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HERMITE-BIEHLER FUNCTIONS WITH ZEROS CLOSE TO

THE IMAGINARY AXIS

MICHAEL KALTENBÄCK AND HARALD WORACEK

Abstract. A Hermite-Biehler functions E gives rise to a de Branges Hilbert
space H(E) consisting of entire functions. We are going to show that for
Hermite-Biehler functions of sufficiently small growth and a certain distribu-
tion of zeros every proper de Branges subspace of H(E) coincides for some
n ∈ N with the (n + 1)-dimensional linear space of all polynomials of degree
at most n.

1. Introduction

An entire function E is said to belong to the Hermite-Biehler class, E ∈ HB, if
it has no zeros in the open upper half plane C+ and if

∣
∣E#(z)

∣
∣ ≤

∣
∣E(z)

∣
∣, z ∈ C

+ ,

where we have F#(z) := F (z) whenever F is an entire function. With a function
E ∈ HB we associate the space H(E) of all entire function F such that

F

E
,
F#

E
∈ H2(C+) .

Here H2(C+) denotes the Hardy space of the upper halfplane (cf. [7]). If H(E) is
endowed with the norm

‖F‖2
H(E) :=

∫ ∞

−∞

∣
∣
∣
F (t)

E(t)

∣
∣
∣

2

dt ,

it becomes a Hilbert space, the so-called de Branges space associated with E. For
a detailed discussion of the relationship between de Branges spaces and Hermite-
Biehler functions we refer the reader to [2], [4].

If F is a function analytic at a point w, we denote by Ordw F the order of w as
a zero of F . For a de Branges space H(E) let us define

d(H(E)) :

{
C → N ∪ {0}
w 7→ minF∈H(E)\{0} Ordw F

.

A subspace H̃ of a de Branges space H(E) is called a de Branges-subspace if it
is itself, with the norm inherited from H(E), a de Branges space, i.e. if for some

Ẽ ∈ HB we have H̃ = H(Ẽ) as sets and also (F,G)H(E) = (F,G)H(Ẽ) whenever

F,G ∈ H̃.
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It is a deep result of L. de Branges that the set of all de Branges subspaces H̃ of
a given space H(E), which additionally satisfy d(H̃) = d(H(E)), is totally ordered
with respect to inclusion. In the sequel we shall refer to this set as the chain of
subspaces of H(E). In [2, Theorem 35] in fact a stronger result is proved dealing
with de Branges spaces contained in a space L2(dµ). The total ordering of the
de Branges subspaces of a given space H(E) which we refer to, is deduced from
this by taking dµ := |E(t)|−2dt. It is apparent from the theory developed in [2]
that a lot of information about the structure of the space H(E) is contained in the
structure of its chain of subspaces.

The aim of this note is to determine explicitly the chain of subspaces of H(E) for
a certain subclass of Hermite-Biehler functions E, cf. Theorem 2.1, Corollary 2.7, in
other words to give a structure result on certain types of de Branges spaces. Roughly
speaking we will prove that if E is of reasonably small growth and has a certain
distribution of zeros, then the chain of subspaces of H(E) is order-isomorphic to
N ∪ {+∞}. This result contains a theorem of [3] as a particular case, cf. Remark
2.3.

It is interesting to note that examples of Hermite-Biehler functions satisfying our
hypothesis come up in number theory. We will in fact show that from even entire
functions subject to appropriate growth conditions whose zeros are all located in a
strip one can construct examples of Hermite-Biehler functions of the studied kind.
In particular, this construction can be applied to the function

Ξ(z) := −1

2

(
z2 +

1

4

)
π− 1

4
− iz

2 Γ
(1

4
+
iz

2

)
ζ
(1

2
+ iz

)
,

which has been intensively studied in the classical theory of the Riemann Zeta-
function.

2. The structure of H(E)

Before we come to the statement of our main result let us recall that by [5,
Lemma 3.12] a function E ∈ HB which is of finite order with zeros zn that, counted
according to their multiplicities, meet the constraint

(2.1)
∑

zn 6∈R

1

|zn|
<∞,

can be represented as

(2.2) E(z) = D(z)ei
τE
2
z

∏

zn 6∈R

(
1 − z

zn

)
,

with an appropriate real function D. Thereby τE is the so-called mean type of the
function E−1E#, i.e.

τE = mtE−1E# = lim sup
y→+∞

1

y
log

∣
∣
∣
E#(iy)

E(iy)

∣
∣
∣ ≤ 0 .

Moreover, we know from [5, Lemma 2.2] that for every function E ∈ HB whose
nonreal zeros lie in an angle off the real axis actually (2.1) holds.

Recall e.g. from [2] that a space H(E) is a reproducing kernel Hilbert space. Its
reproducing kernel K(w, .) is given explicitly by

K(w, z) =
E(z)E#(w) − E(w)E#(z)

2πi(w − z)
.
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Denote by C[z] the linear space of all polynomials with coefficients in C.

Theorem 2.1. Let E ∈ HB, E(0) = 1, and E(t) 6= 0 for t ∈ R. Assume that E is of
minimal exponential type but not a polynomial. Denote by (wn)n∈N the (necessarily
infinite) sequence of zeros of E counted according to their multiplicities. In the
below conditions we choose the value of argwn always in (−π, 0).
If either (A) holds or both (B1) and (B2) hold, where

(A)
∑

n∈N

(
argwn +

π

2

)2
<∞

(B1) For all w ∈ C we have Ordw E = Ord−w E.

(B2)
∑

n∈N

argwn∈(−π
4
,0)

(
argwn +

π

4

)2
<∞

then C[z] is a dense linear subspace of H(E) and the chain of subspaces of H(E)
is of the form

{0} ⊂ span{1} ⊂ span{1, z} ⊂ span{1, z, z2} ⊂ · · · ⊂ C[z] = H(E) .

Before we come to the proof of this theorem, let us make a couple of remarks.

Remark 2.2.

(i) The condition (B1) can be viewed as a symmetry condition, for it could
be replaced by the requirement that E satisfies the functional equation
E#(z) = E(−z).

(ii) If E ∈ HB is a polynomial, then H(E) = {p ∈ C[z] : deg p < degE} and
the chain of subspaces of H(E) is just the finite chain {0} ⊂ span{1} ⊂
· · · ⊂ span{1, . . . , zdegE−1} = H(E).

Remark 2.3. In [3] (see also [6] where a similar result is stated in a somewhat
different notation) there are considered Hermite-Biehler functions of minimal type
which satisfy the symmetry condition E#(z) = E(−z). For such functions it is
proved there that the conclusion of Theorem 2.1 follows if one assumes

(B′
2) All but finitely many zeros of E fall in the angle {w : argw ∈ (− 3π

4 ,−π
4 )}.

Obviously, this result is included in the above Theorem 2.1. Moreover, we use a
different, more elementary, method of proof than the one used in [3] or [6]. This
made it possible to replace the condition (B′

2) by (B2) and to establish a result in
the nonsymmetric case.

The proof of Theorem 2.1 depends on some elementary estimates of canonical
products which we shall state as separate lemmata.

Lemma 2.4. Let (wn)n∈N be a sequence of complex numbers contained in the lower
half plane C− which has no finite limit point and which satisfies

(2.3)
∑

n∈N

1

|wn|
<∞ .

If we assume that

(2.4)
∑

n∈N

(
argwn +

π

2

)2
<∞ ,
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then there exists a positive constant δ > 0 such that for all subsets M ⊆ N we have

inf
t∈R

∣
∣
∣

∏

n∈M

(
1 − t

wn

)
∣
∣
∣ ≥ δ .

Proof. Let w ∈ C− be given. We estimate the distance of w−1t from the point 1
for t ∈ R:

−ϕ

ϕ

•

d

G

w

t

w

1

The minimal distance d of the point 1 from the line G is just sin(− argw).
Due to the assumption (2.3) every product of the form PM (z) =

∏

n∈M (1− z
wn

)
is locally uniformly convergent on C. We can estimate PM along the real axis from
below:

∣
∣PM (t)

∣
∣ =

∏

n∈M

∣
∣1 − t

wn

∣
∣ ≥

∏

n∈M

sin(− argwn) ≥
∏

n∈N

sin(− argwn) =: δ .

The last product is convergent to some number δ ∈ [0, 1] since every factor belongs
to (0, 1]. We have to show that δ > 0. Taking logarithms shows that this just
means that −∑

n∈N
log sin(− argwn) < ∞. Since log x ∼ x − 1 for x → 1 this is

equivalent to
∑

n∈N

(
1 + sin(argwn)

)
<∞ ,

and by 1 + sinx ∼ 1
2 (x+ π

2 )2 for x→ −π
2 it is in turn equivalent to (2.4). �

Lemma 2.5. Let (wn)n∈N be a sequence of points with argwn ∈ [−π
2 , 0) which has

no finite limit point and satisfies (2.3). If

(2.5)
∑

n∈N

argwn∈(−π
4
,0)

(
argwn +

π

4

)2
<∞ ,

then there exists δ > 0 such that for all subsets M ⊆ N

inf
t∈R

∣
∣
∣

∏

n∈M
argwn=−π

2

(
1 − t

wn

)
·

∏

n∈M
argwn∈(−π

2
,0)

(
1 − t

wn

)(
1 +

t

wn

)
∣
∣
∣ ≥ δ

Proof. We again use some elementary estimates of the single factors in the product
above. First note that for each w ∈ iR and t ∈ R

∣
∣1 − t

w

∣
∣ ≥ Re

(
1 − t

w

)
= 1 .
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Consider a factor of the form (1− t
w

)(1 + t
w

) where argw ∈ (−π
2 , 0) and t ∈ R. We

have
∣
∣
∣

(
1 − t

w

)(
1 +

t

w

)
∣
∣
∣ =

∣
∣1 − t

w

∣
∣ ·

∣
∣1 +

t

w

∣
∣ =

∣
∣1 − t

w

∣
∣ ·

∣
∣1 +

t

w

∣
∣ =

∣
∣1 − t2

w2

∣
∣

If argw ∈ (−π
2 ,−π

4 ], then Rew−2 ≤ 0 and thus

∣
∣1 − t2

w2

∣
∣ ≥ Re

(
1 − t2

w2

)
= 1 − t2 Re

1

w2
≥ 1 .

Finally assume that argw ∈ (−π
4 , 0):

−2ϕ

•

d

G

1

w

ϕ

t
2

w2

The minimal distance d of the point 1 and the half line G is just sin(−2 argw).
Due to the assumption (2.3) the product QM (z) occurring in the conclusion of

the present lemma is locally uniformly convergent on C. Putting together the above
estimates of the single factors we obtain for t ∈ R,

∣
∣QM (t)

∣
∣ ≥

∏

n∈M
argwn∈(−π

4
,0)

sin(−2 argwn) ≥
∏

n∈N

argwn∈(−π
4
,0)

sin(−2 argwn) =: δ

We deduce from the assumption (2.5) that δ > 0: We have δ > 0 if and only if
∑

n∈N

argwn∈(−π
4
,0)

− log sin(−2 argwn) <∞

and thus if and only if
∑

n∈N

argwn∈(−π
4
,0)

(
1 + sin(2 argwn)

)
<∞ .

Since 1+ sin(2x) ∼ 2(x+ π
4 )2 for x→ −π

4 , this condition is equivalent to (2.5). �

Let us proceed to the proof of Theorem 2.1. Assume that E ∈ HB is subject
to the hypothesis of Theorem 2.1. Then, by (A) or (B2), respectively, the zeros of
E are contained in some angle {w : argw ∈ [−π + ǫ,−ǫ]} off the real axis. Thus
the condition (2.1) is satisfied. Since E is of minimal exponential type, has no real
zeros and is normalized by E(0) = 1, the representation (2.2) takes the form

(2.6) E(z) =
∏

n∈N

(
1 − z

wn

)
.



6 M. KALTENBÄCK AND H. WORACEK

We define a sequence Er, r ∈ N, by recursively removing zeros (or pairs of zeros,
respectively) of E. Put E1(z) := E(z). If for some r ∈ N the function Er is already
defined we pick a zero w of Er which is of minimal modulus among all zeros of Er
and define

Er+1(z) :=







Er(z)
1− z

w

, hypothesis (A),
hypothesis (B) and w∈iR

Er(z)
(1− z

w
)(1+ z

w
) , hypothesis (B) and w 6∈ iR

Note that the quotient pr(z) := Er(z)
−1E(z) is a polynomial of degree at least

r − 1.
Applying the appropriate one of the Lemmata 2.4 and 2.5 to the sequence

(wn)n∈N of zeros of E will give a constant δ > 0 such that for all z ∈ R the
estimate

(2.7)
∣
∣
∣

1

Er(z)

∣
∣
∣ ≤ 1

δ
, r ∈ N ,

holds. From the representation (2.6) of E we see that E belongs to the Polya-class,
that is that for each x ∈ R the value |E(x + iy)| is a nondecreasing function of
y ≥ 0. By the same argument we conclude that every function Er is of Polya-class.
Hence the estimate (2.7) holds not only for z ∈ R, but throughout C+ ∪ R.

We conclude from Er(z)
−1 = E(z)−1pr(z) that there exist polynomials p(z) of

arbitrarily high degree without zeros in C+ ∪ R such that E(z)−1p(z) ∈ H∞(C+).
Since, for w ∈ C−, with a function f(z) also (z−w)−1f(z) belongs to H∞(C+) this
implies that E(z)−1p(z) ∈ H∞(C+) for every polynomial p. This in turn shows
that E(z)−1q(z) ∈ H2(C+) for every polynomial q, and hence that C[z] ⊆ H(E).

If w is a zero of E, denote by m(w) its multiplicity. Consider the polynomials
(1 ≤ l ≤ m(w), r sufficiently large)

F(w,l),r(z) :=
(
1 − z

w

)−l
pr(z).

We have
F(w,l),r(z)

E(z)
=

(1 − z
w

)−lpr(z)

E(z)
=

(1 − z
w

)−l

Er(z)
,

and hence by (2.7) the norms ‖F(w,l),r‖H(E) are uniformly bounded with respect to
r:

‖F(w,l),r‖H(E) =
∥
∥
∥

(1 − t
w

)−l

Er(t)

∥
∥
∥
L2(R)

≤ 1

δ

∥
∥
∥

wl

(w − t)l

∥
∥
∥
L2(R)

.

Thus there exists a weakly convergent subsequence (F(w,l),rk)k∈N. Put

F(w,l) := w- lim
k→∞

F(w,l),rk .

Since weak convergence in a reproducing kernel space implies pointwise convergence
and limh→∞ ph(z) = E(z), we obtain

F(w,l)(z) =
(
1 − z

w

)−l
E(z),

and hence (1 − z
w

)−lE(z) ∈ C[z] ⊆ H(E).

We can now establish the relation C[z] = H(E) by proving the following lemma:

Lemma 2.6. Let E ∈ HB. For a zero w of E denote by m(w) its multiplicity. The
linear set

L := span
{
F(w,l)(z) :=

E(z)

(1 − z
w

)l
: w ∈ C

−, E(w) = 0, 1 ≤ l ≤ m(w)
}
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is dense in H(E).

Proof. Clearly the above span L is a subset of H(E). Assume on the contrary
that it is not dense in H(E) and choose a nonzero function G ∈ H(E) which is
orthogonal to L.

Denote by K(η, ζ) the reproducing kernel of H(E). If w is a zero of E(z) we
obtain from the explicit form of K(η, ζ) that for any k ∈ {0, . . . ,m(w) − 1},

∂k

∂η̄k
K(η, z)

∣
∣
∣
η=w̄

,

can, considered as a function in the variable z, be written as a certain linear com-
bination of the functions F(w,1), . . . , F(w,m(w)). Thus we obtain

G(k)(w̄) =
(

G,
∂k

∂η̄k
K(η, .)

∣
∣
∣
η=w̄

)

H(E)
= 0, 0 ≤ k ≤ m(w) − 1.

Since the numbers w̄ are exactly the zeros of E# (including multiplicities), the
Blaschke productE−1E# is a divisor of E−1G inH2(C+), i.e. there exists a function
f ∈ H2(C+) such that

G(z)

E(z)
=
E#(z)

E(z)
· f(z) ∈ E#

E
H2(C+).

This contradicts the fact that

1

E
H(E) = H2(C+) ⊖ E#

E
H2(C+).

�

All assertions of Theorem 2.1 are now proved.
By having a closer look at the representation (2.2) of a Hermite-Biehler function

of finite order, we obtain a more general version of Theorem 2.1.

Corollary 2.7. Let E ∈ HB. Assume that E is of finite order and has infinitely
many zeros. If either the condition (A) or the condition (B1) + (B2) holds, then
there exists an entire function D with D# = D and a number a ≥ 0 such that the
chain of subspaces of H(E) is of the form

{0} ⊂ span{D(z)} ⊂ span{D(z), zD(z)} ⊂ · · ·
· · · ⊂ D(z)C[z] = H(eiazE(z)) ⊂ · · · ⊂ H(eibzE(z)) ⊂ · · · ⊂ H(E)

︸ ︷︷ ︸

a≥b≥0

.

Proof. The assumption (A) or (B2), respectively, implies that the condition (2.1) is
met, and thus that the function E can be represented as in (2.2). By [5, Lemmata
2.4,2.5] and the discussion following it we see that the chain of subspaces of H(E)
is obtained from the chain of subspaces of H(D−1E) by multiplication with D.
Moreover, we know from [5, Theorem 2.7,(ii)] that (a := − τE

2 ≥ 0)

H
(
eiaz

E(z)

D(z)

)
⊆ H

(E(z)

D(z)

)

isometrically and that the interval [H(eiaz E(z)
D(z) ),H(E(z)

D(z) )] is of the desired form.

The function D(z)−1eiazE(z) is of minimal exponential type because we know
that its zeros satisfy (2.1), cf. [1, Lemma 2.10.13]. An application of Theorem 2.1
gives the assertion of the corollary. �
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Remark 2.8. Note that, if the function E in Corollary 2.7 has only finitely many
zeros, we just have to substitute the discrete part {0} ⊂ · · · ⊂ D(z)C[z] by the
finite chain {0} ⊂ · · · ⊂ span{D(z), . . . , zdegE−1D(z)}. Compare Remark 2.2, (ii).

3. Functions with zeros in a strip

In this section we show that examples of de Branges spaces which satisfy the
hypothesis of Theorem 2.1 (or Corollary 2.7) are obtained from even entire functions
when the location of zeros is restricted to a strip.

Theorem 3.1. Let X be an even entire function. Assume that

(1) X is of order at most 2, finite type, and for some α ∈ (0, π2 ),

(3.1) lim sup
r→∞

1

r2
log

∣
∣X

(
rei(

π
4
+α)

)∣
∣ ≥ lim sup

r→∞

1

r2
log

∣
∣X

(
rei(

π
4
−α)

)∣
∣

(2) The zeros of X are located in the strip {z ∈ C : | Im z| < 1
2} outside of the

angles {z ∈ C : π
4 ≤ | arg z| ≤ 3π

4 }.
Define E(z) := X(

√
iz). Then E is an entire function of exponential type, belongs

to HB and has no zeros on R. For each δ ∈ (0, π2 ) only finitely many zeros of E lie
outside the angle

{
z ∈ C : −π + δ ≤ arg z ≤ −δ

}

If X additionally is of minimal type and satisfies X = X#, then the chain of
subspaces of H(E) is equal to

(3.2) {0} ⊂ span{1} ⊂ span{1, z} ⊂ span{1, z, z2} ⊂ · · · ⊂ C[z] = H(E) .

Proof. SinceX is even, the function E is well defined and entire. The zeros (wn)n∈N

of E are obtained from the zeros (zn)n∈N of X lying in the right half plane by

wn = −iz2
n.

Since | arg zn| < π
4 , we see that E has no zeros in the closed upper half plane.

Moreover, we have

lim sup
r→∞

1

r
log max

φ∈[0,2π)

∣
∣E(reiφ)

∣
∣ = lim sup

r→∞

1

r2
log max

φ∈[0,2π)

∣
∣X(reiφ)

∣
∣ <∞,

and

lim sup
r→∞

1

r
log

∣
∣E(reiφ)

∣
∣ = lim sup

r→∞

1

r2
log

∣
∣X(rei(

φ

2
+π

4
))

∣
∣.

Hence (3.1) shows that for some β ∈ (0, π)

lim sup
r→∞

1

r
log

∣
∣E(reiβ)

∣
∣ ≥ lim sup

r→∞

1

r
log

∣
∣E(re−iβ)

∣
∣.

With the aid of [1, 7.8.1] we conclude that E ∈ HB.
Let γ ∈ (0, π4 ). Since the region

{
z ∈ C : Re z ≥ 0, | Im z| < 1

2
, | arg z| ≥ π

4
− γ

}

is bounded it contains only finitely many zeros of X . Hence only finitely many of
the points wn lie in the angles {z ∈ C : arg z ∈ [−π,−π + 2γ] ∪ [−2γ, 0]}.

The additional hypotheses on X mean that E is of minimal exponential type and
satisfies E#(z) = E(−z). Hence, by Theorem 2.1, we conclude that (3.2) holds. �
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Example 3.2. The formula

(3.3) Ξ(z) := −1

2

(
z2 +

1

4

)
π− 1

4
− iz

2 Γ
(1

4
+
iz

2

)
ζ
(1

2
+ iz

)

defines an entire function of order 1 and not of finite type. It satisfies the symmetry
relations

Ξ(−z) = Ξ(z), Ξ#(z) = Ξ(z).

Its zeros are all located in the strip | Im z| < 1
2 . Moreover, there is exactly one zero

z0 with 0 ≤ Re z0 ≤ 6π, and this zero lies on the real axis. In particular there are
no zeros with argument in [− 3π

4 ,−π
4 ] ∪ [π4 ,

3π
4 ].

The function E given by Theorem 3.1 with X(z) = Ξ(z) is of finite λ-type for
the growth function λ(r) =

√
r log r, that means

lim sup
r→∞

1√
r log r

log max
φ∈[0,2π)

∣
∣E(reiφ)

∣
∣ <∞ .

Its growth can be determined explicitly, in fact

(3.4) lim
r→∞

log |E(reiψ)|√
r log r

=
1

4
cos

(ψ

2
− π

4

)
.

All of the above properties of Ξ with exception of (3.4) are explicitly stated e.g. in
[9]. A proof of (3.4) is easily obtained from Stirling’s formula and some estimates
of the Riemann Zeta-function:

Proof. (of (3.4)) By the symmetry relation E(−z) = E(z) it suffices to consider

values ψ ∈ (−π
2 ,

π
2 ]. By the definition E(z) = Ξ(

√
iz) proving (3.4) amounts to

showing that

lim
r→∞

log |Ξ(
√
rei(

ψ

2
+π

4
))|√

r log r
=

1

4
cos(

ψ

2
− π

4
),

for ψ ∈ (−π
2 ,

π
2 ], or equivalently (keeping in mind that Ξ is real, putting φ :=

−ψ
2 − π

4 , and substituting r2 for r)

(3.5) lim
r→∞

log |Ξ(reiφ)|
r log r

=
1

2
cos(φ+

π

2
), φ ∈ [−π

2
, 0),

uniformly on each compact subset of [−π
2 , 0).

By the definition (3.3) of Ξ(z) we have

log |Ξ(reiφ)| = log
∣
∣
1

2

(
r2e2iφ +

1

4

)∣
∣ − log π

4
− r

log π

2
cos(φ +

π

2
)+

(3.6) + log
∣
∣Γ

(1

4
+
r

2
ei(φ+π

2
)
)∣
∣ + log

∣
∣ζ

(1

2
+ rei(φ+ π

2
)
)∣
∣.

Obviously, in order to prove the limit relation (3.5), the first three summands in
(3.6) are immaterial. Also the last one is: Since by [9, 2.12.2],

(s− 1)ζ(s) = O(s2), Re s ≥ 1

2
,

the function (s − 1)ζ(s) is of bounded type in the half plane Re s > 1
2 . As

limt→+∞ ζ(t) = 1, its mean type is equal to 0. Moreover, it has only finitely many
zeros in each angle 1

2 +{w : argw ∈ (−π
2 +δ, π2 −δ)}, δ > 0. Therefore we know from

[1, §7.2] that the limit limr→∞ r−1 log |ζ(1
2re

iφ)| exists, equals 0 for all φ ∈ (−π
2 ,

π
2 ),
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and is attained uniformly in each angular region 1
2 + {z ∈ C : | arg z| < π

2 − δ},
δ > 0.

An application of Stirlings formula (cf. [8]) will give the desired result: We have,
uniformly in each angle {z ∈ C : | arg z| < π − δ}, δ > 0,

log Γ(z) = (z − 1

2
) log z − z +

1

2
log 2π +O

( 1

|z|
)
.

Hence

log |Γ(
1

4
+
r

2
ei(φ+π

2
))| = Re

[(r

2
ei(φ+π

2
) − 1

4

)
log

(1

2
(
1

2
+ rei(φ+ π

2
))

)]

−

−(
1

4
+
r

2
cos(φ+

π

2
)) +

1

2
log 2π +O

(1

r

)
=

=
r

2
cos(φ +

π

2
) log |r +

e−i(φ+π
2
)

2
| − 1

4
log |r +

e−i(φ+π
2
)

2
|−

− r
2

sin(φ+
π

2
)Arg(

1

2
+ rei(φ+ π

2
)) − r

2
cos(φ+

π

2
)(1 + log 2)+

+
1

4
(log 2 − 1) +

1

2
log 2π + O

(1

r

)
.

�
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