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Abstract

A partition of the class of all Hermite-Biehler of finite order into sub-
classes Pκ is introduced. The belonging of a given function E(z) to Pκ

is characterized by −z
−1 log E(z) ∈ Nκ. Hereby, the class Nκ is a well

studied family of meromorphic functions on the upper half plane, which
originates from operator theoretic problems. We also prove that the in-
troduced subclasses are stable under bounded type perturbation.

AMS Classification Numbers: 30D15, 30D10, 46C20

1 Introduction

In [dB] the Polya class P is defined as the set of all entire functions E such that
E has no zeros in the open upper half plane C+, satisfies |E(z)| ≤ |E(z)| for all
z ∈ C+ and possesses the property that |E(x + iy)| is, for each fixed x ∈ R, a
nondecreasing function of y > 0. This class of entire functions has in fact been
studied rather closely (cf. e.g. [B] or [L]) and origins from some investigations
of G.Polya (cf. [Po]). It is a well known fact (cf. e.g. [dB, Theorem 7]) that a

function E belongs to P if and only if (we denote by (zn)
N(E)
n=1 , N(E) ∈ N0∪{∞},

the sequence of nonzero zeros of E counted according to their multiplicities)

N(E)∑

n=1

1 − Im zn

|zn|2
< ∞,

and E allows the product representation

E(z) = czrep(z)−ihz

N(E)∏

n=1

(
1 −

z

zn

)
ez Re 1

zn , (1.1)

where p(z) = p2z
2 + p1z is a real polynomial with p2 ≤ 0, h ≥ 0, c ∈ C and

r ∈ N0.
Let us recall (see e.g. [L]) that the Hermite-Biehler class HB is defined to

be the set of all entire functions F which are zerofree in C+ and satisfy

|F (z)| ≤ |F (z)|, z ∈ C
+.

Note that, a forteriori, P ⊆ HB.
Denote by N0 the Nevanlinna class of all functions f analytic in C+ which

have the property that f(C+) ⊆ C+ ∪ R. In [dB, Theorem 14] the following
connection between the classes P and N0 was established: Let E ∈ HB, E(0) =
1, be given and define log E(z) analytically on C+ ∪{0} such that log E(0) = 0.
Then E ∈ P if and only if

−
log E(z)

z
∈ N0.
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It is the aim of this note to provide an analogous result in a more general frame-
work. Starting from the product representation (1.1) we define a generalization
of Polya class:

1.1 Definition. Let κ ∈ N0. An entire function E is said to belong to the class
P≤κ if it belongs to HB, satisfies

N(E)∑

n=1

1

|zn|2κ+2
< ∞, (1.2)

and admits the product representation

E(z) = czrep(z)−ihz

N(E)∏

n=1

(
1 −

z

zn

)
e

z Re 1
zn

+...+z2κ+1 Re 1

(2κ+1)z
2κ+1
n , (1.3)

where p(z) = p2κ+2z
2κ+2 + . . .+p1z is a real polynomial with p2κ+2 ≤ 0, h ≥ 0,

c ∈ C and r ∈ N0.
For κ ≥ 1 we put Pκ := P≤κ \ P≤κ−1 and refer to Pκ as the generalized

Polya class of index κ. Instead of P≤0 we shall also write P0.

This definition is consistent with the previously defined notion of the Polya
class P : We have P = P0.

Let us recall the notion of generalized Nevanlinna class: Let κ ∈ N0 and let
f be meromorphic in C+. Then f is said to belong to the class N≤κ if for any
choice of n ∈ N and points z1, . . . , zn in the domain of holomorphy of f the
quadratic form

n∑

i,j=1

f(zi) − f(zj)

zi − zj

ξiξj (1.4)

has at most κ negative squares. It is well known (cf. e.g. [Pi]) that this notation
is in the case κ = 0 consistent with the previously defined notion of N0: We
have N≤0 = N0. Again, for κ ≥ 1 we set Nκ := N≤κ \ N≤κ−1 and refer to Nκ

as the generalized Nevanlinna class with negativ index κ.
We are now in position to formulate the main results of this note. First an

exact analogue of [dB, Theorem 14]:

1.2 Theorem. Let E ∈ HB, E(0) = 1, and let log E(z) be defined analytically
on C+ ∪ {0} such that log E(0) = 0. Then E ∈ Pκ if and only if

−
log E(z)

z
∈ Nκ.

Secondly, a theorem which generalizes [dB, Problem 34], and turned out to
be a most useful tool in some investigations concerned with Hermite-Biehler
functions of finite order (cf. [KW3]).

Denote by N the set of all functions f analytic on C
+ which are of bounded

type in this half plane, i.e. can be represented as a quotient of two functions
analytic and bounded on C+.

1.3 Theorem. Let E, F ∈ HB, E(0) = F (0) = 1, be given and assume that
E
F

∈ N . Moreover, let κ ∈ N0. Then E ∈ Pκ if and only if F ∈ Pκ.
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This result states that the generalized Polya class is stable with respect to
bounded type perturbations. It gains significance particularly in view of the
following statement:

1.4 Proposition. We have
{
E ∈ HB : E is of finite order

}
=

⋃

κ∈N0

Pκ. (1.5)

More exactly: If E ∈ Pκ, then E ∈ HB and the order ρ of E satisfies ρ ∈
[2κ, 2κ+2]. Conversely, assume that E belongs to HB and that the order ρ of E

is finite. If ρ is not an even integer, then E ∈ Pκ where κ is the unique integer
with ρ ∈ (2κ, 2κ + 2). In case ρ ∈ 2Z, we have E ∈ P ρ

2−1 if E is of convergence
class and the coefficient of the power zρ in the polynomial q in the Hadamard
product

E(z) = czreq(z)

N(E)∏

n=1

(
1 −

z

zn

)
exp

[
z

zn

+ . . . +
1

ρ − 1

( z

zn

)ρ−1
]

is nonpositive. Otherwise E ∈ P ρ
2
.

Hence the set of all Hermite-Biehler functions of finite order is stable with
respect to bounded type perturbations.

Let us outline the contents of the following sections. In §2 we give the proof
of Proposition 1.4 which can be viewed also as a product representation for
Hermite-Biehler functions of finite order. This result is independent from the
other considerations and uses only the Hadamard factorization theorem and
some elementary facts concerning complex sequences. In the third section we
collect some facts about functions belonging to some generalized Nevanlinna
class. In fact, we provide appropriate forms of integral representation and fac-
torization theorems for functions of the class Nκ which are, in their original
formulations, due to [KL1] and [DLLS]. These are important ingredients for the
proof of our main results. The main task of §4 is to prove a couple of lemmata
which deal with functions of the form −z−1 log F (z). These lemmata will play,
besides the results of §3, a major role in establishing Theorem 1.2. The fifth,
and last, section is devoted to the proof of our main results Theorem 1.2 and
Theorem 1.3.

2 Product representation of Hermite-Biehler

functions

We start with the following elementary, but essential, observation:
Let (zj)j∈N be a sequence of nonzero complex numbers which does not ac-

cumulate at 0 and satisfies

∞∑

j=1

∣∣ Im 1

zj

∣∣ < ∞. (2.1)

Then for each k ∈ N
∞∑

j=1

∣∣ Im
1

zk
j

∣∣ < ∞. (2.2)
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In order to see this note that

2i Im
1

zk
j

=
( 1

zj

)k

−
( 1

zj

)k

=

[( 1

zj

)
−

( 1

zj

)]
·

k−1∑

l=0

( 1

zj

)l( 1

zj

)k−1−l

. (2.3)

Since |zj | is bounded away from 0, the second factor is for each fixed k ∈ N

bounded from above. The convergence of (2.2) now follows from the convergence
of (2.1).
Proof. (of Proposition 1.4) First assume that E ∈ P≤κ. Then by definition E

belongs to HB. The product representation (1.3) can, by virtue of (2.2), be
rewritten as

E(z) = czreq(z)

N(E)∏

n=1

(
1 −

z

zn

)
exp

[
z

zn

+ . . . +
1

2κ + 1

( z

zn

)2κ+1
]

,

where

q(z) = p(z) − ihz − i

2κ+1∑

l=1



zl

l

N(E)∑

n=1

Im
1

zl
n



 .

From this and (1.2) we conclude that the order of E is at most 2κ + 2.
Conversely assume that E belongs to HB and is of finite order ρ. Let κ be

the smallest integer with 2κ+2 > ρ. The convergent exponent ρ1 of the zeros of
E is at most equal to ρ, and hence (1.2) follows. By the Hadamard factorization
of E we have, again appealing to (2.2),

E(z) = czreq(z)

N(E)∏

n=1

(
1 −

z

zn

)
exp

[
z

zn

+ . . . +
1

2κ + 1

( z

zn

)2κ+1
]

=

= czrep(z)+ir(z)

N(E)∏

n=1

(
1 −

z

zn

)
exp

[
z Re

1

zn

+ . . . +
z2κ+1

2κ + 1
Re

1

z2κ+1
n

]

with real polynomials p and r of degree less than 2κ + 2. We obtain

E#(z)

E(z)
= e−2ir(z)B(z) (2.4)

where B denotes the Blaschke product associated with the sequence (zn)n∈N.
Since E ∈ HB, the quotient E−1E#, and hence the function exp[−2ir(z)] is
inner. In particular, exp[−2ir(z)] is of bounded type and nonpositive mean
type in C+. Hence r must be a linear polynomial and the coefficient of z must
be nonpositive. We conclude that E ∈ P≤κ.

The relation (1.5) readily follows. Also we conclude that, if E ∈ HB is
of finite order ρ 6∈ 2Z, then E ∈ Pκ where κ is such that 2κ < ρ < 2κ + 2.
Moreover, in the case ρ ∈ 2Z we either have E ∈ P ρ

2−1 or E ∈ P ρ
2
. The desired

assertion follows now on comparing the Hadamard product for E with the
product (1.3).

4



3 Some properties of Nκ functions

In this section we recall some results about Nκ functions. Let us start with the
case κ = 0. Every N0 function Q(z) can be written in a unique way as

Q(z) = a + bz +

∫

R

(
1

t − z
−

t

t2 + 1

)
(t2 + 1)dσ(t), (3.1)

where a, b ∈ R, b ≥ 0 and σ is a positive and finite Borel measure on R. Con-
versely, given a, b, σ, then the function represented by (3.1) is an N0 function.
The quantities in (3.1) can be obtained from Q(z) explicitly:

lim
yր∞

Q(iy)

iy
= b, lim

zc→β
(z − β)Q(z) = −(β2 + 1)σ({β}). (3.2)

Here z→̂β denotes the nontangential limit from the upper half-plane. Moreover,
the so-called Stieltjes Inversion formula holds (see e. g. [RR]):

π(

∫

(α,β)

(x2 + 1)dσ(x) +
α2 + 1

2
σ{α} +

β2 + 1

2
σ{β}) = (3.3)

lim
yց0

∫ β

α

Im Q(x + iy)dx.

As will be mentioned in Lemma 3.6 also Nκ functions for κ ≥ 0 admit an integral
representation (see [KL1], Satz 3.1).

Now we bring an elementary result concerning Nκ functions which will turn
out to be useful in the sequel.

3.1 Lemma. Let Q(z) ∈ Nκ, κ ∈ N∪{0}. If α ∈ C, then (z−α)(z− ᾱ)Q(z) ∈
Nκ′ , where κ′ ∈ {κ− 1, κ, κ+1}. The same is true for (z −α)−1(z − ᾱ)−1Q(z).
Moreover, if in addition Q̃(z) ∈ Nκ̃, κ ∈ N ∪ {0}, then Q(z) + Q̃(z) ∈ N≤κ+κ̃.

Proof. For simplicity we assume α = 0. Consider the following relation

z2Q(z) − w̄2Q̄(w)

z − w̄
= zQ(z) + w̄Q̄(w) + zw̄

Q(z) − Q̄(w)

z − w̄
.

Thus the kernel on the left hand side is the sum of a kernel with one positive and
one negative square and a kernel with κ negative squares. Hence z2Q(z) ∈ Nκ′

with κ′ ∈ {κ − 1, κ, κ + 1}. The second assertion can be treated similarly.
If in addition Q̃(z) ∈ Nκ̃, then the quadratic form (1.4) with f(z) replaced

by Q(z) + Q̃(z) is the sum of the corresponding quadratic forms for Q(z) and
Q̃(z), and hence, by standard Linear Algebra arguments it has at most κ + κ̃

negative squares.

To get a better understanding for the structure of an Nκ function we in-
troduce the following notation. Given Q(z) ∈ Nκ a point β in R is called a
generalized zero of nonpositive type of multiplicity d, if

1. limzc→β
Q(z)

(z−β)2d−1 is finite and nonpositive,

2. limzc→β
Q(z)

(z−β)2d+1 is finite and positve, or is ∞.
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The point ∞ is called a generalized zero of nonpositive type of multiplicity d, if
0 has this property for the function Q(−z−1). It is elementary to see that this
function again belongs to Nκ. A number β in the upper half-plane is called a
generalized zero of nonpositive type of multiplicity d, if it is a zero of order d. If
β is no generalized zero of nonpositive type, we also say that β is a generalized
zero of nonpositive type of multiplicity zero.

A number β ∈ R ∪ {∞} ∪ C+ is called a generalized pole of nonpositive
type of multiplicity d, if this number is a generalized zero of nonpositive type of
multiplicity d for the Nκ function −Q(z)−1. Note that a number β cannot be
generalized zero and pole of nonpositive type for the same function. See [DLLS]
for further details.

For an Nκ function the sum of the multiplicities of all its generalized zeros
of nonpositive type is exactly κ. The same is true for its generalized poles
of nonpositive type. The most striking result concerning this concept is the
following (see [DLLS]).

3.2 Theorem. Let the function Q(z) ∈ Nκ, κ ∈ N ∪ {0}, be given and let
κ1, κ2 ∈ {0, . . . , κ} be such that κ − κ1 (κ − κ2) is the multiplicity of ∞ as a
generalized pole (zero) of nonpositive type. Then at least one of the numbers
κ1, κ2 coincides with κ.

Moreover, if α1, . . . , ακ1 are the generalized poles of nonpositive type of Q(z)
in R∪C+ and if β1, . . . , βκ2 are the generalized zeros of nonpositive type of Q(z)
in R ∪ C+, all counted according to their multiplicities, then the function

Q(z)

∏
j=1,...,κ1

(z − αj)(z − ᾱj)∏
j=1,...,κ2

(z − βj)(z − β̄j)

belongs to the class N0.

As an immediate corollary we formulate

3.3 Corollary. Let Q(z) belong to Nκ, κ ∈ N∪ {0}, with ∞ as its only gener-
alized pole of nonpositive type. Then κ is the multiplicity of ∞ as a generalized
pole of nonpositive type.

If β1, . . . , βκ denote the generalized zeros of nonpositive type of Q(z), then
the function

Q(z)∏
j=1,...,κ(z − βj)(z − β̄j)

,

belongs to N0.

3.4 Corollary. If p(z) is a real polynomial of degree d, then p(z) ∈ Nκ, where
κ = d

2 for even p. For odd d we have κ = d−sgn ad

2 , where ad is the coefficient
of zd in p(z).

Proof. Since a constant real valued function belongs to N0 and since bz ∈ N0

for b ≥ 0 and bz ∈ N1 for b < 0, we obtain from Lemma 3.1 that bzn belongs to
N≤n. By the second half of that lemma p(z) ∈ Nν for some finite ν ∈ N ∪ {0}.

On the other hand it is easy to check that p(z) has its only generalized pole
of nonpositive type at ∞ and this pole has multiplicity κ, where κ is as stated
in the corollary. Now we are done, because the sum of the multiplicities of the
poles of nonpositive type agrees with ν.
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3.5 Corollary. Let Q(z) be an Nκ, κ ∈ N, having ∞ as generalize pole of non-
positive type of multiplicity d ∈ N. If l ∈ N, l ≥ d, and p(z) is any polynomial
of degree at most 2l, then Q(z) + p(z) ∈ N≤(κ−d+l).

Proof. By Corollary 3.4 and Lemma 3.1 Q(z) + p(z) ∈ N≤κ+d. To ob-
tain a sharper estimation for ν such that Q(z) + p(z) ∈ Nν , note that the
generalized poles of nonpositive type different from ∞ and their respective
multiplicity are the same for Q(z) and Q(z) + p(z). Moreover, an elemen-
tary limit calculation shows that the multiplicity of the generalized pole of
nonpositive type ∞ for Q(z)+p(z) is at most l. Since the sum of the multiplici-
ties of the generalized poles of nonpositive type is ν, we obtain ν ≤ κ−d+ l

We will extensively make use of the following lemma in the proof of our main
results.

3.6 Lemma. Let Q(z) belong to Nκ, κ ∈ N∪{0} with ∞ as its only generalized
pole of nonpositive type. Let Q(z) be represented in the form (cf. [KL1], Satz
3.1)

Q(z) =

∫

R



 1

t − z
− (t + z)

κ+1∑

j=1

(1 + z2)j−1

(t2 + 1)j



 (t2 + 1)dµ(t) + R(z), (3.4)

where R(z) is a real polynomial of degree at most 2κ + 1 and where
∫

R

(1 + t2)−κdµ(t) < ∞.

If d ∈ N, d ≥ κ, then we have

Q(z)

(z2 + 1)d
= b0z + R0(

1

z − i
) + R

#
0 (

1

z + i
) + Q0(z), (3.5)

where b0 ∈ R, b0 ≥ 0 and b0 = 0 in the case d > κ. R0(z) is a polynomial of
degree at most d and the function Q0(z) belongs to N0, such that in its integral
representation the constants a and b vanish and the measure σ is given by

dσ =
dµ

(t2 + 1)d
.

Proof. First assume that d = κ and consider the relation

1

(z2 + 1)κ



 1

t − z
− (t + z)

κ+1∑

j=1

(1 + z2)j−1

(t2 + 1)j



 =
1

(t2 + 1)κ

(
1

t − z
−

t + z

t2 + 1

)
.

Using (3.1) we obtain the relation (3.5) with some real constant b0. To show that
b0 ≥ 0 note that for a an N0 function Q̃(z) as in (3.1) with the corresponding
notation one has

lim
yր∞

Q̃(iy)

iy
= b̃ ≥ 0.

Thus by Corollary 3.3 and a little bit of limit calculation we see that

lim
yր∞

Q(iy)

iy((iy)2 + 1)κ
= b0 ≥ 0.
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In the case d > κ we have

1

(z2 + 1)d



 1

t − z
− (t + z)

κ+1∑

j=1

(1 + z2)j−1

(t2 + 1)j



 =

=
1

(t2 + 1)d



 1

t − z
+

t + z

t2 + 1

d−κ−1∑

j=1

(
t2 + 1

z2 + 1

)j


 ,

and we see from (3.4) that (3.5) holds with b0 = 0.

4 Preparatory results

We turn to the investigation of the function

L(w; z) := −
log(1 − z

w
)

z
,

where w ∈ C− ∪ R \ {0} and the branch of the logarithm is chosen such that
log 1 = 0. Note that L(w; z) is analytic on C with exception of a path connecting
w and ∞. We shall always choose a path which entirely belongs to the lower half
plane, so that L(w; z) can be considered as an analytic function on C+∪R\{w}.
Of course one can similarly define L(w; z) for w ∈ C+ ∪ R \ {0}, in which case
L(w; z) will be considered as analytic function on C− ∪R \ {w}. Note that with
these definitions L(w; z) = L(−w;−z), z ∈ C+, C− ∪ R \ {0}.

4.1 Lemma. Let w ∈ C− ∪ R \ {0}, then L(w; z) ∈ N0. In particular
Im L(w; t) ≥ 0 for t ∈ R \ {w}. In the integral representation (3.1) one has
b = 0 and

π dσ(t) =
Im L(w; t)

t2 + 1
dt.

A similar integral representation (for the lower half plane) holds in the case that
w ∈ C+ ∪ R \ {0}.

Proof. The fact that the function under consideration belongs to N0 is proved
in [dB, Theorem 14]. Hence it admits a representation of the form (3.1). From
(3.2) and (3.3) we obtain b = 0 and the desired formula for dσ.

4.2 Lemma. Let w ∈ C, |w| ≥ 2, and let p ∈ N, p > 2. Then the following
estimates are valid:

∣∣∣Re
1

wp−1
arg

1

1 − w

∣∣∣ ≤ (p − 1)

∞∫

1

Im L(w; t)

|t|p−1
dt + p2

∣∣ Im 1

w

∣∣, (4.1)

∣∣∣ Re
1

wp−1
arg

1

1 + w

∣∣∣ ≤ (p − 1)

−1∫

−∞

Im L(w; t)

|t|p−1
dt + p2

∣∣ Im 1

w

∣∣, (4.2)
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Proof. Since (4.2) follows from (4.1) by the obvious substitution of variables
(w 7→ −w, t 7→ −t), it suffices to establish the first estimate. The case w ∈ R

can be settled in a couple of lines and hence will be postponed. For the core of
the proof we will assume that w 6∈ R.

Fix w ∈ C \ R, |w| ≥ 2, and p ∈ N, p > 2. Note that for t > 0 we have

Im L(w; t)

|t|p−1
= − Im

log(1 − t
w

)

tp
.

By elementary calculus we obtain (differentiate both sides to establish equality)

(p − 1)

∫
log(1 − t

w
)

tp
dt =

= −
1

tp−1
log

(
1 −

t

w

)
+

1

wp−1
log

(1

t
−

1

w

)
+

p−2∑

j=1

1

jwp−1−j

1

tj
.

(4.3)

Since w 6∈ R the function log(1 − w−1t) can be defined continuously on R. We
choose log z analytic on C \ (−∞, 0] such that Im log z = arg z ∈ (−π, π). This
corresponds to defining log(1 − w−1z) analytically on C \ {uw : u ≥ 1}. Note
that with this choice of arg z we always have log(z−1) = − log z. Moreover, since
z and 1+z−1 cannot both belong to the same halfplane C+ or C−, respectively,
we have log z + log(1 + z−1) = log(z + 1). Evaluation of the integral (4.3) now
yields

I+(w) :=

∞∫

1

log(1 − t
w

)

tp
dt =

=
log(1 − 1

w
)

p − 1
+

1

(p − 1)wp−1
log

1

1 − w
−

1

p − 1

p−2∑

j=1

1

jwp−1−j
.

Taking the imaginary part of this relation it follows that

Re
1

wp−1
arg

1

1 − w
= (p − 1) Im I+(w) − Im

1

wp−1
ln

∣∣ 1

1 − w

∣∣−

− arg
(
1 −

1

w

)
+

p−2∑

j=1

1

j
Im

1

wp−1−j
.

(4.4)

The second term on the right hand side of (4.4) can be estimated from above
by making use of (2.3). Note that, since |w| ≥ 2 and p > 2, surely

∣∣ ln |1 − w|
∣∣ ≤ ln

(
1 + |w|

)
≤ |w|p−2.

Hence we get

∣∣∣ Im
1

wp−1
ln

∣∣ 1

1 − w

∣∣
∣∣∣ ≤

∣∣ Im 1

w

∣∣ ·
∣∣∣

p−2∑

k=0

1

wkw̄p−2−k

∣∣∣ · ln |1 − w| ≤

≤
∣∣ Im 1

w

∣∣ · p − 1

|w|p−2
· ln(1 + |w|) ≤ (p − 1)

∣∣ Im
1

w

∣∣.
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Concerning the third term on the right hand side of (4.4) we have (|w| ≥ 2
implies 1 − Re 1

w
≥ 1

2 )

∣∣ arg
(
1 −

1

w

)∣∣ = arctan
| Im 1

w
|

1 − Re 1
w

≤
| Im 1

w
|

1 − Re 1
w

≤ 2
∣∣ Im 1

w

∣∣.

Moreover, for j = 1, . . . , p − 2 and |w| ≥ 2,

∣∣ Im 1

wp−1−j

∣∣ =
∣∣ Im

1

w

∣∣ ·
∣∣∣

p−2−j∑

k=0

1

wkw̄p−2−j−k

∣∣∣ ≤ (p − 1)
∣∣ Im 1

w

∣∣.

Alltogether we obtain the following estimate:

∣∣∣Re
1

wp−1
arg

1

1 − w

∣∣∣ ≤

≤ (p − 1)
∣∣ Im I+(w)

∣∣ + (p − 1)
∣∣ Im

1

w

∣∣ + 2
∣∣ Im 1

w

∣∣ + (p − 2) · (p − 1)
∣∣ Im 1

w

∣∣ ≤

≤ (p − 1)
∣∣ Im I+(w)

∣∣ + p2
∣∣ Im 1

w

∣∣,

which gives the desired conclusion.
It remains to consider the case w ∈ R. For w ≥ 1 we have

Im I+(w) =

∞∫

1

Im
log(1 − t

w
)

tp
dt =

∞∫

w

πt−p dt = −
π

p − 1

1

wp−1
,

whereas I+(w) = 0 for w < 0. This shows that for w ∈ R, w 6∈ [0, 1),

∣∣∣Re
1

wp−1
arg

1

1 − w

∣∣∣ ≤ (p − 1)
∣∣ Im I+(w)

∣∣.

4.3 Corollary. Let (zj)j∈N be a sequence of nonzero complex numbers belonging
to the closed lower half plane which has no finite accumulation point and satisfies∑∞

j=1 Im 1
zj

< ∞. Moreover, let κ ∈ N ∪ {0} be fixed. If

∞∑

j=1

∫

R

Im L(zj ; t)

(1 + t2)1+κ
dt < ∞,

then also
∞∑

j=1

∣∣∣ Re
1

z2+2κ
j

∣∣∣ < ∞ (4.5)

Proof. As the sequence under consideration has no accumulation point in the
complex plane, it is no loss of generality to assume that |zj | ≥ 2 for all j ∈ N.

If w is a point of the left halfplane which lies outside the disk {z ∈ C : |z| <

2}, then w+1 and hence also (w+1)−1 lie outside the angle {z ∈ C : | arg z| < γ}
with γ = arctan 2. Hence we have | arg(1+zj)

−1| ≥ γ for arg zj ∈ [−π,−π
2 ] and

| arg(1 − zj)
−1| ≥ γ for arg zj ∈ [−π

2 , 0].
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From Lemma 4.2 and the fact that 2t2 ≥ t2 + 1 for t ∈ R \ (−1, 1) we find
that

∣∣∣ Re
1

z2+2κ
j

∣∣∣ ≤






1
γ

∣∣Re 1
z
2+2κ
j

arg 1
1+zj

∣∣ , arg zj ∈ [−π,−π
2 ]

1
γ

∣∣Re 1
z
2+2κ
j

arg 1
1−zj

∣∣ , arg zj ∈ [−π
2 , 0]




 ≤

≤
2 + 2κ

γ

∫

R\(−1,1)

Im L(zj ; t)

|t|2+2κ
dt + (3 + 2κ)2

∣∣ Im 1

zj

∣∣ ≤

≤
(2 + 2κ)21+κ

γ

∫

R\(−1,1)

Im L(zj; t)

(t2 + 1)1+κ
dt + (3 + 2κ)2

∣∣ Im 1

zj

∣∣

We have obtained a convergent majorant for the series (4.5).

If E ∈ HB, E(0) = 1, we can similarly consider the function

L(E; z) := −
logE(z)

z
, z ∈ C

+.

Obviously L(E; z) is analytic on C+ ∪ R with exception of the real zeros of E.
It is important to note that, although we can of course in general not expect

L(E; z) to belong to N0, positivity on the real axis is retained: Let us show that
for E ∈ HB, E(0) = 1,

Im L(E; t) ≥ 0, t ∈ R. (4.6)

For any x0 ∈ R with E(x0) 6= 0 we have

0 ≤

(
∂

∂y
Re log E

)
(x0) =

(
∂

∂x
Im

(
− log E

))
(x0),

whereas at a point x0 ∈ R which is a zero of E of multiplicity r

Im
(
− log E(x+)

)
− Im

(
− log E(x−)

)
= rπ.

Hence Im(− log E(x)) is nondecreasing on R. Our assumption E(0) = 1 ensures
that Im(−x−1 log E(x)) is nonnegative for all x ∈ R.

Moreover, an elementary consideration shows that for any sequence (zn)n∈N,
zn ∈ C+, with limn→∞ zn = x0 ∈ R, we have

lim sup
n→∞

Im
(
− log E(zn)

)
∈

[
Im

(
− log E(x−)

)
, Im

(
− log E(x+)

)]
. (4.7)

In particular the function ImL(E; z) is bounded on every bounded subset of
C+ ∪ {x ∈ R : E(x) 6= 0}.

Under the hypotheses that L(E; z) belongs to some generalized Nevanlinna
class, the analyticity of E along the real axis implies a sharp result on the
integral representation of L(E; z).

4.4 Lemma. Let E ∈ HB, E(0) = 1, be given and assume that L(E; z) ∈ N≤κ.
Then L(E; z) has no pole of nonpositive type other than ∞. In the integral
representation (3.5) which reads as (d ≥ κ)

L(E; z)

(z2 + 1)d
= b0z + R0

( 1

z − i

)
+ R

#
0

( 1

z + i

)
+

∫

R

( 1

t − z
−

t

t2 + 1

)
(t2 + 1) dσ(t)

11



the measure dσ(t) is given as

dσ(t) =
Im L(E; t)

π(t2 + 1)d
dt. (4.8)

Proof. Since E is analytic on R, for any x0 ∈ R we can write E(z) = (z −
x0)

rE1(z) and a direct calculation using the definition of a generalized pole of
nonpositive type verifies that x0 cannot be such a generalized pole. Clearly,
L(E; z) also has no generalized pole of nonpositive type in C+.

In order to obtain the formula (4.8) we apply the Stieltjes Inversion formula
(3.3) to the representation (3.5) of L(E; z) and obtain with the notation of
Lemma 3.6 for a < b

∫

(a,b)

(x2 + 1)dσ(x) +
a2 + 1

2
σ{a} +

b2 + 1

2
σ{b} =

1

π
lim
yց0

b∫

a

Im Q0(x + iy) dx.

As all addends but Q0(z) on the right hand side of (3.5) are real we obtain by
Lebesgue’s Bounded Convergence Theorem

lim
yց0

b∫

a

Im Q0(x + iy) dx = lim
yց0

b∫

a

Im L(E; z)(
(x + iy)2 + 1

)κ dx =

b∫

a

Im L(E; x)

(x2 + 1)κ
dx.

5 Proof of the main results

We start with the proof of Theorem 1.2. Let E ∈ HB, E(0) = 1, be fixed. We
have to show that E ∈ Pκ if and only if L(E; z) = −z−1 log E(z) ∈ Nκ. Note
that the case κ = 0 is nothing else but [dB, Theorem 14], hence we may assume
throughout that κ > 0.
Proof. (of Theorem 1.2, necessity) Let E ∈ Pκ and write as in the definition of
Pκ

E(z) = ep(z)−ihz

N(E)∏

n=1

(
1 −

z

zn

)
e

z Re 1
zn

+...+z2κ+1 Re 1

(2κ+1)z
2κ+1
n .

Then, with rn(z) = −
(
Re 1

zn
+ . . . + z2κ Re 1

(2κ+1)z2κ+1
n

)
,

L(E; z) = −
p(z)

z
+ ih +

N(E)∑

n=1

(
L(zn; z) + rn(z)

)
=

= lim
N→∞



ih +
(
−

p(z)

z
+

min{N,N(E)}∑

n=1

rn(z)
)

+

min{N,N(E)}∑

n=1

L(zn; z)



 .

Since rn is a real polynomial of degree at most 2κ and −z−1p(z) has degree
at most 2κ + 1 where the coefficient of z2κ+1 is nonnegative, by Corollary 3.4
the polynomial in the rounded brackets belongs to N≤κ. Since L(zn; z) and

12



the constant function ih belong to N0, Lemma 3.1 shows that the function in
the square brackets belongs to N≤κ. As a limit of functions belonging to N≤κ

the function L(E; z) also belongs to N≤κ. This can be seen by considering the
respective quadratic forms (1.4) and the fact that the limit of quadratic forms
of at most κ negative squares has the same property.

Proof. (of Theorem 1.2, sufficiency) Let E ∈ HB, E(0) = 1, with L(E; z) ∈ N≤κ

be given. For the proof that E ∈ P≤κ we will first settle the particular case
that E is zerofree. Then the general case is reduced to this particular one.

Step 1: Assume that E has no zeros. Then E−1E# is an inner function on C+

which has no zeros and is analytic on C∪R. Thus this function equals exp(2ihz)
for some h ≥ 0 (see e.g. Theorem 9 in [dB]). We conclude that exp(ihz)E(z) is
a real function without zeros and, therefore, that

Im L(E; x) = h, x ∈ R.

Applying Lemma 4.4 to L(E; z)(∈ N≤κ) as well as to the function ih(∈ N0) we
obtain

L(E; z)

(z2 + 1)κ
= b0z + R1

( 1

z − i

)
+ R

#
1

( 1

z + i

)
+

∫

R

( 1

t − z
−

t

t2 + 1

) h dt

(t2 + 1)κ
,

ih

(z2 + 1)κ
= R2

( 1

z − i

)
+ R

#
2

( 1

z + i

)
+

∫

R

( 1

t − z
−

t

t2 + 1

) h dt

(t2 + 1)κ
.

(5.1)
where b0 ≥ 0 and R1, R2 are polynomials of degree at most κ. Thus −z(L(E; z)−
ih) = p(z) for some real polynomial p(z) of degree at most 2κ+2 with p(0) = 0
and with coefficient −b0(≤ 0) for the power z2κ+2. We conclude that E ∈ P≤κ.

Step 2: Given arbitrary E ∈ HB, E(0) = 1, with L(E; z) ∈ N≤κ, we are going
to factor out finitely many zeros without changing the assumptions on E. More
exactly we shall prove the following: Let z1, . . . , zN be zeros of E and put

EN (z) :=
E(z)

∏N

j=1(1 − z
zj

)
.

Then EN ∈ HB, EN (0) = 1 and L(EN ; z) ∈ N≤κ.
Since E ∈ HB, the function E−1E# is inner. Hence also, by taking out a

part of the Blaschke product,

E
#
N (z)

EN (z)
=

N∏

j=1

1 − z
zj

1 − z
zj

·
E#(z)

E(z)

is inner and thus EN ∈ HB. Obviously EN (0) = 1, and we have

L(EN ; z) = L(E; z) − L
( N∏

j=1

(
1 −

z

zj

)
; z

)
= L(E; z) −

N∑

j=1

L(zj ; z).

By assumption L(E; z) ∈ N≤κ and by Lemma 4.1
∑N

j=1 L(zj; z) ∈ N0. Recall
now that we assumed throughout the present proof that κ > 0. Therefore,
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Lemma 4.4 implies

L(EN ; z)

(z2 + 1)κ
= b0z + R

( 1

z − i

)
+ R#

( 1

z + i

)
+

∫

R

( 1

t − z
−

t

t2 + 1

)
(t2 + 1) dµ(t)−

−

∫

R

( 1

t − z
−

t

t2 + 1

)
(t2 + 1) dσN (t) =

= b0z + R
( 1

z − i

)
+ R#

( 1

z + i

)
+

∫

R

( 1

t − z
−

t

t2 + 1

)
(t2 + 1) dν(t)

where

dµ(t) =
Im L(E; t)

(t2 + 1)κ
dt, dσN (t) =

∑N

j=1 Im L(zj; z)

(t2 + 1)κ
dt,

and

dν(t) = dµ(t) − dσN (t) =
Im L(EN ; z)

(t2 + 1)κ
dt. (5.2)

By (4.6) we know that dν is a positive measure. Hence Lemma 3.1 and Corollary
3.5 yield L(EN ; z) ∈ N≤κ.

Combining the result of the current step with the knowledge provided in Step
1, we see that the case that E has only finitely many zeros is readily settled.

Step 3: In the last step we shall employ a limiting argument in order to prove
the following: Let (zj)j∈N be the sequence of zeros of E. Then

∞∑

j=1

1

|zj|2κ+2
< ∞. (5.3)

The product

P (z) :=

∞∏

j=1

(
1 −

z

zj

)
e

z Re 1
zj

+...+z1+2κ Re 1

(1+2κ)z
1+2κ
j (5.4)

converges locally uniformly on C and

L
(E

P
; z

)
∈ N≤κ.

Once this claim is established the proof of sufficiency is completed by an appli-
cation of Step 1 to the function P−1E.

Since the measure dν in (5.2) is positive, we have for all N ∈ N

N∑

j=1

∫

R

Im L(zj ; t)

(t2 + 1)κ+1
dt =

∫

R

dσN (t) ≤

∫

R

dµ(t) < ∞

An application of Corollary 4.3 yields

∞∑

j=1

∣∣Re
1

z2κ+2
j

∣∣ < ∞.
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Since E ∈ HB and therefore satisfies (2.2), we find that in fact (5.3) holds. Again
appealing to (2.2) we conclude that with the Weierstraß product for (zj)j∈N also
the product (5.4) converges.

Consider the function

GN (z) := E(z) ·




N∏

j=1

(
1 −

z

zj

)
e

z Re 1
zj

+...+z1+2κ Re 1

(1+2κ)z
1+2κ
j




−1

Then L(GN ; z) and L(EN ; z) differ only by a polynomial of degree at most 2κ

and Corollary 3.5 implies that with L(EN ; z) also L(GN ; z) belongs to N≤κ.
Hence

L
(E

P
; z

)
= lim

N→∞
L(GN ; z) ∈ N≤κ.

We turn to the proof of Theorem 1.3. It will employ the Phragmen-Lindelöf
principle in the following version (which is a slight extension of [dB, Theorem
1] and is proved exactly the same).

5.1 Theorem (Phragmen-Lindelöf principle). Let f be analytic in C+ and
assume that |f(z)| has a continuous extension to a set Ω which contains C+∪R

with possible exception of a discrete subset of R. Moreover, assume that

lim inf
r→∞

1

r

π∫

0

log+ |f(reiθ)| sin θ dθ = 0

and that for all x ∈ R

lim sup
z→x,z∈Ω

|f(z)| ≤ 1.

Then |f(z)| ≤ 1 for all z ∈ C+.

In order to apply Theorem 5.1 we need the following

5.2 Lemma. If Q(z) ∈ N0 and in its integral representation (3.1) we have
b = 0, then

lim
r→+∞

1

r

π∫

0

|Q(reiθ)| sin θ dθ = 0.

Proof. With the notation of (3.1) we can assume that a = 0 and calculate

0 ≤
1

r

π∫

0

|Q(reiθ)| sin θdθ ≤

π∫

0

∫

R

sin θ

r

∣∣∣∣
1 + treiθ

t − reiθ

∣∣∣∣ dσ(t) dθ. (5.5)

The integrand converges pointwise (for all t, θ) to zero as r converges to +∞.
Moreover, as

sin θ

r

1 + treiθ

t − reiθ
= sin θeiθ +

1
r

+ e2iθ

t−r cos θ
sin θ

− ir
,
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the integrand is bounded by (r > 1)

1 +
1
r

+ 1

r
≤ 3.

The Bounded Convergence Theorem yields that (5.5) converges to zero as r

tends to +∞.

Proof. (of Theorem 1.3) Assume that E ∈ Pκ and E−1F ∈ N . By Theorem
1.2 and since the roles of E and F may be exchanged, it suffices to prove that
L(F ; z) ∈ N≤κ.

Denote by R((z − i)−1) the principal part of the Laurent expansion of (z2 +
1)−κL(F ; z) at i. Hence R is a polynomial of degree at most κ and the function

ϕ(z) :=
L(F ; z)

(z2 + 1)κ
− R

( 1

z − i

)
− R#

( 1

z + i

)

is analytic in C+. We shall show by an application of the Phragmen-Lindelöf
principle that exp(iϕ(z)) is bounded by 1 in C+ or, equivalently, that ϕ ∈ N0.

Let us proceed checking the assumptions of Theorem 5.1 one after another.
The function exp(iϕ(z)) is analytic in C+ and continuous on the real line with
exception of the zeros of F which of course form a discrete set. Moreover, by
(4.6) and (4.7), we have

Im ϕ(t) = Im
L(F ; t)

(t2 + 1)κ
≥ 0, t ∈ R, F (t) 6= 0,

and

lim inf
z→x, z∈C+

Im
L(F ; z)

(z2 + 1)κ
≥ 0. (5.6)

Hence the boundedness condition along the real line is satisfied.
It remains to show that

lim inf
r→+∞

1

r

π∫

0

log+
∣∣ exp(iϕ(reiθ))

∣∣ sin θ dθ = 0. (5.7)

Note that | exp(iϕ(z))| = exp(− Im ϕ(z)). The function ϕ(z) can be written as

ϕ(z) =
L

(
F
E

; z
)

(z2 + 1)κ
+

L(E; z)

(z2 + 1)κ
− R

( 1

z − i

)
− R#

( 1

z + i

)
(5.8)

Since we assume that E−1F ∈ N and obviously this function has no zeros in
the upper half plane, [dB, Theorem 9] yields that

log
F (z)

E(z)
= cz + Q1(z) − Q2(z),

with c ∈ R and Q1, Q2 ∈ N0 such that in the respective representations (3.1) of
Q1 and Q2 the constant b equals zero. Moreover, by assumption L(E; z) ∈ Nκ.
Hence, according to Lemma 3.6 we may write

L(E; z)

(z2 + 1)κ
= R0

( 1

z − i

)
+ R

#
0

( 1

z + i

)
+ b0z + Q0(z). (5.9)
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We collected the rational terms in (5.8) and (5.9)

S(z) := R
( 1

z − i

)
+ R#

( 1

z + i

)
− R0

( 1

z − i

)
− R

#
0

( 1

z + i

)

and obtain (say for |z| ≥ 2)

− Imϕ(z) = Im
cz + Q1(z) − Q2(z)

(z2 + 1)κ
+ Im S(z) − Im

(
b0z + Q0(z)

)
≤

≤ Im
cz + Q1(z) − Q2(z)

(z2 + 1)κ
+ Im S(z) ≤

≤

∣∣∣∣
c

(z2 + 1)κ

∣∣∣∣ + |Q1(z)| + |Q2(z)| + |S(z)| (5.10)

The first as well as the last summand in (5.10) is bounded and hence does not
contribute to the limes inferior in (5.7). Lemma 5.2 now implies (5.7).

We have proved that ϕ(z) ∈ N0. By Lemma 3.1,

(z2 + 1)κϕ(z) ∈ N≤κ.

It is easy to see that this function has no finite generalized poles of nonpositive
type. Since (z2 + 1)κϕ(z) and L(F ; z) differ only by a polynomial of degree at
most 2κ we may apply Corollary 3.5 to obtain L(F ; z) ∈ N≤κ.
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[K] M.Kaltenbäck: Hermitian indefinite functions and Pontryagin spaces of entire

functions,

Integral Equations Operator Theory 35 (1999), 172-197.
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