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Abstract

In connection with an indefinite analogue of canonical systems of dif-
ferential equations some subclasses N0/∆ (∆ ∈ N0) of the Nevanlinna class
N0 come up. We give a criterion for a function to belong to N0/∆ in terms
of its poles and residues.

AMS Classification Numbers: 46E20, 30D50, 30H05

Keywords: Weyl coefficient, de Branges spaces, distribution of poles

1 Introduction

In [KW3] some classes N0/∆ (∆ ∈ N0) consisting of certain functions meromor-
phic in the plane and possessing only real poles and zeros were defined (we will
recall this definition below, cf. Definition 1.1). It turned out that this notion
is most helpful in the study of the indefinite analogue of so-called canonical
systems of differential equations (cf. [Wi1], [Wi2], [KL], [KW2]). There one
investigates so-called maximal chains of matrix functions.

In order to explain this notion, let us recall that Mκ, κ ∈ N0, denotes the
set of all entire 2 × 2-matrix functions W (z) with det W (z) = 1 that have the
property that the matrix kernel

H(z, w) :=
W (z)JW (w)∗ − J

z − w
, (1.1)

where

J :=

(

0 −1
1 0

)

,

has κ negative squares, i. e., the maximum of negative squares of the quadratic
forms

n
∑

i,j=1

(

H(zi, zj)xi, xj

)

C2 ξi ξj

with n ∈ N, z1, . . . , zn ∈ C, and x1, . . . , xn ∈ C2, is equal to κ.
A maximal chain of matrix functions is a mapping which assigns to each

t ∈ I = (0, M) \ {s1, . . . , sn} an entire 2 × 2-matrix function Wt(z) ∈ Mκ(t)

and possesses certain factorization and maximality properties. Here 0 < s1 <
· · · < sn < M ≤ ∞ and κ : I → N0 is non-decreasing and locally constant. The
points si are called singularities.

In the classical case, i. e., if there exist no singularities and κ(t) = 0, those
maximal chains are exactly the solutions of canonical systems of differential
equations. It is a basic result that for any τ ∈ R the limit

lim
tրt0

Wt,11(z)τ + Wt,12(z)

Wt,21(z)τ + Wt,22(z)
=: qt0(z), z ∈ C \ R, t0 ∈ {s1, . . . , sn, M},
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exists, is independent of τ , and defines an analytic function on C \ R. The
function qM is called the Weyl coefficient of the chain and qsi

, i = 1, . . . , n, are
called intermediate Weyl coefficients.

If (Wt)t∈I is a maximal chain of matrices, then also the family (Wt)t∈(0,s1)

possesses this property and, moreover, has no singularities. A converse question
is the following: Given a maximal chain (Wt)t∈(0,m) without singularities and
κ(t) = 0, is it part of a larger chain? It turned out (cf. [KW3]) that this is the
case if and only if qm ∈ N0/l for some l ∈ N0. In fact, it is part of a longer chain
with maxt∈I κ(t) = ∆ if and only if qm ∈

⋃

0≤l≤∆ N0/l.
However, the actual definition of the class N0/l originates in a recursive

application of some transformation of chains and is, as the reader can convince
himself below, quite intricate. An internal characterization whether a function
q does or does not belong to N0/l is lacking. It is the aim of this paper to redress
this imperfection. We will prove a criterion which involves only the poles and
residues (or equivalently the poles and zeros) of the given function q (cf. Theorem
5.1). It turns out that in this respect the distribution of the poles of q as well as
the asymptotic behaviour of the residues (or of the canonical product associated
with the sequence of zeros of q, respectively) is of significance.

The present results generalize the contents of [Wo] where the particular case
∆ = 0 has been settled. Besides the classical theory of growth and distribution
of zeros of entire functions (cf. [B], [L]), our proofs rely on a connection with
the theory of Hilbert spaces of entire functions by L. de Branges (cf. [dB]).

A function f : dom f ⊆ C → C, whose domain is symmetric with respect to
the real axis, is called real if f#(z) := f(z) = f(z). The class N0 of so-called
Nevanlinna functions is defined to be the collection of all analytic functions
q : C\R → C which are real and map the upper half plane into itself. Note that
this notion is different from the notion of functions of bounded type on a certain
domain, the entirety of which is sometimes also named Nevanlinna class. Let us
recall that a function f analytic on some domain D is called of bounded type in
D if it can be expressed as a quotient of two functions analytic and bounded in
D. In this note the domain D under consideration will always be the upper half
plane, so whenever we speak of a function of bounded type, we mean bounded
type in C+. Recall that for a function f of bounded type the limit

mt(f) := lim
y→+∞

log |f(iy)|

y

exists. This number is called the mean type of f .

1.1 Definition. We define the classes N0/∆, ∆ ∈ N0, separately for ∆ = 0 and
∆ > 0.

1. A function q is said to belong to the class N0/0 if it belongs to N0 and

can be represented as the quotient q(z) = B(z)
A(z) of two real entire functions

which possess the property that there exist real entire functions C and D
such that the 2 × 2-matrix function

W (z) :=

(

A(z) B(z)

C(z) D(z)

)

is in M0 and W (0) = I.
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2. For a function q we define a sequence (qk)k∈N0 recursively by q0 := q and

qk+1(z) :=
−1

qk(z) − 1
z

, k ∈ N0. (1.2)

In the case ∆ > 0 we write q ∈ N0/∆ if q ∈ N0 and q∆ ∈ N0/0, whereas
ql /∈ N0/0 for l < ∆.

Note that a function belonging to N0/∆ is necessarily meromorphic in the
whole plane and all of its poles and zeros are real.

The criterion for a given function q to belong to N0/0 proved in [Wo] is
concerned with the distribution of the poles (ak)k∈N of q and with the growth of
the canonical product built from the zeros (bk)k∈N of q. In order to indicate to
the reader where the difficulty in the treatment of the general class N0/∆ lies,
let us sketch the influence of the recursion (1.2) on the poles and zeros of the
respective functions. Obviously q1 has a zero at t if either q has a pole there or
t = 0. On the other hand t is a pole of q1 if it solves the equation q(z) = 1

z .
Hence we might think of the poles of q1 as perturbed zeros of q. If we proceed
to q2 we find that its zeros are perturbations of the zeros of q plus 0 and its
poles are perturbations of the poles of q with a perturbation of 0 added.

Since for a function belonging to N0 the poles and zeros interlace, the distri-
bution of the sequences of poles (or zeros) of q1, q2, . . . is fairly easy to handle.
However, due to the indicated kind of perturbation, the behaviour of the above
mentioned canonical product might change tremendously. Moreover, since an
accurate solution of the equation q(z) = 1

z is out of reach (a standard example
for q(z) would be the function tan z), it seems likely that an explicit treatment of
these matters is hardly possible. As in [Wo] we will take a detour via de Branges’
theory of Hilbert spaces of entire functions. This connection is, however, also
of particular interest on its own right.

Let us outline the contents of this article. First, in Section 2, we set up
some notation and recall briefly a couple of well-known results. In Section 3 we
define the notion of functions l-associated to a de Branges space of entire func-
tions. This is a fairly straightforward generalization of the concept of associated
functions as introduced in [dB]. The aim of the fourth section is to provide an
approximation method for deBranges spaces containing only functions with a
zero of appropriate order at the origin. Our main result (Theorem 5.1) is stated
at the beginning of Section 5. This section is mainly devoted to the proof of
this statement. Moreover, we draw some conclusions from Theorem 5.1 and give
some examples.

2 Preliminaries

In the sequel let us recall a couple of necessary ingredients. For an accurate
treatment of the respective subjects we refer to [B], [dB], and [L].

An entire function E is said to belong to the Hermite-Biehler class HB if it
satisfies

|E(z)| < |E(z)|, z ∈ C
+.

We will write E ∈ HB× if E belongs to HB and has no real zeros. For each
function E ∈ HB a Hilbert space H(E) is defined as the collection of all entire
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functions F such that F
E and F#

E are of bounded type, mt(F
E ), mt(F#

E ) ≤ 0, and

‖F‖2
H(E) :=

∫ ∞

−∞

|F (t)|2
dt

|E(t)|2
< ∞.

We set A(z) := E(z)+E#(z)
2 and B(z) := iE(z)−E#(z)

2 , so that E = A − iB, and
define for ϕ ∈ R

Sϕ(z) := sinϕ · A(z) − cosϕ · B(z).

In the space H(E) each point evaluation functional is continuous. The repro-
ducing kernel K of the space, i. e., the family K(w, · ), w ∈ C, of functions of
H(E) satisfying

F (w) = (F, K(w, · )), F ∈ H(E),

is given by (independently of ϕ ∈ R)

K(w, z) =
Sϕ(w)Sϕ+ π

2
(z) − Sϕ(z)Sϕ+ π

2
(w)

π(z − w)
, z 6= w, (2.1)

K(z, z) =
1

π

(

Sϕ(z)S′
ϕ+ π

2
(z) − S′

ϕ(z)Sϕ+ π
2
(z)
)

. (2.2)

We will frequently make use of the difference quotient operator associated with
a function S (S(w) 6= 0)

(RS;wF )(z) :=
F (z) − F (w)

S(w) S(z)

z − w
.

Note that for entire functions S and F , the difference quotient F (z)S(w)−F (w)S(z)
z−w

is analytic on C2. For S = Sϕ the operator RS;w is the resolvent operator
of a self-adjoint extension in H(E) of the operator of multiplication by the
independent variable.

A continuous function φ : R → R is called a phase function for E if, for all
t ∈ R, the relation

E(t)eiφ(t) ∈ R

holds. Any such function satisfies

φ′(t) = K(t, t)
π

|E(t)|2
, t ∈ R ,

cf. [dB, Problem 48].
A function E ∈ HB gives rise to a family of functions q(ϕ; · ) ∈ N0 which are

meromorphic in C, namely by (ϕ ∈ R)

q(ϕ; z) = −
Sϕ−π

2
(z)

Sϕ(z)
.

Conversely, if q ∈ N0 and is meromorphic in C, then there exists a function
Eq ∈ HB, such that q can be obtained in that way. A more complete treatment
of this relationship can be found in [dB] and [KW1].

Let us now state accurately the already mentioned conditions on the distribu-
tion of a sequence. Let (xk)k∈N be a sequence of pairwise distinct real numbers
which has no finite limit point. Denote by (x+

k )k∈N and (x−
k )k∈N the sequences

of positive (negative, respectively) members of (xk)k∈N arranged according to
increasing modulus. The conditions appearing in our context are:
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(C1) The limit

lim
r→∞

∑

0<|xk|≤r

1

xk

exists in R.

(C2) The following limits exist in R and are equal:

lim
k→∞

k

x+
k

= lim
k→∞

k

|x−
k |

.

For a sequence (xk)k∈N satisfying those conditions the product

f(z) := lim
r→∞

∏

0<|xk|≤r

(

1 −
z

xk

)

converges locally uniformly on C and therefore represents an entire function.
We define the entire function associated to the sequence (xk)k∈N by

x(z) :=

{

f(z), 0 /∈ {xk : k ∈ N},

zf(z), 0 ∈ {xk : k ∈ N}.
(2.3)

The growth of x(z) has been closely investigated, see, e. g., [B] or [L]. The
essential facts for our situation have been collected in [Wo, Section 1].

We will also make use of two different representations of a Nevanlinna func-
tion q meromorphic in C. First any such function can be written as (cf. [L,
VII. Lehrsatz 2])

q(z) = a + bz +
∑

t:q(t)=∞

( 1

t − z
−

t

1 + t2

)

σt, (2.4)

where a ∈ R, b ≥ 0, and σt = −Res(q; t). The point masses σt are positive and
satisfy

∑

t:q(t)=∞

σt

1 + t2
< ∞.

Secondly let us recall a multiplicative representation of q (cf. [L, VII. Lehrsatz 1])

q(z) = γzδ
∏

k∈N

1 − z
bk

1 − z
ak

,

where γ > 0, δ = 1, 0,−1 depending whether q(0) = 0, q(0) ∈ R \ {0}, or
q(0) = ∞, and (ak)k∈N and (bk)k∈N denote the sequences of non-zero poles of
q and zeros of q, respectively, arranged appropriately. Such a representation is
possible since the poles and zeros of q interlace. This fact also implies that the
sequence of poles of q meets (C1) and (C2) if and only if the sequence of zeros
of q satisfies (C1) and (C2). In fact, for any α ∈ R∪{∞} the sequence (xk)k∈N

of all real numbers t with q(t) = α behaves in the same way in this respect.
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3 Functions l-associated to H(E)

In this section we generalize the notion of associated functions (cf. [dB, Theorem
25]).

3.1 Definition. Let E ∈ HB×. Choose F0 ∈ H(E) and w1, w2, . . . ∈ C\R with
F0(wi) 6= 0, i = 1, 2, . . .. For l ∈ N an entire function S is called l-associated to
H(E) if

RF0;w1 · . . . · RF0;wl
S ∈ H(E).

The set of all l-associated functions is denoted by Assocl H(E). For notational
convenience set Assoc0 H(E) := H(E).

3.2 Remark. Note that for l = 1 the notion of an l-associated function coincides
with the notion of an associated function in the sense of [dB].

First of all we have to justify our definition of Assocl H(E) by showing that
it does not depend on the actual choice of F0 and w1, w2, . . .. This follows
immediately from the next lemma.

3.3 Lemma. Let l ∈ N0. A function S is l-associated to H(E) if and only if
S
E and S#

E are of bounded type, mt( S
E ), mt(S#

E ) ≤ 0, and
∫ ∞

−∞

|S(t)|2
dt

(1 + t2)l|E(t)|2
< ∞. (3.1)

Proof. The case l = 0 is trivial by definition. By virtue of Remark 3.2 the case
l = 1 is nothing else but Theorem 25 of [dB]. We use induction on l.

Assume that the assertion has already been established for some l ∈ N. Note
that by definition S ∈ Assocl+1 H(E) if and only if RF0;wl+1

S ∈ Assocl H(E).
The function F0 satisfies condition (3.1) for all l ∈ N0. Hence S satisfies (3.1)
for l + 1 if and only if

(RF0;wl+1
S)(z) =

1

z − wl+1

(

S(z) −
S(wl+1)

F0(wl+1)
F0(z)

)

satisfies (3.1) for l. Moreover, F0

E and
F#

0

E are of bounded type and have non-

positive mean type. Thus also the conditions that S
E (S#

E , respectively) is of

bounded type and has non-positive mean type and that
RF0;wl+1

S

E (
(RF0;wl+1

S)#

E ,
respectively) is of bounded type and has non-positive mean type are equivalent.

3.4 Corollary. Let l, k ∈ N0. Then for any w ∈ C
+

Assocl+k H(E) = Assock H((z + w)lE(z)).

Proof. One only has to note that, for w ∈ C+, with E also the function (z +
w)lE(z) belongs to HB×.

3.5 Corollary. Let l ∈ N0, T ∈ Assocl+1 H(E) and w ∈ C with T (w) 6= 0.
Then RT ;w maps Assocl+1 H(E) onto Assocl H(E). We have

kerRT ;w = span{T }.

Proof. In the case l = 0 the assertion follows from Lemma 4.5 of [KW1] and the
remark made before it. Corollary 3.4 implies the general case.
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4 Approximating spaces

In the sequel we study the spaces H((z + iε)lE(z)) in dependence of ε > 0. Set

El,ε(z) := (z + iε)lE(z), l ∈ N0, ε > 0,

E0
l (z) := zlE(z), l ∈ N0.

Note the essential difference that El,ε ∈ HB×, whereas for l > 0 we have
E0

l ∈ HB \ HB×. However, still in some sense the spaces H(El,ε) approximate
H(E0

l ). Of course, for l = 0 all these spaces coincide since E0,ε = E0
0 = E.

To shorten notation denote the space H(El,ε) by Hl,ε, the space H(E0
l ) by

H0
l and let the functions Kl,ε, Sϕ;l,ε, K0

l and S0
ϕ;l be defined correspondingly,

e. g., write El,ε = Al,ε − iBl,ε, let Sϕ;l,ε = sinϕ · Al,ε − cosϕ · Bl,ε, and let Kl,ε

be as in (2.1) with Sϕ;l,ε instead of Sϕ.
We collect some properties of the introduced spaces. First of all note that

limεց0 El,ε = E0
l locally uniformly on C. Hence also limεց0 Sϕ;l,ε = S0

ϕ;l and

limεց0 Kl,ε = K0
l hold locally uniformly on C and C

2, respectively.

4.1 Lemma. Let l ∈ N be fixed. With the notation introduced above the follow-
ing statements are valid:

(i) The spaces Hl,ε, ε > 0, coincide as sets. For ε < δ the identity mapping
idε

δ of Hl,ε onto Hl,δ is a strict contraction, i. e.,

‖F‖Hl,ε
> ‖F‖Hl,δ

, F ∈ Hl,ε = Hl,δ, F 6= 0. (4.1)

(ii) For any w ∈ C the function Kl,ε(w, w) is non-increasing with decreasing
ε. We have

lim
εց0

Kl,ε(w, w) = K0
l (w, w) = |w|2lK(w, w) (4.2)

locally uniformly on C.

Proof. Assertion (i) is obvious. The fact that Kl,ε(w, w) is non-increasing with
decreasing ε follows by a straightforward argument from (4.1) since

Kl,ε(w, w) = ‖Kl,ε(w, · )‖2
Hl,ε

and ‖Kl,ε(w, · )‖Hl,ε
is the norm of the functional F 7→ F (w) in the space Hl,ε.

The first equality of (4.2) is immediate from (2.1) and (2.2). It remains to
prove

K0
l (w, w) = |w|2lK(w, w), w ∈ C. (4.3)

For w ∈ C \ R this equality follows from

S0
ϕ;l(z) = zlSϕ(z)

and (2.1). Together with the fact that both sides of (4.3) are continuous func-
tions of w ∈ C, this implies the validity of (4.3) also for real values of w.

4.2 Lemma. Let l ∈ N and ε > 0 be fixed.
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(i) We have
H0

l = {F ∈ Hl,ε : F (0) = . . . = F (l−1)(0) = 0 } (4.4)

as sets. The identity mapping id0
ε of H0

l into Hl,ε is a strict contraction,
i. e.,

‖F‖H0
l

> ‖F‖Hl,ε
, F ∈ H0

l , F 6= 0. (4.5)

The norm of its inverse can be estimated explicitly:

‖(id0
ε)

−1‖2 ≤ (1 + ε2)l +

∫ 1

−1

dt

|E(t)|2
· max
|z|=1

Kl,ε(z, z). (4.6)

This bound is non-increasing with decreasing ε.

(ii) If F ∈ Hl,ε \ H0
l , then

lim
εց0

‖F‖Hl,ε
= ∞.

Proof. First we deal with (i). The inclusion

H0
l ⊆ {F ∈ H0

l,ε : F (0) = . . . = F (l−1)(0) = 0}

is immediate from the fact that E0
l has a zero of order l at the origin and from

the inequality
∫ ∞

−∞

|F (t)|2
dt

(ε2 + t2)l|E(t)|2
<

∫ ∞

−∞

|F (t)|2
dt

t2l|E(t)|2
.

This also implies (4.5).
Let F ∈ Hl,ε, F (0) = . . . = F (l−1) = 0. We compute

∫ ∞

−∞

|F (t)|2
dt

|E0
l (t)|2

=

∫ 1

−1

∣

∣

∣

F (t)

tl

∣

∣

∣

2 dt

|E(t)|2
+

∫

|t|≥1

|F (t)|2
1

t2l

dt

|E(t)|2
≤

≤ ‖F‖2
Hl,ε

· max
|z|=1

Kl,ε(z, z) ·

∫ 1

−1

dt

|E(t)|2
+ (1 + ε2)l‖F‖2

Hl,ε
.

Here the first integral is estimated with the help of the maximum principle on
the unit disk and the fact that

|F (z)| ≤ ‖F‖Hl,ε
‖Kl,ε(z, · )‖Hl,ε

.

The estimate of the second integral is obtained from the elementary relation

max
|t|≥1

ε2 + t2

t2
= 1 + ε2.

We conclude that equality (4.4) as well as inequality (4.6) hold true.
It remains to prove (ii). This, however, is immediate from the monotone

convergence theorem.

4.3 Lemma. Let φ be a phase function for E, l ∈ N, ε > 0. Then the function

φl,ε(x) :=











φ(x) − l Arctan ε
x , x > 0,

φ(0) − l π
2 , x = 0,

φ(x) − l Arctan ε
x − lπ, x < 0
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is a phase function for El,ε. Moreover, the following relations hold:

lim
εց0

φ−1
l,ε (ϕ) =











φ−1(ϕ), ϕ > φ(0),

0, φ(0) − lπ ≤ ϕ ≤ φ(0),

φ−1(ϕ + lπ), ϕ < φ(0) − lπ.

(4.7)

Proof. The function φl,ε is a phase function for El,ε since it is continuous and

(x + iε)lE(x)ei(φ(x)−l Arctan ε
x
) = E(x)eiφ(x)

(

(x + iε)e−i Arctan ε
x

)l

∈ R.

To show relation (4.7), consider first the case ϕ > φ(0). For such a ϕ the
equation φl,ε(x) = ϕ is the same as φ(x) − l Arctan ε

x = ϕ for ε > 0. From
φl,ε(φ

−1(ϕ)) = ϕ − l Arctan ε
φ−1(ϕ) < ϕ it follows

φ−1
l,ε (ϕ) > φ−1(ϕ). (4.8)

This also implies

ϕ = φ(φ−1
l,ε (ϕ)) − l Arctan

ε

φ−1
l,ε (ϕ)

> φ(φ−1
l,ε (ϕ)) − l Arctan

ε

φ−1(ϕ)

and hence φ−1
l,ε (ϕ) < φ−1

(

ϕ+l Arctan ε
φ−1(ϕ)

)

, which proves, together with (4.8),

relation (4.7) in this case.
Next let φ(0) − l π

2 < ϕ ≤ φ(0). As φl,ε(0) = φ(0) − l π
2 < ϕ, we have

φ−1
l,ε (ϕ) > 0.

For every x > 0 there exists an ε0 > 0 such that φl,ε(x) > φ(0) ≥ ϕ for all
ε ≤ ε0. Hence

lim sup
εց0

φ−1
l,ε (ϕ) ≤ x,

which implies limεց0 φ−1
l,ε (ϕ) = 0.

The case ϕ = φ(0) − l π
2 is trivial and the cases ϕ < φ(0) − lπ and φ(0) −

lπ ≤ ϕ < φ(0) − l π
2 are handled in a similar way as above. Here the equation

φ(x) − l Arctan ε
x − lπ = ϕ has to be considered.

5 Characterization of N0/∆

This section is devoted to the proof of our main result, the characterization of
q ∈ N0/∆ in terms of the poles and residues (or poles and zeros) of q on the

one hand and in terms of certain spaces H(E) (with q = − S0

S π
2

) on the other.

The major effort is needed to establish the connection between the asymptotic
behaviour of poles and residues and the properties of the spaces H(E).

Let us first introduce the following notation. Denote by (ak)k∈N and (bk)k∈N

the sequences of the poles and zeros of q, respectively. If (ak)k∈N (or equivalently
(bk)k∈N) satisfies (C1) and (C2), then the canonical products a(z) and b(z)
corresponding to (ak)k∈N and (bk)k∈N, respectively, can be defined as in (2.3).
In this case we have

q(z) = γq
b(z)

a(z)

with γq > 0. Moreover, set Eq(z) := a(z) − iγqb(z) and Sϕ;q(z) = sin ϕ · a(z) −
cosϕ · γqb(z).
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5.1 Theorem. Let q ∈ N0 be given and assume that q is meromorphic in C

and q 6≡ 0. Denote by (ak)k∈N and (σk)k∈N the sequences of its poles and point
masses (cf. (2.4)), respectively. Let ∆ ∈ N0, and if ∆ = 0, assume in addition
that either q(0) = 0 or q has a pole at 0. Then the subsequent statements (i),
(ii), and (iii) are equivalent.

(i) q ∈
⋃∆

l=0 N0/l in the case that q is analytic at 0, and q ∈
⋃∆+1

l=0 N0/l if q
has a pole at 0.

(ii) The sequence (ak)k∈N satisfies (C1) and (C2). Moreover,

(C3)
∑

k∈N

1
(

1 + a
2(1+∆)
k

)

a′(ak)2σk

< ∞,

where a(z) is defined by (2.3) using the sequence (ak)k∈N.

(iii) For one (and hence for all) E ∈ HB× with q = − S0

S π
2

the set

Assoc∆+1 H(E) contains a real and zero-free function S(z).

If (ak)k∈N satisfies (C1) and (C2), define Eq and Sϕ;q as in the paragraph
preceeding the theorem. The condition (C3) in (ii) can be replaced by any of
the following:

(C3I) For one ϕ ∈ [0, π),

∑

t:Sϕ;q(t)=0

1

(1 + t2(1+∆))
∣

∣S′
ϕ;q(t)Sϕ+ π

2
;q(t)

∣

∣

< ∞. (5.1)

(C3II) Relation (5.1) is valid for all ϕ ∈ [0, π) and the sums in (5.1) are uniformly
bounded with respect to ϕ.

(C3III)

∫ ∞

−∞

1

(1 + t2)1+∆|Eq(t)|2
dt < ∞.

5.2 Remark. The condition q(0) = 0 is necessary for q ∈ N0/0.

5.3 Remark. This theorem contains the result of [Wo] as a particular case:
Theorem 1.1 of [Wo] states that in the case ∆ = 0 and q(0) = 0 the assertions
(ii) with (C3) and (iii) are equivalent.

5.4 Remark. Let us remark that for a zero t of Sϕ;q we have

−S′
ϕ;q(t)Sϕ+ π

2 ;q(t) = Kq(t, t),

where Kq is the kernel (2.1) corresponding to Eq. Moreover,

S0;q(z) = −γqb(z), Sπ
2 ;q(z) = a(z), σk = −γq

b(ak)

a′(ak)
.

Hence condition (C3) coincides with (C3I) for ϕ = π
2 .

The proof of Theorem 5.1 will be carried out in five steps. In the first step we
settle the trivial case that q is rational. The following three steps are concerned
with the proof of the equivalence of (ii) and (iii). In the last step we will make
use of this fact to establish the equivalence with (i).



11

Step 1: Assume that q is rational, i. e., it has only finitely many poles and zeros.
Then (ii) is trivially satisfied, even for ∆ = 0. Let E ∈ HB× and assume that
q = − S0

S π
2

. Then Sπ
2

has only finitely many zeros, namely the poles a1, . . . , ad

of q. Since Sπ
2
∈ Assoc1 H(E), the function

F (z) :=
Sπ

2
(z)

∏d
i=1(z − ai)

belongs to Assoc1 H(E). It is real and zero-free, hence (iii) holds. Finally, note
that the space H(Eq) consists of all polynomials with degree at most d− 1. By
[dB, Theorem 27] the function q belongs to N0/0 if q(0) = 0, i. e., (i) is valid
for ∆ = 0. But even if q(0) 6= 0 we have q1(0) = 0. So q1 ∈ N0/0 and hence
q ∈ N0/1.

Throughout the remainder of this section we will assume that q has infinitely
many poles. This implies that for any function E ∈ HB× satisfying q = − S0

S π
2

,

the space H(E) is infinite-dimensional.

Step 2: Let us clarify the relationships among the conditions (C3),(C3I)–
(C3III). Assume that (C1) and (C2) are valid, so that the function Eq is well
defined. We shall provide evidence for the following implications:

(C3II)
ւ ց

(C3) (C3III)

ց ւ
(C3I)

(5.2)

By Remark 5.4 the left branch in the above diagram consists in fact of trivial
observations. Next let φ be a phase function for Eq and define the functions

φn :

{

[φ−1(nπ), φ−1((n + 1)π)] → [0, π]

φn(x) := φ(x) − nπ

for n ∈ Z. With f(t) := 1
(1+t2)1+∆Kq(t,t) use Fubini’s theorem to compute:

∫ π

0

∑

t:Sϕ;q(t)=0

f(t) dϕ =

∫ π

0

∑

φ(t)≡ϕ mod π

f(t) dϕ =

∫ π

0

∑

n∈Z

f(φ−1
n (ϕ)) dϕ =

=
∑

n∈Z

∫ π

0

f(φ−1
n (ϕ)) dϕ =

∑

n∈Z

∫ φ−1
n (π)

φ−1
n (0)

f(u)φ′
n(u) du =

∫ ∞

−∞

f(u)φ′(u) du =

=

∫ ∞

−∞

φ′(u)

(1 + u2)1+∆Kq(u, u)
du =

∫ ∞

−∞

π

(1 + u2)1+∆|Eq(u)|2
du.

Thus also the implications in the right branch of (5.2) hold true.

Step 3: Next we show that (iii) implies (C1) and (C2) as well as (C3II).
Let E ∈ HB×, q = − S0

S π
2

, and assume that S ∈ Assoc∆+1 H(E) is real and

zero-free. Then also Ê := E
S belongs to HB× and by Lemma 3.3 we have

1 ∈ Assoc∆+1 H(Ê). Since

Ŝ0 =
S0

S
, Ŝπ

2
=

Sπ
2

S
,
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we have q = − Ŝ0

Ŝ π
2

. Proposition 2.2 of [Wo] yields that (C1) and (C2) are valid.

Moreover, Ê in fact equals Eq.
Henceforth we may assume without loss of generality that E = Eq and

1 ∈ Assoc∆+1 H(E). Consider the space H0
∆ as defined in the beginning of

Section 4 and choose F ∈ H0
∆ with F (i) = 1, F ′(i) = . . . = F (∆)(i) = 0. Then

trivially F ∈ H∆,ε and, since 1 ∈ Assoc1 H∆,ε, also

G(z) :=
F (z) − 1

z − i

( z

z − i

)∆

∈ H∆,ε.

Moreover, G(0) = . . . = G(∆−1)(0) = 0. By Lemma 4.2, (i), in fact G ∈ H0
∆

and ‖G‖H∆,ε
≤ ‖G‖H0

∆
. For arbitrary ϕ ∈ [0, π) we have (cf. [dB, Theorem 22])

∑

t:Sϕ;∆,ε(t)=0

|G(t)|2
1

K∆,ε(t, t)
≤ ‖G‖2

H∆,ε
, (5.3)

hence these sums are bounded uniformly with respect to ε and ϕ. Let φ be a
phase function for E and φ∆,ε a phase function for E∆,ε as defined in Lemma
4.3. Keeping in mind that by (4.7) of Lemma 4.3 and (4.2) of Lemma 4.1

lim
εց0

|G(φ−1
∆,ε(ϕ + nπ))|2

K∆,ε(φ
−1
∆,ε(ϕ + nπ), φ−1

∆,ε(ϕ + nπ))
=

=



















|G(φ−1(ϕ+nπ))|2

K0
∆(φ−1(ϕ+nπ),φ−1(ϕ+nπ))

, ϕ + nπ ≥ φ(0),
∣

∣

∣

G(∆)(0)
∆!

∣

∣

∣

2
1

K(0,0) , φ(0) − ∆π ≤ ϕ + nπ < φ(0),

|G(φ−1(ϕ+(n+∆)π))|2

K0
∆(φ−1(ϕ+(n+∆)π),φ−1(ϕ+(n+∆)π))

, ϕ + nπ < φ(0) − ∆π,

an application of Fatou’s lemma yields

‖G‖2
H0

∆
≥ ‖G‖2

H∆,ε
≥

∑

t:Sϕ;∆,ε(t)=0

|G(t)|2
1

K∆,ε(t, t)
=

=
∑

n∈Z

|G(φ−1
∆,ε(ϕ + nπ))|2

K∆,ε(φ
−1
∆,ε(ϕ + nπ), φ−1

∆,ε(ϕ + nπ))
≥

≥
∑

n∈Z:
ϕ+nπ≥φ(0)

|G(φ−1(ϕ + nπ))|2

K0
∆(φ−1(ϕ + nπ), φ−1(ϕ + nπ))

+

+ ∆
∣

∣

∣

G(∆)(0)

∆!

∣

∣

∣

2 1

K(0, 0)
+

+
∑

n∈Z:
ϕ+nπ+∆π<φ(0)

|G(φ−1(ϕ + (n + ∆)π))|2

K0
∆(φ−1(ϕ + (n + ∆)π), φ−1(ϕ + (n + ∆)π))

≥

≥
∑

t:Sϕ(t)=0

|G(t)|2
1

K0
∆(t, t)

=

=
∑

t:Sϕ(t)=0

|G(t)|2
1

t2∆K(t, t)
.
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Since F ∈ H0
∆, in particular

∑

t:Sϕ(t)=0

|F (t)|2
1

(1 + t2)∆K(t, t)
≤

∑

t:Sϕ(t)=0

|F (t)|2
1

t2∆K(t, t)
≤ ‖F‖H0

∆
.

Using the Minkowski inequality we obtain the estimate

(

∑

t:Sϕ(t)=0

1

1 + t2
·

1

(1 + t2)∆K(t, t)

)
1
2

≤

≤

(

∑

t:Sϕ(t)=0

|G(t)|2
(1 + t2

t2

)∆ 1

(1 + t2)∆K(t, t)

)
1
2

+

+

(

∑

t:Sϕ(t)=0

|F (t)|2

1 + t2
·

1

(1 + t2)∆K(t, t)

)
1
2

≤

≤ ‖G‖H0
∆

+ ‖F‖H0
∆
.

Since 1
1+t2(1+∆) ≤ 1

(1+t2)∆+1 , condition (C3II) follows.

Step 4: Assume that (C1), (C2), and (C3I) hold. We shall establish the
validity of (iii). For this sake we need a slight generalization of [Wo, Proposition
3.1].

5.5 Lemma. Let (xk)k∈N be a sequence of pairwise distinct real numbers which
has no finite limit point. Assume that it satisfies the conditions (C1) and (C2),
so that the function x(z) in (2.3) is well defined. If for some n ∈ N0

∑

k∈N

1

(1 + |xk|n)|x′(xk)|
< ∞, (5.4)

then x(z) is of bounded type.

Proof. The case n = 2 is nothing else but Proposition 3.1 of [Wo]. For n = 0 and
n = 1 the assertion is therefore a trivial consequence of this. We shall employ a
little trick in order to explain the general case by the mentioned result.

Choose n non-zero real numbers y1, . . . , yn which do not occur among the
xk’s. Consider the extended sequence (x̂k)k∈N defined as

x̂k :=

{

yk, k = 1, . . . , n

xk−n, k = n + 1, n + 2, . . .

Clearly, with (xk)k∈N, also the sequence (x̂k)k∈N possesses the properties (C1)
and (C2). Moreover, x̂(z) = p(z)x(z) where

p(z) :=

n
∏

i=1

(

1 −
z

yi

)

.

It follows that

|x̂′(xk)| = |p(xk)| · |x′(xk)| ∼
1

∏n
i=1 |yi|

(1 + |xk|
n)|x′(xk)|, k → ∞.
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We only have to observe that the sequence (x̂k)k∈N satisfies condition (5.4) with
0 in place of n. Then it follows from the known special case that x̂(z), and thus
also x(z), is of bounded type.

We claim that (for some λ ∈ R \ {0})

Sϕ;q(z) = λx(z),

where x(z) denotes the product (2.3) built from the sequence of zeros of Sϕ;q.
Consider the entire function

F (z) :=
Sϕ;q(z)

x(z)
=

sin ϕ · a(z) − cosϕ · γqb(z)

x(z)
.

By [L, VII. Lehrsatz 1] either the function a(z)
x(z) or its inverse belongs to N0

and hence is of bounded type. The same applies to b(z)
x(z) . Therefore F (z) is of

bounded type as well. Since F is real and zero-free, a short argument employing
[dB, Problem 34] implies that F is constant and hence establishes our claim.

Recall that, since − Sϕ;q

Sϕ+ π
2

;q
∈ N0, we have

∑

t:Sϕ;q(t)=0

1

1 + t2
·

Sϕ;q(t)

S′
ϕ+ π

2 ;q(t)
< ∞.

Together with our assumption (5.1) and the elementary inequality 1 ≤ u + 1
u ,

u > 0, this implies

∑

t:Sϕ;q(t)=0

1

(1 + t2(1+∆))|S′
ϕ;q(t)|

< ∞.

Lemma 5.5 allows us to conclude that Sϕ;q, and hence also Eq, is of bounded
type.

Since the function Sϕ;q is not a polynomial, there exists a point w ∈ C
+

such that the value Sϕ;q(w) is non-real and is attained at least ∆ times by Sϕ;q,
say for z ∈ {w1 = w, w2, . . . , w∆}. We claim that

S(z) :=
Sϕ;q(z) − Sϕ;q(w)
∏∆

i=1(z − wi)
∈ Assoc1 H(Eq). (5.5)

From this claim it follows at once that 1 ∈ Assoc∆+1 H(Eq) since

S(z) = −Sϕ;q(w)
(

RSϕ;q ;w∆ · · ·RSϕ;q ;w11
)

(z).

It remains to establish relation (5.5).
Since Sϕ;q is of bounded type, by [dB, Problem 34] the function |Sϕ;q(iy)| is

non-decreasing for y > 0. From the estimate

∣

∣

∣

S(z)

Sϕ;q(z)

∣

∣

∣
=

1
∏∆

i=1 |z − wi|

∣

∣

∣
1 −

Sϕ;q(w)

Sϕ;q(z)

∣

∣

∣
≤

1
∏∆

i=1 |z − wi|

(

1 +
∣

∣

∣

Sϕ;q(w)

Sϕ;q(z)

∣

∣

∣

)

,

we conclude that

lim sup
y→+∞

∣

∣

∣

∣

S(iy)

Sϕ;q(iy)

∣

∣

∣

∣

< ∞.
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A similar reasoning will show that

lim sup
y→+∞

∣

∣

∣

∣

S(−iy)

Sϕ;q(iy)

∣

∣

∣

∣

< ∞.

Moreover, by our assumption (5.1) and the fact that all wi are non-real,

∑

t:Sϕ;q(t)=0

|S(t)|2
1

(1 + t2)Kq(t, t)
=

∑

t:Sϕ;q(t)=0

|Sϕ;q(w)|2
∏∆

i=1 |t − wi|2
1

(1 + t2)Kq(t, t)
< ∞.

Assume for the moment that Sϕ;q /∈ H(Eq). Since clearly S
Eq

and S#

Eq
are of

bounded type, all assumptions of [dB, Problem 70] are fulfilled and we may
conclude that S ∈ Assoc1 H(Eq).

In the case Sϕ;q ∈ H(Eq) consider the closure of the domain of the multipli-
cation operator in H(Eq). It again is a space H(E), in fact by [dB, Problem 87]
we have

(Aq, Bq) = (A, B)

(

1 − βz αz
−γz 1 + βz

)

for certain α, β, γ ∈ R. Moreover, Sϕ = Sϕ;q. It follows that H(E) is contained
isometrically in L2(ν) where ν is the discrete measure related to Sϕ;q and that
Sϕ;q

E is of bounded type. Once again we employ [dB, Problem 70], obtain S ∈
Assoc1 H(E), and hence also S ∈ Assoc1 H(Eq).

We provided evidence to the assertion of (iii) in the case of the particular
function Eq. Now let E ∈ HB× be arbitrary with q = − S0

S π
2

. Then, by [dB,

Theorem 24]
E(z) = S(z)Eq(z)

for some real and zero-free function S. Clearly S belongs to Assoc∆+1 H(E).

Step 5: We use induction on ∆ to establish the equivalence of (i) and (ii).
Note that the case ∆ = 0 is nothing else but Corollary 1.2 of [Wo]. The main
ingredients in the proof of the inductive step are on the one hand the already
proved fact that under the assumption of (C1) and (C2) the conditions (C3I)
for ϕ = 0 and ϕ = π

2 , respectively, are equivalent, and on the other hand the
lemma below, which is based upon an elementary calculation.

Let us remark that we need not bother about the validity of (C1) and (C2).
This originates in the fact that the poles of qk+1 interlace its zeros which are
the poles of qk plus 0, and therefore possess the same distribution.

5.6 Lemma. Let q ∈ N0 be meromorphic in the plane and let n ∈ N be given.
Assume that (C1) and (C2) are satisfied. If q is analytic at 0, then q satisfies
(C3I) with ϕ = π

2 and ∆ = n if and only if q1 (defined by (1.2)) satisfies (C3I)
with ϕ = 0 and ∆ = n − 1.

In the case that q has a pole at 0, q satisfies (C3I) with ϕ = π
2 and ∆ = n

if and only if q1 satisfies (C3I) with ϕ = 0 and ∆ = n.

Proof. Consider first the case that q is analytic at 0. Denote by (âk)k∈N and

(b̂k)k∈N0 the sequences of poles and zeros, respectively, of q1. They can be

arranged so that b̂0 = 0 and b̂k = ak, k ≥ 1. Let the functions â(z) and b̂(z) be
defined correspondingly.
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We clearly have b̂(z) = za(z), and therefore

b̂′(ak) = aka′(ak).

We compute

Res
(

−
1

q1(z)
; ak

)

= −
1

γq1

â(ak)

b̂′(ak)
= −

1

γq1

â(ak)

aka′(ak)
,

and

Res
(

q(z) −
1

z
; ak

)

= γq
b(ak)

a′(ak)
.

It follows that (− 1
q1(z) = q(z) − 1

z )

â(ak) = −γqγq1akb(ak),

and, in view of (2.2), that

KEq1
(b̂k, b̂k) =

1

π
â(b̂k)γq1 b̂

′(b̂k) = −
1

π
γqγq1akb(ak)·γq1 ·aka′(ak) =

= γ2
q1

a2
kKEq

(ak, ak).

Thus for an arbitrary function g(t)

1

γ2
q1

∑

t:S π
2

;q(t)=0

g(t)

t2
1

KEq
(t, t)

=
∑

t:S0;q1 (t)=0

g(t)
1

KEq1
(t, t)

− π
g(0)

γq1

. (5.6)

An application of (5.6) with g(t) := 1
1+t2n yields the assertion of the lemma in

this case.
If q has a pole at 0, then b̂k = ak for all k, provided the sequences are

arranged appropriately. Hence b̂(z) = a(z) and

KEq1
(b̂k, b̂k) = γ2

q1
KEq

(ak, ak).

The rest of the proof is analogous.

We will now complete the proof. First note that q ∈
⋃

l≤∆0+1 N0/l if and
only if q1 ∈

⋃

l≤∆0
N0/l. This is immediate from the fact that q 7→ q1 maps

N0/l into N0/l−1 for l > 0 by definition, and maps N0/0 into itself by (5.6) and
the already established equivalence of (i) and (ii) in case ∆ = 0. Furthermore,
note that qj(0) = 0 for j ≥ 1.

We consider first the case that q is analytic at 0, where we use induction on
∆. Assume that the asserted equivalence of (i) and (ii) has already been proved
for ∆ = ∆0 − 1. Let q ∈

⋃

l≤∆0
N0/l. Then q1 ∈

⋃

l≤∆0−1 N0/l and therefore q1

satisfies (C1), (C2), and (C3I) with ϕ = 0 and ∆ = ∆0 − 1. By Lemma 5.6
the function q thus satisfies (C3I) with ϕ = π

2 and ∆ = ∆0, i. e., (i) implies
(ii). Reversing these arguments yields the converse implication.

In the case that q has a pole at 0, then q ∈
⋃

l≤∆0+1 N0/l implies q1 ∈
⋃

l≤∆0
N0/l. Since q1(0) = 0, we can use the already proved case to show that

q1 satisfies (C1), (C2), and (C3I) with ϕ = 0 and ∆ = ∆0. Using the second
part of Lemma 5.6 we get that q satisfies (C3I) with ϕ = π

2 and ∆ = ∆0. Again
the arguments can be reversed to show the converse implication.

All assertions of Theorem 5.1 are proved.
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5.7 Remark. As we have seen in the foregoing arguments, condition (iii) could
be replaced by

(iii′) 1 ∈ Assoc∆+1 H(Eq).

In the remainder of this section we draw some conclusions and give some
examples.

5.8 Corollary. Let q ∈ N0, meromorphic in C, satisfy (C1) and (C2), and
assume that q is analytic at 0. Define Eq as in Theorem 5.1 and let ∆ ∈ N.
Then 1 ∈ Assoc1 H((z + i)∆Eq) if and only if 1 ∈ Assoc1 H(Eq∆).

Proof. Assume that 1 ∈ Assoc1 H((z + i)∆Eq), i. e., 1 ∈ Assoc1+∆ H(Eq). By

Theorem 5.1 we have q ∈
⋃∆

l=0 N0/l and thus q∆ ∈ N0/0. That is by [dB,
Theorem 27] nothing else but 1 ∈ Assoc1 H(Eq∆). Reversing these arguments
leads to the converse implication.

5.9 Corollary. Let (ak)k∈Z and (bk)k∈Z be sequences of distinct real numbers
with

ak < bk < ak+1, k ∈ Z.

Assume that (C1) and (C2) are satisfied, and let a(z) and b(z) be defined as
in (2.3). Denote by E(z) the function (γ ∈ R \ {0})

E(z) := a(z) − iγb(z).

If for some n ∈ N
∫ ∞

−∞

1

(1 + |t|n)|E(t)|2
dt < ∞,

then also (log+ x := log max{1, x})

∫ ∞

−∞

log+ |E(t)|

1 + t2
dt < ∞. (5.7)

Proof. Set q(z) := γ b(z)
a(z) . Then either q or −q belongs to N0. Consider first

the case q ∈ N0. Then E(z) = Eq(z) where Eq is as in Theorem 5.1. Choose
∆ ∈ N, such that n ≤ 2(1 + ∆). Then, by Theorem 5.1, 1 ∈ Assoc1+∆ H(E).
Thus E is of bounded type and henceforth satisfies (5.7).

In the case −q ∈ N0 consider the function E# instead of E.

As a first example we consider functions q ∈ N0 whose poles lie at Z \ {0}.
Then, clearly, (C1) and (C2) are satisfied and a(z) = sin πz

πz .

5.10 Corollary. Let σn > 0, n ∈ Z \ {0}, be the point masses at the poles n.

Then q belongs to
⋃∆

l=0 N0/l, ∆ ∈ N, if and only if

∑

n∈Z\{0}

1

n2∆σn
< ∞.

Proof. For the proof one only has to note that a′(n) = (−1)n

n . Then the assertion
follows immediately from Theorem 5.1.

Next consider functions q with poles at Z\{0, 1}. Similar as above we obtain:
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5.11 Corollary. Let σn > 0, n ∈ Z \ {0, 1}, be the point masses at the poles n.

Then q belongs to
⋃∆

l=0 N0/l if and only if

∑

n∈Z\{0,1}

1

n2(∆−1)σn
< ∞.

A comparison of the last two corollaries shows the sensitivity of the condi-
tions of Theorem 5.1 with respect to the actual location of the poles of q. Hence
the condition (C3) cannot be thought of as a purely asymptotic condition.

5.12 Remark. In particular the above corollaries show that for all ∆ ≥ 0 we
have N0/∆ 6= ∅, namely for ∆ > 0 take, e. g., σn = |n|2(1−∆) and for ∆ = 0 take
q(z) = tan z. Moreover, there exist functions q ∈ N0 which are meromorphic in
the whole plane but still do not belong to any class N0/∆.
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[KW3] M. Kaltenbäck, H.Woracek: Pontryagin spaces of entire functions III,

submitted.

[KL] M. G.Krein, H. Langer: On some continuation problems which are closely

related to the theory of operators in spaces Πκ. IV. Continuous analogues of

orthogonal polynomials on the unit circle with respect to an indefinite weight

and related continuation problems for some classes of functions,

J. Operator Theory 13 (1985), 299–417.

[L] B.Levin: Nullstellenverteilung ganzer Funktionen,

Akademie Verlag, Berlin 1962.

[Wi1] H. Winkler: Zum inversen Spektralproblem für zweidimensionale kanonische

Systeme,

Doctoral Thesis, Technische Universität Wien 1993.

[Wi2] H. Winkler: The inverse spectral problem for canonical systems,

Integral Equations Operator Theory 22 (1995), 360–374.

[Wo] H. Woracek: De Branges spaces closed under difference quotients,

Integral Equations Operator Theory 37 (2000), 238–249.

M.Langer, H.Woracek
Institut für Analysis und Technische Mathematik
Technische Universität Wien
Wiedner Hauptstr. 8–10/114.1
A–1040 Wien
AUSTRIA
email: mlanger@mail.zserv.tuwien.ac.at, hworacek@mail.zserv.tuwien.ac.at


