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Abstract

We continue the investigations of the indefinite generalization of L. de
Branges theory of Hilbert spaces of entire functions. In this paper we are
concerned with the detailed study of degenerated dB-subspaces of a dB-
Pontryagin space, and of singularities of maximal chains of matrix functions.
These phenomena are typical for the indefinite situation; there are no definite
analogues. The main theorem is a continuity result for so-called intermediate
Weyl coefficients. As a basic tool we introduce and investigate a certain
transformation of maximal chains of matrix functions.

1 Introduction

The present paper is a continuation of our earlier work [KW3] and [KW4]. It
is mainly concerned with detailed studies of singularities of maximal chains of
matrix functions. These studies are tightly connected with an investigation of the
degenerated dB-subspaces of a given dB-Pontryagin space.

In order to provide a more detailed explanation, let us recall a couple of def-
initions. For a function F (z) denote by F#(z) the function F#(z) := F (z). We
call F real, if F# = F . A 2 × 2-matrix function W (z) = (wij(z))

2
i,j=1 with real

and entire entries wij(z) such that W (0) = 1 is said to belong to the class Mκ if
detW (z) = 1 and if the kernel

HW (z, w) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ C,

has κ negative squares. Here J denotes the signature matrix

J :=

(

0 −1
1 0

)

Different from [KW2] we added here for notational convenience the condition
W (0) = 1 to the definition of Mκ. For W ∈ Mκ we denote by ind−W the
number of negative squares of HW (z, w), i.e. ind−W = κ.

Definition 1.1. A maximal chain of matrix functions is a family (Wt)t∈I which
satisfies:

(W1) The index set I equals (0,M), 0 < M ≤ ∞, with the possible exception of
finitely many points.
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(W2) For each t ∈ I the 2 × 2-matrix function Wt(z) belongs to Mκ(t) for some
κ(t) ∈ N∪{0}. The function t 7→Wt is not constant on any interval contained
in I.

(W3) If s, t ∈ I, s ≤ t, then κ(s) ≤ κ(t) and Wst := W−1
s Wt ∈ Mκ(t)−κ(s).

(W4) If t ∈ I and for some W ∈ Mν , ν ≤ κ(t), we have W−1Wt ∈ Mκ(t)−ν , then
there exists a number s ∈ I such that W = Ws.

(W5) The limit limtրM Wt does not exist, and if I is not connected, there exist
numbers s < t, both contained in the last connected component I∞ of I
(that is sup I∞ = M), such that Wst(z) is not a linear polynomial, i.e.
W ′
st(z) is not constant.

The points belonging to (0,M) \ I are called singularities of (Wt)t∈I . The set of
all maximal chains of matrix functions is denoted by M.

A decisive role in the present theory is played by the function (tr (M) denotes
the trace of the matrix M)

t(W ) := tr (W ′(0)J) = w′
12(0) − w′

21(0).

The notation ”singularity” for a point σ ∈ (0,M)\I might be justified by the fact
that

lim
tրσ

t(Wt) = +∞, lim
tցσ

t(Wt) = −∞, (1.1)

whereas t(Wt) is continuous on I (cf. [dB]).
The behaviour of a chain (Wt)t∈I on a single connected component of I is

easy to handle, since it can be reduced immediately to the well studied case of
”positive” chains, i.e. chains with Wt ∈ M0 for all t. Our aim among others is the
investigation of the behaviour of (Wt)t∈I locally at a singularity. In particular, we
are led to a description of all possible types of singularities. One local property of
a singularity, which turns out to be of fundamental importance, is the existence
of the so called intermediate Weyl coefficient.

Recall in this place from [KW4] that for a chain (Wt)t∈I ∈ M and a real
number τ the limit

lim
tրsup I

w11(z)τ + w12(z)

w21(z)τ + w22(z)
, (1.2)

exists locally uniformly in C \ R and does not depend on τ . It is called the Weyl
coefficient of the chain. The interest in this notion origins in the fact that the
whole chain is uniquely determined by its Weyl coefficient.

The existence of the limit (1.2) follows from the fact that limtրsup I t(Wt) =
+∞. It is an easy consequence of (1.1) that for a singularity σ both limits

lim
tրσ

w11(z)τ + w12(z)

w21(z)τ + w22(z)
, lim

tցσ

w11(z)τ + w12(z)

w21(z)τ + w22(z)
,
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exist. One of the main results of this note is that these limits coincide. The
function represented as such is called the intermediate Weyl coefficient at σ.

As a consequence of the existence of intermediate Weyl coefficients we obtain
an algorithm to remove a singularity by repeated application of a certain trans-
formation. In this way we obtain more information about the structure of the
singularity. Also this prepares the proper introduction of an indefinite analogue
of the so called canonical system of differential equations associated with a ”posi-
tive” chain. However, in this paper we will not deal with this subject; it is left for
forthcoming work.

The inner structure of a singularity becomes much more transparent when the
chain of dB-spaces associated with a chain of matrix functions is considered. Recall
from [KW3]: An inner product space 〈P, [., .]〉 is called a dB-space, if it satisfies
the axioms

(IP1) The isotropic part P◦ := P ∩ P⊥ of P is finite dimensional.

(IP2) The factor space P/P◦ is a Pontryagin space.

(dB1) The elements of P are entire functions, and for each w ∈ C the point evalu-
ation F 7→ F (w) at w is a continuous linear functional.

(dB2) If F ∈ P, then also F# ∈ P, and

[F#, G#] = [G,F ], F,G ∈ P.

(dB3) If w ∈ C \ R and F ∈ P, F (w) = 0, then also z−w
z−wF (z) ∈ P, and

[
z − w

z − w
F (z),

z − w

z − w
G(z)] = [F,G], F,G ∈ P, F (w) = G(w) = 0.

When we speak about continuity in (dB1), the topology under consideration is
the Hilbert space topology which is uniquely defined by 〈P, [., .]〉 (see [KW3]).

A subspace Q ⊆ P provided with the inner product inherited from P is called
a dB-subspace if it is dB-space itself. The dB-subspaces of any dB-space form a
chain (Ps)s∈J . A chain of matrix functions (Wt)t∈I induces a chain of dB-spaces
(Ps)s∈J and vice versa. Thereby the singularities of the chain of matrix functions
correspond to the degenerated members of the chain of spaces. Hence, the knowl-
edge about dB-subspaces can be used to gain information about singularities.

The paper is divided into several sections. A comprehensive overview is given
in the following.

Table of contents

1. Introduction p.1

2. Degenerated dB-subspaces p.5

3. Maximal chains of matrix functions p.15
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4. A transformation of chains p.28

5. Intermediate Weyl coefficients p.39

6. Evolution of singularities p.48

7. Identification of intermediate Weyl coefficients p.55

Section 2 is concerned with the study of the degenerated dB-subspaces of a dB-
Pontryagin space, in particular with sequences

P1 ( P2 ( . . . ( Pδ,

where each of the spaces Pi is degenerated and contained in the subsequent space
with codimension one. It turns out that the isotropic parts P◦

i must be of a very
particular form (cf. Theorem 2.3). As a tool we use the switch of inner products
from [., .] to [., .]1 where

[F,G]1 := [F,G] +mF (0)G(0). (1.3)

This transformation already appeared earlier (cf. [KW3]) and turned out to be
useful.

In Section 3 we introduce and investigate maximal chains of matrix functions.
This notion in fact corresponds to the notion of chains defined in [KW4], also
some of the stated results have in essence been proved there. After giving some
basic results we turn to the study of singularities. Thereby the chain of dB-
spaces associated with a maximal chain of matrix functions plays a vital role. In
particular, we prove that singularities correspond to degenerated dB-spaces. A
division of singularities into several types is introduced.

The switch of inner products as in (1.3) corresponds to a transformation of
matrices. This transformation is investigated in Section 4. Applied to the members
of a maximal chain of matrix functions this leads to a transformation of chains
(cf. Theorem 4.4).

The existence of intermediate Weyl coefficients is established in Section 5 (cf.
Proposition 5.1, Theorem 5.6). The proof of this result involves some operator
theoretic arguments concerned with the operator of multiplication by the inde-
pendent variable in the associated dB-spaces. With the aid of this result we prove
a most useful statement giving a certain continuity property of chains of matrix
functions (cf. Proposition 5.8).

In Section 6 we investigate in detail the change of singularities when performing
the above mentioned transformation of chains. Together with Proposition 5.8
this leads to a deterministic method to remove a singularity by applying certain
transformations (cf. Proposition 6.9).

Finally, in Section 7, the question which functions may appear as intermediate
Weyl coefficients is answered in terms of the function itself (cf. Theorem 7.4).
Basically the given criterion is concerned with the asymptotic distribution of the
zeros and poles of the function under consideration (cf. Corollary 7.9).
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References to results of [KW2], [KW3], and [KW4] will be given as the following
examples indicate: Lemma 0.2.1 refers to Lemma 2.1 of [KW2], (I.2.1) refers to
the equation (2.1) of [KW3], and Proposition II.4.1 refers to Proposition 4.1 of
[KW4].

2 Degenerated dB-subspaces

In this section we investigate the structure of the degenerated dB-subspaces of
a dB-Pontryagin space P. For simplicity we will assume throughout this whole
paper that d(P) = 0 (cf. [KW3]).

Denote by (Pt)t∈J the chain of the dB-subspaces Pt of P which also satisfy
d(Pt) = d(P) = 0, cf. [KW3], Section 4. Here the index set J equals the interval
(0,M ] with the possible exception of certain open, so-called indivisible, intervals.
Moreover, M ∈ J and PM = P. First recall from Proposition I.11.4 that the
spaces Pt depend in a certain sense continuously on t.

Remark 2.1. Let t0 ∈ J . Then

dim



Pt0/





⋃

t∈J , t<t0

Pt







 =

{

0, sup{t ∈ J : t < t0} = t0
1, sup{t ∈ J : t < t0} < t0

,

dim









⋂

t∈J , t>t0

Pt



 /Pt0



 =

{

0, inf{t ∈ J : t > t0} = t0
1, inf{t ∈ J : t > t0} > t0

.

We will investigate the behaviour of the isotropic part P◦
t , in particular its

dimension in dependence of t. Recall from Theorem I.11.6 that only finitely many
spaces Pt can be degenerated. It will follow later on (compare the discussion in
Section 6) that if t ∈ J is not isolated, the dimension of P◦

t can be arbitrary.
However, an immediate dimension argument shows that the isotropic parts of
subsequent degenerated spaces Pt, i.e. degenerated spaces which are corresponding
to endpoints of an indivisible interval, are closely related.

Lemma 2.2. Let Pα1
and Pα2

be dB-spaces such that Pα1
is contained in Pα2

with codimension one. Then either (i), (ii) or (iii) holds:

(i) P◦
α1

( P◦
α2

, dimP◦
α1

= P◦
α2

− 1,

(ii) P◦
α1

) P◦
α2

, dimP◦
α1

= P◦
α2

+ 1,

(iii) P◦
α1

= P◦
α2

.

Proof : Clearly, P◦
α2

∩Pα1
⊆ P◦

α1
, hence dimPα2

/Pα1
= 1 shows that dimP◦

α1
≥

dimP◦
α2

− 1. Moreover, for any H ∈ Pα2
\ Pα1

we have

Pα2
= Pα1

+̇span {H}. (2.1)
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Thus P◦
α1

∩ span {H}⊥ ⊆ P◦
α2

and hence dimP◦
α2

≥ dimP◦
α1

− 1.
If dimP◦

α2
> dimP◦

α1
, we must have P◦

α1
= P◦

α2
∩ Pα1

, and dimP◦
α1

>
dimP◦

α2
causes P◦

α2
= P◦

α1
∩ span {H}⊥.

Consider the case dim P◦
α1

= dimP◦
α2

and assume that P◦
α2

\ P◦
α1

6= ∅. By
the above considerations an element H ∈ P◦

α2
\P◦

α1
cannot belong to Pα1

. It is a
consequence of (2.1) that P◦

α1
+̇span {H} ⊆ P◦

α2
, in contradiction to the assumed

equality of the dimensions of the isotropic parts. We conclude that P◦
α2

⊆ P◦
α1

,
and therefore P◦

α2
= P◦

α1
.

The question arises, how P◦
t behaves when t runs through {α1, α2, . . . , αn} for

subsequent indivisible intervals (α1, α2), (α2, α3), . . . , (αn−1, αn). It is the main
purpose of this section to prove the following result.

Theorem 2.3. Let P be a dB-Pontryagin space, and let (Pt)t∈J be the chain of
its dB-subspaces. Assume that (α1, α2), . . . , (αn−1, αn) are subsequent indivisible
intervals, and that the dB-spaces Pαi

, i = 1, . . . , n are degenerated. Put di :=
dimP◦

αi
. Then there exists a function F ∈ P such that

P◦
αi

= span {F (z), . . . , zdi−1F (z)}.

Moreover, there exists a number imax ∈ {1, . . . , n} such that

di+1 = di + 1, 1 ≤ i < imax,

di+1 = di − 1, imax < i ≤ n− 1,

dimax+1 =

{

dimax

dimax
− 1

.

Before we come to the proof of this result we bring some lemmata. First
a method to reduce the dimension of the isotropic part is provided. The key
construction is the change of inner products according to the formula

[F,G]1 = [F,G] +mF (0)G(0), (2.2)

where m ∈ R.
For a dB-space P denote by Q(P) the hyperplane

Q(P) = {F ∈ P : F (0) = 0}.

Note that for any F ∈ Q(P) and G ∈ P

[F,G]1 = [F,G].

There exists an element K0 ∈ P with the property

F (0) = [F,K0], F ∈ P,
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if and only if P◦ ⊆ Q(P). In this case K0 is uniquely determined modulo P◦. In
particular, K0(0) does not depend on the choice of K0.

Lemma 2.4. Let 〈P, [., .]〉 be a dB-space, and let P1 be the set P provided with
the inner product [., .]1 defined as in (2.2). Then

dimP◦
1 = dimP◦ +







+1, P◦ ⊆ Q(P), m = −1
K0(0)

0, P◦ ⊆ Q(P), m 6= −1
K0(0)

−1, P◦ 6⊆ Q(P)

.

In the respective cases we have

P◦
1 =







P◦+̇span {K0}
P◦

P◦ ∩ Q(P)
. (2.3)

In the last case every element of P◦ \ P◦
1 has nonzero norm.

Proof : Since for F ∈ Q(P) we have [F,G] = [F,G]1 for all G ∈ P, it follows that
P◦ ∩ Q(P) = P◦

1 ∩ Q(P). In particular, this yields |dimP◦ − dim P◦
1| ≤ 1.

Assume that G ∈ P◦
1 \ P◦, then for all F ∈ P

[F,G] = −mF (0)G(0). (2.4)

Since G 6∈ P◦ we have G(0) 6= 0, and therefore

F (0) = [F,
G

−mG(0)
], F ∈ P. (2.5)

In particular, we obtain P◦ ⊆ Q(P) and hence P◦ = P◦ ∩Q(P) ( P◦
1. If we take

F = K0 in (2.5), we get

K0(0) = [K0,
G

−mG(0)
] = −

1

m
.

Moreover, G
−mG(0) ∈ K0 +P◦, and from P◦ ⊆ P◦

1 we conclude that K0 ∈ P◦
1 \P◦.

Hence P◦
1 = P◦+̇span {K0}.

Conversely, if P◦ ⊆ Q(P) and m = − 1
K0(0)

, setting G = K0 we obtain (2.4).

Thus K0 ∈ P◦
1, and hence P◦

1 = P◦+̇span {K0}.
If P◦ ⊆ Q(P) but m 6= − 1

K0(0)
, we get P◦ = P◦∩Q(P) ⊆ P◦

1. If we had strict

inequality, the second paragraph of the present proof would give m = − 1
K0(0)

.

Hence P◦ = P◦
1.

It remains to consider the case P◦ 6⊆ Q(P). Again the arguments in the
second paragraph show P◦

1 ⊆ P◦. However, for an element F ∈ P◦ \Q(P) we get
[F, F ]1 = m|F (0)|2 6= 0, and therefore F 6∈ P◦

1. It follows that P◦
1 = P◦ ∩ Q(P).

Though in this section we are mainly concerned with the behaviour of the isotropic



Pontryagin spaces of entire functions III 8

part, we investigate for later use also the possible change of the negative index
when the inner product is switched according to (2.2).

Lemma 2.5. Let 〈P, [., .]〉 be a dB-space and consider the dB-space P1 =
〈P, [., .]1〉 where [., .]1 is defined as in (2.2). If P◦ 6⊆ Q(P), then

ind−P1 = ind−P +

{

0 , m > 0
1 , m < 0

. (2.6)

If P◦ ⊆ Q(P), then

ind−P1 = ind−P +



























−1 , K0(0) < 0,m ≥ − 1
K0(0)

0 , K0(0) < 0,m < − 1
K0(0)

0 , K0(0) = 0
0 , K0(0) > 0,m ≥ − 1

K0(0)

+1 , K0(0) > 0,m < − 1
K0(0)

.

Proof : Consider first the case that P◦ 6⊆ Q(P). Then we can write

P = Q(P)[+̇]span {H},

with H ∈ P◦, hence also

P1 = Q(P)[+̇]1span {H}.

Since [H,H ]1 = [H,H ] +m|H(0)|2 = m|H(0)|2 6= 0 we obtain (2.6).
Next assume that P◦ ⊆ Q(P) and K0(0) 6= 0. Then we have the decomposition

P = Q(P)[+̇]span {K0}.

The fact that

[K0,K0]1 = [K0,K0] +m|K0(0)|2 = K0(0)(1 +mK0(0))

yields the assertion in this situation.
It remains to settle the case that P◦ ⊆ Q(P) and K0(0) = 0. Since K0 6∈ P◦

we have a decomposition of P of the form

P = P◦[+̇]Q1[+̇](span {K0}+̇span {H}),

where P◦[+̇]Q1[+̇]span {K0} = Q(P) and H is a neutral element skewly linked
with K0, i.e. H(0) = [H,K0] = 1. It follows that P1 can be decomposed orthogo-
nally in the same way

P1 = P◦[+̇]1Q1[+̇]1(span {K0}+̇span {H}).
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The inner product on the last summand is determined by the Gram matrix

G =

(

0 1
1 m

)

,

since [K0,K0]1 = [K0,K0] = 0, [K0, H ]1 = [K0, H ] = 1, [H,H ]1 = [H,H ] +
m|H(0)|2 = m. By Jacobi’s signature rule the inner product [., .]1 on this two
dimensional space has negative index 1.

It is not of significant importance that the perturbing term in (2.2) is an evaluation
at 0 and not at any other α ∈ R.

Remark 2.6. Let P be a dB-space, and let α ∈ R. The one-to-one mapping

ϕ : F (z) 7→ F (z + α),

takes P onto some space P(α) of entire functions. If we define an inner product
on P(α) by declaring ϕ to be a unitary mapping, we obtain a dB-space. Moreover,
a subspace P̃(α) is a dB-subspace of P(α) if and only if P̃ is a dB-subspace of P.
In this case ϕ|P̃ is a unitary mapping from P̃ onto P̃(α).

As a corollary of Lemma 2.4 and Remark 2.6 we get:

Corollary 2.7. For any degenerated dB-space there exists a value α ∈ R, such
that the dimension of the isotropic part actually decreases when we switch to the
inner product defined by (2.2) with α in place of 0 and arbitrary m 6= 0.

This will be a basic method of reduction which can be developed further.

Corollary 2.8. Let 〈P, [., .]〉 be a dB-space with dimP◦ = ∆, ind−P = κ. Then
there exist points α1, . . . , α∆, such that for any choice of mi > 0, i = 1, . . . ,∆, the
dB-spaces P̃l := 〈P, [., .]l〉, l = 1, . . .∆, where

[F,G]l = [F,G] +m1F (α1)G(α1) + . . .+mlF (αl)G(αl), (2.7)

satisfy ind0Pl = ∆ − l and ind−P̃l = κ.
Proof : The existence of α1, . . . , α∆ follows by repeated application of Corollary
2.7. Since m1, . . . ,m∆ > 0, by (2.6) the negative index does not change.

For a dB-Pontryagin space P = P(E), where E(z) = A(z) − iB(z), recall the
notation (cf. Lemma II.5.19)

Sφ(z) = cosφA(z) + sinφB(z), φ ∈ [0, π).
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From our assumption d(P) = 0 it follows that the functions Sφ and Sψ have no
common zeros for distinct φ and ψ. Moreover, we will assume that E is normalized
by E(0) = −i which means that Sφ(0) = sinφ.

Lemma 2.9. Let P = P(E) be a dB-Pontryagin subspace of some dB-Pontryagin
space P̃, such that P either contains, or is contained in a degenerated dB-subspace
P1 of P̃ with codimension one. Then P◦

1 = span {Sφ} for a certain number
φ ∈ [0, π). In the case P1 ( P it is the unique number ϕ such that Sϕ is contained
in P. In the case P ( P1 we have P1 = P+̇span {Sφ}.
Proof : If P(E) contains the degenerated space, the assertion follows from Corol-
lary I.6.3. In the other case the statement is a consequence of Lemma II.7.6 since
we assume the existence of a larger dB-Pontryagin space P̃.

Lemma 2.10. Let (α1, α2) and (α2, α3) be two subsequent indivisible intervals.
Consider the triple

(dim P◦
α1
, dimP◦

α2
, dimP◦

α3
). (2.8)

this triple cannot equal either of the following triples:

(2, 1, 2), (1, 1, 2), (2, 1, 1), (1, 1, 1). (2.9)

Proof : Let P1 ( P2 ( P3 be degenerated dB-spaces such that Pi is contained
in Pi+1 with codimension one for i = 1, 2. Consider the triple (2.8).

First note that in each case considered in (2.9) the number dim P◦
2 is the least.

By Remark 2.6 we may assume that P◦
2 6⊆ Q(P2). Then Lemma 2.2 shows that

also P◦
1 6⊆ Q(P1) and P◦

3 6⊆ Q(P3).
If we had (dimP◦

α1
, dimP◦

α2
, dimP◦

α3
) = (2, 1, 2), then a change of the inner

product according to (2.2) would lead by Lemma 2.4 to spaces P̃1 ( P̃2 ( P̃3

with P̃◦
2 = {0} and dim P̃◦

1 = dim P̃◦
3 = 1. Lemma 2.9 then showed that

P̃◦
1 = span {Sφ1

}, P̃◦
3 = span {Sφ3

},

for different functions Sφ1
and Sφ3

. However, by (2.3) we had Sφ1
(0) = Sφ3

(0) = 0,
which would imply Sφ1

= Sφ3
.

Now consider the case (1, 1, 2). The change of the inner product yields P̃◦
1 =

P̃◦
2 = {0}, and by Lemma 2.9 we have P̃◦

3 = span {Sφ} 6⊆ P̃2, Sφ(0) = 0, which in

turn gives Sφ = Ã2 by our usual normalization assumption E(0) = −i. However,
going one step back in view of Lemma 2.4 we obtain

span {K̃1,0(z)} = P◦
1 = P◦

2 = span {K̃2,0(z)}, (2.10)

i.e. K̃1,0(z) = K̃2,0(z). Again by our normalization E(0) = −i we have

Ã1(z)

z
= K̃1,0(z) = K̃2,0(z) =

Ã2(z)

z
,
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and therefore Ã1 = Ã2. The transfer matrix from P̃1 to P̃2 (cf.Theorem I.12.2) is
linear, and since Ã1 = Ã2, this matrix function is of the form

W12(z) =

(

1 lz
0 1

)

, (2.11)

for some l ∈ R \ {0}. As P̃2 = P̃1 ⊕ (Ã1, B̃1)K(W12), we see that Ã1 = Ã2 ∈ P̃2,
and we are led to a contradiction.

In the case (2, 1, 1) we obtain spaces P̃1, P̃2, P̃3 such that P̃◦
2 = P̃◦

3 = {0} and
P̃◦

1 = span {Sφ}, Sφ = Ã2. As above we get Ã2 = Ã3. Thus the transfer matrix

W23(z) has the form (2.11) and P̃3 = P̃2⊕ (Ã2, B̃2)K(W23). Hence Ã2 ∈ P̃3⊖ P̃2,
which contradicts the relation Ã2 ∈ P̃◦

1 ⊆ P1.
It remains to deal with the case (1, 1, 1). There we obtain three non-

degenerated dB-spaces P̃1, P̃2, P̃3. Reasoning as in (2.10) we see that Ã1 = Ã2 =
Ã3, and hence that both transfer matrices from P̃1 to P̃2 and from P̃2 to P̃3 are
of the form (2.11). But this contradicts the fact that dimP3/P1 = 2.

Corollary 2.11. Let (α1, α2), . . . , (αn−1, αn) be subsequent indivisible intervals,
and assume that the spaces Pαi

are degenerated. Then there exists a number
imax ∈ {1, . . . , n} such that

P◦
α1

( . . . ( P◦
αimax

⊇ P◦
αimax+1

) . . . ) P◦
αn
.

In other words the function dimP◦
αi

assumes its maximum on {1, . . . , n} at either
exactly one point imax or at the two subsequent points imax and imax + 1, and
on {1, . . . , imax} the function dimP◦

αi
strictly increases, on {imax + 1, . . . , n} it

strictly decreases.
Proof : It is obvious that the assertion of the theorem can be formulated as
follows. No part of the sequence (dimP◦

αi
)ni=1 has one of the following forms:

(k + 1, k, k + 1), (k, k, k + 1), (k + 1, k, k), (k, k, k).
Assume the contrary. By Corollary 2.7 we can change the inner product in

such a way that the dimension of the isotropic part of the middle space decreases.
Then by Lemma 2.2 and Lemma 2.4 also the dimension of the isotropic parts of the
left and the right space decreases. Hence we are in the same situation only with
k − 1 replaced by k. Proceeding inductively we end up with one of the forbidden
sequences in (2.9).

Assume in the following that Pα1
( . . . ( Pαn

is a sequence of subsequent and
degenerated dB-spaces of maximal length in the chain (Pt)t∈J , i.e. either

sup{t ∈ J : t < α1} = α1,
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or the space corresponding to the left endpoint of the indivisible interval with right
endpoint α1 is non degenerated, and analogously either

inf{t ∈ J : t > αn} = αn,

or the space corresponding to the right endpoint of the indivisible interval with
left endpoint αn is non degenerated.

Denote by κ±, ω,∆± and µ the numbers

κ+ = min{ind−Pt : t ∈ J , t > αn}, κ− = max{ind−Pt : t ∈ J , t < α1},

ω = κ+ − κ−,

∆+ = dimP◦
αn
, ∆− = dim P◦

α1
, µ = dim Pαn

/Pα1
= n− 1.

From the structure of the isotropic parts P◦
αi

we obtain the following connections
between the introduced numbers.

Corollary 2.12. With the above notation we have

ω =

[

∆+ + ∆− + µ

2

]

+

{

0
1
. (2.12)

If ∆+−∆−+µ is even, the second summand in (2.12) equals 0. The number imax
of Corollary 2.11 is given by

imax =

[

∆+ − ∆− + µ

2

]

+ 1, (2.13)

and P◦
αimax

= P◦
αimax+1

if and only if ∆+ − ∆− + µ is odd.
Proof : Since dimP◦

αi
is increasing for i = 1, . . . , imax and decreasing from imax

or from imax + 1 on , we obtain

dimP◦
αi

= ∆− + i− 1, i ≤ imax,

dimP◦
αi

= ∆+ + (µ+ 1 − i), i ≥ imax + 1.

From this we immediately get the validity of (2.13).
Since the dimension of Pαi

increases by one, and the dimension of P◦
αi

in-
creases by one for i ≤ imax and decreases by one for i ≥ imax + 1, we see that
ind−Pαi

is constant for i ≤ imax and increases by one in each step for i ≥ imax+1.
In the case P◦

αimax
= P◦

αimax+1
we may have both ind−Pαimax+1

= ind−Pαimax
or

ind−Pαimax+1
= ind−Pαimax

+ 1. From these considerations and ind−Pα1
= κ−,

ind−Pαn
+ ∆+ = κ+ (cf. Proposition I.11.11, Corollary 2.8) the relation (2.12)

follows, where the second summand is chosen accordingly whether ind−Pαimax
=

ind−Pαimax+1
or not.
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Remark 2.13. If sup{t ∈ J : t < α1} 6= α1 (inf{t ∈ J : t > αn} 6= αn), then
we must have ∆− = 1 (∆+ = 1). Thus in the respective cases the statement of
Corollary 2.12 can be given in a more explicit form.

In the case that inf{t ∈ J : t > αn} 6= αn, the spaces P◦
αi

can be determined,
and a formula for ∆− and for the second summand in (2.12) can be deduced.

So let us assume that αn is the left endpoint of some indivisible interval, say
(αn, α). Then the space Pα is nondegenerated and for a certain number φ ∈ [0, π)
the function Sφ belongs to Pα. We will denote by m the number

m := max{k ∈ N : zkSφ ∈ Pα},

which is finite by Lemma I.7.1. Moreover, put

d := dim span {Sφ, . . . , z
mSφ}

◦,

and in case that m+ d is even

s := [z
m+d

2 Sφ, z
m+d

2 Sφ].

Proposition 2.14. In the above described situation we have

µ =

{

m− 1, d = 0
m , d 6= 0

, (2.14)

∆+ = 1, ∆− =

{

1, d = 0
d, d 6= 0

. (2.15)

The isotropic part P◦
αk

is given as

P◦
αk

= span {Sφ, . . . , z
∆−+k−2Sφ}, 1 ≤ k ≤ imax, (2.16)

P◦
αk

= span {Sφ, . . . , z
n−kSφ}, imax + 1 ≤ k ≤ n. (2.17)

For even ∆− + µ (= m+ d) the second summand in (2.12) is given by

{

0, s > 0
1, s < 0

. (2.18)

Proof : First observe that the spaces Pαi
are given in terms of the operator S in

Pα:
Pαi

= domSn−i+1, i = 1, . . . , n.

From Lemma II.5.19 we obtain that Pα1
= domSm+1 or Pα1

= domSm depend-
ing whether d 6= 0 or d = 0, or equivalently whether

⋃

t∈J ,t<α1
Pt = Pα1

or not.

In the latter case P0 := domSm+1 is nondegenerated and is properly contained
in Pα1

.
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We conclude that n = m+1 or n = m depending on which case we are in, but
this is just the assertion in (2.14). The fact that ∆+ = 1 and ∆− = 1 if d = 0 is
obvious.

Again by Lemma II.5.19 we have

Pαi
= span {Sφ, . . . , z

n−iSφ}
⊥, i = 1, . . . , n.

Therefore
P◦
αi

= span {Sφ, . . . , z
n−iSφ}

◦, i = 1, . . . , n,

in particular (2.15) follows. Since the Gram-matrix of the inner product in
span {Sφ, . . . , zmSφ} is a Hankel matrix with all entries zero above the secondary
diagonal, the isotropic part is of the form span {Sφ, . . . , zlSφ}. We conclude, in
fact from Corollary 2.11, that (2.16) and (2.17) are valid.

It remains to consider the increment of negative squares, so assume that ∆−+µ
is even. Then

n− imax = n− [
1 − ∆− + µ

2
] − 1 =

= n−
−∆− + µ

2
− 1 =

∆− + µ

2
=
m+ d

2
.

Since zdSφ 6∈ span {Sφ, . . . , z
mSφ}

◦, but zd−1Sφ is (in case d 6= 0), we have

0 6= [zdSφ, z
mSφ] = [z

m+d
2 Sφ, z

m+d
2 Sφ].

Clearly

0 = [zdSφ, z
m−1Sφ] = [z

m+d
2 Sφ, z

m+d
2

−1Sφ],

and therefore
Pαimax+1

= Pαimax
[+̇]span {z

m+d
2 Sφ}.

The relation (2.18) follows.

Now we are in position to prove Theorem 2.3.
Proof (Theorem 2.3): According to Corollary 2.8 there exist points
t1, . . . , tdn

∈ R, and numbers m1, . . . ,mdn
> 0, such that the space Pαn

endowed
with the inner product [., .]dn

given by (2.7) is nondegenerated. Note that, if the
change of inner products is carried out step by step as in the proof of Corollary
2.8, i.e. considering the sequence of inner products

[G,H ]k := [G,H ] +

k
∑

i=1

m1G(t1)H(ti), k = 0, . . . , dn,

then in each step the dimension of P◦
αn

decreases.
Starting with the dB-Pontryagin space 〈Pβ0

, [., .]dn
〉 := 〈Pαn

, [., .]dn
〉 we con-

struct larger dB-Pontryagin spaces Pβj
, j = 1, . . . , dn+1, such that 〈Pβj

, [., .]dn
〉 is
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contained isometrically in 〈Pβj+1
, [., .]dn

〉 with codimension 1. Such a construction
is possible by Theorem I.12.2 and its corollary, by successively adding indivisible
intervals of appropriately chosen types.

The spaces 〈Pβj
, [., .]〉 are degenerated for j = 1, . . . , dn−1, since the dimension

of the isotropic part of Pαn
is dn and the codimension of Pαn

in Pβj
is j. Moreover,

since [., .] is a dn-dimensional perturbation of [., .]dn
, the dimension of 〈Pβj

, [., .]〉◦

does not exceed dn. Hence, by Corollary 2.11 one of the spaces 〈Pβdn
, [., .]〉 and

〈Pβdn+1
, [., .]〉 must be nondegenerated. Thus we are, either with Pβdn

or with
Pβdn+1

in the situation of Proposition 2.14, which implies the assertion of the
theorem.

If we write Pβdn
(Pβdn+1

, respectively) as P(E) with E = A − iB, E(0) = −i,
then the form of the reproducing kernel K(w, z) (cf. Theorem I.5.3) immediately
implies the following result:

Corollary 2.15. Assume that in the situation of Theorem 2.3 for one (and hence
for all) i ∈ {1, . . . , n} we have P◦

αi
⊆ Q(Pαi

), i.e. that F (0) = 0 when F denotes

the function with the properties stated in Theorem 2.3. Then K0(z) := −F (z)
z

belongs to Pα1
and satisfies

[G,K0] = G(0), G ∈ Pαn
. (2.19)

If Pαn
is the left endpoint of an indivisible interval, then this relation holds for all

G belonging to the larger space corresponding to the right endpoint of this interval.
If Pα1

is the right endpoint of an indivisible interval, then K0 is even contained
in the smaller space corresponding to the left endpoint.
Proof : By our assumption F (0) = 0, the function K0(z) equals the reproducing
kernel function K(0, z) in the space P(E) constructed above. The relation (2.19)
follows.

If Pαn
is left endpoint of an indivisible interval (αn, αn+1) we can choose P(E)

such that it isometrically contains Pαn+1
. Thus in this case (2.19) also holds for

G ∈ Pαn+1
.

If Pα1
is the right endpoint of an indivisible interval, say (α0, α1), then by

Lemma II.5.19 we have K0 ∈ Pα0
.

3 Maximal chains of matrix functions

Now we turn to the investigation of chains of matrix functions. Before we start
collecting some easy consequences of the axioms in Definition 1.1, let us note the
following facts.
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Remark 3.1. If (Wt)t∈I ∈ M and t•(t) is an increasing bijection of (0, M̃),
0 < M̃ ≤ ∞, onto (0,M), we may define another chain by

W̃t(z) := Wt•(t)(z), t ∈ Ĩ := (t•)−1(I).

We say that the chain (W̃t)t∈Ĩ is a reparametrization of (Wt)t∈I . It is apparent
that chains which are reparametrizations of each other behave in the same manner.

A source for examples of maximal chains of matrix functions is Theorem II.7.1
and the discussion after its proof. We will see later (cf. Remark 3.10) that this
example is in fact universal. Let W ∈ Mκ and let τ ∈ N0 be such that

W ◦ τ ∈ Nκ. (3.1)

Theorem II.7.1 applied to the matrix W shows the existence of a chain (Wt)t∈J

of matrix functions where J ⊆ R− ∪ {0}, 0 ∈ J , with W0 = W . Linking this
chain with the chain (Vt)t≥0 which has τ as its Weyl coefficient (compare the
construction at the end of Section 7 of [KW4]) we obtain another chain of matrix
functions. In fact, one can define

W̃t :=

{

Wt , t ∈ J
WVt , t ≥ 0

.

Due to our assumption (3.1) one can check that (W̃t)t∈J∪R+ satisfies (W2) -
(W5). See the end of Section 7 in [KW4]. Note also in this context that the
second assertion in Remark II.7.10 is not correct.

The index set J ∪R+ is an open interval with finitely many closed intervals con-
tained in J ∪ R+ taken out. Thus a convenient reparametrization of (W̃t)t∈J∪R+

satisfies (W1), and therefore belongs to M.

Remark 3.2. Before we proceed we have to make some remarks on Theorem II.7.1
and its proof. In the proof first the chain Pt, t ∈ Mreg ⊆ (c−, 0] of subspaces
of P(w21 − iw22) is considered. We can assume that c− > −∞. In order to
obtain a complete proof we have to add to this chain of subspaces the trivial space
Pc− = {0}. Moreover, if c− < t < s for all s ∈ Mreg we have to set t−(t) = c−,
and define Wc− = 1. With this little trick the proof is valid. Moreover, we mention
two more properties of the chain constructed in that proof.

(i) On the first component of Dc the function µ(t) is always zero. If W is not a
linear polynomial, all the matrix functions Wt for t in this first component
are linear polynomials if and only if K(W ) contains a constant vector function
whose inner product with itself is non-positive.

(ii) Whenever t converges in the first component to c−, then Wt(z) converges
locally uniformly to the 2 × 2 identity matrix, or equivalently t(Wt) → 0.
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To see this, consider the chain Pt, t ∈Mreg ⊆ (c−, 0]. It is the maximal chain
of dB-subspaces of P0. The intersection of these spaces is also a dB-subspace of
P0. If it is not {0}, then it is one dimensional, since otherwise it would contain
a proper dB-subspaces contained in P0, which contradicts the maximality of the
chain. Hence {1} = Pt0 is the smallest member of Pt, t ∈Mreg.

If the intersection is zero, then every Pt in the chain is of infinite dimension,
since otherwise a dimension argument would show that the intersection is non-
zero. In particular, 1 belongs to no Pt, and therefore no K(Wt) contains a constant
function, where Wt ∈ Mµ(t) are the matrix functions constructed in the proof of
Theorem II.7.1. Moreover, since we assumed the intersection to be zero, every
Pt contains infinitely many Ps, s ≤ t. By Lemma I.11.10 there is a t′ ∈ Mreg

such that all Pt, t ≤ t′ are Hilbert spaces. Thus the function µ(t), which shows
the number of negative squares of K(Wt) = K(Wt)− ∼= Pt, has value zero on the
first component of Dc. Since for t ≤ t′ the space K(Wt) = K(Wt)− ∼= Pt are
infinite-dimensional Hilbert spaces, Wt is not a linear polynomial. Hence we have
proved (i) in the current case.

If (ii) were not true, a normal family argument would give rise to non-constant
matrix functions M,M ′ ∈ M0 with Wt′ = MM ′. But then we would obtain a dB-
subspace of P0 which is contained in all Pt, t ∈Mreg ⊆ (c−, 0]. This contradicts
our present assumption.

Now assume that {1} is the smallest space Pt0 in the chain Pt, t ∈ Mreg. In
this case the construction in the proof of Theorem II.7.1 shows that µ(t) = 0 on
the first component of Dc and that (ii) holds.

If [1, 1] > 0, then Pt0 is a Hilbert space, and the space K(Wt0) = K(Wt0 )−
∼=

Pt0 exists, and the inner product of the constant function contained in K(Wt0 )
with itself coincides with [1, 1] > 0. Since Pt0

∼= K(Wt0 ) is contained isometrically
in P0

∼= K(W ), no space K(Wt0t), t > t0 contains the same constant function as
K(Wt0) (cf. [KW3], Section 12). Therefore, K(Wt) = K(Wt0) ⊕Wt0K(Wt0t) is of
dimension greater than one, and it is a Hilbert space for t sufficiently close at t0.
Thus also in this case (i) is true.

For [1, 1] ≤ 0 the construction in the proof of Theorem II.7.1 shows that (i)
holds.

In the sequel we collect some simple properties of maximal chains of matrix
functions.

Remark 3.3. The function t 7→ Wt is injective. Moreover, if s, t ∈ I, κ(s) ≤ κ(t),
and W−1

s Wt ∈ Mκ(t)−κ(s), then s ≤ t.
This can be seen as follows: Assume that Ws = Wt for some s, t ∈ I, s < t.

Then for all u ∈ I, s < u < t, we have

(W−1
s Wu)(W

−1
u Wt) = W−1

s Wt = 1.

Since both factors on the left hand side of the above relation belong to M0 we get
Wu = Ws (cf. [dB]), a contradiction to (W2). The second assertion is trivial if
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κ(s) < κ(t), since κ(.) is nondecreasing. Let κ(s) = κ(t), and assume that s ≥ t.
Then, by the axiom (W3), we have W−1

t Ws ∈ M0. Since by our assumption also
W−1
s Wt ∈ M0, we conclude that Ws = Wt, i.e. s = t (cf. [dB]).
Recall that the function t is defined by t(W ) = tr(W ′(0)J), W ∈ Mκ. Clearly,

t(W ) depends continuously on W with respect to locally uniform convergence.
Recall from [dB], p.121, that for W ∈ M0 the relation (‖.‖ denotes the Schmidt
norm of a matrix)

‖W (z) − 1‖ ≤ et(W )|z| − 1, (3.2)

holds. In particular, it follows that the set of all W ∈ M0 with t(W ) ≤ 1 is
compact. This implies the following statement:

Lemma 3.4. Let J ⊆ R+ and let (Wt)t∈J be a chain of matrix functions which
satisfies (W2) and (W3) where κ(t) is assumed to be constant on J , κ(t) =: κ.
If t(Wt) is bounded on J , the limit

lim
tրsupJ ,t∈J

Wt

exists locally uniformly and belongs to Mκ′ , κ′ ≤ κ. If for some s, t ∈ J the
matrix function Wst is not a linear polynomial, then in fact κ′ = κ.
Proof : Let s, t ∈ J , s ≤ t. Then Wst ∈ M0, hence t(Wst) ≥ 0. As t(Wt) =
t(Ws) + t(Wst), we get t(Ws) ≤ t(Wt). It follows that the limit (t+ := supJ )

t+ := lim
tրt+,t∈J

t(Wt),

exists in R.
Now fix s ∈ J . For t ∈ J , t ≥ s, we have t(Wst) = t(Wt) − t(Ws) ≤

t+ − t(Ws). Hence there exists a sequence tn ∈ J , tn ր t+, such that the limit
limn→∞Wstn =: Wst+ exists and belongs to M0. Put Wt+ := WsWst+ . Clearly,
t(Wt+) = t+ and ind−Wt+ = κ′ ≤ κ. Since Wstn = WstWttn for t ∈ J , s ≤ t ≤ tn,
also limn→∞Wttn := Wtt+ exists and belongs to M0. Moreover, WtWtt+ = Wt+ .
Hence,

t(Wtt+) = t(Wt+) − t(Wt) = t+ − t(Wt) → 0,

for t ր t+. By (3.2) we conclude that limtրt+ Wtt+ = 1 and thus also
limtրt+ Wt = Wt+ .

As indicated in the proof of Lemma II.8.5 the existence of a nonlinear transfer
matrix permits the application of Lemma II.5.17 which yields κ′ = κ.

The next statement follows basically from Theorem II.7.1 and Remark 3.2.

Lemma 3.5. Let (Wt)t∈I ∈ M. The function κ(t) is constant on each connected
component of I and takes different values on different components. The function
t(Wt), and hence also Wt, is continuous on I and strictly increasing on each
component. If I0, . . . , In are the components of I ordered increasingly, then
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(i) κ(I0) = 0.

(ii) Assume that not the whole chain (Wt)t∈I consists of linear polynomials.
Then all matrix functions Wt for t ∈ I0, are linear polynomials if and only
if for sufficiently large t ∈ I the space K(Wt) contains a constant vector
function whose inner product with itself is non-positive.

(iii) For k = 0, . . . , n
sup
t∈Ik

t(Wt) = +∞.

(iv) For k = 1, . . . , n
inf
t∈Ik

t(Wt) = −∞.

(v) On the first component I0 we always have

inf
t∈I0

t(Wt) = 0,

i.e. limtց0Wt = 1.

Proof : Let t ∈ I be given. Choose s ∈ I, s > t sufficiently large, and consider
the chain of matrix functions (W̃t) going downwards from Ws as constructed in
Theorem II.7.1.

Since the chain (Wt)t∈I is maximal in the sense of (W4) each matrix W̃t must
occur among the Wt’s. However, the chain (W̃t) possesses the same maximality
property by Theorem II.7.1. Hence also each Wt, t ≤ s, must occur among the
W̃t’s. The assertions of the lemma are now an immediate consequence of Theorem
II.7.1 and Remark 3.2.

The previous statement allows us to define the negative index of a chain
(Wt)t∈I ∈ M as the number maxt∈I κ(t). The subset of M consisting of all
chains with negative index κ will be denoted by Mκ.

For a matrix W (z) and a scalar function τ(z) recall the notation

W (z) ◦ τ(z) :=
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
.

It has been proved in Lemma II.8.2 and Lemma II.8.5, that for a maximal chain
(Wt)t∈I ∈ Mκ the limit

q∞((Wt)t∈I)(z) := lim
tրsup I

(Wt ◦ τ
t)(z) (3.3)

exists locally uniformly on C \R if C∪ {∞} is provided with the spherical metric,
does not depend on τ t ∈ N0 and belongs to Nκ. The function defined by (3.3) is
called the Weyl coefficient of (Wt)t∈I ∈ M.
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The main result of [KW4] implies that a maximal chain (Wt)t∈I ∈
Mκ is uniquely determined up to reparametrizations by its Weyl coefficient
q∞((Wt)t∈I) ∈ Nκ, and that each function q ∈ Nκ appears as the Weyl coeffi-
cient q∞ of some maximal chain:

Proposition 3.6. The map (Wt)t∈I 7→ q∞((Wt)t∈I) establishes a bijection
between Mκ (up to reparametrizations) and Nκ.
Proof : By Theorem II.8.7 it suffices to show that (with the notation of [KW4],
Section 8) a chain (Wt)t>c− ∈ C can be prolonged uniquely to a chain (W̃t)t∈I ∈
M. However, this fact is an immediate consequence of Theorem II.7.1.

If (Wt)t∈J is a chain of matrix functions which is not maximal in the sense of
Definition 1.1, it can be completed.

Lemma 3.7. Let (Wt)t∈J be a chain of matrix functions which possesses the
properties:

(W1’) The index set J is contained in R+.

(W2’) For each t ∈ J the matrix function Wt belongs to Mκ(t) for some κ(t) ∈
N ∪ {0}. The function κ(t) is bounded on J , maxt∈J κ(t) =: κm.

(W3’) If s, t ∈ J , s ≤ t, then κ(s) ≤ κ(t) and W−1
s Wt ∈ Mκ(t)−κ(s).

If lim suptրsupJ t(Wt) = +∞ assume in addition:

(W4’) If κm > 0, there exist numbers s, t ∈ J , κ(s) = κ(t) = κm, such that Wst is
not a linear polynomial.

If lim suptրsupJ t(Wt) < +∞ assume in addition:

(W5’) limtրsupJ ,t∈J Wt ∈ Mκm
.

Then there exists a maximal chain (W̃t)t∈I ∈ Mκm
which extends (Wt)t∈J , i.e.

for some function t• : J → I we have W̃t•(t) = Wt, t ∈ J .
If lim suptրsupJ t(Wt) = +∞, the extension in Mκm

is unique, sup I = supJ
and (τ t ∈ N0)

q∞((W̃t)t∈I) = lim
t∈J ,tրsupJ

(Wt ◦ τ
t).

If lim suptրsupJ t(Wt) < +∞, a chain (W̃t)t∈I ∈ Mκm
extends (Wt)t∈J if and

only if

q∞((W̃t)t∈I) =

[

lim
tրsupJ ,t∈J

Wt

]

◦ τ, (3.4)

for some τ ∈ N0, which satisfies (3.1) with W = limtրsupJ ,t∈J Wt and κ = κm.
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Proof : Consider first the case that lim suptրsupJ t(Wt) < +∞. Then by Lemma
3.4 the limit

WsupJ := lim
tրsupJ ,t∈J

Wt,

exists and belongs to Mκ, κ ≤ κm.
In order to clarify the role of (W5’) note that if some chain of M contains the

matrices (Wt)t∈J , Lemma 3.5 implies that κ = κm. Also, if there exists a function
τ ∈ N0 which satisfies (3.1) we necessarily have κ = κm.

Since for each s, t ∈ J , t ≥ s, we haveWt = WsWst with ind−Wst = κ(t)−κ(s),
it follows that also WsupJ = WsWs,supJ for some Ws,supJ ∈ Mκm−κ(s). Hence
each matrix Ws, s ∈ J , occurs in the chain going downwards from WsupJ as
constructed in Theorem II.7.1. The previously constructed example of a chain in
M (see Remark 3.1 and the discussion after it) now yields an extension (W̃t)t∈I ∈
Mκm

of (Wt)t∈J for each τ satisfying (3.1).
Conversely, if (W̃t)t∈I ∈ Mκm

is an extension of (Wt)t∈J , then by Lemma 3.5
we must have WsupJ = W̃t0 for some t0 ∈ I. Put τ := q∞((Vt)t≥0) with Vt :=

W̃t0,t0+t. Then, clearly, (3.4) holds. Since q∞((W̃t)t∈I) ∈ Nκm
(c.f. Proposition

3.6), we also see that τ satisfies (3.1).
Now consider the case that lim suptրsupJ ,t∈J t(Wt) = +∞. Then by Lemma

II.8.2 (and its proof) the limit (α ∈ R)

q := lim
tրsupJ ,t∈J

Wt ◦ α

exists and does not depend on α. By condition (W4’) it is contained in Nκm
(cf.

Lemma II.8.5 and its proof). Consider the (unique) chain (W̃t)t∈I which has q as
its Weyl coefficient. For each s ∈ J the limit

τs := lim
tրsupJ ,t∈J

Wst ◦ α

exists, belongs to Nκ′ , κ′ ≤ κm − κ(s) and satisfies Ws ◦ τs = q. Hence
κ′ = κm − κ(s), and we conclude that the matrix Ws must occur in the chain
(W̃t)t∈I (cf. Corollary II.11.1). Thus we have found an extension of (Wt)t∈J .
Clearly, any extension of (Wt)t∈J must have q as its Weyl coefficient, and thus
equals (W̃t)t∈I .

From the above considerations together with Theorem I.13.1 we obtain the follow-
ing corollary.

Corollary 3.8. Let (Wt)t∈J be as in Lemma 3.7. Assume in addition that for
all κ ∈ κ(J ) we have

t({Wt : κ(t) = κ}) =

{

R , κ > 0
(0,∞) , κ = 0

.
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Then (Wt)t∈J is almost a maximal chain, it satisfies (W1)-(W3) and (W5).
The maximality axiom (W4) holds if and only if the existence of a factorization
Wt = WM , where W ∈ Mκ and M ∈ Mκ(t)−κ for 0 ≤ κ ≤ κ(t), implies
κ ∈ κ(J ).

Remark 3.9. In the case lim suptրsupJ t(Wt) = +∞ there might exist various
extensions of (Wt)t∈J in a set Mκ with κ > κm. A related question will be
discussed in Section 7.

Remark 3.10. Let (W̃t)t∈I ∈ M and t0 ∈ I. Choosing for J the one element set
{t0}, putting Wt0 := W̃t0 and τ := q∞((Vt)), Vt := Wt0,t0+t, the previous lemma
shows that every chain belonging to M can be constructed as in the example
discussed after Remark 3.1.

Recall the notion of indivisible intervals. Put (compare (II.7.1))

W(l,α)(z) =

(

1 − lz sinα cosα lz cos2 α
−lz sin2 α 1 + lz sinα cosα

)

.

If (Wt)t∈I ∈ M, a nonempty interval (s, t) ⊆ I, s, t ∈ I, is called indivisible, if
Wst is a linear polynomial, i.e. Wst = W(l,φ), l > 0, φ ∈ [0, π). The numbers l and
φ are called the length and the type, respectively, of the indivisible interval. The
union of all indivisible intervals will be denoted by I ind.

Remark 3.11. The chains (Wt)t∈I ∈ M which consist only of linear polynomials
are exactly those with q∞((Wt)t∈I) ∈ R ∪ {∞}. Such a chain is explicitly given
(up to reparametrization) by

Wt(z) = W(t,φ)(z), t > 0,

where
q∞((Wt)t∈I) = cotφ.

If λ is any number, denote by λ+ and λ− the numbers

λ+ := sup
(

{λ} ∪ {t : (λ, t) ⊆ I ind}
)

, (3.5)

λ− := inf
(

{λ} ∪ {t : (t, λ) ⊆ I ind}
)

. (3.6)

One of the main objectives of this paper is to investigate the behaviour of the
chain (Wt)t∈I near a boundary point between two components of I. Those by
(W1) only finitely many points are called singularities of (Wt)t∈I . We introduce
now a subdivision of singularities into several types.

Definition 3.12. Let (Wt)t∈I ∈ M. A singularity σ of (Wt)t∈I is said to be

(i) of polynomial type, if σ− < σ < σ+.



Pontryagin spaces of entire functions III 23

(ii) left (right) dense, if σ− = σ < σ+ (σ− < σ = σ+).

(iii) dense, if σ− = σ = σ+.

The number
ω = min

t>σ,t∈I
ind−Wt − max

t<σ,t∈I
ind−Wt,

is called the weight of σ.
An important tool in the study of chains of matrix functions is a connection

with dB-spaces. Of course this connection had appeared and had been extensively
used in our previous work [KW3], [KW4]. Nevertheless, we would like to point it
out explicitly.

Let W = (wij)
2
i,j=1 ∈ Mκ. Define the function

EW (z) := w21(z) − iw22(z).

Then EW ∈ HBκ′ for some κ′ ≤ κ (cf. [KW3]). If

K−(W ) = K(W ), (3.7)

then in fact κ′ = κ. Recall from Theorem II.5.7 that for a chain (Wt)t∈I ∈ M

the property (3.7) does not depend on t. Moreover, if K−(Wt) 6= K(Wt), then an
application of the transformation TJ (cf. Lemma II.10.1) yields a chain (W̃t)t∈Ĩ ∈

M which satisfies K−(W̃t) = K(W̃t). Since the chains (Wt)t∈I and (W̃t)t∈Ĩ behave
in most respects similar, we frequently will be able to assume without loss of
generality that (3.7) holds.

Let a chain of matrix functions (Wt)t∈I ∈ M satisfying (3.7) be given. Then
we define a chain of dB-Pontryagin spaces (Pt)t∈I by

Pt := P(EWt
), t ∈ I.

This chain of spaces will be of good use when we investigate the structure of
singularities of (Wt)t∈I .

Recall from Proposition I.11.4 that the spaces Pt, t ∈ I, depend in a way
continuously on t.

Remark 3.13. If s ∈ I is not right endpoint of an interval contained in I ind,
then

⋃

t∈I\Iind,t<s

Pt = Ps.

Otherwise,

dim



Ps /
⋃

t∈I\Iind,t<s

Pt



 ≥ 1,



Pontryagin spaces of entire functions III 24

where strict inequality can occur only if s− is a singularity. If s ∈ I is not left
endpoint of an interval contained in I ind, then

⋂

t∈I\Iind,t>s

Pt = Ps.

Otherwise

dim





⋂

t∈I\Iind,t>s

Pt /Ps



 ≥ 1,

where strict inequality can occur only if s+ is a singularity.

Remark 3.14. For t ∈ I we have t ∈ I ind or t is the right endpoint of a component
of I ind if and only if Sφ ∈ Pt where φ is the type of the indivisible interval (s, t+)
for one (and hence for all) s ∈ [t−, t+), cf. [KW3], Section 13.

If σ is a singularity denote by Pσ+
(Pσ−

) the dB-spaces

Pσ+
:=

⋂

t∈I\Iind,t>σ

Pt, Pσ−
:=

⋃

t∈I\Iind,t<σ

Pt.

Note here that this definition agrees with the previous meaning of Pσ+
(Pσ−

) in
case σ+ ∈ I (σ− ∈ I). Note also that it may happen that Pσ−

is the trivial space
{0}. The number

δ := dim
[

Pσ+
/Pσ−

]

is called the degree of σ. Let us clarify the particular case of a singularity σ
of polynomial type with degree one. This means that σ− < σ < σ+ and that
Wσ−σ+

= W(l,α) for some l < 0.

Lemma 3.15. Let (Wt)t∈I ∈ Mκ satisfy (3.7) and consider the chain (Pt)t∈I .
Then

(i) 1 ∈ Ass Pt, t ∈ I.

(ii) If P (d(P) = 0) is any nondegenerated dB-subspace of Pt for some t ∈ I,
then P = Ps with s ∈ I \ I ind, s ≤ t.

(iii) If s, t ∈ I, s < t, then Ps ⊆ Pt as sets. The equality sign holds if and only
if [s, t) ⊆ I ind or [s, t) ⊆ (σ−, σ+) for some singularity σ of polynomial type
with degree 1. The inclusion is isometric if and only if s 6∈ I ind. Otherwise
it is a strict contraction.

Proof : The assertion (i) is immediate from Proposition I.10.3. To show (ii)
consider a nondegenerated dB-subspace P of Pt where t ∈ I. By (i) and [dB],
Problem 72, we have 1 ∈ Ass P. Hence there exists a matrix W ∈ Mind−P,



Pontryagin spaces of entire functions III 25

K−(W ) = K(W ), W (0) = 1, such that P = P(EW ). Moreover, the same argu-
ments as in the proof of Theorem II.7.1 lead to the conclusion that W−1Wt ∈
Mκ(t)−ind−P since P is contained isometrically in Pt. Hence W = Ws for some
s ∈ I, s ≤ t, and thus P = Ps.

It remains to consider (iii). From (AWt
, BWt

) = (AWs
, BWs

)Wst we conclude
by Theorem I.12.2 and Proposition I.13.5 that Ps is included contractively in Pt.
Moreover, the inclusion is isometric if and only if K(Wst) contains no constant
(

cosφ
sinφ

)

, φ ∈ [0, π), with Sφ ∈ Ps.

If s ∈ (s−, s+), then by Remark 3.14 we have Sφ ∈ Ps. Choose s0 ∈ (s, s+)
and write Wst = Wss0Ws0t. Since the inclusion of Ps in Ps0 is a strict contraction
and the inclusion of Ps0 in Pt is a contraction we obtain that Ps ⊆ Pt is not
isometric.

Now assume that the embedding is not isometric, i.e. for some φ ∈ [0, π) we

have Sφ ∈ Ps and

(

cosφ
sinφ

)

∈ K(Wst).

Consider first the case that [Sφ, Sφ]Ps
> 0. Then also

[

(

cosφ
sinφ

)

,

(

cosφ
sinφ

)

]K(Wst) > 0,

since the mapping ϕ defined in the proof of Proposition I.13.5 is a contraction.
Hence, by Lemma II.7.5 we may factorize Wst as Wst = W(l,φ)W with l > 0 and
ind−W = ind−Wst. It follows that WsW(l,φ) = Ws′ for some s′ ∈ I, and together
with Remark 3.14 we conclude that s is contained in some indivisible interval.

Now assume that [Sφ, Sφ]Ps
≤ 0. As we have seen in the proof of Proposition

I.13.5 this implies that the space Psu , which is defined as the set Ps endowed with
the inner product inherited from Pt, is nondegenerated. Hence Psu = P(EWsu )
for some su ∈ I. We have su > s, because Ps is contained strictly contractively in
Psu . Since Psu = Ps as sets, we obtain that Wssu = W(l,φ) for some l ∈ R \ {0},
and the assertion follows as above.

The stated characterization of the fact that Ps = Pt as sets follows easily from
Remark 3.14, [ADSR] and the considerations in the proof of Proposition I.13.5.

The first and last component of I, we denote them by I0 and I∞ (inf I0 = 0
and sup I∞ = sup I, respectively), play a slightly different role than the other
components. For I∞ this is visible already from the axiom (W5). The peculiarities
of I0 were discussed in Lemma 3.5.

Now we are in position to show that for t ∈ I, t 6∈ I0, I∞, not both of t− and
t+ can be singularities. The importance of this fact will show up in Proposition
5.1. Note that for the component I∞ this fact had to be assumed (cf. (W5)).

Proposition 3.16. Let In = (σn−1, σn) be a component of I, neither the first
nor the last one. Then there exist numbers s, t ∈ In, s < t, such that Wst is not
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a linear polynomial.
Proof : Without loss of generality me may assume that K−(Wt) = K(Wt). Oth-
erwise we could apply the transformation TJ (cf. Lemma II.10.1) in order to force
this condition to be fulfilled. Since an interval is indivisible in the chain (Wt)t∈I if
and only if it is in the chain TJ ((Wt)t∈I), the general result follows once we have
established this particular case.

Assume on the contrary that the component (σn−1, σn) of I is an indivisible
interval, say of type φ.

First note that neither σn−1 nor σn can be of polynomial type and degree 1.
For if e.g. σn−1 were of such kind, some transfer matrix Wtt0 for t0 ∈ (σn−1, σn)
and t < σn−1 would equal W(−l,φ) for a certain l > 0. Since by Lemma 3.5
limsրσn

t(Ws) = +∞ by Lemma 3.5, there exists a number t1 ∈ (σn−1, σn) with
Wt1 = Wt0W(l,φ) = Wt, a contradiction since ind−Wt < ind−Wt1 by Lemma 3.5.
For σn a similar reasoning applies.

Now choose t0 ∈ (σn−1, σn) and consider the dB-Pontryagin space Pt0 . By
the proof of (iii) of Lemma 3.15 we are in the situation of Proposition I.13.5;
for P(Ec) there we can choose any space Pu, u ∈ I, u > σn. This is possible,
since In 6= I∞. From this source we obtain that the closure of the domain of
the multiplication operator Pl

t0 in Pt0 is a dB-subspace of Pt0 and is contained
isometrically in Pu. The set Pt0 endowed with the inner product inherited by Pu

also is a dB-space and is denoted by Pu
t0 . Moreover, at least one of the spaces Pl

t0
and Pu

t0 is nondegenerated.
Consider first the case that the space Pl

t0 is nondegenerated. Since it is a
proper subspace Pt0 we have Pl

t0 = Pt1 for some t1 ∈ I, with t1 < σn−1 by (ii) of
Lemma 3.15. This is a contradiction to the already proved fact that σn−1 is not
of polynomial type and degree 1.

It remains to settle the case that Pl
t0 is degenerated. Then Pu

t0 is nondegener-
ated. The space Pu

t0 is by definition contained isometrically in Pu, hence we have
Pu
t0 = Pt1 for some t1 ∈ I. Since both, Pu

t0 and Pt0 , are Pontryagin spaces which
contain the degenerated space Pl

t0 as an isometric subspace with codimension 1,
we obtain ind−Pu

t0 = ind−Pt0 , thus t1 ∈ (σn−1, σn) by Lemma 3.5. We arrive at
a contradiction to (iii) of Lemma 3.15.

An important observation is that the singularities of the chain of matrix functions
correspond to the degenerated dB-subspaces of the Pt’s.

Corollary 3.17. Let (Wt)t∈I ∈ M, let Pt, t ∈ I, be the corresponding chain of
dB-spaces, and consider a singularity σ of (Wt)t∈I . Then

(i) If Pσ−
( P ( Pσ+

isometrically, then P is degenerated.

(ii) The space Pσ+
(Pσ−

) is degenerated if and only if σ is dense or right dense
(dense or left dense, respectively).
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(iii) The degree δ of the singularity σ is finite. There exist (degenerated) dB-
subspaces P1, . . . ,Pδ−1 of Pσ+

, such that

Pσ−
( P1 ( . . . ( Pδ−1 ( Pσ+

. (3.8)

The codimension in each step is one.

Proof : To prove (i) assume on the contrary that Pσ−
( P ( Pσ+

isometrically
for some nondegenerated space. By (ii) of Lemma 3.15 we have P = Ps for some
s ∈ I, s ≤ σ+. Since (σ, σ+] ⊆ I ind we have Pt = Pσ+

for all t ∈ (σ, σ+], which
shows that in fact s < σ. Since the inclusion of P in Pσ+

is isometric, (iii) of
Lemma 3.15 yields that s 6∈ (σ−, σ), i.e. s ≤ σ−. This contradicts Pσ−

( P.
Now we prove (ii). If σ+ > σ, then by the considerations in Proposition 3.16

we have σ+ ∈ I and the space Pσ+
is nondegenerated. Consider the case σ+ = σ.

If Pσ+
would be nondegenerated, (ii) of Lemma 3.15 would imply Pσ+

= Ps for
some s ∈ I. In fact, s < σ since by its definition Pσ+

⊆ Pt for all t > σ. But
Pt ⊆ Pσ+

contractively for all t < σ. Hence σ ≤ s, a contradiction.
It remains to prove (iii). The fact that δ <∞ follows from the already proved

assertion (i) and Theorem I.11.6. Moreover, the corresponding fact for dB-Hilbert
spaces implies the existence of spaces Pi with the stated properties. Again by (i)
they must be degenerated.

Note in this place that the previous result implies that for any singularity σ which
is not of polynomial type with degree 1, there exists a degenerated dB-space P,
such that

Pσ−
⊆ P ⊆ Pσ+

(3.9)

isometrically. Also the converse is true.

Lemma 3.18. Assume that P is a degenerated dB-space and P ⊆ Ps isometri-
cally for some s ∈ I. Then there exists a singularity σ which is not of polynomial
type with degree 1, such that (3.9) holds.
Proof : If t ∈ I, t ≤ s, and is not contained in I ind, then either Pt ⊆ P or
P ⊆ Pt. These inclusions are isometric since Pt is contained isometrically in Ps

by (iii) of Lemma 3.15. Hence there exists a number λ, such that

Pt ⊆ P, t ∈ I \ I ind, t ≤ λ,

P ⊆ Pt, t ∈ I \ I ind, t ≥ λ.

Without loss of generality we may assume that λ 6∈ I ind. If λ 6∈ I we are done.
Assume therefore that λ ∈ I. If λ does not belong to the boundary of I ind, we can
conclude from Remark 3.13 and the above relations that P = Pλ, a contradiction.
Hence λ = µ− or λ = µ+ for some µ ∈ I. If both µ− and µ+ are not singularities,
then both Pµ−

and Pµ+
are contained isometrically in Ps,

dimPµ+
/Pµ−

= 1,
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and Pµ−
⊆ P ⊆ Pµ+

. Hence P = Pµ−
or P = Pµ+

, a contradiction. We arrive at
the conclusion that µ+ or µ− is a singularity, say σ. Obviously Pσ−

⊆ P ⊆ Pσ+
,

and the same argument as above rules out the case that σ is of polynomial type
and degree 1.

4 A transformation of chains

In [KW3], Section 3, it is shown that for any dB-space P with inner product [., .]
there exist numbers t1, . . . , tn ∈ R and C ∈ R, such that the set P endowed with
the inner product

[F,G]1 := [F,G] + C

n
∑

k=1

F (tk)G(tk), F,G ∈ P, (4.1)

is a dB-Hilbert space.
In this section we will investigate some properties of the corresponding trans-

formation of chains. First note that it suffices to consider the transformation
corresponding to

[F,G]1 := [F,G] +mF (0)G(0),

since by repeated application of this and the transformation T α of [KW4], Section
10, the transformation corresponding to (4.1) can be generated.

Definition 4.1. Let W ∈ Mκ, W (0) = 1, and a number m ∈ R \ {0} be given.
Write

W (z) =

(

w11(z) w12(z)
w21(z) w22(z)

)

,

and define

α(W ) := 1 −mw′
21(0), β(W ) := m

w′′
21(0)

2
+mw′

21(0)w′
11(0) − 2w′

11(0). (4.2)

If α(W ) 6= 0, a transformation Tm(W ) is defined by

Tm(W )(z) :=

(

1 −m
z

0 1

)

W (z)

(

1
α(W ) m(β(W )

α(W ) + 1
z )

0 α(W )

)

. (4.3)

If it is clear from the context to which matrix W the transformation is applied,
we shall drop the argument W and write α (β) instead of α(W ) (β(W )).

For later use we compute the entries of Tm(W ) explicitly. Put

Tm(W )(z) =:

(

w̃11(z) w̃12(z)
w̃21(z) w̃22(z)

)

,
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then

w̃11(z) =
1

α
(w11(z) −

m

z
w21(z)), (4.4)

w̃21(z) =
1

α
w21(z), (4.5)

w̃12(z) = (w11(z) −
m

z
w21(z))m(

β

α
+

1

z
) + α(w12(z) −

m

z
w22(z)), (4.6)

w̃22(z) = αw22(z) +m(
β

α
+

1

z
)w21(z). (4.7)

Some basic properties of Tm will follow from the next lemma.

Lemma 4.2. Assume that M(z) ∈ Mκ, M
′
21(0) 6= 0. Let χ, λ, u, µ ∈ R \ {0},

v, ν ∈ R, an consider

M̃(z) :=

(

χ −v − u
z

0 1
χ

)

M(z)

(

1
λ ν + µ

z
0 λ

)

.

The matrix M̃(z) is entire and satisfies M̃(0) = 1 if and only if

1. χ = λ+ µM ′
21(0)

2. u = µ

3. v = 1
λ+µM ′

21
(0)

[

νλ+ µ
(

2λM ′
11(0) − µ

M ′′

21(0)
2 + µM ′

11(0)M ′
21(0)

)

]

In this case M̃(z) ∈ Mκ̃ with

κ̃ = κ+







1 , sgnλ 6= sgnχ, sgnµ = sgnλ
0 , sgnλ = sgnχ
−1 , sgnλ 6= sgnχ, sgnµ = sgnχ

. (4.8)

Proof : The entries of M̃(z) are given by

M̃11(z) =
χ

λ
M11(z) −

v + u
z

λ
M21(z),

M̃21(z) =
1

λχ
M21(z),

M̃12(z) = χ(ν+
µ

z
)M11(z)+χλM12(z)−(v+

u

z
)λM22(z)−−(v+

u

z
)(ν+

µ

z
)M21(z),

M̃22(z) =
ν + µ

z

χ
M21(z) +

λ

χ
M22(z).

Clearly M̃11, M̃21 and M̃22 are entire. Moreover, M̃21(0) = 0. We have

M̃11(0) =
χ

λ
−
u

λ
M ′

21(0), M̃22(0) =
λ

χ
+
µ

χ
M ′

21(0).



Pontryagin spaces of entire functions III 30

Let M̃12(z) =
∑

k≥−1 ckz
k be the Laurent expansion of M̃12(z) at 0. Then

c−1 = χµ− λu− uµM ′
21(0),

c0 = χν − λv + χµM ′
11(0) − λuM ′

22(0) − (vµ+ νu)M ′
21(0) − uµ

M ′′
21(0)

2
.

The following sets of equations are equivalent:

(I) M̃11(0) = 1, M̃22(0) = 1, c−1 = 0, c0 = 0.

(II) χ = λ+ uM ′
21(0), χ = λ+ µM ′

21(0), c−1 = 0, c0 = 0.

(III) χ = λ+ uM ′
21(0), u = µ, c0 = 0.

(IV)
χ = λ+ µM ′

21(0), u = µ,

(χν − λv) + µ(χ+ λ)M ′
11(0) − (v + ν)µM ′

21(0) − µ2M
′′

21(0)
2 = 0

.

The left hand side of the last equation of (IV) equals to

ν(χ− µM ′
21(0)) − v(λ+ µM ′

21(0)) + µ(2λ+ µM ′
21(0))M ′

11(0) − µ2M
′′
21(0)

2
=

νλ− vχ+ µ

(

2λM ′
11(0) + µM ′

21(0)M ′
11(0) − µ

M ′′
21(0)

2

)

.

Thus the first assertion of the lemma follows. It remains to prove the relation (4.8)
between κ̃ and κ. Consider the function M̃(z) ◦ τ with τ ∈ R ∪ {∞}. Write

(

1
λ ν + µ

z
0 λ

)

◦ τ = W(l,φ) ◦∞

with cotφ = 1
λ ( τλ + ν) and l = −

λ2+( τ
λ

+ν)2

λµ . Then

M̃(z) ◦ τ =

(

χ −v − u
z

0 1
χ

)

M(z)W(l,φ)(z) ◦∞ =

= χ2(M(z)W(l,φ)(z)) ◦∞− χv −
χu

z

For all τ with one possible exception we have

ind−M̃ = ind−(M̃(z) ◦ τ). (4.9)

Since M̃ is entire and M̃(0) = 1 the function M̃(z) ◦ τ is analytic at 0 if τ 6= ∞,
hence

ind−χ
2(M(z)W(l,φ)(z)) ◦∞− χv −

χu

z
=

= ind−M(z)W(l,φ)(z) ◦∞ +

{

0 , (MW(l,φ))
′
21(0) ≤ 0

−1 , (MW(l,φ))
′
21(0) > 0

. (4.10)
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For all τ with two possible exceptions we have

ind−M(z)W(l,φ)(z) ◦∞ = ind−M + ind−W(l,φ) =

= ind−M +

{

1 , λµ > 0
0 , λµ < 0

. (4.11)

Finally we compute

(MW(l,φ))
′
21(0) = M ′

21(0) +W ′
(l,φ),21(0) =

= M ′
21(0) +

λ

µ
=
µM ′

21(0) + λ

µ
=
χ

µ
. (4.12)

Putting together the relations (4.9)-(4.12) we obtain (with an appropriate choice
of τ)

ind−M̃ = ind−M +

{

1 , λµ > 0
0 , λµ < 0

+

{

0 , χµ < 0

−1 , χµ > 0
,

which implies (4.8).

Corollary 4.3. The matrix Tm(W )(z) is entire and has value 1 (identity matrix)
at 0. It belongs to the class Mκ′ with

κ′ := κ+







1 , [m < 0, α < 0]
0 , [m < 0, α > 0] or [m > 0, α > 0]

−1 , [m > 0, α < 0]
.

We will apply the transformation Tm to a given maximal chain of matrix func-
tions (Wt)t∈I ∈ M. First of all note that the parameter α(Wt) is a continuous
and monotone function of t on each component of I. In fact, α(Wt) is increasing
if m > 0 and decreasing otherwise.

Theorem 4.4. Let (Wt)t∈I ∈ M and let m ∈ R\{0}. Assume that q∞((Wt)t∈I)
is not identically equal to ∞. Consider the chain by (Tm(Wt))t∈J ), J := {t ∈
I : Wt ∈ domTm} continued to the right by an indivisible interval of type 0 and
infinite length in case limtրsupJ t(Tm(Wt)) <∞. This chain can be completed to
obtain a maximal chain of matrix functions, denoted by Tm((Wt)t∈I)). We have

q∞(Tm((Wt)t∈I))(z) = q∞((Wt)t∈I)(z) −
m

z
. (4.13)

If t ∈ J , the spaces P(EWt
) and P(ETm(Wt)) coincide as sets. Their inner prod-

ucts [., .] and [., .]1 are connected by

[F,G]1 = [F,G] +mF (0)G(0). (4.14)
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The proof of this result will be split into several lemmata.

Lemma 4.5. Let t1, t2 ∈ I, t1 ≤ t2, and assume that α(Wt1 ), α(Wt2 ) 6= 0. Then

Tm(Wt1)
−1Tm(Wt2) ∈ Mν ,

with ν = ind−Tm(Wt2) − ind−Tm(Wt1 ). In particular, ind−Tm(Wt2 ) ≥
ind−Tm(Wt1 ).
Proof : We first reduce the problem to a special structure of the considered chain.
For δ > 0 sufficiently small, define a perturbed chain W̃t by

W̃t :=















W ◦
t , 0 < t ≤ δ

W ◦
δWt−δ , δ ≤ t ≤ t1 − δ

W ◦
δWt1−2δW

◦
t−t1+δ , t1 − δ ≤ t ≤ t1

W ◦
δWt1−2δW

◦
δWt1t , t1 ≤ t

,

where t is such that the above expressions exist and where W ◦
t denotes the matrix

function

W ◦
t (z) :=

(

cos(tz) sin(tz)
− sin(tz) cos(tz)

)

. (4.15)

It follows from Lemma II.5.17, Lemma 3.7 and the discussion after it that (W̃t) is
a maximal chain of matrix functions. Moreover, we clearly have

ind−W̃t1 ≤ ind−Wt1 , ind−W̃t2 ≤ ind−Wt2 .

Since
lim
δց0

W̃t1 = Wt1 , lim
δց0

W̃t2 = Wt2 ,

locally uniformly on C, we conclude that for sufficiently small δ in the above
inequalities in fact equality holds. We also conclude that

lim
δց0

α(W̃t1 ) = α(Wt1 ), lim
δց0

α(W̃t2 ) = α(Wt2 ),

and the respective relations for β hold. Hence, again for sufficiently small values
of δ, we obtain α(W̃t1 ), α(W̃t2 ) 6= 0 and by Corollary 4.3 that

ind−Tm(W̃t1) = ind−Tm(Wt1), ind−Tm(W̃t2 ) = ind−Tm(Wt2 ).

Moreover,
Tm(W̃t1)

−1Tm(W̃t2) = (4.16)

=





α(W̃t1 ) −m(
β(W̃t1

)

α(W̃t1
)
+ 1

z )

0 1
α(W̃t1

)



Wt1t2

(

1
α(W̃t2

)
m(

β(W̃t2
)

α(W̃t2
)
+ 1

z )

0 α(W̃t2 )

)

,

and
Tm(Wt1)

−1Tm(Wt2) = (4.17)
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=

(

α(Wt1 ) −m(
β(Wt1

)

α(Wt1
) + 1

z )

0 1
α(Wt1

)

)

Wt1t2

(

1
α(Wt2

) m(
β(Wt2

)

α(Wt2
) + 1

z )

0 α(Wt2 )

)

,

Since for sufficiently small δ > 0, the signs of α(Wt1 ) and of α(W̃t1 ) (of α(Wt2 )
and of α(W̃t2 )) coincide, we obtain from Lemma 4.2 that Tm(Wt1)

−1Tm(Wt2) and
Tm(W̃t1)

−1Tm(W̃t2) belong to the same class Mν . Hence it suffices to prove the
assertion of the lemma for the chain (W̃t).

The chain (W̃t) has some pleasant properties:

(i) K−(W̃t) = K(W̃t).

(ii) The domain of the multiplication operator in the space P(EW̃t1
) is dense.

The property (i) follows immediately, since by Theorem II.5.7 it does not depend
on the choice of t and holds for t = δ. To see (ii) consider the spaces

P′ := P(EW̃
t1−

δ
2

), P′′ := P(EW̃t1
).

Since
(0, 1)W̃t1 = (0, 1)W̃t1−

δ
2
W ◦

δ
2

,

it is a consequence of Theorem I.12.2 that the space P′ is contained isometrically
in P′′. Now assume on the contrary that the domain of the multiplication operator
is not dense. Then Lemma II.7.3 implies that for some number φ ∈ [0, π)

W ◦
δ
2

(

cosφ
sinφ

)

∈ K(W ◦
δ
2

).

This contradicts the fact that the domain of the multiplication operator is dense
in the space P(EW◦

δ
2

) (cf. Corollary I.6.3).

The matrices Tm(W̃t) inherit the properties (i) and (ii). In fact, Theorem II.5.7
yields (i) since W̃t ◦∞ and

T (W̃t) ◦∞ = W̃t ◦∞−
m

z

are together regular at ∞ or not. The property (ii) follows similar, since by Lemma
II.10.4 the fact that the domain of the multiplication operator is dense in P(EW̃t1

)

is equivalent to the fact that the function
w̃t1,22

w̃t1,21
is regular but not finite at ∞.

Since
Tm(W̃t1 )22

Tm(W̃t1 )21
= α2 w̃t1,22

w̃t1,21
+ αm(

β

α
+

1

z
),

this is equivalent to the corresponding fact for P(ETm(W̃t1
)).

Since the matrix Tm(Wt1)
−1Tm(Wt2) belongs a priori to some class Mν (cf.

Lemma II.5.10), the properties (i) and (ii) allow us to apply Lemma II.5.17, and
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we conclude that ν = ind−Tm(Wt2) − ind−Tm(Wt1 ).

Remark 4.6. The previous proof is based on the same reasoning as some proofs
in [KW4], Section 10. Unfortunately in the proofs of that Section a little mistake
occurs at several places. In fact, when for a certain chain a perturbed chain was
introduced - in the above proof this is (W̃t) - we stated in [KW4] that the transfer
matrices of the transformed chain of the original chain and of the transformed
chain of the perturbed chain coincide. As can be seen in (4.16) and (4.17) this
is not correct. However, using results as in Lemma 4.2 we can conclude that the
negative squares of the respective transfer matrices coincide, and that is all what
is needed.

For later reference let us record the following simple fact:

Lemma 4.7. Let W ∈ Mκ, l ∈ R\{0}, φ ∈ [0, π) and m ∈ R\{0}. Assume that
both, W and W1 := WW(l,φ), belong to domTm. Let α := α(W ) and β := β(W )
be as in (4.2). Then

Tm(W )−1Tm(W1) = W(l̃,φ̃).

For φ 6= 0 we have
cot φ̃ = α2 cotφ− βm,

l̃ =
l

α(α+ml sin2 φ)

sin2 φ

sin2 φ̃
.

If φ = 0, then also φ̃ = 0, and l̃ = α2l.
Proof : From the definition of the transformation Tm we obtain

Tm(W )−1Tm(W1) =

(

α −m(βα + 1
z )

0 1
α

)

·W−1W1 ·

(

1
α(W1) m(β(W1)

α(W1) + 1
z )

0 α(W1)

)

.

Since W−1W1 = W(l,φ) is a linear polynomial, so is Tm(W )−1Tm(W1). Hence this

matrix must be of the form W(l̃,φ̃) for some l̃ ∈ R \ {0} and φ̃ ∈ [0, π). The left
upper and left lower entries v11 and v21, respectively, are computed as follows

v11(z) = 1 − z[
α

α(W1)
l sinφ cosφ− β(

1

α
−

1

α(W1)
)],

v21(z) = −z
l sin2 φ

α(W1)α
.

Using the relation
α(W1) = α+ml sin2 φ,
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the assertion follows in the case that φ, and hence φ̃, is not equal to 0. Now assume
that φ = 0. Then the right upper entry v12 computes as

v12 = m(β(W1) − β) + α2lz.

We conclude that β(W1) = β and l̃ = α2l.

Lemma 4.8. Let 〈P, [., .]〉 be a dB-Pontryagin space and denote by K(w, z) its
reproducing kernel. Consider the new inner product (t0 ∈ R, m ∈ R \ {0})

[F,G]1 := [F,G] +mF (t0)G(t0), F,G ∈ P.

Assume that 1 +mK(t0, t0) 6= 0. Then 〈P, [., .]1〉 is nondegenerated and its repro-
ducing kernel K̃(w, z) is given by

K̃(w, z) = K(w, z) −
m

1 +mK(t0, t0)
K(w, t0)K(t0, z). (4.18)

If, on the other hand, 1 +mK(t0, t0) = 0, then 〈P, [., .]1〉 is degenerated. In fact

〈P, [., .]1〉
◦ = span {K(t0, z)}.

Proof : Let 1 + mK(t0, t0) 6= 0. We start with the function K̃(w, z) defined in
(4.18) and show that it has the reproducing kernel property with respect to the
inner product [., .]1. For any F ∈ P a short computation shows that

[F (z), K̃(w, z)]1 = [F (z),K(w, z)] −
m

1 +mK(t0, t0)
K(w, t0)F (t0)+

+mF (t0)K(w, t0) −mF (t0)
m

1 +mK(t0, t0)
K(w, t0)K(t0, t0) = F (w).

In particular, 〈P, [., .]1〉 is nondegenerated.
Consider the case that 1 +mK(t0, t0) = 0. Then for all F ∈ P we have

[F,K(t0, .)]1 = [F,K(t0, .)] +mF (t0)K(t0, t0) =

= F (t0)(1 +mK(t0, t0)) = 0,

i.e. K(t0, .) ∈ 〈P, [., .]1〉◦. Clearly, the isotropic part of 〈P, [., .]1〉 is at most one-
dimensional.
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Corollary 4.9. Let P = P(A − iB), A(0) = 0, B(0) = 1, and m ∈ R \ {0} be
given such that 1 −mA′(0) 6= 0. If we put

[F,G]1 := [F,G] +mF (0)G(0), F,G ∈ P,

then 〈P, [., .]1〉 = P(Ã− iB̃) with

Ã(z) :=
1

(1 −mA′(0))
A(z), B̃(z) := (1 −mA′(0))B(z) +

m

z
A(z). (4.19)

Proof : We apply Lemma 4.8 with t0 = 0. Since A(0) = 0 and B(0) = 1, we
obtain

K(0, z) = −
A(z)

z
, K(w, 0) = −

(

A(w)

w

)

.

Hence, substituting this into (4.18), we obtain by a short computation

K̃(w, z) =
B(z)A(w) −A(z)B(w)

z − w
−

m

1 −mA′(0)

(

A(w)

w

)(

A(z)

z

)

=

[B(z) + m
1−mA′(0)

A(z)
z ]A(w) −A(z)[B(w) + m

1−mA′(0)
A(w)
w ]

z − w
.

Since for some ν we have Ã − iB̃ ∈ HBν (cf. [KW3]) for the functions Ã and B̃
defined in (4.19), the assertion follows.

Proof (of Theorem 4.4): We check the conditions of Lemma 3.7. The va-
lidity of (W1’) for the chain (Tm(Wt))t∈J is trivial, the condition (W2’) follows
from Corollary 4.3, (W3’) from Lemma 4.5.

Consider first the case

lim sup
tրsupJ

t(Tm(Wt)) = +∞. (4.20)

By (W5) the last component of I and J have non-void intersection. If we can find
numbers s < t in this intersection such that Wst is not a linear polynomial, then
Lemma 4.7 implies the validity of (W4’), and (4.13) is seen from the definition
(4.3) of Tm by taking τ t = ∞ in the definition (3.3) of q∞.

If we cannot find such numbers s < t, then the only possibility for the last
component I∞ of I to look like, is that I∞ = (t1, t2] ∪ [t2,∞), where Wt2s is
a linear polynomial of type zero for s > t2 and Wst2 is a linear polynomial of
non-zero type for t1 < s < t2, and where α(Wt2 ) = 0.

By (4.20) the limit limtրt2 Tm(Wt) ◦ ∞ exists, and a calculation shows that
this limit coincides with q∞((Wt)t∈I) − m

z .
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Take some fixed s0, t1 < s0 < t2. Then s0 ∈ J , and by Lemma 4.7 there is a
real number τ such that Tm(Ws0 )◦τ = q∞((Wt)t∈I)−m

z . Comparing the respective
negative squares we obtain from Corollary 4.3 that Tm(Ws0 ) ∈ Mν , q∞((Wt)t∈I)−
m
z ∈ Nν with ν ∈ N ∪ {0}. By Corollary II.11.1 and by Proposition 3.6 the chain
(Tm(Wt))t∈J can be completed to a maximal chain.

Now assume that (4.20) is not satisfied. In particular, limtրsup I α(Wt) 6= 0,
hence either α(Wt) 6= 0 on all of the last component of I, or if t0 denotes the
largest zero of α(Wt), then there are s2 > s1 > t0 such that Ws1s2 is not a linear
polynomial of zero typ. Thus by Lemma 4.7, when adding an indivisible interval
of type 0 and infinite length to (Tm(Wt))t∈J the conditions (W3’) and (W4’)
remain valid for the prolonged chain, and we also may apply Lemma 3.7.

The connection (4.14) of the inner products of P(EWt
) and P(ETm(Wt)) follows

from the relations (4.5) and (4.7) together with Corollary 4.9 and Corollary I.6.2.

The transformations Tm and T−m are inverses of each other.

Lemma 4.10. Let m ∈ R. Then Tm(dom Tm) = dom T−m and T−m(Tm(W )) =
W , W ∈ dom Tm.
Proof : Let W ∈ dom Tm, i.e. α(W ) = 1 − mw′

21(0) 6= 0. By (4.5) we have
(W̃ = Tm(W ))

1 − (−m)w̃′
21(0) = 1 +m

w′
21(0)

1 −mw′
21(0)

=
1

1 −mw′
21(0)

, (4.21)

which is non-zero. Hence Tm(W ) ∈ dom(T−m). We apply T−m to W̃ = Tm(W ):

T−m(W̃ )(z) =

(

1 −−m
z

0 1

)

W̃ (z)

(

1
α(W̃ )

m(β(W̃ )

α(W̃ )
+ 1

z )

0 α(W̃ )

)

=

= W (z)

(

1 1
αm(β(W̃ )

α(W̃ )
− β(W )

α(W ) )

0 1

)

.

Here we have used that α(W̃ ) = 1
α(W ) . Substituting z = 0 we conclude that

β(W̃ )

α(W̃ )
− β(W )

α(W ) = 0, hence T−m(W̃ ) = W .

Let (Wt)t∈I ∈ M. By virtue of Theorem 4.4 the chain (Tm(Wt))t∈J , J = {t ∈ I :
Wt ∈ domTm}, can be extended to a maximal chain. In fact it is almost maximal.
In order to formulate this fact more accurately we introduce the following notation.

Definition 4.11. Let (Wt)t∈J be a chain of matrix functions satisfying the
conditions of Lemma 3.7 and let s ∈ J . Denote by (Wt)t∈I a chain belonging to
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M which extends (Wt)t∈J . We say that (Wt)t∈J is locally maximal at s if there
exists an interval [s−, s+], s−, s+ ∈ J , which contains s in its interior, such that
[s−, s+] ∩ J = [s−, s+] ∩ I.

The following reformulation of the fact that a chain is locally maximal at s is
immediate from the axiom (W4).

Remark 4.12. The chain (Wt)t∈J is locally maximal at s if and only if there
exist s−, s+ ∈ J , s− < s < s+, such that:

(W4”) If t ∈ J and for some W ∈ Mν , ν ≤ κ(t), we have W−1Wt ∈ Mκ(t)−ν , then
either

(a) ind−Ws+ ≤ ν and W−1
s+ W ∈ Mν−ind−Ws+

, or

(b) ν ≤ ind−Ws− and W−1Ws− ∈ Mind−Ws
−
−ν , or

(c) there exists a number t0 ∈ J such that W = Wt0 .

Proposition 4.13. The chain (Tm(Wt))t∈J is locally maximal at every point
s ∈ J .
Proof : Since J is open, there exist numbers s−, s+ ∈ J , such that [s−, s+] ⊆ J .
Since thus also [s−, s+] ⊆ I, we have

ind−Ws− = ind−Ws+ .

Moreover, α(Wt) has no zeros in [s−, s+] and therefore retains its sign on this
interval. It follows that also

ind−Tm(Ws−) = ind−Tm(Ws+),

and in turn that α(Tm(Wt)) has the same sign for t = s− and t = s+.
Denote by (W̃t)t∈Ĩ ∈ M an extension of (Tm(Wt))t∈J , and let t−, t+ ∈ Ĩ

correspond to s− and s+, respectively, i.e. let

Tm(Ws− ) = W̃t− , Tm(Ws+) = W̃t+ .

Assume that t0 ∈ [t−, t+]. Since α(W̃t) is a monotone function of t, α(W̃t0 ) 6= 0,
i.e. W̃t0 ∈ dom T−m. From Lemma 4.5 we obtain

W−1
s− T−m(W̃t0), T−m(W̃t0 )

−1Ws+ ∈ M0. (4.22)

Since the original chain (Wt)t∈I is maximal we therefore have T−m(W̃t0) = Ws0

for some s0 ∈ I. In fact, by (4.22), s0 ∈ [s−, s+] (compare the corollary of
Lemma 3.7). We have proved that W̃t0 = Tm(Ws0 ) for convenient s0 ∈ J , hence
(Tm(Wt))t∈J is locally maximal at s.

Despite the above result the chain (Tm(Wt))t∈J need not be maximal. However,
those points where there might something to be added necessarily are singularities
of either (Wt)t∈I or Tm((Wt)t∈I). The behaviour at such points will be discussed
in detail in Section 6.
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5 Intermediate Weyl coefficients

Let (Wt)t∈I ∈ M. In the sequel we will denote by I0, I1, . . . the connected com-
ponents of I arranged in increasing order. As already done during the previous
sections the last component will also be denoted by I∞. The singularity between
In and In+1 will be denoted by σn.

With the singularities of a maximal chain of matrix functions certain functions
are associated. We call them intermediate Weyl coefficients.

Proposition 5.1. Let (Wt)t∈I ∈ M. For each singularity σn the limits

lim
tրσn

(Wt ◦ τ
t)(z) =: qσn−(z), lim

tցσn

(Wt ◦ σ
t)(z) =: qσn+(z), (5.1)

exist locally uniformly on C \ R, if C ∪ {∞} is provided with the spherical metric,
and do not depend on the choice of the functions τ t ∈ N0 and −σt ∈ N0. We have
qσn− ∈ Nκ(In). For each t ∈ I there exist (unique) functions τ tn and σtn, such that

qσn− = Wt ◦ τ
t
n, qσn+ = Wt ◦ σ

t
n. (5.2)

If t < σn we have τ tn ∈ Nκ(In)−κ(t).
Proof : Observe that, if (Wt)t∈I ∈ M and σ is a singularity, then also the chain
(Wt)t∈I,t<σ belongs to M. The validity of (W5) hereby follows from Proposition
3.16. The existence of the first limit in (5.1) and the fact that it belongs to Nκ(In)

thus is immediate from (3.3).
The existence of the second limit in (5.1) is a consequence of [HSW]. In fact

choose s ∈ I, s ∈ (σn, σn+1), and consider the chain (Wst)t∈(σn,σn+1). The results
of [HSW] are immediately applicable to this chain.

The existence of the factorizations (5.2) also follows from considering the chain
(Wst)t∈I . Since in the case s < σn, the chain (Wst)t∈I,t∈(s,σn) belongs to M, the
relation τ tn ∈ Nκ(In)−κ(t) is obvious, since by (W3)

max
t∈(s,σn)

ind−Wst = κ(In) − κ(t).

If we want to indicate precisely the chain (Wt)t∈I to which the functions
qσn±(z) are associated as its intermediate Weyl coefficients, we shall write
qσn±((Wt)t∈I)(z).

The aim of this section is to prove that qσn− and qσn+ coincide, i.e.

qσn−(z) = qσn+(z) =: qσn
(z).

Once this is shown, we may speak of the intermediate Weyl coefficient qσ associated
with the singularity σ. Essential for the proof of this statement is a representation
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of qσn− and qσn+ as certain u-resolvents. In order to establish this representation
we need some preliminary information.

Lemma 5.2. Let P be a degenerated dB-space, and denote by S the opera-
tor of multiplication with the independent variable z. The relation S/P◦ in the
Pontryagin space P/P◦ is selfadjoint and has discrete spectrum. In fact

σ(S/P◦) = {w ∈ C : h(w) = 0 for all h ∈ P◦}. (5.3)

Proof : It is elementary to check, that S has defect index (1, 1) in the sense of
[KW1]. Since P◦ consists of entire functions, and since S is the multiplication
operator, we conclude that the conditions (2.3) and (2.4) of [KW1] are satisfied.
Thus we obtain from [KW1] that S/P◦ is selfadjoint.

Clearly, w ∈ ρ(S/P◦) if and only if ran (S/P◦−w) = P/P◦, which is the same
as condition (2.4) of [KW1] for z = w. As h ∈ ran (S −w) if and only if h(w) = 0,
we obtain (5.3).

Lemma 5.3. Let (Wt)t∈I ∈ M be given such that K(Wt) = K−(Wt).
Consider the transformation T α as introduced in Lemma II.10.2. The chain
(T α(Wt))t∈I again belongs to M and the singularities of these chains are the
same. The transformed chain satisfies K(T α(Wt)) = K−(T α(Wt)) and the
spaces P(EWt

) are isomorphic to the spaces P(ET α(Wt)) via the unitary map-
ping F (z) 7→ F (z + α). Moreover, the dB-subspaces of P(EWt

) correspond to the
dB-subspaces of P(ET α(Wt)) in the same way. In particular, if P is a degenerated
dB-subspace of P(EWt

) then the corresponding dB-subspace P(α) of P(ET α(Wt))
is also degenerated and the 1/P◦ resolvents

r(z) = [(S/P◦ − z)−1(1/P◦), (1/P◦)],

and
r(α)(z) = [(S/P◦

(α) − z)−1(1/P◦
(α)), (1/P

◦
(α))](α)

are connected by the relation r(α)(z) = r(z+α). The intermediate Weyl coefficients
qσ±((Wt)t∈I)(z) and qσ±(T α(Wt)t∈I)(z) are also connected by

qσ±(T α(Wt)t∈I)(z) = qσ±((Wt)t∈I)(z + α).

Proof : Since T α(Wt) is everywhere defined on I and since the inverse transfor-
mation of T α is T −α, we obtain from Lemma II.10.2 that (T α(Wt))t∈I belongs
to M. Thus the singularities of the transformed chain are the same as those of
(Wt)t∈I .

For t ∈ I the matrix Wt(α)−1 is iJ-unitary. Thus the reproducing kernel
Pontryagin spaces K(T α(Wt)) and K(Vt), where Vt(z) = Wt(z + α), coincide. A
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short argument now shows that the mappingX(z) 7→ X(z+α) is a unitary operator
from K(T α(Wt)) onto K(Wt). Hence K(T α(Wt)) = K−(T α(Wt)) and P(EWt

) is
isomorphic to P(ET α(Wt)) via the unitary mapping F (z) 7→ F (z + α). Clearly,
also the dB-subspaces of P(EWt

) correspond to the dB-subspaces of P(ET α(Wt))
in the same way.

Let P be a degenerated dB-subspace of P(EWt
) and let P(α) be the cor-

responding dB-subspace of P(ET α(Wt)). Then, for some h(α) ∈ P◦
(α) we have

(h(z) := h(α)(z − α) ∈ P◦)

[(S/P◦
(α) − w)−1(1/P◦

(α)), (1/P
◦
(α))](α) = [(S − w)−1(1 − h(α)), 1](α) =

= [
1 − h(α)(z)

z − w
, 1](α) = [

1 − h(z)

z − α− w
, 1] = [(S − (w + α))−1(1 − h), 1] =

= [(S/P◦ − (w + α))−1(1/P◦), (1/P◦)].

The assertion concerning the intermediate Weyl coefficients of (Wt)t∈I and
T α(Wt)t∈I is now obvious.

Let (Wt)t∈I ∈ M be such that K(Wt) = K−(Wt). Moreover, let σ be a singularity
of this chain which is not of polynomial type with degree 1.

Denote by Pσ−,d the smallest degenerated dB-subspace of Pσ+
which contains

Pσ−
. Note that by Corollary 3.17 the space Pσ−,d either equals Pσ−

or contains
this space as a subspace of codimension 1. The first case occurs if and only if σ is
dense or left dense. Note that ind−Pσ−,d = ind−Pσ−

.
Analogously, let Pσ+,d be the largest degenerated dB-subspace of Pσ+

. Again
Pσ+,d either equals Pσ+

or is contained in this space as a subspace of codimension
1, and the first case occurs if and only if σ is dense or right dense.

Recall from Theorem II.5.7 that the fact 1 ∈ P(EWt
) does not depend on t ∈ I.

If K−(Wt) = K(Wt), then 1 ∈ P(EWt
) if and only if for some α ∈ R

(

α
1

)

∈ K(Wt). (5.4)

By Corollary II.5.15 α does not depend on t ∈ I.

Proposition 5.4. Let (Wt)t∈I ∈ M with K−(Wt) = K(Wt) and 1 ∈ P(EWt
) be

given, and let α be as in (5.4). Moreover, let σ be a singularity of (Wt)t∈I which
is not of polynomial type with degree 1. Then

qσ−(z) = α+ [(S/P◦
σ−,d − z)−1(1/P◦

σ−,d), (1/P
◦
σ−,d)], (5.5)

and
qσ+(z) = α+ [(S/P◦

σ+,d − z)−1(1/P◦
σ+,d), (1/P

◦
σ+,d)]. (5.6)
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Proof : The proofs of (5.5) and (5.6) are similar. Therefore we will go into details
only in the proof of (5.5).

We will use induction on the number dimP◦
σ−,d

∈ N. Basically the idea is to
employ the transformation Tm in order to reduce the degree of degeneracy.

First let us make some preliminary remarks. Recall that by Corollary 2.8 there
exists a real number t0, such that for m > 0,

dim 〈Pσ−,d, [., .]0〉
◦ = dim 〈Pσ−,d, [., .]〉

◦ − 1,

where [., .]0 is as in (2.7). By Lemma 5.3 we can, in order to prove (5.5), assume
without loss of generality that t0 = 0.

If σ is not dense or left dense, it clearly can be achieved by choosing m suf-
ficiently small that the space 〈Pσ−

, [., .]0〉 is nondegenerated and has the same
negative index as 〈Pσ−

, [., .]〉. If σ is dense or left dense, by Theorem I.11.6 and
the definition of Pσ−,d the spaces 〈Pt, [., .]0〉, t < σ, are nondegenerated and have
the same negative index as 〈Pσ−,d, [., .]0〉 if only t is sufficiently close to σ. In the
sequel we choose m fixed with these properties.

It follows from Lemma 4.8 that Wt ∈ dom Tm for t < σ sufficiently close, and
that in case σ− < σ the interval (σ−, σ− ǫ], ǫ > 0, cannot be indivisible of type 0.
Note that these conclusions are drawn from the fact that t0 = 0.

Consider the transformed chain (W̃t)t∈Ĩ with

W̃t := Tm(Wt), t ∈ I ∩ Ĩ.

By Theorem 4.4 and Theorem II.5.7 also this chain satisfies K−(W̃t) = K(Wt) and
1 ∈ P(EW̃t

). Hence for some α̃ ∈ R,

(

α̃
1

)

∈ K(W̃t), t ∈ Ĩ.

It follows from Lemma II.5.12 that for t < σ, and t sufficiently close to σ,

Wt ◦∞ ∈ Nind−Wt
, W̃t ◦∞ ∈ Nind−W̃t

.

By Lemma II.5.16 we therefore have

lim
y→+∞

(Wt ◦∞)(iy) = α, lim
y→+∞

(W̃t ◦∞)(iy) = α̃.

Note that the formulation of Lemma II.5.16 excludes Wt’s which are linear polyno-
mials. However, considering the proof of Lemma II.5.16 in view of our particular
situation the assertion of this lemma is still true.

It is elementary to check - in fact, it has already been shown in the proof of
Theorem 4.4 - that

(Wt ◦∞)(z) = (W̃t ◦∞)(z) +
m

z
. (5.7)
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In particular, we obtain

α = lim
y→+∞

(Wt ◦∞)(iy) = lim
y→+∞

[

(W̃t ◦∞)(iy) +
m

iy

]

= α̃.

Now we start our inductive argument.
Assume that dim 〈Pσ−,d, [., .]〉

◦ = 1. Then 〈Pσ−,d, [., .]0〉 is nondegenerated.
Making use of the fact that there exists some t ∈ I, t > σ, with Wt ∈ domTm by
(W5), we conclude from Lemma 3.15 that σ ∈ Ĩ, i.e. the limit

lim
tրσ

W̃t = W̃σ

exists. From (5.7) we obtain

qσ−(z) = (W̃σ ◦∞)(z) +
m

z
. (5.8)

It follows from the fact that regularized 1-resolvents are 1-resolvents plus some
real constant if 1 belongs to the considered space (cf. [KW2]), from Lemma II.5.12
and Lemma II.5.16 that

(W̃σ ◦∞)(z) = α+ [(A− z)−11, 1]0, (5.9)

where A is the canonical selfadjoint extension of the multiplication operator S
with the independent variable z in the space 〈Pσ−,d, [., .]0〉, which is determined
by AW̃σ

(z) = w̃σ,21(z) in Lemma I.6.4.
Denote by K(w, z) the reproducing kernel function of 〈Pσ−,d, [., .]0〉. By

Lemma 4.8
〈Pσ−,d, [., .]〉

◦ = span {K(0, .)}

and K(0, 0) = 1
m . Since AW̃σ

(0) = 0, we have K(0, z) =
AW̃σ

(z)

z . Now compute
(for w with K(0, w) 6= 0)

[(S/P◦
σ−,d − w)−1(1/P◦

σ−,d), (1/P
◦
σ−,d)] = [(S − w)−1(1 −

K(0, z)

K(0, w)
), 1] =

= [(A− w)−1(1 −
K(0, z)

K(0, w)
), 1] =

= [(A− w)−1(1 −
K(0, z)

K(0, w)
), 1]0 −m

(

(A− w)−1(1 −
K(0, z)

K(0, w)
)

)

(0) =

= [(A− w)−11, 1]0 −
1

K(0, w)
[K(0, z), (A− w̄)−11]0−

−m





(1 − K(0,0)
K(0,w)) −

AW̃σ
(0)

AW̃σ
(w) (1 − K(0,w)

K(0,w))

0 − w



 =
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= [(A− w)−11, 1]0 −
1

K(0, w)

1

−w
+
m

w
+

1

K(0, w)

1

−w
= [(A− w)−11, 1]0 +

m

w
.

Combining this relation with (5.8) and (5.9) yields (5.5).
Now assume that dim 〈Pσ−,d, [., .]〉

◦ > 1. For notational convenience put

〈Pσ−,d, [., .]〉 =: P, 〈Pσ−,d, [., .]0〉 =: P0.

Clearly, {F ∈ P◦ : F (0) = 0} ⊆ P◦
0. In fact, equality holds since dimP◦

0 =
dimP◦ − 1.

By the inductive hypotheses we have

qσ−(z) = lim
tրσ

(Wt ◦∞)(z) = lim
tրσ

(W̃t ◦∞)(z) +
m

w
=

= α+ [(S/P◦
0 − z)−1(1/P◦

0), (1/P
◦
0)]0 +

m

w
. (5.10)

We compute for w ∈ ρ(S/P◦
0), where h ∈ P◦

0 is chosen such that h(w) 6= 0 (cf.
Lemma 5.2)

[(S/P◦ − w)−1(1/P◦), (1/P◦)] = [(S/P◦
0 − w)−1(1/P◦

0), (1/P
◦
0)] =

= [(S/P◦
0 − w)−1(1/P◦

0), (1/P
◦
0)]0 −m((S − w)−1(1 −

h(z)

h(w)
))(0) =

= [(S/P◦
0 − w)−1(1/P◦

0), (1/P
◦
0)]0 +

m

w
.

Together with (5.10) this proves (5.5).
The proof of (5.6) is now obtained by substituting in the above arguments σ−

by σ+ and tր σ by tց σ.

Lemma 5.5. Let P1 and P2 be degenerated dB-spaces such that P1 is contained
in P2 with codimension one. Assume that 1 ∈ P1. Denote by S1 and S2 the
operators of multiplication with the independent variable z in the space P1 and
P2, respectively. Then

[(S1/P
◦
1 − z)−1(1/P◦

1), (1/P
◦
1)] = [(S2/P

◦
2 − z)−1(1/P◦

2), (1/P
◦
2)],

for z ∈ σ(S1/P
◦
1) ∩ σ(S2/P

◦
2).

Proof : A standard Pontryagin space argument shows that P◦
1 ⊆ P◦

2 or P◦
2 ⊆ P◦

1.
If P◦

2 ) P◦
1, then clearly P1/P

◦
1 = P2/P

◦
2, and since S1 ⊆ S2, we have

S1/P
◦
1 = S1/P

◦
2 ⊆ S2/P

◦
2. By Lemma 5.2 both are selfadjoint, and hence they

coincide.
If P◦

2 = P◦
1, the Pontryagin space P1/P

◦
1 is contained in the Pontryagin space

P2/P
◦
2 with codimension one, and 1/P◦

1 = 1/P◦
2 is contained in P1/P

◦
1. Now
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S1/P
◦
1 is selfadjoint in P1/P

◦
1 and is contained in S2/P

◦
2, which is also selfadjoint.

Therefore (S2/P
◦
2)|P1/P◦

1
= S1/P

◦
1, and the assertion of the lemma follows also in

this case.
Finally, if P◦

2 ( P◦
1, then the image P1/P

◦
2 of P1 under the factorization by P◦

2

is a degenerated subspace of P2/P
◦
2 of codimension one, and 1/P◦

2 ∈ P1/P
◦
2. We

also have S1/P
◦
2 ⊆ S2/P

◦
2 with codimension one, where the latter is selfadjoint.

Since S1/P
◦
2 acts in P1/P

◦
2, the operator (S1/P

◦
2 − z)−1 exists and is continuous

on P1/P
◦
2 for all z ∈ ρ(S2/P2), and

(S1/P
◦
2 − z)−1(1/P◦

2) = (S2/P
◦
2 − z)−1(1/P◦

2). (5.11)

Clearly, (P1/P
◦
2)/(P1/P

◦
2)

◦ is isomorphic to P1/P
◦
1 and (S1/P

◦
2)/(P1/P

◦
2)

◦ is
isomorphic to S1/P

◦
1. Thus

[(S1/P
◦
2 − z)−1(1/P◦

2), (1/P
◦
2)] =

= [((S1/P
◦
2)/(P1/P

◦
2)

◦ − z)−1(1/P◦
2)/(P1/P

◦
2)

◦, (1/P◦
2)/(P1/P

◦
2)

◦] =

= [(S1/P
◦
1 − z)−1(1/P◦

1), (1/P
◦
1)].

Together with (5.11) this proves the lemma.

Now we have collected all necessary ingredients for the proof of the main result of
the present section.

Theorem 5.6. Let (Wt)t∈I ∈ M and let σ be a singularity of this chain. Then
the functions qσ− and qσ+ coincide.
Proof : First assume that σ is not of polynomial type with degree one. Moreover,
let K(Wt) = K−(Wt) and 1 ∈ P(EWt

). By Proposition 5.4 we know that

qσ−(z) = α+ [(Sσ−,d/P
◦
σ+,d − z)−1(1/P◦

σ−,d), (1/P
◦
σ−,d)], (5.12)

and
qσ+(z) = α+ [(Sσ+,d/P

◦
σ+,d − w)−1(1/P◦

σ+,d), (1/P
◦
σ+,d)]. (5.13)

Applying Lemma 5.5 step by step to the spaces of the chain (3.8), we obtain that
the functions (5.12) and (5.13) coincide.

If it is not true that K(Wt) = K−(Wt) and 1 ∈ P(EWt
), then Lemma I.8.6

and Proposition I.8.3 imply that K(Wt) contains no constant function of the form
(α, 1)T , α ∈ R. Let W(1,π

2
) be defined according to (II.7.1). Lemma II.7.2 shows

that
K(W(1, π

2
)) ∩W(1,π

2
)K(Wt) = {0}.

Therefore, (W(1,π
2
)Wt)t∈I extends to a chain (Vt)t∈J ∈ M such that (0, 1)T ∈

K(Vt), t ∈ J . Hence K(Vt) = K−(Vt) and 1 ∈ P(EVt
), cf. Proposition I.8.3.

Clearly, the value γ ∈ J which corresponds to σ is a singularity of (Vt)t∈J , and
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the corresponding intermediate Weyl coefficients are W(1,π
2
)qσ− and W(1,π

2
)qσ+.

By the already settled case we know

W(1,π
2
) ◦ qσ− = W(1,π

2
) ◦ qσ+.

Since W(1,π
2
)(z) is invertible, we obtain qσ− = qσ+.

It remains to consider the case that σ is of polynomial type with degree one,
i.e. that σ−, σ+ ∈ I, σ− < σ < σ+, and Wσ−σ+

= W(l,β) for some l < 0 and
β ∈ [0, π). Hence for all t ∈ [σ−, σ) ∪ (σ, σ+] the matrix function Wσ−t is of the
same form, and hence

Wt ◦ cotβ = Wσ−
Wσ−,t ◦ cotβ = Wσ−

◦ cotβ.

Note that if σ− = 0, we have to set W0 = 1 and W0t = Wt above.
Thus also for singularities of polynomial type with degree one we have

qσ−(z) = (Wσ−
◦ cotβ)(z) = qσ+(z).

The question arises which functions q ∈ Nκ can be realized as intermediate
Weyl coefficient. An immediate consequence of Lemma 5.2, Proposition 5.4 and
the proof of Theorem 5.6 is:

Remark 5.7. Assume that q is the intermediate Weyl coefficient at some singu-
larity. Then q is meromorphic in C.

As we will see in Section 7 this necessary condition is far from being sufficient.
From Theorem 5.6 we deduce a continuity property of a maximal chain of

matrix functions at a singularity.

Proposition 5.8. Let (Wt)t∈I ∈ M and let σ be a singularity. If one of the
values

lim sup
tրσ,t∈I

|w′
21,t(0)|, lim sup

tցσ,t∈I
|w′

21,t(0)|,

is finite, then the limits

γ− := lim
tրσ

w′
21,t(0), γ+ := lim

tցσ
w′

21,t(0),

exist and are equal.
Before we go into the proof of this statement we need a result which follows

from [Wi1] (see also [Wi2]).
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Lemma 5.9. Let (Wt)t∈I ∈ M and denote by q its Weyl coefficient. Then
w′

21,t(0) is unbounded for tր sup I if and only if

lim
yց0

yq(iy) = 0. (5.14)

Otherwise

−i

[

lim
yց0

yq(iy)

]−1

= lim
tրsup I

w′
21,t(0).

Proof : In the case that (Wt)t∈I ∈ M0 the assertion is just Theorem 2.2 from
[Wi1]. If (Wt)t∈I ∈ Mκ with κ > 0, choose t0 ∈ I such that ind−Wt0 = κ. The
result of [Wi1] can be applied to the chain (W̃t)t∈I,t>t0 where W̃t := Wt0t. Denote
its Weyl coefficient by q̃. Since Wt0 has the power series expansion

Wt0 =

(

1 +O(z) w′
12,t0(0)z +O(z2)

w′
21,t0(0)z +O(z2) 1 +O(z)

)

at 0, and a similar expansion holds for W−1
t0 , we obtain from

zq(z) =
w11,t0(z)zq̃(z) + zw12,t0(z)

w21,t0(z)q̃(z) + w22,t0(z)
,

that (5.14) is equivalent to w̃′
21,t(0) being unbounded and, since w′

21,t(0) =
w′

21,t0(0) + w̃′
21,t(0), also to w′

21,t(0) being unbounded.
If (5.14) is not valid we obtain

i lim
yց0

yq̃(iy) =
1

limtրsupJ w̃′
21,t(0)

=: β.

Hence

i lim
yց0

yq(iy) =
β

w′
21,t0

(0)β + 1
=

=

[

w′
21,t0(0) + lim

tրsupJ
w̃′

21,t(0)

]−1

=

[

lim
tրsupJ

w′
21,t(0)

]−1

.

Proof (of Proposition 5.8): Consider the intermediate Weyl coefficient qσ
at the singularity σ. By the above lemma the number γ− is finite if and only if
limyց0 yqσ(iy) 6= 0.

For a number s1 > σ, such that ind−Ws1 = mins∈I,s>σ ind−Ws, consider the
chain

Vt(z) = Ws1,s1−t(−z), 0 ≤ t < s1 − σ.
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It is easy to see that (Vt)t∈(0,s1−σ) ∈ M0. We denote by q̃ the Weyl coefficient of
this chain. As

w′
21,s1−t(0) = w′

21,s1 (0) − v′21,t(0), 0 ≤ t < s1 − σ,

the number γ+ is finite if and only if v′21,t(0) is bounded for tր s1 − σ. If we set

β = −i lim
yց0

yq̃(iy),

this is in turn equivalent to β 6= 0. Note that in any case β ∈ R, and hence,

β = lim
yց0

−iyq̃(iy) = lim
yց0

iyq̃(−iy).

Since the upper and the lower intermediate Weyl coefficient coincide (cf. Theorem
5.6), we have

qσ(z) = Ws1(z) ◦ q̃(−z).

Thus

lim
yց0

−iyqσ(iy) = lim
yց0

−iy(Ws1(iy) ◦ q̃(−iy)) =
−β

−w′
21,s1

(0)β + 1
.

We see that β 6= 0 if and only if γ− is finite. Moreover, in this case

γ− = w′
21,s1(0) −

1

β
= γ+.

6 Evolution of singularities

If we apply the transformation Tm to the members Wt of a maximal chain
(Wt)t∈I ∈ M whenever it is possible, we obtain by virtue of Theorem 4.4 a chain
of matrix functions which can be extended to a maximal chain Tm((Wt)t∈I). Of
course, during this procedure the structure of the singularities might change, i.e.
singularities may get a different type, some may vanish and new ones may ap-
pear. The aim of this section is to investigate in detail the evolution of singu-
larities when Tm is applied. Moreover, we make clear what has to be added to
obtain Tm((Wt)t∈I) from (Tm(Wt))t∈I,Wt∈dom Tm

. During this whole section we
will assume that K−(Wt) = K(Wt), in order to have available the related chain of
dB-spaces.

First we consider the appearance of new singularities. Recall that the crucial
parameter in the transformation Tm is α(W ) = 1−mw′

21(0). Let In = (σn−1, σn)
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be a component of I. Singularities may occur if the parameter α(Wt) has a zero
in the interior of In. Since α(Wt) is monotone, the set of zeros is either empty,
consists of a single point or of an interval. Recall in this place the following fact
which implies that, if α(Wt) vanishes on an interval, this interval is necessarily
indivisible of type 0 (cf. [dB]).

Remark 6.1. Let W ∈ M0 and assume that w′
21(0) = 0. Then W = W(l,0) for

some l ≥ 0.
In particular, Proposition 3.16 and Lemma 3.5 imply that α(Wt) cannot vanish

identically on any component of I.
The case that α(Wt) vanishes on an interval which has one endpoint in common

with In, as well as the case that the zero set is empty but limtրσn
α(Wt) = 0 or

limtցσn−1
α(Wt) = 0, will be treated later. In these situations the ‘zeros’ of

α do not give rise to a new singularity but contribute to the evolution of σn
(σn−1, respectively). Hence we are left with the cases that α has a single zero in
In or there exists an indivisible interval of finite length and type 0 on which α
vanishes. Considering the definitions of the various types of singularities we obtain
the following result.

Proposition 6.2. The weight of the new singularity σ is 1.

(i) If α has an isolated zero which is contained in the interior of an indivisible
interval, then σ is of polynomial type with degree 1.

(ii) If α has an isolated zero which is left and right (left but not right, right but
not left, neither left nor right) endpoint of an indivisible interval, then σ is
of polynomial type with degree δ = 2 (left dense with δ = 1, right dense with
δ = 1, dense with δ = 0).

(iii) If α vanishes on an interval [t−, t+] and t− is right and t+ is left (t− right
but t+ not left, t+ left but t− not right, neither t− right nor t+ left) endpoint
of an indivisible interval, then σ is of polynomial type with δ = 3 (right dense
with δ = 2, left dense with δ = 2, dense with δ = 1).

Proof : We prove only the statement (i). The proofs of (ii) and (iii) are similar.
Assume that α has an isolated zero located in the interior of some indivisible

interval. Depending on whether m < 0 or m > 0 the function α(Wt) is nonincreas-
ing or nondecreasing, respectively. Thus α(Wt) > 0 for t < σ and α(Wt) < 0 for
t > σ (α(Wt) < 0 for t < σ and α(Wt) > 0 for t > σ, respectively). By Corollary
4.3,

ind−Tm(Wt) = ind−Wt +

{

0 , t < σ
1 , t > σ

({

−1 , t < σ
0 , t > σ

)

.

Since σ is contained in the interior of an indivisible interval, say (σ−, σ+), the
transfer matrix Tm(Wσ−

)−1Tm(Wσ+
) is by Lemma 4.7 a linear polynomial W(l,φ).
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By Lemma 4.5 we have l < 0, hence σ is of polynomial type with degree 1.

Now we investigate the circumstances under which a singularity disappears. Since
this happens if and only if a new singularity occurs when reversing the process,
i.e. when applying the transformation T−m to the chain Tm((Wt)t∈I), the above
discussion shows us which types of singularities might vanish. It also gives us a
hint how the chain (Tm(Wt)) has to be extended in order to obtain maximality.
We only have to note that, if the singularity σ is of one of the types mentioned in
(i) and (ii) of Proposition 6.2, then

lim
tրσ

Tm(Wt) = lim
tցσ

Tm(Wt),

whereas in case (iii) inequality holds. However, in case of inequality, the transfer
matrix V belongs to M0 and satisfies v′21(0) = 0. Thus, in order to extend
(Tm(Wt)) locally at the vanishing singularity σ to a maximal chain, in the cases of
(i) and (ii) it suffices to add the matrix limt→σ Tm(Wt), in those of (iii) we have
to plug in an indivisible interval of type 0 and of appropriate length.

In the remainder of this section we discuss the evolution of an existing singu-
larity σ. As already remarked earlier the change of the type will depend on the
behaviour of the parameter α(Wt) at σ. In order to clarify the role of α we need
the following result.

Lemma 6.3. Let (Wt)t∈I ∈ M and assume that σ is a singularity which is not
of polynomial type with degree 1. Moreover, let P be a degenerated dB-space with
Pσ−

⊆ P ⊆ Pσ+
. Then P◦ ⊆ Q(P) if and only if w′

21,t(0) is bounded at σ. In
this case

K0(0) = − lim
t→σ

w′
21,t(0). (6.1)

Proof : First note that by Proposition 5.8 the limit in (6.1) is well defined.
Let us settle the case that σ is neither dense nor left dense, i.e. Pσ−

is nondegen-
erated. By the (proof of) Theorem 2.3 and Lemma II.7.6 the relation P◦ ⊆ Q(P)
is equivalent to the fact that the indivisible interval (σ−, σ) has type 0. This in
turn is equivalent to w′

21,t(0) being bounded for tր σ. In this case the right hand
side of (6.1) equals −w′

21,σ−
(0) which is Kσ−

(0, 0), when Kσ−
(w, z) denotes the

reproducing kernel of Pσ−
, since Kσ−

(0, z) = −
w21,σ

−
(z)

z . It remains to recall from
Corollary 2.15 that in fact K0 ∈ Pσ−

and hence K0 = Kσ−
(0, .).

Consider the case that σ− = σ, i.e. Pσ−
is degenerated. Again due to Corollary

2.15 we have K0 ∈ Pσ−
, hence it suffices to prove the statement for P = Pσ−

.
Observe that

⋃

t∈I,t<σ

Pt = Pσ−
. (6.2)

Moreover, Pt can be considered as a subspace of the Pontryagin space Pσ−
/P◦

σ−
,

and the relation (6.2) still holds when Pσ−
is replaced by Pσ−

/P◦
σ−

.
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Assume that P◦ ⊆ Q(P). Then point evaluation at 0 is a well defined and
continuous functional on Pσ−

/P◦
σ−

and is represented as inner product with the
element K0 + P◦

σ−
. By an elementary Pontryagin space argument we conclude

from (6.2) that
lim
tրσ−

Kt(0, .) = K0 + P◦
σ−
.

In particular (6.1) holds.
Finally assume that Kt(0, 0) = [Kt(0, .),Kt(0, .)] is bounded for tր σ−. Again

a straightforward argument shows that the family {Kt(0, .)} is in fact bounded in
a definite norm of Pσ−

/P◦
σ−

. Hence there exists a weak limit, say K0 + P◦
σ−

. It
follows that the element K0 ∈ Pσ−

represents point evaluation at 0 on the set
⋃

t<σ Pt, and hence, by (6.2) and the fact that point evaluation is continuous on
Pσ−

, on all of Pσ−
. In particular P◦

σ−
⊆ Q(Pσ−

).

Given the chain (Wt)t∈I ∈ M we consider the chain of transformed matrix func-
tions

(W̃t)t∈I,Wt∈domTm
, W̃t = Tm(Wt). (6.3)

The dB-spaces associated with this chain will be denoted by P̃t, the singularity σ
under consideration as σ̃ when thought of as a singularity of (W̃t)t∈I,Wt∈domTm

,

and correspondingly the weight and degree of σ̃ by ω̃ and δ̃. Moreover, the maximal
chain extending (W̃t)t∈I,Wt∈domTm

will be denoted by (W̃t)t∈Ĩ . Let us again state
explicitly that we are interested in the evolution of an existing singularity, so we
assume throughout the following that σ as well as σ̃ actually are singularities of
the respective chains.

We will go into details only in the case that σ is, say, right dense. Other types
are treated analogously. Listing all possible cases would be an elementary but
tedious procedure. Thus let us assume throughout the following that σ is right
dense.

To the singularity σ there corresponds a chain

Pσ−
( P1 ( . . . ( Pδ = Pσ+

,

of dB-spaces all of which, except Pσ−
, are degenerated. In fact, ∆− = dimP◦

1 = 1,
whereas ∆+ = dimP◦

δ > 0 can be arbitrary.

Remark 6.4. Notice that the case of a singularity of polynomial type with degree
1 is not covered by arguments similar to those which follow, since then there exist
no associated degenerated dB-spaces. However, such a singularity either vanishes
or remains of polynomial type with degree 1 as is seen from Lemma 4.7.

Lemma 6.5. Assume that α(Wt) is bounded at σ and that ασ := limt→σ α(Wt) 6=
0. Then the chain (6.3) is locally maximal at σ̃. The singularity σ̃ is again right
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dense. We have
ω̃ = ω, δ̃ = δ.

For all i = 1, . . . , δ we have

dim P̃◦
i = dimP◦

i , (6.4)

max
t<σ̃

ind−W̃t − max
t<σ

ind−Wt = min
t>σ̃

ind−W̃t − min
t>σ

ind−Wt =

= ind−P̃i − ind−Pi =







1 , [m < 0, ασ < 0]
0 , [m < 0, ασ > 0] or [m > 0, ασ > 0]
−1 , [m > 0, ασ < 0]

. (6.5)

Proof : Since ασ 6= 0 we have Wt ∈ dom Tm for t sufficiently close to σ. By
Lemma 6.3 we have P◦

i ⊆ Q(Pi) and

ασ = 1 +mK0(0) 6= 0.

Hence (6.4) follows from Lemma 2.4, the equalities in (6.5) from Lemma 2.5 and
Corollary 4.3, respectively. Now it is obvious that ω̃ = ω and δ̃ = δ. Moreover,
by Lemma 4.7, σ̃ is right dense. The very same argument as in the proof of
Proposition 4.13 shows that the chain (6.3) is locally maximal at σ̃.

The next result follows by a similar argumentation, again with the aid of Lemma
6.3, Lemma 2.4, Lemma 2.5 and Corollary 4.3. For this reason we will omit its
proof.

Lemma 6.6. Assume that α(Wt) is bounded at σ and that limt→σ α(Wt) = 0.
Again the chain (6.3) is locally maximal at σ̃. The singularity σ̃ is right dense or
dense depending whether σ− is or is not right endpoint of an indivisible interval.
We have

ω̃ = ω + 1, δ̃ = δ +

{

0 , σ̃ dense
1 , σ̃ right dense

.

For all i = 1, . . . , δ we have

dim P̃◦
i = dimP◦

i + 1,

as well as dim P̃◦
σ−

= 1. Moreover,

max
t<σ̃

ind−W̃t − max
t<σ

ind−Wt = ind−P̃i − ind−Pi =

= ind−P̃σ−
− ind−Pσ−

=

{

−1 , m > 0
0 , m < 0

,

and

min
t>σ̃

ind−W̃t − min
t>σ

ind−Wt =

{

0 , m > 0
1 , m < 0

.
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In the case that α(Wt) is unbounded the situation is quite different:

Lemma 6.7. Assume that α(Wt) is unbounded at σ. In this case the chain (6.3)
is not locally maximal. In fact

lim
tրσ

Tm(Wt) =: V− (6.6)

exists. If dimP◦
σ+

= 1 also limtցσ Tm(Wt) =: V+ exists. In order to extend the
chain (6.3) to a chain being locally maximal at σ̃, we have to add V− and plug in
an indivisible interval of type zero and infinite length starting with V−. Moreover,
if V+ exists, we have to add V+ and plug in another indivisible interval of type
zero and infinite length ending with V+. The singularity σ̃ which remains has
polynomial type or is right dense depending whether V+ exists or not. We have

ω̃ = ω − 1, δ̃ = δ − 1, (6.7)

dim P̃◦
i = dimP◦

i − 1, i = 1, . . . , δ, (6.8)

max
t<σ̃

ind−W̃t − max
t<σ

ind−Wt =

= ind−P̃i − ind−Pi =

{

0 , m > 0
1 , m < 0

, (6.9)

min
t>σ̃

ind−W̃t − min
t>σ

ind−Wt =

{

−1 , m > 0
0 , m < 0

. (6.10)

Proof : The relations (6.7)-(6.10) among negative indices, isotropic parts, weights
and degrees follow from the same sources already referred to a couple of times.
Hence our task is to show that the extension of (6.3) described in the assertion is
in fact locally maximal at σ̃.

First note that, since α(Wt) is unbounded, we have Wt ∈ domTm for t suffi-
ciently close to σ.

We show that the limit (6.6) exists. The space P̃1 is nondegenerated, hence
there exists a number t1 ∈ Ĩ such that P̃1 = P(EW̃t1

) (cf. Lemma 3.15). From

the relation
max
t<σ

ind−Wt = ind−Wσ−
= ind−Pσ−

= ind−P1,

it follows by virtue of (6.9) that

max
t<σ

ind−Tm(Wt) = ind−P̃1 = ind−W̃t1 .

Since P(EWt
) ⊆ P1 and P(EWt

) = P(ETm(Wt)) as sets, we have Tm(Wt) = W̃t•

for t• ≤ t1. Thus the limit (6.6) exists,

V− = lim
tրσ

Tm(Wt) = W̃t0
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for some t0 ≤ t1.
Next we show that in fact t0 = t1. The space P̃σ−

is contained isometrically
in P(EW̃t•

) (for t sufficiently close to σ) as well as in P(EW̃t0
) and P(EW̃t1

) (cf.

Lemma 4.7). Moreover, in any of these spaces it has codimension 1. Let F ∈ P1,
span {F} = P◦

1. Clearly,

[F, F ]P(EW̃t1
) = [F, F ]P1

+m|F (0)|2 = m|F (0)|2.

On the other hand we compute

[F, F ]P(EW̃t0
) = lim

tրσ
[F, F ]P(EW̃•t

) = lim
tրσ

[F, F ]P(EWt ) +m|F (0)|2 =

= [F, F ]P1
+m|F (0)|2 = m|F (0)|2.

Hence P(EW̃t0
) = P(EW̃t1

) isometrically, i.e. t0 = t1.

Now assume that W̃s ∈ dom T−m for some s ∈ Ĩ, t0 ≤ s < σ̃. Using Lemma
4.5 we conclude that

W−1
t T−m(W̃s) ∈ Mind−T−m(W̃s)−ind−Wt

, t < σ,

as well as
T−m(W̃s)

−1Wt ∈ Mind−Wt−ind−T−m(W̃s), t > σ.

This, however, contradicts the maximality of the chain (Wt)t∈I . It follows that
W̃s 6∈ dom T−m for t0 ≤ s < σ̃. Thus (t0, σ̃) is indivisible of type 0.

We have proved that the chain (W̃t)t∈Ĩ actually has the described form locally
below σ̃. A similar argumentation will show the assertion connected with V+.

Remark 6.8. The above discussion enables us to construct all possible types of
singularities by starting from an appropriately chosen chain in M0 and applying
the transformations Tmi

and T αi finitely often with appropriate mi > 0 and
αi ∈ R.

We are led to a method to remove a singularity by performing some transfor-
mations. It employs the transformations Tm and TJ , terminates after ω steps and
is deterministic in the sense that it contains no unknown parameters.

Proposition 6.9. Let (Wt)t∈I ∈ M and consider a singularity σ. Denote by ω
the weight of σ and put κ := maxt<σ ind−Wt. Moreover, fix a positive value m.
Assume that w′

21,t(0) is unbounded at σ. Then the chain (TJTm)ω((Wt)t∈I) has
no singularity at σ. In fact, for t sufficiently close to the point σ̃ corresponding to
the former singularity σ in the chain (W̃t)t∈Ĩ := (TJTm)ω((Wt)t∈I) we have

ind−W̃t = κ.
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Proof : For an accurate proof we would need the above mentioned - but not
carried out - discussion of the evolution of singularities of arbitrary type. Hence,
here we in fact only prove a particular case.

Assume that σ is right dense. Then we will apply we will apply Lemma 6.7. If
ω = 1 we are already done. Otherwise we have to prolong the chain (Tm(Wt))t<σ.
In fact, we add an indivisible interval of type 0. By virtue of the relation (4.5) the
function α(Tm((Wt)t∈I)) remains bounded if t→ σ̃. Since the chain Tm((Wt)t∈I)
has a singularity at σ̃, the function

α(TJ Tm((Wt)t∈I))

must be unbounded at σ̃.
If σ is not right dense, we use the analogue of Lemma 6.7 in the respective

cases.
Repeating the above procedure we obtain the asserted result.

Note that, since t(Wt) → ∞ for t → σ, the validity of the crucial assumption of
Proposition 6.9 that w′

21,t(0) is unbounded can always be achieved by a possible
application of TJ .

Remark 6.10. The structure of a singularity σ is a local property in the sense
that it depends only on the behaviour of the transfer matrices Wst where s and t
are sufficiently close to σ. Hence, for the study of a particular singularity we may
often restrict to the case that ind−Wt = 0, t < σ.

7 Identification of intermediate Weyl coefficients

In this section we study the question which functions q ∈ Nκ can occur as interme-
diate Weyl coefficients at some singularity. In order to provide an answer to this
question we will apply Proposition 6.9. Note that a function q is an intermediate
Weyl coefficient if and only if −1

q is. This can be seen by an application of TJ (cf.

Lemma II.10.1). Hence by Lemma 5.9 we may confine our attention to the case
that limyց0 yq(iy) = 0. Moreover, we can assume by Remark 5.7 that q is in fact
meromorphic in C.

It is of importance to observe how intermediate Weyl coefficients change when
performing the transformation TJTm.

Lemma 7.1. Let W ∈ dom(TJTm). Then

TJTm(W ) ◦ 0 =
−1

(W ◦∞) − m
z

.
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Proof : We have

TJTm(W ) ◦ 0 =

(

0 −1
1 0

)

◦ [Tm(W ) ◦∞] =

=

(

0 −1
1 0

)(

1 −m
z

0 1

)

◦ [W ◦∞].

Fix m > 0. If q ∈ Nκ, we define a sequence (qk)k∈N∪{0} by the recursion

qk+1(z) :=
−1

qk(z) −
m
z

, k ∈ N ∪ {0},

q0(z) := q(z).

The following subclasses of Nκ are relevant for our purposes:

Definition 7.2. Let κ ∈ N ∪ {0} and ∆ ∈ N ∪ {0}. We denote by Nκ/∆ the
set of all functions q ∈ Nκ, such that q∆ ∈ Nκ, there exists a matrix W ∈ Mκ,
W (0) = 1, w′

12(0) > 0, which represents q∆ as

q∆ = W ◦ 0,

and no function ql, l < ∆, admits such a representation.
Obviously a function q ∈ Nκ can belong to at most one set Nκ/∆. Moreover,

⋃

∆∈N∪{0}

Nκ/∆ ( Nκ.

Equality does not hold, since all functions belonging to Nκ/∆ are meromorphic in
C.

Lemma 7.3. Let q ∈ Nκ/∆, then qi ∈ Nκ for all i ∈ {0, . . .∆}.
Proof : Since m > 0 the number ind−qi is nonincreasing.

Theorem 7.4. Let q ∈ Nκ, regular at ∞ and limyց0 yq(iy) = 0. Then q is the
intermediate Weyl coefficient of some singularity σ of a certain chain (Wt)t∈I ∈ M

if and only if

q ∈
⋃

∆∈N

Nκ/∆. (7.1)

For the proof of this statement we need a technical lemma.
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Lemma 7.5. Let (Wt)t∈I ∈ M, σ be a singularity and denote by qσ the inter-
mediate Weyl coefficient at σ. Assume that w′

21,t(0) is unbounded at σ. Then

ind−(qσ +
m

z
) = ind−qσ + 1.

Proof : Locally at σ we have Wt ∈ dom T−m. Put W̃t := T−m(Wt). Since −m < 0
we have for t < σ sufficiently close to σ (cf. Corollary 4.3),

ind−W̃t = ind−Wt + 1.

Since (Wt) does not end with an indivisible interval of type 0 at σ, also (W̃t) does
not. Hence (cf. Lemma II.5.12)

ind−(qσ +
m

z
) = ind− lim

tրσ
(W̃t ◦∞) = lim

tրσ
ind−W̃t =

= lim
tրσ

ind−Wt + 1 = ind−qσ + 1.

Proof (of Theorem 7.4): If q is an intermediate Weyl coefficient, then it
follows from Proposition 6.9 and Lemma 7.1 that q ∈ Nκ/∆ for some ∆ ∈ N.

Conversely, assume that (7.1) holds. Then we have q∆ = W ◦ 0 for some
W ∈ Mκ with the properties cited in Definition 7.2. Thus with m := 1

w′

12
(0) we

have m > 0. With the help of the discussion after Remark 3.1 we construct a
chain (Wt)t∈I with W = Wσ, σ ∈ I and such that Wσt, t > σ is of the form
(4.15) with t replaced by t− σ.

In what follows we will consider the chains (W
(l)
t ) := (T−mTJ )l((Wt)t∈I),

l = 0, . . . ,∆. We will show that q is the intermediate Weyl coefficient of (W
(∆)
t ).

Note that by Theorem 5.6 and [KW4] the matrix W can be chosen such that it
does not end with an indivisible interval of type π

2 .

The case ∆ = 1 is easily settled. By our choice of m the chain (W
(1)
t ) has a

singularity at σ. Since W does not end with an indivisible interval of type π
2 , we

have Wt ∈ dom(T−mTJ ) for t sufficiently close to σ, t < σ. For t > σ trivially the
same holds, since we linked with a chain that does not start with an indivisible

interval. Hence (W
(1)
t ) is given locally at σ as (T−mTJ (Wt)), and clearly q is the

intermediate Weyl coefficient of (W
(1)
t ) at σ.

Let us now treat the case that W ends with an indivisible interval, i.e. Wt′σ

is a linear polynomial of type 6= π
2 belonging to M0 for a certain t′ < σ. We

show that then necessarily ∆ = 1. So assume on the contrary ∆ ≥ 2. Again by

the choice of m the chain (W
(1)
t ) has a singularity at σ. Choose t′ so close at σ

that t ∈ dom (T−mTJ ), t ∈ [t′, σ). By Lemma 4.7 W
(1)
t′t is a linear polynomial of

non-zero type for t ∈ (t′, σ). In fact, the following argument, which involves the
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chains (W
(1)
t ) and (W

(2)
t ) shows that this type is π

2 . From our choice of m we have
for t sufficiently close at σ,

ind−W
(1)
t =

{

κ, t < σ
κ+ 1, t > σ

.

Lemma 7.5 implies that w
(1)
12,t

′
(0) is bounded at σ, Hence the type is π

2 . Thus

w
(1)
12,t

′
(0) is constant for t ∈ (σ−, σ).

Assume that w
(1)
12,t

′
(0) 6= 1

m on this interval. Then W
(1)
t ∈ dom (T−mTJ ) for

t ∈ (σ−, σ). Consider the chain (W
(2)
t ). Since w

(1)
12,t

′
(0) is bounded at σ, and since

the degree of negativity of W
(1)
t increases at σ, Corollary 4.3 shows that also the

degree of negativity of W
(2)
t increases at σ. Note that the parameter α in that

lemma is non-increasing in our situation. Hence σ is a singularity also for (W
(2)
t ).

If ∆ = 2, the assumption of the theorem implies that w
(2)
21,t

′
(0) is unbounded at σ

(cf. Lemma 5.9). If ∆ > 2 another application of Lemma 7.5 yields that w
(2)
12,t

′
(0)

is bounded at σ. Hence also in this case w
(2)
21,t

′
(0) must be unbounded at σ. By

(4.21) we conclude that limt→σ w
(1)
12,t

′
(0) = 1

m , which is a contradiction to our
assumption.

It remains to consider the case that w
(1)
12,t

′
(0) = 1

m for t ∈ (σ−, σ). However,
then

q1 = W (1)
σ−

◦ 0

where W
(1)
σ−

∈ Mκ and w
(1)
12,σ−

′
(0) = 1

m > 0. This contradicts the definition of
Nκ/∆ since ∆ ≥ 2.

In the remaining case we need not bother whether W
(l)
t ∈ dom(T−mTJ ); this

is trivially satisfied for t sufficiently close to σ.
We use induction on l to prove the following statements.

(i) w
(l)
12,t

′
(0) is bounded at σ, l = 1, . . . ,∆ − 1.

(ii) w
(l)
21,t

′
(0) is unbounded at σ, l = 1, . . . ,∆,

(iii) for t sufficiently close to σ, l = 1, . . . ,∆,

ind−W
(l)
t =

{

κ, t < σ
κ+ l, t > σ

,

(iv) qσ((W
(l)
t )) = q∆−l, l = 1, . . . ,∆.
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This will then finish the proof of the theorem.

Consider the chain (W
(1)
t ). From our choice of m, (4.21) and Corollary 4.3 we

conclude that (ii) and (iii) hold. Keeping in mind that the case ∆ = 1 is already
settled, i.e. we can assume ∆ ≥ 2, we obtain from Lemma 7.5 and the fact that
ind−q∆−2 = κ that (i) holds. The relation (iv) is obvious.

Let 1 < l < ∆ and assume that (i)-(iv) are already proved for l′ < l. Since

w
(l−1)
12,t

′
(0) is bounded at σ, and since our parameter, which corresponds to α from

Corollary 4.3, is non-increasing, we learn from Corollary 4.3 (t < σ < s, t, s
sufficiently close to σ):

ind−W
(l)
s − ind−W

(l)
t ≥ ind−W

(l−1)
s − ind−W

(l−1)
t .

It follows that σ is a singularity of the chain (W
(l)
t ). Another application of

Lemma 7.5 shows that w
(l)
12,t

′
(0) is bounded at σ. Hence, necessarily, w

(l)
21,t

′
(0)

must be unbounded at σ, and we conclude w
(l−1)
12,t

′
(0) → 1

m as t → σ (cf. (4.21)).
By virtue of Corollary 4.3 now also (iii) follows. The relation (iv) is obvious.

It remains to consider the case l = ∆. By the assumption of the theorem

w
(l)
21,t

′
(0) is bounded at σ. Hence (iii) and (iv) follow as above.

In the following we will employ the results of [Wo] in order to give a more internal,
however only necessary, condition for q ∈ Nκ to belong to Nκ/∆.

First note that the recursion defining the sequence (qk)k∈N∪{0} can be solved
explicitly.

Lemma 7.6. Let m and q0 be given, and define a sequence qk, k ∈ N, by

qk+1 =
−z

zqk −m
, k = 0, 1, 2, . . . .

Then

qk =
1

rk

q0 − rk
q0 − rk+1

, k ≥ 2, (7.2)

q1 =
−1

q0 −
m
z

,

where

rk =

[ k−1

2 ]
∑

j=0

λ
(k−1)
j ( zm )2j

[ k
2
−1]
∑

j=0

λ
(k−2)
j ( zm )1+2j

, (7.3)
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with some integers λ
(l)
j . The highest powers written in the numerator and the

denominator actually occur. In fact, if l is even λ
(l)

[ l
2 ]

= (−1)[
l
2 ], and if l is odd

λ
(l)

[ l
2 ]

= (−1)[
l
2 ] l+1

2 .

Proof : Put f(x) = −z
zx−m . Then (qk)k∈N∪{0} is defined by the recurrence qk+1 =

f(qk). In order to solve this recursion we assume that z 6= ±m
2 . Then f(x) has

two distinct fixed points

X1,2 =
m

2z
±

√

m2

4z2
− 1.

We use the transformation pk = ϕ(qk), where

ϕ(x) =
x−X1

x−X2
.

The sequence (pk)k∈N∪{0} is the solution of the recursion

pk+1 = (ϕ ◦ f ◦ ϕ−1)(pk).

Since (ϕ ◦ f ◦ ϕ−1)(x) = X1

X2
x, we obtain pk = (X1

X2
)kp0 and hence

qk = ϕ−1((
X1

X2
)kϕ(q0)).

A computation shows that

qk = X1X2
Xk−1

1 −Xk−1
2

Xk
1 −Xk

2

·
q0 −

Xk
1 −X

k
2

Xk−1

1
−Xk−1

2

q0 −
Xk+1

1
−Xk+1

2

Xk
1
−Xk

2

. (7.4)

We use the fact that the coefficients in (7.4) are symmetric functions in X1, X2 to
rewrite them in terms of X1X2 = 1 and X1 +X2 = m

z . The relation (7.3) follows
from

Xk
1 −Xk

2

Xk−1
1 −Xk−1

2

=
Xk−1

1 +Xk−2
1 X2 + . . .+X1X

k−2
2 +Xk−1

2

Xk−2
1 +Xk−3

1 X2 + . . .+X1X
k−3
2 +Xk−2

2

,

since X1X2 = 1 gives

X l
1 +X l−1

1 X2 + . . .+X1X
l−1
2 +X l

2 =

[ l
2 ]
∑

j=0

λ
(l)
j (X1 +X2)

l−2j . (7.5)

It remains to determine the coefficients λ
(l)

[ l
2 ]

. Assume first that l is even, and let

z tend to ∞ in (7.5). We get λ
(l)

[ l
2 ]

= (−1)[
l
2 ].
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For l odd we can write

X l
1+X

l−1
1 X2+. . .+X1X

l−1
2 +X l

2 = (X1+X2)(X
l−1
1 +X l−3

1 X2
2+. . .+X2

1X
l−3
2 +X l−1

2 ).

If z tends to ∞ we obtain

λl[ l
2 ]

= (−1)[
l
2 ] l + 1

2
.

The asymptotic behaviour of the terms rk is easy to handle.

Lemma 7.7. If k is even,

rk =
mk

2

1

z
+O(

1

z3
),

and if k is odd,

rk =
2

m(k − 1)
z +O(

1

z
).

For sufficiently large modulus the zeros of q − rk interlace with the poles of q.
Proof : The asymptotic behaviour of rk is an immediate consequence of (7.3).
Consider the real zeros of q − rk. These are exactly the poles of

s(z) =
−1

q(z) − rk(z)
.

Since rk is a rational function, s belongs to Nν for some ν ∈ N ∪ {0}. Hence all
but finitely many of its real poles must be simple, and therefore the function has
negative residuum at those poles.

Consider t ∈ R outside a disk which contains all poles of rk and all multiple
poles and poles with positive residuum of s. Clearly, since rk is continuous outside
this disk, the function q − rk must have at least one zero between two subsequent
poles of q. Moreover, any zero must be simple and the derivative of q − rk at a
zero must be positive. Thus there exists exactly one zero of q − rk between two
subsequent poles of q.

Let us recall a result from [Wo].

Lemma 7.8. Let W ∈ Mκ. Denote by (ak)k∈N ((a+
k )k∈N and (a−k )k∈N) the

sequences of real simple poles (positive poles and negative poles, respectively) of
the function

q(z) := W (z) ◦ 0,

arranged according to increasing modulus. Then

lim
r→∞

∑

0<|ak|<r

1

ak
= s ∈ R, (7.6)
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lim
k→∞

k

a+
k

= lim
k→∞

k

a−k
=
β

2
∈ R. (7.7)

This is in fact nothing else but Proposition 2.2 of [Wo]. We only have to note
that in the proof given there the assumption q ∈ N0 is not used at all.

Now we obtain a necessary condition for q ∈ Nκ to be an intermediate Weyl
coefficient.

Corollary 7.9. Assume that q ∈ Nκ is an intermediate Weyl coefficient of some
chain. Then (7.6) and (7.7) hold.
Proof : Consider first the case that limyց0 −iyq(iy) = 0. Then by Theorem 7.4
we have q∆ = W ◦ 0. Now Lemma 7.8 shows that the poles of q∆ satisfy (7.6) and
(7.7). By Lemma 7.7 they interlace with the poles of q, and hence also the poles
of q have these properties.

If limyց0 −iyq(iy) > 0, consider − 1
q , which is also a Weyl coefficient of some

chain and satisfies the assumption of the first paragraph of this proof. Hence the
poles of − 1

q satisfy (7.6) and (7.7). Since the poles and the zeros of − 1
q interlace,

also the poles of q possess these properties.
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