposition 1.4]).

3.12 Lemma. A function E(z) of finite order belongs to HB if and only if it
has no zeros in C+, belongs to the class A and can be represented as

E(z) = γC(z)e−iaz
∏

n∈N

(

1 − z

zn

)

exp

[

zRe
1

zn
+ . . .+

zp

p
Re

1

z
p
n

]

(3.7)

with a ≥ 0, |γ| = 1, zn ∈ C−, and a real function C of finite order having only
real zeros. Hereby p denotes the genus of the sequence (zn)n∈N, and the number

a is determined by the mean type of E#

E
:

a = −1

2
mt

E#(z)

E(z)
.

Proof. If E can be represented as in (3.7) it belongs as a locally uniform limit
of HB-functions to HB and is by the Hadamard factorization theorem of finite
order.
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Conversely, assume that E ∈ HB is of finite order and denote by (zn) its
nonreal zeros. Since E belongs to A (see Lemma 2.3) we can apply Lemma 2.2,
(i), and hence write the Hadamard factorization of E in the form

E(z) = C(z)eip(z)
∏

n∈N

(1 − z

zn
) exp

[

zRe
1

zn
+ . . .+

zp

p
Re

1

z
p
n

]

with some real function C(z) of finite order having only real zeros and a real
polynomial p(z). We obtain

E#(z)

E(z)
= e−2ip(z)B(z), (3.8)

where B denotes is the Blaschke product associated with the sequence (zn)n∈N.
Since the left, and hence also the right hand side of (3.8) belongs to N+(C+),
it follows that e−2ip(z) is of bounded type and nonpositive mean type in
C+. Hence p must be a linear polynomial and the coefficient of z must be

nonpositive. In fact, by (3.8), it follows that −2a = mt E
#

E
.

3.13 Remark. Together with Lemma 2.4 and Theorem 2.7 this factorization
shows us that the structure of a space H(E) is essentially determined by the
distribution of the nonreal zeros of the function E. Therefore we may often
restrict to the case that E ∈ HB×. Moreover, in order to construct ”nontrivial”
examples we should not think of either real zeros or Payley-Wiener type spaces.

3.14 Remark. If E ∈ Λ∩HB for some growth function λ, then the presence of a
factor e−iaz in (3.7) implies that r = O(λ(r)). To see this we consider the cases

ρ = limr→∞
log λ(r)

log r < 1 and ρ = 1 separately (in the case ρ > 1 this relation is

trivially satisfied). In the first case the canonical product of the zeros of E is
of order at most ρ < 1 and therefore a 6= 0 would imply that the order of E is
equal to 1, a contradiction. Assume next that ρ = 1. Then

C(z) = eα+βz
∏

(

1 − z

wn

)

e
z

wn

for some α, β, wn ∈ R. By [L, I.13.Lehrsatz 18] we know that

r

λ(r)





(

β − ia− i
∑

n∈N

Im
1

zn

)

+
∑

|zn|≤r

1

zn
+
∑

|wn|≤r

1

wn



 = O(1).

Considering the imaginary part yields

r

λ(r)

(

a+
∑

|z|>r
Im

1

zn

)

= O(1).

Since all zn are located in C− this is in case a > 0 only possible if r
λ(r) = O(1).

In the following theorem we will turn the rather vague idea of Remark 3.13,
into an exact statement. Before that, however, we have to remind the reader on
some notations concerning complex sequences which can for example be found
in [R]. Let Z = (zn)n∈N be a sequence of (nonzero) complex numbers. Put

N(Z, r) :=
∑

|zn|≤r
log

r

|zn|
, S(Z; r1, r2; k) :=

1

k

∑

r1<|zn|≤r2

( 1

zn

)k

.

19



Following [R, §13] we say that Z has a finite λ-density if (be aware of (3.1)
when comparing with the definition in [R])

N(Z, r) = O(λ(r)),

and that Z is λ-balanced if (for r1, r2 → ∞)

|S(Z; r1, r2; k)| = O
(λ(r1)

rk1
+
λ(r2)

rk2

)

uniformly in k. The sequence Z is called λ-admissible if it is both, of finite
λ-density and λ-balanced. Note that the subsequence of a sequence of finite
λ-density is also of finite λ-density, whereas the property being λ-balanced is in
general not inherited by subsequences.

The result we shall employ in the sequel is (cf. [R, §13.5]) that a sequence Z
is the precise sequence of zeros (taking into account multiplicities) of a function
F ∈ Λ if and only if it is λ-admissible.

Let us remark that (cf. [R, §13.3]) in the special case λ(r) = rρ we have that
Z is λ-admissible if and only if

lim sup
r→∞

1

rρ

∑

|zn|≤r
1 <∞,

and, in the case that ρ is an integer, additionally
∣

∣

∣

∣

∣

∣

∑

|zn|≤r

( 1

zn

)ρ

∣

∣

∣

∣

∣

∣

= O(1).

Hence, the above mentioned result reduces in this particular situation to the
classical result of Lindelöf on the distribution of the zeros of an entire function
of order ρ, finite type.

3.15 Lemma. Assume that (zn)n∈N is a λ-admissible sequence of points zn ∈
C+ such that

∑

n∈N
| Im 1

zn
| < ∞. If either ρ 6∈ Z or ρ ∈ Z and rρ = O(λ(r)),

then T (B, r) = O(λ(r)) where B denotes the Blaschke product associated to
(zn)n∈N.

Proof. By [R, 13.5.2] there exists an entire function H ∈ Λ which exactly the
zeros (zn)n∈N. Thus we can write

H(z)

H#(z)B(z)
= eP (z),

with some entire function P (z). Since by Lemma 3.6 the left hand side defines
a function of finite order ρ̂ ≤ ρ, P (z) is a polynomial of degree at most ρ.
Under either assumptions on λ it follows that eP (z) ∈ Λ. Since Λ̃ is a field the
assertion of the lemma follows.

3.16 Corollary. Let F ∈ Λ and let (zn)n∈N, zn ∈ C+, be a sequence of zeros of
F such that

∑

n∈N
| Im 1

zn
| < ∞. Denote by B the Blaschke product associated

with (zn)n∈N and put G(z) := F (z)
B(z) . Then the following assertions hold true:
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(i) If r = O(λ(r)), then G ∈ Λ and in fact hλG = hλF .

(ii) If ρ < 1 and (zn)n∈N is λ-balanced, then G ∈ Λ.

The same results are valid in the case that zn ∈ C− for all n ∈ N.

Proof. Assume that r = O(λ(r)). Since F ∈ Λ the order of F is at most ρ.
Hence also the convergence exponent of the sequence of all zeros of F is less than
or equal to ρ. Since (zn)n∈N is a subsequence of zeros of F , in particular, its
convergence exponent does not exceed ρ. From Lemma 3.6, the first fundamental
theorem and the fact that log+ max|z|=r |G(z)| ≤ αT (G, βr)+O(1), we conclude
that G is of finite order (≤ 2ρ). Since r = O(λ(r)), [B, 7.2.3] implies that

lim
r→∞

1

λ(r)
log |B(reiφ)| = 0 (3.9)

for a dense set of φ ∈ (−π, π], and we conclude from Lemma 3.5 that G ∈ Λ.
Together with (3.9) the continuity of hλG implies hλG = hλF .

The second case is immediate from Lemma 3.15 and the fact that (zn)n∈N

has finite λ-density as it is a subsequence of the sequence of zeros of F .

We say a space H is obtained from H1 by multiplication with C, if F 7→ CF

is an isometry of H1 onto H (compare Lemma 2.4 and the discussion after it).
The following statement is the third main result of this section.

3.17 Theorem. Assume that r = O(λ(r)). A dB-space H = H(E) is obtained
by means of multiplication with a real and zerofree function from a dB-space
H1 ⊆ Λ if and only if for one (and hence for all) φ ∈ [0, π) the sequence
(an)n∈N of zeros of Sφ is λ-admissible.

Proof. Assume first that H is obtained from H1 ⊆ Λ by means of multiplication
with C. If H = H(E), then H1 = H(E1) with E1 = E

C
. Choose φ ∈ [0, π), then

S1,φ ∈ Λ and hence the sequence (bn)n∈N of its zeros is λ-admissible. However,
as Sφ = CS1,φ, the zeros of Sφ are exactly those of S1,φ.

We start the proof of the converse with the construction of the multiplicator
C(z): If (an)n∈N is λ-admissible, then by [R, 13.5.2] there exists an entire
function A(z) ∈ Λ having (an)n∈N as its precise set of zeros. Tracing back the
construction indicated in the proof of [R, 13.5.2], we find that an ∈ R, n ∈ N,
implies A = A#. Thus

C(z) :=
Sφ(z)

A(z)

is real and zerofree.

Put E1(z) :=
Sφ(z)
C(z) − iSφ+ π

2
(z)

C(z) . The dB-space H1 := H(E1) = H(E
C

) has the

property that

E1(z) + E
#
1 (z)

2
= A(z) ∈ Λ.

By Theorem 3.10 we have H1 ⊆ Λ.

We have also proved:

3.18 Corollary. Let H = H(E). Assume that r = O(λ(r)), then H ⊆ Λ if and
only if Sφ ∈ Λ for some φ ∈ [0, π).
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Let us continue with some remarks on the indicator functions hλF of elements
of a dB-space of finite λ-type.

For E ∈ Λ ∩HB, denote by hλ|E| the function

hλ|E|(φ) := hλE(|φ|), φ ∈ (−π, π].

From the relation (3.5) and the argument used in the first part of the proof of
Theorem 3.4, we immediately obtain:

3.19 Corollary. Let H = H(E) be a dB-space of finite λ-type. Then

sup
F∈H

hλF (φ) = sup
F∈AssocH

hλF (φ) = hλ|E|(φ).

If λ grows rapidly this statement can be sharpened in a striking way.

3.20 Lemma. Assume that r = o(λ(r)) and that H is a dB-space of finite
λ-type. Then for any two F,G ∈ AssocH \ {0} we have hλF (φ) = hλG(φ). In
particular,

hλF (φ) = hλ|E|(φ), φ ∈ (−π, π], F ∈ AssocH. (3.10)

Proof. Choose E ∈ HB such that H = H(E). Since F
E

is of bounded type, we
conclude from (3.6) that for a dense set of φ ∈ (0, π)

lim
r→∞

1

λ(r)
log
∣

∣

∣

F (reiφ)

E(reiφ)

∣

∣

∣ = 0,

and therefore

hλF (φ) = lim sup
r→∞

1

λ(r)
log
(

|E(reiφ)| ·
∣

∣

∣

F (reiφ)

E(reiφ)

∣

∣

∣

)

=

= lim sup
r→∞

1

λ(r)
log |E(reiφ)| = hλE(φ).

Since the indicator function is continuous it follows that hλF (φ) = hλE(φ) for all
φ ∈ [0, π].

The same argument applied to F#

E
shows that hλF (φ) = hλE(φ) for all φ ∈

[−π, 0]. In order to see (3.10) we only have to note that

hλ|E|(φ) =

{

hλE(φ) , φ ∈ [0, π]

hλ
E#(φ) , φ ∈ (−π, 0]

.

As it is seen from the example of a Paley-Wiener space H(e−iaz), a > 0,
and λ(r) = r the assumption r = o(λ(r)) in Lemma 3.20 cannot be dropped.
However, also in the case λ(r) = r Corollary 3.19 can be sharpened. This
requires a more delicate argument and will be proved in Corollary 5.13. In this
place we shall only add one remark which is sometimes useful.

3.21 Lemma. Assume that lim supr→∞
r

λ(r) is finite, and let H = H(E) be of

finite λ-type. Then, for all φ ∈ R,

hλSφ
(ϕ) = hλ|E|(ϕ).
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Proof. Since
Sφ

Sφ+ π
2

∈ N0, we have mt
Sφ

Sφ+ π
2

= 0. Thus

0 ≤ mt
E

Sφ
= mt

Sφ cosφ+ Sφ+ π
2

sinφ

Sφ+ π
2

=

= mt
[ Sφ

Sφ+ π
2

cosφ+ sinφ
]

≤ 0.

The assertion now follows from (3.6) and since both, hλSφ
and hλ|E| are even.

We conclude this discussion with another corollary of the relation (3.6).

3.22 Corollary. Assume that limr→∞
r

λ(r) < ∞ exists and let H be of finite

λ-type. If there exists one function F ∈ AssocH, F 6≡ 0, which is of completely
regular growth, so is any function G ∈ AssocH.

Assume additionally that ρ = limr→∞
log λ(r)

log r = 1. If there exists one func-

tion F ∈ AssocH, F 6≡ 0, whose indicator diagram in C+ is a segment of the
imaginary axis, all functions G ∈ AssocH have this property.

Next we shall study growth functions λ which grow comparatively slow,

e.g. such λ with ρ = limr→∞
log λ(r)

log r < 1. It is apparent from the previous

expositions that the cases ρ < 1 on the one hand and r = O(λ(r)) on the other
hand essentially differ.

3.23 Lemma. Assume that λ is a growth function with λ(r) = O(r) and λ(r)
1+r2 ∈

L1(0,∞). Then each function F ∈ Λ is of bounded type and zero mean type in
C+ (as well as in any half other plane).

Proof. Let F ∈ Λ. Since λ = O(r), the function F is of exponential type.
Moreover,

∞
∫

−∞

log+ |F (t)|
1 + t2

dt ≤
∞
∫

−∞

Cλ(|t|)
1 + t2

dt <∞.

Hence, by Krein’s Theorem (see e.g. [RR]), F is of bounded type in C+. Of
course this argument applies to each function F (eiθz + a), θ ∈ (−π, π], a ∈ C.
Since hF (0) = hF (π) = 0 (see (3.6)), and since the restrictions of F to both,
the right and left half plane, are of bounded type, it follows (cf. (3.6)) that
hF (φ) = 0 for all φ.

Hence, if H(E) ⊆ Λ where λ grows slowly, the conditions F
E

, F#

E
being

of bounded type and nonpositive mean type in the definition of H(E) are no
restrictions anymore. It seems that, the faster E grows, the more restrictive
these bounded type conditions get.

Note that the conditions λ(r) = O(r) and λ(r)
1+r2 ∈ L1(0,∞) are surely full-

filled when ρ < 1.
If F is an entire function of finite λ-type, put

hλF (φ) := lim inf
r→∞

log |F (reiφ)|
λ(r)

.
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Let us introduce the numbers

β+(F ) := sup
{

β ∈ R :

∫ ∞

0

|F (t)|2eβλ(t) dt <∞
}

,

β−(F ) := sup
{

β ∈ R :

∫ 0

−∞
|F (t)|2eβλ(|t|) dt <∞

}

.

For E ∈ HB× ∩ Λ denote by A(E) and A−(E) the linear spaces

A(E) :=
{

F ∈ Λ : β+(F ) ≥ −2hE(0), β−(F ) ≥ −2hE(π)
}

,

A−(E) :=
{

F ∈ Λ : β+(F ) > −2hE(0), β−(F ) > −2hE(π)
}

.

The following relation of H(E) and the spaces A(E) and A−(E) is sometimes
useful.

3.24 Lemma. Assume that λ(r) = O(r), λ(r)
1+r2 ∈ L1(0,∞) and let E ∈ HB×∩Λ.

Then A−(E) ⊆ H(E) ⊆ A(E).

Proof. Due to Lemma 3.23 bounded type conditions are immaterial. Hence it
suffices to deal with the L2-condition.

Let ǫ > 0 be fixed. Then, for sufficiently large values of t > 0 we have

hE(0) − ǫ ≤ log |E(t)|
λ(t)

≤ hE(0) + ǫ,

and therefore

e(−hE(0)−ǫ)λ(t) ≤ 1

|E(t)| ≤ e(−hE(0)+ǫ)λ(t).

Similarly, we obtain for sufficiently large |t|, t < 0,

e(−hE(π)−ǫ)λ(|t|) ≤ 1

|E(t)| ≤ e(−hE(π)+ǫ)λ(|t|).

Hence F ∈ A−(E) implies that
∫∞
−∞ |F (t)|2 dt

|E(t)|2 < ∞. Conversely,

F ∈ H(E) implies
∫∞
0

|F (t)|2eβλ(t) dt < ∞ for all β < −2hE(0) and
∫ 0

−∞ |F (t)|2eβλ(|t|) dt <∞ for all β < −2hE(π).

3.25 Corollary. Assume that 0 < ρ < 1, E ∈ HB× ∩Λ and hE(0), hE(π) > 0.
Then H(E) contains all polynomials.

3.26 Remark. The assumption r = O(λ(r)) in Theorem 3.10 cannot be dropped:
Choose a function E ∈ HB× of order 1

2 , finite type, of completely regular
√
r-

growth with h
√
r

E (0), h
√
r

E (π) > 0. Then 1 ∈ H(E) and has zero order. However,
clearly H(E) is not of finite λ-type e.g. with λ(r) = 3

√
r.
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4 Hermite-Biehler functions of completely reg-

ular growth

We investigate the general form of the indicator of a function E ∈ Λ ∩ HB×.
This gives us, in particular, a rich variety of examples of functions belonging to
HB× and having some prescribed growth. The case of functions of completely
regular growth can be settled rather completely. Before we do so, let us remark
that the occurrence of not completely regular growth seems to be a somewhat
involved matter. However, in the particular case of λ(r) = rρ, it is fairly easy
to answer this question.

If (an)n∈N is a sequence of nonzero complex numbers (without any finite
accumulation point) and ψ1 ≤ ψ2, denote by n(r;ψ1, ψ2; (an)n∈N) the number

n(r;ψ1, ψ2; (an)n∈N) := #
{

n ∈ N : |an| ≤ r, arg an ∈ (ψ1, ψ2]
}

.

In order to shorten notation put n(r; (an)n∈N) := n(r;−π, π; (an)n∈N). If it is
anyway clear from the context which sequence we are dealing with, we shall also
drop the argument (an)n∈N.

4.1 Lemma. Let λ(r) = rρ. Then there exist functions E ∈ Λ ∩ HB× which
are not of completely regular λ-growth if and only if ρ 6∈ 2N.

Proof. Consider first the case that ρ 6∈ 2N. Choose a sequence (rn)n∈N,
0 < r1 < r2 < r3 < . . ., such that

lim inf
r→∞

n(r; (rn)n∈N)

rρ
< lim sup

r→∞

n(r; (rn)n∈N)

rρ
<∞. (4.1)

One can take the sequence of integers contained in
⋃

k∈N
(3k, 3k + 3k+1). Next

choose a sequence (ψn)n∈N, −π
4 < ψn < 0, limn→∞ ψn = 0, such that

∑

n∈N

∣

∣

∣

sinψn
rn

∣

∣

∣ <∞,

For example take ψn such that − sinψn ≤ r−ρn . Finally define a sequence (zn)n∈N

by

zn :=

{

rke
iψk , n = 2k − 1

rke
i(π−ψk) , n = 2k

.

Clearly, the relation (4.1) holds also for n(r; (zn)n∈N), and by our choice of
(ψn)n∈N the sequence (zn)n∈N satisfies (2.2).

Moreover, in case that ρ is an integer, consider the sum

∑

|zn|≤R

1

z
ρ
n

=
∑

|zn|≤R
Re

1

z
ρ
n

+ i
∑

|zn|≤R
Im

1

z
ρ
n
.

The second summand is bounded with respect to R by Lemma 2.2, (i). If ρ is
odd, the first summand vanishes:

∑

|zn|≤R
Re

1

z
ρ
n

=
∑

|rk|≤R

1

r
ρ
k

(

Re eiρψk + Re eiρ(π−ψk)
)

=
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=
∑

|rk|≤R

1

r
ρ
k

(

cos ρψk + cos(ρπ − ρψk)
)

= 0.

By [R, 13.3.3, 13.5.2] there exists an entire function F ∈ Λ having (zn)n∈N as
its precise sequence of zeros. Consider the Hadamard factorization of F :

F (z) = eP (z)
∏

n∈N

(1 − z

zn
)e

z
zn

+...+ 1
p
( z

zn
)p

,

where p denotes the genus of (zn)n∈N. We find by virtue of Lemma 2.2 and
Lemma 3.12 that

E(z) := e−P (z)e
−izP

n∈N
Im 1

zn
−...− i

p
zp P

n∈N
Im 1

z
p
n · F (z) ∈ Λ ∩HB×.

By [L, III.3.Lehrsatz 3] this function E cannot be of completely regular growth.
Assume next that ρ is an even integer, and let E ∈ Λ∩HB×. We show that

E is of convergence class. For the zeros (wn)n∈N of E which are contained in
the angle {w ∈ C : argw ∈ (− 3π

4 ,
π
4 )} satisfy by Lemma 2.2, (ii), the relation

∑

n∈N

1

|wn|
<∞,

and therefore also
∑

n∈N

1
|wn|ρ <∞. Let (zn)n∈N be the sequence of zeros of E

not contained in this angle and write zn = rne
iψn . From E ∈ Λ we obtain that

E is of order ρ and not of maximal type. Thus by [L, I.11.Lehrsatz 15] we must
have

∑

|zn|≤R

1

z
ρ
n

= O(1).

Hence, as a consequence of Lemma 2.2, (iii),

∑

|zn|≤R

(

Re
1

zn

)ρ

= O(1).

However, since ρ is even,
(

Re 1
zn

)ρ

= cosρ ψn

r
ρ
n

≥ 0 and cosρ ψn ≥ (1
2 )

ρ
2 . It follows

that
∑

n∈N

1

r
ρ
n

=
∑

n∈N

1

|zn|ρ
converges.

Hence E can be written as

E(z) = eP (z)
∏

n∈N

(

1 − z

wn

)

∏

n∈N

(

1 − z

zn

)

e
z

zn
+...+ 1

p
( z

zn
)p

,

where for the genus p of the sequence (zn)n∈N we have p < ρ and P (z) is a
polynomial of degree at most ρ. Clearly, the factor eP (z) is of completely regular
rρ-growth. The first product is of order at most 1, henceforth of minimal
rρ-type and thus of completely regular rρ-growth. The same argument applies
to the latter product, since it is either of order < ρ (if the convergence exponent
of (zn)n∈N is less than ρ), or of order ρ, minimal type (by [L, I.11.Lehrsatz 15]).

If in the above proof we use [L, I.13.Lehrsatz 18] instead of [L, I.11.Lehrsatz
15] we obtain the following statement:
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4.2 Corollary. If λ is a growth function with ρ ∈ 2N and lim supr→∞
rρ

λ(r) > 0,

then any E ∈ Λ ∩HB× is of convergence class (with respect to the order ρ).

In the following we will employ the more refined arguments of [L, Kapi-
tel II,III] in order to discuss the question whether functions of class HB with
prescribed completely regular λ-growth exist.

The fact that E ∈ HB implies E ∈ A forces, in case of fast growing λ,
the majority of zeros of E to be close to the real axis (compare also Lemma
4.4). This observation might explain the basic differences between slow and fast
growing λ (e.g. ρ < 1 versus ρ > 1) which we shall encounter in the subsequent
discussion as well as in various other places.

Let λ be a growth function, ρ = limr→∞
log λ(r)

log r , and let E ∈ Λ ∩ HB×

be of completely regular λ-growth. Then the indicator function hλE(θ) can be
computed explicitly from the distribution of zeros (zn)n∈N of E as listed in the
subsequent items (A)-(D). We can also prove in most cases that conversely,
if h(θ) is a function of one of the respective forms (A)-(D), then there exists
E ∈ Λ ∩HB× of completely regular λ-growth such that h = hλE .

Let (zn)n∈N be a sequence which has a λ-density, i.e. is such that for all but
at most countably many values of ψ1 and ψ2 the limit

lim
r→∞

n(r, ψ1, ψ2)

λ(r)
=: ∆

(

{w ∈ T : argw ∈ (ψ1, ψ2)}
)

(4.2)

exists. Then we shall denote by ∆ the Borel measure on the unit circle T =
{w ∈ C : |w| = 1} determined by (4.2), cf. [L]. If E is a function of completely
regular λ-growth, then the sequence (zn)n∈N of its zeros has a λ-density (cf. [L,
III.3.Lehrsatz 3]). Note that, if a function E has no zeros in C+ (which is surely
the case for any E ∈ HB), then

∆
(

{w ∈ T : argw ∈ (0, π)}
)

= 0. (4.3)

We shall always write a function E which belongs to HB× and is of finite order
(according to Lemma 3.12) in the form

E(z) = eP (z)−iaze
−iz

P

n∈N
Im 1

zn
−...− i

q
zq P

n∈N
Im 1

z
q
n × (4.4)

×
∏

n∈N

(

1 − z

zn

)

e
z

zn
+...+ 1

q
( z

zn
)q

where q := [ρ], P (z) = cqz
q + . . .+ c0 is some real polynomial and a ≥ 0. Note

that the infinite product in (4.4) is convergent since q is not smaller than the
genus of the sequence (zn)n∈N.

We consider first the (easier) case ρ 6∈ N.

4.3 Theorem. Assume that E ∈ Λ ∩HB× is of completely regular λ-growth.

(A) Case ρ > 1, ρ 6∈ N: With the numbers

d+ = ∆
(

{1}
)

, d− = ∆
(

{−1}
)

,

we have

hλE(θ) =
π

sinρπ
·
{

d+ cos ρ(θ − π) + d− cos ρθ , θ ∈ [0, π]

d+ cos ρ(θ − π) + d− cos ρ(θ − 2π) , θ ∈ [π, 2π]
(4.5)
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(B) Case 0 < ρ < 1: For all θ ∈ [0, 2π] we have

hλE(θ) =
π

sin ρπ

(

∫

{w∈T: argw∈(θ,2π]}

cos ρ(θ − argw + π) d∆ +

+

∫

{w∈T: argw∈[π,θ]}

cos ρ(θ − argw − π) d∆

) (4.6)

For θ ∈ [0, π] this formula takes the form

hλE(θ) =
π

sin ρπ

(

a cos ρθ + b sin ρθ
)

, θ ∈ [0, π], (4.7)

where

a :=

∫

T

cos ρ(argw − π) d∆, b :=

∫

T

sinρ(argw − π) d∆.

Conversely, if in case (A) two numbers d+, d− ≥ 0 are given, there exists a
function E ∈ Λ∩HB× of completely regular λ-growth having the function defined
by the right hand side of (4.5) as its indicator function. If in case (B) any
finite Borel measure on the unit circle satisfying (4.3) is prescribed, there exists
a function E ∈ Λ ∩ HB× of completely regular λ-growth having (4.6) as its
indicator function.

For the proof we shall use the following

4.4 Lemma. Let λ be a growth function and let (zn)n∈N be a sequence of
nonzero complex numbers (without any finite accumulation point). Then:

(i) If
∫∞
1

λ(r)
r2

dr < ∞ and lim supr→∞
n(r;(zn)n∈N)

λ(r) < ∞, then we have
∑

n∈N

1
|zn| <∞.

(ii) If
∫∞
1

λ(r)
r2

dr = ∞ and
∑

n∈N

1
|zn| <∞, then lim infr→∞

n(r;(zn)n∈N)
λ(r) = 0.

Proof. Choose ǫ > 0 such that n(ǫ) = 0.
ad(i): By our assumption (4.2) there exists a constant M > 0 such that n(r) ≤
Mλ(r), r ≥ ǫ. Thus

∫ R

ǫ

n(r)

r2
dr ≤M

∫ R

ǫ

λ(r)

r2
dr ≤M

∫ ∞

ǫ

λ(r)

r2
dr <∞.

Integration by parts gives
∫ R

ǫ

n(r)

r2
dr = −n(R)

R
+

∫ R

ǫ

dn(r)

r
= −n(R)

R
+
∑

|zn|≤R

1

|zn|
.

However, n(R)
R

≤ M
λ(R)
R

, and since the present condition on λ clearly implies

lim infR→∞
λ(R)
R

= 0, we obtain

lim inf
R→∞

∑

|zn|≤R

1

|zn|
<∞,

which means nothing else but
∑

n∈N

1
|zn| <∞.
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ad(ii): Assume on the contrary that for some m > 0 we have n(r) ≥ mλ(r).
Then the same computation as in the preceeding paragraph shows that for all
R ≥ ǫ

m

∫ R

ǫ

λ(r)

r2
dr ≤ −n(R)

R
+

∫ R

ǫ

dn(r)

r
≤
∑

n∈N

1

|zn|
<∞,

a contradiction.

Note that, if ρ > 1, surely
∫∞
1

λ(r)
r2

dr = ∞, whereas in case ρ < 1 the
integral converges.
Proof. (of Theorem 4.3)
ad(A), necessity: By Lemma 4.4, (ii), and Lemma 2.2, (ii), we must have

∆
(

{w ∈ T : argw ∈ (π, 2π)}
)

= 0,

i.e. ∆ is just the sum of two point masses, d+ := ∆({1}) at 1 and d− := ∆({−1})
at −1. By [L, II.1.Lehrsatz 1] the function E(z) = eQ(z)V (z) where V denotes
the canonical product

V (z) =
∏

n∈N

(

1 − z

zn

)

e
z

zn
+...+ 1

p
( z

zn
)p

, (4.8)

the genus p is equal to [ρ] and Q(z) is a polynomial of degree at most p, satisfies
(with possible exception of a small set, cf. [L]) the asymptotic equation (0 ≤
θ ≤ 2π)

lim
r→∞

log |E(reiθ)|
λ(r)

=
π

sin ρπ

∫ θ

θ−2π

cos ρ(θ − ψ − π) d∆(ψ), (4.9)

where the integral has to be understood as a Stieltjes integral with respect to
the nondecreasing function ∆(ψ) corresponding to the Borel measure ∆. The
formula (4.5) follows on substituting our knowledge that ∆ consists just of two
point masses.

ad(B), necessity: Rewriting (4.9) we obtain (4.6). If θ ∈ [0, π), the second
summand in (4.6) vanishes and the first integral is evaluated as (keep in mind
that the relation (4.3) is valid)

∫

{w∈T: argw∈(θ,2π]}

cos ρ(θ − argw + π) d∆ =

= cos ρθ ·
∫

{w∈T: argw∈(θ,2π]}

cos ρ(π−argw) d∆− sin ρθ ·
∫

{w∈T: argw∈(θ,2π]}

sin ρ(π−argw) d∆ =

= cos ρθ ·
∫

T

cos ρ(π − argw) d∆ − sin ρθ ·
∫

T

sin ρ(π − argw) d∆,

i.e. (4.7) holds.
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ad(A), sufficiency: Once we have constructed a sequence (zn)n∈N, zn ∈ C−,
which satisfies (2.2), has finite λ-density in every angle and thereby satisfies

∆
(

{1}
)

= d+, ∆
(

{−1}
)

= d−,

∆
(

{w ∈ T : argw ∈ (0, π) ∪ (π, 2π)}
)

= 0,
(4.10)

we know (cf. [L, II.4.1,II.1.Lehrsatz 1]) that the function (p = [ρ])

E(z) := e
−iz

P

n∈N
Im 1

zn
−...− i

p
zp P

n∈N
Im 1

z
p
n · V (z), (4.11)

where V is the canonical product (4.8), belongs to Λ and its indicator function
is given by (4.5). Moreover, by Lemma 3.12, it belongs to HB×.

However, it is easy give an example of such a sequence (zn)n∈N: If d+, d− >

0, choose rn := λ−1( n
d+

) and tn := λ−1( n
d−

). If d+ or d− should be equal

to 0 choose rn := λ−1(n2) or tn := λ−1(n2), respectively. Next, following
the construction of Lemma 4.1, choose ψn ∈ (−π

4 , 0) and φn ∈ (π, 3π
4 ) with

− sinψn ≤ r−ρn , − sinφn ≤ t−ρn , and put

zn :=

{

rke
iψk , n = 2k − 1

tke
iφk , n = 2k

. (4.12)

Clearly, limr→∞
n(r,(rn)n∈N)

λ(r) = d+ and limr→∞
n(r,(tn)n∈N)

λ(r) = d−. Since for any

δ > 0 only finitely many points zn lie in the angle {w ∈ C : argw ∈ (−π +
δ,−δ)}, we conclude that for this sequence (zn)n∈N the relations (4.10) hold
true.

ad(B), sufficiency: Denote by ∆̃ the Borel measure given by

∆̃(M) := ∆
(

M \ {1,−1}
)

,

and put again d+ := ∆({1}), d− := ∆({−1}). By [L, II.4.2] there exists a
sequence (wn)n∈N with

lim
r→∞

n(r;ψ1, ψ2; (wn)n∈N)

λ(r)
= ∆̃

(

{w ∈ T : argw ∈ (ψ1, ψ2)}
)

for all but at most countably many ψ1, ψ2. Observe that, since ∆̃({1}) =
∆̃({−1}) = 0, the construction of [L, II.4.2] can be made such that wn ∈ C−.

Define a sequence w̃n exactly the same as done in the proof of (A) and let
(zn)n∈N be such that {zn : n ∈ N} = {wn : n ∈ N} ∪ {w̃n : n ∈ N}. Then

zn ∈ C−, n ∈ N,

and (zn)n∈N has a λ-density which coincides with the prescribed measure ∆.
By Lemma 4.4, (i), we have

∑

n∈N

1

|zn|
<∞,

and henceforth also (2.2) holds. Defining E by (4.11) concludes the proof of
(B).
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We proceed with the case ρ ∈ N. Recall that we always factorize E ∈ HB×

as in (4.4) where now q = ρ.
Although the given necessary conditions seem likely to be also sufficient we

were only able to construct the required functions under certain additional hy-
potheses on the growth function λ. However, let us remark that despite this lack
in generality a broad class of growth functions is covered by our consideration,
for example those λ of the form (3.2).

Recall from [L, I.12] the notion of a strong proximate order: We shall call

a growth function λ(r) a strong growth function, if λ(r)
rρ can be written in the

form
λ(r)

rρ
= eϑ2(log r)−ϑ1(log r),

with some concave functions ϑ1, ϑ2 which satisfy

lim
x→∞

ϑi(x) = +∞, lim
x→∞

ϑi(x)

x
= 0, lim

x→∞
ϑ′′i (x)

ϑ′i(x)
= 0.

This means that logλ(r) is a strong proximate order in the sense of [L].

4.5 Theorem. Assume that E ∈ Λ ∩HB× is of completely regular λ-growth.

(C) Case ρ ∈ N, ρ 6= 1: Put d+ = ∆({1}) and let τ, σ ∈ R, τ ≥ 0 be such that

τe−iρσ = lim
r→∞

rρ

λ(r)

(

cρ +
1

ρ

∑

|zn|≤r
Re

1

z
ρ
n
− i

ρ

∑

|zn|>r
Im

1

z
ρ
n

)

. (4.13)

Then τ = 0 or ρσ ≡ 0 mod π and

hλE(θ) = τ(−1)
ρσ
π cos ρθ + πd+ sinρ|θ| (4.14)

If ρ is even, then necessarily d+ = 0.

(D) Case ρ = 1: Let d+, τ and σ have the same meaning as in (C). Then τ = 0
or σ ∈ [0, π] ( mod 2π). Moreover,

hλE(θ) = τ cosσ cos θ + τ sinσ sin θ + d+π| sin θ|, (4.15)

i.e. the indicator diagram of E is a vertical line segment centered at the
point (τ cosσ, τ sinσ).

Conversely, assume that numbers d+ ≥ 0, τ ≥ 0, σ ∈ [0, π
ρ
] are given, where

d+ > 0 is allowed only if ρ is odd and σ 6∈ {0, π
ρ
} only if ρ = 1. Then there exists

E ∈ Λ ∩HB× with indicator function given by (4.14) or (4.15), respectively, if
we additionally assume that either of the following conditions hold:

(1) τ = 0 or rρ = O(λ(r)).

(2c) λ is a strong growth function and ρ > 1 is odd.

(2d) λ is a strong growth function, ρ = 1 and σ ∈ {0, π}.
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(3) λ is a strong growth function with ϑ2 = 0.

Proof. (of Theorem 4.5, necessity) In the case of integer ρ not only the zeros
(zn)n∈N must have a density, but also (cf. [L, III.3. p.153 ff]) the limit

lim
r→∞

rρ

λ(r)

(

cρ −
i

ρ

∑

n∈N

Im
1

z
ρ
n

+
∑

|zn|≤r

1

z
ρ
n

)

must exist. Thus the right hand side of (4.13) is meaningful.
We use [L, II.1.Lehrsatz 2] which states (together with [L, III.3.Lehrsatz 3]),

that for θ ∈ [0, 2π]

lim
r→∞

log |E(reiθ)|
λ(r)

= −
∫ θ

θ−2π

(ψ− θ) sin ρ(ψ− θ) d∆(ψ) + τ cos ρ(θ− σ). (4.16)

Moreover, by [L, I.16.Lehrsatz 24] we must have
∫

T

wρ d∆ = 0. (4.17)

Assume for the moment that we have already proved that ∆ is the sum of
two point masses at 1 and at −1. The relation (4.17) then reduces to

∆
(

{−1}
)

= (−1)ρ+1∆
(

{1}
)

.

From this it follows that ∆({−1}) = ∆({1}) = 0 for even ρ and ∆({−1}) =
∆({1}) for odd ρ.

Thus formula (4.16) can be rewritten as

hλE(θ) = τ cos ρσ cos ρθ + τ sinρσ sinρθ+

+

{

(−1)ρ+1d+π sin ρθ , θ ∈ [0, π]
−d+π sin ρθ , θ ∈ [π, 2π]

.

If d+ = ∆({1}) > 0, we must have (−1)ρ+1 = 1, and therefore

hλE(θ) = τ cos ρσ cos ρθ + τ sin ρσ sin ρθ + πd+ sin ρ|θ|. (4.18)

ad(C): By Lemma 4.4, (ii), the measure ∆ is concentrated in the points ±1,
and hence (4.18) holds. Since E ∈ HB we must have hλE(θ) ≥ hλE(−θ) for all
θ ∈ [0, π], i.e.

2τ sin ρσ sin ρθ ≥ 0, θ ∈ [0, π].

Since sinρθ changes its sign when θ varies in [0, π], this is only possible if
τ sinρσ = 0 or, equivalently, if τ = 0 or ρσ ≡ 0 mod π. The relation (4.14)
follows.

ad(D): Considering imaginary parts in (4.17) and keeping in mind that ∆({w ∈
T : argw ∈ (0, π)}) = 0, yields

0 =

∫

T

sin(argw) d∆ =

∫

{w∈T: argw∈[π,2π]}

sin(argw) d∆.

Hence ∆({w ∈ T : argw ∈ (π, 2π)}) = 0.
From (4.15) we obtain τ sinσ sin θ ≥ 0 for all θ ∈ [0, π]. This, however, is

only possible if σ ∈ [0, π] (or trivially if τ = 0).
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In the proof of sufficiency we will repeatedly make use of the following ele-
mentary observation.

4.6 Lemma. Let (sn)n∈N with 1 < s1 ≤ s2 ≤ . . ., sn → ∞, and a strictly
decreasing function l : [1,∞) → R+ with l(s) → 0 be given. Then there exists a
sequence (an)n∈N, an > 0, such that

∑

sn>s

an ≤ l(s), s ≥ 1. (4.19)

Proof. First assume that always sn < sn+1. Choose a continuous bijection
m : [1,∞) → [s1,∞) such that m(n) = sn, n ∈ N. Then with l also l̂ := l ◦m
is strictly decreasing and tends to zero. Put

an := l̂(n) − l̂(n+ 1) > 0, n ∈ N.

Then
∑

sn>s

an =
∑

m(n)>s

an =
∑

n>m−1(s)

an =

= l̂
(

[m−1(s)] + 1
)

≤ l̂(m−1(s)) = l(s).

In the case that (sn)n∈N is not strictly increasing, we chose another sequence
(s′n)n∈N such that, if sn−1 < sn = sn+1 = . . . = sn+k < sn+k+1, we have

sn = s′n < s′n+1 < . . . < s′n+k < s′n+k+1 = sn+k+1.

Since always s′n ≥ sn, we have

{n ∈ N : sn > s} ⊆ {n ∈ N : s′n > s},

and henceforth a sequence (an)n∈N satisfying (4.19) with s′n in place of sn a
forteriori satisfies this estimate with sn.

Proof. (of Theorem 4.5, sufficiency) First we construct a function E1(z) ∈ Λ ∩
HB× being of completely λ-regular growth which has the indicator function
hλE(θ) = πd+ sin ρ|θ|. This is always possible, i.e. the problems in proving a full
converse in Theorem 4.5 will lie in the construction of a function E2 ∈ Λ∩HB×

having a trigonometric indicator.
For d+ = 0 we take E1(z) := 1. So assume that d+ > 0 and ρ is odd. By [L,

II.1.Lehrsatz 2] and Lemma 3.12 it is enough to construct a sequence (zn)n∈N,
zn ∈ C−, having the λ-density

lim
r→∞

n(r;ψ1, ψ2; (zn)n∈N)

λ(r)
= ∆

(

{w ∈ T : argw ∈ (ψ1, ψ2]}
)

which is the sum of the two point masses at ±1 with equal weight d+, and
satisfies

∑

|zn|≤r
Re

1

z
ρ
n

= 0 , (4.20)

33



lim
r→∞

rρ

λ(r)

∑

|zn|>r
Im

1

z
ρ
n

= 0,
∑

n∈N

Im
1

zn
<∞. (4.21)

For if (zn)n∈N possesses all these properties, then

E1(z) := e
−iz

P

n∈N
Im 1

zn
−...− i

ρ
zρ P

n∈N
Im 1

z
ρ
n

∏

n∈N

(

1 − z

zn

)

e
z

zn
+... 1

ρ
( z

zn
)ρ

has the desired growth and belongs to HB×.
In order to provide an example of such a sequence put rn := λ−1( n

d+
) and

zn :=

{

rke
iψk , n = 2k − 1

rke
i(π−ψk) , n = 2k

,

where the ψk ∈ (− π
2ρ , 0) will be chosen as indicated in the following lines.

Clearly, by our choice of (zn) we have already achieved that (zn)n∈N has the
desired density distribution (as in the proof of Theorem 4.3) and that, by sym-
metry, (4.20) holds.

Choose a strictly decreasing function l(s), l(s) → 0, such that

l(s) ≤ 1

s

λ(s)

rρ
.

The existence of such an l is obvious. By Lemma 4.6 there exists a sequence
(an)n∈N of positive numbers with

∑

rn>r

an ≤ l(r), r > 0.

Clearly, it is possible to choose ψ ∈ (− π
2ρ , 0), n ∈ N, so small that for all n ∈ N,

− sinρψn
r
ρ
n

≤ an,
− sinψn
rn

≤ 1

n2
.

Then (zn)n∈N satisfies (4.21).
We turn to the construction of E2 ∈ Λ∩HB× which is of completely regular

λ-growth and has the trigonometric indicator hλE2
(θ) = τ cos ρ(θ − σ).

ad(1): Under this hypothesis the assertion is trivial: The function E2(z) :=

eτe
−iρσzρ

belongs to Λ, and by the assumptions on σ in connection with the
value of ρ it also is contained in HB×.

ad(2c) and (2d): Assume that λ is a strong growth function, that ρ is odd and
that ρσ ∈ {0, π}. By the construction of [L, II.4.4.] we obtain the existence of
a sequence (wn)n∈N such that the product

∏

n∈N

(

1 − z

wn

)

e
z

wn
+... 1

ρ
( z

wn
)ρ

has the desired growth, i.e. has zero λ-density and satisfies

lim
r→∞

rρ

ρλ(r)

∑

|wn|≤r

1

w
ρ
n

= τe−iρσ . (4.22)
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In this construction the points wn are located on the real axis and on the ray
argw = π

ρ
. However, one sees that those on the second named ray can as well

be chosen on the negative real axis (one only needs wρn < 0 for those zeros).
Hence we can assume that all wn are real. Applying Lemma 4.6 (in a similar
way as in the last paragraph) separately to the sequence of positive wn and to
the sequence of negative wn, yields the existence of ψn contained in (− π

2ρ , 0) or

(π, π + π
2ρ ), respectively, such that for the sequence zn := wne

iψn (2.2) holds,

lim
r→∞

rρ

λ(r)

∑

|zn|>r
Im

1

z
ρ
n

= lim
r→∞

rρ

λ(r)

∑

|wn|>r

− sinρψn
w
ρ
n

= 0,

the limit

cρ := lim
r→∞

1

ρ

∑

|zn|≤r

( 1

w
ρ
n
− Re

1

z
ρ
n

)

= lim
r→∞

1

ρ

∑

|wn|≤r

1

w
ρ
n

(

1 − cos ρψn
)

exists, and moreover

lim
r→∞

rρ

λ(r)

(

cρ +
∑

|zn|≤r
Re

1

z
ρ
n

)

=

= lim
r→∞

rρ

λ(r)





∑

|wn|≤r

1

w
ρ
n

+
∑

|wn|>r

1 − cos ρψn
w
ρ
n



 = τe−iρσ .

Hence the function E2 defined by (4.4) possesses all desired properties.

ad(3), ρσ ∈ {0, π}: In order to establish the assertion under this assumption
it suffices to note that in the construction [L, II.4. 4.] the present hypothesis
implies that the zeros on the ray argw = π

ρ
are not present. The assertion then

follows on shifting the real zeros by Lemma 4.6 in the same way as done in the
previous part of the proof.

ad(3), ρ = 1, σ ∈ (0, π): Again by [L, II.4. Paragraph 4.] we obtain a sequence
(rn)n∈N, 1 < r1 < r2 < . . ., rn → ∞, such that it has zero λ-density and satisfies
with an appropriate γ ∈ R,

lim
r→∞

r

λ(r)

(

γ +
∑

rn≤r

1

rn

)

= 1. (4.23)

Note that, since lim supr→∞
r

λ(r) = ∞, we must have

∑

n∈N

1

rn
= −γ, (4.24)

and therefore (4.23) just says that

lim
r→∞

r

λ(r)

∑

rn>r

1

rn
= 1.

Consider the sequence (zn)n∈N defined as

zn :=
rn

τ
e−i(π−σ), n ∈ N.
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Then zn ∈ C− and by (4.24) the series
∑

n∈N

1
zn

is absolutely convergent. In

particular (2.2) is satisfied. Put c1 := −∑n∈N
Re 1

zn
. Then

lim
r→∞

r

λ(r)

(

c1 − i
∑

n∈N

Im
1

zn
+
∑

|zn≤r

1

zn

)

=

= − lim
r→∞

r

λ(r)

∑

rn>r

1

zn
= − lim

r→∞
r

λ(r)

∑

rn>r

(τ cos(π − σ)

rn
+ i

τ sin(π − σ)

rn

)

=

= τ cosσ − iτ sinσ = τe−iσ.

Hence
E2(z) := ec1ze−iz

P

n∈N
Im 1

zn

∏

n∈N

(

1 − z

zn

)

e
z

zn

possesses all desired properties.

5 Subspaces defined by growth conditions

In this section we investigate dB-subspaces H̃ of a given dB-space H(E) which
are subject to growth conditions of various kinds. On first sight there seem to
be two possibilities of imposing such conditions: Either one might restrict the
values of mt F

E
for F ∈ H̃, or the growth of the functions F ∈ H̃ themselves,

e.g. by demanding a bound for hλF (θ).
The overall conclusion of the subsequent considerations is that the first vari-

ant is in a way more general than the second, and that the case of spaces of
exponential type is somewhat special in comparison with the cases of slow or
fast growing λ, λ(r) = o(r) vs. r = o(λ(r)).

5.1 Definition. Let H be a dB-space.

(i) Write H = H(E) and denote for α ≤ 0 by Hα the linear space

Hα := H(α,α) =
{

F ∈ H : mt
F

E
,mt

F#

E
≤ α

}

.

In order to justify this notation note that Hα does not depend on the
particular choice of E.

(ii) For a growth function λ and a number β ≥ 0 denote by Hλ,β the linear
space

Hλ,β := {F ∈ H : σλF ≤ β}.

By Lemma 2.6 we have the following

5.2 Corollary. For all α ≤ 0 the space Hα is a dB-subspace of H.
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Proof. By Lemma 2.6 every space of the form H(τ+,τ−), in particular also Hα,
is closed.

The fact that Hα contains with a function F also F# is obvious. Finally for

F ∈ Hα and F (w) = 0 one has F (z)
z−w ∈ Hα because of limy→±∞

1
y

log |iy−w| = 0.

The space Hα might consist of the zero element only. It is a matter of
interest to obtain conditions for Hα 6= {0}.

Let H = H(E). In connection with the study of Hα the spaces

(

AssocH
)

α
:=
{

F ∈ AssocH : mt
F

E
≤ α,mt

F#

E
≤ α

}

turn out to be useful.

5.3 Lemma. Let H = H(E) and α ≤ 0 be given.

(i) If Hα 6= {0} then
(

AssocH
)

α
= AssocHα.

(ii) If
(

AssocH
)

α
6= {0} then for all β ∈ (α, 0] we have dimHβ = ∞.

(iii) If
(

AssocH
)

α
6= {0} and Hα = {0} then

(

AssocH
)

α
= span{C}

for some real and zerofree function C.

Proof.
ad(i): Clearly, AssocHα ⊆ AssocH and by AssocHα = Hα + zHα the in-
clusion AssocHα ⊆

(

AssocH
)

α
follows. Assume that F ∈ AssocH satisfies

mtE−1F ≤ α,mtE−1F# ≤ α. Choose G ∈ Hα\{0} and w ∈ C with G(w) 6= 0.
Then

H(z) :=
F (z)G(w) −G(z)F (w)

z − w

belongs to H and

mt
H

E
≤ α, mt

H#

E
≤ α.

Hence H ∈ Hα and we conclude that F ∈ Hα + zHα = AssocHα.

ad(ii): Choose F ∈
(

AssocH
)

α
\ {0}, γ ∈ (α, β], and put

Gγ(z) := F (z)ei(α−γ)z.

Then Gγ ∈
(

AssocH
)

γ
⊆
(

AssocH
)

β
and the set of vectors

{

Gγ : γ ∈ [α, β]
}

is linearly independent. It follows that (fix w ∈ C with F (w) 6= 0)

{ F (z)Gγ(w) −Gγ(z)F (w)

z − w
: γ ∈ (α, β]

}

is contained in Hβ and is linearly independent.
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ad(iii): A similar argument as in the above paragraph shows that under the
present hypothesis dim

(

AssocH
)

α
= 1 and that F ∈

(

AssocH
)

α
\ {0} implies

that F is zerofree. Since
(

AssocH
)

α
is closed with respect to the involution

F 7→ F# we obtain that
(

AssocH
)

α
= span{C} with a real and zerofree

function C.

5.4 Example. From the example of a Paley-Wiener space H = H(e−iaz), a > 0,
and α := −a we see that the situation described in (iii) actually can occur: We
have 1 ∈

(

AssocH
)

−a and H−a = {0}. In fact, the chain of dB-subspaces of H
is given by {Hα : α ∈ (−a, 0]}.

On the other hand consider the function

E(z) :=
(

z cos z + sin z
)

− i
(

z sin z − cos z
)

and α := −1. Put H := H(E). Since E is constructed from the equation
(E = A− iB)

(A,B) = (z,−1)

(

cos z sin z
− sin z cos z

)

,

we have
H−1 = span{1}, AssocH−1 = span{1, z},

and (e.g. by Lemma 5.3, (ii)) we have Hβ = {0} for all β < −1. The chain of
dB-subspaces of H is in this example given by {Hα : α ∈ [−1, 0]}.
5.5 Lemma. If Hα 6= {0} and Hα = H(Eα) for some Eα ∈ HB, then mt Eα

E
=

α.

Proof. The inequality mtE−1Eα ≤ α follows from Lemma 5.3, (i). Assume
that

β := mt
Eα

E
< α.

Put F (z) := Eα(z)e−i(α−β)z, then E−1F and E−1F# are of bounded type and

mt
F

E
= mt

Eα

E
+ (α− β) = α ≤ 0,

mt
F#

E
= mt

E#
α

E
− (α− β) < α ≤ 0.

(5.1)

Moreover, Eα ∈ AssocHα ⊆ AssocH(E). Hence

∫

R

∣

∣

∣

F (t)

E(t)

∣

∣

∣

2 dt

1 + t2
<∞.

It follows that F ∈ AssocH(E) and from (5.1) and Lemma 5.3, (i), we conclude
that in fact F ∈ AssocHα. This contradicts

mt
F

Eα
= α− β > 0.
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5.6 Lemma. Let H = H(E) be given.

(i) Put τE = mtE−1E#. If α ∈ ( τE

2 , 0], then Hα 6= {0}. Moreover, H τE
2

6=
{0} except in the case that E is of the form C(z)ei

τE
2
z with some real

function C.

(ii) Assume that H is of exponential type. If Hα 6= {0} then α ∈ [−hE(π2 ), 0].

(iii) If H is of minimal exponential type, then Hα = {0} for all α < 0.

Proof.
ad(i): This assertion follows on representing E as in Lemma 3.12 and applying
Theorem 2.7.

ad(ii): Write Hα = H(Eα), then by Lemma 5.5 we have mt Eα

E
= α. Thus

hEα
(
π

2
) = α+ hE(

π

2
).

Since Eα ∈ HB we have hEα
(−π

2 ) ≤ hEα
(π2 ) and by [L, I.16.(h)] 0 ≤ hEα

(−π
2 )+

hEα
(π2 ). It follows that hEα

(π2 ) ≥ 0.

ad(iii): This follows from assertion (ii).

It also can be seen by an elementary consideration that, if E ∈ HB is of
exponential type, then

−hE(
π

2
) ≤ τE

2

To this end note that we have already seen that for any E ∈ HB the inequality
hE(π2 ) ≥ 0 holds. Hence, by Theorem 2.7,

0 ≤ h
E(z)e−i

τE
2

z(
π

2
) = hE(

π

2
) +

τE

2
.

Multiplication of a space H with a real function (cf. Lemma 2.3) does not
change the behaviour of the spaces Hα: Let E ∈ HB and C = C# have only
real zeros. Put E1 := CE, then the mapping

ψ :

{

H(E) → H(E1)
F 7→ CF

has the property that
ψH(E)α = H(E1)α. (5.2)

In order to establish this fact recall that by Lemma 2.3 the mapping ψ is an
isometry from H(E) onto H(E1) satisfying

mt
F

E
= mt

ψF

E
, mt

F#

E
= mt

ψF#

E
.

Let us mention a situation where the assertion of Lemma 5.6 can be sharpened.
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5.7 Lemma. Assume that there exists a function C = C# ∈ AssocH such that
C−1E is entire, i.e. C has no nonreal zeros and its real zeros coincide with those
of E. Put

αC := mt
C

E
,

then
(αC , 0] ⊆

{

α ≤ 0 : Hα 6= {0}
}

⊆ [αC , 0].

Proof. In view of (5.2) we have

M :=
{

α ≤ 0 : H(E)α 6= {0}
}

=
{

α ≤ 0 : H
(E

C

)

α
6= {0}

}

.

However, 1 ∈ AssocH(E
C

), and hence by Lemma 5.3, (ii), we have (αC , 0] ⊆M .
Since

hE
C

(
π

2
) = mt

E

C
= −αC ,

we conclude from Lemma 5.6, (ii), that M ⊆ [αC , 0].

5.8 Remark. Note that in the particular case C = 1 ∈ AssocH in Lemma 5.7
we have

αC = −hE(
π

2
).

5.9 Example. Consider the function

E(z) := cos z − i
(

z cos z + sin z
)

.

This function is constructed from the equation (E = A− iB)

(A,B) = (cos z, sin z)

(

1 z

0 1

)

.

It follows that E ∈ HB× and that the chain of dB-subspaces of H = H(E) is
given by

{

H(e−itz) : 0 < t ≤ 1} ∪ {H} =
{

Hα : −1 < α < 0} ∪ {H(e−iz)} ∪ {H}

Hereby H(e−itz) ( H with codimension 1.
We have (e.g. by Theorem 2.7) τE = 0. Clearly, hE(π2 ) = 1 and σE = 1.

Moreover, 1 ∈ AssocH(E).

5.10 Example. One special situation where the conditions of Lemma 5.6, (i) and
(ii), coincide is the following: Assume that E ∈ HB× is of order 1, convergence
class. Then −hE(π2 ) = τE

2 . In order to see this represent E as

E(z) = γei
τE
2
z
∏

(

1 − z

zn

)

.

By [L, I.11.Lehrsatz 15] the infinite product is of minimal exponential type.
Hence

hE(
π

2
) = −τE

2
+ hQ

(1− z
zn

)(
π

2
) ≤ −τE

2
.

We already saw that the reverse inequality holds in any case.
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5.11 Example. Choose E ∈ HB of minimal exponential type and put E1(z) :=
sin z · E(z). Then

hE1
(
π

2
) = 1, τE1

= 0,

and by (5.2) and Lemma 5.6, (iii),

H(E1)α = {0}, α < 0.

Similarly examples of E ∈ HB can be constructed such that for arbitrarily
given γ ∈ [−hE(π2 ), 0] the set {α ≤ 0 : Hα 6= {0} } is equal to [γ, 0] or to (γ, 0].
However, note the imperfection that the functions E constructed in this way do
not belong to HB×.

The fact that the space H(τ+,0) is always closed means just that the mapping

Φ :

{

H \ {0} → R− ∪ {0}
F 7→ mt F

E

is lower semicontinuous. Let us note that Φ is, except in trivial cases, nowhere
continuous. The proof of this result follows the lines of the proof of [GG,
II.Lemma 5.1].

5.12 Lemma. The function Φ is continuous at a point F0 ∈ H(E) if and only
if Φ(F0) = 0.

Proof. If Φ(F0) = 0, then for all F ∈ H(E) we have Φ(F ) ≤ Φ(F0). Hence the
continuity is a consequence of the lower semicontinuity.

Assume conversely that Φ is continuous at F0. Then, given ǫ > 0, there
exists δ > 0, such that

|Φ(F0 + F ) − Φ(F0)| < ǫ, ‖F‖ < δ. (5.3)

Let G ∈ H \ {0} be given and put F (z) := δ
2‖G‖G(z). Clearly Φ(G) = Φ(F ).

We obtain, using (5.3), that

Φ(G) = Φ(F ) = Φ((F − F0) + F0) ≤ max
{

Φ(F − F0),Φ(F0)
}

≤ Φ(F0) + ǫ.

Since ǫ > 0 was arbitrary, we conclude

Φ(G) ≤ Φ(F0), G ∈ H \ {0}.

Since there exist functions G with Φ(G) = 0, e.g. take
Sϕ(z)
z−w where w is a zero

of Sϕ (cf. the proof of Lemma 3.21) we conclude that Φ(F0) = 0.

For spaces of exponential type we obtain a continuity property of the indi-
cator function:

5.13 Corollary. Let H = H(E) be a dB-space of exponential type. For each θ
the function

χθ : F 7→ hF (θ), F ∈ H,
is lower semicontinuous (uniformly with respect to θ). The function F is a point
of continuity of χθ if and only if hF (θ) = h|E|(θ).

41



Proof. To deduce this assertion from Lemma 5.12 we only have to note that
formula (3.6) implies

hF (θ) = hE(|θ|) +

{

Φ(F ) | sin θ| , θ ∈ [0, π]

Φ(F#) | sin θ| , θ ∈ [−π, 0]

5.14 Remark. Note that a similar result for other growth functions λ would
not be meaningful: If λ grows fast, r = o(λ(r)), then anyway hλF (θ) = hλE(|θ|)
does not depend on F (cf. Lemma 3.20), hence the assertion of Corollary 5.13
is trivial. Whereas, if λ grows slow, λ(r) = o(r), the assertion of Corollary 5.13
is not true in general:

5.15 Example. The function

E(z) :=
sin

√
iz√

iz

is an entire function of order 1
2 and normal type. In fact

h
√
r

E (φ) = sin(
φ

2
+
π

4
), φ ∈ [−π

2
,
3π

2
],

hence σ
√
r

E = 1. The zeros of E are all simple and are given by

zn = −in2, n ∈ N.

Hence we also have
E(z) =

∏

n∈N

(

1 +
z

in2

)

∈ HB.

The considerations in [KW3] show that H(E) = C[z]. In particular, 1 ∈ H(E).

However, H(E) is not of finite λ-type with e.g. λ(r) = r
1
4 . Thus the assertion of

Theorem 3.10 remains not longer valid if we choose there e.g. λ(r) = r
1
4 . Also

for each polynomial p surely h
√
r

p = 0, hence also the assertion of Corollary 5.13

cannot hold true for the growth function λ(r) = r
1
2 . Also, for all β ∈ [0, 1), the

space H√
r,β cannot be closed: Trivially C[z] ⊆ H√

r,β , hence H√
r,β = H(E).

On the other hand e.g. F (z) := E(z)
z+i belongs to H(E) but σ

√
r

F = 1.
One can construct similar examples for other growth functions λ with λ(r) =

o(r) since then each function E ∈ Λ surely will be of minimal exponential type,
and henceforth it is be possible to use the same reasoning.

We turn to the investigation of the spaces Hλ,β .

5.16 Lemma. The linear space Hλ,β satisfies

(i) If F ∈ Hλ,β, so is F#.

(ii) If F ∈ Hλ,β and F (w) = 0, then also F (z)
z−w belongs to Hλ,β.
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Proof. The first assertion is clear from the definition of Hλ,β . The second
follows since we always assume that log r = o(λ(r)), for this implies that

lim
|z|→∞

log |z − w|
λ(|z|) = 0.

Hence Hλ,β seems to be a candidate for a dB-subspace of H. However, for
the reasons mentioned in Remark 5.14, this is trivial if r = o(λ(r)) as in this
case

Hλ,β =

{

H , β ≥ σλE

{0} , β < σλE

and, for λ(r) = o(r), in general not true (cf. Example 5.15). In the case λ(r) = r,
indeed, Hλ,β is a dB-subspace of H, i.e. is always closed, but we already know
those subspaces, cf. Lemma 5.18.

Define a mapping l by

l :

{

R− ∪ {0} → R

µ 7→ maxθ∈[0,π](hE(θ) + µ sin θ)

and put βE := max{hE(0), hE(π)}. Then l is nondecreasing and continuous.
Note that l(0) = σE .

5.17 Lemma. For the function l defined above we have

(βE , σE ] ⊆ ran l ⊆ [βE , σE ]. (5.4)

Let B be the interval l−1((βE , σE ]). Then l|B is a strictly increasing bijection
of B onto ran l.

Proof. We always have l(µ) ≤ l(0) = σE and l(µ) ≥ hE(0), hE(π). Thus the
second ⊆ in (5.4) holds true. A continuity argument will show that (βE , σE ] ⊆
ran l: Trivially l(0) = σE , i.e. σE ∈ ran l. Let β ∈ (βE , σE). Since l is continuous
it is enough to show that there exists some µ ∈ R− ∪{0} with l(µ) ≤ β. To this
end choose δ > 0, such that

max
φ∈[0,δ]∪[π−δ,π]

hE(φ) ≤ β.

This is possible by the continuity of hE . Since sinφ is bounded away from zero
on [δ, π − δ], there exists µ ≤ 0 (e.g. take µ = − σE

sin δ ) such that

max
φ∈[δ,π−δ]

(

hE(φ) + µ sinφ
)

≤ β.

Altogether l(µ) ≤ β.
It remains to prove that l is strictly increasing on B. In order to establish

this assertion it suffices to show that for every µ0 with l(µ0) ∈ (βE , σE ] and
µ ∈ R−, µ < µ0, we have l(µ) < l(µ0). Put

C :=
{

θ ∈ [0, π] : hE(θ) + µ0 sin θ = l(µ0)
}

.
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Choose ǫ > 0 such that l(µ0) − ǫ > βE . Then (χ : [0, π] → R, χ(θ) :=
hE(θ) + µ0 sin θ)

D := χ−1([l(µ0) − ǫ,∞))

is a compact subset of (0, π) and contains C. Choose δ > 0 such that D ⊆
[δ, π − δ].

Assume that µ < µ0. Then, for θ ∈ [δ, π − δ],

hE(θ) + µ sin θ = hE(θ) + µ0 sin θ + (µ− µ0) sin θ ≤

≤ hE(θ) + µ0 sin θ + (µ− µ0) sin δ ≤ l(µ0) + (µ− µ0) sin δ.

For θ ∈ [0, δ) ∪ (π − δ, π] we have

hE(θ) + µ sin θ ≤ hE(θ) + µ0 sin θ < l(µ0) − ǫ.

Altogether it follows that

l(µ) ≤ l(µ0) − min{ǫ, (µ0 − µ) sin δ} < l(µ0).

5.18 Lemma. Let H(E) be a dB-space of exponential type. Denote by l̂ the

function l̂ :=
(

l|B
)−1

. Then

Hr,β =

{

Hl̂(β) , β ∈ (βE , σE ]

{0} , β ∈ [0, βE)
(5.5)

Proof. In order to establish this relation it is sufficient to note that by (3.6) for
all F ∈ H

σF = max
{

l(Φ(F )), l(Φ(F#))
}

.

5.19 Corollary. Let H(E) be a dB-space of exponential type. If for some
β < σE we have Hr,β 6= {0}, then there exists α < 0 with Hα 6= {0}. If
βE < σE also the converse holds.

Proof. Assume that β < σE and Hr,β 6= {0}. Then, by Lemma 5.18, βE < σE .
Choose β′ ∈ (βE , σE), then H

l̂(β′) = Hr,β′ 6= {0}. By Lemma 5.17 we have

l̂(β′) < 0.
Conversely, assume that Hα 6= {0} for some α < 0. Since by our assumption

βE < σE , the mapping l is injective locally at 0, there exists α′ ∈ (α, 0) such
that β′ := l(α′) < σE . By Lemma 5.18 we have Hr,β′ = Hα′ 6= {0}.
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[KW3] M.Kaltenbäck, H.Woracek: Hermite-Biehler Functions with zeros close to

the imaginary axis,

Proc.Amer.Math.Soc.133 (2005), 245-255.

[LW] M.Langer, H.Woracek: A characterization of intermediate Weyl coeffi-

cients,

Monatsh.f.Math. 135 (2002), 137-155.

[LG] P.Lelong, L.Gruman: Entire functions of several variables,

Springer Verlag, Berlin 1986.

[L] B.Levin: Nullstellenverteilung ganzer Funktionen,

Akademie Verlag, Berlin 1962.

[RR] M.Rosenblum, J.Rovnyak: Topics in Hardy classes and univalent functions,
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